Sample records for e-5x tyra se

  1. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis

    PubMed Central

    Liu, Dong-Xin; Fan, Chang-Sheng; Tao, Ju-Hong; Liang, Guo-Xin; Gao, Shan-E; Wang, Hai-Jiao; Li, Xin; Song, Da-Xin

    2004-01-01

    AIM: To study the effect of integration of tandem aroG-pheA genes into the tyrA locus of Corynebacterium glutamicum (C. glutamicum) on the production of L-phenylalanine. METHODS: By nitrosoguanidine mutagenesis, five p-fluorophenylalanine (FP)-resistant mutants of C.glutamicum FP were selected. The tyrA gene encoding prephenate dehydrogenase (PDH) of C.glutamicum was amplified by polymerase chain reaction (PCR) and cloned on the plasmid pPR. Kanamycin resistance gene (Km) and the PBF-aroG-pheA-T (GA) fragment of pGA were inserted into tyrA gene to form targeting vectors pTK and pTGAK, respectively. Then, they were transformed into C.glutamicum FP respectively by electroporation. Cultures were screened by a medium containing kanamycin and detected by PCR and phenotype analysis. The transformed strains were used for L-phenylalanine fermentation and enzyme assays. RESULTS: Engineering strains of C.glutamicum (Tyr-) were obtained. Compared with the original strain, the transformed strain C. glutamicum GAK was observed to have the highest elevation of L-phenylalanine production by a 1.71-fold, and 2.9-, 3.36-, and 3.0-fold in enzyme activities of chorismate mutase, prephenate dehydratase and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, respectively. CONCLUSION: Integration of tandem aroG-pheA genes into tyrA locus of C. glutamicum chromosome can disrupt tyrA gene and increase the yield of L-phenylalanine production. PMID:15534933

  2. Synchrotron powder X-ray diffraction and structural analysis of Eu0.5La0.5FBiS2-x Se x

    NASA Astrophysics Data System (ADS)

    Nagasaka, K.; Jinno, G.; Miura, O.; Miura, A.; Moriyoshi, C.; Kuroiwa, Y.; Mizuguchi, Y.

    2017-07-01

    Eu0.5La0.5FBiS2-x Se x is a new BiS2-based superconductor system. In Eu0.5La0.5FBiS2-x Se x , electron carriers are doped to the BiS2 layer by the substitution of Eu by La. Bulk superconductivity in this system is induced by increasing the in-plane chemical pressure, which is controlled by the Se concentration (x). In this study, we have analysed the crystal structure of Eu0.5La0.5FBiS2-x Se x using synchrotron powder diffraction and the Rietveld refinement. The precise determination of the structural parameters and thermal factors suggest that the emergence of bulk superconductivity in Eu0.5La0.5FBiS2-x Se x is achieved by the enhanced in-plane chemical pressure and the decrease in in-plane disorder.

  3. Preparation and investigation of GaxGe25As15Se60-x (x = 1 ÷ 5) glasses

    NASA Astrophysics Data System (ADS)

    Shiryaev, V. S.; Karaksina, E. V.; Velmuzhov, A. P.; Sukhanov, M. V.; Kotereva, T. V.; Plekhovich, A. D.; Churbanov, M. F.; Filatov, A. I.

    2017-05-01

    Chalcogenide glasses of GaxGe25As15Se60-x (x = 0; 1; 2; 3; 4; 5) compositions are prepared; their transmission range, optical band gap energy, thermal properties and stability against crystallization are studied. It is shown that these glasses have a high transparency in the mid-IR region (from 0.8 to 15 μm), a high glass transition temperature (≥320 °C) and a low tendency to crystallize. The optical band gap energy of GaxGe25As15Se60-x (x = 0; 1; 2; 3; 4; 5) glasses decreases from 1.68 to 1.43 eV as the gallium content increases and the selenium decreases. Their glass network, according to IR spectroscopy data, consists of Ge(Se1/2)4 tetrahedrons and AsSe3/2 pyramids. The Ga2Ge25As15Se58 and Ga3Ge25As15Se57 glasses have highest stability against crystallization. The content of hydrogen and oxygen impurities in the purest glass samples, fabricated using a combination of chemical distillation purification method and vapor transport reaction technique, does not exceed 0.06 ppm (wt) and 0.5 ppm (wt), respectively.

  4. Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA.

    PubMed

    Zubieta, Chloe; Joseph, Rosanne; Krishna, S Sri; McMullan, Daniel; Kapoor, Mili; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elias, Ylva; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Murphy, Kevin D; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; Trout, Christina V; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2007-11-01

    TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases. (c) 2007 Wiley-Liss, Inc.

  5. Synthesis and characterization of FeSe1-xTex (x=0, 0.5, 1) superconductors

    NASA Astrophysics Data System (ADS)

    Zargar, Rayees A.; Hafiz, A. K.; Awana, V. P. S.

    2015-08-01

    In this study, FeTe1-xSex (x=0,0.5,1) samples were prepared by conventional solid state reaction method and investigated by powder XRD, SEM, Raman and resistivity measurement techniques to reveal the effect of tellurium (Te) substitution in FeSe matrix. Rietveld analysis was performed on room temperature recorded, X-ray diffraction (XRD) patterns of pure FeSe, FeTe and FeSe0.5Te0.5 which shows that all the compounds are crystallized in a tetragonal structure. SEM images show the dense surface morphology. Raman spectra recorded in the range from 100 to 700 cm-1 at ambient temperature has been interpreted by P4/nmm space group of the lattice. The variation in intensity and shift in peak positions of some phonon modes has been discussed on the basis of variation in crystalline field effect by substituting Te in FeSe lattice. The resistivity versus temperature curves reveals that FeSe becomes superconductor at 7 K and FeSe0.5Te0.5 shows superconductivity below 14 K while FeTe is non-superconducting compound.

  6. Electronic and Thermoelectric Properties of SnSe1-x S x (x = 0, 0.25, 0.5, 0.75, and 1) Alloys: First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Hamad, Bothina

    2018-04-01

    Ab initio investigations of the electronic and thermoelectric (TE) properties of SnSe1-x S x (x = 0, 0.25, 0.5, 0.75, and 1) alloys are performed using density functional theory. The TE properties are calculated using the semi-classical Boltzmann transport theory within the constant relaxation time approximation. Band gap values are found to range between 0.94 eV and 1.02 eV in agreement with the experimental findings and previous calculations. All alloys tend to exhibit p-type TE properties, indicated by a sharp peak near the Fermi level that indicates a heavy carrier concentration. Electrical conductivity is found to decrease, whereas the Seebeck coefficient and the power factor increase for higher concentrations. The three alloys, SnS, SnSe and SnSe0.75S0.25 alloys exhibit the same power factor of 3.5 × 10-3 W/m K2, which is promising for thermoelectric applications.

  7. Surface Collective Modes in the Topological Insulators Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 - x Se x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogar, A.; Vig, S.; Thaler, A.

    We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 - x Se x . Our goal was to identify the “spin plasmon” predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ '' ( q , ω ) at THz energy scales, and is themore » most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role« less

  8. Surface collective modes in the topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogar, A.; Gu, G.; Vig, S.

    In this study, we used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x. Our goal was to identify the “spin plasmon” predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ''(q,ω) at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed inmore » previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.« less

  9. Surface Collective Modes in the Topological Insulators Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 - x Se x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogar, A.; Vig, S.; Thaler, A.

    We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x . Our goal was to identify the “spin plasmon” predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ '' ( q , ω ) at THz energy scales, and is the most likely origin of a quasiparticlemore » dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.« less

  10. Surface collective modes in the topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x

    DOE PAGES

    Kogar, A.; Gu, G.; Vig, S.; ...

    2015-12-15

    In this study, we used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x. Our goal was to identify the “spin plasmon” predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ''(q,ω) at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed inmore » previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.« less

  11. Thermoelectric Properties of the Homologous Compounds Pb5Bi6Se14- x I x ( x = 0.0, 0.025, and 0.05)

    NASA Astrophysics Data System (ADS)

    Sassi, S.; Candolfi, C.; Dauscher, A.; Lenoir, B.

    2018-06-01

    Homologous compounds represent an interesting platform for design of new thermoelectric materials. We report herein on synthesis, structural and chemical characterizations, and high-temperature (300 K to 700 K) transport properties measurements of Pb5Bi6Se14- x I x ( x = 0.0, 0.025, and 0.05) homologous compounds. Successful insertion of iodine into the crystal structure of Pb5Bi6Se14 was confirmed by its influence on the transport properties. The doping effectiveness of iodine was demonstrated by the increase in the electron concentration, resulting in more pronounced metallic character of transport with respect to undoped Pb5Bi6Se14. The peak ZT value of 0.5, which was achieved at 700 K in the x = 0.025 sample, remains similar to that obtained in Pb5Bi6Se14.

  12. Role of the local structure in superconductivity of LaO0.5F0.5BiS2-x Se x system

    NASA Astrophysics Data System (ADS)

    Paris, E.; Mizuguchi, Y.; Hacisalihoglu, M. Y.; Hiroi, T.; Joseph, B.; Aquilanti, G.; Miura, O.; Mizokawa, T.; Saini, N. L.

    2017-04-01

    We have studied the local structure of LaO0.5F0.5BiS2-x Se x by Bi L1-edge extended x-ray absorption fine structure (EXAFS). We find a significant effect of Se substitution on the local atomic correlations with a gradual elongation of average in-plane Bi-S bondlength. The associated mean square relative displacement, measuring average local distortions in the BiS2 plane, hardly shows any change for small Se substitution, but decreases significantly for x≥slant 0.6 . The Se substitution appears to suppress the local distortions within the BiS2 plane that may optimize in-plane orbital hybridization and hence the superconductivity. The results suggest that the local structure of the BiS2-layer is one of the key ingredients to control the physical properties of the BiS2-based dichalcogenides.

  13. Electronic structure change of NiS2- x Se x in the metal-insulator transition probed by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Jeong, Jinwon; Park, Kyung Ja; Cho, En-Jin; Noh, Han-Jin; Kim, Sung Baek; Kim, Hyeong-Do

    2018-01-01

    The electronic structure change of NiS2- x Se x as a function of Se concentration x has been studied by Ni L-edge X-ray absorption spectroscopy (XAS). The XAS spectra show distinct features in Ni L 3 edge, indicating whether the system is insulating or metallic. These features can be semi-quantitatively explained within the framework of the configurational interaction cluster model (CICM). In the S-rich region, relatively large charge-transfer energy (Δ 5 eV) from ligand p to Ni 3 d states and a little small p- d hybridization strength ( V pdσ 1.1 eV) can reproduce the experimental spectra in the CICM calculation, and vice versa in the Se-rich region. Our analysis result is consistent with the Zaanen-Sawatzky-Allen scheme that the systems in S-rich side ( x ≤ 0.5) are a charge transfer insulator. However, it also requires that the Δ value must change abruptly in spite of the small change of x near x = 0.5. As a possible microscopic origin, we propose a percolation scenario where a long range connection of Ni[(S,Se)2]6 octahedra with Se-Se dimers plays a key role to gap closure.

  14. Crystal growth of LiIn 1–xGa xSe 2 crystals

    DOE PAGES

    Wiggins, Brenden; Bell, Joseph; Woodward, Jonathan; ...

    2016-10-22

    Lithium containing chalcogenide single crystals have become very promising materials for photonics and radiation detection. Detection applications include nuclear nonproliferation, neutron science, and stellar investigations for the search of life. Synthesis and single crystal growth methods for lithium containing chalcogenide, specifically LiIn 1-xGa xSe 2, single crystals are discussed. This study elucidates the possibility of improving neutron detection by reducing the indium capture contribution; with the incorporation of the lithium-6 isotope, gallium substitution may overcome the neutron detection efficiency limitation of 6LiInSe 2 due to appreciable neutron capture by the indium-115 isotope. As a figure of merit, the ternary parentmore » compounds 6LiInSe 2 and 6LiGaSe 2 were included in this study. Quality crystals can be obtained utilizing the vertical Bridgman method to produce quaternary compounds with tunable optical properties. Here, quaternary crystals of varying quality depending on the gallium concentration, approximately 5 x 5 x 2 mm 3 or larger in volume, were harvested, analyzed and revealed tunable absorption characteristics between 2.8-3.4 eV.« less

  15. Bulk Superconductivity Induced by Se Substitution in BiCh2-Based Layered Compounds Eu0.5Ce0.5FBiS2-xSex

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Sogabe, Ryota; Mizuguchi, Yoshikazu

    2017-10-01

    We report the effect of Se substitution on the crystal structure and superconductivity of BiCh2-based (Ch: S, Se) layered compounds Eu0.5Ce0.5FBiS2-xSex (x = 0-1). Crystal structure analysis showed that both lattice constants, a and c, increased with increasing x, which is different from the related La-doped system Eu0.5La0.5FBiS2-xSex. This is due to Se substitution at both in-plane and out-of-plane Ch sites in the present Ce-doped system. Zero resistivity was observed for x = 0.2-1 above 2 K. The superconducting properties of Eu0.5Ce0.5FBiS2-xSex were investigated by magnetic susceptibility measurement, and the highest superconducting transition temperature of 3.5 K was obtained for x = 0.6 with a large shielding volume fraction. The emergence of bulk superconductivity and metallic conductivity can be qualitatively described in terms of the increased in-plane chemical pressure effect. A magnetic anomaly below 8 K, probably because of the ferromagnetic order of the magnetic moment of Ce3+ ions, coexists with bulk superconductivity in the BiCh2 layer. Since the effect of Se substitution on the magnetic transition temperature is ignorable, we suggest that the coupling between the magnetic order at the (Eu,Ce)F layer and the superconductivity at the Bi(S,Se)2 layer is weak.

  16. Luminescence properties of ZnxMg1-xSe layers

    NASA Astrophysics Data System (ADS)

    Bala, Waclaw; Firszt, Franciszek; Dzik, Janusz; Gapinski, Adam; Glowacki, Grzegorz

    1995-10-01

    This work deals with the study of luminescence properties of ZnxMg1-xSe layers prepared by different methods. ZnxMg1-xSe mixed crystal layers were obtained by: (a) thermal diffusion of Mg metal in the temperature range 1050 K - 1200 K into ZnSe single crystal grown by Bridgman method, and (b) epitaxial growth on (001) GaAs and (111) ZnTe substrates by MBE using elemental Zn, Se and Mg sources. The luminescence spectra of ZnxMg1-xSe layers grown on (001) GaAs and (111) ZnTe substrates are dominated by narrow blue and violet emission bands with maxima positioned at about 3.05 - 3.28 eV, 2.88 - 3.04 eV, and 2.81 - 2.705 eV.

  17. DFT study of structural and electronic properties of MoS2(1-x)Se2x alloy (x = 0.25)

    NASA Astrophysics Data System (ADS)

    Gusakova, Julia; Gusakov, Vasilii; Tay, Beng Kang

    2018-04-01

    First-principles calculations have been performed to study the structural features of the monolayer MoS2(1-x)Se2x (x = 0.25) alloy and its electronic properties. We studied the effects of the relative positions of Se atoms in a real monolayer alloy. It was demonstrated that the distribution of the Se atoms between the top and bottom chalcogen planes was most energetically favorable. For a more probable distribution of Se atoms, a MoS2(1-x)Se2x (x = 0.25) monolayer alloy is a direct semiconductor with a fundamental band gap equal to 2.35 eV (calculated with the GVJ-2e method). We also evaluated the optical band gap of the alloy at 77 K (1.86 eV) and at room temperature (1.80 eV), which was in good agreement with the experimentally measured band gap of 1.79 eV.

  18. Electronic and magnetic properties of Zn1-xFexSe alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-12-01

    The spin polarized density functional theory along with self consistent plane wave pseudopotential method is used to investigate electronic and magnetic properties of ternary Zn1-xFexSe alloys with x = 0.125, 0.25, 0.5 and 0.75. The exchange-correlation potential treated within generalized gradient approximation is used. The calculated spin-polarized band structures, partial and total density of states reveal that Zn0.875Fe0.125Se and Zn0.75Fe0.25Se exhibit half metallic ferromagnetic characteristics and Zn0.50Fe0.50Se is nearly half metallic in nature. The half metallic band gaps for x = 0.125 and 0.25 are 0.69 and 0.39 eV respectively, while the corresponding band gaps are 0.86 and 0.81 eV. The p-d hybridization reduces the magnetic moment of Fe atoms from its free space charge value of 4 μB and induces the small magnetic moments on Zn and Se sites. The results are compared with available experimental data.

  19. Development of a thin oil rim with horizontal wells in a low relief chalk gas field, Tyra field, Danish North Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nykjaer, O.

    1994-12-31

    This paper presents the history of the development of an oil rim in a chalk gas field. In a low relief gas field, oil rim development is problematic because the proximity to fluid contacts leads to gas and water coning and a significantly decreased oil production. This problem has been reduced in Tyra by developing the oil rim with horizontal wells. The best oil wells are in areas where gas production is impaired by tight chalk immediately above the gas-oil contact, and where the oil rim is thickest. The field was initially developed as a gas field due to poormore » production tests of the oil rim during the appraisal of the field. An understanding of the distribution of oil led to the drilling of a successful oil rim well. The advent of horizontal drilling increased the scope for oil rim development and accelerated the drilling of oil rim wells. Extensive reservoir simulation work provided the reservoir management tool for the planning of an oil rim development under the constraint of a gas sales agreement. It has resulted in a plan for further development of the Tyra gas field. According to the plan additional gas injection will in a period of seven years result in low net annual gas off-take from the Tyra gas production wells and the main production will instead come from horizontal wells in the oil-rim. During this time the majority of the oil reserves will be produced.« less

  20. Magnetic and thermoelectric properties of the ternary pseudo-hollandite BaxCr5Se8 (0.5 < x < 0.55) solid solution.

    PubMed

    Lefèvre, Robin; Berthebaud, David; Bux, Sabah; Hébert, Sylvie; Gascoin, Franck

    2016-07-26

    The structure of Ba0.5Cr5Se8 has been recently resolved, and its thermoelectric and magnetic properties have been studied. A ZT of 0.12 was found at around 800 K. Here, we report a study on the pseudo-hollandite BaxCr5Se8 solid-solution with 0.5x ≤ 0.55 and its thermoelectric and magnetic properties. There is no significant impact either on the cell parameters depending on the cation content or on the magnetic properties. However, thermoelectric properties are radically changed depending on x content. While the low thermal conductivity, around 0.8 W m(-1) K(-1), remains similar for all samples, a respective increase and decrease of the resistivity and the Seebeck coefficient are observed with increasing Ba content. The maximum Seebeck coefficient is found with Ba0.5Cr5Se8 at around 635 K with 315 μV K(-1), and the Seebeck coefficient then decreases and is correlated with an activation of minority charge carriers confirmed by Hall measurements. A similar but steeper behavior is observed for the Ba0.55Cr5Se8 temperature dependence plot at around 573 K. Finally, the best thermoelectric performances are found using the lowest content of Ba, unlike when x tends to 0.55, ZT approaches a tenth of the initial best value. BaxCr5Se8 compounds are antiferromagnetic with TN = 58 K. A large peak in thermal conductivity is observed around the antiferromagnetic transition for all stoichiometry.

  1. Structural and optical properties of electron-beam-evaporated ZnSe 1- x Te x Ternary compounds with various Te contents

    NASA Astrophysics Data System (ADS)

    Suthagar, J.; Suthan Kissinger, N. J.; Sharli Nath, G. M.; Perumal, K.

    2014-01-01

    ZnSe1- x Te x films with different tellurium (Te) contents were deposited by using an electron beam (EB) evaporation technique onto glass substrates for applications to optoelectronic devices. The structural and the optical properties of the ZnSe1- x Te x films were studied in the present work. The host material ZnSe1- x Te x , were prepared by using the physical vapor deposition method of the electron beam evaporation technique (PVD: EBE) under a pressure of 1 × 10-5 mbar. The X-ray diffractogram indicated that these alloy films had cubic structure with a strong preferential orientation of the crystallites along the (1 1 1) direction. The optical properties showed that the band gap (E g ) values varied from 2.73 to 2.41 eV as the tellurium content varied from 0.2 to 0.8. Thus the material properties can be altered and excellently controlled by controlling the system composition x.

  2. Stable monolayer honeycomb-like structures of RuX2 (X =S,Se)

    NASA Astrophysics Data System (ADS)

    Ersan, Fatih; Cahangirov, Seymur; Gökoǧlu, Gökhan; Rubio, Angel; Aktürk, Ethem

    2016-10-01

    Recent studies show that several metal oxides and dichalcogenides (M X2) , which exist in nature, can be stable in two-dimensional (2D) form and each year several new M X2 structures are explored. The unstable structures in H (hexagonal) or T (octahedral) forms can be stabilized through Peierls distortion. In this paper, we propose new 2D forms of RuS2 and RuSe2 materials. We investigate in detail the stability, electronic, magnetic, optical, and thermodynamic properties of 2D Ru X2 (X =S,Se) structures from first principles. While their H and T structures are unstable, the distorted T structures (T'-Ru X2) are stable and have a nonmagnetic semiconducting ground state. The molecular dynamic simulations also confirm that T'-Ru X2 systems are stable even at 500 K without any structural deformation. T'-RuS2 and T'-RuSe2 have indirect band gaps with 0.745 eV (1.694 eV with HSE) and 0.798 eV (1.675 eV with HSE) gap values, respectively. We also examine their bilayer and trilayer forms and find direct and smaller band gaps. We find that AA stacking is more favorable than the AB configuration. The new 2D materials obtained can be good candidates with striking properties for applications in semiconductor electronic, optoelectronic devices, and sensor technology.

  3. Growth and properties of wide bandgap (MgSe)n(ZnxCd1-xSe)m short-period superlattices

    NASA Astrophysics Data System (ADS)

    Garcia, Thor A.; Tamargo, Maria C.

    2017-12-01

    We report the molecular beam epitaxy (MBE) growth and properties of (MgSe)n(ZnxCd1-x Se)m short-period superlattices(SPSLs) for potential application in II-VI devices grown on InP substrates. SPSL structures up to 1 μm thick with effective bandgaps ranging from 2.6 eV to above 3.42 eV are grown and characterized, extending the typical range possible for the ZnxCdyMg1-x-ySe random alloy beyond 3.2 eV. Additionally, ZnxCd1-xSe single and multiple quantum well structures using the SPSL barriers are also grown and investigated. The structures are characterized utilizing reflection high-energy electron diffraction, X-ray reflectance, X-ray diffraction and photoluminescence. We observed layer-by-layer growth and smoother interfaces in the QWs grown with SPSL when compared to the ZnxCdyMg1-x-ySe random alloy. The results indicate that this materials platform is a good candidate to replace the random alloy in wide bandgap device applications.

  4. Density functional theory investigation of the LiIn 1-xGa xSe 2 solid solution

    DOE PAGES

    Wiggins, Brenden; Batista, Enrique; Burger, Arnold; ...

    2016-06-07

    Here, the electronic structure and optical properties of the LiIn 1-xGa xSe 2 (x=0, 0.25, 0.5, 0.75, 1) solid solution were studied by density functional theory (DFT) with pure functionals. The exchange-correlation is treated within the local density approximation (LDA) and generalized-gradient approximation (GGA). The electronic structures for each respective compound are discussed in detail. Calculations reveal that gallium incorporation can be used to tune the optical-electrical properties of the solid solution and correlates with the lattice parameter. The band gap trend of the LiIn 1-xGa xSe 2 system follows a nonlinear behavior between the LiInSe 2 and LiGaSe 2more » ternary boundaries. The bowing parameter is estimated to be on the order of 0.1- 0.3 eV at the point. Low-temperature optical absorption revealed a 30% change in the temperature dependence of the band gap for the intermediate compound LiIn 0.6Ga 0.4Se 2 compared to ternary boundaries and suggests the heat capacity to be another control element through strain.« less

  5. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  6. Direct and indirect light emissions from layered ReS2-x Se x (0 ≤ x ≤ 2)

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa; Liu, Zhan-Zhi; Lin, Min-Han

    2017-06-01

    ReS2 and ReSe2 have recently been enthusiastically studied owing to the specific in-plane electrical, optical and structural anisotropy caused by their distorted one-layer trigonal (1 T) phase, whereas other traditional transition-metal dichalcogenides (TMDCs, e.g. MoS2 and WSe2) have a hexagonal structure. Because of this special property, more and versatile nano-electronics and nano-optoelectronics devices can be developed. In this work, 2D materials in the series ReS2-x Se x (0 ≤ x ≤ 2) have been successfully grown by the method of chemical vapor transport. The direct and indirect resonant emissions of the complete series of layers can be simultaneously detected by polarized micro-photoluminescence (μPL) spectroscopy when the thickness of the ReS2-x Se x is greater than ˜70 nm. When it is less than 70 nm, only three direct excitonic emissions—E 1 ex, E 2 ex and E S ex—are detected. For the thick (bulk) ReS2-x Se x , more stacking of the ReX2 monolayers even flattens and shifts the valence-band maximum from Γ to the other K- or M-related points, thus leading to the coexistence of direct and indirect resonant light emissions from the c-plane ReX2. The transmittance absorption edge of each bulk ReX2 (a few microns thick) usually has a lower energy than those of the direct E 1 ex and E 2 ex excitonic emissions to form indirect absorption. The coexistence of direct and indirect emissions in ReX2 is a unique characteristic of a 2D layered semiconductor possessing triclinic low symmetry.

  7. Synthesis and crystal structure of the solid solution Co3(SeO3)3-x(PO3OH)x(H2O) involving crystallographic split positions of Se4+ and P5+.

    PubMed

    Zimmermann, Iwan; Johnsson, Mats

    2013-10-21

    Three new cobalt selenite hydroxo-phosphates laying in the solid solution Co3(SeO3)3-x(PO3OH)x(H2O), with x = 0.8, x = 1.0, and x = 1.2 are reported. Single crystals were obtained by hydrothermal synthesis and the crystal structure was determined by single crystal X-ray diffraction. The structure can be described as a 3D framework having selenite and hydroxo-phosphate groups protruding into channels in the crystal structure. Se(4+) and P(5+) share a split position in the structure so that either SeO3 groups having a stereochemically active lone pair or tetrahedrally coordinated PO3OH groups are present. The OH-group is thus only present when the split position is occupied by P(5+). The crystal water is coordinated to a cobalt atom and TG and IR measurements show that the water and hydroxyl groups leave the structure at unusually high temperatures (>450 °C). Magnetic susceptibility measurements show antiferromagnetic coupling below 16 K and a magnetic moment of 4.02(3) μB per Co atom was observed.

  8. Thermoelectric properties and chemical potential tuning by Cu-doping in n-type ionic conductors CuxAg2-xSe0.5Te0.5

    NASA Astrophysics Data System (ADS)

    Lee, Min Ho; Yun, Jae Hyun; Ahn, Kyunghan; Rhyee, Jong-Soo

    2017-12-01

    Copper and silver chalcogenides with superionic conduction behavior have shown impressively high ZT values, but there has been no intensive effort to optimize their carrier density to further improve their ZT values. Here, we prepared polycrystalline CuxAg2-xSe0.5Te0.5 (x = 0.01, 0.05, 0.1) samples using high temperature melting followed by hot-press sintering, and characterized their thermoelectric properties. We demonstrated that Cu substitution for Ag was achieved with <10% Cu content for CuxAg2-xSe0.5Te0.5 and the Cu doping was quite effective and significantly enhanced the compound's n-type carrier density, which was one order of magnitude higher than the pristine Ag2Se0.5Te0.5 (4.10 × 1018 cm-3). Impressively, the enhancement in electrical conductivity with increasing Cu content was greater than the decrease in absolute value of the Seebeck coefficient in the superionic conduction state. This led to relatively high power factors for Cu0.1Ag1.99Se0.5Te0.5, ranging between 1.10 and 1.30 mW m-1 K-2 over the broad temperature range of 400-560 K, and resulted in the highest ZT of 0.85 at 560 K. Furthermore, ZT values approached >0.7 over a wide temperature range of 460-560 K for x > 0.05. We suggest that the unusual Cu doping effect in Ag2Se0.5Te0.5 can be attributed to the creation of Cu ion conduction in addition to Ag ion conduction, and the optimization of the compound's n-type carrier density.

  9. Growth and characterization of PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers on Si (100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachar, H.K.; Chao, I.; Fang, X.M.

    1998-12-31

    Crack-free layers of PbSe were grown on Si (100) by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. The PbSe layer was grown by LPE on Si(100) using a MBE-grown PbSe/BaF{sub 2}/CaF{sub 2} buffer layer structure. Pb{sub 1{minus}x}Sn{sub x}Se layers with tin contents in the liquid growth solution equal to 3%, 5%, 6%, 7%, and 10%, respectively, were also grown by LPE on Si(100) substrates using similar buffer layer structures. The LPE-grown PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers were characterized by optical Nomarski microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electronmore » microscopy (SEM). Optical Nomarski characterization of the layers revealed their excellent surface morphologies and good growth solution wipe-offs. FTIR transmission experiments showed that the absorption edge of the Pb{sub 1{minus}x}Sn{sub x}Se layers shifted to lower energies with increasing tin contents. The PbSe epilayers were also lifted-off from the Si substrate by dissolving the MBE-grown BaF{sub 2} buffer layer. SEM micrographs of the cleaved edges revealed that the lifted-off layers formed structures suitable for laser fabrication.« less

  10. Controllable Synthesis of Ni xSe (0.5x ≤ 1) Nanocrystals for Efficient Rechargeable Zinc-Air Batteries and Water Splitting.

    PubMed

    Zheng, Xuerong; Han, Xiaopeng; Liu, Hui; Chen, Jianjun; Fu, Dongju; Wang, Jihui; Zhong, Cheng; Deng, Yida; Hu, Wenbin

    2018-04-25

    The development of earth-abundant, highly active, and corrosion-resistant electrocatalysts to promote the oxygen reduction reaction (ORR) and oxygen and hydrogen evolution reactions (OER/HER) for rechargeable metal-air batteries and water-splitting devices is urgently needed. In this work, Ni x Se (0.5x ≤ 1) nanocrystals with different crystal structures and compositions have been controllably synthesized and investigated as potential electrocatalysts for multifunctional ORR, OER, and HER in alkaline conditions. A novel hot-injection process at ambient pressure was developed to control the phase and composition of a series of Ni x Se by simply adjusting the added molar ratio of the nickel resource to triethylenetetramine. Electrochemical analysis reveals that Ni 0.5 Se nanocrystalline exhibits superior OER activity compared to its counterparts and is comparable to RuO 2 in terms of the low overpotential required to reach a current density of 10 mA cm -2 (330 mV), which may benefit from the pyrite-type crystal structure and Se enrichment in Ni 0.5 Se. For the ORR and HER, Ni 0.75 Se nanoparticles achieve the best performance including lower overpotentials and larger apparent current densities. Further investigations demonstrate that Ni 0.75 Se could not only provide an enhanced electrochemical active area but also facilitate electron transfer during the electrocatalytic process, thus contributing to the remarkable catalytic activity. As a practical application, the Ni 0.75 Se electrode enables rechargeable Zn-air battery with a considerable performance including a long cycling lifetime (200 cycles), high specific capacity (609 mA h g -1 based on the consumed Zn), and low overpotential (0.75 V) at 10 mA cm -2 . Meanwhile, the water-splitting cell setup with an anode of Ni 0.5 Se for the HER and a cathode of Ni 0.75 Se for the OER exhibits a considerable performance with low decay in activity of 12.9% under continuous polarization for 10 h. These results

  11. Studies on Se75Te25-x In x chalcogenide glasses; a material for phase change memory

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Tiwari, S. N.; Alvi, M. A.; Khan, Shamshad A.

    2018-01-01

    This research paper describes the non-isothermal crystallization during phase transformation in Se75Te25-x In x glasses synthesized by melt quenching method. For crystallization studies in these glasses, non-isothermal differential scanning calorimetry (DSC) measurements was done at constant heating rates of 5, 10, 15, 20 and 25 K min-1 in air atmosphere. The glass transition temperature (T g), on-set crystallization temperature (T c), peak crystallization temperature (T p) and melting temperatures (T m) were derived by DSC thermograms. Using various thermal parameters the activation energy of glass transition and crystallization were determined by using Kissinger, Moynihan and Ozawa approaches and found to be in good agreement. The value of the activation energy of glass transition (ΔE t) was found to be minimum for Se75Te19In6 alloys confirming its maximum probability of transition in a metastable state. Thermal stability parameters of Se75Te25-x In x were determined and found to be increased with indium content. High resolution x-ray diffraction and field emission scanning electron microscopy studies were employed for the study of phase transformation in Se75Te25-x In x glasses. The outcome of these studies shows that the investigated materials may be suitable for phase change memory devices.

  12. Synthesis, second-harmonic generation (SHG), and photoluminescence (PL) properties of noncentrosymmetric bismuth selenite solid solutions, Bi2-xLnxSeO5 (Ln = La and Eu; x = 0-0.3)

    NASA Astrophysics Data System (ADS)

    Qi, Hai-Xin; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2018-02-01

    A series of La3+ or Eu3+-doped noncentrosymmetric (NCS) bismuth selenite solid solutions, Bi2-xLnxSeO5 (x = 0.1, 0.2, and 0.3), have been successfully synthesized via standard solid-state reactions under vacuum with Bi2O3, La2O3 (or Eu2O3), and SeO2 as starting materials. Crystal structures and phase purities of the resultant materials were thoroughly characterized by powder X-ray diffraction using the Rietveld method. The results clearly show that the reported materials crystallize in the orthorhombic space group, Abm2 (No. 39), and exhibit pseudo-three-dimensional frameworks consisting of BiO3, BiO5, and SeO3 polyhedra that share edges and corners. Detailed diffraction studies indicate that the cell volume of Bi2-xLnxSeO5 decreases with an increasing amount of Ln3+ on the Bi3+ sites. However, no ordering between Ln3+ and Bi3+ was observed in the Bi2-xLnxSeO5 solid solutions. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that SHG efficiencies of Bi2-xLnxSeO5 solid solutions continuously decrease as more Ln3+ cations are added to the sites of polarizable Bi3+ cations. Photoluminescence (PL) measurements on Bi2-xEuxSeO5 exhibit three specific emission peaks at 592, 613, and 702 nm (5D0 → 7F1, 2, 4) owing to the 4f-4f intrashell transitions of Eu3+ ions.

  13. Hydrostatic pressure-induced huge enhancement of critical current density and flux pinning in Fe1-x Co x Se0.5Te0.5 single crystals

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Shabbir, Babar; Maheshwari, Pankaj; Qiu, Wenbin; Ma, Zongqing; Dou, Shixue; Cai, Chuanbing; Awana, V. P. S.; Wang, Xiaolin

    2018-07-01

    We performed a systematic study of the hydrostatic pressure (HP) effect on the supercon-ducting transition temperature (T c), critical current density (J c), irreversibility field (H irr), upper critical field (H c2), and flux pinning mechanism in un-doped and 3 at.% Co-doped FeSe0.5Te0.5 crystals. We found that T c is increased from 11.5 to 17 K as HP increases from 0 to 1.2 GPa. Remarkably, the J c is significantly enhanced by a factor of 3 to 100 for low and high temperature and field, and the H irr line is shifted to higher fields by HP up to 1.2 GPa. Based on the collective pinning model, the δl pinning associated with charge-carrier mean free path fluctuation is responsible for the pinning mechanism of Fe1-x Co x Se0.5Te0.5 samples with or without pressure. A comprehensive vortex phase diagram in the mixed state is constructed and analysed for the 3 at.% Co-doped sample.

  14. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    PubMed

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo 1-x W x Se 2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo 0.5 W 0.5 Se 2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe 2 and WSe 2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo 0.5 W 0.5 Se 2 devices. Furthermore, we showed that Mo 0.5 W 0.5 Se 2 -based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  15. Investigating the Electron-Phonon Coupling of Molecular Beam Epitaxy-Grown Hg1-x Cd x Se Semiconductor Alloys

    NASA Astrophysics Data System (ADS)

    Peiris, F. C.; Lewis, M. V.; Brill, G.; Doyle, Kevin; Myers, T. H.

    2018-03-01

    Using spectroscopic ellipsometry, the temperature-dependence of the dielectric functions of a series of Hg1-x Cd x Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates were investigated. Initially, for each sample, room-temperature ellipsometric spectra were obtained from 35 meV to 6 eV using two different ellipsometers. Subsequently, ellipsometry spectra were obtained from 10 K to 300 K by incorporating a cryostat to the ellipsometer. Using a standard inversion technique, the spectroscopic ellipsometric data were modeled in order to obtain the temperature-dependent dielectric functions of each of the Hg1-x Cd x Se thin films. The results indicate that the E 1 critical point blue-shifts as a function of Cd-alloy concentration. The temperature-dependence of E 1 was fitted to a Bose-Einstein occupation distribution function, which consequently allowed us to determine the electron-phonon coupling of Hg1-x Cd x Se alloys. From the fitting results, we obtain a value of 17 ± 2 meV for the strength of the electron-phonon coupling for Hg1-x Cd x Se alloy system, which compares nominally with the binary systems, such as CdSe and CdTe, which have values around 38 meV and 16 meV, respectively. This implies that the addition of Hg into the CdSe binary system does not significantly alter its electron-phonon coupling strength. Raman spectroscopy measurements performed on all the samples show the HgSe-like transverse optic (TO) and longitudinal optic (LO) phonons (˜ 130 cm-1 and ˜ 160 cm-1, respectively) for all the samples. While there is a slight red-shift of the HgSe-like TO peak as a function of the Cd-concentration, HgSe-like LO peak does not significantly change with the alloy concentration.

  16. Compositional homogeneity and X-ray topographic analyses of CdTe xSe 1-x grown by the vertical Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-01

    We grew CdTe xSe 1-x crystals with nominal Se concentrations of 5%, 7%, and 10% by the vertical Bridgman technique, and evaluated their compositional homogeneity and structural quality at the NSLS’ X-ray fluorescence and white beam X-ray topography beam lines. Both X-ray fluorescence and photoluminescence mapping revealed very high compositional homogeneity of the CdTe xSe 1-x crystals. Here, we noted that those crystals with higher concentrations of Se were more prone to twinning than those with a lower content. The crystals were fairly free from strains and contained low concentrations of sub-grain boundaries and their networks.

  17. Structural and Na-ion conduction characteristics of Na 3 PS x Se 4-x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4-x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4-x more » identified a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4-x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  18. Experimental and theoretical XANES of CdSxSe1-x nanostructures

    NASA Astrophysics Data System (ADS)

    Yiu, Y. M.; Murphy, M. W.; Liu, L.; Hu, Y.; Sham, T. K.

    2014-03-01

    The morphology and electronic properties of the CdSxSe1-x nanostructures with varying alloy compositions have been acquired experimentally by X-ray Absorption Near-Edge Structures (XANES) at the Cd, Se and S K-edge and L3,2-edges. The theoretical XANES spectra have been calculated using the density functional approach. It is found that the optical band-gap emission of these CdSxSe1-x nano-ribbons can be tuned to the range between that of pure CdS (2.43 eV) and CdSe (1.74 eV) by changing the S and Se ratio. This gradual shift in (optical and structural) properties from CdS character to CdSe character is also seen in the electronic structures. The densities of states and band structures show that with the addition of Se replacing S in CdS, the band gap shrinks. The K and L3,2 edges of Cd, Se, and S of the XANES structures of both the CdS and CdSe in B4 (wurtzite) and B3 (cubic zinc-blende) structures have been calculated and compared.

  19. Synthesis, characterization and chemical stability of silicon dichalcogenides, Si(Se xS 1₋x) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Zhang, Xiaotian; Krishna, Lakshmi

    Silicon dichalcogenides have an intriguing crystal structure consisting of long tetrahedral chains held together by van der Waals forces but the electronic and optical properties have been less explored. In the present work, bulk SiSe 2, SiS 2, and Si(Se xS 1-x) 2 were synthesized by the congruent melt growth method and characterized by Raman spectroscopy, X-ray Diffraction and UV/visible/IR transmission measurements supported by first-principles calculations. First-principles calculations reveal a nearly linear decrease of band gap energy in Si(Se xS 1-x) 2 with increasing Se content, i.e., from SiS 2 to SiSe 2 which corresponds with a blue-shift in themore » transmission spectra from bulk SiSe 2 to Si(Se 0.6S 0.4) 2, and to SiS 2. Air stability tests demonstrate the formation of toxic H 2Se/H 2S gas from sample oxidation at room temperature upon exposure to ambient air, and great care should be paid when handling these materials.« less

  20. Formation of highly luminescent Zn1-xCdxSe nanocrystals using CdSe and ZnSe seeds

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Yang, Ping

    2013-05-01

    High-quality colloidal Zn1-xCdxSe nanocrystals (NCs) with tunable photoluminescence (PL) from blue to orange were synthesized using oleic acid as a capping agent. The Zn1-xCdxSe NCs were prepared through two approaches: using CdSe or ZnSe seeds. In the case of CdSe NCs as seeds, Zn1-xCdxSe NCs were fabricated by the reaction of Zn, Cd, and Se precursors in the coordinating solvent system at high temperature. The Zn1-xCdxSe NCs revealed orange emitting. A significant blue-shift of absorption and PL spectra were observed with time, indicating the formation of ternary NCs. In contrast, Zn1-xCdxSe NCs revealed blue to green PL for ZnSe NCs as seeds. This is ascribed to an embryonic nuclei-induced alloying process. With increasing time, the Zn1-xCdxSe NCs exhibited a red-shift both in their absorption and PL spectra. This is attributed to the engineering in band gap energy via the control of NC composition. The PL properties of as-prepared alloyed NCs are comparable or even better than those for the parent binary systems. The PL peak wavelength of the Zn1-xCdxSe NCs depended strongly on reaction time and the molar ratio of Cd/Zn. The Zn1-xCdxSe NCs revealed a spherical morphology and exhibited a wurtzite structure according to transmission electron microscopy observation and an X-ray diffraction analysis.

  1. Asymmetry and Electronegativity in the Electron Capture Activation of the Se-Se Bond: σ*(Se-Se) vs σ*(Se-X).

    PubMed

    Gámez, José A; Yáñez, Manuel

    2010-10-12

    The effects of electron capture on the structure of XSeSeX' diselenide derivatives in which the substituents attached to the selenium atoms have different electronegativities have been investigated at different levels of theory, namely, DFT, MP2, CCSD, G2, and CASSCF/CASPT2. An analysis of the bonding changes upon electron attachment shows that when the diselenides bear low-electronegativity substituents, the Se-Se bond becomes activated upon electron capture, as previous studies have shown. However, this is no longer the case for very electronegative substituents, where this bond remains practically unaltered and is the Se-X bond the one which becomes strongly activated through a preferential population of the σ*(Se-X) antibonding orbital rather than the σ*(Se-Se) one. When this is the case, several anionic species are also encountered, namely, stretched, bent, and book structures. The present findings are similar to those obtained for a series of analogous disulfide compounds, which points out that these results are not unique and could be extrapolated to a wider range of compounds than the ones covered here. The Se-Se (Se-X) linkage in CH3SeSeOH, CH3SeSeF, FSeSeOH, and FSeSeF bears some of the characteristics of the so-called charge-shift bonds, with a clear charge fluctuation between both selenium atoms. This is more evident in their anions where the bonding reflects the important contribution of the ionic resonant forms Se-Se(-) ↔ (-)Se-Se vs the covalent component Se∴Se. This resonance changes with the nature of the substituents but also depends on the asymmetry of the substitution.

  2. Macroscopic phase separation of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-x Se x revealed by μSR.

    PubMed

    Nikitin, A M; Grinenko, V; Sarkar, R; Orain, J-C; Salis, M V; Henke, J; Huang, Y K; Klauss, H-H; Amato, A; Visser, A de

    2017-12-12

    The compound Sr 0.5 Ce 0.5 FBiS 2 belongs to the intensively studied family of layered BiS 2 superconductors. It attracts special attention because superconductivity at T sc  = 2.8 K was found to coexist with local-moment ferromagnetic order with a Curie temperature T C  = 7.5 K. Recently it was reported that upon replacing S by Se T C drops and ferromagnetism becomes of an itinerant nature. At the same time T sc increases and it was argued superconductivity coexists with itinerant ferromagnetism. Here we report a muon spin rotation and relaxation study (μSR) conducted to investigate the coexistence of superconductivity and ferromagnetic order in Sr 0.5 Ce 0.5 FBiS 2-x Se x with x = 0.5 and 1.0. By inspecting the muon asymmetry function we find that both phases do not coexist on the microscopic scale, but occupy different sample volumes. For x = 0.5 and x = 1.0 we find a ferromagnetic volume fraction of ~8 % and ~30 % at T = 0.25 K, well below T C  = 3.4 K and T C  = 3.3 K, respectively. For x = 1.0 (T sc  = 2.9 K) the superconducting phase occupies most (~64 %) of the remaining sample volume, as shown by transverse field experiments that probe the Gaussian damping due to the vortex lattice. We conclude ferromagnetism and superconductivity are macroscopically phase separated.

  3. Structure cristalline du composé Hg3-xSbx(S+Se)2+xI2-x (x ≃ 0.1)

    PubMed Central

    Kars, Mohammed; Herrero, Adrian Gómez; Roisnel, Thierry; Rebbah, Allaoua; Otero-Diáz, L. Carlos

    2016-01-01

    Single crystals of the mercury chalcohalide Hg3-xSbx(S+Se)2+xI2-x (x ≃ 0.1) (mercury anti­mony sulfide selenide iodide), were grown by a chemical transport reaction. The structure contains three independent A (Hg/Sb) atoms; each atom is strongly covalently bonded with two X (Se/S) atoms to form approximately linear X–A–X units. The X–A–X units link to form A 4 X 4 rings, which are combined into infinite crankshaft-type bands running along the [100] direction. Four equatorial E (I/X = Se,S) atoms at relatively long distances complete the distorted octa­hedral coordination of A (Hg/Sb). The crystal under investigation was twinned by non-merohedry with a refined twin domain fraction of 0.814 (6):0.186 (6). The structure is isotypic with Hg3Se2I2 [Beck & Hedderich (2000 ▸). J. Solid State Chem. 151, 73–76], but the current determination reveals a coupled substitution, with partial replacement of Hg+2 by Sb+3, balanced by the equivalent substitution of I−1 by S−2 and Se−2. Bond-valence calculations are consistent with this relative substitution model. PMID:27006793

  4. Thermoelectric properties of SnSe1-xSx(0 <x <=1) single crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Minh Hai; Duong, Anh Tuan; Duvjir, Ganbat; Trinh, Thi Ly; Nguyen, Van Quang; Kim, Jungdae; Cho, Sunglae

    Tin selenide (SnSe), a p-type semiconductor, has attracted many attention due to its excellent thermoelectric efficiency, i.e., ZT = 2.6 along the b-axis of its high temperature phase. This issue has renewed interests in thermoelectric properties of the materials which adopted the same layered structure as SnSe, such as SnS, GeS, and GeSe. Among these compounds, tin (II) sulfide (SnS) is exceptionally attractive because of its natural abundance and low toxicity. However, the experimental results show that SnS has possessed a small value of the figure of merit. To optimize the thermoelectric performance of SnS, making solid solution is a potential way. That is our motivation for the investigation of SnSe1-xSx single crystals' thermoelectric properties. In this study, SnSe1-xSx (0 <x <= 1) single crystals were fabricated using the temperature gradient method. The crystal structure was investigated by SEM and XRD, which indicated that fabricated SnSe1-xSx single crystals have layered structure with lattice constants change gradually following Vegard's law. Transport properties were synthesized by physical properties measurement system (PPMS). We observed that for x = 0.2, SnSe0.8S0.2, electrical resistivity and Seebeck coefficient were 0.52 Ω . cm and 639.36 μVK-1 at 270 K, respectively, which resulted in the power factor of 0.78 μWK-2cm-1. Furthermore, we will discuss about the thermal conductivity and microscopic surface structure of these samples.

  5. Synthesis, Structure, and Optical Properties of Antiperovskite-Derived Ba2MQ3X (M = As, Sb; Q = S, Se; X = Cl, Br, I) Chalcohalides.

    PubMed

    Wang, Ruiqi; Zhang, Xian; He, Jianqiao; Bu, Kejun; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang

    2018-02-05

    Six isostructural antiperovskite-derived chalcohalides, Ba 2 MQ 3 X (M = As, Sb; Q = S, Se; X = Cl, Br, I), crystallizing in the space group Pnma, have been synthesized by solid-state reactions. The crystal structure features a 3D framework with the [XBa 5 ] 9+ disordered square pyramids as building blocks and [MQ 3 ] 3- units filling the interspace. [XBa 5 ] 9+ disordered square pyramids are edge-sharing along [010], derived from the fusing of the two pyramids in octahedral [XBa 6 ] 11+ . Surprisingly, Ba 2 AsS 3 X (X = Cl, Br, I) show almost the same optical band gap of 2.80 eV, and Ba 2 AsSe 3 X (X = Br, I) also have a similar band gap of 2.28 eV. The optical band gap of Ba 2 SbS 3 I is 2.64 eV. First-principles calculations reveal that the optical absorption is attributed to the transitions between Q np at the valence band maximum (VBM) and M np-Q np at the conduction band minimum (CBM). These compounds also possess interesting photoluminescence properties with splitting emission peaks on excitation at 200 nm.

  6. Enhanced thermoelectric properties of N-type polycrystalline In4Se3-x compounds via thermally induced Se deficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Shu, Yu-Tian; Guo, Fu

    2014-03-01

    In4Se3-x compound is considered as a potential thermoelectric material due to its comparably low thermal conductivity among all existing ones. While most studies investigated In4Se3-x thermoelectric properties by controlling selennium or other dopants concentrations, in the current study, it was found that even for a fixed initial In/Se ratio, the resulting In/Se ratio varied significantly with different thermal processing histories (i.e., melting and annealing), which also resulted in varied thermoelectric properties as well as fracture surface morphologies of In4Se3-x polycrystalline specimens. Single phase polycrystalline In4Se3-x compounds were synthesized by combining a sequence of melting, annealing, pulverizing, and spark plasma sintering. The extension of previous thermal history was observed to significantly improve the electrical conductivity (about 121%) and figure of merit (about 53%) of In4Se3-x polycrystalline compounds. The extended thermal history resulted in the increase of Se deficiency (x) from 0.39 to 0.53. This thermally induced Se deficiency was observed to associate with increasing carrier mobility but decreasing concentration, which differs from the general trend observed for the initially adjusted Se deficiency at room temperature. Unusually large dispersed grains with nanosize layers were observed in specimens with the longest thermal history. The mechanism(s) by which previous thermal processing enhances carrier mobility and affect microstructural evolution are briefly discussed.

  7. Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  8. Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand

    2016-05-19

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  9. Ternary lanthanum sulfide selenides {alpha}-LaS{sub 2-x}Se{sub x} (0<x<2) with mixed dichalcogenide anions X{sub 2}{sup 2-} (X=S, Se)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartsch, Christian; Doert, Thomas, E-mail: thomas.doert@chemie.tu-dresden.de

    2012-01-15

    Mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0<x<2) were obtained by metathesis reactions starting from anhydrous lanthanum chloride and alkali metal polychalcogenides. The LaS{sub 2-x}Se{sub x} compounds crystallize in space group P2{sub 1}/a, no. 14, and adopt the {alpha}-LnS{sub 2} (Ln=Y, La-Lu) structure type with a pronounced site preference for the chalcogen atoms. The mixed chalcogenides form a complete miscible series with lattice parameters a=820-849 pm, b=413-425 pm and c=822-857 pm ({beta} Almost-Equal-To 90 Degree-Sign) following Vegard's rule. Raman signals indicate the presence of mixed X{sub 2}{sup 2-} dianions, a species rarely evidenced in literature, besides the well known anionsmore » S{sub 2}{sup 2-} and Se{sub 2}{sup 2-}. The band gaps of the LaS{sub 2-x}Se{sub x} compounds, determined by optical spectroscopy, decrease nearly linearly with increasing amount of selenium. - Graphical abstract: Raman spectra and site occupancies in the structures of selected lanthanum sulfide selenides. Highlights: Black-Right-Pointing-Pointer Vegard series of mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0<x<2). Black-Right-Pointing-Pointer Pronounced site ordering of chalcogen positions. Black-Right-Pointing-Pointer Optical band gaps decrease with Se content. Black-Right-Pointing-Pointer Raman measurements evidence mixed X{sub 2}{sup 2-} dimeric anions.« less

  10. Thermal kinetics and short range order parameters of Se80X20 (X = Te, Sb) binary glasses

    NASA Astrophysics Data System (ADS)

    Moharram, A. H.; Abu El-Oyoun, M.; Abdel-Baset, A. M.

    2014-06-01

    Bulk Se80Te20 and Se80Sb20 glasses were prepared using the melt-quench technique. Differential scanning calorimetry (DSC) curves measured at different heating rates (5 K/min≤ α≤50 K/min) and X-ray diffraction (XRD) are used to characterize the as-quenched specimens. Based on the obtained results, the activation energy of glass transition and the activation energy of crystallization ( E g, E c) of the Se80Te20 glass are (137.5, 105.1 kJ/mol) higher than the corresponding values of the Se80Sb20 glass (106.8, 71.2 kJ/mol). An integer n value ( n=2) of the Se80Te20 glass indicates that only one crystallization mechanism is occurring while a non-integer exponent ( n=1.79) in the Se80Sb20 glass means that two mechanisms are working simultaneously during the amorphous-crystalline transformations. The total structure factor, S( K), indicates the presence of the short-range order (SRO) and the absence of the medium-range order (MRO) inside the as-quenched alloys. In an opposite way to the activation energies, the values of the first peak position and the total coordination number ( r 1, η 1), obtained from a Gaussian fit of the radial distribution function, of the Se80Te20 glass are (2.42 nm, 1.99 atom) lower than the corresponding values (2.55 nm, 2.36 atom) of the Se80Sb20 specimens.

  11. Differences in chemical doping matter: Superconductivity in Ti 1-xTa xSe 2 but not in Ti 1-xNb xSe 2

    DOE PAGES

    Luo, Huixia; Zhu, Yimei; Xie, Weiwei; ...

    2016-02-21

    We report that 1T-TiSe 2, an archetypical layered transition metal dichalcogenide, becomes superconducting when Ta is substituted for Ti but not when Nb is substituted for Ti. This is unexpected because Nb and Ta should be chemically equivalent electron donors. Superconductivity emerges near x = 0.02 for Ti 1–xTa xSe 2, while, for Ti 1–xNb xSe 2, no superconducting transitions are observed above 0.4 K. The equivalent chemical nature of the dopants is confirmed by X-ray photoelectron spectroscopy. ARPES and Raman scattering studies show similarities and differences between the two systems, but the fundamental reasons why the Nb and Tamore » dopants yield such different behavior are unknown. We present a comparison of the electronic phase diagrams of many electron-doped 1T-TiSe 2 systems, showing that they behave quite differently, which may have broad implications in the search for new superconductors. Here, we propose that superconducting Ti 0.8Ta 0.2Se 2 will be suitable for devices and other studies based on exfoliated crystal flakes.« less

  12. Core-Shell Zn x Cd1- x Se/Zn y Cd1- y Se Quantum Dots for Nonvolatile Memory and Electroluminescent Device Applications

    NASA Astrophysics Data System (ADS)

    Al-Amoody, Fuad; Suarez, Ernesto; Rodriguez, Angel; Heller, E.; Huang, Wenli; Jain, F.

    2011-08-01

    This paper presents a floating quantum dot (QD) gate nonvolatile memory device using high-energy-gap Zn y Cd1- y Se-cladded Zn x Cd1- x Se quantum dots ( y > x) with tunneling layers comprising nearly lattice-matched semiconductors (e.g., ZnS/ZnMgS) on Si channels. Also presented is the fabrication of an electroluminescent (EL) device with embedded cladded ZnCdSe quantum dots. These ZnCdSe quantum dots were embedded between indium tin oxide (ITO) on glass and a top Schottky metal electrode deposited on a thin CsF barrier. These QDs, which were nucleated in a photo-assisted microwave plasma (PMP) metalorganic chemical vapor deposition (MOCVD) reactor, were grown between the source and drain regions on a p-type silicon substrate of the nonvolatile memory device. The composition of QD cladding, which relates to the value of y in Zn y Cd1- y Se, was engineered by the intensity of ultraviolet light, which controlled the incorporation of zinc in ZnCdSe. The QD quality is comparable to those deposited by other methods. Characteristics and modeling of the II-VI quantum dots as well as two diverse types of devices are presented in this paper.

  13. Insights on the Synthesis, Crystal and Electronic Structures, and Optical and Thermoelectric Properties of Sr1- xSb xHfSe3 Orthorhombic Perovskite.

    PubMed

    Moroz, Nicholas A; Bauer, Christopher; Williams, Logan; Olvera, Alan; Casamento, Joseph; Page, Alexander A; Bailey, Trevor P; Weiland, Ashley; Stoyko, Stanislav S; Kioupakis, Emmanouil; Uher, Ctirad; Aitken, Jennifer A; Poudeu, Pierre F P

    2018-06-18

    Single-phase polycrystalline powders of Sr 1- x Sb x HfSe 3 ( x = 0, 0.005, 0.01), a new member of the chalcogenide perovskites, were synthesized using a combination of high temperature solid-state reaction and mechanical alloying approaches. Structural analysis using single-crystal as well as powder X-ray diffraction revealed that the synthesized materials are isostructural with SrZrSe 3 , crystallizing in the orthorhombic space group Pnma (#62) with lattice parameters a = 8.901(2) Å; b = 3.943(1) Å; c = 14.480(3) Å; and Z = 4 for the x = 0 composition. Thermal conductivity data of SrHfSe 3 revealed low values ranging from 0.9 to 1.3 W m -1 K -1 from 300 to 700 K, which is further lowered to 0.77 W m -1 K -1 by doping with 1 mol % Sb for Sr. Electronic property measurements indicate that the compound is quite insulating with an electrical conductivity of 2.9 S/cm at 873 K, which was improved to 6.7 S/cm by 0.5 mol % Sb doping. Thermopower data revealed that SrHfSe 3 is a p-type semiconductor with thermopower values reaching a maximum of 287 μV/K at 873 K for the 1.0 mol % Sb sample. The optical band gap of Sr 1- x Sb x HfSe 3 samples, as determined by density functional theory calculations and the diffuse reflectance method, is ∼1.00 eV and increases with Sb concentration to 1.15 eV. Careful analysis of the partial densities of states (PDOS) indicates that the band gap in SrHfSe 3 is essentially determined by the Se-4p and Hf-5d orbitals with little to no contribution from Sr atoms. Typically, band edges of p- and d-character are a good indication of potentially strong absorption coefficient due to the high density of states of the localized p and d orbitals. This points to potential application of SrHfSe 3 as absorbing layer in photovoltaic devices.

  14. Superconductivity in a Misfit Phase That Combines the Topological Crystalline Insulator Pb 1-xSn xSe with the CDW-Bearing Transition Metal Dichalcogenide TiSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, H.; Yan, K.; Pletikosic, I.

    We report the characterization of the misfit compound (Pb 1-xSn xSe 2)1.16(TiSe 2) 2 for 0 ≤ x ≤ 0.6, in which a [100] rocksalt-structure bilayer of Pb1-xSnxSe, which is a topological crystalline insulator in bulk form, alternates with a double layer of the normally nonsuperconducting transition metal dichalcogenide TiSe 2. The x dependence of Tc displays a weak dome-like shape with a maximum Tc of 4.5 K at x = 0.2; there is only a subtle change in Tc at the composition where the trivial to topological transition occurs in bulk Pb1-xSnxSe. We present the characterization of the superconductormore » at x = 0.4, for which the bulk Pb1-xSnxSe phase is in the topological crystalline insulator regime. For this material, the Sommerfeld parameter γ = 11.06 mJ mol -1 K -2, the Debye temperature Θ D = 161 K, the normalized specific heat jump value ΔC/γT c = 1.38 and the electron-phonon constant value γ ep = 0.72, suggesting that (Pb 0.6Sn 0.4Se) 1.16(TiSe 2) 2 is a BCS-type weak coupling superconductor. This material may be of interest for probing the interaction of superconductivity with the surface states of a topological crystalline insulator.« less

  15. Superconductivity in a Misfit Phase That Combines the Topological Crystalline Insulator Pb 1-xSn xSe with the CDW-Bearing Transition Metal Dichalcogenide TiSe 2

    DOE PAGES

    Luo, H.; Yan, K.; Pletikosic, I.; ...

    2016-05-13

    We report the characterization of the misfit compound (Pb 1-xSn xSe 2)1.16(TiSe 2) 2 for 0 ≤ x ≤ 0.6, in which a [100] rocksalt-structure bilayer of Pb1-xSnxSe, which is a topological crystalline insulator in bulk form, alternates with a double layer of the normally nonsuperconducting transition metal dichalcogenide TiSe 2. The x dependence of Tc displays a weak dome-like shape with a maximum Tc of 4.5 K at x = 0.2; there is only a subtle change in Tc at the composition where the trivial to topological transition occurs in bulk Pb1-xSnxSe. We present the characterization of the superconductormore » at x = 0.4, for which the bulk Pb1-xSnxSe phase is in the topological crystalline insulator regime. For this material, the Sommerfeld parameter γ = 11.06 mJ mol -1 K -2, the Debye temperature Θ D = 161 K, the normalized specific heat jump value ΔC/γT c = 1.38 and the electron-phonon constant value γ ep = 0.72, suggesting that (Pb 0.6Sn 0.4Se) 1.16(TiSe 2) 2 is a BCS-type weak coupling superconductor. This material may be of interest for probing the interaction of superconductivity with the surface states of a topological crystalline insulator.« less

  16. Structure and properties of ZnSxSe1-x thin films deposited by thermal evaporation of ZnS and ZnSe powder mixtures

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.

    2015-02-01

    Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.

  17. Temperature-dependent transformation of the magnetic excitation spectrum on approaching superconductivity in Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5).

    PubMed

    Xu, Zhijun; Wen, Jinsheng; Zhao, Yang; Matsuda, Masaaki; Ku, Wei; Liu, Xuerong; Gu, Genda; Lee, D-H; Birgeneau, R J; Tranquada, J M; Xu, Guangyong

    2012-11-30

    Spin excitations are one of the top candidates for mediating electron pairing in unconventional superconductors. Their coupling to superconductivity is evident in a large number of systems, by the observation of an abrupt redistribution of magnetic spectral weight at the superconducting transition temperature, T(c), for energies comparable to the superconducting gap. Here we report inelastic neutron scattering measurements on Fe-based superconductors, Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5) that emphasize an additional signature. The overall shape of the low energy magnetic dispersion changes from two incommensurate vertical columns at T≫T(c) to a distinctly different U-shaped dispersion at low temperature. Importantly, this spectral reconstruction is apparent for temperatures up to ~3T(c). If the magnetic excitations are involved in the pairing mechanism, their surprising modification on the approach to T(c) demonstrates that strong interactions are involved.

  18. Two-dimensional wide-band-gap nitride semiconductors: Single-layer 1 T -X N2 (X =S ,Se , and Te )

    NASA Astrophysics Data System (ADS)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2016-11-01

    Recently, the two-dimensional (2D) semiconductors arsenene and antimonene, with band gaps larger than 2.0 eV, have attracted tremendous interest, especially for potential applications in optoelectronic devices with a photoresponse in the blue and UV range. Motivated by this exciting discovery, types of highly stable wide-band-gap 2D nitride semiconductors were theoretically designed. We propose single-layer 1 T -X N2 (X =S , Se, and Te) via first-principles simulations. We compute 1 T -X N2 (X =S , Se, and Te) with indirect band gaps of 2.825, 2.351, and 2.336 eV, respectively. By applying biaxial strain, they are able to induce the transition from a wide-band-gap semiconductor to a metal, and the range of absorption spectra of 1 T -X N2 (X =S , Se, and Te) obviously extend from the ultraviolet region to the blue-purple light region. With an underlying graphene, we find that 1 T -X N2 can completely shield the light absorption of graphene in the range of 1-1.6 eV. Our research paves the way for optoelectronic devices working under blue or UV light, and mechanical sensors based on these 2D crystals.

  19. Surface and bulk effects of K in Cu 1-xK xIn 1-yGa ySe 2 solar cells

    DOE PAGES

    Muzzillo, Christopher P.; Anderson, Timothy J.

    2017-12-29

    Two strategies for enhancing photovoltaic (PV) performance in chalcopyrite solar cells were investigated: Cu 1-xK xIn 1-yGa ySe 2 absorbers with low K content (K/(K+Cu), or x ~ 0.07) distributed throughout the bulk, and CuIn 1-yGa ySe 2 absorbers with KIn 1-yGa ySe 2 grown on their surfaces. Distributing K throughout the bulk absorbers improved power conversion efficiency, open-circuit voltage (VOC) and fill factor (FF) for Ga/(Ga+In) of 0, 0.3 and 0.5. Surface KIn 1-yGa ySe 2 and bulk x ~ 0.07 Cu 1-xK xIn 1-yGa ySe 2 films with Ga/(Ga+In), or y of 0.3 and 0.5 also had improvedmore » efficiency, VOC, and FF, relative to CuIn 1-yGa ySe 2 baselines. On the other hand, y ~ 1 absorbers did not benefit from K introduction. Similar to Cu 1-xK xInSe 2, the formation of Cu 1-xK xGaSe 2 alloys was favored at low temperatures and high Na supply by the substrate, relative to the formation of mixed-phase CuGaSe 2 + KGaSe 2. KIn 1-yGa ySe 2 alloys were grown for the first time, as evidenced by X-ray diffraction and ultraviolet/visible spectroscopy. For all Ga/(Ga+In) compositions, the surface KIn 1-yGa ySe 2 absorbers had superior PV performance in buffered and buffer-free devices. However, the bulk x ~ 0.07 absorbers only outperformed the baselines in buffered devices. The data demonstrate that KIn 1-yGa ySe 2 passivates the surface of CuIn 1-yGa ySe 2 to increase efficiency, VOC, and FF, while bulk Cu 1-xK xIn 1-yGa ySe 2 absorbers with x ~ 0.07 enhance efficiency, VOC, and FF by some other mechanism.« less

  20. Surface and bulk effects of K in Cu 1-xK xIn 1-yGa ySe 2 solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.; Anderson, Timothy J.

    Two strategies for enhancing photovoltaic (PV) performance in chalcopyrite solar cells were investigated: Cu 1-xK xIn 1-yGa ySe 2 absorbers with low K content (K/(K+Cu), or x ~ 0.07) distributed throughout the bulk, and CuIn 1-yGa ySe 2 absorbers with KIn 1-yGa ySe 2 grown on their surfaces. Distributing K throughout the bulk absorbers improved power conversion efficiency, open-circuit voltage (VOC) and fill factor (FF) for Ga/(Ga+In) of 0, 0.3 and 0.5. Surface KIn 1-yGa ySe 2 and bulk x ~ 0.07 Cu 1-xK xIn 1-yGa ySe 2 films with Ga/(Ga+In), or y of 0.3 and 0.5 also had improvedmore » efficiency, VOC, and FF, relative to CuIn 1-yGa ySe 2 baselines. On the other hand, y ~ 1 absorbers did not benefit from K introduction. Similar to Cu 1-xK xInSe 2, the formation of Cu 1-xK xGaSe 2 alloys was favored at low temperatures and high Na supply by the substrate, relative to the formation of mixed-phase CuGaSe 2 + KGaSe 2. KIn 1-yGa ySe 2 alloys were grown for the first time, as evidenced by X-ray diffraction and ultraviolet/visible spectroscopy. For all Ga/(Ga+In) compositions, the surface KIn 1-yGa ySe 2 absorbers had superior PV performance in buffered and buffer-free devices. However, the bulk x ~ 0.07 absorbers only outperformed the baselines in buffered devices. The data demonstrate that KIn 1-yGa ySe 2 passivates the surface of CuIn 1-yGa ySe 2 to increase efficiency, VOC, and FF, while bulk Cu 1-xK xIn 1-yGa ySe 2 absorbers with x ~ 0.07 enhance efficiency, VOC, and FF by some other mechanism.« less

  1. Topological interface states in the natural heterostructure (PbSe)5(Bi2Se3 )6 with BiPb defects

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Bihlmayer, Gustav; Blügel, Stefan; Segawa, Kouji; Ando, Yoichi; Oguchi, Tamio

    2018-01-01

    We study theoretically the electronic band structure of (PbSe) 5(Bi2Se3 )6, which consists of an ordinary insulator PbSe and a topological insulator Bi2Se3 . The first-principles calculations show that this material has a gapped Dirac-cone energy dispersion inside the bulk, which originates from the topological states of Bi2Se3 layers encapsulated by PbSe layers. Furthermore, we calculate the band structures of (BixPb1 -xSe )5(Bi2Se3 )6 with BiPb antisite defects included in the PbSe layers. The result shows that a high density of BiPb defects can exist in real materials, consistent with the experimentally estimated x of more than 30%. The BiPb defects strongly modify the band alignment between Bi2Se3 and PbSe layers, while the topological interface states of Bi2Se3 are kept as a gapped Dirac-cone-like dispersion.

  2. Synthesis of Large-Size 1T' ReS2x Se2(1-x) Alloy Monolayer with Tunable Bandgap and Carrier Type.

    PubMed

    Cui, Fangfang; Feng, Qingliang; Hong, Jinhua; Wang, Renyan; Bai, Yu; Li, Xiaobo; Liu, Dongyan; Zhou, Yu; Liang, Xing; He, Xuexia; Zhang, Zhongyue; Liu, Shengzhong; Lei, Zhibin; Liu, Zonghuai; Zhai, Tianyou; Xu, Hua

    2017-12-01

    Chemical vapor deposition growth of 1T' ReS 2 x Se 2(1- x ) alloy monolayers is reported for the first time. The composition and the corresponding bandgap of the alloy can be continuously tuned from ReSe 2 (1.32 eV) to ReS 2 (1.62 eV) by precisely controlling the growth conditions. Atomic-resolution scanning transmission electron microscopy reveals an interesting local atomic distribution in ReS 2 x Se 2(1- x ) alloy, where S and Se atoms are selectively occupied at different X sites in each Re-X 6 octahedral unit cell with perfect matching between their atomic radius and space size of each X site. This structure is much attractive as it can induce the generation of highly desired localized electronic states in the 2D surface. The carrier type, threshold voltage, and carrier mobility of the alloy-based field effect transistors can be systematically modulated by tuning the alloy composition. Especially, for the first time the fully tunable conductivity of ReS 2 x Se 2(1- x ) alloys from n-type to bipolar and p-type is realized. Owing to the 1T' structure of ReS 2 x Se 2(1- x ) alloys, they exhibit strong anisotropic optical, electrical, and photoelectric properties. The controllable growth of monolayer ReS 2 x Se 2(1- x ) alloy with tunable bandgaps and electrical properties as well as superior anisotropic feature provides the feasibility for designing multifunctional 2D optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnesium effects on CdSe self-assembled quantum dot formation on Zn xCd yMg 1-x-ySe layers

    NASA Astrophysics Data System (ADS)

    Noemi Perez-Paz, M.; Lu, Hong; Shen, Aidong; Jean Mary, F.; Akins, Daniel; Tamargo, Maria C.

    2006-09-01

    Optical and morphological studies are used to investigate the effects of chemical composition and, in particular, the magnesium content of the Zn xCd yMg 1-x-ySe barrier layers on the size, density and uniformity of CdSe self-assembled quantum dots (QDs). A reduction of the uncapped QD size, as well as a blue shift of the capped QD photoluminescence peak position by increasing Mg concentration in the Zn xCd yMg 1-x-ySe barrier has been demonstrated by changing the Mg cell temperature during growth. In addition, a more uniform and more densely packed QD layer has been observed with an increase of the MgSe fraction in the Zn xCd yMg 1-x-ySe barrier layer using three-dimensional topographic atomic force microscopy images of the surface of uncapped QDs. Results point to Mg as a chemical factor that induces QD formation, either by increasing the density of atomic steps or/and by changing the energy of the Zn xCd yMg 1-x-ySe surface.

  4. Acoustical phonon anomaly in the Raman spectra of intermediate valent TmSe 1-xTe x and Tm xSe

    NASA Astrophysics Data System (ADS)

    Treindl, A.; Wachter, P.

    1980-12-01

    In the Raman spectra of intermediate valent TmSe 1- xTe x the same anomaly within the acoustical phonon band at 60 cm -1 is found as in Tm xSe. The connection of this anomaly with the valence mixing is confirmed. In a one-dimensional model calculation it is shown that a renormalized LA dispersion curve can produce the observed anomalous peak in the phonon DOS. As an alternative interpretation the possibility of a low energy electronic excitation at 60 cm -1 is discussed.

  5. Self-organization in P_xGe_xSe_1-2x glasses^*

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Georgiev, Daniel; Boolchand, Punit; Micoulaut, Matthieu

    2003-03-01

    Bulk glasses in the titled ternary, in the 0 < x < 0.26 composition range, are examined in MDSC and Raman scattering measurements. Both fresh and aged samples were studied. Bimodal endotherms are observed but only the high^T endotherm displays a reversing heat flow signal that represents a glass transition. The pre^_Tg endotherm is observed in quenched samples only, and represents an activation energy [1] associated with P4 units (Se^_P(Se_1/2)_3) converting to P3 (P(Se_1/2)_3) ones. T_g(x) accessed from the reversing heat flow are found to increase with x as a power^_law, displaying a cusp near x = 0.04. The non^_reversing enthalpy is found to display a global minimum in the 0.08 < x < 0.145 range identified with the self^_organized phase. Raman scattering reveals the isostatically rigid units ( P3 , P_4, CS and ES Ge(Se_1/2)_4) comprising building blocks of the self^_organized phase. These results are parallel to those encountered in the As^_Ge^_Se ternary [2,3]. ^*Supported by NSF grant DMR ^_01^_01808 1. D.G. Georgiev et al Phys. Rev. B 64,134204(2001) 2.Y. Wang et al Europhys. Lett. 52, 633 (2000) 3. T.Qu et al. companion abstract

  6. Models of GexSe1-x

    NASA Astrophysics Data System (ADS)

    Malouin, Marc-André.; Mousseau, Normand

    2008-03-01

    We present numerical models of chalcogenide glasses constructed using the effective two and three body interaction potential developed by Mauro and Varshneya [1] combined with the activation-relaxation technique (ART nouveau) [2]. Structures are prepared starting from a random distribution, avoiding biases and crystalline remnants. Structural properties are studied mainly via characteristic system measurements including partial and total radial distribution functions, bond angle distributions, mean coordinations and bonds population. Results are shown for GexSe1-x for various x concentrations and compared to both experimental measurements and ab initio simulation results. [1] J.C. Mauro and A.K. Varshneya, J. Am. Ceram. Soc., 89 [7] 2323-6 (2006). [2] R. Malek and N. Mousseau, Phys. Rev. E 62, 7723 (2000).

  7. Fermi-level tuning of the Dirac surface state in (Bi1-x Sb x )2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Satake, Yosuke; Shiogai, Junichi; Takane, Daichi; Yamada, Keiko; Fujiwara, Kohei; Souma, Seigo; Sato, Takafumi; Takahashi, Takashi; Tsukazaki, Atsushi

    2018-02-01

    We report on the electronic states and the transport properties of three-dimensional topological insulator (Bi1-x Sb x )2Se3 ternary alloy thin films grown on an isostructural Bi2Se3 buffer layer on InP substrates. By angle-resolved photoemission spectroscopy, we clearly detected Dirac surface states with a large bulk band gap of 0.2-0.3 eV in the (Bi1-x Sb x )2Se3 film with x  =  0.70. In addition, we observed by Hall effect measurements that the dominant charge carrier converts from electron (n-type) to hole (p-type) at around x  =  0.7, indicating that the Fermi level can be controlled across the Dirac point. Indeed, the carrier transport was shown to be governed by Dirac surface state in 0.63  ⩽  x  ⩽  0.75. These features suggest that Fermi-level tunable (Bi1-x Sb x )2Se3-based heterostructures provide a platform for extracting exotic topological phenomena.

  8. Work function of bulk-insulating topological insulator Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takane, Daichi; Souma, Seigo; Center for Spintronics Research Network, Tohoku University, Sendai 980-8577

    Recent discovery of bulk insulating topological insulator (TI) Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y} paved a pathway toward practical device application of TIs. For realizing TI-based devices, it is necessary to contact TIs with a metal. Since the band-bending at the interface dominates the character of devices, knowledge of TIs' work function is of essential importance. We have determined the compositional dependence of the work function in Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y} by high-resolution photoemission spectroscopy. The obtained work-function values (4.95–5.20 eV) track the energy shift of the surface chemical potential seen by angle-resolved photoemission spectroscopy. The present result serves as amore » useful guide for developing TI-based electronic devices.« less

  9. Properties of Cu 1–xK xInSe 2 alloys

    DOE PAGES

    Muzzillo, Christopher P.; Mansfield, Lorelle M.; Ramanathan, Kannan; ...

    2016-04-21

    Adding potassium to Cu(In,Ga)Se 2 absorbers has been shown to enhance photovoltaic power conversion efficiency. To illuminate possible mechanisms for this enhancement and limits to beneficial K incorporation, the properties of Cu 1-xK xInSe 2 (CKIS) thin-film alloys have been studied. Films with K/(K + Cu), or x, from 0 to 1 were grown by co-evaporation, and probed by XRF, EPMA, SEM, XRD, UV-Visible spectroscopy, current-voltage, and TRPL measurements. Composition from in situ quartz crystal and EIES monitoring was well correlated with final film composition. Crystal lattice parameters showed linear dependence on x, indicating complete K incorporation and coherent structuralmore » character at all compositions in the <100> and <010> lattice directions, despite the different symmetries of CuInSe 2 and KInSe 2. The band gap energy showed pronounced bowing with x composition, in excellent agreement with experimental reports and semiconductor theory. Films of Mo/CKIS/Ni were non-ohmic, and increasing x from 0 to 0.58 decreased the apparent CKIS resistivity. Further evidence of decreased CKIS resistivity was observed with photoluminescence response, which increased by about half a decade for x > 0, and indicates increased majority carrier concentration. Minority carrier lifetimes increased by about an order of magnitude for films grown at x = 0.07 and 0.14, relative to CuInSe 2 and x ≥ 0.30. As a result, this is the first report of a Cu-K-In-Se film with >1 at.% K, and the observed property changes at increased x (wider band gap; lower resistivity; increased lifetime) comprise valuable photovoltaic performance-enhancement strategies, suggesting that CKIS alloys have a role to play in future engineering advances.« less

  10. Bandgap Engineering of Cu(In 1-xGax)Se 2 Absorber Layers Fabricated using CuInSe 2 and CuGaSe 2 Targets for One-Step Sputtering Process

    DOE PAGES

    Park, Jae -Cheol; Lee, Jeon -Ryang; Al-Jassim, Mowafak; ...

    2016-10-17

    Here we have demonstrated that the bandgap of Cu(In 1-xGa x)Se 2(CIGS) absorber layers was readily controlled by using a one-step sputtering process. CIGS thin-film sample libraries with different Ga/(In + Ga) ratios were synthesized on soda-lime glass at 550 °C using a combinatorial magnetron sputtering system employing CuInSe 2(CIS) and CuGaSe 2(CGS) targets. Energy-dispersive X-ray fluorescence spectrometry (EDS-XRF) confirmed that the CIGS films had different Ga/(In + Ga) ratios, which were varied by the sample configuration on the substrate and ranged from 0.2 to 0.9. X-ray diffraction and Raman spectroscopy revealed that the CIGS films had a pure chalcopyritemore » phase without any secondary phase such as Cu-Se or ordered vacancy compound (OVC), respectively. Furthermore, we found that the optical bandgap energies of the CIGS films determined by transmittance measurements ranged from 1.07 eV to 1.53 eV as the Ga/(In + Ga) ratio increased from 0.2 to 0.9, demonstrating that the one-step sputtering process using CIS and CGS targets is another simple route to control the bandgap energy of the CIGS absorber layer.« less

  11. Earth-Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu2 BaSn(S,Se)4 Absorber.

    PubMed

    Shin, Donghyeop; Zhu, Tong; Huang, Xuan; Gunawan, Oki; Blum, Volker; Mitzi, David B

    2017-06-01

    In recent years, Cu 2 ZnSn(S,Se) 4 (CZTSSe) materials have enabled important progress in associated thin-film photovoltaic (PV) technology, while avoiding scarce and/or toxic metals; however, cationic disorder and associated band tailing fundamentally limit device performance. Cu 2 BaSnS 4 (CBTS) has recently been proposed as a prospective alternative large bandgap (~2 eV), environmentally friendly PV material, with ~2% power conversion efficiency (PCE) already demonstrated in corresponding devices. In this study, a two-step process (i.e., precursor sputter deposition followed by successive sulfurization/selenization) yields high-quality nominally pinhole-free films with large (>1 µm) grains of selenium-incorporated (x = 3) Cu 2 BaSnS 4- x Se x (CBTSSe) for high-efficiency PV devices. By incorporating Se in the sulfide film, absorber layers with 1.55 eV bandgap, ideal for single-junction PV, have been achieved within the CBTSSe trigonal structural family. The abrupt transition in quantum efficiency data for wavelengths above the absorption edge, coupled with a strong sharp photoluminescence feature, confirms the relative absence of band tailing in CBTSSe compared to CZTSSe. For the first time, by combining bandgap tuning with an air-annealing step, a CBTSSe-based PV device with 5.2% PCE (total area 0.425 cm 2 ) is reported, >2.5× better than the previous champion pure sulfide device. These results suggest substantial promise for the emerging Se-rich Cu 2 BaSnS 4- x Se x family for high-efficiency and earth-abundant PV. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural and Thermal Diffusivity Studies of Polycrystalline (CuSe)1-XSeX Metal Chalcogenide Compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephine, L. Y. C.; Talib, Z. A.; Yunus, W. M. M.

    2007-05-09

    This paper reports the preparation and the characterization of the (CuSe)1-xSex metal chalcogenide semiconductor compounds with different stoichiometric compositions of Se (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) in bulk form. The (CuSe)1-xSex compounds were prepared using the solid state reaction by varying the ratio of CuSe:Se in the reaction mixture. X-ray powder diffraction analysis is used to identify and measure the mass absorption coefficient of the (CuSe)1-xSex compounds to support the thermal diffusivity behaviour. The thermal diffusivity of the polycrystalline (CuSe)1-xSex compounds were measured and analyzed for the first time, using the photoflash technique. The thermal diffusivitymore » values were determined to be in the range of 2.524 x 10-3 cm2/s to 1.125 x 10-2 cm2/s. It was found that the thermal diffusivity value tends to decrease as the parameter x increases. The relationship between the thermal diffusivity, mass absorption coefficient and density of the (CuSe)1-xSex are discussed in detail.« less

  13. Why are SiX5(-) and GeX5(-) (X = F, Cl) stable but not CF5(-) and CCl5(-)?

    PubMed

    Marchaj, Marzena; Freza, Sylwia; Skurski, Piotr

    2012-03-01

    The possible existence of the CF(5)(-), CCl(5)(-), SiF(5)(-), SiCl(5)(-), GeF(5)(-), and GeCl(5)(-) anions has been investigated using ab initio methods. The species containing Si and Ge as central atoms were found to adopt the D(3h)-symmetry trigonal bipyramidal equilibrium structures whose thermodynamic stabilities were confirmed by examining the most probable fragmentation channels. The ab initio re-examination of the electronic stabilities of the SiF(5)(-), SiCl(5)(-), GeF(5)(-), and GeCl(5)(-) anions [using the OVGF(full) method with the 6-311+G(3df) basis set] led to the very large vertical electron detachment (VDE) energies of 9.316 eV (SiF(5)(-)) and 9.742 eV (GeF(5)(-)), whereas smaller VDEs of 6.196 and 6.452 eV were predicted for the SiCl(5)(-) and GeCl(5)(-) species, respectively. By contrast, the high-symmetry and structurally compact anionic CF(5)(-) and CCl(5)(-) systems cannot exist due to the strongly repulsive potential predicted for the X(-) (F(-) or Cl(-)) approaching the CX(4) (CF(4) or CCl(4)). The formation of weakly bound CX(4)···X(-) (CF(4)···F(-) and CCl(4)···Cl(-)) anionic complexes (consisting of pseudotetrahedral neutral CX(4) with the weakly tethered X(-)) might be expected at low temperatures (approaching 0 K), whereas neither CX(5)(-) (CF(5)(-), CCl(5)(-)) systems nor CX(4)···X(-) (CF(4)···F(-) and CCl(4)···Cl(-)) complexes can exist in the elevated temperatures (above 0K) due to their susceptibility to the fragmentation (leading to the X(-) loss). © 2012 American Chemical Society

  14. Purification, growth, and characterization of Zn(x)Cd(1-x)Se crystals

    NASA Astrophysics Data System (ADS)

    Silberman, E.; Burger, A.; Chen, W.; Henderson, D. O.; Morgan, S. H.; Springer, John M.; Yao, Y.

    The purification of starting materials which were used in the growth of Zn(x)Cd(1-x)Se (x = 0.2) single crystals using the traveling solution method (TSM) is reported. Up to 13 cm long single crystals and as grown resistivities of 6 x 10(exp 12) ohm/cm could be achieved. Infrared and Raman spectra of Zn(0.2)Cd(0.8)Se are also presented and discussed.

  15. Purification, growth, and characterization of Zn(x)Cd(1-x)Se crystals

    NASA Technical Reports Server (NTRS)

    Silberman, E.; Burger, A.; Chen, W.; Henderson, D. O.; Morgan, S. H.; Springer, John M.; Yao, Y.

    1989-01-01

    The purification of starting materials which were used in the growth of Zn(x)Cd(1-x)Se (x = 0.2) single crystals using the traveling solution method (TSM) is reported. Up to 13 cm long single crystals and as grown resistivities of 6 x 10(exp 12) ohm/cm could be achieved. Infrared and Raman spectra of Zn(0.2)Cd(0.8)Se are also presented and discussed.

  16. GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Yu. Sarkisov, S.; Shkurinov, A. P.; Tolbanov, O. P.

    2011-08-01

    We demonstrate the possibility of broadband THz pulse generation in mixed GaSe1-xSx and GaSe1-xTex crystals. The ordinary and extraordinary refractive indices of the crystals have been measured by the terahertz time-domain spectroscopy method, those values strongly influence the efficiency of THz generation process. The high birefringence and transparency of pure GaSe and mixed crystals allow optical rectification of femtosecond laser pulses in the several millimeters thick crystal using the еее interaction process (with two pumping waves and generated THz wave all having extraordinary polarization in the crystal).

  17. A study on micro-structural and optical parameters of InxSe1-x thin film

    NASA Astrophysics Data System (ADS)

    Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.

    2018-04-01

    Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.

  18. Phase equilibria in the Bi 2TeO 5Bi 2SeO 5 system and a high temperature neutron powder diffraction study of Bi 2SeO 5

    NASA Astrophysics Data System (ADS)

    Dityatyev, Oleg A.; Smidt, Peer; Stefanovich, Sergey Yu; Lightfoot, Philip; Dolgikh, Valery A.; Opperman, Heinrich

    2004-09-01

    Phase equilibria in the Bi 2TeO 5Bi 2SeO 5 system were studied by X-ray, DTA and second harmonic generation (SHG). The samples were synthesized by solid state reactions of the Bi, Te and Se oxides. The phase diagram is interpreted as a quasibinary peritectic one with wide ranges of solid solutions on the basis of both compounds. The SHG study showed Bi 2SeO 5 to undergo a phase transition at about 250 °C. Neutron diffraction (25-650 °C) showed no major changes in the structure of Bi 2SeO 5 at high temperatures. However, the analysis of the oxygen atom thermal factors and site occupancies suggested that the mechanism of the phase transformation is an order-disorder transition involving reorientation of the SeO 3 group.

  19. Electronic structure of ZrX2 (X = Se, Te)

    NASA Astrophysics Data System (ADS)

    Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.

    2018-03-01

    The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

  20. High Curie temperature and coercivity performance of Fe3-xCrxSe4 nanostructures.

    PubMed

    Li, Shao-jie; Li, Da; Liu, Wei; Zhang, Zhidong

    2015-03-12

    Monoclinic Fe3-xCrxSe4 nanostructures (0≤x≤2.5) were synthesized using a high-temperature solution chemical method. With increasing the Cr doping, the peak positions in the X-ray diffraction (XRD) patterns of Fe3-xCrxSe4 nanostructures slightly shifted to lower 2θ values due to the changes in lattice parameters. Expansions in the unit cell volumes of Fe3-xCrxSe4 nanostructures (x>0.3) may have been responsible for enhancing the ferromagnetic (FM) interaction between magnetic ions, which resulted in a significant increase in the Curie temperature (TC) from 331 K for Fe3Se4 to 429 K for FeCr2Se4, distinctly differing from the magnetic properties of the corresponding bulk materials. A room-temperature coercivity (HC) analysis showed an obvious increase from 3.2 kOe for Fe3Se4 to 12 kOe for Fe2.3Cr0.7Se4 nanostructure, but gradually decreased upon further increasing the Cr content.

  1. Crystal growth of argyrodite-type phases Cu 8-xGeS 6-xI x and Cu 8-xGeSe 6-xI x (0⩽ x⩽0.8)

    NASA Astrophysics Data System (ADS)

    Tomm, Yvonne; Schorr, Susan; Fiechter, Sebastian

    2008-04-01

    The growth of single crystalline argyrodites of type Cu 8-xGeX 6-xY x ( X=S, Se; Y=I) is reported. These materials undergo solid-solid phase transitions at temperatures ranging from 30 to 90 °C. In the high temperature phase, Cu 8GeS 6 crystallizes in the cubic space group F4¯3m. In the low temperature phase, the compound is present in the orthorhombic space group Pmn2 1. Cu 8GeSe 6 appears exclusively in the hexagonal space groups P6 3mc or P6 3cm, respectively. Single crystals of these argyrodites were obtained by chemical vapor transport in a temperature gradient Δ T=980-950 and Δ T=700-620 °C for sulfides and selenides, respectively. As a result of the growth process, the high temperature phase remains stable even at ambient temperature by incorporation of the transport agent iodine during the growth process. As determined by energy dispersive X-ray analysis (EDAX), the composition of the sulfide crystals grown ranges from Cu 8GeS 6 to Cu 7.16GeS 5.16I 0.84. The selenide crystallizes as Cu 7.69GeSe 5.69I 0.31. In contrast, the solid state reaction of the elements Cu, Ge and X produces a material in the low temperature modification with an ideal composition of Cu 8GeX 6.

  2. Structural and Optical Properties of Cd 1- x Se x Thin Films Deposited by Electron Beam Evaporation Technique

    NASA Astrophysics Data System (ADS)

    Tripathi, Ravishankar Nath; Verma, Aneet Kumar; Rahul, Vishwakarma, S. R.

    2011-10-01

    Cadmium selenide (CdSe) thin films deposited by means of electron beam evaporation technique under high vacuum ˜10 -5 torr on ultrasonically cleaned glass substrate. Using stating materials of various compositions of cadmium and selenium using formula Cd 1- x Se x where x is orbitory constant having value 0.20≤ x ≤0.40 here we take less value of x for the creation of anion vacancy in thin films. In present work the structural properties have been studies using XRD technique and found that starting materials and thin films both are polycrystalline in nature having hexagonal structure. Here we study the effect of composition ratio Cd/Se in starting material and its prepared thin films on its grain size and lattice parameter. From the analysis of X-Ray diffractogram found that lattice parameter and grain size both are decreases with increasing Cd/Se ratio in thin films as well as in starting material the preferred orientation in thin films along (100) plane. The surface morphology was studied using SEM characterization and found that films are smooth and homogeneous. The films have been analysed for optical band gap and absorbed a direct band gap.

  3. Chevrel-phase solid solution Mo 6Se 8- xTe x. Study of its superconducting, magnetic and NMR properties

    NASA Astrophysics Data System (ADS)

    Hamard1a, C.; Auffret, V.; Peña, O.; Le Floch, M.; Nowak, B.; Wojakowski, A.

    2000-09-01

    The Chevrel-phase solid solution Mo 6Se 8-Mo 6Te 8 was studied by X-ray diffraction, AC and DC magnetic susceptibility and 77Se and 125Te NMR spectroscopy. From the smooth evolution of the lattice parameters and superconducting critical temperatures, a progressive substitution of selenium atoms by tellurium is shown, on the whole range of composition 0⩽ x⩽8, in the formulation Mo 6Se 8- xTe x: the unit-cell volume increases linearly because of the larger ionic size of tellurium, while Tc decreases rapidly (from 6.45 down to 0 K) because of the different formal oxidation states of the anions and a probable evolution of the Fermi level in the density of states. Results of magnetic susceptibility support this model and suggest the inhibition of the intrinsic metallic behavior with increasing x. The NMR spectra of the binaries Mo 6Se 8 and Mo 6Te 8 reveal two significant features, attributed to two different chalcogen positions in the R 3¯ symmetry. At low Se contents in Mo 6Se 8- xTe x ( x=7.5, 7 and 6), selenium first fills the two X(2) sites along the three-fold axis (2c positions), and then it becomes statistically distributed over the general 6f positions, leading to broad 77Se NMR lines. On the other hand, substitution of Te atoms in Mo 6Se 8 seems to occur in a random way, creating large perturbations on the 125Te NMR spectra, over the whole range of x. Theoretical analysis based on the presence of two anisotropic lines (of axial and non-axial symmetries, respectively) allowed us to estimate their anisotropy factors and to perfectly simulate the frequency response of both Mo 6Se 8 and Mo 6Te 8 binaries. Analysis of the Knight shift anisotropy leads us to conclude about the importance of the molybdenum z 2 molecular orbital contribution which controls the Mo-X dipolar interactions.

  4. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    PubMed

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  5. Superconductivity in layered ZrP2-x Se x with PbFCl-type structure

    NASA Astrophysics Data System (ADS)

    Ishida, Shigeyuki; Fujihisa, Hiroshi; Hase, Izumi; Yanagi, Yousuke; Kawashima, Kenji; Oka, Kunihiko; Gotoh, Yoshito; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi; Kito, Hijiri

    2016-05-01

    We performed a systematic study of the crystal structure, physical properties, and electronic structure of PbFCl-type ZrP2-x Se x (0.3 ≤ x ≤ 0.9). We successfully synthesized single-phase polycrystalline samples for the Se substitution range of 0.4 ≤ x ≤ 0.8. The crystal structure of the compound is characterized by the alternate stacking of a two-dimensional P square net and a Zr-(P1-x Se x ) network. ZrP2-x Se x exhibits a dome-like superconductivity phase diagram and has a maximum superconducting transition temperature (T c) of 6.3 K for x ≈ 0.6. Resistivity and Hall measurements indicated that electron-phonon scattering plays a dominant role and that electron-type carriers dominate charge transport. Specific heat measurements confirmed that ZrP2-x Se x exhibits bulk superconductivity. Further, the value of the specific heat jump at T c (ΔC/γT c ≈ 1.35) is in keeping with the BCS weak-coupling model. These facts suggest a rather conventional pairing mechanism in ZrP2-x Se x . The x dependence of T c can be explained on the basis of the density of states (DOS) for x ≤ 0.7, whereas the decrease in T c with an increase in the DOS for x = 0.8 needs further investigation. One possible reason for the suppression of superconductivity is that the PbFCl-type structure becomes unstable for x ≥ 0.8. The results of electronic structure calculations agree reasonably well with those of the experimental observations, suggesting that the Zrd band plays a primary role in determining the physical properties. Further, the calculations predict a significant change in the Fermi-surface topology for x ≥ 0.8 this is a probable reason for the decrease in T c as well as the instability of the PbFCl-type structure.

  6. Growth and optoelectronic characteristic of n-Si/p-CuIn(S 1-xSe x) 2 thin-film solar cell by solution growth technique

    NASA Astrophysics Data System (ADS)

    Chavhan, S.; Sharma, R.

    2006-07-01

    The p-CuIn(S 1-xSe x) 2 (CISS) thin films have been grown on n-Si substrate by solution growth technique. The deposition parameters, such as pH (10.5), deposition time (60 min), deposition temperature (50 °C), and concentration of bath solution (0.1 M) were optimized. Elemental analysis of the p-CuIn(S 1-xSe x) 2 thin film was confirmed by energy-dispersive analysis of X-ray (EDAX). The SEM study of absorber layer shows the uniform morphology of film as well as the continuous smooth deposition onto the n-Si substrates, whose grain size is 130 nm. CuIn(S 1-xSe x) 2 ( x=0.5) reveals (1 1 2) orientation peak and exhibits the chalcopyrite structure with lattice constant a=5.28 Å and c=11.45 Å. The J- V characteristics were measured in dark and light. The device parameters have been calculated for solar cell fabrication, V=411.09 mV, and J=14.55 mA. FF=46.55% and η=4.64% under an illumination of 60 mW/cm 2. The J- V characteristics of the device under dark condition were also studied and the ideality factor was calculated, which is equal to 2.2 for n-Si/p-CuIn(S 0.5Se 0.5) 2 heterojunction thin film.

  7. Quality improvements of ZnxCdyMg1-x-ySe layers grown on InP substrates by a thin ZnCdSe interfacial layer

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Yang, B. X.; Tamargo, M. C.; Snoeks, E.; Zhao, L.

    1998-03-01

    The quality of lattice-matched ZnxCdyMg1-x-ySe epitaxial layers grown on (001) InP substrates with a III-V buffer layer has been improved by initially growing a ZnCdSe interfacial layer (50 Å) at low temperature. The widths of double crystal x-ray rocking curves for ZnxCdyMg1-x-ySe epilayers with band gaps as high as 3.05 eV were reduced to about 70 arcsec. The defect density evaluated from etch pit density and plan-view transmission electron microscopy measurements was reduced by two orders of magnitude, to 106-107cm-2. The photoluminescence band edge emission became more symmetric and slightly narrower. It is proposed that an initial two-dimensional growth mode has been achieved by incorporating such a lattice-matched ZnCdSe layer.

  8. Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1-x ,Ga x )Se2 Film Fabricated by Three-Stage Process

    NASA Astrophysics Data System (ADS)

    Wang, Shenghao; Nazuka, Takehiro; Hagiya, Hideki; Takabayashi, Yutaro; Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru; Islam, Muhammad M.; Akimoto, Katsuhiro; Sakurai, Takeaki

    2018-02-01

    For copper indium gallium selenide [Cu(In1-x ,Ga x )Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2-δ Se and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2-δ Se is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2-δ Se can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.

  9. Large local disorder in superconducting K(0.8)Fe(1.6)Se2 studied by extended x-ray absorption fine structure.

    PubMed

    Iadecola, A; Joseph, B; Simonelli, L; Puri, A; Mizuguchi, Y; Takeya, H; Takano, Y; Saini, N L

    2012-03-21

    We have measured the local structure of superconducting K(0.8)Fe(1.6)Se(2) chalcogenide (T(c) = 31.8 K) by temperature dependent polarized extended x-ray absorption fine structure (EXAFS) at the Fe and Se K-edges. We find that the system is characterized by a large local disorder. The Fe-Se and Fe-Fe distances are found to be shorter than the distances measured by diffraction, while the corresponding mean square relative displacements reveal large Fe-site disorder and relatively large c-axis disorder. The local force constant for the Fe-Se bondlength (k ~ 5.8 eV Å(-2)) is similar to the one found in the binary FeSe superconductor, however, the Fe-Fe bondlength appears to be flexible (k ~ 2.1 eV Å(-2)) in comparison to the binary FeSe (k ~ 3.5 eV Å(-2)), an indication of partly relaxed Fe-Fe networks in K(0.8)Fe(1.6)Se(2). The results suggest a glassy nature for the title system, with the superconductivity being similar to that in the granular materials. © 2012 IOP Publishing Ltd

  10. Rapid direct conversion of Cu2-xSe to CuAgSe nanoplatelets via ion exchange reactions at room temperature

    NASA Astrophysics Data System (ADS)

    Moroz, N. A.; Olvera, A.; Willis, G. M.; Poudeu, P. F. P.

    2015-05-01

    final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01451d

  11. Structural and relaxor-like dielectric properties of unfilled tungsten bronzes Ba5-5xSm5xTi5xNb10-5xO30

    NASA Astrophysics Data System (ADS)

    Wei, T.; Dong, Z.; Zhao, C. Z.; Guo, Y. Y.; Zhou, Q. J.; Li, Z. P.

    2016-03-01

    New unfilled tetragonal tungsten bronze (TTB) oxides, Ba5-5xSm5xTi5xNb10-5xO30 (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A2-site compared with that of A1-site will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (Tm) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of Tm in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.

  12. Effect of selenium deficiency on the thermoelectric properties of n -type In 4 Se 3 - x compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, G. H.; Lan, Y. C.; Wang, H.

    2011-03-01

    Thermoelectric properties of dense bulk polycrystalline In 4 Se 3 - x ( x = 0, 0.25, 0.5, 0.65, and 0.8) compounds are investigated. A peak dimensionless thermoelectric figure of merit ( ZT ) of about 1 is achieved for x = 0.65 and 0.8. The peak ZT is about 50% higher than the previously reported highest value for polycrystalline In 4 Se 3 - x compounds. Our In 4 Se 3 - x samples were prepared by ball milling and hot pressing. We show that it is possible to effectively control the electrical conductivity and thermal conductivity by controllingmore » selenium (Se) deficiency x . The ZT enhancement is mainly attributed to the thermal conductivity reduction due to the increased phonon scattering by Se deficiency, defects, and nanoscale inclusions in the ball-milled and hot-pressed dense bulk In 4 Se 3 - x samples.« less

  13. Effect of selenium deficiency on the thermoelectric properties of n-type In 4Se 3-x compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, G H; Lan, Y C; Wang, H

    2011-03-04

    Thermoelectric properties of dense bulk polycrystalline In 4Se 3-x (x = 0, 0.25, 0.5, 0.65, and 0.8) compounds are investigated. A peak dimensionless thermoelectric figure of merit (ZT) of about 1 is achieved for x = 0.65 and 0.8. The peak ZT is about 50% higher than the previously reported highest value for polycrystalline In 4Se 3-x} compounds. Our In 4Se 3-x samples were prepared by ball milling and hot pressing. We show that it is possible to effectively control the electrical conductivity and thermal conductivity by controlling selenium (Se) deficiency x. The ZT enhancement is mainly attributed to themore » thermal conductivity reduction due to the increased phonon scattering by Se deficiency, defects, and nanoscale inclusions in the ball-milled and hot-pressed dense bulk In 4Se 3-x samples.« less

  14. Non-toxic novel route synthesis and characterization of nanocrystalline ZnS{sub x}Se{sub 1−x} thin films with tunable band gap characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agawane, G.L., E-mail: agawaneganesh@gmail.com; Shin, Seung Wook; Vanalakar, S.A.

    2014-07-01

    Highlights: • A simple, inexpensive, and non-toxic CBD route is used to deposit ZnS thin films. • The ZnS{sub x}Se{sub 1−x} thin films formation takes place via annealing of ZnS thin films in Se atmosphere. • S/(S + Se) ratio found to be temperature dependent and easy tuning of band gap has been done by Se atom deposition. - Abstract: An environmentally benign chemical bath deposition (CBD) route was employed to deposit zinc sulfide (ZnS) thin films. The CBD-ZnS thin films were further selenized in a furnace at various temperatures viz. 200, 300, 400, and 500 °C and the S/(Smore » + Se) ratio was found to be dependent on the annealing temperature. The effects of S/(S + Se) ratio on the structural, compositional and optical properties of the ZnS{sub x}Se{sub 1−x} (ZnSSe) thin films were investigated. EDS analysis showed that the S/(S + Se) ratio decreased from 0.8 to 0.6 when the film annealing temperature increased from 200 to 500 °C. The field emission scanning electron microscopy and atomic force microscopy studies showed that all the films were uniform, pin hole free, smooth, and adhered well to the glass substrate. The X-ray diffraction study on the ZnSSe thin films showed the formation of the cubic phase, except for the unannealed ZnSSe thin film, which showed an amorphous phase. The X-ray photoelectron spectroscopy revealed Zn-S, Zn-Se, and insignificant Zn-OH bonds formation from the Zn 2p{sub 3/2}, S 2p, Se 3d{sub 5/2}, and O 1s atomic states, respectively. The ultraviolet–visible spectroscopy study showed ∼80% transmittance in the visible region for all the ZnSSe thin films having various absorption edges. The tuning of the band gap energy of the ZnSSe thin films was carried out by selenizing CBD-ZnS thin films, and as the S/(S + Se) ratio decreased from 0.8 to 0.6, the band gap energy decreased from 3.20 to 3.12 eV.« less

  15. Isothermal sections of the quasi-ternary systems Ag{sub 2}S(Se)–Ga{sub 2}S(Se){sub 3}–In{sub 2}S(Se){sub 3} at 820 K and the physical properties of the ternary phases Ga{sub 5.5}In{sub 4.5}S{sub 15}, Ga{sub 6}In{sub 4}Se{sub 15} and Ga{sub 5.5}In{sub 4.5}S{sub 15}:Er{sup 3+}, Ga{sub 6}In{sub 4}Se{sub 15}:Er{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivashchenko, I.A., E-mail: Ivashchenko.Inna@eenu.edu.ua; Danyliuk, I.V.; Gulay, L.D.

    Isothermal sections of the quasi-ternary systems Ag{sub 2}S(Se)–Ga{sub 2}S(Se){sub 3}–In{sub 2}S(Se){sub 3} at 820 K were compared. Along the 50 mol% Ag{sub 2}S(Se), both systems feature continuous solid solutions with the chalcopyrite structure. Along the 17 mol% Ag{sub 2}S(Se), the interactions at the AgIn{sub 5}S(Se){sub 8}–'AgGa{sub 5}S(Se){sub 8}' sections are different. In the Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} system the existence of the layered phase AgGa{sub x}In{sub 5x}S{sub 8}, 2.25≤x≤2.85, was confirmed (S.G. P6{sub 3}mc). The Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} system features the formation of solid solution (up to 53 mol% Ga{sub 2}Se{sub 3}) based on AgIn{submore » 5}Se{sub 8} (S.G. P-42m). Crystal structure, atomic coordinates were determined by powder diffraction method for samples from the homogeneity region of AgIn{sub 5}Se{sub 8}. Specific conductivities of the crystals Ga{sub 6}In{sub 4}Se{sub 15} (1.33·10{sup −6} Ω{sup −1} m{sup −1}), Ga{sub 5.94}In{sub 3.96}Er{sub 0.1}Se{sub 15} (3.17·10{sup −6} Ω{sup −1} m{sup −1}), Ga{sub 5.5}In{sub 4.5}S{sub 15} (7.94·10{sup −6} Ω{sup −1} m{sup −1}), Ga{sub 5.46}In{sub 4.47}Er{sub 0.07}S{sub 15} (1·10{sup −9} Ω{sup −1} m{sup −1}) were measured at room temperature. Optical absorption and photoconductivity spectra were recorded in the range 400–760 nm. The introduction of erbium leads to an increase in the absorption coefficient and to the appearance of absorption bands at 530, 660, 810, 980, 1530 nm. - Highlights: • Nature of solid solutions in Ag{sub 2}S(Se)–Ga{sub 2}S(Se){sub 3}–In{sub 2}S(Se){sub 3} (820 K) were discussed. • Crystal structures of ternary and quaternary compounds were discussed. • Specific conductivity, optical properties of four single crystals were measured. • Photoconductivity of the Ga{sub 5.5}In{sub 4.5}S{sub 15} in the range 400–760 nm were recorded.« less

  16. Influence of processing in mercury and selenium vapor on the electrical properties of Cd /SUB x/ Hg /SUB 1-x/ Se, Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavaleshko, N.P.; Khomyak, V.V.; Makogonenko, V.N.

    1985-12-01

    In order to determine the predominant intrinsic point defects in Cd /SUB x/ Hg /SUB 1-x/ Se and Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions, the authors study the influence of annealing in mercury and selenium vapor on the carrier concentration and mobility. When the specimens are annealed in selenium vapor the electron concentration at first increases and then becomes constant. A theoretical analysis of the results obtained indicate that selenium vacancies are the predominant point defects in the solutions, and that the process of defect formation itself is quasiepitaxial.

  17. Soft-hard acid-base interactions: probing coordination preferences of sulfur an selenium in mixed chalcophosphates in the family APbPS{sub 4-x}Se{sub x} (A = K, Rb, cs; x = 0-4).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothenberger, A.; Morris, C.; Wang, H. H.

    2009-01-01

    The synthesis and structures of the three new compounds, KPbPS{sub 1.84}Se{sub 2.16} (1), RbPbPS{sub 1.56}Se{sub 2.43} (2), and CsPbPS{sub 3.46}Se{sub 0.54} (3), are reported. The solid state structures of 1-3 consist of two-dimensional layers of [PbP(S/Se){sub 4}] separated by alkali metal ions. The structure of 1 was solved in the orthorhombic space group Pna2{sub 1}. Compounds 2 and 3 possess the CsSmGeS{sub 4} structure type, crystallizing in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. All compounds were refined as racemic twins. All chalcogen sites around the tetrahedrally coordinated P atoms show mixed S/Se occupancy; however, there is a preferencemore » for Se binding to Pb ions and S binding to alkali ions. A {sup 31}P magic angle spinning NMR study on 1 suggests that, in mixed seleno-/thiophosphates, all of the anions [PS{sub x}Se{sub 4-x}]{sup 3-} (x = 0, 1, 2, 3, 4) are present. The different amount of sulfur and selenium present in KPbPS{sub 1.84}Se{sub 2.16} (1), RbPbPS{sub 1.56}Se{sub 2.43} (2), and CsPbPS{sub 3.46}Se{sub 0.54} (3) is reflected in the solid state absorption spectra from which bandgaps of 2.2 eV were determined for 1 and 2, and a blue-shift to 2.5 eV was observed because of the higher sulfur-content in 3. Thermogravimetric analysis experiments indicated that, upon heating, compound 1 decomposes forming PbSe and sulfur together with other unidentified products. A Raman spectrum of compound 1 showed more bands than are usually observed in seleno- or thiophosphate salts and is another indicator of the mixed seleno-/thiophosphate anions found in 1.« less

  18. Nano-indentation investigations of (As2Se3)1-x: Snx and (As4S3Se3)1-x: Snx glasses

    NASA Astrophysics Data System (ADS)

    Harea, D. V.; Harea, E. E.; Iaseniuc, O. V.; Iovu, M. S.

    2015-02-01

    Experimental results on some physical and optical properties of (As2Se3)1-x:Snx and (As4S3Se3)1-x:Snx (x = 0-10 at %) glasses and amorphous films (d~2.0 μm) are presented. The bulk chalcogenide glasses are studied by X-ray diffraction spectroscopy and nanoindentation methods. It is established that the addition of these amounts of tin (x = 0-10 at %) does not lead to significant changes in the physical properties of the glass, such as values of stress and Young's modulus related to the modification of the density and compactness. It has been found that the addition of these amounts of tin in (As4S3Se3)1-x:Snx does not lead to significant changes in the glass physical properties, such as values of stress and Young's modulus related to the modification of the density and compactness. The study of the photoplastic effect is performed in situ, with illumination of the bulk and thin film samples during indentation as well as their indentation after illumination with a green laser (λ = 532 nm) at a power of P = 50 mV/cm2. The hardness is calculated from load-displacement curves by the Oliver-Pharr method. A sharp increase in hardness is registered if the tin concentration exceeds a value of 34% Sn. The hardness H of (As2Se3)1-x:Snx films varies between 115 and 130 kg/mm2. It is found that the hardness H of amorphous thin films is generally higher than the hardness of bulk samples with the same chemical composition. In this study, we are focused on the mechanical characteristics of high-purity As2Se3: Snx thin films. Keyword: Chalcogenide glasses, hardness,

  19. Contrasting the material chemistry of Cu 2ZnSnSe 4 and Cu 2ZnSnS (4-x)Se x

    DOE PAGES

    Aguiar, Jeffery A.; Patel, Maulik; Aoki, Toshihiro; ...

    2016-02-02

    Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Here, the earth-abundant solar cell device, Cu 2ZnSnS (4-x)Se x, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu 2ZnSnSe 4.

  20. Superconductivity and charge density wave in ZrTe 3–xSe x

    DOE PAGES

    Zhu, Xiangde; Ning, Wei; Li, Lijun; ...

    2016-06-02

    Charge density wave (CDW), the periodic modulation of the electronic charge density, will open a gap on the Fermi surface that commonly leads to decreased or vanishing conductivity. On the other hand superconductivity, a commonly believed competing order, features a Fermi surface gap that results in infinite conductivity. Here we report that superconductivity emerges upon Se doping in CDW conductor ZrTe 3 when the long range CDW order is gradually suppressed. Superconducting critical temperature T c(x) in ZrTe 3–xSe x (0 ≤ x ≤ 0.1) increases up to 4 K plateau for 0.04 ≤ x ≤ 0.07. Further increase inmore » Se content results in diminishing T c and filametary superconductivity. The CDW modes from Raman spectra are observed in x = 0.04 and 0.1 crystals, where signature of ZrTe 3 CDW order in resistivity vanishes. As a result, the electronic-scattering for high T c crystals is dominated by local CDW fluctuations at high temperatures, the resistivity is linear up to highest measured T = 300 K and contributes to substantial in-plane anisotropy.« less

  1. Activation of electrocatalytic properties of a-C films by doping with MoSe x clusters

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. N.; Fominski, V. Y.; Romanov, R. I.; Volosova, M. A.; Fominski, D. V.

    2017-12-01

    Nanocomposite a-C(Mo/MoSe x ) thin films containing amorphous carbon matrix a-C, nano-Mo and MoSe x ≥2 clusters were obtained by pulsed laser co-deposition of carbon and MoSe2. The deposition was carried out at room temperature onto a graphite substrate. Atomic content of the MoSe x≥2 phase did not exceed 25%. The use of a buffer gas at a pressure of 10 Pa allowed to obtain the maximum Se/Mo ratio in the films and to increase the concentration of sp2-hybridized C atoms for high conductivity realization. The formation of MoSe x≥2 cluster inclusions was the essential factor for activation of hydrogen evolution reaction (HER) in 0.5 M H2SO4 aqueous solution. These clusters also promoted cathodic deposition of Pt nanoparticles on the surface of a-C(Mo/MoSe x ) in a H2SO4/KCl solution when a Pt anode was used as a source of Pt. Hybrid Pt/a-C(Mo/MoSe x ) thin-film coatings with a low Pt loading (~6 μg/cm2) exhibit excellent HER property, which noticeably exceeds that of relatively thick Pt coating prepared on a graphite substrate by pulsed laser deposition.

  2. Evolution of Eu valence and superconductivity in layered Eu0.5La0.5FBiS2 -xSex system

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Y.; Paris, E.; Wakita, T.; Jinno, G.; Puri, A.; Terashima, K.; Joseph, B.; Miura, O.; Yokoya, T.; Saini, N. L.

    2017-02-01

    We have studied the effect of Se substitution on Eu valence in a layered Eu0.5La0.5FBiS2 -xSex superconductor using a combined analysis of x-ray absorption near-edge structure (XANES) and x-ray photoelectron spectroscopy (XPS) measurements. Eu L3-edge XANES spectra reveal that Eu is in the mixed valence state with coexisting Eu2 + and Eu3 +. The average Eu valence decreases sharply from ˜2.3 for x =0.0 to ˜2.1 for x =0.4 . Consistently, Eu 3 d XPS shows a clear decrease in the average valence by Se substitution. Bi 4 f XPS indicates that effective charge carriers in the BiCh2 (Ch = S, Se) layers are slightly increased by Se substitution. On the basis of the present results it has been discussed that the metallic character induced by Se substitution in Eu0.5La0.5FBiS2 -xSex is likely to be due to increased in-plane orbital overlap driven by reduced in-plane disorder that affects the carrier mobility.

  3. Preparation and investigation of [GeSe4]100-xIx glasses as promising materials for infrared fiber sensors

    NASA Astrophysics Data System (ADS)

    Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Plekhovich, A. D.; Kotereva, T. V.; Snopatin, G. E.; Gerasimenko, V. V.; Pushkin, A. A.

    2016-10-01

    The glasses of [GeSe4]100-xIx (x = 1, 3, 5, 8, 10) compositions are prepared; their thermal properties, transparency in the mid-IR range and stability against crystallization are investigated. The glass transition temperature (Tg) in this system decreases monotonically with increasing iodine content from the value of Tg = 176 °C at x = 1 to Tg = 129 °C at x = 10. It has been determined by X-ray diffraction method that the addition of iodine reduces the volume fraction of the crystalline phase in glasses after annealing at 350 °C. Using a single crucible technique, the rod of [GeSe4]95I5 glass was drawn into a single-index fiber of 300 μm diameter and 10 m length. The optical losses were 2-3 dB/m in the spectral range 2.5-8 μm; the minimum optical losses were 1.7 dB/m at a wavelength of 5.5 μm. The content of impurity hydrogen in the form of Se-H in the fiber was about 3.6 ppm(wt), impurity oxygen in the form of Ge-O is 1 ppm(wt). The possibility of use of such [GeSe4]95I5 glass single-index fiber for infrared analysis of liquids by example of crude oil and water solutions of acetone has been demonstrated.

  4. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell.

    PubMed

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-07

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  5. Ultra-low thermal conductivity of TlIn5Se8 and structure of the new complex chalcogenide Tl0.98In13.12Se16.7Te2.3

    NASA Astrophysics Data System (ADS)

    Lefèvre, Robin; Berthebaud, David; Pérez, Olivier; Pelloquin, Denis; Boudin, Sophie; Gascoin, Franck

    2017-06-01

    TlIn5Se8 has been synthesized by means of solid-state reaction and densified by Spark Plasma Sintering. The compound is a semiconductor with a band gap of 1.62 eV estimated from reflectance measurements. Its thermal conductivity is about 0.45 W m-1. K-1 in the temperature range 300-673 K, an extremely low value attributed to its complex pseudo-1D structure reminiscent of the pseudo-hollandite. While attempting to dope TlIn5Se8 with Te, a new complex chalcogenide was discovered and characterized by the combination of TEM and XRD diffraction. It belongs to the A2In12X19 family, crystallizing in the R 3 ̅:H space group. Single crystal X-ray diffraction study led to a refined composition of Tl0.98In13.12Se16.7Te2.3 with cell parameters: a=13.839(5) Å and c=35.18(3) Å. A static disorder is found on one indium site situated in an octahedral environment. The single crystal XRD study is in agreement with TEM analyses in STEM-HAADF image mode that do not show any extended defects or disorder at atomic scale.

  6. Electrodeposition Process and Performance of CuIn(Se x S1- x )2 Film for Absorption Layer of Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Libo; Yang, Xueying; Gao, Guanxiong; Wang, Wentao; You, Jun

    2017-11-01

    CuIn(Se x S1- x )2 thin film is prepared by the electrodeposition method for the absorption layer of the solar cell. The CuIn(Se x S1- x )2 films are characterized by cyclic voltammetry measurement for the reduction of copper, indium, selenium and sulfur in selenium and sulfur in aqueous solutions with sodium citrate and without sodium citrate. In the four cases, the defined reduction process for every single element is obtained and it is observed that sodium citrate changes the reduction potentials. A linear relationship between the current density of the reduction peak and (scan rate v)1/2 for copper and indium is achieved, indicating that the process is diffusion controlled. The diffusion coefficients of copper and indium ions are calculated. The diffusional coefficient D value of copper is higher than that of indium, and this is the reason why the deposition rate of copper is higher. When four elements are co-deposited in the aqueous solution with sodium citrate, the quaternary compound of CuIn(Se x S1- x )2 is deposited together with Cu3Se2 impure phases after annealing, as found by XRD spectra. Morphology is observed by SEM and AFM. The chemical state of the films components is analyzed by XPS. The UV-Visible spectrophotometer and electrochemistry workstation are employed to measure the photoelectric properties. The results show that the smooth, uniform and compact CuIn(Se x S1- x )2 film is a semiconductor with a band gap of 1.49 eV and a photovoltaic conversion efficiency of 0.45%.

  7. Magnetic state of a Zn1 - x Cr x Se bulk crystal

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Korolev, A. V.; Teploukhov, S. G.; Chukalkin, Yu. G.; Parkhomenko, V. D.; Gruzdev, N. B.

    2008-06-01

    The spin system of a Zn1 - x Cr x Se bulk crystal ( x = 0.045) was studied using thermal-neutron diffraction and magnetic measurements. Previously, it was reported in the literature that thin films (˜200 nm thick) of this type of semiconductors exhibit a ferromagnetic order. In this study, the ferromagnetic order is found to be absent in the bulk crystal.

  8. Growth and characterization of Hg(1-x)Zn(x)Se

    NASA Technical Reports Server (NTRS)

    Andrews, R. N.

    1986-01-01

    Hg sub 1-xZn sub xSe alloys of composition x=0.10 were grown in a Bridgman-Stockbarger growth furnace at translation rates of 0.3 and 0.1 micron sec. The axial and radial composition profiles were determined using precision density measurements and IR transmission-edge-mapping, respectively. A more radially homogeneous alloy was produced at the slower growth rate, while the faster growth rate produced more axially homogeneous alloys. A determination of the electrical properties of the Hg sub 1-xZn sub xSe samples in the temperature range 300K-20K was also made. Typical carrier concentrations were on the order of magnitude of 10 to the 18th power cu/cm, and remained fairly constant as a function of temperature. A study was also made of the temperature dependence of the resistivity and Hall mobility. The effect of annealing in a selenium vapor on both the IR transmission and the electrical properties was determined. Annealing was effective in reducing the number of native donor defects and at the resulting lower carrier concentrations, charge carrier concentration was shown to be a function of temperature. Annealing caused the mobility to increase, primarily at the lower temperature, and the room temperature resistivity to increase. Annealing was also observed to greatly enhance the % IR transmittance of the samples. This was due primarily to the effect of annealing on decreasing the charge carrier concentration.

  9. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  10. Optic phonon bandwidth and lattice thermal conductivity: The case of L i 2 X ( X = O , S, Se, Te)

    DOE PAGES

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li 2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m -1K -1), BeTe (370 W/m -1K -1) and cubic BAs (3150 W/m -1K -1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si,more » GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in Li 2Se and Li 2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li 2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  11. Correlation between electronic structure and electron conductivity in MoX2 (X = S, Se, and Te)

    NASA Astrophysics Data System (ADS)

    Muzakir, Saifful Kamaluddin

    2017-12-01

    Layered structure molybdenum dichalcogenides, MoX2 (X = S, Se, and Te) are in focus as reversible charge storage electrode for pseudocapacitor applications. Correlation between number of layer and bandgap of the materials has been established by previous researchers. The correlation would reveal a connection between the bandgap and charge storage properties i.e., amount of charges that could be stored, and speed of storage or dissociation. In this work, fundamental parameters viz., (i) size-offset between a monolayer and exciton Bohr radius of MoX2 and (ii) ground and excited state electron density have been studied. We have identified realistic monolayer models of MoX2 using quantum chemical calculations which explain a correlation between size-offset and charge storage properties. We conclude that as the size-offset decreases, the higher possibility of wave functions overlap between the excited state, and ground state electrons; therefore the higher the electron mobility, and conductivity of the MoX2 would be.

  12. Nanoscale semiconductor Pb1-xSnxSe (x = 0.2) thin films synthesized by electrochemical atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lin, Shaoxiong; Zhang, Xin; Shi, Xuezhao; Wei, Jinping; Lu, Daban; Zhang, Yuzhen; Kou, Huanhuan; Wang, Chunming

    2011-04-01

    In this paper the fabrication and characterization of IV-VI semiconductor Pb1-xSnxSe (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn …), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb1-xSnxSe is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.

  13. Superconducting order from disorder in 2H-TaSe 2-xS x

    DOE PAGES

    Li, Lijun; Deng, Xiaoyu; Wang, Zhen; ...

    2017-02-24

    Here, we report on the emergence of robust superconducting order in single crystal alloys of TaSe 2$ -$x S x (0 ≤ × ≤2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature T c(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe 2 and/ormore » 2H-TaS 2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.« less

  14. The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0.7Ga0.3(Se1-xTex)2 (0 ≤ x ≤ 1) amorphous semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Karatay, Ahmet; Küçüköz, Betül; Çankaya, Güven; Ates, Aytunc; Elmali, Ayhan

    2017-11-01

    The characterization of the CuInSe2 (CIS), CuInGaSe (CIGS) and CuGaSe2 (CGS) based semiconductor thin films are very important role for solar cell and various nonlinear optical applications. In this paper, the amorphous CuIn0.7Ga0.3(Se1-xTex)2 semiconductor thin films (0 ≤ x ≤ 1) were prepared with 60 nm thicknesses by using vacuum evaporation technique. The nonlinear absorption properties and ultrafast transient characteristics were investigated by using open aperture Z-scan and ultrafast pump-probe techniques. The energy bandgap values were calculated by using linear absorption spectra. The bandgap values are found to be varying from 0.67 eV to 1.25 eV for CuIn0.7Ga0.3Te2, CuIn0.7Ga0.3Se1.6Te0.4, CuIn0.7Ga0.3Se0.4Te1.6 and CuIn0.7Ga0.3Se2 thin films. The energy bandgap values decrease with increasing telluride (Te) doping ratio in mixed CuIn0.7Ga0.3(Se1-xTex)2 films. This affects nonlinear characteristics and ultrafast dynamics of amorphous thin films. Ultrafast pump-probe experiments indicated that decreasing of bandgap values with increasing the Te amount switches from the excited state absorption signals to ultrafast bleaching signals. Open aperture Z-scan experiments show that nonlinear absorption properties enhance with decreasing bandgaps values for 65 ps pulse duration at 1064 nm. Highest nonlinear absorption coefficient was found for CuIn0.7Ga0.3Te2 thin film due to having the smallest energy bandgap.

  15. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  16. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys

    NASA Astrophysics Data System (ADS)

    Vinod, E. M.; Ramesh, K.; Sangunni, K. S.

    2015-01-01

    Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.

  17. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe 1+yTe 1-xSe x [How does annealing in chalcogen vapor induce superconductivity in Fe 1+yTe -xSe x?

    DOE PAGES

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; ...

    2015-02-27

    Recent investigations have shown that Fe 1+yTe 1-xSe x can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe 1+yTe 1-xSe x treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTe mmore » (m ≥ 1) complexes. We show that the remaining FeTe m complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.« less

  18. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P.

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structuremore » with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.« less

  19. Synthesis and piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3-xSr2ZrTiO6 ceramics

    NASA Astrophysics Data System (ADS)

    Onishi, Ryo; Ogawa, Hirotaka; Iida, Daiki; Kan, Akinori

    2017-10-01

    The effects of Sr2ZrTiO6 (SZT) addition on the piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT)-xSZT ceramics were characterized in this study. The X-ray powder diffraction (XRPD) profiles and Raman spectra of the ceramics in the composition range of 0-0.02 implies the presence of morphotropic phase boundary (MPB) which consists of the rhombohedral and tetragonal phases. Moreover, the temperature dependence of dielectric loss indicated a presence of the ferroelectric-relaxor transition temperature (T F-R) of around 75 °C for x = 0.005 and the temperature dependence shifted to a lower temperature at x = 0.01. The temperature dependence of the P-E hysteresis loop of the ceramics at the compositions of x = 0.005-0.02 showed pinched hysteresis loops above T F-R. Regarding the piezoelectric constant (d 33), it was increased by SZT addition in the MPB region (x = 0-0.01) and the highest d 33 of 202 pC/N was obtained at the composition of x = 0.0025. The S-E unipolar loop was also evaluated, the strain of the ceramic increased up to x = 0.02; and the highest d33* = 436 pm/V was obtained at the composition of x = 0.02.

  20. Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films

    NASA Astrophysics Data System (ADS)

    Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.

    2018-01-01

    Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.

  1. Electronic structure and optical properties of LiGa0.5In0.5Se2 single crystal, a nonlinear optical mid-IR material

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, Tuan V.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.

    2018-06-01

    Measurements of X-ray photoelectron core-level and valence-band spectra for pristine and irradiated with Ar+ ions surfaces of LiGa0.5In0.5Se2 single crystal, novel nonlinear optical mid-IR selenide grown by a modified vertical Bridgman-Stockbarger technique, are reported. Electronic structure of LiGa0.5In0.5Se2 is elucidated from theoretical and experimental points of view. Notably, total and partial densities of states (DOSs) of the LiGa0.5In0.5Se2 compound are calculated based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method. In accordance with the DFT calculations, the principal contributors to the valence band are the Se 4p states, making the main input at the top and in the upper part of the band, while its bottom is dominated by contributions of the valence s states associated with Ga and In atoms. The theoretical total DOS curve peculiarities are found to be in excellent agreement with the shape of the X-ray photoelectron valence-band spectrum of the LiGa0.5In0.5Se2 single crystal. The bottom of the conduction band of LiGa0.5In0.5Se2 is formed mainly by contributions of the unoccupied Ga 4s and In 5s states in almost equal proportion, with somewhat smaller contributions of the unoccupied Se 4p states as well. Our calculations indicate that the LiGa0.5In0.5Se2 compound is a direct gap semiconductor. The principal optical constants of LiGa0.5In0.5Se2 are calculated in the present work.

  2. High Compositional Homogeneity of CdTe xSe 1-x Crystals Grown by the Bridgman Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-03

    We obtained high-quality CdTe xSe 1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing highermore » efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd xZn 1-xTe (CdZnTe or CZT).« less

  3. Low temperature absorption edge and photoluminescence study in TlIn(Se1-xSx)2 layered mixed crystals

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.

    2018-02-01

    Transmission on TlIn(Se1-xSx)2 mixed crystals (0.25 ≤ x ≤ 1) were carried out in the 400-800 nm wavelength range at T = 10 K. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance. The compositional dependence of direct band gap energy at T = 10 K revealed that as sulfur composition is increased in the mixed crystals, the direct band gap energy rises from 2.26 eV (x = 0.25) to 2.56 eV (x = 1). Photoluminescence spectra of TlIn(Se1-xSx)2 mixed crystals were studied in the wavelength region of 400-620 nm at T = 10 K. The observed bands were attributed to the transitions of electrons from shallow donor levels to the valence band. The shift of the PL bands to higher energies with elevating sulfur content was revealed. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements.

  4. Crystal growth and properties of Ag 7_ xTaSe 6_ xI x (0 x 1)

    NASA Astrophysics Data System (ADS)

    Wada, H.; Sato, A.

    1993-03-01

    National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, Japan A series of argyrodite compounds with the formula Ag7 xTaSe6 xIx (0 x 1) have been prepared for the first time by a sealed silica tube method. Single crystals have been obtained by heating at 800°C for 2 weeks. Their morphology and crystal structure have been studied by reflected-light microscopy, SEM, EDAX and X-ray diffraction. The silver ionic conductivities of the samples have been also measured.

  5. Effect of process conditions and chemical composition on the microstructure and properties of chemically vapor deposited SiC, Si, ZnSe, ZnS and ZnS(x)Se(1-x)

    NASA Technical Reports Server (NTRS)

    Pickering, Michael A.; Taylor, Raymond L.; Goela, Jitendra S.; Desai, Hemant D.

    1992-01-01

    Subatmospheric pressure CVD processes have been developed to produce theoretically dense, highly pure, void-free and large area bulk materials, SiC, Si, ZnSe, ZnS and ZnS(x)Se(1-x). These materials are used for optical elements, such as mirrors, lenses and windows, over a wide spectral range from the VUV to the IR. We discuss the effect of CVD process conditions on the microstructure and properties of these materials, with emphasis on optical performance. In addition, we discuss the effect of chemical composition on the properties of the composite material ZnS(x)Se(1-x). We first present a general overview of the bulk CVD process and the relationship between process conditions, such as temperature, pressure, reactant gas concentration and growth rate, and the microstructure, morphology and properties of CVD-grown materials. Then we discuss specific results for CVD-grown SiC, Si, ZnSe, ZnS and ZnS(x)Se(1-x).

  6. Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn 1–xCa xSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Bethany E.; Holder, Aaron M.; Schelhas, Laura T.

    We grow and kinetically stabilize the isotropic rocksalt phase of SnSe thin films by alloying SnSe with CaSe. Thin polycrystalline films of the metastable heterostructural alloy Sn 1–xCa xSe are synthesized by pulsed laser deposition on amorphous SiO 2 over the entire composition range 0 < x < 1. We observe the theoretically-predicted, composition-driven change from a layered, orthorhombic structure to an isotropic, cubic structure near x = 0.18, in reasonable agreement with the theoretical value of x = 0.13 calculated from first principles. The optical band gap is highly non-linear in x and the trend agrees with theory predictions.more » Compared to the layered end-member SnSe, the isotropic alloy near the orthorhombic-to-rocksalt transition has a p-type electrical resistivity three orders of magnitude lower, and a thermoelectric power factor at least ten times larger. Furthermore manipulation of the structure of a functional material like SnSe via alloying may provide a new path to enhanced functionality, in this case, improved thermoelectric performance.« less

  7. Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn 1–xCa xSe

    DOE PAGES

    Matthews, Bethany E.; Holder, Aaron M.; Schelhas, Laura T.; ...

    2017-07-21

    We grow and kinetically stabilize the isotropic rocksalt phase of SnSe thin films by alloying SnSe with CaSe. Thin polycrystalline films of the metastable heterostructural alloy Sn 1–xCa xSe are synthesized by pulsed laser deposition on amorphous SiO 2 over the entire composition range 0 < x < 1. We observe the theoretically-predicted, composition-driven change from a layered, orthorhombic structure to an isotropic, cubic structure near x = 0.18, in reasonable agreement with the theoretical value of x = 0.13 calculated from first principles. The optical band gap is highly non-linear in x and the trend agrees with theory predictions.more » Compared to the layered end-member SnSe, the isotropic alloy near the orthorhombic-to-rocksalt transition has a p-type electrical resistivity three orders of magnitude lower, and a thermoelectric power factor at least ten times larger. Furthermore manipulation of the structure of a functional material like SnSe via alloying may provide a new path to enhanced functionality, in this case, improved thermoelectric performance.« less

  8. Trivalent uranium phenylchalcogenide complexes: exploring the bonding and reactivity with CS2 in the Tp*2UEPh series (E = O, S, Se, Te).

    PubMed

    Matson, Ellen M; Breshears, Andrew T; Kiernicki, John J; Newell, Brian S; Fanwick, Phillip E; Shores, Matthew P; Walensky, Justin R; Bart, Suzanne C

    2014-12-15

    The trivalent uranium phenylchalcogenide series, Tp*2UEPh (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate, E = O (1), S (2), Se (3), Te (4)), has been synthesized to investigate the nature of the U-E bond. All compounds have been characterized by (1)H NMR, infrared and electronic absorption spectroscopies, and in the case of 4, X-ray crystallography. Compound 4 was also studied by SQUID magnetometry. Computational studies establish Mulliken spin densities for the uranium centers ranging from 3.005 to 3.027 (B3LYP), consistent for uranium-chalcogenide bonds that are primarily ionic in nature, with a small covalent contribution. The reactivity of 2-4 toward carbon disulfide was also investigated and showed reversible CS2 insertion into the U(III)-E bond, forming Tp*2U(κ(2)-S2CEPh) (E = S (5), Se (6), Te (7)). Compound 5 was characterized crystallographically.

  9. Electronic states of domain structure in 1T-TaS2-x Se x observed by STM/STS

    NASA Astrophysics Data System (ADS)

    Fujii, D.; Iwasaki, T.; Akiyama, K.; Fujisawa, Y.; Demura, S.; Sakata, H.

    2018-03-01

    We report on a systematic scanning tunneling microscopy and spectroscopy (STM/STS) study on 1T–TaS2-x Se x (x = 0, 0.3, 1.0) at 4.2 K. While the compounds with x = 0 and 0.3, which undergoes the Mott transition, showed the commensurate charge density wave (CDW) with the period of \\sqrt{13}{a}0× \\sqrt{13}{a}0 (a 0 is in-plane lattice constant), the compound with x=1, which shows superconductivity at 3.5 K, exhibits anomalous domain structure: The domain structure consists of regions with regular array of David-stars divided by bright contrasted walls at positive bias voltage. We found the domain wall showed the different electronic state from that of the domain.

  10. Thermally activated flux flow in FeSe0.5Te0.5 superconducting single crystal

    NASA Astrophysics Data System (ADS)

    Hamad, R. M.; Kayed, T. S.; Kunwar, S.; Ziq, Kh A.

    2017-07-01

    The current-voltage (J-E) isotherms of single crystal FeSe0.5Te0.5 sample have been measured at several temperatures near the transition temperature (Tc) and under applied magnetic fields (H). A power law (E ˜ Jβ ) has been used to fit the data and evaluate the activation energy Uo (T) using β = Uo/kBT. At low current density (J << Jc), the initial behaviour is associated with thermally activated flux Flow (TAFF) while at J >> Jc vortex flux flow (FF) behavior is expected. The effects of applied magnetic field on FF and TAFF also been investigated. We found that Uo(FF) was reduced with by about an order of magnitude in magnetic fields as low as ˜1.5 Tesla-the reduction in Uo(TAFF) is even faster than in Uo(FF)-hence reflecting the low pinning nature (defects, vacancies etc.) of FeSe0.5Te0.5 superconductor.

  11. Investigations on Structural, Optical and X-Radiation Responsive Properties of a-Se Thin Films Fabricated by Thermal Evaporation Method at Low Vacuum Degree.

    PubMed

    Li, Jitao; Zhu, Xinghua; Yang, Dingyu; Gu, Peng; Wu, Haihua

    2018-03-02

    Amorphous selenium (a-Se) thin films with a thickness of 1200 nm were successfully fabricated by thermal evaporation at a low vacuum degree of 10 -2 Pa. The structural properties involving phase and morphology showed that a-Se thin films could be resistant to 60 °C in air. Also, a transformation to polycrystalline Selenium (p-Se) was shown as the annealing temperature rose to 62 °C and 65 °C, with obvious changes in color and surface morphology. Moreover, as the a-Se transformed to p-Se, the samples' transmittance decreased significantly, and the band gap declined dramatically from 2.15 eV to 1.92 eV. Finally, the X-radiation response of a-Se was investigated as an important property, revealing there is a remarkable response speed of photogeneration current both X-ray on and X-ray off, with a requirement of only a very small electrical field.

  12. Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2}: A new bismuth oxo-selenite bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdonosov, Peter S., E-mail: berdonosov@inorg.chem.msu.ru; Olenev, Andrei V.; Kirsanova, Maria A.

    2012-12-15

    A new bismuth oxo-selenite bromide Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2} was synthesized and structurally characterized. The crystal structure belongs to the triclinic system (space group P1-bar , Z=2, a=7.1253(7) A, b=10.972(1) A, c=12.117(1) A, {alpha}=67.765(7) Degree-Sign , {beta}=82.188(8) Degree-Sign , {gamma}=78.445(7) Degree-Sign ) and is unrelated to those of other known oxo-selenite halides. It can be considered as an open framework composed of BiO{sub x} or BiO{sub y}Br{sub z} polyhedrons forming channels running along [1 0 0] direction which contain the selenium atoms in pyramidal shape oxygen coordination (SeO{sub 3}E). The spectroscopic properties and thermal stability were studied. Themore » new compound is stable up to 400 Degree-Sign C. - graphical abstract: New bismuth oxo-selenite bromide with new open framework structure. Highlights: Black-Right-Pointing-Pointer New bismuth oxo-selenite bromide was found and structurally characterized. Black-Right-Pointing-Pointer Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2} exhibit a new open framework structure type. Black-Right-Pointing-Pointer BiO{sub x} or BiO{sub y}Br{sub z} polyhedrons form channels in the structure which are decorated by [SeO{sub 3}E] groups.« less

  13. The new misfit compound (BiSe){sub 1.15}(TiSe{sub 2}){sub 2} and the role of dimensionality in the Cu{sub x}(BiSe){sub 1+δ}(TiSe{sub 2}){sub n} series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trump, Benjamin A., E-mail: btrump1@jhu.edu; Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218; Livi, Kenneth J.T.

    The synthesis and physical properties of the new misfit compound (BiSe){sub 1.15}(TiSe{sub 2}){sub 2} are reported. Transmission electron microscopy and powder X-ray diffraction show that the structure consists of alternating rock-salt type BiSe layers and hexagonal (TiSe{sub 2}){sub 2} double layers. Resistivity, specific heat, and magnetization measurements show that it has metallic and diamagnetic behaviors. These results are interpreted and discussed in the context of the transition between single-layer (BiSe){sub 1.13}(TiSe{sub 2}), which shows no charge density wave, and infinite-layered (bulk) 1T-TiSe{sub 2}, which undergoes a charge density wave transition at T=202 K. Intercalation with copper, Cu{sub x}(BiSe){sub 1.15}(TiSe{sub 2}){submore » 2}, (0≤x≤0.10) is also reported, but unlike Cu{sub x}TiSe{sub 2}, no superconductivity is observed down to T=0.05 K. Thus, the series Cu{sub x}(BiSe){sub 1+δ}(TiSe{sub 2}){sub n} provides an effective approach to elucidate the impact of dimensionality on charge density wave formation and superconductivity. - Graphical abstract: The newly discovered misfit compound (BiSe){sub 1.15}(TiSe{sub 2}){sub 2} shown in the series (BiSe){sub 1+δ}(TiSe{sub 2}){sub n}. Display Omitted - Highlights: • Reports the structure and properties of the new misfit compound (BiSe){sub 1.15}(TiSe{sub 2}){sub 2}. • The structure consists of a rock salt type BiSe layer and a double (TiSe{sub 2}){sub 2} layer. • The n=1, 2 misfits (BiSe){sub 1+δ}(TiSe{sub 2}){sub n} are found not to exhibit CDW transitions. • Evidence is presented that there is likely a low-lying CDW excited state. • The series Cu{sub x}(BiSe){sub 1+δ}(TiSe{sub 2}){sub 2} does not superconduct, unlike Cu{sub x}TiSe{sub 2}.« less

  14. Electronic and Optical Properties of Core/Shell Pb16X16/Cd52X52 (X =S, Se, Te) Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tamukong, Patrick; Mayo, Michael; Kilina, Svetlana

    2015-03-01

    The electronic and optoelectronic properties of semiconductor quantum dots (QDs) are mediated by surface defects due to the presence of dangling bonds producing trap states within the HOMO-LUMO energy gap, and contributing to fluorescence quenching. Surface capping ligands are generally used to alleviate this problem and increase the quantum yields of QDs. An alternative way is to synthesize core-shell QD structures; i.e., a QD core with a shell of another semiconductor material. We have investigated the effects of Cd52X52 shells on the photoexcited dynamics of Pb16X16 (X =S, Se, Te) QDs. The thin (~ 0.50 nm) shells were found to result largely in type I core/shell structures and a blue shift of the absorption spectra. Our studies revealed fairly strong core-shell hybridization in the electronic states close to the conduction band (CB) edge for Pb16S16andPb16Se16 cores, whereas for the Pb16Te16 core, such CB states were largely shell-like in nature. Nonadiabatic DFT-based dynamics, coupled with the surface hopping method, was used to study the effects of the core and shell compositions on energy relaxation rates in these systems.

  15. Surfactant-assisted synthesis of polythiophene/Ni0.5Zn0.5Fe2-xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications.

    PubMed

    Dar, M Abdullah; Majid, Kowsar; Hanief Najar, Mohd; Kotnala, R K; Shah, Jyoti; Dhawan, S K; Farukh, M

    2017-04-19

    This work reports the exploitation of nanocrystalline Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite for potential application by designing quasi-spherical shaped polythiophene (PTH) composites via in situ emulsion polymerization. The structural, electronic, dielectric, magnetic, and electromagnetic interference (EMI) shielding properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites were investigated. Our results suggest that these properties could be optimized by modulating the concentration of x (composition) in the polymer matrix. Higher values of ε' and ε'' were obtained on composite formation, and could be due to the heterogeneity developed in the material. An enhancement in the value of saturation magnetization (123 emu g -1 for x = 0.04) and Curie temperature was obtained with Ce concentration, which is useful for high density recording purposes. A low value of saturation magnetization was obtained for the PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composite (36 emu g -1 for x = 0.04). This could be attributed to the non-magnetic nature of the polymer. A total shielding effectiveness (SE T = SE A + SE R ) up to 34 dB (≈99.9% attenuation) was recorded for PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites (x = 0.04) in a frequency range of 8.2-12.4 GHz (X-band), which surpasses the shielding criteria of SE T > 30 dB for commercial purposes. Such a material with high SE identifies its potential for making electromagnetic shields. The effect of Ce substitution on the microstructure, dielectric, impedance and magnetic properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite composites was also investigated. X-ray diffraction analysis confirmed cubic spinel phase formation, and the broad reflection peaks indicated the formation of smaller sized particles. The smaller energy band gap (2.53 eV) of the composite indicated that this material could be used for photocatalysis in the visible region. Dielectric and impedance measurements were carried out in a frequency range of 8

  16. Structural and relaxor-like dielectric properties of unfilled tungsten bronzes Ba{sub 55x}Sm{sub 5x}Ti{sub 5x}Nb{sub 10−5x}O{sub 30}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, T., E-mail: weitong.nju@gmail.com, E-mail: weitong-nju@163.com; Dong, Z.; Zhou, Q. J.

    2016-03-28

    New unfilled tetragonal tungsten bronze (TTB) oxides, Ba{sub 55x}Sm{sub 5x}Ti{sub 5x}Nb{sub 10−5x}O{sub 30} (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A{sub 2}-site compared with that of A{sub 1}-sitemore » will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (T{sub m}) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of T{sub m} in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.« less

  17. Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O (M = Mn, Fe, Co and Ni): Stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x (M = Mn, Co and Ni) through selenate incorporation

    NASA Astrophysics Data System (ADS)

    Driscoll, L. L.; Kendrick, E.; Knight, K. S.; Wright, A. J.; Slater, P. R.

    2018-02-01

    In this paper we report an investigation into the phases formed on dehydration of Na2M(SO4)2-x(SeO4)x·2H2O (0 ≤ x ≤ 1; M = Mn, Fe, Co and Ni). For the Fe series, all attempts to dehydrate the samples doped with selenate resulted in amorphous products, and it is suspected that a side redox reaction involving the Fe and selenate may be occurring leading to phase decomposition and hence the lack of a crystalline product on dehydration. For M = Mn, Co, Ni, the structure observed was shown to depend upon the transition metal cation and level of selenate doping. An alluaudite phase, Na3M1.5(SO4)3-1.5x(SeO4)1.5x, was observed for the selenate doped compositions, with this phase forming as a single phase for x ≥ 0.5 M = Co, and x = 1.0 M = Ni. For M = Mn, the alluaudite structure is obtained across the series, albeit with small impurities for lower selenate content samples. Although the alluaudite-type phases Na2+2y(Mn/Co)2-y(SO4)3 have recently been reported [1,2], doping with selenate appears to increase the maximum sodium content within the structure. Moreover, the selenate doped Ni based samples reported here are the first examples of a Ni sulfate/selenate containing system exhibiting the alluaudite structure.

  18. Rapid direct conversion of Cu(2-x)Se to CuAgSe nanoplatelets via ion exchange reactions at room temperature.

    PubMed

    Moroz, N A; Olvera, A; Willis, G M; Poudeu, P F P

    2015-06-07

    The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K(-1)) to p-type (S = +200 μV K(-1)) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.

  19. Spin orbit and tetragonal crystalline field interaction in the valence band of CuInSe2-related ordered vacancy compound CuIn7Se12

    NASA Astrophysics Data System (ADS)

    Reena Philip, Rachel; Pradeep, B.; Shripathi, T.

    2005-04-01

    Thin films of the off-tie-line ordered vacancy compound CuIn7Se12 were deposited on optically flat glass substrates by multi-source co-evaporation method. The preliminary structural, compositional and morphological characterizations were done using X-ray diffraction, energy dispersive X-ray analysis and atomic force microscopy. The X-ray diffraction data were further analysed applying the Nelson-Riley method and CTB plus = experiment rule, respectively, for lattice constants (a = 5.746 Å and c = 11.78 Å) and bond length estimations (RCu-Se = 2.465 Å and RIn-Se = 2.554 Å). A detailed analysis of the optical absorption spectra of the compound, which exhibited a three-fold optical absorption structure in the fundamental gap region, yielded three characteristic direct energy gaps at 1.37, 1.48(7) and 1.72(8) eV indicative of valence band splitting, which were evaluated using Hopfield's quasi-cubic model. The 0.04 eV increase in spin-orbit splitting parameter of the compound (0.27 eV) compared to that of CuInSe2 (0.23 eV) is found to be suggestive of the smaller contribution of Cu d orbitals to hybridization (determined by the linear hybridization model) in this Cu-deficient compound. Spectral response spectra exhibit, in addition to a maximum around 1.34 ± 0.03 eV, two other defect transition peaks near 1.07 and 0.85 eV. The binding energies of Cu, In and Se in the compound were determined using X-ray photoelectron spectroscopy.

  20. Composition and annealing effects on superconductivity in sintered and arc-melted Fe1+εTe0.5Se0.5

    NASA Astrophysics Data System (ADS)

    Foreman, M. M.; Ponti, G.; Mozaffari, S.; Markert, J. T.

    2018-03-01

    We present the results of x-ray diffraction, electrical resistivity, and ac magnetic susceptibility measurements on specimens of the “11”-structure superconductor Fe1+εTe0.50Se0.50 (0 ≤ ε ≤ 0.15). Samples were initially either sintered in sealed quartz tubes or melted in a zirconium-gettered arc furnace. Sintered samples were fired two to three times at temperatures of 425°C, 600°C, or 675°C, while arc-melted samples were studied both asmelted and after annealing at 650°C. X-ray diffraction data show a predominant PbO-type tetragonal phase, with a secondary hexagonal NiAs-type phase; for sintered specimens annealed at 600°C, the secondary phase decreases as ε increases over the range 0 ≤ ε ≤ 0.10, with the composition Fe1.10Te0.5Se0.5 exhibiting x-ray phase purity. A higher annealing temperature of 675°C provided such tetragonal phase purity at the composition Fe1.05Te0.5Se0.5. The resistive superconducting transition temperature Tc was nearly independent of the iron concentration 1+ε, suggesting a single superconducting phase, while the magnetic screening fraction varied greatly with concentration and conditions, peaking at ɛ = 0.07, indicating that the amount of superconducting phase is strongly dependent on conditions. We propose that the behaviour can also be viewed in terms of an electron-doped, chalcogen-deficient stoichiometry.

  1. Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Nilanthy; Steer, Elisabeth D.; Smith, Emily F.; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Eaves, Laurence; Patanè, Amalia; Beton, Peter H.

    2018-07-01

    We demonstrate that γ-InSe and the α, β and γ phases of In2Se3 can be grown epitaxially on ε-GaSe substrates using a physical vapour transport method. By exploiting the temperature gradient within the tube furnace, we can grow selectively different phases of InxSey depending on the position of the substrate within the furnace. The uniform cleaved surface of ε-GaSe enables the epitaxial growth of the InxSey layers, which are aligned over large areas. The InxSey epilayers are characterised using Raman, photoluminescence, x-ray photoelectron and electron dispersive x-ray spectroscopies. Each InxSey phase and stoichiometry exhibits distinct optical and vibrational properties, providing a tuneable photoluminescence emission range from 1.3 eV to ~2 eV suitable for exploitation in electronics and optoelectronics.

  2. Occupational Survey Report AFSC 3E6X1; Operations Management

    DTIC Science & Technology

    2004-02-01

    Lt Bryan Pickett Feb 04 Occupational Survey Report AFSC 3E6X1 Operations Management I n t e g r i t y - S e r v i c e - E x c e l l e n c e...Report AFSC 3E6X1 Operations Management 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...Nellis AFB NV (5) • Fairchild AFB WA (5) • Hurlburt Field FL (6) • Eglin AFB FL (4) • Ramstein AB (5) Operations Management 3E6X1 February 2004 (Approved

  3. Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1-x) Se2x with a tunable band gap.

    PubMed

    Fu, Qi; Yang, Lei; Wang, Wenhui; Han, Ali; Huang, Jian; Du, Pingwu; Fan, Zhiyong; Zhang, Jingyu; Xiang, Bin

    2015-08-26

    The first realization of a tunable band-gap in monolayer WS2(1-x) Se2x is demonstrated. The tuning of the bandgap exhibits a strong dependence of S and Se content, as proven by PL spectroscopy. Because of its remarkable electronic structure, monolayer WS2(1-x) Se2x exhibits novel electrochemical catalytic activity and offers long-term electrocatalytic stability for the hydrogen evolution reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Composition Dependence of the Hydrostatic Pressure Coefficients of the Bandgap of ZnSe(1-x)Te(x) Alloys

    NASA Technical Reports Server (NTRS)

    Wu, J.; Yu, K. M.; Walukiewicz, W.; Shan, W.; Ager, J. W., III; Haller, E. E.; Miotkowski, I.; Ramdas, A. K.; Su, Ching-Hua

    2003-01-01

    Optical absorption experiments have been performed using diamond anvil cells to measure the hydrostatic pressure dependence of the fundamental bandgap of ZnSe(sub 1-xTe(sub x) alloys over the entire composition range. The first and second-order pressure coefficients are obtained as a function of composition. Starting from the ZnSe side, the magnitude of both coefficients increases slowly until x approx. 0.7, where the ambient-pressure bandgap reaches a minimum. For larger values of x the coefficients rapidly approach the values of ZnTe. The large deviations of the pressure coefficients from the linear interpolation between ZnSe and ZnTe are explained in terms of the band anticrossing model.

  5. Synthesis of colloidal Zn(Te,Se) alloy quantum dots

    NASA Astrophysics Data System (ADS)

    Asano, H.; Arai, K.; Kita, M.; Omata, T.

    2017-10-01

    Colloidal Zn(Te1-x Se x ) quantum dots (QDs), which are highly mismatched semiconductor alloys, were synthesized by the hot injection of an organometallic solution, and the composition and size dependence of their optical gap were studied together with the theoretical calculation using the finite-depth-well effective mass approximation. The optical gaps exhibited considerable negative deviation from the mole fraction weighted mean optical gaps of ZnTe and ZnSe, i.e. a large optical gap bowing was observed, similar to the bulk and thin-film alloys. The composition and size dependence of optical gaps agreed well with theoretically calculated ones employing a bowing parameter similar to that of the bulk alloys; therefore, the extent of the optical gap bowing in these alloy QDs is concluded to be the same as that in bulk and thin-film alloys. The optical gaps of Zn(Te1-x Se x ) QDs with diameters of 3.5-5 nm, where x ~ 0.35, were close to the energy corresponding to green light, indicating that those QDs are very promising as green QD-phosphors.

  6. Band lineup of lattice mismatched InSe/GaSe quantum well structures prepared by van der Waals epitaxy: Absence of interfacial dipoles

    NASA Astrophysics Data System (ADS)

    Lang, O.; Klein, A.; Pettenkofer, C.; Jaegermann, W.; Chevy, A.

    1996-10-01

    Epitaxial growth of the strongly lattice mismatched (6.5%) layered chalcogenides InSe and GaSe on each other is obtained with the concept of van der Waals epitaxy as proven by low-energy electron diffraction and scanning tunnel microscope. InSe/GaSe/InSe and GaSe/InSe/GaSe quantum well structures were prepared by molecular beam epitaxy and their interface properties were characterized by soft x-ray photoelectron spectroscopy. Valence and conduction band offsets are determined to be 0.1 and 0.9 eV, respectively, and do not depend on deposition sequence (commutativity). As determined from the measured work functions the interface dipole is 0.05 eV; the band lineup between the two materials is correctly predicted by the Anderson model (electron affinity rule).

  7. Bulk Superconductivity Induced by In-Plane Chemical Pressure Effect in Eu0.5La0.5FBiS2-xSex

    NASA Astrophysics Data System (ADS)

    Jinno, Gen; Jha, Rajveer; Yamada, Akira; Higashinaka, Ryuji; Matsuda, Tatsuma D.; Aoki, Yuji; Nagao, Masanori; Miura, Osuke; Mizuguchi, Yoshikazu

    2016-12-01

    We have investigated the Se substitution effect on the superconductivity of optimally doped BiS2-based superconductor Eu0.5La0.5FBiS2. Eu0.5La0.5FBiS2-xSex samples with x = 0-1 were synthesized. With increasing x, in-plane chemical pressure is enhanced. For x ≥ 0.6, superconducting transitions with a large shielding volume fraction are observed in magnetic susceptibility measurements, and the highest Tc is 3.8 K for x = 0.8. From low-temperature electrical resistivity measurements, a zero-resistivity state is observed for all the samples, and the highest Tc is observed for x = 0.8. With increasing Se concentration, the characteristic electrical resistivity changes from semiconducting-like to metallic, suggesting that the emergence of bulk superconductivity is linked with the enhanced metallicity. A superconductivity phase diagram of the Eu0.5La0.5FBiS2-xSex superconductor is established.

  8. Influence of interstitial V on structure and properties of ferecrystalline ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2})n for n=1, 2, 3, 4, 5, and 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falmbigl, M.; Putzky, D.; Ditto, J.

    2015-11-15

    A series of ferecrystalline compounds ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub n} with n=1–6 and a thin film V{sub 1+x}Se{sub 2} were synthesized utilizing the modulated elemental reactant technique. The effect of interstitial V-atoms ranging from 0.13≤x≤0.42 in different compounds on structure and electrical properties of these intergrowth compounds is reported. The presence of the interstitial V-atoms for n>1 was confirmed by Rietveld refinements as well as HAADF-STEM cross sections. The off-stoichiometry in the thin film V{sub 1.13}Se{sub 2} causes a suppression of the charge density wave, similar to the effect of non-stoichiometry observed for the bulk compound. The charge densitymore » wave of ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub 1,} however, is not affected by the non-stoichiometry due to its incorporation as volume inclusions or due to the quasi 2-dimensionality of the isolated VSe{sub 2} layer. In the compounds ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub n} with n=2–6, the temperature dependence of the electrical resistivity approaches bulk-like behavior. - Highlights: • Ferecrystalline thin film compounds with interstitial V-atoms were synthesized. • Interstitial atoms cause an expansion of the superlattice. • The charge density wave transition in the V{sub 1.13}VSe{sub 2} film is strongly suppressed. • Interstitial V has a minor influence on the CDW transition of the ferecrystals.« less

  9. Giant spin Hall angle from topological insulator BixSe(1 - x) thin films

    NASA Astrophysics Data System (ADS)

    Dc, Mahendra; Jamali, Mahdi; Chen, Junyang; Hickey, Danielle; Zhang, Delin; Zhao, Zhengyang; Li, Hongshi; Quarterman, Patrick; Lv, Yang; Mkhyon, Andre; Wang, Jian-Ping

    Investigation on the spin-orbit torque (SOT) from large spin-orbit coupling materials has been attracting interest because of its low power switching of the magnetization and ultra-fast driving of the domain wall motion that can be used in future spin based memory and logic devices. We investigated SOT from topological insulator BixSe(1 - x) thin film in BixSe(1 - x) /CoFeB heterostructure by using the dc planar Hall method, where BixSe(1 - x) thin films were prepared by a unique industry-compatible deposition process. The angle dependent Hall resistance was measured in the presence of a rotating external in-plane magnetic field at bipolar currents. The spin Hall angle (SHA) from this BixSe(1 - x) thin film was found to be as large as 22.41, which is the largest ever reported at room temperature (RT). The giant SHA and large spin Hall conductivity (SHC) make this BixSe(1 - x) thin film a very strong candidate as an SOT generator in SOT based memory and logic devices.

  10. High-pressure electrical resistivity studies for Ba1-xCsxFe2Se3

    NASA Astrophysics Data System (ADS)

    Kawashima, C.; Soeda, H.; Takahashi, H.; Hawai, T.; Nambu, Y.; Sato, T. J.; Hirata, Y.; Ohgushi, K.

    2017-10-01

    High-pressure electrical resistance measurements were performed for iron-based ladder material Ba1-xCsxFe2Se3 (x = 0.25 and 0.65) using a diamond anvil cell (DAC). Recent high-pressure study revealed that iron-based ladder material BaFe2S3 exhibits an insulator-metal transition and superconductivity, and this discovery would provide important insight for understanding the mechanism of iron-based superconductors. Therefore, it is intriguing to investigate the high-pressure properties for the iron-based ladder material Ba1-xCsxFe2Se3 system. The parent compounds BaFe2Se3 and CsFe2Se3 show insulating and magnetic ordering features. For Ba1-xCsxFe2Se3 system, no magnetic ordering is observed for x = 0.25 and minimum charge gap was estimated for x = 0.65. The insulator-metal transitions are observed in both materials.

  11. High-pressure electrical resistivity studies for Ba1-xCsxFe2Se3

    NASA Astrophysics Data System (ADS)

    Kawashima, C.; Soeda, H.; Takahashi, H.; Hawai, T.; Nambu, Y.; Sato, T. J.; Hirata, Y.; Ohgushi, K.

    2017-10-01

    High-pressure electrical resistance measurements were performed for iron-based ladder material Ba1-xCsxFe2Se3 (x = 0.25 and 0.65) using a diamond anvil cell (DAC). Recent high-pressure study revealed that iron-based ladder material BaFe2S3 exhibits an insulator- metal transition and superconductivity, and this discovery would provide important insight for understanding the mechanism of iron-based superconductors. Therefore, it is intriguing to investigate the high-pressure properties for the iron-based ladder material Ba1-xCsxFe2Se3 system. The parent compounds BaFe2Se3 and CsFe2Se3 show insulating and magnetic ordering features. For Ba1-xCsxFe2Se3 system, no magnetic ordering is observed for x = 0.25 and minimum charge gap was estimated for x = 0.65. The insulator-metal transitions are observed in both materials.

  12. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O2 , S, Se, Te, I2 , Br2 ) Batteries.

    PubMed

    Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue

    2017-07-01

    Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structures of (2E,5E)-2-(4-cyanobenzylidene)-5-(4-dimethylaminobenzylidene)cyclopentanone and (2E,5E)-2-benzylidene-5-cinnamylidenecyclopentanone

    NASA Astrophysics Data System (ADS)

    Zoto, Christopher A.; MacDonald, John C.

    2017-10-01

    The X-ray crystal structures of (2E,5E)-2-(4-cyanobenzylidene)-5-(4-dimethylaminobenzylidene)cyclopentanone (I) and (2E,5E)-2-benzylidene-5-cinnamylidenecyclopentanone (II) are presented, compared to the gas phase structures calculated using density functional theory, and discussed in the context of the photophysical behavior exhibited by I and II. Compound I crystallizes in the triclinic space group P 1 bar with a = 6.8743(2) Å, b = 8.8115(2) Å, c = 14.9664(4) Å, α = 77.135(2)°, β = 81.351(2)°, γ = 80.975(2)°, and Z = 2, and exhibits a planar structure. Compound II crystallizes in the monoclinic space group C2/c with a = 33.4281(10) Å, b = 11.9668(4) Å, c = 7.8031(2) Å, β = 92.785(2)°, and Z = 8, and adopts a nonplanar structure in the solid state and calculated structure.

  14. Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells

    NASA Astrophysics Data System (ADS)

    Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.

    2018-01-01

    This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Δχ < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAs2, GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, CuIn5S8, SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.

  15. Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

    PubMed

    Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent

    2016-03-21

    The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

  16. Terahertz injection lasers based on PbSnSe alloy with an emission wavelength up to 46.5 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maremyanin, K. V., E-mail: kirillm@ipmras.ru; Rumyantsev, V. V.; Ikonnikov, A. V.

    2016-12-15

    Diffusion injection lasers based on Pb{sub 1} {sub –} {sub x}Sn{sub x}Se alloy, emitting in a wide spectral range of 10–46.5 μm depending on the composition and temperatures are fabricated. A technology for growing high-quality single crystals from the vapor phase under conditions of free growth is developed. The dependences of the total emission intensity on the pump current and the emission spectra of injection lasers based on Pb{sub 1–x}Sn{sub x}Se are studied. In these samples, lasing of long-wavelength radiation to a record wavelength of 46.5 μm is achieved.

  17. The Influence of Sintering Temperature on the Microstructure and Thermoelectric Properties of n-Type Bi2Te3- x Se x Nanomaterials

    NASA Astrophysics Data System (ADS)

    Du, Y.; Cai, K. F.; Li, H.; An, B. J.

    2011-05-01

    Pure Bi2Te3 and Bi2Se3 nanopowders were hydrothermally synthesized, and n-type Bi2Te3- x Se x bulk samples were prepared by hot pressing a mixture of Bi2Te3 and Bi2Se3 nanopowders at 623 K, 648 K or 673 K and 80 MPa in vacuum. The phase composition of the powders and bulk samples were characterized by x-ray diffraction. The morphology of the powders was examined by transmission electron microscopy. The microstructure and composition of the bulk samples were characterized by field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy, respectively. The density of the samples increased with sintering temperature. The samples were somewhat oxidized, and the amount of oxide (Bi2TeO5) present increased with sintering temperature. The samples consisted of sheet-like grains with a thickness less than 100 nm. Seebeck coefficient, electrical conductivity, and thermal conductivity of the samples were measured from room temperature up to 573 K. Throughout the temperature range investigated, the sample sintered at 623 K had a higher power factor than the samples sintered at 648 K or 673 K.

  18. Synthesis and characterization of (Ni{sub 1−x}Co{sub x})Se{sub 2} based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.

    2016-06-15

    Ternary metal selenides of (Ni{sub 1−x}Co{sub x})Se{sub 2} with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might bemore » due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} as counter electrode in dye-sensitized solar cells.« less

  19. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    NASA Astrophysics Data System (ADS)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  20. Mechanochemical synthesis of high thermoelectric performance bulk Cu 2X (X = S, Se) materials

    DOE PAGES

    Yang, Dongwang; Su, Xianli; Yan, Yonggao; ...

    2016-11-01

    We devised a single-step mechanochemical synthesis/densification procedure for Cu 2X (X = S, Se) thermoelectric materials via applying a pressure of 3 GPa to a stoichiometric admixture of elemental Cu and X for 3 min at room temperature. The obtained bulk materials were single-phase, nearly stoichiometric structures with a relative packing density of 97% or higher. The structures contained high concentration of atomic scale defects and pores of 20-200 nm diameter. The above attributes gave rise to a high thermoelectric performance: at 873 K, the ZT value of Cu2S reached 1.07, about 2.1 times the value typical of samples grownmore » from the melt. The ZT value of Cu 2Se samples reached in excess of 1.2, close to the state-of-the-art value.« less

  1. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe 3–xSe x

    DOE PAGES

    Cui, Shan; He, Lan -Po; Hong, Xiao -Chen; ...

    2016-06-09

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe 3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe 3–x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe 3–x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependencemore » of κ 0/T manifests a multigap behavior. Lastly, these results demonstrate multiple nodeless superconducting gaps in ZrTe 3–x Se x, which indicates conventional superconductivity despite of the existence of a CDW QCP.« less

  2. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schreyeck, S.; Brunner, K.; Kirchner, A.; Bass, U.; Grauer, S.; Schumacher, C.; Gould, C.; Karczewski, G.; Geurts, J.; Molenkamp, L. W.

    2016-04-01

    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x  =  0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only  ≈75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  3. The synthesis, single-crystal structure, optical absorption, and resistivity of Th{sub 2}GeSe{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koscielski, Lukasz A.; Malliakas, Christos D.; Sarjeant, Amy A.

    2013-09-15

    The compound Th{sub 2}GeSe{sub 5} has been synthesized by the reaction of the elements at 1273 K. From a single-crystal study Th{sub 2}GeSe{sub 5} crystallizes in the Ba{sub 5}Si{sub 3} structure type with four formula units in the space group D{sup 8}{sub 4h}−P4/ncc of the tetragonal system in a cell with dimensions a=7.4968(4) Å and c=13.6302(9) Å at 100(2) K. From optical absorption measurements Th{sub 2}GeSe{sub 5} is found to have an optical band gap of 1.92 eV (indirect) or 1.98 eV (direct), consistent with its red color. Th{sub 2}GeSe{sub 5} is a wide gap semiconductor, as indicated by itsmore » electrical resistivity at 298 K of 4.37(2)×10{sup 9} Ω cm measured on a single crystal. - Graphical abstract: The structure of Th{sub 2}GeSe{sub 5}. Display Omitted - Highlights: • The new compound Th{sub 2}GeSe{sub 5} was synthesized from the elements and recrystallized from Sb{sub 2}Se{sub 3}. • Th{sub 2}GeSe{sub 5} crystallizes in the Ba{sub 5}Si{sub 3} structure type. • The band gap of Th{sub 2}GeSe{sub 5} is1.92 eV and its resistivity shows it to be a wide gap semiconductor.« less

  4. Antiphase Boundaries in the Turbostratically Disordered Misfit Compound (BiSe)(1+δ)NbSe2.

    PubMed

    Mitchson, Gavin; Falmbigl, Matthias; Ditto, Jeffrey; Johnson, David C

    2015-11-02

    (BiSe)(1+δ)NbSe2 ferecrystals were synthesized in order to determine whether structural modulation in BiSe layers, characterized by periodic antiphase boundaries and Bi-Bi bonding, occurs. Specular X-ray diffraction revealed the formation of the desired compound with a c-axis lattice parameter of 1.21 nm from precursors with a range of initial compositions and initial periodicities. In-plane X-ray diffraction scans could be indexed as hk0 reflections of the constituents, with a rectangular basal BiSe lattice and a trigonal basal NbSe2 lattice. Electron micrographs showed extensive turbostratic disorder in the samples and the presence of periodic antiphase boundaries (approximately 1.5 nm periodicity) in BiSe layers oriented with the [110] direction parallel to the zone axis of the microscope. This indicates that the structural modulation in the BiSe layers is not due to coherency strain resulting from commensurate in-plane lattices. Electrical transport measurements indicate that holes are the dominant charge carrying species, that there is a weak decrease in resistivity as temperature decreases, and that minimal charge transfer occurs from the BiSe to NbSe2 layers. This is consistent with the lack of charge transfer from the BiX to the TX2 layers reported in misfit layer compounds where antiphase boundaries were observed. This suggests that electronic considerations, i.e., localization of electrons in the Bi-Bi pairs at the antiphase boundaries, play a dominant role in stabilizing the structural modulation.

  5. Sustained phase separation and spin glass in Co-doped K x Fe 2 - y Se 2 single crystals

    DOE PAGES

    Ryu, Hyejin; Wang, Kefeng; Opacic, M.; ...

    2015-11-19

    We describe Co substitution effects in K xFe 2-y-zCo zSe 2 (0.06 ≤ z ≤ 1.73) single crystal alloys. By 3.5% of Co doping superconductivity is suppressed whereas phase separation of semiconducting K 2Fe 4Se 5 and superconducting/metallic K xFe 2Se 2 is still present. We show that the arrangement and distribution of superconducting phase (stripe phase) is connected with the arrangement of K, Fe and Co atoms. Semiconducting spin glass is found in proximity to superconducting state, persisting for large Co concentrations. At high Co concentrations ferromagnetic metallic state emerges above the spin glass. This is coincident withmore » changes of the unit cell, arrangement and connectivity of stripe conducting phase.« less

  6. Relationship between X(5) models and the interacting boson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barea, Jose; Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Fisica, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla; Arias, Jose M.

    2010-08-15

    The connections between the X(5) models [the original X(5) using an infinite square well, X(5)-{beta}{sup 8}, X(5)-{beta}{sup 6}, X(5)-{beta}{sup 4}, and X(5)-{beta}{sup 2}], based on particular solutions of the geometrical Bohr Hamiltonian with harmonic potential in the {gamma} degree of freedom, and the interacting boson model (IBM) are explored. This work is the natural extension of the work presented in Garcia-Ramos and Arias, Phys. Rev. C 77, 054307 (2008) for the E(5) models. For that purpose, a quite general one- and two-body IBM Hamiltonian is used and a numerical fit to the different X(5) model energies is performed; then themore » obtained wave functions are used to calculate B(E2) transition rates. It is shown that within the IBM one can reproduce well the results for energies and B(E2) transition rates obtained with all these X(5) models, although the agreement is not so impressive as for the E(5) models. From the fitted IBM parameters the corresponding energy surface can be extracted and, surprisingly, only the X(5) case corresponds in the moderately large N limit to an energy surface very close to the one expected for a critical point, whereas the rest of models are situated a little further away.« less

  7. On the thermopower and thermomagnetic properties of Er{sub x}Sn{sub 1–x}Se solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huseynov, J. I., E-mail: cih-58@mail.ru; Murguzov, M. I.; Ismayilov, Sh. S.

    2017-02-15

    The Er{sub x}Sn{sub 1–x}Se system is characterized by a significant deviation of the temperature dependence of the differential thermopower from linearity at temperatures below room temperature and a change in the sign of the thermomagnetic coefficient. The deviation of the thermopower of Er{sub x}Sn{sub 1–x}Se samples in the nonequilibrium state from linearity is found to be caused mainly by the entrainment of charge carriers by phonons α{sub ph}. The statistical forces of electronic entrainment, A{sub ph}(ε), are estimated.

  8. Photoluminescent enhancement of CdSe/Cd(1-x) Zn(x)S quantum dots by hexadecylamine at room temperature.

    PubMed

    Yang, Jie; Yang, Ping

    2012-09-01

    CdSe/Cd(1-x) Zn(x)S core/shell quantum dots (QDs) were fabricated in 1-octadecene via a two step synthesis. CdSe cores were first prepared using CdO, trioctylphosphine (TOP) selenium, and stearic acid. Subsquently, a Cd(1-x) Zn(x)S shell coating was carried out using zinc acetate dihydrate, cadmium acetate dihydrate, TOPS, and hexadecylamine (HDA) starting materials in the friendly organic system under relatively low temperature. The absorption and photoluminescence (PL) spectra have a significant red shift after the coverage of Cd(1-x)Zn(x)S shell on CdSe cores. The X-ray diffraction analysis of samples confirmed the formation of core/shell structure. The PL quantum yields (QYs) of CdSe/Cd(1-x)Zn(x)S QDs were improved gradually with time at room temperature. This is ascribed to the surface passivation of HDA to the QDs during store. This phenomenon was confirmed by the Fourier transform infrared spectrum of samples. Namely, HDA does not capped on the surface of as-prepared QDs, in which a low PL QYs was observed (less than 10%). Being storing for certain time, HDA attached to the surface of the QDs, in which the PL QYs increased (up to 31%) and the full width at half maximum of PL spectra decreased. Moreover, the fluorescence decay curve of the core/shell QDs is closer to a biexponential decay profile and has a longer average PL lifetime. The variation of average PL lifetime also indicated the influence of HDA during store.

  9. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations

    NASA Astrophysics Data System (ADS)

    Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre

    2017-07-01

    SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.

  10. Synthesis and X-ray structures of dilithium complexes of the phosphonate anions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se, Te) and dimethylaluminum derivatives of [PhP(E)(N(t)Bu)(NH(t)Bu)](-) (E = S, Se).

    PubMed

    Briand, Glen G; Chivers, Tristram; Krahn, Mark; Parvez, Masood

    2002-12-16

    The dilithium salts of the phosphonate dianions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se) are generated by the lithiation of [PhP(E)(NH(t)Bu)(2)] with n-butyllithium. The formation of the corresponding telluride (E = Te) is achieved by oxidation of [Li(2)[PhP(N(t)Bu)(2)

  11. Intrinsic Topological Insulator Bi1.5Sb0.5Te3-xSex Thin Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Li; Zou, Wenqin; He, Liang; Song, Fengqi; Zhang, Rong; Wu, Xiaoshan; Zhang, Fengming

    2015-01-01

    The quaternary topological insulator (Bi,Sb)2(Te,Se)3 has demonstrated topological surface states with an insulating bulk. Scientists have identified an optimized composition of Bi1.5Sb0.5Te1.7Se1.3 with the highest resistivity reported. But the physics that drive to this composition remains unclear. Here we report the crystal structure and the magneto-transport properties of Bi1.5Sb0.5Te3-xSex (BSTS) series. A correlation between the structure and the physical properties has been revealed. We found out that within the rhombohedral structure, the composition with most Te substituting Se has the highest resistivity. On the other hand, segregation of other composition phases will introduce much higher bulk concentration.

  12. Some physical investigations on ZnS 1- xSe x films obtained by selenization of ZnS sprayed films using the Boubaker polynomials expansion scheme

    NASA Astrophysics Data System (ADS)

    Fridjine, S.; Touihri, S.; Boubaker, K.; Amlouk, M.

    2010-01-01

    ZnS 1- xSe x thin films have been grown by selenization process, applied to ZnS sprayed thin films deposited on Pyrex glass substrates at 550 °C. The crystal structure and surface morphology were investigated by the XRD technique and by the atomic force microscopy. This structural study shows that selenium-free ( x=0) ZnS thin films, prepared at substrate temperature TS=450 °C, were well crystallized in cubic structure and oriented preferentially along (1 1 1) direction. The thermal and mechanical properties were also investigated using a photothermal protocol along with Vickers hardness measurements. On the other hand, the analyze of the transmittance T( λ) and the reflectance R( λ), optical measurements of these films depicts a decrease in the band gap energy value Eg with an increase in Se content ( x). Indeed, Eg values vary from 3.6 to 3.1 eV.

  13. Understanding the evolution of anomalous anharmonicity in Bi 2 Te 3 - x Se x

    DOE PAGES

    Tian, Yao; Jia, Shuang; Cava, R. J.; ...

    2017-03-08

    The anharmonic effect in thermoelectrics has been a central topic for decades in both condensed matter physics and material science. However, despite the long-believed strong and complex anharmonicity in the Bi 2Te 3-xSe x series, experimental verification of anharmonicity and its evolution with doping remains elusive. We fill this important gap with high-resolution, temperature-dependent Raman spectroscopy in high-quality single crystals of Bi 2Te, Bi 2Te 2Se , and Bi 2Se 3 over the temperature range from 4 to 293 K. Klemens's model was employed to explain the renormalization of their phonon linewidths. The phonon energies of Bi 2Se 3 andmore » Bi 2Te 3 are analyzed in detail from three aspects: lattice expansion, cubic anharmonicity, and quartic anharmonicity. For the first time, we explain the evolution of anharmonicity in various phonon modes and across the series. Lastly, in particular, we find that the interplay between cubic and quartic anharmonicity is governed by their distinct dependence on the phonon density of states, providing insights into anomalous anharmonicity designing of new thermoelectrics.« less

  14. Hole mobility enhancement of Cu-deficient Cu{sub 1.75}Zn(Sn{sub 1−x}Al{sub x})Se{sub 4} bulks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw; Tsega, Moges

    2013-10-15

    Cu-deficient Cu{sub 1.75}ZnSn{sub 1−x}Al{sub x}Se{sub 4} (x=0–0.6) bulks were prepared by a liquid-phase reactive sintering method at 600 {sup °}C with soluble sintering aids of Sb{sub 2}S{sub 3} and Te. Defect chemistry was studied by measuring electrical properties of Al-doped CZTSe as a function of dopant concentration. Al-CZTSe pellets at x=0.4 with electrical conductivity of 57.2 S cm{sup −1} showed the highest hole mobility of 32.5 cm{sup 2} V{sup −1} s{sup −1}. The high mobility is mainly contributed from the low atomic scattering factor of Al. The high carrier concentration and slightly changed lattice parameter of Al-CZTSe are related tomore » the types of its defects. - Graphical abstract: The controls in electrical properties and the changes in lattice parameters of Cu-deficient Cu{sub 2}ZnSnSe{sub 4} by doping Al{sup 3+} on the Sn{sup 4+} site. Display Omitted - Highlights: • Cu-deficient Cu{sub 1.75}Zn(Sn{sub 1−x}Al{sub x})Se{sub 4} was prepared by liquid-phase sintering at 600 °C. • Sintering aids of Sb{sub 2}S{sub 3} and Te were used for reactive sintering. • Al-CZTSe at x=0.4 showed the extremely high mobility of 32.5 cm{sup 2} V{sup −1} s{sup −1}. • Al-CZTSe reached large grains of 2−3 μm, while it was <1.0 μm for the undoped. • Electrical properties of Al-CZTSe pellets changed with the Al content.« less

  15. Solid-Solution Anion-Enhanced Electrochemical Performances of Metal Sulfides/Selenides for Sodium-Ion Capacitors: The Case of FeS2- xSe x.

    PubMed

    Long, Yaqiong; Yang, Jing; Gao, Xin; Xu, Xuena; Fan, Weiliu; Yang, Jian; Hou, Shifeng; Qian, Yitai

    2018-04-04

    Transition-metal sulfides/selenides are explored as advanced electrode materials for nonaqueous sodium-ion capacitors, using FeS 2- x Se x as an example. A solid solution of S/Se in FeS 2- x Se x allows it to combine the high capacity of FeS 2 and the good diffusion kinetics of FeSe 2 together, thereby exhibiting excellent cycle stability (∼220 mA h g -1 after 6000 cycles at 2 A g -1 ) and superior rate capability (∼210 mA h g -1 at 40 A g -1 ) within 0.8-3.0 V. These results are much better than those of FeS 2 and FeSe 2 , confirming the advantages of S/Se solid solution, as supported by EIS spectra, DFT calculations, and electronic conductivity. As FeS 2- x Se x is paired with the activated carbon (AC) as Na-ion capacitors, this device is also better than sodium-ion batteries of FeS 2- x Se x //Na 3 V 2 (PO 4 ) 3 and sodium-ion capacitors of metal oxides//AC, particularly at high rates. These results open a new door for the applications of sulfides/selenides in another device of electrochemical energy storage.

  16. Evidence for Cu2-xSe platelets at grain boundaries and within grains in Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Simsek Sanli, E.; Ramasse, Q. M.; Mainz, R.; Weber, A.; Abou-Ras, D.; Sigle, W.; van Aken, P. A.

    2017-07-01

    Cu(In,Ga)Se2 (CIGS)-based solar cells reach high power-conversion efficiencies of above 22%. In this work, a three-stage co-evaporation method was used for their fabrication. During the growth stages, the stoichiometry of the absorbers changes from Cu-poor ([Cu]/([In] + [Ga]) < 1) to Cu-rich ([Cu]/([In] + [Ga]) > 1) and finally becomes Cu-poor again when the growth process is completed. It is known that, according to the Cu-In-Ga-Se phase diagram, a Cu-rich growth leads to the presence of Cu2-xSe (x = 0-0.25), which is assumed to assist in recrystallization, grain growth, and defect annihilation in the CIGS layer. So far, Cu2-xSe precipitates with spatial extensions on the order of 10-100 nm have been detected only in Cu-rich CIGS layers. In the present work, we report Cu2-xSe platelets with widths of only a few atomic planes at grain boundaries and as inclusions within grains in a polycrystalline, Cu-poor CIGS layer, as evidenced by high-resolution scanning transmission electron microscopy (STEM). The chemistry of the Cu-Se secondary phase was analyzed by electron energy-loss spectroscopy, and STEM image simulation confirmed the identification of the detected phase. These results represent additional experimental evidence for the proposed topotactical growth model for Cu-Se-assisted CIGS thin-film formation under Cu-rich conditions.

  17. Preparation of Single-Layer MoS 2xSe 2(1-x) and Mo xW 1-xS 2 Nanosheets with High-Concentration Metallic 1T Phase

    DOE PAGES

    Tan, Chaoliang; Zhao, Wei; Chaturvedi, Apoorva; ...

    2016-02-24

    The high-yield and scalable production of single-layer ternary transition metal dichalcogenide nanosheets with ≈66% of metallic 1T phase, including MoS 2xSe 2(1-x) and Mo xW 1-xS 2 is here achieved via electrochemical Li-intercalation and the exfoliation method. Thin film MoS 2xSe 2(1-x) nanosheets drop-cast on a fluorine-doped tin oxide substrate are used as an efficient electrocatalyst on the counter electrode for the tri-iodide reduction in a dye-sensitized solar cell.

  18. Studies of Nano-structured Se77Sb23- x Ge x Thin Films Prepared by Physical Vapor Condensation Technique

    NASA Astrophysics Data System (ADS)

    Alvi, M. A.

    2017-02-01

    Bulk Se77Sb23- x Ge x material with x = 4 and 12 was prepared by employing a melt quench technique. Its amorphous as well as glassy nature was confirmed by x-ray diffraction analysis and nonisothermal differential scanning calorimetry measurements. The physical vapor condensation technique was applied to prepare nanostructured thin films of Se77Sb23- x Ge x material. The surface morphology of the films was examined using field-emission scanning electron microscopy, revealing average particle size between 20 nm and 50 nm. Systematic investigation of optical absorption data indicated that the optical transition was indirect in nature. The dark conductivity (dc conductivity) of nano-structured Se77Sb23- x Ge x thin films was also investigated at temperatures from 313 K to 463 K, revealing that it tended to increase with increasing temperature. Analyses of our experimental data also indicate that the conduction is due to thermally supported tunneling of charge carriers in confined states close to the band edges. The calculated values of activation energy agree well with the optical bandgap.

  19. Persistent photoconductivity in two-dimensional Mo 1-xW xSe 2–MoSe 2 van der Waals heterojunctions

    DOE PAGES

    Puretzky, Alexander A.; Basile, Leonardo; Idrobo, Juan Carlos; ...

    2016-02-16

    Van der Waals (vdW) heterojunctions consisting of vertically-stacked individual or multiple layers of two-dimensional (2D) layered semiconductors, especially the transition metal dichalcogenides (TMDs), are fascinating new artificial solids just nanometers-thin that promise novel optoelectronic functionalities due to the sensitivity of their electronic and optical properties to strong quantum confinement and interfacial interactions. Here, monolayers of n-type MoSe 2 and p-type Mo 1-xW xSe 2–MoSe 2 are grown by vapor transport methods, then transferred and stamped to form artificial vdW heterostructures with different interlayer orientations. Atomic-resolution Z-contrast electron microscopy and electron diffraction are used to characterize both the individual monolayers andmore » the atomic registry between layers in the bilayer vdW heterostructures. These measurements are compared with photoluminescence and low-frequency Raman spectroscopy, which indicates strong interlayer coupling in heterostructures. Remarkably, the heterojunctions exhibit an unprecedented photoconductivity effect that persists at room temperature for several days. This persistent photoconductivity is shown to be tunable by applying a gate bias that equilibrates the charge distribution. Furthermore, these measurements indicate that such ultrathin vdW heterojunctions can function as rewritable optoelectronic switches or memory elements under time-dependent photo-illumination, an effect which appears promising for new monolayer TMDs-based optoelectronic devices applications.« less

  20. 19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya. R. N.

    2008-01-01

    CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.

  1. High performance nonvolatile memory devices based on Cu2-xSe nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Yan; Wu, Yi-Liang; Wang, Wen-Jian; Mao, Dun; Yu, Yong-Qiang; Wang, Li; Xu, Jun; Hu, Ji-Gang; Luo, Lin-Bao

    2013-11-01

    We report on the rational synthesis of one-dimensional Cu2-xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2-xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3-0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2-xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.

  2. High compositional homogeneity of CdTe{sub x}Se{sub 1−x} crystals grown by the Bridgman method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-01

    We obtained high-quality CdTe{sub x}Se{sub 1−x} (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing highermore » efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd{sub x}Zn{sub 1−x}Te (CdZnTe or CZT)« less

  3. Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films

    NASA Astrophysics Data System (ADS)

    Schwarz, Torsten; Marques, Miguel A. L.; Botti, Silvana; Mousel, Marina; Redinger, Alex; Siebentritt, Susanne; Cojocaru-Mirédin, Oana; Raabe, Dierk; Choi, Pyuck-Pa

    2015-10-01

    Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

  4. Vertical MoSe2-MoO x p-n heterojunction and its application in optoelectronics.

    PubMed

    Chen, Xiaoshuang; Liu, Guangbo; Hu, Yunxia; Cao, Wenwu; Hu, PingAn; Hu, Wenping

    2018-01-26

    The hybrid n-type 2D transition-metal dichalcogenide (TMD)/p-type oxide van der Waals (vdW) heterojunction nanosheets consist of 2D layered MoSe 2 (the n-type 2D material) and MoO x (the p-type oxide) which are grown on SiO 2 /Si substrates for the first time via chemical vapor deposition technique, displaying the regular hexagon structures with the average length dimension of sides of ∼8 μm. Vertical MoSe 2 -MoO x p-n heterojunctions demonstrate obviously current-rectifying characteristic, and it can be tuned via gate voltage. What is more, the photodetector based on vertical MoSe 2 -MoO x heterojunctions displays optimal photoresponse behavior, generating the responsivity, detectivity, and external quantum efficiency to 3.4 A W -1 , 0.85 × 10 8 Jones, and 1665.6%, respectively, at V ds  = 5 V with the light wavelength of 254 nm under 0.29 mW cm -2 . These results furnish a building block on investigating the flexible and transparent properties of vdW and further optimizing the structure of the devices for better optoelectronic and electronic performance.

  5. Vertical MoSe2-MoO x p-n heterojunction and its application in optoelectronics

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoshuang; Liu, Guangbo; Hu, Yunxia; Cao, Wenwu; Hu, PingAn; Hu, Wenping

    2018-01-01

    The hybrid n-type 2D transition-metal dichalcogenide (TMD)/p-type oxide van der Waals (vdW) heterojunction nanosheets consist of 2D layered MoSe2 (the n-type 2D material) and MoO x (the p-type oxide) which are grown on SiO2/Si substrates for the first time via chemical vapor deposition technique, displaying the regular hexagon structures with the average length dimension of sides of ˜8 μm. Vertical MoSe2-MoO x p-n heterojunctions demonstrate obviously current-rectifying characteristic, and it can be tuned via gate voltage. What is more, the photodetector based on vertical MoSe2-MoO x heterojunctions displays optimal photoresponse behavior, generating the responsivity, detectivity, and external quantum efficiency to 3.4 A W-1, 0.85 × 108 Jones, and 1665.6%, respectively, at V ds = 5 V with the light wavelength of 254 nm under 0.29 mW cm-2. These results furnish a building block on investigating the flexible and transparent properties of vdW and further optimizing the structure of the devices for better optoelectronic and electronic performance.

  6. Crystal structure of the non-stoichiometric argyrodite compound Ag 7- xGeSe 5I 1- x ( x=0.31). A highly disordered silver superionic conducting material

    NASA Astrophysics Data System (ADS)

    Belin, Renaud; Aldon, Laurent; Zerouale, Abdel; Belin, Claude; Ribes, Michel

    2001-03-01

    Single crystals of the Ag 6.69GeSe 5I 0.69 phase have been obtained by iodine transport of the iodine-partially substituted stoichiometric argyrodite compound Ag 7GeSe 5I. This phase crystallizes in the cubic space group F4¯3 m (argyrodite γ-phase, a=10.921(2) Å at -100°C, a=10.972(3) Å at 25°C, Z=4). It is highly disordered both at anion and cation sites. Crystal structure refinements were completed by an anharmonic Gram-Charlier development of the atomic displacement factors of iodine and silver atoms. The structure of Ag 6.69GeSe 5I 0.69 was determined at -100°C and +25°C and was refined to R( F) values of 5.80 and 6.51%, respectively. Both iodine and selenium (Se1) anions have been found disordered and iodine is slightly defective on its crystallographic site. This is correlated to the disorder observed for the two Ag1 and Ag2 cations that provides this material with superionic conducting properties. Analysis of the joint probability density function allowed the visualization of the Ag + diffusion paths within the anionic framework.

  7. Hydrothermal synthesis of a photovoltaic material based on CuIn0.5Ga0.5Se2

    NASA Astrophysics Data System (ADS)

    Castellanos Báez, Y. T.; Fuquen Peña, D. A.; Gómez-Cuaspud, J. A.; Vera-López, E.; Pineda-Triana, Y.

    2017-12-01

    The present work report, the synthesis and characterization of the CuIn0.5Ga0.5Se2 system (abbreviated CIGS), by the implementation of a hydrothermal route, in order to obtain a solid with appropriate properties in terms of surface, morphological and texture properties for potential applications in the design of photovoltaic cells. The synthesis was carried out using the corresponding stoichiometric quantities (Cu:In:Ga:Se 1:0.5:0.5:2), which were mixed in a Teflon vessel under stirring conditions. The homogeneous solution was treated in a steel autoclave at 300°C for 72 hours at the end of which the resulting material was characterized by X-Ray Diffraction (XRD) and Rietveld refinement. The results of the structural characterization allowed to confirm the obtaining of a chalcopyrite type structure, with a I-42 d (122) structure and cell parameters a=0.570, b=0.570, c=1.140nm, α=90, β=90, γ=90° oriented along (1 0 4) facet, detecting the presence of a secondary phases, related with CuInSe and CuIn metallic selenides, derived from synthesis process. The structural refinement allowing to validate the obtaining of a nanometric crystalline material (10-20nm) for potential applications in field of photovoltaic technology.

  8. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-x Se x

    NASA Astrophysics Data System (ADS)

    Shan, Cui; Lan-Po, He; Xiao-Chen, Hong; Xiang-De, Zhu; Cedomir, Petrovic; Shi-Yan, Li

    2016-07-01

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ 0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-x Se x , which indicates conventional superconductivity despite of the existence of a CDW QCP. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.

  9. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  10. Phase change studies in Se85In15-xZnx chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Tiwari, S. N.; Alvi, M. A.; Khan, Shamshad A.

    2018-03-01

    This research work describes the phase change studies in Se85In15-xZnx thin films at various annealing temperatures. Glassy samples of Se85In15-xZnx were synthesized by the melt quenching method and thin films of thickness 400 nm were prepared by the vacuum evaporation technique on a glass/Si wafer substrate. The glass transition temperature (Tg) and the on-set crystallization temperature (Tc) of the prepared alloys were evaluated by non-isothermal differential scanning calorimetry studies. Thin films were annealed at three temperatures 330 K, 340 K, and 350 K (which are in between Tg and Tc of the synthesized samples) in a vacuum furnace for 2 h. High resolution X-ray diffraction studies demonstrate that the as-prepared films are amorphous in nature whereas the annealed films are of crystalline/polycrystalline in nature. Field emission scanning electron microscopy studies of thin films (as-deposited and crystallized) confirm the phase transformation in Se85In15-xZnx thin films. Optical band gaps were calculated from the Tauc's extrapolation procedure and were found to be enhanced with the Zn concentration and decrease with the increasing annealing temperature. Various optical parameters were evaluated for as-prepared and annealed Se85In15-xZnx thin films. The changes in optical parameters with annealing temperature were described on the basis of structural relaxation as well as changes in defect states and density of localized states during amorphous to crystalline phase transformation in Se85In15-xZnx thin films.

  11. Two-dimensional pentagonal CrX (X = S, Se or Te) monolayers: antiferromagnetic semiconductors for spintronics and photocatalysts.

    PubMed

    Chen, Wenzhou; Kawazoe, Yoshiyuki; Shi, Xingqiang; Pan, Hui

    2018-06-25

    Two dimensional (2D) materials with hexagonal building blocks have received tremendous interest in recent years and show promise as nanoscale devices for versatile applications. Herein, we propose a new family of 2D pentagonal CrX (X = S, Se or Te) monolayers (penta-CrX) for applications in electronics, spintronics and photocatalysis. We find that the 2D penta-CrX monolayers are thermally, structurally and mechanically stable. The penta-CrX monolayers are antiferromagnetic and semiconducting. We show that the magnetism is attributed to the super-exchange induced by the ionic interactions between the Cr and X atoms and can be enhanced upon applying tension. We further show that the penta-CrS and penta-CrSe monolayers show good redox potentials versus a normal hydrogen electrode, and their band gaps are comparable to the energy of a photon in the visible light region, indicating their capability of maximal utilization of solar energy for water splitting. With intrinsic semiconducting and controllable magnetic properties, the proposed penta-CrX monolayers may hold promise as flexible spintronics and photocatalysts.

  12. Thermoelectric properties of Bi1-xSnxCuSeO solid solutions.

    PubMed

    Yang, Yuqing; Liu, Xiaocun; Liang, Xin

    2017-02-21

    We report the enhanced thermoelectric properties of p-type BiCuSeO by tin doping on bismuth sites. Powder X-ray diffraction analysis and Hall measurements indicated effective tin doping in all samples. We found that the doping efficiency of Sn is lower than expected, as seen from the measured carrier concentration. First-principles calculations indicate that the Sn lone pair modifies the band structure at the Fermi level, with the consequent effect observed in the electrical transport and Seebeck coefficient measurements. An enhanced thermoelectric power factor of ∼2.5 μW cm -1 K -2 was reached at 773 K. No significant effect of Sn doping on the thermal conductivity was found; a thermoelectric figure of merit value (ZT) of 0.3 at 773 K is achieved for Bi 0.9 Sn 0.1 CuSeO, which is more than twice that of the pristine BiCuSeO.

  13. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5.

    PubMed

    Lu, Y F; Kono, H; Larkin, T I; Rost, A W; Takayama, T; Boris, A V; Keimer, B; Takagi, H

    2017-02-16

    The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron-hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta 2 NiSe 5 is a narrow-gap semiconductor with a small one-electron bandgap E G of <50 meV. Below T C =326 K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap E op ∼0.16 eV below T C comparable to the estimated exciton binding energy E B . Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the T C -E G phase diagram tuning E G via chemical and physical pressure. The dome-like behaviour around E G ∼0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta 2 NiSe 5 .

  14. Preparation & characterization of high purity Cu2 ZnSn(SxSe1-x)4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Negash, Bethlehem G.

    Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, colloidal synthesis of Cu 2ZnSn(SxSe1-x)4 offers a scalable, low cost and high-throughput route for manufacturing high efficiency thin-film solar cells. Hydrazine processed Cu2ZnSn(SxSe1-x )4 devices have reached a record power conversion efficiency (PCE) of 12.6%, much higher than the 9.6% reported for physical vapor deposition (PVD) systems.6,7. Despite high efficiencies, wet synthesis of nanoparticles, however, is made more complicated in multi-element, quaternary and quinary systems such as copper zinc tin sulfoselenide (CZTSSe) and copper indium gallium diselenide (CIGSe). One major disadvantage in these systems is growth of the desired quaternary or quinary phase in competition with unwanted binary and ternary phases with low energy of formation.8,9 Moreover, various reaction parameters such as reaction time, temperature, and choice of ligand also affect, chemical as well as physical properties of resulting nanoparticles. Understanding of the formation mechanisms of the particles is necessary in order to address some of these challenges in wet synthesis of CZTSSe nanoparticles. In this study, we investigate synthesis conditions & reaction parameters which yield high purity Cu2ZnSn(SxSe1-x) 4 nanoparticles as well as attempt to understand the growth mechanism of these nanoparticles. This was achieved by manipulating anion precursor preparation routes as

  15. Deep-Ultraviolet Luminescence of Rocksalt-Structured Mg x Zn1-x O (x > 0.5) Films on MgO Substrates

    NASA Astrophysics Data System (ADS)

    Kaneko, Kentaro; Tsumura, Keiichi; Ishii, Kyohei; Onuma, Takayoshi; Honda, Tohru; Fujita, Shizuo

    2018-04-01

    Rocksalt-structured Mg x Zn1-x O films with Mg composition x of 0.47, 0.57, and 0.64 were grown on (100)-oriented MgO substrates using mist chemical vapor deposition. Cathodoluminescence measurements showed deep ultraviolet (DUV) emission peaking at 4.88 eV (254 nm), 5.15 eV (241 nm), and 5.21 eV (238 nm), respectively, at 12 K. The peak energies were lower than the band gap energies by ca. 1 eV, suggesting that the deep ultraviolet (DUV) emission may be recognized as near band edge luminescence but is associated with impurities, defects, or band fluctuations. The use of carbon-free precursors in the growth is suggested to eliminate carbon impurities and to improve the optical properties of Mg x Zn1-x O.

  16. Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets.

    PubMed

    Music, Nedzad; Reber, Adrian J; Kim, Min-Chul; York, Ian A; Kang, Sang-Moo

    2016-01-20

    Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine ("Split") alone, influenza split vaccine supplemented with M2e5x VLP ("Split+M2e5x"), M2e5x VLP alone ("M2e5x"), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. Published by Elsevier Ltd.

  17. Normal state above the upper critical field in Fe 1 + y Te 1 - x ( Se , S ) x

    DOE PAGES

    Wang, Aifeng; Kampert, Erik; Saadaoui, H.; ...

    2017-05-03

    Here, we have investigated the magnetotransport above the upper critical field ( H c 2 ) in Fe 1.14 Te 0.7 Se 0.3 , Fe 1.02 Te 0.61 Se 0.39 , Fe 1.05 Te 0.89 Se 0.11 , and Fe 1.06 Te 0.86 S 0.14 . The μ SR measurements confirm electronic phase separation in Fe 1.06 Te 0.86 S 0.14 , similar to Fe 1 + y Te 1 - x Se x . We found that superconductivity is suppressed in high magnetic fields above 60 T, allowing us to gain insight into the normal-state properties below the zero-fieldmore » superconducting transition temperature ( T c ). We also show that the resistivity of Fe 1.14 Te 0.7 Se 0.3 and Fe 1.02 Te 0.61 Se 0.39 above H c 2 is metallic as T → 0 , just like the normal-state resistivity above T c . On the other hand, the normal-state resistivity in Fe 1.05 Te 0.89 Se 0.11 and Fe 1.06 Te 0.86 S 0.14 is nonmetallic down to lowest temperatures, reflecting the superconductor-insulator transition due to electronic phase separation.« less

  18. The growth of epitaxial single crystal PbS 1-xSe x films by hot wall evaporation

    NASA Astrophysics Data System (ADS)

    Neuelmann, R.; Marino, A.; Reichelt, K.

    1983-12-01

    Heteroepitaxial films of semiconducting PbS 1- xSe x on rock salt and mica substrates have been prepared and studied. The films have good crystalline perfection but have low electron mobilities, probably due to deviations from stoichiometry.

  19. Effect of Isovalent Substitution on the Electronic Structure and Thermoelectric Properties of the Solid Solution α-As2Te3-xSex (0 ≤ x ≤ 1.5).

    PubMed

    Vaney, Jean-Baptiste; Delaizir, Gaëlle; Wiendlocha, Bartlomiej; Tobola, Janusz; Alleno, Eric; Piarristeguy, Andrea; Gonçalves, Antonio Pereira; Gendarme, Christine; Malaman, Bernard; Dauscher, Anne; Candolfi, Christophe; Lenoir, Bertrand

    2017-02-20

    We report on the influence of Se substitution on the electronic band structure and thermoelectric properties (5-523 K) of the solid solution α-As 2 Te 3-x Se x (0 ≤ x ≤ 1.5). All of the polycrystalline compounds α-As 2 Te 3-x Se x crystallize isostructurally in the monoclinic space group C2/m (No. 12, Z = 4). Regardless of the Se content, chemical analyses performed by scanning electron microscopy and electron probe microanalysis indicate a good chemical homogeneity, with only minute amounts of secondary phases for some compositions. In agreement with electronic band structure calculations, neutron powder diffraction suggests that Se does not randomly substitute for Te but exhibits a site preference. These theoretical calculations further predict a monotonic increase in the band gap energy with the Se content, which is confirmed experimentally by absorption spectroscopy measurements. Increasing x up to x = 1.5 leaves unchanged both the p-type character and semiconducting nature of α-As 2 Te 3 . The electrical resistivity and thermopower gradually increase with x as a result of the progressive increase in the band gap energy. Despite the fact that α-As 2 Te 3 exhibits very low lattice thermal conductivity κ L , the substitution of Se for Te further lowers κ L to 0.35 W m -1 K -1 at 300 K. The compositional dependence of the lattice thermal conductivity closely follows classical models of phonon alloy scattering, indicating that this decrease is due to enhanced point-defect scattering.

  20. Electrophoretic deposition of Cu2ZnSn(S0.5Se0.5)4 films using solvothermal synthesized nanoparticles

    NASA Astrophysics Data System (ADS)

    Badkoobehhezaveh, Amir Masoud; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza

    2018-01-01

    In this paper, a simple, practical, and fast solvothermal route is presented for synthesizing the Cu2ZnSn(S0.5Se0.5)4 nanoparticles (CZTSSe). In this method, the precursors were dissolved in triethylenetetramine and placed in an autoclave at 240 °C for 1 h under controlled pressure and constant stirring. After washing the samples for several times with absolute ethanol, the obtained CZTSSe nanoparticles were successfully deposited on fluorine doped tin oxide substrates by convenient electrophoretic deposition (EPD) using colloidal nanoparticles. The most appropriate parameters for EPD of pre-synthesized CZTSSe nanoparticles which result in proper surface properties, controlled thickness, and high film quality are investigated by adjusting applied voltage, pH, and deposition time. X-ray diffraction pattern and Raman spectroscopy of the pre-synthesized nanoparticles show kesterite structure formation. The particle size of the CZTSSe nanoparticles is in the range of 100 to 400 nm and for some agglomerates, it is about 2 µm confirmed by scanning electron microscope. The deposited film with optimized parameter has acceptable quality without any crack in it with the thickness of about 4-5 µm. Energy-dispersive X-ray spectroscopy confirms that the chemical composition of the samples is in near stoichiometric Cu-poor and Zn-rich region, which guarantees the p-type character of the film. The diffuse reflectance spectroscopy also demonstrates that the optical band gap of the sample is about 1.2 eV.

  1. Controlled growth of ZnO/Zn₁-xPbxSe core-shell nanowires and their interfacial electronic energy alignment.

    PubMed

    Chen, Z H; Yeung, S Y; Li, H; Qian, J C; Zhang, W J; Li, Y Y; Bello, I

    2012-05-21

    ZnO/Zn(1-x)Pb(x)Se core-shell nanowires (NWs) have been synthesized by a solution based surface ion transfer method at various temperatures. The energy dispersive spectroscopic (EDS) mapping of single NWs suggests that the Zn, Pb and Se atoms are uniformly distributed in their shell layers. The ternary Zn(1-x)Pb(x)Se layers with tunable bandgaps extend the band-edge of optical absorption from 450 nm to 700 nm contrasting with the binary ZnSe layers. The ultraviolet photoelectron spectroscopic (UPS) analysis reveals a transition from the type I to type II band alignment when the x fraction decreases from 0.66 to the value of 0.36 in the nanoshell layers. This quantitative investigation of electronic energy levels at ZnO and Zn(1-x)Pb(x)Se interfaces indicates that the proper type II band alignment is well suited for photovoltaic energy conversion. The photovoltaic cells comprising a ZnO/Zn(1-x)Pb(x)Se nano-heterojunction with the optimized Pb content are expected to be more efficient than the devices sensitized by binary ZnSe or PbSe.

  2. Photoelectric properties of defect chalcogenide HgGa{sub 2}X{sub 4} (x=S, Se, Te)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com

    2016-05-06

    We present results of ab initio study of ordered vacancy compounds of mercury. The electronic structure, charge density, optical and transport properties of the semiconductor family HgGa{sub 2}X{sub 4} (X=S, Se, Te) are calculated using the full potential linearized augmented plane wave method which is based on the density functional theory. A direct bandgap is observed in these compounds, which reduces in the order S>Se>Te. From the density of states it is observed that there is strong hybridization of Hg-d, Ga-d and X-p states. The optical properties show a red shift with increasing size and atomic no. of the chalcogenidemore » atoms. We have also reported the transport properties of mercury thiogallates for the first time. The selenide compound exhibits n-type nature whereas HgGa{sub 2}S{sub 4} and HgGa{sub 2}Te{sub 4} show p-type behavior. The power factor and ZT for the HGS increases at low temperatures, the figure of merit is highest for HgGa{sub 2}Se{sub 4} (1.17) at 19 K.« less

  3. Picosecond Dynamics of Excitonic Magnetic Polarons in Colloidal Diffusion-Doped Cd(1-x)Mn(x)Se Quantum Dots.

    PubMed

    Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R

    2015-11-24

    Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.

  4. Interpreting the structural and electrochemical complexity of 0.5Li{sub 2}MnO{sub 3}{lg_bullet}.0.5LiMO{sub 2} electrodes for lithium batteries (M=Mn{sub 0.5-x}Ni{sub 0.5-x}Co{sub 2x}, 0{le}x{le}0.5).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S. H.; Kempgens, P.; Greenbaum, S.

    2007-01-01

    The structural and electrochemical features of layered 0.5Li{sub 2}MnO{sub 3} {center_dot} 0.5LiMO{sub 2} electrodes, in which M = Mn{sub 0.5-x}Ni{sub 0.5-x}Co{sub 2x} (0{le} x {le} 0.5), have been studied by powder X-ray diffraction, electrochemical differential-capacity measurements, {sup 7}Li magic-angle-spinning nuclear magnetic resonance, and X-ray absorption near-edge spectroscopy. Li{sub 2}MnO{sub 3}-like regions in the as-prepared samples were observed for all values of x, with transition-metal cation disorder between the LiMO{sub 2} and Li{sub 2}MnO{sub 3} components increasing with cobalt content (i.e., the value of x). The structural disorder and complexity of the electrochemical redox reactions increase when the Li{sub 2}MnO{sub 3}-likemore » regions within the electrode are activated to 4.6 V in lithium cells; interpretations of structural and electrochemical phenomena are provided.« less

  5. Structure of Se-Te glasses studied using neutron, X-ray diffraction and reverse Monte Carlo modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, Keiji, E-mail: itoh@okayama-u.ac.jp; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494

    Pulsed neutron diffraction and synchrotron X-ray diffraction measurements were performed on Se{sub 100-x}Te{sub x} bulk glasses with x=10, 20, 30 and 40. The coordination numbers obtained from the diffraction results demonstrate that Se and Te atoms are twofold coordinated and the glass structure is formed by the chain network. The three-dimensional structure model for Se{sub 60}Te{sub 40} glass obtained by using reverse Monte Carlo modelling shows that the alternating arrangements of Se and Te atoms compose the major part of the chain clusters but several other fragments such as Se{sub n} chains and Te-Te dimers are also present in largemore » numbers. The chain clusters have geometrically disordered forms and the interchain atomic order is different from those in the crystal structures of trigonal Se and trigonal Te. - Graphical abstract: Coordination environment in Se{sub 60}Te{sub 40} glass.« less

  6. Synthesis, crystal structure, and magnetic properties of quaternary iron selenides: Ba{sub 2}FePnSe{sub 5} (Pn=Sb, Bi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Greenfield, Joshua T.; Kovnir, Kirill

    Two new barium iron pnictide–selenides, Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5}, were synthesized by a high-temperature solid-state route and their crystal structures were determined using single crystal X-ray diffraction. Both compounds are isomorphic to the high pressure phase Ba{sub 3}FeS{sub 5} and crystallize in the orthorhombic space group Pnma (No. 62) with cell parameters of a=12.603(2)/12.619(2) Å, b=9.106(1)/9.183(1) Å, c=9.145(1)/9.123(1) Å and Z=4 for Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5}, respectively. According to differential scanning calorimetry, Ba{sub 2}FePnSe{sub 5} compounds exhibit high thermal stability and melt congruently at 1055(5) K (Pn=Sb) and 1105(5) K (Pn=Bi). Magnetic characterizations revealmore » strong antiferromagnetic nearest-neighbor interactions in both compounds resulting in an antiferromagnetic ordering at 58(1) K for Ba{sub 2}FeSbSe{sub 5} and 79(2) K for Ba{sub 2}FeBiSe{sub 5}. The magnetic interactions between Fe{sup 3+} centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions. - Graphical abstract: In Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} the magnetic interactions between Fe{sup 3+} centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions. - Highlights: • New compounds Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} have been synthesized. • The crystal structure was determined by single crystal X-ray diffraction. • Both compounds melt congruently at temperatures above 1000 K. • Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} exhibit AFM ordering at 58 K (Sb) and 70 K (Bi). • Magnetic exchange between Fe{sup 3+} is mediated by either Se–Sb(Bi)–Se or Se–Ba–Se bridges.« less

  7. One-Dimensional Cu2- xSe Nanorods as the Cathode Material for High-Performance Aluminum-Ion Battery.

    PubMed

    Jiang, Jiali; Li, He; Fu, Tao; Hwang, Bing-Joe; Li, Xue; Zhao, Jinbao

    2018-05-30

    In this work, nonstoichiometric Cu 2- x Se fabricated by a facile water evaporation process is used as high-performance Al-ion battery cathode materials. Cu 2- x Se electrodes show high reversible capacity and excellent cycling stability, even at a high current density of 200 mA g -1 , the specific charge capacity in the initial cycle is 241 mA h g -1 and maintains 100 mA h g -1 after 100 cycles with a Coulombic efficiency of 96.1%, showing good capacity retention. The prominent kinetics of Cu 2- x Se electrodes is also revealed by the GITT, which is attributed to the ultrahigh electronic conductivity of the Cu 2- x Se material. Most importantly, an extensive research is dedicated to investigating the detailed intercalation and de-intercalation of relatively large chloroaluminate anions into the cubic Cu 2- x Se, which is conducive to better understand the reaction mechanism of the Al/Cu 2- x Se battery.

  8. Facile Synthesis of Rod-like Cu2-x Se and Insight into its Improved Lithium-Storage Property.

    PubMed

    Li, He; Jiang, Jiali; Wang, Feng; Huang, Jianxing; Wang, Yunhui; Zhang, Yiyong; Zhao, Jinbao

    2017-05-22

    A rod-like Cu 2-x Se is synthesized by a facile water evaporation process. The electrochemical reaction mechanism is investigated by ex situ X-ray diffraction (XRD). By adopting an ether-based electrolyte instead of a carbonate-based electrolyte, the electrochemical performance of Cu 2-x Se electrodes improved significantly. The Cu 2-x Se electrodes exhibit outstanding cycle performance: after 1000 cycles, 160 mA h g -1 can be maintained with a retention of 80.3 %. At current densities of 100, 200, 500, and 1000 mA g -1 , the capacity of a Cu 2-x Se/Li battery was 208, 202, 200, and 198 mA h g -1 , respectively, showing excellent rate capability. The 4-probe conductivity measurements along with electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV) tests illustrate that the Cu 2-x Se electrodes display high specific conductivity and impressive lithium-ion diffusion rate, which makes the Cu 2-x Se a promising anode material for lithium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural and optical properties of Sb65Se35-xGex thin films

    NASA Astrophysics Data System (ADS)

    Saleh, S. A.; Al-Hajry, A.; Ali, H. M.

    2011-07-01

    Sb65Se35-xGex (x=0-20 at.%) thin films, prepared by the electron beam evaporation technique on ultrasonically cleaned glass substrates at 300 K, were investigated. The amorphous structure of the thin films was confirmed by x-ray diffraction analysis. The structure was deduced from the Raman spectra measured for all germanium contents in the Sb-Se-Ge matrix. The absorption coefficient (α) of the films was determined by optical transmission measurements. The compositional dependence of the optical band gap is discussed in light of topological and chemical ordered network models.

  10. Characterization of Primary Carrier Transport Properties of the Light-Harvesting Chalcopyrite Semiconductors CuIn(S 1–xSe x) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frick, Jessica J.; Kushwaha, Satya K.; Cava, Robert J.

    We report the carrier transport properties of CuIn(S 1-xSe x) 2 (0 ≤ x ≤ 1), a promising chalcopyrite semiconductor series for solar water splitting. A low concentration Mg dopant is used to decrease the carrier resistivity through facilitating bulk p-type transport at ambient temperature. Temperature-dependent resistivity measurements reveal a four-order magnitude decrease in bulk electrical resistivity (from 10 3 to 10 –1 Ohm cm) for 1% Mg-doped CuIn(S 1–xSe x) 2 as x increases from 0 to 1. Hall effect measurements at room temperature reveal p-type majority carrier concentrations that vary from 10 15 to 10 18 cm –3more » and mobilities of approximately 1–10 cm 2 V –1 s –1. These results provide insights into the fundamental carrier transport properties of CuIn(S 1–xSe x) 2 and will be of value in optimizing these materials further for photoelectrochemistry applications.« less

  11. Characterization of Primary Carrier Transport Properties of the Light-Harvesting Chalcopyrite Semiconductors CuIn(S 1–xSe x) 2

    DOE PAGES

    Frick, Jessica J.; Kushwaha, Satya K.; Cava, Robert J.; ...

    2017-07-27

    We report the carrier transport properties of CuIn(S 1-xSe x) 2 (0 ≤ x ≤ 1), a promising chalcopyrite semiconductor series for solar water splitting. A low concentration Mg dopant is used to decrease the carrier resistivity through facilitating bulk p-type transport at ambient temperature. Temperature-dependent resistivity measurements reveal a four-order magnitude decrease in bulk electrical resistivity (from 10 3 to 10 –1 Ohm cm) for 1% Mg-doped CuIn(S 1–xSe x) 2 as x increases from 0 to 1. Hall effect measurements at room temperature reveal p-type majority carrier concentrations that vary from 10 15 to 10 18 cm –3more » and mobilities of approximately 1–10 cm 2 V –1 s –1. These results provide insights into the fundamental carrier transport properties of CuIn(S 1–xSe x) 2 and will be of value in optimizing these materials further for photoelectrochemistry applications.« less

  12. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study.

    PubMed

    Flores, Efracio Mamani; Gouvea, Rogério Almeida; Piotrowski, Maurício Jeomar; Moreira, Mário Lucio

    2018-02-14

    The engineering of semiconductor materials for the development of solar cells is of great importance today. Two topics are considered to be of critical importance for the efficiency of Grätzel-type solar cells, the efficiency of charge separation and the efficiency of charge carrier transfer. Thus, one research focus is the combination of semiconductor materials with the aim of reducing charge recombination, which occurs by spatial charge separation. From an experimental point of view, the combining of materials can be achieved by decorating a core with a shell of another material resulting in a core-shell system, which allows control of the desired photoelectronic properties. In this context, a computational simulation is mandatory for the atomistic understanding of possible semiconductor combinations and for the prediction of their properties. Considering the construction of ZnO/ZnX (X = S, Se or Te) interfaces, we seek to investigate the electronic influence of the shell (ZnX) on the core (ZnO) and, consequently, find out which of the interfaces would present the appropriate properties for (Grätzel-type) solar cell applications. To perform this study, we have employed density functional theory (DFT) calculations, considering the Perdew-Burke-Ernzerhof (PBE) functional. However, it is well-known that plain DFT fails to describe strong electronic correlated materials where, in general, an underestimation of the band gap is obtained. Thus, to obtain the correct description of the electronic properties, a Hubbard correction was employed, i.e. PBE+U calculations. The PBE+U methodology provided the correct electronic structure properties for bulk ZnO in good agreement with experimental values (99.4%). The ZnO/ZnX interfaces were built and were composed of six ZnO layers and two ZnX layers, which represents the decoration process. The core-shell band gap was 2.2 eV for ZnO/ZnS, ∼1.71 eV for ZnO/ZnSe and ∼0.95 eV for ZnO/ZnTe, which also exhibited a type-II band

  13. Robust odd-parity superconductivity in the doped topological insulator Nb x Bi 2 Se 3

    DOE PAGES

    Smylie, M. P.; Willa, K.; Claus, H.; ...

    2017-09-15

    We present resistivity and magnetization measurements on proton-irradiated crystals demonstrating that the superconducting state in the doped topological insulator Nb xBi 2Se 3 (x = 0.25) is surprisingly robust against disorder-induced electron scattering. The superconducting transition temperature Tc decreases without indication of saturation with increasing defect concentration, and the corresponding scattering rates far surpass expectations based on conventional theory. The low-temperature variation of the London penetration depth Δλ(T) follows a power law [Δλ(T)~T 2] indicating the presence of symmetry-protected point nodes. Lastly, our results are consistent with the proposed robust nematic E u pairing state in this material.

  14. Phase equilibria in the quasi-ternary system Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} and physical properties of (Ga{sub 0.6}In{sub 0.4}){sub 2}Se{sub 3}, (Ga{sub 0.594}In{sub 0.396}Er{sub 0.01}){sub 2}Se{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivashchenko, I.A., E-mail: inna.ivashchenko@mail.ru; Danyliuk, I.V.; Olekseyuk, I.D.

    2014-02-15

    The quasi-ternary system Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} was investigated by differential thermal, X-ray phase, X-ray structure, microstructure analysis and microhardness measurements. Five quasi-binary phase diagrams, six polythermal sections, isothermal section at 820 K and the liquidus surface projection were constructed. The character and temperature of the invariant processes were determined. The specific resistance of the single crystals (Ga{sub 0.6}In{sub 0.4}){sub 2}Se{sub 3}, (Ga{sub 0.594}In{sub 0.396}Er{sub 0.01}){sub 2}Se{sub 3} was measured, 7.5×10{sup 5} and 3.15×10{sup 5} Ω m, respectively, optical absorption spectra in the 600–1050 nm range were recorded at room temperature, and the band gap energy was estimatedmore » which is 1.95±0. 01 eV for both samples. - Graphical abstract: The article reports for the first time the investigated liquidus surface projection of the Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} system and isothermal section at 820 K of the system. Five phase diagrams, six polythermal sections, isothermal section at 820 K and the liquidus surface projection were built at the first time. The existence of the large region of the solid solutions based on AgIn{sub 5}Se{sub 8}, Ga{sub 2}Se{sub 3} and AgGa{sub 1−x}In{sub x}Se{sub 2} was investigated. The existence of two ternary phases was established in the Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} system. Two single crystals (Ga{sub 0.6}In{sub 0.4}){sub 2}Se{sub 3}, (Ga{sub 0.594}In{sub 0.396}Er{sub 0.01}){sub 2}Se{sub 3} were grown and some of optical properties of them were studied at first time. Display Omitted - Highlights: • Liquidus surface projection was built for Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} system. • Solid solution ranges of AgIn{sub 5}Se{sub 8}, Ga{sub 2}Se{sub 3} and AgGa{sub 1−x}In{sub x}Se{sub 2} were investigated. • Two single crystals (Ga{sub 0.6}In{sub 0.4}){sub 2}Se{sub 3}, (Ga{sub 0.594}In{sub 0

  15. Alloying effect on bright-dark exciton states in ternary monolayer Mo x W1-x Se2

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Tom, Kyle; Zhang, Xiaowei; Lou, Shuai; Liu, Yin; Yao, Jie

    2017-07-01

    Binary transition metal dichalcogenides (TMDCs) in the class MX2 (M = Mo, W; X = S, Se) have been widely investigated for potential applications in optoelectronics and nanoelectronics. Recently, alloy-based monolayers of TMDCs have provided a stable and versatile technique to tune the physical properties and optimize them for potential applications. Here, we present experimental evidence for the existence of an intermediate alloy state between the MoSe2-like and the WSe2-like behavior of the neutral exciton (X 0) using temperature-dependent photoluminescence (PL) of the monolayer Mo x W1-x Se2 alloy. The existence of a maximum PL intensity around 120 K can be explained by the competition between the thermally activated bright states and the non-radiative quenching of the bright states. Moreover, we also measured localized exciton (XB ) PL peak in the alloy and the observed behavior agrees well with a model previously proposed for the 3D case, which indicates the theory also applies to 2D systems. Our results not only shed light on bright-dark states and localized exciton physics of 2D semiconductors, but also offer a new route toward the control of the bright-dark transition and tailoring optical properties of 2D semiconductors through defect engineering.

  16. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.

    PubMed

    Sun, Bao-Zhen; Ma, Zuju; He, Chao; Wu, Kechen

    2015-11-28

    Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 μW cm(-1) K(-2) along the a direction, while a relatively low value (11.72 μW cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κmin) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and κmin suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 × 10(19) (SnSe2) vs. 2.87 × 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials.

  17. Copper Vacancies and Heavy Holes in the Two-Dimensional Semiconductor KCu 3–xSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rettie, Alexander J. E.; Sturza, Mihai; Malliakas, Christos D.

    The two-dimensional material KCu 3–xSe 2 was synthesized using both a K 2Se 3 flux and directly from the elements. It crystallizes in the CsAg 3S 2 structure (monoclinic space group C2/m with a = 15.417(3) Å, b = 4.0742(8) Å, c = 8.3190(17) Å, and β = 112.94(3)°), and single-crystal refinement revealed infinite copper-deficient [Cu 3–xSe 2]– layers separated by K + ions. Thermal analysis indicated that KCu 3–xSe 2 melts congruently at ~755 °C. UV–vis spectroscopy showed an optical band gap of ~1.35 eV that is direct in nature, as confirmed by electronic structure calculations. Electronic transport measurementsmore » on single crystals yielded an in-plane resistivity of ~6 × 10 –1 Ω cm at 300 K that has a complex temperature dependence. The results of Seebeck coefficient measurements were consistent with a doped p-type semiconductor (S = +214 μV K –1 at 300 K), with doping being attributed to copper vacancies. Transport is dominated by low-mobility (on the order of 1 cm 2 V –1 s –1) holes caused by relatively flat valence bands with substantial Cu 3d character and a significant concentration of Cu ion vacancy defects (p ~ 10 19 cm –3) in this material. In conclusion, electronic band structure calculations showed that electrons should be significantly more mobile in this structure type.« less

  18. Copper Vacancies and Heavy Holes in the Two-Dimensional Semiconductor KCu 3–xSe 2

    DOE PAGES

    Rettie, Alexander J. E.; Sturza, Mihai; Malliakas, Christos D.; ...

    2017-06-21

    The two-dimensional material KCu 3–xSe 2 was synthesized using both a K 2Se 3 flux and directly from the elements. It crystallizes in the CsAg 3S 2 structure (monoclinic space group C2/m with a = 15.417(3) Å, b = 4.0742(8) Å, c = 8.3190(17) Å, and β = 112.94(3)°), and single-crystal refinement revealed infinite copper-deficient [Cu 3–xSe 2]– layers separated by K + ions. Thermal analysis indicated that KCu 3–xSe 2 melts congruently at ~755 °C. UV–vis spectroscopy showed an optical band gap of ~1.35 eV that is direct in nature, as confirmed by electronic structure calculations. Electronic transport measurementsmore » on single crystals yielded an in-plane resistivity of ~6 × 10 –1 Ω cm at 300 K that has a complex temperature dependence. The results of Seebeck coefficient measurements were consistent with a doped p-type semiconductor (S = +214 μV K –1 at 300 K), with doping being attributed to copper vacancies. Transport is dominated by low-mobility (on the order of 1 cm 2 V –1 s –1) holes caused by relatively flat valence bands with substantial Cu 3d character and a significant concentration of Cu ion vacancy defects (p ~ 10 19 cm –3) in this material. In conclusion, electronic band structure calculations showed that electrons should be significantly more mobile in this structure type.« less

  19. Long-range dynamical magnetic order and spin tunneling in the cooperative paramagnetic states of the pyrochlore analogous spinel antiferromagnets CdYb2X4 (X =S or Se)

    NASA Astrophysics Data System (ADS)

    Dalmas de Réotier, P.; Marin, C.; Yaouanc, A.; Ritter, C.; Maisuradze, A.; Roessli, B.; Bertin, A.; Baker, P. J.; Amato, A.

    2017-10-01

    Magnetic systems with spins sitting on a lattice of corner sharing regular tetrahedra have been particularly prolific for the discovery of new magnetic states for the last two decades. The pyrochlore compounds have offered the playground for these studies, while little attention has been comparatively devoted to other compounds where the rare earth R occupies the same sublattice, e.g., the spinel chalcogenides Cd R2X4 (X =S or Se ). Here, we report measurements performed on powder samples of this series with R =Yb using specific heat, magnetic susceptibility, neutron diffraction, and muon-spin-relaxation measurements. The two compounds are found to be magnetically similar. They long-range order into structures described by the Γ5 irreducible representation. The magnitude of the magnetic moment at low temperature is 0.77 (1) and 0.62 (1) μB for X =S and Se , respectively. Persistent spin dynamics is present in the ordered states. The spontaneous field at the muon site is anomalously small, suggesting magnetic moment fragmentation. A double spin-flip tunneling relaxation mechanism is suggested in the cooperative paramagnetic state up to 10 K. The magnetic space groups into which magnetic moments of systems of corner-sharing regular tetrahedra order are provided for a number of insulating compounds characterized by null propagation wave vectors.

  20. Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets

    PubMed Central

    Music, Nedzad; Reber, Adrian J.; Kim, Min-Chul; York, Ian A.; Kang, Sang-Moo

    2015-01-01

    Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine (“Split”) alone, influenza split vaccine supplemented with M2e5x VLP (“Split+M2e5x”), M2e5x VLP alone (“M2e5x”), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. PMID:26709639

  1. MoSeS: Modelling and Simulation for e-Social Science.

    PubMed

    Townend, Paul; Xu, Jie; Birkin, Mark; Turner, Andy; Wu, Belinda

    2009-07-13

    MoSeS (Modelling and Simulation for e-Social Science) is a research node of the National Centre for e-Social Science. MoSeS uses e-Science techniques to execute an events-driven model that simulates discrete demographic processes; this allows us to project the UK population 25 years into the future. This paper describes the architecture, simulation methodology and latest results obtained by MoSeS.

  2. Influence of temperature on the CuIn1-xGaxSe2films deposited by picosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Sima, Cornelia; Toma, Ovidiu

    2017-12-01

    The goal of this study is to investigate the influence of the deposition temperature on the CuIn1-xGaxSe2 (CIGS-copper indium gallium diselenide) film characteristics deposited by picosecond laser ablation method using a Nd:YVO4 laser (8 ps, 0.2 W, 50 kHz, 532 nm; 5.7 mJ/cm2; 36 × 107 pulses). The films were deposited starting from a CuIn0.7Ga0.3Se2 target, in vacuum at 3 × 10-5 Torr for 2 h, at room temperature (RT) and 100/200/300/400 °C substrate temperature; as substrate, optical glass was used. Structure, film morphology, composition and optical properties were investigated by X ray diffraction, scanning electron microscopy (energy dispersive X ray spectroscopy), spectroscopic ellipsometry and optical spectrophotometry. CIGS crystalline films have the dominant peak corresponding to (112) direction more pronounced starting with 200 °C deposition temperature. The thickness gradually decreased with temperature increasing, being 1.44 μm at RT and 0.72 μm at 400 °C; atomic composition in the case of In, Ga, Se increased after annealing, while in the case of Cu it decreased comparing with RT; refractive indices exhibited a short decreasing tendency by increasing the deposition temperature, while the optical band gap values for CuIn0.7Ga0.3Se2 laser ablated thin films increased.

  3. Ab initio calculations of the structural, electronic, thermodynamic and thermal properties of BaSe1-x Te x alloys

    NASA Astrophysics Data System (ADS)

    Drablia, S.; Boukhris, N.; Boulechfar, R.; Meradji, H.; Ghemid, S.; Ahmed, R.; Omran, S. Bin; El Haj Hassan, F.; Khenata, R.

    2017-10-01

    The alkaline earth metal chalcogenides are being intensively investigated because of their advanced technological applications, for example in photoluminescent devices. In this study, the structural, electronic, thermodynamic and thermal properties of the BaSe1-x Te x alloys at alloying composition x = 0, 0.25, 0.50, 0.75 and 1 are investigated. The full potential linearized augmented plane wave plus local orbital method designed within the density functional theory was used to perform the total energy calculations. In this research work the effect of the composition on the results of the parameters and bulk modulus as well as on the band gap energy is analyzed. From our results, we found a deviation of the obtained results for the lattice constants from Vegard’s law as well as a deviation of the value of the bulk modulus from the linear concentration dependence. We also carried out a microscopic analysis of the origin of the band gap energy bowing parameter. Furthermore, the thermodynamic stability of the considered alloys was explored through the measurement of the miscibility critical temperature. The quasi-harmonic Debye model, as implemented in the Gibbs code, was used to predict the thermal properties of the BaSe1-x Te x alloys, and these investigations comprise our first theoretical predictions concerning the BaSe1-x Te x alloys.

  4. Synthesis and crystal structure of Fe[(Te1.5Se0.5)O5]Cl, the first iron compound with selenate(IV) and tellurate(IV) groups

    NASA Astrophysics Data System (ADS)

    Akhrorov, Akhmad Yu; Kuznetsova, Elena S.; Aksenov, Sergey M.; Berdonosov, Peter S.; Kuznetsov, Alexey N.; Dolgikh, Valery A.

    2017-12-01

    During the search for selenium analogues of FeTe2O5Cl, the new iron (III) tellurate(IV) selenate(IV) chloride with the composition Fe[(Te1.5Se0.5)O5]Cl was synthesized by chemical vapor transport (CVT) reaction and characterized by TGA-, EDX-,SCXRD-analysis, as well as IR and Raman spectroscopy. It was found that Fe[(Te1.5Se0.5)O5]Cl crystallizes in the monoclinic space group P21/c with unitcell parameters a = 5.183(3) Å, b = 15.521(9) Å, c = 7.128(5) Å and β = 107.16(1)°. The crystal structure of Fe[(Te1.5Se0.5)O5]Cl represents a new structure type and contains electroneutral heteropolyhedral layers formed by dimers of the [FeO5Cl]8- octahedra, linked via common O-O edges, and mixed [Te3SeO10]4- tetramers. Adjacent layers are stacked along the b axis and linked by weak residual bonds. The new compound is stable up to 420 °C. DFT calculations predict Fe[(Te1.5Se0.5)O5]Cl to be a wide-gap semiconductor with the band gap of ca. 2.7 eV.

  5. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.

    PubMed

    Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru

    2006-12-21

    Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the

  6. Electronic structure and optical properties of iron based chalcogenide FeX2 (X = S, Se, Te) for photovoltaic applications: a first principle study

    NASA Astrophysics Data System (ADS)

    Ghosh, Anima; Thangavel, R.

    2017-11-01

    In present work, the electronic structure and optical properties of the FeX2 (X = S, Se, Te) compounds have been evaluated by the density functional theory based on the scalar-relativistic full potential linear augmented plane wave method via Wien2K. From the total energy calculations, it has been found that all the compounds have direct band nature, which determined by iron 3 d states at valance band edge and anion p dominated at conduction band at Γ-point and the fundamental band gap between the valence band and conduction band are estimated 1.40, 1.02 and 0.88 eV respectively with scissor correction for FeS2, FeSe2 and FeTe2 which are close to the experimental values. The optical properties such as dielectric tensor components and the absorption coefficient of these materials are determined in order to investigate their usefulness in photovoltaic applications.

  7. Low temperature co-pyrolysis of hexabenzylditinsulfide and selenium. An alternate route to Sn(S{sub x}Se{sub 1{minus}x})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudjouk, P.; Remington, M.P. Jr.; Seidler, D.J.

    1999-12-01

    Benzyl-substituted tin chalcogenides (Bn{sub 3}Sn){sub 2}S (1) and (Bn{sub 3}Sn){sub 2}Se (2) yield polycrystalline-phase pure SnS and SnSe in good ceramic yields when pyrolyzed with S and Se, respectively, at 275 C. Heating mixtures of (1) and elemental selenium produce solid solutions of the formula Sn(S{sub x}Se{sub 1{minus}x}). Combustion analysis showed less than 1% residual carbon in all ceramic products. This methodology allows the complete conversion of tin-to-tin chalcogenides and eliminates the need to synthesize organosulfur and organoselenium intermediates.

  8. Switching phenomenon in a Se{70}Te{30-x}Cd{x} films

    NASA Astrophysics Data System (ADS)

    Afifi, M. A.; Bekheet, A. E.; Hegab, N. A.; Wahab, L. A.; Shehata, H. A.

    2007-11-01

    Amorphous Se{70}Te{30-x}Cd{x} (x = 0, 10) are obtained by thermal evaporation under vacuum of bulk materials on pyrographite and glass substrates. The I-V characteristic curves for the two film compositions are typical for a memory switch. They exhibited a transition from an ohmic region in the lower field followed by non-ohmic region in the high field region in the preswitching region, which has been explained by the Poole-Frenkel effect. The temperature dependence of current in the ohmic region is found to be of thermally activated process. The mean value of the threshold voltage bar{V}th increases linearly with increasing film thickness in the thickness range (100 491 nm), while it decreases exponentially with increasing temperature in the temperature range (293 343 K) for both compositions. The results are explained in accordance with the electrothermal model for the switching process. The effect of Cd on these parameters is also investigated.

  9. Photoluminescence dynamics of Co-doped Zn 1- xCd xSe and ZnS xSe 1- xcrystals

    NASA Astrophysics Data System (ADS)

    Born, H.; Thurian, P.; Surkova, T.; Hoffmann, A.; Busse, W.; Gumlich, H.-E.; Broser, I.; Giriat, W.

    1998-02-01

    Intra-shell d-d relaxation processes of Co 2+ centres are investigated by means of time-integrated and time-resolved photoluminescence spectroscopy. The composition dependence of the luminescence and the decay of the Co L-line in ZnCdSe and ZnSSe alloys is presented for the first time. Additionally, new Co-related infrared luminescence lines were observed near 1.6 eV. Taking into account the energy position of the L-line and the relaxation dynamics of the green and the infrared luminescence, the L-line is explained as an internal doublet-quartet d-d transition of the Co-centres.

  10. Unimolecular rearrangement of the simplest compound models with a selenium-oxygen, selenium-sulphur and selenium-selenium bond: SeXH and HSeXH (X = O,S,Se)

    NASA Astrophysics Data System (ADS)

    Viana, Rommel B.

    2017-04-01

    The aim of this study was to characterise the simplest compound models with a selenium-oxygen, selenium-sulphur and selenium-selenium bond as the SeXH and HSeXH isomers (X = O,S,Se). One of the main aspects of this investigation was to provide a description on the isomerisation pathways involving 2[H,Se,X] and 1[2H,Se,X] potential energy surfaces calculated at the CCSD(T)/CBS//MP2/cc-pVTZ level. The energy difference was 13 kcal mol-1 between hydroxyselenide (SeOH) and oxoselenium (HSeO), while a gap of 3 kcal mol-1 was predicted between thiol-selenide (SeSH) and selenol-sulphide (HSeS). The SeOH→HSeO unimolecular rearrangement showed a barrier energy of 44.6 kcal mol-1, decreasing almost two times in sulphur and selenium analogous reactions. In addition, hydroxyselenide (HSeOH), thioselenenic acid (HSeSH) and diselane (HSeSeH) were the global minimum configurations in the ground state, while the energy differences among the other isomers were close to 30 kcal mol-1. The HSeXH→H2SeX and HSeXH→SeXH2 isomerisations showed barrier energies ranging from 40 to 65 kcal mol-1, while these reverse routes presented heights that were three times smaller. The kinetic rate constant of each 1,2-H shift reaction was performed here as well as an analysis of the selenium-chalcogen bonds using natural bond orbital and bond order index methodologies.

  11. Optical and structural properties of amorphous Se x Te100- x aligned nanorods

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.

    2013-12-01

    In the present work, we report studies on optical and structural phenomenon in as-deposited thin films composed of aligned nanorods of amorphous Se x Te100- x ( x = 3, 6, 9, and 12). In structural studies, field emission scanning electron microscopic (FESEM) images suggest that these thin films contain high yield of aligned nanorods. These nanorods show a completely amorphous nature, which is verified by X-ray diffraction patterns of these thin films. Optical studies include the measurement of spectral dependence of absorption, reflection, and transmission of these thin films, respectively. On the basis of optical absorption data, a direct optical band gap is observed. This observation of a direct optical band gap in these nanorods is interesting as chalcogenides normally show an indirect band gap, and due to this reason, these materials could not become very popular for semiconducting devices. Therefore, this is an important report and will open up new directions for the application of these materials in semiconducting devices. The value of this optical band gap is found to decrease with the increase in selenium (Se) concentration. The reflection and absorption data are employed to estimate the values of optical constants (extinction coefficient ( k) and refractive index ( n)). From the spectral dependence of these optical constants, it is found that the values of refractive index ( n) increase, whereas the values of extinction coefficient ( k) decrease with the increase in photon energy. The real and imaginary parts of dielectric constants calculated with the values of extinction coefficient ( k) and refractive index ( n), are found to vary with photon energy and dopant concentration.

  12. Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.

    2012-06-15

    Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less

  13. seXY: a tool for sex inference from genotype arrays.

    PubMed

    Qian, David C; Busam, Jonathan A; Xiao, Xiangjun; O'Mara, Tracy A; Eeles, Rosalind A; Schumacher, Frederick R; Phelan, Catherine M; Amos, Christopher I

    2017-02-15

    Checking concordance between reported sex and genotype-inferred sex is a crucial quality control measure in genome-wide association studies (GWAS). However, limited insights exist regarding the true accuracy of software that infer sex from genotype array data. We present seXY, a logistic regression model trained on both X chromosome heterozygosity and Y chromosome missingness, that consistently demonstrated >99.5% sex inference accuracy in cross-validation for 889 males and 5,361 females enrolled in prostate cancer and ovarian cancer GWAS. Compared to PLINK, one of the most popular tools for sex inference in GWAS that assesses only X chromosome heterozygosity, seXY achieved marginally better male classification and 3% more accurate female classification. https://github.com/Christopher-Amos-Lab/seXY. Christopher.I.Amos@dartmouth.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Surface and Bulk Effects of K in Highly Efficient Cu1-xKxInSe2 Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher; Mansfield, Lorelle M; Ramanathan, Kannan

    To advance knowledge of the beneficial effects of K in Cu(In,Ga)(Se,S)2 (CIGS) photovoltaic (PV) absorbers, recent Cu-K-In-Se phase growth studies have been extended to PV performance. First, the effect of distributing K throughout bulk Cu1-xKxInSe2 absorbers at low K/(K+Cu) compositions (0 = x = 0.30) was studied. Efficiency, open-circuit voltage (VOC), and fill factor (FF) were greatly enhanced for x ~ 0.07, resulting in an officially-measured 15.0%-efficient solar cell, matching the world record CuInSe2 efficiency. The improvements were a result of reduced interface and bulk recombination, relative to CuInSe2 (x ~ 0). However, higher x compositions had reduced efficiency, short-circuitmore » current density (JSC), and FF due to greatly increased interface recombination, relative to the x ~ 0 baseline. Next, the effect of confining K at the absorber/buffer interface at high K/(K+Cu) compositions (0.30 = x = 0.92) was researched. Previous work showed that these surface layer growth conditions produced CuInSe2 with a large phase fraction of KInSe2. After optimization (75 nm surface layer with x ~ 0.41), these KInSe2 surface samples exhibited increased efficiency (officially 14.9%), VOC, and FF as a result of decreased interface recombination. The KInSe2 surfaces had features similar to previous reports for KF post-deposition treatments (PDTs) used in world record CIGS solar cells - taken as indirect evidence that KInSe2 can form during these PDTs. Both the bulk and surface growth processes greatly reduced interface recombination. However, the KInSe2 surface had higher K levels near the surface, greater lifetimes, and increased inversion near the buffer interface, relative to the champion bulk Cu1-xKxInSe2 absorber. These characteristics demonstrate that K may benefit PV performance by different mechanisms at the surface and in the absorber bulk.« less

  15. A Comparison of Point Defects in Cd 1-xZn xTe 1-ySe y Crystals Grown by Bridgman and Traveling Heater Methods

    DOE PAGES

    Gul, R.; Roy, U. N.; Camarda, G. S.; ...

    2017-03-28

    In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less

  16. A Comparison of Point Defects in Cd 1-xZn xTe 1-ySe y Crystals Grown by Bridgman and Traveling Heater Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, R.; Roy, U. N.; Camarda, G. S.

    In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less

  17. The concept of the phases ratio control during the formation of composite filamentary nanocrystals xInSe-(1-x)In2O3 on glass substrates

    NASA Astrophysics Data System (ADS)

    Gasanly, S. A.; Tomaev, V. V.; Stoyanova, T. V.

    2017-11-01

    The method of vacuum deposition on substrates of glass marks the C-29 series PbSe deposited film and the film In the area 3x3 mm2 and a thickness of ˜1 μm. Films are oxidized in dry air at a temperature of 550 °C. Based on studies by X-ray microanalysis and scanning electron microscopy shows the principal possibility of formation of nanowires xInSe-(1-x)In2O3 on the PbSe/In structure. The results allowed to formulate the concept of the control of phases ratio in the forming nanowires xInSe-(1-x)In2O3 on glass substrates.

  18. Magnetic Cr doping of Bi2Se3: Evidence for divalent Cr from x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; van der Laan, G.; Collins-McIntyre, L. J.; Zhang, S.-L.; Baker, A. A.; Harrison, S. E.; Schönherr, P.; Cibin, G.; Hesjedal, T.

    2014-10-01

    Ferromagnetically doped topological insulators with broken time-reversal symmetry are a prerequisite for observing the quantum anomalous Hall effect. Cr-doped (Bi,Sb)2(Se,Te)3 is the most successful materials system so far, as it combines ferromagnetic ordering with acceptable levels of additional bulk doping. Here, we report a study of the local electronic structure of Cr dopants in epitaxially grown Bi2Se3 thin films. Contrary to the established view that the Cr dopant is trivalent because it substitutionally replaces Bi3+, we find instead that Cr is divalent. This is evidenced by the energy positions of the Cr K and L2,3 absorption edges relative to reference samples. The extended x-ray absorption fine structure at the K edge shows that the Cr dopants substitute on octahedral sites with the surrounding Se ions contracted by Δd =-0.36 Å, in agreement with recent band structure calculations. Comparison of the Cr L2,3 x-ray magnetic circular dichroism at T =5 K with multiplet calculations gives a spin moment of 3.64 μB/Crbulk, which is close to the saturation moment for Cr2+ d4. The reduced Cr oxidation state in doped Bi2Se3 is ascribed to the formation of a covalent bond between Cr d (eg) and Se p orbitals, which is favored by the contraction of the Cr-Se distances.

  19. Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi

    For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less

  20. Influence of substitution, nonstoichiometry and annealing-conditions on superconductivity and normal conductivity of Fe1+δ (Te1‑x Xx ) (X=Se, S)

    NASA Astrophysics Data System (ADS)

    Lima, M. S. L.; ElMassalami, M.; Deguchi, K.; Takeya, H.; Takano, Y.

    2018-03-01

    Thermal evolution of resistivity, ρ(T, x), of as-prepared samples of Fe1+δ Te1‑x S x (δ ≈ 0, x ≤ 0.2 = solubility limit) demonstrate a granular log-in-T character within Ts < T <300K, a Kondo-like resistive contribution within Tc < T < Ts and granular superconductivity at low temperature (Ts = structural transition point of Fe1+δ Te, Tc =superconducting transition point). We attribute the log-in-T character as well as the nonbulk superconducting features of as-prepared samples to their granular superconductor nature. Annealing in oxygen removes Kondo-like contribution, annihilates pair-breaking centres and establishes bulk superconductivity but, in contrast, the high-temperature granular log-in-T character is hardly influenced. This analysis was successfully extended to the isomorphous Fe1+δ Te1‑x Se x as well as to other types of post-synthesis sample-treatment (e.g. annealing in different gas ambient or soaking in particular liquids).

  1. Q-switched Yb3+:YAG laser using plasmonic Cu2-xSe quantum dots as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Yimeng; Zhan, Yi; Lee, Sooho; Wang, Li; Zhang, Xinping

    2018-04-01

    Cu2-xSe quantum dots (QDs) were synthesized by organometallic synthesis methods. Due to heavy self-doping, the Cu2-xSe QDs exhibit particle plasmon resonance in the near-infrared. Transient absorption spectroscopic investigation revealed strong nonlinear optical absorption and bleaching performance of the QDs under femtosecond pulse excitation, which enabled the Cu2-xSe QDs to be excellent saturable absorbers and applied in Q-switched or mode-locked lasers. A passively Q-switched Yb3+:YAG solid-state laser at 1.03 μm was achieved by coating Cu2-xSe QDs as saturable absorbers onto one of the output coupler of the V-shaped linear cavity.

  2. High-pressure electronic phase diagrams in FeSe1-xSx superconductors

    NASA Astrophysics Data System (ADS)

    Matsuura, Kohei; Arai, Yuki; Hosoi, Suguru; Ishida, Kousuke; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Maejima, Naoyuki; Machida, Akihiko; Watanuki, Tetsu; Fukuda, Tatsuo; Uwatoko, Yoshiya; Shibauchi, Takasada

    The spin fluctuations are believed to be related to the mechanism of the unconventional superconductors. On the other hand, many recent studies suggest that the nematic order that spontaneously breaks rotational symmetry of the system exists in the Fe-based superconductors and its quantum fluctuations may play an essential role for the superconductivity. However, this remains unclear because the nematic order usually coexists with the magnetic order. To solve this issue, FeSe exhibiting a nonmagnetic nematic order is a key system. Under pressure, this order is suppressed and concurrently magnetic order appears, which competes with high-Tc superconducting phase. In isovalent substitution system FeSe1-xSx, we found a nonmagnetic nematic quantum critical point. Here we report our recent high-pressure studies in high-quality single-crystalline FeSe1-xSx up to 8 GPa. We find a systematic change of the pressure phase diagram in FeSe by the S-substitution. Our results imply that the respective role of nematic and magnetic fluctuations can be elucidated from the precise control of pressure and substitution in this system.

  3. Large-area synthesis of monolayered MoS(2(1-x))Se(2x) with a tunable band gap and its enhanced electrochemical catalytic activity.

    PubMed

    Yang, Lei; Fu, Qi; Wang, Wenhui; Huang, Jian; Huang, Jianliu; Zhang, Jingyu; Xiang, Bin

    2015-06-21

    "Band gap engineering" in two-dimensional (2D) materials plays an important role in tailoring their physical and chemical properties. The tuning of the band gap is typically achieved by controlling the composition of the semiconductor alloys. However, large-area preparation of 2D alloys remains a major challenge. Here, we report the large-area synthesis of high-quality monolayered MoS2(1-x)Se2x with a size coverage of hundreds of microns using a chemical vapor deposition method. The photoluminescence (PL) spectroscopy results confirm the tunable band gap in MoS2(1-x)Se2x, which is modulated by varying the Se content. Atomic-scale analysis was performed and the chemical composition was characterized using high-resolution scanning transmission electron microscopy and X-ray photoemission spectroscopy. With the introduction of Se into monolayered MoS2, it leads to enhanced catalytic activity in an electrochemical reaction for hydrogen generation, compared to monolayered MoS2 and MoSe2. It is promising as a potential alternative to expensive noble metals.

  4. Thermoelectric and Magnetic Properties of Sn1- x O2:Mn0.5 x Co0.5 x Nanoparticles Produced by the Microwave Technique

    NASA Astrophysics Data System (ADS)

    Salah, Numan; Habib, Sami; Azam, Ameer

    2017-02-01

    Nanoparticles (NPs) of Sn1- x O2:Mn0.5 x Co0.5 x with x = 0.02, 0.04, 0.06, 0.08 and 0.1 were synthesized by the microwave-assisted route and characterized for their thermoelectric and magnetic properties. As a result of Mn and Co co-doping, a considerable increase in the values of energy band gap and lattice constant c of Sn1- x O2:Mn0.5 x Co0.5 x NPs was observed. The x-ray photoelectron spectroscopy spectra revealed that Mn and Co ions were incorporated in their 4+ and 2+ states, respectively. The resistivity and calculated activation energy of these NPs were found to decrease by increasing the Mn and Co contents. A negative Seebeck coefficient was observed, whose value was found to be significantly increased by increasing the value of x. The magnetic measurement results revealed that all the microwave-synthesized Sn1- x O2:Mn0.5 x Co0.5 x NPs including the pure SnO2 have distinctly wide hysteresis loops. This indicates that samples have room-temperature ferromagnetism. The optimum value for x to have maximum saturation magnetism was observed to be 0.04. Diamagnetic contributions from the core of these NPs were noticed at higher magnetic fields. The observed magnetism was attributed to the presence of defects at the NPs' interfacing sites, grain boundaries, atom vacancies and an optimum level of Mn and Co co-dopants. The observed wide hysteresis loops in these NPs might be useful for producing nanoscale magnets and magnetic memory devices. Moreover, the observed thermoelectric properties, i.e. Seebeck coefficient and power factor in these NPs, might be useful for the development of thermoelectric devices.

  5. Role of modified Becke-Johnson potential in computation of electronic and optical properties of mixed crystals CdxZn1-xSe

    NASA Astrophysics Data System (ADS)

    Talreja, Sonal; Ahuja, B. L.

    2015-08-01

    Electronic and optical properties of CdxZn1-xSe (x = 0, 0.25, 0.5, 0.75, 1) compounds are investigated using the first-principles full potential linearized augmented plane wave method. In particular, we have used modified version of the exchange potential of Becke and Johnson, so called mBJ potential. We have discussed the energy bands, density of states, and optical properties such as dielectric constants, refractive indices, reflection spectra, extinction coefficients of all the CdxZn1-xSe compounds. Our mBJ potential based data are found to be in excellent agreement with the available experimental data, which unambiguously validates the applicability of orbital independent exchange-correlation potential in mixed semiconductor crystals. The optical properties are discussed in terms of applicability of Cd-Zn-Se system in light-emitting diodes, UV detectors and filters, etc.

  6. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.

    2014-11-01

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  7. Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals

    PubMed Central

    2014-01-01

    We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627

  8. Structural and compositional dependence of the CdTexSe 1-x alloy layer photoactivity in CdTe-based solar cells

    DOE PAGES

    Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; ...

    2016-07-27

    The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTe xSe 1₋x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTe xSe 1₋x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTe xSe 1₋xmore » alloy with respect to the degree of Se diffusion. Finally, the results show that the CdTe xSe 1₋x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations.« less

  9. DQE simulation of a-Se x-ray detectors using ARTEMIS

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Badano, Aldo

    2016-03-01

    Detective Quantum Efficiency (DQE) is one of the most important image quality metrics for evaluating the spatial resolution performance of flat-panel x-ray detectors. In this work, we simulate the DQE of amorphous selenium (a-Se) xray detectors with a detailed Monte Carlo transport code (ARTEMIS) for modeling semiconductor-based direct x-ray detectors. The transport of electron-hole pairs is achieved with a spatiotemporal model that accounts for recombination and trapping of carriers and Coulombic effects of space charge and external applied electric field. A range of x-ray energies has been simulated from 10 to 100 keV. The DQE results can be used to study the spatial resolution characteristics of detectors at different energies.

  10. Effect of Pressure on the Stability and Electronic Structure of ZnO0.5S0.5 and ZnO0.5Se0.5

    NASA Astrophysics Data System (ADS)

    Manotum, R.; Klinkla, R.; Phaisangittisakul, N.; Pinsook, U.; Bovornratanaraks, T.

    2017-12-01

    Structures and high-pressure phase transitions in ZnO0.5S0.5 and ZnO0.5Se0.5 have been investigated using density functional theory calculations. The previously proposed structures of ZnO0.5S0.5 and ZnO0.5Se0.5 which are chalcopyrite ( I\\bar{4}2d ), rocksalt ( Fm3m ), wurtzite ( P63 mc ) and CuAu-I ( P\\bar{4}m2 ) have been fully investigated. Stabilities of these materials have been systematically studied up to 40 GPa using various approaches. We have confirmed the stability of the chalcopyrite structure up to 30 GPa for which the CuAu-I structure has been previously proposed. However, our calculation revealed that CuAu-I is not a stable structure under 32 GPa and 33 GPa for both ZnO0.5S0.5 and ZnO0.5Se0.5, respectively, which could explain the failure in several attempts to fabricate these materials under such conditions. We have also examined the pressure-dependence of the bandgap and electronic structure up to 30 GPa. We can conclude from our PDOS analysis that the applied pressure does not change the atomic state characters of electronic states near the top of valence and the bottom of conduction bands, but mainly modifies the dominant Zn-3d atomic state of the deep Bloch state at -1 eV below Fermi level.

  11. Spectroscopic ellipsometric characterization of Si/Si(1-x)Ge(x) strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Yao, H.; Woollam, J. A.; Wang, P. J.; Tejwani, M. J.; Alterovitz, S. A.

    1993-01-01

    Spectroscopic ellipsometry (SE) was employed to characterize Si/Si(1-x)Ge(x) strained-layer superlattices. An algorithm was developed, using the available optical constants measured at a number of fixed x values of Ge composition, to compute the dielectric function spectrum of Si(1-x)Ge(x) at an arbitrary x value in the spectral range 17 to 5.6 eV. The ellipsometrically determined superlattice thicknesses and alloy compositional fractions were in excellent agreement with results from high-resolution x ray diffraction studies. The silicon surfaces of the superlattices were subjected to a 9:1 HF cleaning prior to the SE measurements. The HF solution removed silicon oxides on the semiconductor surface, and terminated the Si surface with hydrogen-silicon bonds, which were monitored over a period of several weeks, after the HF cleaning, by SE measurements. An equivalent dielectric layer model was established to describe the hydrogen-terminated Si surface layer. The passivated Si surface remained unchanged for greater than 2 h, and very little surface oxidation took place even over 3 to 4 days.

  12. Fabrication and characterization of photovoltaic cell with novel configuration ITO/n-CuIn3Se5/p-CIS/In

    NASA Astrophysics Data System (ADS)

    Geethu, R.; Jacob, R.; Sreenivasan, P. V.; Shripathi, T.; S, Okram G.; Philip, R. R.

    2015-02-01

    A novel configuration ITO/n-OVC CuIn3Se5/p-CIS/In solar cell has been fabricated by multisource vacuum co-evaporation technique on soda lime glass substrates. The pn junction is formed with ordered vacancy compound as the n counter part for the p type CuInSe2. The structural, compositional, hall coefficient, optical and electrical properties of the p and n layers have been studied respectively by X-ray diffraction, Energy Dispersive Analysis of X rays, optical absorbance and conductivity measurements. Current density-Voltage measurements enabled the determination of efficiency of the device.

  13. Superconducting order from disorder in 2H-TaSe2-xSx

    NASA Astrophysics Data System (ADS)

    Li, Lijun; Deng, Xiaoyu; Wang, Zhen; Liu, Yu; Abeykoon, Milinda; Dooryhee, Eric; Tomic, Aleksandra; Huang, Yanan; Warren, John B.; Bozin, Emil S.; Billinge, Simon J. L.; Sun, Yuping; Zhu, Yimei; Kotliar, Gabriel; Petrovic, Cedomir

    2017-12-01

    We report on the emergence of robust superconducting order in single crystal alloys of TaSe2-xSx (0 ≤ × ≤ 2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature Tc(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe2 and/or 2H-TaS2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.

  14. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wei, Zhan-Tao

    2018-05-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  15. van der Waals epitaxial two-dimensional CdSxSe(1-x) semiconductor alloys with tunable-composition and application to flexible optoelectronics.

    PubMed

    Xia, Jing; Zhao, Yun-Xuan; Wang, Lei; Li, Xuan-Ze; Gu, Yi-Yi; Cheng, Hua-Qiu; Meng, Xiang-Min

    2017-09-21

    Despite the substantial progress in the development of two-dimensional (2D) materials from conventional layered crystals, it still remains particularly challenging to produce high-quality 2D non-layered semiconductor alloys which may bring in some unique properties and new functions. In this work, the synthesis of well-oriented 2D non-layered CdS x Se (1-x) semiconductor alloy flakes with tunable compositions and optical properties is established. Structural analysis reveals that the 2D non-layered alloys follow an incommensurate van der Waals epitaxial growth pattern. Photoluminescence measurements show that the 2D alloys have composition-dependent direct bandgaps with the emission peak varying from 1.8 eV to 2.3 eV, coinciding well with the density functional theory calculations. Furthermore, photodetectors based on the CdS x Se (1-x) flakes exhibit a high photoresponsivity of 703 A W -1 with an external quantum efficiency of 1.94 × 10 3 and a response time of 39 ms. Flexible devices fabricated on a thin mica substrate display good mechanical stability upon repeated bending. This work suggests a facile and general method to produce high-quality 2D non-layered semiconductor alloys for next-generation optoelectronic devices.

  16. Lattice dynamics of BaFe 2 X 3 ( X = S , Se ) compounds

    DOE PAGES

    Popović, Z. V.; Šćepanović, M.; Lazarević, N.; ...

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe₂X₃ (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe₂S₃ (BaFe₂Se₃) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe₂S(Se)₃ is supported by themore » lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe₂Se₃ below T N=255K leaves a fingerprint both in the A 1g and B 3g phonon mode linewidth and energy.« less

  17. Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys

    NASA Astrophysics Data System (ADS)

    Jin, Moon-Seog; Kim, Chang-Dae; Jang, Kiwan; Park, Sang-An; Kim, Duck-Tae; Kim, Hyung-Gon; Kim, Wha-Tek

    2006-09-01

    Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys were investigated in the composition region of 0.0 x 0.4 and in the wavelength region of 300 to 2500 nm at 4.8 K and 290 K. We observed several absorption bands in the wavelength regions corresponding to the 4A2(4F) 4T1(4P) transition and the 4A2(4F) 4T1(4F) transition of Co2+ at a tetrahedral Td point symmetry point in the host crystals, as well as unknown absorption bands. The several absorption bands were analyzed in the framework of the crystal-field theory along with the second-order spin-orbit coupling. The unknown absorption bands were assigned as due to phonon-assisted absorption bands. We also investigated the variations of the crystal-field parameter Dq and the Racah parameter B with composition x in the Mgx Cd1-x Se system. The results showed that the crystal-field parameter (Dq ) increases, on the other hand, the Racah parameter (B ) decreases with increasing composition x, which may be connected with an increase in the covalency of the metal-ligand bond with increasing composition x in the Mgx Cd1-x Se system.

  18. Thermoelectric prospects of chemically deposited PbSe and SnSe thin films

    NASA Astrophysics Data System (ADS)

    Nair, P. K.; Martínez, Ana Karen; Rosa García Angelmo, Ana; Barrios Salgado, Enue; Nair, M. T. S.

    2018-03-01

    Thin films of PbSe of 400-600 nm in thickness, were obtained via chemical deposition from a solution containing lead nitrate, thiourea and selenosufate. SnSe thin films of 90-180 nm in thickness, were also obtained by chemical deposition from a solution containing selenosulfate. Optical and electrical properties of these thin films were significantly altered by heating them in selenium vapor at 300 °C. Thin film PbSe has a bandgap (Eg) of 1.17 eV (direct gap, forbidden transitions), which decreases to 0.77 eV when it has been heated. Its electrical conductivity (σ) is p-type: 0.18 Ω-1 cm-1 (as-prepared), and 6.4 Ω-1 cm-1 when heated. Thin film SnSe is of orthorhombic crystalline structure which remains stable when heated at 300 °C, but its Eg increases from 1.12 eV (indirect) in as-prepared film to 1.5 eV (direct, forbidden transitions) upon heating. Its electrical conductivity is p-type, which increases from 0.3 Ω-1 cm-1 (as-prepared) to 1 Ω-1 cm-1 when heated (without Se-vapor). When SnSe film is heated at 300 °C in the presence of Se-vapor, they transform to SnSe2, with Eg of 1.5 eV (direct, forbidden) with n-type electrical conductivity, 11 Ω-1 cm-1. The Seebeck coefficient for the PbSe films is: +0.55 mV K-1 (as prepared) and +0.275 mV K-1 (heated); for SnSe films it is: +0.3 mV K-1 (as prepared) and +0.20 mV K-1 (heated); and for SnSe2 film, - 0.35 mV K-1. A five-element PbSe-SnSe2-PbSe-SnSe2-PbSe thermoelectric device demonstrated 50 mV for a temperature difference ΔT = 20 °C (2.5 mV K-1). For SnSe-SnSe2-SnSe-SnSe2-SnSe device, the value is 15 mV for ΔT = 20 °C (0.75 mV K-1). Prospect of these thin films in thermoelectric devices of hybrid materials, in which the coatings may be applied on distinct substrate and geometries is attractive.

  19. Electronic structure and phase separation of superconducting and nonsuperconducting KxFe2-ySe2 revealed by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Oiwake, M.; Ootsuki, D.; Noji, T.; Hatakeda, T.; Koike, Y.; Horio, M.; Fujimori, A.; Saini, N. L.; Mizokawa, T.

    2013-12-01

    We have investigated the electronic structure of superconducting (SC) and nonsuperconducting (non-SC) KxFe2-ySe2 using x-ray photoemission spectroscopy (XPS). The spectral shape of the Fe 2p XPS is found to depend on the amount of Fe vacancies. The Fe 2p3/2 peak of the SC and non-SC Fe-rich samples is accompanied by a shoulder structure on the lower binding energy side, which can be attributed to the metallic phase embedded in the Fe2+ insulating phase. The absence of the shoulder structure in the non-SC Fe-poor sample allows us to analyze the Fe 2p spectra using a FeSe4 cluster model. The Fe 3d-Se 4p charge-transfer energy of the Fe2+ insulating phase is found to be ˜2.3 eV which is smaller than the Fe 3d-Fe 3d Coulomb interaction of ˜3.5 eV. This indicates that the Fe2+ insulating state is the charge-transfer type in the Zaanen-Sawatzky-Allen scheme. We also find a substantial change in the valence-band XPS as a function of Fe content and temperature. The metallic state at the Fermi level is seen in the SC and non-SC Fe-rich samples and tends to be enhanced with cooling in the SC sample.

  20. Critical current density and vortex pinning in tetragonal FeS 1 ₋ x Se x ( x = 0 , 0.06 )

    DOE PAGES

    Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; ...

    2016-09-07

    Here we report critical current density (J c) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (T c). The J c is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS 0.94Se 0.06 shows contribution of core-normal surfacelike pinning. Lastly, reduced temperature dependence of J c indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δl), in contrast tomore » K xFe 2₋ySe 2 where spatial variations in T c (δT c) prevails.« less

  1. Synthesis and Characterization of an Earth-Abundant Cu2BaSn(S,Se)4 Chalcogenide for Photoelectrochemical Cell Application.

    PubMed

    Shin, Donghyeop; Ngaboyamahina, Edgard; Zhou, Yihao; Glass, Jeffrey T; Mitzi, David B

    2016-11-17

    Cu 2 BaSnS 4-x Se x films consisting of earth-abundant metals have been examined for photocathode application. Films with different Se contents (i.e., Cu 2 BaSnS 4-x Se x with x ≤ 2.4) were synthesized using a cosputter system with post-deposition sulfurization/selenization annealing treatments. Each film adopts a trigonal P3 1 crystal structure, with progressively larger lattice constants and with band gaps shifting from 2.0 to 1.6 eV, as more Se substitutes for S in the parent compound Cu 2 BaSnS 4 . Given the suitable bandgap and earth-abundant elements, the Cu 2 BaSnS 4-x Se x films were studied as prospective photocathodes for water splitting. Greater than 6 mA/cm 2 was obtained under illumination at -0.4 V versus reversible hydrogen electrode for Pt/Cu 2 BaSnS 4-x Se x films with ∼60% Se content (i.e., x = 2.4), whereas a bare Cu 2 BaSnS 4-x Se x (x = 2.4) film yielded ∼3 mA/cm 2 at -0.4 V/RHE.

  2. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers.

    PubMed

    Rau, A W; Bakueva, L; Rowlands, J A

    2005-10-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously, (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/ microm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S0) of the a-Se layers was 63 +/- 2 nC cm(-2) cGy(-1). It was found that S decreases to 30% of S0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25 +/- 0.1 x 10(22) ehp m(-3) s(-1) and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport

  3. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-10-15

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting inmore » a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/{mu}m, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S{sub 0}) of the a-Se layers was 63{+-}2 nC cm{sup -2} cGy{sup -1}. It was found that S decreases to 30% of S{sub 0} after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25{+-}0.1x10{sup 22} ehp m{sup -3} s{sup -1} and, to a first approximation, independent of the ghosting dose. However

  4. Phase Transition, Conformational Exchange, and Nonlinear Optical Third Harmonic Generation of A CsP 2 Se 8 ( A = K, Rb, Cs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, Alyssa S.; Banerjee, Abhishek; Saouma, Felix O.

    2016-04-12

    The soluble molecular selenophosphate salts ACsP(2)Se(8) (A = K, Rb, Cs) crystallize in the orthorhombic space group Ccce with a = 14.982(3) A, b = 24.579(5) A, and c = 13.065(3) A for the Cs salt and a = 14.782(3) A, b = 23.954(5) A, and c = 13.044(3) A for the K analogue. ACsP2Se8 is composed of the molecular 6-membered ring, [P2Se8](2-), in the twist conformation charge balanced by alkali metals. The band gaps of these compounds are 2.44 +/- 0.2 eV for Cs2P2Se8, 2.41 +/- 0.2 eV for RbCsP2Se8, and 2.36 +/- 0.2 eV for KCsP2Se8. The amorphousmore » versions of these materials can be made by water quenching the melt and have band gaps for all ACsP(2)Se(8) of 2.12 +/- 0.2 eV. Raman spectroscopic studies exhibit active modes of PSe4 and Se Se in the compound. Solution P-31 NMR studies shed light into the interesting conformational fluxionality of the [P2Se8](2-) anion, including a conformation that has not been previously observed. Thermal analysis reveals ACsP(2)Se(8) exhibits a phase transition, which we investigate by in situ synchrotron powder X-ray diffraction. Third harmonic generation (THG) nonlinear optical measurements determined the THG coefficient, chi(3), for amorphous and crystalline Cs2P2Se8 of 1.8 +/- 0.2 X 105 pm(2)/V-2 and 2.4 +/- 0.1 X 105 pm2/V2, respectively.« less

  5. Effects of copper excess and copper deficiency on the structural and electrical properties of bulk Cu{sub x}SnSe{sub 3} with x=1.6–2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wubet, Walelign; Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw

    2015-03-15

    Effects of the Cu variation on the morphological, structural, and electrical properties of bulk Cu{sub x}SnSe{sub 3} (CTSe) with x=1.6–2.2 have been investigated. Dense CTSe pellets with grains of 3–4 µm were obtained after sintering at 550 °C. All CTSe pellets showed a dominant p-type behavior. CTSe at x=2.0 with a hole concentration (n{sub p}) of 1.02×10{sup 18} cm{sup −3} and Hall mobility (μ) of 225 cm{sup 2}/V/s had a highest conductivity (σ) of 39 S/cm. CTSe at x=1.6 with n{sub p} of 5.0×10{sup 17} cm{sup −3} and of 11 cm{sup 2}/V/s had a lowest of 0.90 S/cm. The explanation,more » based upon vacancies and antisite defects, for the changes in electrical property with the Cu content is supported by the data from lattice parameter. The study in bulk properties of CTSe and its defects is helpful for selecting the suitable absorber composition to fabricate thin film solar cells. - Graphical abstract: Cu{sub 2}SnSe{sub 3} is an absorber candidate for solar cells. The Cu stoichiometry on electrical properties, which is important for CIGS and CZTS, is investigated and the Cu-deficiency composition is recommended. - Highlights: • Cu{sub x}SnSe{sub 3} (CTSe) bulks with 1.6≤x≤2.2 were prepared by reactive sintering. • Cu{sub 2}SnSe{sub 3} with n{sub p} of 1.02×10{sup 18} cm{sup −3} and μ of 225 cm{sup 2}/V/s had highest σ of 39 S/cm. • Cu{sub 1.6}SnSe{sub 3} with n{sub p}=5.0×10{sup 17} cm{sup −3} and μ=11 cm{sup 2}/V/s had lowest σ=0.90 S/cm. • Lower n{sub p} at CTSe at x=1.6 is related to the formation of the Sn-to-Cu defect. • The drop in n{sub p} for CTSe at x=2.2 indicates V{sub Sn}{sup 4−} dominates over Cu{sub Sn}{sup 3−} defect.« less

  6. Improvement of thermoelectric properties and their correlations with electron effective mass in Cu1.98SxSe1-x.

    PubMed

    Zhao, Lanling; Fei, Frank Yun; Wang, Jun; Wang, Funing; Wang, Chunlei; Li, Jichao; Wang, Jiyang; Cheng, Zhenxiang; Dou, Shixue; Wang, Xiaolin

    2017-01-16

    Sulphur doping effects on the crystal structures, thermoelectric properties, density-of-states, and effective mass in Cu 1.98 S x Se 1-x were studied based on the electrical and thermal transport property measurements, and first-principles calculations. The X-ray diffraction patterns and Rietveld refinements indicate that room temperature Cu 1.98 S x Se 1-x (x = 0, 0.02, 0.08, 0.16) and Cu 1.98 S x Se 1-x (x = 0.8, 0.9, 1.0) have the same crystal structure as monoclinic-Cu 2 Se and orthorhombic-Cu 2 S, respectively. Sulphur doping can greatly enhance zT values when x is in the range of 0.8≤ × ≤1.0. Furthermore, all doped samples show stable thermoelectric compatibility factors over a broad temperature range from 700 to 1000 K, which could greatly benefit their practical applications. First-principles calculations indicate that both the electron density-of-sates and the effective mass for all the compounds exhibit non-monotonic sulphur doping dependence. It is concluded that the overall thermoelectric performance of the Cu 1.98 S x Se 1-x system is mainly correlated with the electron effective mass and the density-of-states.

  7. Optical investigation of vacuum evaporated Se80-xTe20Sbx (x = 0, 6, 12) amorphous thin films

    NASA Astrophysics Data System (ADS)

    Deepika; Singh, Hukum

    2017-09-01

    Amorphous thin films of Se80-xTe20Sbx (x = 0, 6, 12) chalcogenide glasses has been deposited onto pre-cleaned glass substrate using thermal evaporation technique under a vacuum of 10-5 Torr. The absorption and transmission spectra of these thin films have been recorded using UV spectrophotometer in the spectral range 400-2500 nm at room temperature. Swanepoel envelope method has been employed to obtain film thickness and optical constants such as refractive index, extinction coefficient and dielectric constant. The optical band gap of the samples has been calculated using Tauc relation. The study reveals that optical band gap decreases on increase in Sb content. This is due to decrease in average single bond energy calculated using chemical bond approach. The values of urbach energy has also been computed to support the above observation. Variation of refractive index has also been studies in terms of wavelength and energy using WDD model and values of single oscillator energy and dispersion energy has been obtained.

  8. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenck, Craig A.; Holland, Cynthia K.; Schneider, Matthew R.

    L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that definesmore » TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.« less

  9. Superstructure and physical properties of skutterudite-related phase CoGe1.5Se1.5

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Fang, B.; Zhu, X. M.; Liang, M. M.

    2017-03-01

    CoGe1.5Se1.5 skutterudite-related phase with a homogeneity range has been synthesized by solid-state reaction. The phase purity, homogeneity range, crystal structure, thermal stability and electrical resistivity were studied. XRD data indicates that CoGe1.5Se1.5 crystallized in a modification of the skutterudite CoAs3 type structure with space group R\\bar{3} (a = b = 11.751(1) Å, c = 14.36(1) Å). HRTEM-SAED shows more information about the superstructure to confirm the rhombohedral symmetry with space group R\\bar{3}. The lattice parameter of this skutterudite-related phase was found to be dependent on the concentration of Ge and Se. CoGe1.5Se1.5 decomposed between 1073 K and 1173 K under argon atmosphere investigated by in-situ XRD, suggesting a good thermal stability. CoGe1.49Se1.42, CoGe1.43Se1.34 and CoGe1.50Se1.15 dense bulk samples were obtained by hot-press technique. The chemical composition detected by FESEM/EDS suggests the homogeneity range and the existence of voids at framework positions. The electrical resistivity of the compounds decreases with increasing temperature, acting as a semiconductor. The chemical composition has a big influence on the value of electrical resistivity and energy gap.

  10. Smectic C liquid crystal growth through surface orientation by ZnxCd1-xSe thin films

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Bineva, I.; Levi, Z.; Mineva, M.

    2012-12-01

    A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1-xSe. The surface morphology and orientation features of the ZnxCd1-xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1-xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.

  11. Theoretical calculations of structural, electronic, and elastic properties of CdSe1-x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1-x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  12. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution.

    PubMed

    Rens, Willem; Grützner, Frank; O'brien, Patricia C M; Fairclough, Helen; Graves, Jennifer A M; Ferguson-Smith, Malcolm A

    2004-11-16

    The platypus (2n = 52) has a complex karyotype that has been controversial over the last three decades. The presence of unpaired chromosomes and an unknown sex-determining system especially has defied attempts at conventional analysis. This article reports on the preparation of chromosome-specific probes from flow-sorted chromosomes and their application in the identification and classification of all platypus chromosomes. This work reveals that the male karyotype has 21 pairs of chromosomes and 10 unpaired chromosomes (E1-E10), which are linked by short regions of homology to form a multivalent chain in meiosis. The female karyotype differs in that five of these unpaired elements (E1, E3, E5, E7, and E9) are each present in duplicate, whereas the remaining five unpaired elements (E2, E4, E6, E8, and E10) are absent. This finding indicates that sex is determined by the alternate segregation of the chain of 10 during spermatogenesis so that equal numbers of sperm bear either one of the two groups of five elements, i.e., five X and five Y chromosomes. Chromosome painting reveals that these X and Y chromosomes contain pairing (XY shared) and differential (X- or Y-specific) segments. Y differential regions must contain male-determining genes, and X differential regions should be dosage-compensated in the female. Two models for the evolution of the sex-determining system are presented. The resolution of the longstanding debate over the platypus karyotype is an important step toward the understanding of mechanisms of sex determination, dosage compensation, and karyotype evolution.

  13. Study of temperature dependent electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses

    NASA Astrophysics Data System (ADS)

    Deepika, Singh, Hukum

    2018-05-01

    This paper reports the variation in electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses studied at different temperatures. The amorphous samples were prepared using the melt quenching method and the electrical measurements were performed on Keithley Electrometer in the temperature ranging from 298-373 K. The I-V characteristics were noted at different temperatures and the data obtained was analysed to get dc electrical conductivity and activation energy of electrical conduction. Further, Mott's 3D VRH model has been applied to obtain density of states, hopping range and hopping energy at different temperatures. The obtained results show that dc electrical conductivity increases with increase in Bi composition in Se-Te system. These compositions also show close agreement to Mott's VRH model.

  14. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  15. A density functional study of silicon fullerene endohedral X@Si20F20 and exohedral X-Si20F20 (X=O2-, S2-, Se2-) complexes

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Esrafili, Mehdi D.; Manzetti, Sergio; Roonasi, Payman

    2014-02-01

    This study reports the structure and electronic properties of three stable endohedral X@Si20F20 and exohedral X-Si20F20 (X=O2-, S2-, Se2-) complexes. The study revealed that the endohedral complexes with S2- and Se2- result as energy minimum structures, with the guest anion located in the cage center. In the case of endohedral O2--complexes, the pattern is quite different whereas the O2- complexes dramatically deviated from the architecture of S2- and Se2-, by having O2- located toward one of silicon atoms in the cage. With respect to the exohedral form, the energy minimized structure is obtained by positioning the anion between two silicon atoms and forming two Si-X bonds. For both cases, the strength of the interactions is calculated to increase accordingly to the pattern: Se2-@Si20F20 (Se2--Si20F20)

  16. Microwave-assisted Bi2Se3 nanoparticles using various organic solvents

    NASA Astrophysics Data System (ADS)

    Vijila, J. Joy Jeba; Mohanraj, K.; Henry, J.; Sivakumar, G.

    2016-01-01

    Microwave assisted Bi2Se3 nanoparticles were synthesized from five different solvents DMF, EG, EG + H2O, EDA + dil.HNO3 and N2H4 + H2O + Ethanol. The influence of solvents on purity of the compound was analysed by using X-ray diffraction patterns. The result indicates pure rhombohedral Bi2Se3 nanoparticles formed for N2H4 + H2O + Ethanol. The presence of vibrational bands in the range of 400-800 cm- 1 is confirmed the formation of Bi2Se3. The maximum optical absorption observed around 450 nm and the band gap values are found in the range of 1.5 eV-2.17 eV for all the solvents. The nanostructure of the Bi2Se3 particles change with solvents. From the experimental results, the solvent N2H4 + H2O + Ethanol produces pure nanosize Bi2Se3 particles under the microwave assisted method.

  17. (Ba1- x Bi0.33 x Sr0.67 x )(Ti1- x Bi0.67 x V0.33 x )O3 and (Ba1- x Bi0.5 x Sr0.5 x )(Ti1- x Bi0.5 x Ti0.5 x )O3 solid solutions: phase evolution, microstructure, dielectric properties and impedance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiuli; Li, Xiaoxia; Yan, Xiao; Liu, Gaofeng; Zhou, Huanfu

    2018-06-01

    Perovskite solid solution ceramics of (Ba1- x Bi0.33 x Sr0.67 x )(Ti1- x Bi0.67 x V0.33 x )O3 and (Ba1- x Bi0.5 x Sr0.5 x )(Ti1- x Bi0.5 x Ti0.5 x )O3 (BBSTBV, BBSTBT, 0.02 ≤ x ≤ 0.2) were prepared by the traditional solid state reaction technique. The phase evolution, microstructure and dielectric properties of BBSTBV and BBSTBT ceramics were researched. X-Ray diffraction results illustrated that both BBSTBV and BBSTBT could form a homogenous solid solution which has a similar structure with BaTiO3. The optimized properties of (Ba0.8Bi0.1Sr0.1)(Ti0.8Bi0.1Ti0.1)O3 ceramics with stable ɛ r ( 1769-2293), small Δ ɛ/ ɛ 25 °C values (± 15%) over a broad temperature range from - 58 to 151 °C and low tan δ ≤ 0.03 from - 11 to 131 °C were obtained. In the high-temperature region, the relaxation and conduction process are attributed to the thermal activation and the oxygen vacancies may be the ionic charge carriers in perovskite ferroelectrics.

  18. New superconductor LixFe1+δSe (x ≤ 0.07, Tc up to 44 K) by an electrochemical route

    NASA Astrophysics Data System (ADS)

    Alekseeva, Anastasia M.; Drozhzhin, Oleg A.; Dosaev, Kirill A.; Antipov, Evgeny V.; Zakharov, Konstantin V.; Volkova, Olga S.; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Koz, Cevriye; Schwarz, Ulrich; Rosner, Helge; Grin, Yuri

    2016-05-01

    The superconducting transition temperature (Tc) of tetragonal Fe1+δSe was enhanced from 8.5 K to 44 K by chemical structure modification. While insertion of large alkaline cations like K or solvated lithium and iron cations in the interlayer space, the [Fe2Se2] interlayer separation increases significantly from 5.5 Å in native Fe1+δSe to >7 Å in KxFe1-ySe and to >9 Å in Li1-xFex(OH)Fe1-ySe, we report on an electrochemical route to modify the superconducting properties of Fe1+δSe. In contrast to conventional chemical (solution) techniques, the electrochemical approach allows to insert non-solvated Li+ into the Fe1+δSe structure which preserves the native arrangement of [Fe2Se2] layers and their small separation. The amount of intercalated lithium is extremely small (about 0.07 Li+ per f.u.), however, its incorporation results in the enhancement of Tc up to ˜44 K. The quantum-mechanical calculations show that Li occupies the octahedrally coordinated position, while the [Fe2Se2] layers remain basically unmodified. The obtained enhancement of the electronic density of states at the Fermi level clearly exceeds the effect expected on basis of rigid band behavior.

  19. CdSe/beta-Pb0.33V2O5 heterostructures: Nanoscale semiconductor interfaces with tunable energetic configurations for solar energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Milleville, Christopher C.

    charge transfer of CdSe/β-Pb0.33V¬2O5 and CdSe/V2O5 heterostructures. TA measurements indicate that, for both types of heterostructures, photoexcitation of CdSe QDs was followed by a transfer of electrons to the conduction band of β-Pb0.33V¬2O5 and holes to the mid-gap states of β-Pb0.33V¬2O5. Ultrafast transient absoprtion measurements revealed that holes actually transferred before electrons, on time scales of ca. 2 ps. In contrast, for analogous heterostructures consisting of CdSe QDs interfaced with V2O5, only electron transfer was observed. In addition, electron transfer was readily achieved for SILAR-prepared heterostructures; however, for LAA-prepared heterostructures, electron transfer was observed only upon excitation at energies substantially greater than the bandgap absorption threshold of CdSe. Transient absorbance decay traces revealed longer excited-state lifetimes (1-3 μs) for CdSe/β Pb0.33V2O5 heterostructures relative to bare β-Pb0.33V2O5 NWs (0.2 to 0.6 μs); the difference was attributed to surface passivation of intrinsic surface defects in β-Pb0.33V2O5 upon interfacing with CdSe. In an effort to improve the energetic offset in QD/β-Pb0.33V2O5 heterostructures, cadmium sulfide (CdS) QDs were used in place of CdSe QDs. X-ray photoelectron spectroscopy (XPS) valence band spectra of CdS/β-Pb0.33V2O5 and CdSe/β-Pb0.33V2O5 revealed a greater binding energy onset for CdS compared to CdSe. Binding energy onsets of 1.33 (± 0.03) and 0.92 (± 0.02) eV were determined for Cys-CdS/β Pb0.33V2O5 and Cys-CdSe/β Pb0.33V2O5, respectively; suggesting a 0.41 (±0.04) eV decrease in the free energy (ΔG) needed for hole transfer from the valence band edge of the QDs to the mid-gap states. Linear sweep voltammetry was employed to measure the photocatalytic activity of CdSe/β Pb0.33V2O5 heterostructures in electrolytes containing ascorbic acid as a sacrificial proton donor. Preliminary photoelectrochemical measurements on CdSe/β-Pb0.33V2O5 electrodes

  20. First-principles study of bandgap tuning in Ge1-xPbxSe

    NASA Astrophysics Data System (ADS)

    Lohani, Himanshu

    2018-03-01

    Narrow bandgap and its tuning are important aspects of materials for their technological applications. In this context group IV-VI semiconductors are one of the interesting candidates. In this paper, we explore the possibility of bandgap tuning in one of the family member of this family GeSe by using isoelectronic Pb doping. Our study is first-principles based electronic structure calculations of Ge1-xPbxSe. This study reveals that the Ge-p and Se-p states are strongly hybridized in GeSe and shows a gap in the DOS at Ef in GeSe. This gap reduces systematically with simultaneous enhancement of the states in the near Ef region as a function of Pb doping. This leads tuning of the indirect bandgap in GeSe via Pb doping. The results of the indirect bandgap decrement are consistent with the experimental findings. We propose a mechanism where the electrostatic effect of dopant Pb cation could be responsible for these changes in the electronic structure of GeSe.

  1. The metal-insulator transition in Fe(1.01-x)Cu(x)Se.

    PubMed

    Williams, A J; McQueen, T M; Ksenofontov, V; Felser, C; Cava, R J

    2009-07-29

    Iron selenide, Fe(1.01)Se, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature of 8 K. Here we show that copper can be substituted at the iron site in Fe(1.01)Se up to a solubility limit of 20-30%, after which a first-order transition to the three-dimensional CuFeSe(2) structure type is observed. As little as 1.5% copper is sufficient to suppress the superconductivity, and 4% drives the system through a metal-insulator transition. A local magnetic moment is introduced, which maximizes near 12% doping, where a spin-glass transition near 15 K is observed.

  2. 21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...

  3. 21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...

  4. 21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...

  5. 21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...

  6. 21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...

  7. Tunability of the topological nodal-line semimetal phase in ZrSi X -type materials ( X = S ,   Se ,   Te )

    DOE PAGES

    Hosen, M. Mofazzel; Dimitri, Klauss; Belopolski, Ilya; ...

    2017-04-03

    The discovery of a topological nodal-line (TNL) semimetal phase in ZrSiS has invigorated the study of other members of this family. In this paper, we present a comparative electronic structure study ofmore » $$\\mathrm{ZrSi}X$$ (where $$X=\\text{S}$$, Se, Te) using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. Our ARPES studies show that the overall electronic structure of $$\\mathrm{ZrSi}X$$ materials comprises the diamond-shaped Fermi pocket, the nearly elliptical-shaped Fermi pocket, and a small electron pocket encircling the zone center ($$\\mathrm{{\\Gamma}}$$) point, the $M$ point, and the $X$ point of the Brillouin zone, respectively. We also observe a small Fermi surface pocket along the $$M{-}\\mathrm{{\\Gamma}}{-}M$$ direction in ZrSiTe, which is absent in both ZrSiS and ZrSiSe. Furthermore, our theoretical studies show a transition from nodal-line to nodeless gapped phase by tuning the chalcogenide from S to Te in these material systems. Finally, our findings provide direct evidence for the tunability of the TNL phase in $$\\mathrm{ZrSi}X$$ material systems by adjusting the spin-orbit coupling strength via the $X$ anion.« less

  8. Photoconduction in amorphous thin films of Se90Sb10-xAgx glassy alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh Kumar; Shukla, R. K.; Dwivedi, Prabhat K.; Kumar, A.

    2017-10-01

    The present paper reports the steady state photoconductivity and photosensitivity response of thermally evaporated amorphous thin films of Se90Sb10-xAgx(x = 2, 4, 6, 8, 10). Temperature dependence of dark conductivity is studied and activation energy is calculated for different samples. Temperature dependence of photoconductivity is also studied at different intensities. From temperature dependence of photoconductivity activation energy is computed at different intensities which are found to vary from 0.26 to 0.47 eV. Intensity dependence of photoconductivity has also been studied at different temperatures. These curves are plotted on logarithmic scale and found to be straight lines which show that photoconductivity follows a power law with intensity. Composition dependence of dark conductivity, activation energy of DC conduction and photosensitivity show that these parameters are highly. composition dependent and show a discontinuity at a particular composition when Ag concentration becomes 6 at. %. This is explained in terms of transition from floppy state to mechanically stabilized state at this composition.

  9. Universal amorphous-amorphous transition in GexSe100-x glasses under pressure

    NASA Astrophysics Data System (ADS)

    Yildirim, Can; Micoulaut, Matthieu; Boolchand, Punit; Kantor, Innokenty; Mathon, Olivier; Gaspard, Jean-Pierre; Irifune, Tetsuo; Raty, Jean-Yves

    2016-06-01

    Pressure induced structural modifications in vitreous GexSe100-x (where 10 ≤ x ≤ 25) are investigated using X-ray absorption spectroscopy (XAS) along with supplementary X-ray diffraction (XRD) experiments and ab initio molecular dynamics (AIMD) simulations. Universal changes in distances and angle distributions are observed when scaled to reduced densities. All compositions are observed to remain amorphous under pressure values up to 42 GPa. The Ge-Se interatomic distances extracted from XAS data show a two-step response to the applied pressure; a gradual decrease followed by an increase at around 15-20 GPa, depending on the composition. This increase is attributed to the metallization event that can be traced with the red shift in Ge K edge energy which is also identified by the principal peak position of the structure factor. The densification mechanisms are studied in details by means of AIMD simulations and compared to the experimental results. The evolution of bond angle distributions, interatomic distances and coordination numbers are examined and lead to similar pressure-induced structural changes for any composition.

  10. Crystal structure and magnetic properties of high-oxygen pressure annealed Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swierczek, Konrad; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439; Dabrowski, Bogdan

    2009-02-15

    Structural and magnetic studies are presented for the perovskite type Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5) materials annealed under moderately high-oxygen pressures of {approx}200 atm. A detailed analysis of the room temperature neutron time-of-flight diffraction data reveals that the crystal structure of the sample SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89(1)}, previously described as vacancy-disordered cubic, is similar to the formerly reported, oxygen-vacancy ordered Sr{sub 8}Fe{sub 8}O{sub 23} compound, i.e. Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23} is tetragonal with the I4/mmm symmetry. With an increase of the La content the studied materials become nearly oxygen stoichiometric and a lowering of the crystal symmetrymore » is observed from cubic Pm3-barm (x=0.1 and 0.2) to tetragonal I4/mcm (x=0.3 and 0.4), and finally to monoclinic I12/c1 (x=0.5). Low-temperature structural and magnetic measurements show a ferromagnetic ordering with the maximum Curie temperature near 290 K at x=0.2. - Graphical Abstract: Room temperature Rietveld refinement profile using I4/mmm space group for the oxygen vacancy ordered SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89} (Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23}). Top tick-marks denote allowed reflections in I4/mmm, bottom one emphasize the possibility of inexact indexing using Pm3-barm symmetry. Previous reports indicate that similar ordering is common for SrCo{sub 1-x}Fe{sub x}O{sub 3-{delta}} compounds possibly hindering their applications.« less

  11. Se(VI) Reduction and the Precipitation of Se(0) Precipitation by the Facultative Bacterium Enterobacter Cloacae SLD1a-1 is Regulated by FNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee,N.; Ma, J.; Dalia, A.

    2007-01-01

    The fate of selenium in the environment is controlled, in part, by microbial selenium oxyanion reduction and Se(0) precipitation. In this study, we identified a genetic regulator that controls selenate reductase activity in the Se-reducing bacterium Enterobacter cloacae SLD1a-1. Heterologous expression of the global anaerobic regulatory gene fnr (fumarate nitrate reduction regulator) from E. cloacae in the non-Se-reducing strain Escherichia coli S17-1 activated the ability to reduce Se(VI) and precipitate insoluble Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at rates similar to those for E. cloacae, with first-order reaction constants of k = 2.07more » x 10{sup -2} h{sup -1} and k = 3.36 x 10{sup -2} h{sup -1}, respectively, and produced elemental selenium particles with identical morphologies and short-range atomic orders. Mutation of the fnr gene in E. cloacae SLD1a-1 resulted in derivative strains that were deficient in selenate reductase activity and unable to precipitate elemental selenium. Complementation by the wild-type fnr sequence restored the ability of mutant strains to reduce Se(VI). Our findings suggest that Se(VI) reduction and the precipitation of Se(0) by facultative anaerobes are regulated by oxygen-sensing transcription factors and occur under suboxic conditions.« less

  12. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution

    PubMed Central

    Rens, Willem; Grützner, Frank; O'Brien, Patricia C. M.; Fairclough, Helen; Graves, Jennifer A. M.; Ferguson-Smith, Malcolm A.

    2004-01-01

    The platypus (2n = 52) has a complex karyotype that has been controversial over the last three decades. The presence of unpaired chromosomes and an unknown sex-determining system especially has defied attempts at conventional analysis. This article reports on the preparation of chromosome-specific probes from flow-sorted chromosomes and their application in the identification and classification of all platypus chromosomes. This work reveals that the male karyotype has 21 pairs of chromosomes and 10 unpaired chromosomes (E1-E10), which are linked by short regions of homology to form a multivalent chain in meiosis. The female karyotype differs in that five of these unpaired elements (E1, E3, E5, E7, and E9) are each present in duplicate, whereas the remaining five unpaired elements (E2, E4, E6, E8, and E10) are absent. This finding indicates that sex is determined by the alternate segregation of the chain of 10 during spermatogenesis so that equal numbers of sperm bear either one of the two groups of five elements, i.e., five X and five Y chromosomes. Chromosome painting reveals that these X and Y chromosomes contain pairing (XY shared) and differential (X- or Y-specific) segments. Y differential regions must contain male-determining genes, and X differential regions should be dosage-compensated in the female. Two models for the evolution of the sex-determining system are presented. The resolution of the longstanding debate over the platypus karyotype is an important step toward the understanding of mechanisms of sex determination, dosage compensation, and karyotype evolution. PMID:15534209

  13. Interface-enhanced high-temperature superconductivity in single-unit-cell FeT e1 -xS ex films on SrTi O3

    NASA Astrophysics Data System (ADS)

    Li, Fangsen; Ding, Hao; Tang, Chenjia; Peng, Junping; Zhang, Qinghua; Zhang, Wenhao; Zhou, Guanyu; Zhang, Ding; Song, Can-Li; He, Ke; Ji, Shuaihua; Chen, Xi; Gu, Lin; Wang, Lili; Ma, Xu-Cun; Xue, Qi-Kun

    2015-06-01

    Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTi O3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (Tc). Here we successfully prepared single-UC FeT e1 -xS ex(0.1 ≤x ≤0.6 ) films on STO substrates by molecular beam epitaxy and observed U -shaped superconducting gaps (Δ ) up to ˜16.5 meV , nearly ten times the gap value (Δ ˜1.7 meV ) of the optimally doped bulk FeT e0 .6S e0 .4 single crystal (Tc˜14.5 K ). No superconducting gap has been observed on the second UC and thicker FeT e1 -xS ex films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeT e0 .6S e0 .4 single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher Tc.

  14. Cu2I2Se6: A Metal-Inorganic Framework Wide-Bandgap Semiconductor for Photon Detection at Room Temperature.

    PubMed

    Lin, Wenwen; Stoumpos, Constantinos C; Kontsevoi, Oleg Y; Liu, Zhifu; He, Yihui; Das, Sanjib; Xu, Yadong; McCall, Kyle M; Wessels, Bruce W; Kanatzidis, Mercouri G

    2018-02-07

    Cu 2 I 2 Se 6 is a new wide-bandgap semiconductor with high stability and great potential toward hard radiation and photon detection. Cu 2 I 2 Se 6 crystallizes in the rhombohedral R3̅m space group with a density of d = 5.287 g·cm -3 and a wide bandgap E g of 1.95 eV. First-principles electronic band structure calculations at the density functional theory level indicate an indirect bandgap and a low electron effective mass m e * of 0.32. The congruently melting compound was grown in centimeter-size Cu 2 I 2 Se 6 single crystals using a vertical Bridgman method. A high electric resistivity of ∼10 12 Ω·cm is readily achieved, and detectors made of Cu 2 I 2 Se 6 single crystals demonstrate high photosensitivity to Ag Kα X-rays (22.4 keV) and show spectroscopic performance with energy resolutions under 241 Am α-particles (5.5 MeV) radiation. The electron mobility is measured by a time-of-flight technique to be ∼46 cm 2 ·V -1 ·s -1 . This value is comparable to that of one of the leading γ-ray detector materials, TlBr, and is a factor of 30 higher than mobility values obtained for amorphous Se for X-ray detection.

  15. NMR characterization of sulphur substitution effects in the K xFe 2-ySe 2-xS z high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torchetti, D. A.; Imai, T.; Lei, H. C.

    2012-04-17

    We present a 77Se NMR study of the effect of S substitution in the high-T c superconductor K xFe 2-ySe 2-zS z in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (T c~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K xFe 2Se 2 sample due to local disorder in the Se environment. Our Knight shift 77K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition,more » S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T c in 1/T 1T, as seen in FeSe.« less

  16. Electronic structures of of PuX (X=S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Maehira, Takahiro; Sakai, Eijiro; Tatetsu, Yasutomi

    2013-08-01

    We have calculated the energy band structures and the Fermi surfaces of PuS, PuSe, and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in the local density approximation. In general, the energy bands near the Fermi level are mainly caused by the hybridization between the Pu 5 f and the monochalcogenide p electrons. The obtained main Fermi surfaces consisted of two hole sheets and one electron sheet, which were constructed from the band having both the Pu 5 f state and the monochalcogenide p state.

  17. X-1E on Display Stand at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    . The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system of increased capacity, and a thinner high-speed wing. The X-1E was used to obtain in-flight data at twice the speed of sound, with particular emphasis placed on investigating the improvements achieved with the high-speed wing. These wings, made by Stanley Aircraft, were only 3-3/8-inches thick at the root and had 343 gauges installed in them to measure structural loads and aerodynamic heating. The X-1E used its rocket engine to power it up to a speed of 1,471 miles per hour (Mach 2.24) and to an altitude of 73,000 feet. Like the X-1 it was air-launched. The X-1 aircraft were almost 31 feet long and had a wingspan of 28 feet. The X-1 was built of conventional aluminum stressed-skin construction to extremely high structural standards. The X-1E was also 31 feet long but had a wingspan of only 22 feet, 10 inches. It was powered by a Reaction Motors, Inc., XLR-8-RM-5, four-chamber rocket engine. As did all X-1 rocket engines, the LR-8-RM-5 engine did not have throttle capability, but instead, depended on ignition of any one chamber or group of chambers to vary speed.

  18. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe, and ZnSe(1-x)Te(x)(0 less than x less than 0.4) grown by physical vapor transport. Energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. A best fit curve to the band gap versus composition x data gives a bowing parameter of 1.45. This number lies between the value of 1.23 determined previously on ZnSeTe bulk crystals and the value of 1.621 reported on ZnSeTe epilayers. Low-temperature photoluminescence (PL) spectra were measured on six samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe(1-x)Te(x) samples, 0.09 less than x less than 0.39. For x=0.09, this emission energy is about 0.2 eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x=0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted as being associated with the exciton bound to Te clusters because of the high Te content in these samples.

  19. Structural, thermal, laser damage, photoconductivity, NLO and mechanical properties of modified vertical Bridgman method grown AgGa0.5In0.5Se2 single crystal

    NASA Astrophysics Data System (ADS)

    Vijayakumar, P.; Ramasamy, P.

    2016-08-01

    AgGa0.5In0.5Se2 single crystal was grown using modified vertical Bridgman method. The structural perfection of the AgGa0.5In0.5Se2 single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. The structural and compositional uniformities of AgGa0.5In0.5Se2 were studied using Raman scattering spectroscopy at room temperature. The FWHM of the Γ1 (W1) and Γ5L (Γ15) measured at different regions of the crystal confirms that the composition throughout its length is fairly uniform. Thermal properties of the as-grown crystal, including specific heat, thermal diffusivity and thermal conductivity have been investigated. The multiple shot surface laser damage threshold value was measured using Nd:YAG laser. Photoconductivity measurements with different temperatures have confirmed the positive photoconducting behavior. Second harmonic generation (SHG) on powder samples has been measured using the Kurtz and Perry technique and the results display that AgGa0.5In0.5Se2 is a phase-matchable NLO material. The hardness behavior has been measured using Vickers micro hardness measurement and the indentation size effect has been observed. The classical Meyer's law, propositional resistance model and modified propositional resistance model have been used to analyse the micro hardness behavior.

  20. Insight into the Capacity Fading Mechanism of Amorphous Se 2 S 5 Confined in Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Gui-Liang; Ma, Tianyuan; Sun, Cheng-Jun

    2016-04-13

    In contrast to the stable cycle performance of space confined Se-based cathodes for lithium batteries in carbonate-based electrolytes, their common capacity fading in ether-based electrolytes has been paid less attention and not yet well-addressed so far. In this work, the lithiation/delithiation of amorphous Se2S5 confined in micro/mesoporous carbon (Se2S5/MPC) cathode was investigated by in situ X-ray near edge absorption spectroscopy (XANES) and theoretical calculations. The Se2S5/MPC composite was synthesized by a modified vaporization-condensation method to ensure a good encapsulation of Se2S5 into the pores of MPC host. In situ XANES results illustrated that the lithiation/delithiation reversibility of Se component wasmore » gradually decreased in ether-based electrolytes, leading to an aggravated formation of long-chain polyselenides during cycling and further capacity decay. Moreover, ab initio calculations revealed that the binding energy of polyselenides (Li2Sen) with carbon host is in an order of Li2Se6 > Li2Se4 > Li2Se. The insights into the failure mechanism of Se-based cathode gain in this work are expected to serve as a guide for future design on high performance Se-based cathodes.« less

  1. Magnetic behavior of Fe(Se,Te) systems: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Huang, Zhong-Bing; Tse, John S.; Lin, Hai-Qing

    2011-08-01

    The magnetic behaviors in Fe(Se,Te) systems have been investigated systematically using density functional calculations. At the experimental lattice parameters, the ground state is found to be in the double stripe magnetic phase for FeTe but in the single stripe magnetic phase for FeSe and FeSe0.5Te0.5, and there is no preference in the different easy axes of magnetization. Substitution of Se by Te enlarges the size of the Fermi surface in FeSe0.5Te0.5, resulting in a stronger nesting effect and thus enhancing the superconductivity. It is found that the double stripe order in FeTe1-xSex changes to the single stripe order when x > 0.18. Spiral calculations on FeSe0.5Te0.5 show that the lowest energy is at the commensurate point Q→= (0.5,0.5), accompanied by additional local minima at two incommensurate points near Q→= (0.5,0.5). This observation is consistent with the experimentally observed positions of low energy magnetic excitations. Geometry optimization calculations show that the tetragonal cell relaxes to orthorhombic and monoclinic cells for FeSe and FeTe, respectively, but remains unchanged for FeSe0.5Te0.5.

  2. Ultrafast dynamics of an unoccupied surface resonance state in B i2T e2Se

    NASA Astrophysics Data System (ADS)

    Munisa, Nurmamat; Krasovskii, E. E.; Ishida, Y.; Sumida, K.; Chen, Jiahua; Yoshikawa, T.; Chulkov, E. V.; Kokh, K. A.; Tereshchenko, O. E.; Shin, S.; Kimura, Akio

    2018-03-01

    Electronic structure and electron dynamics in the ternary topological insulator B i2T e2Se are studied with time- and angle-resolved photoemission spectroscopy using optical pumping. An unoccupied surface resonance split off from the bulk conduction band previously indirectly observed in scanning tunneling measurements is spectroscopically identified. Furthermore, an unoccupied topological surface state (TSS) is found, which is serendipitously located at about 1.5 eV above the occupied TSS, thereby facilitating direct optical transitions between the two surface states at ℏ ω =1.5 eV in an n -type topological insulator. An appreciable nonequilibrium population of the bottom of the bulk conduction band is observed for longer than 15 ps after the pump pulse. This leads to a long recovery time of the lower TSS, which is constantly populated by the electrons coming from the bulk conduction band. Our results demonstrate B i2T e2Se to be an ideal platform for designing future optoelectronic devices based on topological insulators.

  3. Low Temperature Photoluminescence of PVT Grown ZnSe and ZnSeTe

    NASA Technical Reports Server (NTRS)

    Wang, Ling Jun; Su, Ching-Hua; Lehoczky, S. L.

    1999-01-01

    ZnSe and ZnSeTe single crystals were grown by physical vapor transport (PVT) technique horizontally and vertically. The grown ZnSe and ZnSeTe single crystals were characterized by low temperature photoluminescence at 5 to 10 K using the 3.4 eV emission of an argon laser. The intensity of the sharp near band edge defect lines at 2.799, 2.783 eV and the intrinsic free exciton line at 2.802 eV were mapped on various crystal surfaces with different orientations to the gravitational field. The results show the effects of gravity vector orientation on the defect segregation. Comparison of the photoluminescence spectra of the ZeSe crystal before and after annealing in the Zn vapor shows that the 2.783 eV line of ZnSe crystal is related to the zinc vacancy. The photoluminescence spectra of the ternary ZnSeTe crystal were characterized by a single broad band from 2.2 to 2.4 eV, with a Full Width at Half Maximum (FWHM) of about 100 meV. The temperature dependence of the peak position and intensity were determined from 7 to 150 K.

  4. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.

    PubMed

    Zeng, Qingsen; Chen, Zhaolai; Zhao, Yue; Du, Xiaohang; Liu, Fangyuan; Jin, Gan; Dong, Fengxia; Zhang, Hao; Yang, Bai

    2015-10-21

    Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells.

  5. 77Se NMR Investigation of the KxFe2−ySe2 high-Tc Superconductor (Tc = 33 K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, C.; Torchetti, D.A. Fu, M.; Christensen, D.C.

    2011-03-18

    We report comprehensive {sup 77}Se NMR measurements on a single crystalline sample of the recently discovered FeSe-based high-temperature superconductor K{sub x}Fe{sub 2-y}Se{sub 2} (T{sub c} = 33 K) in a broad temperature range up to 290 K. Despite deviations from the stoichiometric KFe{sub 2}Se{sub 2} composition, we observed {sup 77}Se NMR line shapes as narrow as 4.5 kHz under a magnetic field applied along the crystal c axis, and found no evidence for co-existence of magnetic order with superconductivity. On the other hand, the {sup 77}Se NMR line shape splits into two peaks with equal intensities at all temperatures whenmore » we apply the magnetic field along the ab plane. This suggests that K vacancies may have a superstructure and that the local symmetry of the Se sites is lower than the tetragonal fourfold symmetry of the average structure. This effect might be a prerequisite for stabilizing the s{sub {+-}} symmetry of superconductivity in the absence of the hole bands at the Brillouin zone center. From the increase of NMR linewidth below T{sub c} induced by the Abrikosov lattice of superconducting vortices, we estimate the in-plane penetration depth {lambda}{sub ab} {approx} 290 nm and the carrier concentration n{sub e} {approx} 1 x 10{sup +21} cm{sup -3}. Our Knight shift {sup 77}K data indicate that the uniform spin susceptibility decreases progressively with temperature, in analogy with the case of FeSe (T{sub c} {approx} 9 K) as well as other FeAs high-T{sub c} systems. The strong suppression of {sup 77}K observed immediately below T{sub c} for all crystal orientations is consistent with a singlet pairing of Cooper pairs. We do not however observe the Hebel-Slichter coherence peak of the nuclear spin-lattice relaxation rate 1/T1 immediately below T{sub c}, expected for conventional BCS s-wave superconductors. In contrast with the case of FeSe, we do not observe evidence for an enhancement of low-frequency antiferromagnetic spin fluctuations near T

  6. Gas flows in S-E binary systems of galaxies

    NASA Technical Reports Server (NTRS)

    Sotnikova, N. YA.

    1990-01-01

    Tidal interaction between the galaxies in binary systems leads to important consequences. Some peculiarities in galactic morphology as well as the transfer of matter from one galaxy to another may be due to this factor. In particular, gas flows in intergalactic space may be formed. Such flows enriching one component with gas from the other may play a substantial role in the evolution of mixed (S-E) pairs. One can mention several facts corroborating the possibility of the gas transfer from the spiral to the elliptical galaxy. High HI content (10(exp 7) to 10(exp 9) solar mass) is detected in nearly 40 E galaxies (Bottinelli and Gougenheim, 1979; Knapp et al., 1985). Such galaxies are often members of pairs or of multiple systems including an S galaxy, which may be the source of gas (Smirnov and Komberg, 1980). Moreover, the gas kinematics and its distribution also indicate an external origin for this gas (Knapp et al., 1985). In many cases there is an outer gaseous disk. The directions of the disk and of stellar rotation don't always coincide (van Gorkom et al., 1985; Varnas et al., 1987). The galaxy colors in S-E pairs are correlated (the Holmberg effect): bluer ellipticals have spiral components that are usually bluer (Demin et al., 1984). The fraction of E galaxies with emission lines (N sub em) in S-E pairs showing traces of tidal interaction is twice as large (N sub em approx. equals 0.24) as in pairs without interaction (N sub em approx. equals 0.12) (Sotnikova, 1988b). Since the presence of emission lines in a galaxy spectrum strongly depends on gas content, this fact also leads to the conclusion that ellipticals in interacting S-E pairs are enriched with gas. These facts may be considered as a serious indication of the existence of gas transfer. Hence, investigation of this process is of interest.

  7. 7. Photographic copy (reduced to 4 x 5 from 8 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy (reduced to 4 x 5 from 8 X 10 black and white paper reproduction in 1941 appraisal by E.E. Malloy at the Engineering Office, Oakland Army Base, California). Photograph taken between June 1940 and January 1941 by unknown photographer. PARTIAL SOUTH ELEVATION OF VEHICLE MAINTENANCE SHOP (BLDG. 99). - Oakland Army Base, Vehicle Maintenance Shop, Attu Street & Corregidor Avenue, Oakland, Alameda County, CA

  8. Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.

    2016-12-01

    Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.

  9. Structural and compositional dependence of the CdTexSe1−x alloy layer photoactivity in CdTe-based solar cells

    PubMed Central

    Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; Ng, Amy; More, Karren; Leonard, Donovan; Yan, Yanfa

    2016-01-01

    The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTexSe1−x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTexSe1−x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTexSe1−x alloy with respect to the degree of Se diffusion. The results show that the CdTexSe1−x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations. PMID:27460872

  10. Stoichiometry of Cd(S,Se) nanocrystals by anomalous small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Ramos, Aline; Lyon, Olivier; Levelut, Claire

    1995-12-01

    In Cd(S,Se)-doped glasses the optical properties are strongly dependent on the size of the nanocrystals, but can be also largely modified by changes in the crystal stoichiometry; however, the information on both stoichiometry and size is difficult to obtain in crystals smaller than 10 nm. The intensity scattered at small angles is classically used to get information about nanoparticles sizes. Moreover the variation of amplitude of this intensity with the energy of the x ray—``the anomalous effect''—near the selenium edge is related to stoichiometry. Anomalous small-angle x-ray scattering has been used as a tentative method to get information about stoichiometry in nanocrystals with size lower than 10 nm. Experiments have been performed on samples treated for 2 days at temperatures in the range 540-650 °C. The samples treated at temperatures above 580 °C contain crystals with size larger than 4 nm. For all these samples the anomalous effect has nearly the same amplitude, and we found the stoichiometry x=0.4 for the CdSxSe1-x nanocrystals. This agrees with the previous results obtained by scanning electron microscopy and Raman spectroscopy. The results are also confirmed by measurements of the position of the optical absorption edge and by wide-angle x-ray scattering experiments. For the sample treated at 560 °C, the nanocrystal size is 3 nm and the stoichiometry x=0.6 is deduced from the anomalous effect. For samples treated at lower temperatures the anomalous effect is not observable, indicating an even lower selenium content in the nanocrystals (x≳0.7). We observed differences in the Se content of nanocrystals for different heat treatments of the same initial glass. These results may be very helpful to interpret the change in the optical properties when the temperature of the treatments decreases in the range 560-590 °C. In this temperature range, compositional effects seem to be of the same order of magnitude as the effects of the quantum confinement.

  11. High-pressure studies on electronic transport properties of Te-substituted Bi2Se3–xTex topological insulators

    NASA Astrophysics Data System (ADS)

    Devidas, T. R.; Abhirami, S.; Sharma, Shilpam; Amaladas, E. P.; Mani, Awadhesh

    2018-03-01

    Studies on the electrical transport properties of the 3D topological insulators Bi2Se3 under iso-electronic substitution of Te at Se sites and the application of external pressure have been performed to understand the evolution of its ground-state properties and to explore possible electronic phase transitions in Bi2Se3‑x Te x (x=0\\text{--}3 ) systems. While the external pressure suppresses the metallic behaviour of Bi2Se3 arising from defect charge carriers leading ultimately to non-metal behaviour, the effect of pressure on Te-doped samples x=1\\text{--}2 seems to be more striking, and causes multiple electronic phase transitions such as an insulator-to-metal transition (MIT) followed by pressure-induced superconducting transition at higher pressures. All the critical parameters such as critical pressure for the occurrence of MIT (PMIT}) , superconductivity (PSC}) and maximum pressure induced superconducting transition temperature (Tc,max}) for given compositions are seen to exhibit maxima at x=1.6 which is the composition that exhibits the most insulating behaviour with least concentration of defect charge carriers among the samples of Bi2Se3‑x Te x (x=0\\text{--}3 ) series. The superconducting transition temperature (Tc}) decreases with increasing pressure in x=1\\text{--}2 samples, while it remains nearly constant for Bi2Te3. Based on the analysis of the experimental data it is surmised that the pressure-induced superconductivity seen in these systems is of conventional (BCS) type.

  12. Mercury Chalcohalide Semiconductor Hg 3Se 2Br 2 for Hard Radiation Detection

    DOE PAGES

    Li, Hao; Meng, Fang; Malliakas, Christos D.; ...

    2016-09-28

    We present Hg 3Se 2Br 2 that has a wide band gap semiconductor (2.22 eV) with high density (7.598 g/cm 3) and crystallizes in the monoclinic space group C2/m with cell parameters of a = 17.496 (4) Å, b = 9.3991 (19) Å, c = 9.776(2) Å, β = 90.46(3)°, V = 1607.6(6) Å 3. It melts congruently at a low temperature, 566°C, which allows for an easy single crystal growth directly from the stoichiometric melt. Single crystals of Hg 3Se 2Br 2 up to 1 cm long have been grown using the Bridgman method. Hg 3Se 2Br 2 singlemore » crystals exhibit a strong photocurrent response when exposed to Ag X-ray and blue diode laser. The resistivity of Hg 3Se 2Br 2 measured by the two probe method is on the order of 10 11 Ω·cm, and the mobility-lifetime product (μτ) of the electron and hole carriers estimated from the energy spectroscopy under Ag X-ray radiation are (μτ) e ≈ 1.4 × 10 –4cm 2/V and (μτ) h ≈ 9.2 × 10 –5cm 2/V. Electronic structure calculations at the density functional theory level indicate a direct band gap and a relatively small effective mass for carriers. Lastly, on the basis of the photoconductivity and hard X-ray spectrum, Hg 3Se 2Br 2 is a promising candidate for X-ray and γ-ray radiation detection at room temperature.« less

  13. Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cu x TiSe 2

    DOE PAGES

    Kogar, A.; de la Pena, G. A.; Lee, Sangjun; ...

    2017-01-11

    X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu xTiSe 2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. In this paper, the results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x = 0.055(5) . Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up tomore » x = 0.091(6) , the highest copper concentration examined in this study. Lastly, the phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.« less

  14. Dielectric function in the spectral range (0.5–8.5)eV of an (Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} thin film with continuous composition spread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt-Grund, R., E-mail: Schmidt-Grund@physik.uni-leipzig.de; Kranert, C.; Wenckstern, H. von

    2015-04-28

    We determined the dielectric function of the alloy system (Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} by spectroscopic ellipsometry in the wide spectral range from 0.5eV to 8.5eV and for Al contents ranging from x = 0.11 to x = 0.55. For the composition range x < 0.4, we observe single phase material in the β-modification and for larger Al content also the occurrence of γ-(Al,Ga){sub 2}O{sub 3}. We derived spectra of the refractive index and the absorption coefficient as well as energy parameters of electronic band-band transitions by model analysis of the dielectric function. The dependence of the dielectric functions lineshape and the energy parameters on xmore » is highly continuous, reflecting theoretical expectations. The data presented here provide a basis for a deeper understanding of the electronic properties of this material system and may be useful for device engineering.« less

  15. Zn(x)Cd(1-x)Se nanomultipods with tunable band gaps: synthesis and first-principles calculations.

    PubMed

    Wei, Hao; Su, Yanjie; Han, Ziyi; Li, Tongtong; Ren, Xinglong; Yang, Zhi; Wei, Liangming; Cong, Fengsong; Zhang, Yafei

    2013-06-14

    In this paper, we demonstrate that ZnxCd1-xSe nanomultipods can be synthesized via a facile and nontoxic solution-based method. Interesting aspects of composition, morphology and optical properties were deeply explored. The value of Zn/(Zn+Cd) could be altered across the entire range from 0.08 to 0.86 by varying the ratio of cation precursor contents. The band gap energy could be linearly tuned from 1.88 to 2.48 eV with respect to the value of Zn/(Zn+Cd). The experiment also showed that oleylamine played a dominant role in the formation of multipod structure. A possible growth mechanism was further suggested. First-principles calculations of band gap energy and density of states in the Vienna ab initio simulation package code were performed to verify the experimental variation tendency of the band gap. Computational results indicated that dissimilarities of electronic band structures and orbital constitutions determined the tunable band gap of the as-synthesized nanomultipod, which might be promising for versatile applications in relevant areas of solar cells, biomedicine, sensors, catalysts and so on.

  16. Optical and low-temperature thermoelectric properties of phase-pure p-type InSe thin films

    NASA Astrophysics Data System (ADS)

    Urmila, K. S.; Namitha, T. A.; Philip, R. R.; Pradeep, B.

    2015-08-01

    Polycrystalline phase-pure p-type InSe thin films were deposited on glass substrates by reactive evaporation at an optimized substrate temperature of 473 ± 5 K and pressure of 10-5 mbar. The as-prepared InSe thin films were analyzed by X-ray diffractometry, energy-dispersive X-ray spectroscopy, atomic force microscopy, UV-Vis-NIR spectroscopy, electrical conductivity and Hall measurements. The lattice parameters, particle size, dislocation density, number of crystallites per unit area and the lattice strain of the prepared InSe thin films were calculated and found as a = 4.00 ± 0.002 Å and c = 16.68 ± 0.002 Å, 48 ± 2 nm, 4.34 × 1010 lines cm-2, 15.37 × 1010 cm-2 and 1.8 × 10-3, respectively. The as-deposited InSe thin films showed a direct allowed transition with an optical band gap of 1.35 ± 0.02 eV and high absorption coefficient of about 105 cm-1. The oscillator energy ( E o) and dispersion energy ( E d) were calculated using the single-oscillator Wemple and DiDomenico model. The p-type conductivity and photosensitivity of the as-prepared InSe thin films confirmed their potential application in photovoltaic devices. The mean free path, relaxation time, density of states, Fermi energy and effective mass of holes in the film were determined by correlating the results of thermopower and Hall measurements. The sudden and sharp increase in thermopower from 80 to 37 K was explained as due to the effect of phonon drag on charge carriers.

  17. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe and ZnSe (sub 1-x) Te (sub x) (0 less than x less than 0.4) grown by physical vapor transport technique. The energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. The best fit to the band gap vs. composition, x, data gives a bowing parameter of 1.336 which is between the value of 1.23 determined previously on ZnSeTe bulk crystals by reflectivity and the value of 1.621 reported on epilayers by photoconductivity. Low-temperature photoluminescence (PL) spectra were measured on 6 samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe (sub 1-x) Te (sub x) samples, 0.09 less than x less than 0.39. For x = 0.09, this emission energy is about 0.2eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x = 0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted to be associated with the exciton bound to Te clusters because of the high Te content in these samples.

  18. Specific features of the structural and magnetic states of a Zn1 - x Ni x Se crystal ( x = 0.0025) at low temperatures

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Teploukhov, S. G.; Gruzdev, N. B.

    2008-12-01

    The magnetic state and the structure of a Zn1 - x Ni x Se ( x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound.

  19. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    PubMed

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  20. Electronic and optical properties of α-InX (X = S, Se and Te) monolayer: Under strain conditions

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Safari, Mandana

    2017-04-01

    Using ab initio study, the structural, electronic and optical properties of α-InX (X = S, Se and Te) are investigated under tensile and compressive strain conditions. The results illustrate that exerting biaxial tensile and compressive strain conditions can lead to a tunable energy gap with a linear trend. The shape of valence band maximum (VBM) and conduction band minimum (CBM) is so sensitive to applying tensile and compressive strain. Besides, a shift in optical spectra toward shorter wavelength (blue shift) occurs under compression. The exerting tensile strain, on the other hand, gives rise to a red shift in optical spectra correspondingly. The results have been presented that InX monolayers can be good candidates for optoelectronic applications as well.

  1. Optical parameters of Ge15Sb5Se80 and Ge15Sb5Te80 from ellipsometric measurements

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, F.; Ashraf, I. M.; Alomairy, S. E.

    2018-02-01

    The optical properties of Ge15Sb5Se80 (GSS) and Ge15Sb5Te80 (GST) films prepared by thermal evaporation method were investigated in the photon energy range from 0.9 eV to 5 eV by using a variable-angle spectroscopic ellipsometer. Combinations of multiple Gaussian, and Tauc-Lorentz or Cody-Lorentz dispersion functions are used to fit the experimental data. The models' parameters (Lorentz oscillator amplitude, resonance energy, oscillator width, optical band gap, and Urbach energy) of both GSS and GST films were calculated. Refractive indices and extinction coefficients of the films were determined. Analysis of the absorption coefficient shows that the optical absorption edge of GSS and GST films to be 1.6 eV and 0.89 eV, respectively. Manca's relation based on mean bond energy and the bond statistics of chemically ordered model (COM) and random covalent network model (CRNM) is applied for the estimation of the optical band gap (Eg) of the investigated films. A good agreement between experimental and calculated Eg is obtained.

  2. Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sheetal; Department of Physics, Panjab University, Chandigarh 160014; Verma, A.S., E-mail: ajay_phy@rediffmail.com

    2014-05-01

    Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potentialmore » linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.« less

  3. Electron microscopy of iron chalcogenide FeTe(Se) films

    NASA Astrophysics Data System (ADS)

    Shchichko, I. O.; Presnyakov, M. Yu.; Stepantsov, E. A.; Kazakov, S. M.; Antipov, E. V.; Makarova, I. P.; Vasil'ev, A. L.

    2015-05-01

    The structure of Fe1 + δTe1 - x Se x films ( x = 0; 0.05) grown on single-crystal MgO and LaAlO3 substrates has been investigated by transmission and scanning transmission electron microscopy. The study of Fe1.11Te/MgO structures has revealed two crystallographic orientation relationships between the film and substrate. It is shown that the lattice mismatch between the film and substrate is compensated for by the formation of misfit dislocations. The Burgers vector projection is determined. The stresses in the film can partially be compensated for due to the formation of an intermediate disordered layer. It is shown that a FeTe0.5Se0.5 film grown on a LaAlO3 substrate is single-crystal and that the FeTe0.5Se0.5/LaAlO3 interface in a selected region is coherent. The orientation relationships between the film and substrate are also determined for this case.

  4. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe 1-xSe x

    DOE PAGES

    Xu, Zhijun; Xu, Guangyong; Schneeloch, J. A.; ...

    2016-03-14

    Imore » t has recently been demonstrated that dynamical magnetic correlations measured by neutron scattering in iron chalcogenides can be described with models of short-range correlations characterized by particular choices of four-spin plaquettes, where the appropriate choice changes as the parent material is doped towards superconductivity. Here we apply such models to describe measured maps of magnetic scattering as a function of two-dimensional wave vectors obtained for optimally superconducting crystals of FeTe 1 ₋ x Se x . We show that the characteristic antiferromagnetic wave vector evolves from that of the bicollinear structure found in underdoped chalcogenides (at high temperature) to that associated with the stripe structure of antiferromagnetic iron arsenides (at low temperature); these can both be described with the same local plaquette, but with different interplaquette correlations. While the magnitude of the low-energy magnetic spectral weight is substantial at all temperatures, it actually weakens somewhat at low temperature, where the charge carriers become more itinerant. The observed change in spin correlations is correlated with the dramatic drop in the electronic scattering rate and the growth of the bulk nematic response upon cooling. n conclusion, we also present powder neutron diffraction results for lattice parameters in FeTe 1 ₋ x Se x indicating that the tetrahedral bond angle tends to increase towards the ideal value upon cooling, in agreement with the increased screening of the crystal field by more itinerant electrons and the correspondingly smaller splitting of the Fe 3d orbitals.« less

  5. Zn1-xCdxSe/ZnSe multiple quantum well photomodulators

    NASA Astrophysics Data System (ADS)

    Tang, Jiuyao; Kawakami, Yoichi; Fujita, Shizuo; Fujita, Shigeo

    1996-10-01

    ZnCdSe/ZnSe multiple quantum well (MQW) transmission and reflection photomodulators operating at room temperature were fabricated employing quantum-confined Stark effect on the exciton absorption. Samples were grown on p-type GaAs substrates by MBE with an i-Zn0.87Cd0.13Se/ZnSe MQW heterostructure sandwiched by a ZnSe p-n junction. The transmission modulator was constructed with a Zn0.87Cd0.13Se/ZnSe MQW glued onto a piece of ITO film-covered glass with silver paste and epoxy. To avoid absorption in GaAs substrates, a window with a diameter of about 2 mm was opened using a selective etch. For the reflective use an Al mirror was deposited on the glass back surface, the device then operates in reflection with the light to be modulated making a double pass through the active quantum well region, thereby increasing the modulation amplitude. Measurement results are given in this paper for transmission, reflection, differential transmission, differential absorption, and differential reflection as a function of the incident photon wavelength and the applied field.

  6. Investigation of Optical Nonlinearities in Bi-Doped Se-Te Chalcogenide Thin Films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-03-01

    The present paper reports the nonlinear optical properties of chalcogenide Se85- x Te15Bi x (0 ≤ x5) thin films. The formulation proposed by Boling, Fournier, and Snitzer and Tichy and Ticha has been used to compute the nonlinear refractive index n 2. The two-photon absorption coefficient β 2, and first- and third-order susceptibilities [ χ (1) and χ (3)] are also reported. The nonlinear refractive index n 2 is well correlated with the linear refractive index n and Wemple-DiDomenico (WDD) parameters, in turn depending on the density ρ and molar volume V m of the system. The density of the system is calculated experimentally by using Archimedes' principle. The linear optical parameters, viz. n, WDD parameters, and optical bandgap E g, are measured experimentally using ellipsometric curves obtained by spectrophotometry. The composition-dependent behavior of n 2 is analyzed on the basis of various parameters, viz. density, bond distribution, cohesive energy (CE), and optical bandgap E g, of the system. The variation of n 2 and β 2 with changing bandgap E g is also reported. The values of n 2 and χ (3) of the investigated chalcogenides are compared with those of pure silica, oxide, and other Se-based glasses.

  7. 5. Photocopy of drawing. (This drawing is an 8' x ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of drawing. (This drawing is an 8' x 10' enlargement from a 4' x 5' negative; 1942 drawing titled 'Mobilization Buildings, Hospital Mess, Types HM-336-A, B, C, D, E, F, & G, Elevations, Sections, Etc.,' Plan 800-3132, located at Directorate of Engineering and Housing, Fort McPherson.) - Fort McPherson, World War II Station Hospital, Mess Hall, Anderson Way & Howe Street, Atlanta, Fulton County, GA

  8. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  9. Tuning of photodetection properties of V0.5Sn0.5Se2 ternary alloy

    NASA Astrophysics Data System (ADS)

    Zankat, Chetan K.; Pataniya, Pratik; Solanki, G. K.; Patel, K. D.; Pathak, V. M.

    2018-05-01

    In present article, we report the tuning of photodetection properties of V0.5Sn0.5Se2 ternary crystals grown by direct vapour transport technique. The comparison of photodetection under 485 nm, 532 nm and 670 nm periodic illumination is carried out for 0.3 mW cm‑2 power intensity and 5 mV bias voltage. The fast response time of 200 ms is realised due to effective absorption of light and device configuration. The detector parameters such as photo-responsivity, specific detectivity and external quantum efficiency are also evaluated. The V0.5Sn0.5Se2 photodetector has shown effective light–matter interaction. The V0.5Sn0.5Se2 photodetector was examined under 670 nm illumination of different power intensity. Besides these, the photo-responsivity is enhanced from 77.67 mA W‑1 to 99.67 mA W‑1 on increasing bias voltage from 1 mV to 5 mV. The present work on tuning of photodetection can provide novel path for future optoelectronics.

  10. Improvement of thermoelectric properties and their correlations with electron effective mass in Cu1.98SxSe1−x

    PubMed Central

    Zhao, Lanling; Fei, Frank Yun; Wang, Jun; Wang, Funing; Wang, Chunlei; Li, Jichao; Wang, Jiyang; Cheng, Zhenxiang; Dou, Shixue; Wang, Xiaolin

    2017-01-01

    Sulphur doping effects on the crystal structures, thermoelectric properties, density-of-states, and effective mass in Cu1.98SxSe1−x were studied based on the electrical and thermal transport property measurements, and first-principles calculations. The X-ray diffraction patterns and Rietveld refinements indicate that room temperature Cu1.98SxSe1−x (x = 0, 0.02, 0.08, 0.16) and Cu1.98SxSe1−x (x = 0.8, 0.9, 1.0) have the same crystal structure as monoclinic-Cu2Se and orthorhombic-Cu2S, respectively. Sulphur doping can greatly enhance zT values when x is in the range of 0.8≤ × ≤1.0. Furthermore, all doped samples show stable thermoelectric compatibility factors over a broad temperature range from 700 to 1000 K, which could greatly benefit their practical applications. First-principles calculations indicate that both the electron density-of-sates and the effective mass for all the compounds exhibit non-monotonic sulphur doping dependence. It is concluded that the overall thermoelectric performance of the Cu1.98SxSe1−x system is mainly correlated with the electron effective mass and the density-of-states. PMID:28091545

  11. Impact of sulfur content on structural and optical properties of Ge20Se80-xSx chalcogenide glasses thin films

    NASA Astrophysics Data System (ADS)

    Dongol, M.; Elhady, A. F.; Ebied, M. S.; Abuelwafa, A. A.

    2018-04-01

    Chalcogenide system Ge20Se80-xSx (x = 0, 15 and 30%) thin films were prepared by thermal evaporation technique. The amorphous state of the samples was confirmed according to XRD. The structural changes occurring upon replacement Se by S was investigated using Raman spectroscopy. The optical properties of the as-deposited Ge20Se80-xSx thin films have been studied by analysis the transmittance T(λ) measured at room temperature in the wavelength range 200-2500 nm using Swanepoel's method. Urbach energy (Ee) and optical band gap (Eg) were strongly affected by sulfur concentration in the sample. The refractive index evaluated through envelope method was extrapolated by Cauchy dispersion relationship over the whole spectral range. Moreover, the dispersion of refractive index was analyzed in terms of the single-oscillator Wemple-Di Domenico model. The third-order nonlinear susceptibility (χ(3)) and nonlinear refractive index (n2) were calculated and discussed for different Ge20Se80-xSx (x = 0, 15 and 30%).

  12. Effect of X-ray irradiation on the optical absorption of СdSe1-xTex nanocrystals embedded in borosilicate glass

    NASA Astrophysics Data System (ADS)

    Prymak, M. V.; Azhniuk, Yu. M.; Solomon, A. M.; Krasilinets, V. M.; Lopushansky, V. V.; Bodnar, I. V.; Gomonnai, A. V.; Zahn, D. R. T.

    2012-07-01

    The effect of X-ray irradiation on the optical absorption spectra of CdSe1-xTex nanocrystals embedded in a borosilicate matrix is studied. The observed blue shift of the absorption edge and bleaching of the confinement-related features in the spectra are related to X-ray induced negative ionization of the nanocrystals with charge transfer across the nanocrystal/matrix interface. The radiation-induced changes are observed to recover after longer post-irradiation storage at room temperature.

  13. Pb{sub 5}Bi{sub 24}Se{sub 41}: A new member of the homologous series forming topological insulator heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Kouji; Taskin, A.A.; Ando, Yoichi, E-mail: y_ando@sanken.osa-u.ac.jp

    2015-01-15

    We have synthesized Pb{sub 5}Bi{sub 24}Se{sub 41}, which is a new member of the (PbSe){sub 5}(Bi{sub 2}Se{sub 3}){sub 3m} homologous series with m=4. This series of compounds consist of alternating layers of the topological insulator Bi{sub 2}Se{sub 3} and the ordinary insulator PbSe. Such a naturally-formed heterostructure has recently been elucidated to give rise to peculiar quasi-two-dimensional topological states throughout the bulk, and the discovery of Pb{sub 5}Bi{sub 24}Se{sub 41} expands the tunability of the topological states in this interesting homologous series. The trend in the resistivity anisotropy in this homologous series suggests an important role of hybridization of themore » topological states in the out-of-plane transport. - Graphical abstract: X-ray diffraction profiles taken on cleaved surfaces of single-crystal samples of the (PbSe){sub 5}(Bi{sub 2}Se{sub 3}){sub 3m} homologous series with various m values up to 4, which realizes topological insulator heterostructures. Schematic crystal structure of the new phase, m=4, is also shown. - Highlights: • We have synthesized a new member of the homologous series related to topological insulators. • In this compound, a heterostructure of topological and ordinary insulators naturally forms. • Resistivity anisotropy suggests an important role of hybridization of the topological states. • This compound expands the tunability of the topological states via chemical means.« less

  14. Highly Luminescent Zn(x)Cd(1-x)Se/C Core/Shell Nanocrystals: Large Scale Synthesis, Structural and Cathodoluminescence Studies.

    PubMed

    Bhattacharyya, Sayan; Estrin, Yevgeni; Moshe, Ofer; Rich, Daniel H; Solovyov, Leonid A; Gedanken, A

    2009-07-28

    Zn(x)Cd(1-x)Se/C core/shell nanocrystals with 31-39 nm semiconducting core and 11-25 nm carbon shell were synthesized from solid state precursors in large scale amounts. A mixture of spherical and tripod nanostructures were obtained only in the one-step reaction (ZC3), where the Zn- and Cd-precursors were reacted simultaneously, rather than in the two step reactions (ZC1 and ZC2), where largely spherical nanostructures were observed. Rietveld analysis of the X-ray diffraction patterns of the samples prepared in three different ways, all under their autogenic pressure, reveal varying compositions of the Zn(x)Cd(1-x)Se nanocrystal core, where the cubic phases with higher Zn content were dominant compared to the hexagonal phases. Carbon encapsulation offers excellent protection to the nanocrystal core and is an added advantage for biological applications. Cathodoluminescence (CL) measurements with spatially integrated and highly localized excitations show distinct peaks and sharp lines at various wavelengths, representing emissions from single nanostructures possessing different compositions, phases, and sizes. Transmission electron microscopy (TEM) showed striations in the nanocrystals that are indicative of a composition modulation, and possibly reveal a phase separation and spinodal decomposition within the nanocrystals. Thermal quenching of the luminescence for both the near band-edge and defect related emissions were observed in the range 60-300 K. The measured activation energies of ∼50-70 meV were related to the presence of shallow donors or acceptors, deep level emissions, and thermal activation and quenching of the luminescence due to the thermal release of electrons from shallow donors to the conduction band or a thermal release of holes from shallow acceptors to the valence band. Spatially integrated CL spectra revealed the existence of broadening and additional components that are consistent with the presence of a composition modulation in the

  15. Reverse Monte Carlo simulation of Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Baset, A. M.; Rashad, M.; Moharram, A. H.

    2013-12-16

    Two-dimensional Monte Carlo of the total pair distribution functions g(r) is determined for Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} alloys, and then it used to assemble the three-dimensional atomic configurations using the reverse Monte Carlo simulation. The partial pair distribution functions g{sub ij}(r) indicate that the basic structure unit in the Se{sub 80}Te{sub 15}Sb{sub 5} glass is di-antimony tri-selenide units connected together through Se-Se and Se-Te chain. The structure of Se{sub 80}Te{sub 20} alloys is a chain of Se-Te and Se-Se in addition to some rings of Se atoms.

  16. ZnO/ZnSxSe1-x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Safdar, Muhammad; Niu, Mutong; Zhang, Jinping; Huang, Ying; He, Jun

    2012-08-01

    ZnO/ZnSxSe1-x core/shell nanowires have been synthesized on n+-type silicon substrate via a two-step chemical vapor deposition method. Transmission electron microscopy reveals that ZnSxSe1-x can be deposited on the entire surface of ZnO nanowire, forming coaxial heterojunction along ZnO nanowire with very smooth shell surface and high shell thickness uniformity. The photoelectrode after deposition of the ternary alloy shell significantly improves visible light absorption efficiency. Electrochemical impedance spectroscopy results explicitly indicate that the introduction of ZnSxSe1-x shell to ZnO nanowires effectively improves the photogenerated charge separation process. Our finding opens up an efficient means for achieving high efficient energy conversion devices.

  17. Rashba effect and enriched spin-valley coupling in Ga X /M X2 (M = Mo, W; X = S, Se, Te) heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyun; Schwingenschlögl, Udo

    2018-04-01

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional Ga X /MX 2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between Ga X and MX 2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K' valleys (out-of-plane spin direction) makes Ga X /MX 2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.

  18. Structural, vibrational, and electronic topological transitions of Bi1.5Sb0.5Te1.8Se1.2 under pressure

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Seok; Juneja, Rinkle; Salke, Nilesh P.; Palosz, Witold; Swaminathan, Venkataraman; Trivedi, Sudhir; Singh, Abhishek K.; Akinwande, Deji; Lin, Jung-Fu

    2018-03-01

    Topological insulators have been the subject of intense research interest due to their unique surface states that are topologically protected against scattering or defects. However, the relationship between the crystal structure and topological insulator state remains to be clarified. Here, we show the effects of hydrostatic pressure on the structural, vibrational, and topological properties of the topological insulator Bi1.5Sb0.5Te1.8Se1.2 up to 45 GPa using X-ray diffraction and Raman spectroscopy in a diamond anvil cell, together with first-principles theoretical calculations. Two pressure-induced structural phase transitions were observed: from ambient rhombohedral R 3 ¯ m phase to a monoclinic C2/m phase at ˜13 GPa, and to a disordered I4/mmm phase at ˜22 GPa. In addition, the alloy undergoes several electronic transitions within the R 3 ¯ m phase: indirect to direct bulk band gap transition at ˜5.8 GPa, bulk gap closing with an appearance of Dirac semimetal (DSM) state at ˜8.2 GPa, and to a trivial semimetal state at ˜12.1 GPa. Anomalies in c/a ratio and Raman full width at half maximum that coincide with the DSM phase suggest the contribution of electron-phonon coupling to the transition. Compared to binary end members Bi2Te3, Bi2Se3, and Sb2Te3, the structural phase transition and anomaly were observed at higher pressures in Bi1.5Sb0.5Te1.8Se1.2. These results suggest that the topological transitions are precursors to the structural phase transitions.

  19. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1−xSex)3 film: molecular precursor identification, film fabrication and band gap tuning

    PubMed Central

    Yang, Bo; Xue, Ding-Jiang; Leng, Meiying; Zhong, Jie; Wang, Liang; Song, Huaibing; Zhou, Ying; Tang, Jiang

    2015-01-01

    Sb2(S1−xSex)3 (0 ≤ x ≤ 1) compounds have been proposed as promising light-absorbing materials for photovoltaic device applications. However, no systematic study on the synthesis and characterization of polycrystalline Sb2(S1−xSex)3 thin films has been reported. Here, using a hydrazine based solution process, single-phase Sb2(S1−xSex)3 films were successfully obtained. Through Raman spectroscopy, we have investigated the dissolution mechanism of Sb in hydrazine: 1) the reaction between Sb and S/Se yields [Sb4S7]2-/[Sb4Se7]2- ions within their respective solutions; 2) in the Sb-S-Se precursor solutions, Sb, S, and Se were mixed on a molecular level, facilitating the formation of highly uniform polycrystalline Sb2(S1−xSex)3 thin films at a relatively low temperature. UV-vis-NIR transmission spectroscopy revealed that the band gap of Sb2(S1−xSex)3 alloy films had a quadratical relationship with the Se concentration x and it followed the equation , where the bowing parameter was 0.118 eV. Our study provides a valuable guidance for the adjustment and optimization of the band gap in hydrazine solution processed Sb2(S1−xSex)3 alloy films for the future fabrication of improved photovoltaic devices. PMID:26042519

  20. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5

    PubMed Central

    Lu, Y. F.; Kono, H.; Larkin, T. I.; Rost, A. W.; Takayama, T.; Boris, A. V.; Keimer, B.; Takagi, H.

    2017-01-01

    The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron–hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta2NiSe5 is a narrow-gap semiconductor with a small one-electron bandgap EG of <50 meV. Below TC=326 K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap Eop ∼0.16 eV below TC comparable to the estimated exciton binding energy EB. Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the TC–EG phase diagram tuning EG via chemical and physical pressure. The dome-like behaviour around EG∼0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta2NiSe5. PMID:28205553

  1. Highly Porous Thermoelectric Nanocomposites with LowThermalConductivityand High Figure of Merit from Large-Scale Solution-Synthesized Bi2Te2.5Se0.5HollowNanostructures

    DOE PAGES

    Xu, Biao; Ames Lab., Ames, IA; Feng, Tianli L.; ...

    2017-01-12

    In order to enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). We report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi 2Te 2.5Se 0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m -1 K -1) and the highest z T (1.18) among state-of-the-art Bi 2Te 3-xSe x materilas. Additional benefits ofmore » the unprecedented low relative density (68–77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase-transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields.« less

  2. Electronic and mechanical properties of ZnX (X = S, Se and Te)—An ab initio study

    NASA Astrophysics Data System (ADS)

    Verma, Ajay Singh; Sharma, Sheetal; Sarkar, Bimal Kumar; Jindal, Vijay Kumar

    2011-12-01

    Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C11, C12 and C44), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.

  3. Structure of semiconducting versus fast-ion conducting glasses in the Ag-Ge-Se system.

    PubMed

    Zeidler, Anita; Salmon, Philip S; Whittaker, Dean A J; Piarristeguy, Andrea; Pradel, Annie; Fischer, Henry E; Benmore, Chris J; Gulbiten, Ozgur

    2018-01-01

    The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Ag x (Ge 0.25 Se 0.75 ) (100- x ) tie line (0≤ x ≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x =5 and x =25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag-Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag-Se coordination number increases from 2.6(3) at x =5 to 3.3(2) at x =25. For x =25, the measured Ag-Ag partial pair-distribution function gives 1.9(2) Ag-Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se-Se homopolar bonds as silver is added to the Ge 0.25 Se 0.75 base glass, and the limit of glass-formation at x ≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se-Se homopolar bonds as silver is added to the base glass.

  4. Photoreduction of Carbon Dioxide to Methane Over Sb1.5Sn8.5-x Ti x O19.0 with High Conductivity.

    PubMed

    Do, Jeong Yeon; Kwak, Byeong Sub; Kang, Misook

    2018-09-01

    In order to enhance the photoreduction of CO2 to CH4, a new type of photocatalyst, Sb1.5Sn8.5-xTixO19.0, with high conductivity and low bandgap was developed by partially incorporating Ti into the framework of Sb1.5Sn8.5O19.0 (antimony-doped tin oxide, ATO) using a controlled hydrothermal method. XRD and TEM analyses indicated that the Sb1.5Sn8.5-xTixO19.0 particles exhibited a tetragonal crystal structure and were approximately 20 nm in size. Furthermore, the bandgap and conductivity of these materials increased with increasing Ti content. A study of the photoreduction of CO2 with H2O revealed a remarkable increase in the generation of CH4 over the Sb1.5Sn8.5-xTixO19.0 catalysts. In particular, CH4 generation was the highest when Sb1.5Sn8.5Ti1.0O19.0 was used as the photocatalyst, and was three-fold higher than that achieved by using anatase TiO2. Photoluminescence studies showed that the enhanced photocatalytic activity of the Sb1.5Sn8.5-xTixO19.0 materials could be attributed to the interfacial transfer of photogenerated charges, which led to an effective charge separation and inhibition of the recombination of photogenerated electron-hole (e-/h+) pairs.

  5. Intrinsic crystal phase separation in the antiferromagnetic superconductor Rb(y)Fe(2-x)Se2: a diffraction study.

    PubMed

    Yu Pomjakushin, V; Krzton-Maziopa, A; Pomjakushina, E V; Conder, K; Chernyshov, D; Svitlyk, V; Bosak, A

    2012-10-31

    The crystal and magnetic structures of the superconducting iron-based chalcogenides Rb(y)Fe(2-x)Se(2) have been studied by means of single-crystal synchrotron x-ray and high-resolution neutron powder diffraction in the temperature range 2-570 K. The ground state of the crystal is an intrinsically phase-separated state with two distinct-by-symmetry phases. The main phase has the iron vacancy ordered √5 × √5 superstructure (I4/m space group) with AFM ordered Fe spins. The minority phase does not have √5 × √5-type of ordering and has a smaller in-plane lattice constant a and larger tetragonal c-axis and can be well described by assuming the parent average vacancy disordered structure (I4/mmm space group) with the refined stoichiometry Rb(0.60(5))(Fe(1.10(5))Se)(2). The minority phase amounts to 8-10% mass fraction. The unit cell volume of the minority phase is 3.2% smaller than the one of the main phase at T = 2 K and has quite different temperature dependence. The minority phase merges with the main vacancy ordered phase on heating above the phase separation temperature T(P) = 475 K. The spatial dimensions of the phase domains strongly increase above T(P) from 1000 to >2500 Å due to the integration of the regions of the main phase that were separated by the second phase at low temperatures. Additional annealing of the crystals at a temperature T = 488 K, close to T(P), for a long time drastically reduces the amount of the minority phase.

  6. XAS Studies of Se Speciation in Selenite-Fed Rats

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.

    2014-01-01

    The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824

  7. Band structure engineering for solar energy applications: Zinc oxide(1-x) selenium(x) films and devices

    NASA Astrophysics Data System (ADS)

    Mayer, Marie Annette

    New technologies motivate the development of new semiconducting materials, for which structural, electrical and chemical properties are not well understood. In addition to new materials systems, there are huge opportunities for new applications, especially in solar energy conversion. In this dissertation I explore the role of band structure engineering of semiconducting oxides for solar energy. Due to the abundance and electrochemical stability of oxides, the appropriate modification could make them appealing for applications in both photovoltaics and photoelectrochemical hydrogen production. This dissertation describes the design, synthesis and evaluation of the alloy ZnO1-xSe x for these purposes. I review several methods of band structure engineering including strain, quantum confinement and alloying. A detailed description of the band anticrossing (BAC) model for highly mismatched alloys is provided, including the derivation of the BAC model as well as recent work and potential applications. Thin film ZnOxSe1-x samples are grown by pulsed laser deposition (PLD). I describe in detail the effect of growth conditions (temperature, pressure and laser fluence) on the chemistry, structure and optoelectronic properties of ZnOxSe1-x. The films are grown using different combinations of PLD conditions and characterized with a variety of techniques. Phase pure films with low roughness and high crystallinity were obtained at temperatures below 450¢ªC, pressures less than 10-4 Torr and laser fluences on the order of 1.5 J/cm 2. Electrical conduction was still observed despite heavy concentrations of grain boundaries. The band structure of ZnO1-xSex is then examined in detail. The bulk electron affinity of a ZnO thin film was measured to be 4.5 eV by pinning the Fermi level with native defects. This is explained in the framework of the amphoteric defect model. A shift in the ZnO1-xSe x valence band edge with x is observed using synchrotron x-ray absorption and emission

  8. Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Muralikrishna, Molli; Kiran, Aditha Sai; Ravikanth, B.; Sowmendran, P.; Muthukumar, V. Sai; Venkataramaniah, Kamisetti

    2014-04-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb2Se3 nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  9. Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Bureau, Bruno; Rouxel, Tanguy; Gueguen, Yann; Gulbiten, Ozgur; Roiland, Claire; Soignard, Emmanuel; Yarger, Jeffery L.; Troles, Johann; Sangleboeuf, Jean-Christophe; Lucas, Pierre

    2010-11-01

    Physical properties of chalcogenide glasses in the AsxSe1-x system have been measured as a function of composition including the Young’s modulus E , shear modulus G , bulk modulus K , Poisson’s ratio ν , the density ρ , and the glass transition Tg . All these properties exhibit a relatively sharp extremum at the average coordination number ⟨r⟩=2.4 . The structural origin of this trend is investigated by Raman spectroscopy and nuclear magnetic resonance. It is shown that the reticulation of the glass structure increases continuously until x=0.4 following the “chain crossing model” and then undergoes a transition toward a lower dimension pyramidal network containing an increasing number of molecular inclusions at x>0.4 . Simple theoretical estimates of the network bonding energy confirm a mismatch between the values of mechanical properties measured experimentally and the values predicted from a continuously reticulated structure, therefore corroborating the formation of a lower dimension network at high As content. The evolution of a wide range of physical properties is consistent with this sharp structural transition and suggests that there is no intermediate phase in these glasses at room temperature.

  10. Quaternary schematics for property engineering of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Chavan, G. T.; Pawar, S. T.; Prakshale, V. M.; Sikora, A.; Pawar, S. M.; Chaure, N. B.; Kamble, S. S.; Maldar, N. N.; Deshmukh, L. P.

    2017-12-01

    The synthesis of quaternary Cd1-xZnxSySe1-y (0 ≤ x = y ≤ 0.35) thin films was done through indigenously developed chemical solution growth process. As-obtained thin films were subjected to the physical, chemical, structural and optical characterizations. The nearly hydrophobic nature of the as-deposited films except binary CdSe was observed through the wettability studies. The colorimetric studies supported a change in physical color attributes. The elemental analysis done confirmed the formation of Cd(Zn, S)Se and the chemical states of constituent elements as Cd2+, Zn2+, S2- and Se2-. Structural assessment suggested the formation of the polycrystalline quaternary phase of the hexagonal wurtzite structure. The Raman spectroscopy was also employed for the confirmation studies on Cd1-xZnxSySe1-y thin films. Morphological observations indicated microstructural transformation from an aggregated bunch of nano-sized globular grains into a rhomboid network of petal/flakes like crystallites. The atomic force micrographs (AFM) revealed the enhancement in the hillock structures. From advanced AFM characterizations, we observed that the CdSe thin film has leptokurtic (Sku = 3.23) surface, whereas, quaternary Cd(Zn, S)Se films have platykurtic (Sku < 3) surface. The orientation of the surface morphology was observed through the angular spectrum studies. The optical absorption studies revealed direct allowed transition for the films with a continuous modulation of the energy bandgap from 1.8 eV to 2.31 eV.

  11. High-Output-Power Densities from MBE-grown n- and p-Type PbTeSe-based Thermoelectrics via Improved Contact Metallization

    DTIC Science & Technology

    2011-10-19

    is uncertain . . The results of these various studies seem consistent that the Fermi . level at the surface of PbTe or Pbi -xSnxTe is not inherently...Both sides: ~T=220"C n-type IS am P!!I~:Ii SE+l9 n++ 200 nm Til Device P=30W/cm2 1001!!!1 Pbi ~Se 3.5E+I8 a+ NDLS ISO am PI!I!::Bi SE+19 a++ 200nmNil

  12. Structural and electrical properties of ferroelectric Na{sub 0.5} (Bi{sub 1-x}Pr{sub x} ){sub 0.5}TiO{sub 3} (x=0.00 and 0.10) ceramics synthesized by Sol-Gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalini, K.; Muneeswaran, M.; Giridharan, N. V., E-mail: giri@nitt.edu

    2016-05-23

    Ferroelectric Na{sub 0.5}(Bi{sub 1-x}Pr{sub x}){sub 0.5}TiO{sub 3} (x=0.00, 0.10) ceramics have been synthesized through sol-gel method. The phase formation has been confirmed by X-ray diffraction analysis of ceramics annealed at 800°C. The relaxation mechanism is observed from variation of dielectric constant with respect to temperature and frequency. Substitution of Pr reduces vacancies and defects identified from leakage current measurements. Further, the polarization Vs electric field (P-E) measurements have been performed at room temperature.

  13. Constitution diagram on the system TlSe-Tb-Se

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseinov, G.D.; Kerimova, E.M.; Agamaliev, D.G.

    1988-03-01

    The constitution diagram of the system TlSe-TbSe was constructed based on the results of differential-thermal, x-ray phase, and microstructural analyses and measurements of the microhardness. The compound TlTbSe/sub 2/, forming by a peritectic reaction, was observed. It was established that the solubility of TbSe in TlSe at room temperature equals 4.0 mole %.

  14. High absorption coefficients of the CuSb(Se,Te)2 and CuBi(S,Se)2 alloys enable high-efficient 100 nm thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhen; Persson, Clas

    2017-06-01

    We demonstrate that the band-gap energies Eg of CuSb(Se,Te)2 and CuBi(S,Se)2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1-xTex)2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω) for CuSb(Se1-xTex)2 is at ħω = Eg + 1 eV as much as 5-7 times larger than α(ω) for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 - 150 nm, and the efficiency increases to ˜30% if the Auger effect is diminished.

  15. Single layer of MX3(M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics

    NASA Astrophysics Data System (ADS)

    Jin, Yingdi; Li, Xingxing; Yang, Jinlong

    A serial of two dimensional titanium and zirconium trichalcogenides nanosheets MX3 (M=Ti, Zr; X=S, Se, Te) are investigated based on first-principles calculations. The evaluated low cleavage energy indicates that stable two dimensional monolayers can be exfoliated from their bulk crystals in experiment. Electronic studies reveal very rich electronic properties in these monolayers, including metallic TiTe3 and ZrTe3, direct band gap semiconductor TiS3 and indirect band gap semiconductors TiSe3, ZrS3 and ZrSe3. The band gaps of all the semiconductors are between 0.57~1.90 eV, which implies their potential applications in nano-electronics. And the calculated effective masses demonstrate highly anisotropic conduction properties for all the semiconductors. Optically, TiS3 and TiSe3 monolayers exhibit good light absorption in the visible and near-infrared region respectively, indicating their potential applications in optical devices. In particular, the highly anisotropic optical absorption of TiS3 monolayer suggests it could be used in designing nano optical waveguide polarizers.

  16. CsFe3(SeO3)2F6 with S = 5/2 Cube Tile Lattice.

    PubMed

    Lu, Hongcheng; Kageyama, Hiroshi

    2018-05-21

    A layered iron selenite fluoride CsFe 3 (SeO 3 ) 2 F 6 1 was hydrothermally synthesized. Single-crystal X-ray diffraction studies show that 1 has a trigonal ( P3̅ m1) lattice, where [Fe 3 (SeO 3 ) 2 F 6 ] - blocks of three iron sublayers are separated by Cs cations. Within the block, only Fe(2)F 6 and Fe(1)O 3 F 3 octahedra are magnetically connected via superexchange Fe(1) -F -Fe(2) pathways, giving an S = 5/2 cube tile (dice) lattice. At low magnetic field, 1 exhibits an antiferromagnetic transition at ∼130 K, where ferrimagnetic cube tile layers are arranged in a staggered manner. At low temperatures, we observed a field-induced transition to a ferrimagnetic state with a one-third magnetization plateau.

  17. Selenium doping NaCl-type superconductor: SnAs1-xSex (x=0-0.13)

    NASA Astrophysics Data System (ADS)

    He, Jianqiao; Zhang, Xian; Lai, Xiaofang; Huang, Fuqiang

    2017-08-01

    Selenium doped NaCl-type superconductor SnAs1-xSex (x=0-0.13) were made through solid state reaction. EDS results show that Se content increases with Se doping until over doped in SnAs0.9Se0.1 and SnAs0.87Se0.13 (around 2.7%). PXRD patterns confirmed the main phase of the six doped samples are SnAs. The cell parameters of doped SnAs were calculated using Rietveld refinements. Their cell parameters increase almost linearly with x until x reaches 13%. Single crystal diffraction measurement results show that there are no interstitial atom in doped SnAs. We conclude that Se atoms are substitutional atoms in SnAs. The superconducting onset temperatures (Tconset, under a magnetic field of 10 Oe) of SnAs increased from 3.8 K to 4.5 K by 10% Se doping. ρ-T curves of 1%, 5% and 10% Se doped samples show that all the three samples are metallic. Upper critical field Hc2(0) of 1%, 5% and 10% Se doped samples are 294 Oe, 649 Oe and 1011 Oe, respectively.

  18. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.

    2014-12-15

    We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mnmore » is observed with increasing doping concentration. A magnetic moment of 5.1 μ{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μ{sub B}/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.« less

  19. Highly Porous Thermoelectric Nanocomposites with Low Thermal Conductivity and High Figure of Merit from Large-Scale Solution-Synthesized Bi2 Te2.5 Se0.5 Hollow Nanostructures.

    PubMed

    Xu, Biao; Feng, Tianli; Agne, Matthias T; Zhou, Lin; Ruan, Xiulin; Snyder, G Jeffery; Wu, Yue

    2017-03-20

    To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi 2 Te 2.5 Se 0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m -1  K -1 ) and the highest z T (1.18) among state-of-the-art Bi 2 Te 3-x Se x materilas. Additional benefits of the unprecedented low relative density (68-77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase-transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cross-Plane Seebeck Coefficient Measurement of Misfit Layered Compounds (SnSe)n(TiSe2)n (n = 1,3,4,5).

    PubMed

    Li, Zhen; Bauers, Sage R; Poudel, Nirakar; Hamann, Danielle; Wang, Xiaoming; Choi, David S; Esfarjani, Keivan; Shi, Li; Johnson, David C; Cronin, Stephen B

    2017-03-08

    We report cross-plane thermoelectric measurements of misfit layered compounds (SnSe) n (TiSe 2 ) n (n = 1,3,4,5), approximately 50 nm thick. Metal resistance thermometers are fabricated on the top and bottom of the (SnSe) n (TiSe 2 ) n material to measure the temperature difference and heat transport through the material directly. By varying the number of layers in a supercell, n, we vary the interface density while maintaining a constant global stoichiometry. The Seebeck coefficient measured across the (SnSe) n (TiSe 2 ) n samples was found to depend strongly on the number of layers in the supercell (n). When n decreases from 5 to 1, the cross-plane Seebeck coefficient decreases from -31 to -2.5 μV/K, while the cross-plane effective thermal conductivity decreases by a factor of 2, due to increased interfacial phonon scattering. The cross-plane Seebeck coefficients of the (SnSe) n (TiSe 2 ) n are very different from the in-plane Seebeck coefficients, which are higher in magnitude and less sensitive to the number of layers in a supercell, n. We believe this difference is due to the different carrier types in the n-SnSe and p-TiSe 2 layers and the effect of tunneling on the cross-plane transport.

  1. First principles study on the elastic and electronic properties of CdX (X = S, Se and Te)

    NASA Astrophysics Data System (ADS)

    Sharma, Sheetal; Verma, Ajay Singh; Sarkar, Bimal Kumar; Bhandari, Rajiv; Jindal, Vijay Kumar

    2011-12-01

    Wide band gap semiconductors are emerging as a potential candidate for optically active materials in blue green spectral region and operating at high power level and high temperature. CdX, X = S, Se and Te are wide band gap semiconductors having applications in optoelectronics devices. In this paper we investigated the elastic and electronic properties of Cadmium chalcogenide (cubic zinc-blende (ZB) structure) using standard Kohn-Sham self consistent density functional theory method (DFT) that uses non conserving pseudopotentials in fully nonlocal form within the generalized gradient approximation (GGA) for the exchange-correlation potential. The independent elastic constants, C11, C12 and C44, are calculated from direct computation of stresses generated by small strains. The shear modulus and Young's modulus are estimated for CdX. Using the GGA for the exchange correlation potential, the calculated direct fundamental band gap value is in very good agreement with the measured one.

  2. Ionic configuration of copper ferrimanganites Cu 0.5Mn xFe 2.5- xO 4

    NASA Astrophysics Data System (ADS)

    Lenglet, M.; Kasperek, J.; Hannoyer, B.; Lopitaux, J.; d'Huysser, A.; Tellier, J. C.

    1992-06-01

    Mössbauer spectrometry, neutron diffraction, XANES, and XPS have led to the determination of the cation distributions of the system Cu 0.5Mn xFe 2.5- xO 4 (0≤ x≤1.5). The three cations are present in both tetrahedral and octahedral sites, and the relative number of Fe ions on A- and B-sites remains nearly constant in the whole range of x. It appears that for x≤0.5 manganese is divalent and copper is in its two oxidation states. For x>0.5 copper and iron are respectively divalent and trivalent; the manganese is in +2 and +3 oxydation states.

  3. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na2 SeO3 as Se source and investigating optical properties.

    PubMed

    Khafajeh, R; Molaei, M; Karimipour, M

    2017-06-01

    In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na 2 SeO 3 as the Se source by a rapid and room temperature photochemical (UV-assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR), and energy dispersive X-ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round-shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2 T 2 acceptor levels of Cu 2 + . The emission was increased by increasing the Cu 2 + ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Optical and magneto-optical effects in Hg{sub 1-x}Cd{sub x}Cr{sub 2}Se{sub 4} (0 ⩽ x ⩽ 1) single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhorukov, Yu. P., E-mail: suhorukov@imp.uran.ru; Telegin, A. V.; Bebenin, N. G.

    2015-09-15

    The concentration, temperature, and magnetic-field dependences of the magnetoreflection and magnetotransmission of natural light in the infrared spectral range and the Kerr effect in single crystals of ferromagnetic Hg{sub 1-x}Cd{sub x}Cr{sub 2}Se{sub 4} (0 ⩽ x ⩽ 1) spinels have been studied. A relationship of the magneto-optical properties to the electronic band structure of spinels has been established. The most significant changes in the spectra of magnetoreflection, magnetotransmission, and the Kerr effect are shown to be observed for 0.1 < x < 0.25 and are attributable to a rearrangement of the band structure as the composition changes.

  5. Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system

    NASA Astrophysics Data System (ADS)

    Hamed, A. E.; El-Aziz, Y. M. Abd.; Madi, N. K.; Kassem, M. E.

    1995-12-01

    Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system was studied by measuring the specific heat at constant pressure, C p, as a function of temperature in the temperature range 300-800 K. For non-zero values of X ( X = 0.2%, 0.5%, 1% and 2%) the critical behaviour of the phase transition was found to change considerably compared with that of X = 0 or pure LiKSO 4. The observed change in the phase transition with increase of Cs 2SO 4 content ( X) was accompanied by a decrease in the thermodynamic parameters: the value of the specific heat at the transition point (Δ C P) max, the transition temperature, T1, and the value of the energy of ordering. The results were interpreted within the Landau thermodynamic theory of the phase transition.

  6. Optical properties of (AlxGa1-x)2O3 on sapphire

    NASA Astrophysics Data System (ADS)

    Hu, Zhuangzhuang; Feng, Qian; Zhang, Jincheng; Li, Fuguo; Li, Xiang; Feng, Zhaoqing; Zhang, Chunfu; Hao, Yue

    2018-02-01

    The (AlxGa1-x)2O3 and Ga2O3 films are epitaxially grown on sapphire by pulsed laser deposition (PLD). From X-ray photoelectron spectroscopy (XPS) and X-ray diffraction measurements, the (AlxGa1-x)2O3 films with Al compositions of 0.39, 0.49 and up to 0.53 are all single crystal and there is an out-of-plane tensile strain in (AlxGa1-x)2O3 films within the range from 0.164% to 0.345%. The optical properties are investigated by Spectral Ellipsometry (SE) together with the optical transmission method. The spectral dependence of the refractive index (n) by SE is in accordance with the reported experiment results. The thicknesses of the Ga2O3 and (AlxGa1-x)2O3 films obtained by SE fitting are 201, 116.8, 40 and 84.61 nm, respectively, which is consistent with the field emission scanning electron microscopy (FESEM) measurement results. In addition, with the Al composition increasing, the bandgaps of the (AlxGa1-x)2O3 films determined from the SE are both increase from 4.95 to 5.49, 5.7 and 5.75 eV, almost identical to the values determined by the transmittance spectra, which is larger than some extent compared to reference [13] for the compressive strain in the (AlxGa1-x)2O3 films.

  7. GaSe and GaTe anisotropic layered semiconductors for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Choi, Michael; Kang, Sung Hoon; Rauh, R. David; Wei, Jiuan; Zhang, Hui; Zheng, Lili; Cui, Y.; Groza, M.; Burger, A.

    2007-09-01

    High quality detector grade GaSe and GaTe single crystals have been grown by a modified vertical Bridgman technique using high purity Ga (7N) and in-house zone refined (ZR) precursor materials (Se and Te). A state-of-the-art computer model, MASTRAPP, is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown crystals. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The crystals harvested from ingots of 8-10 cm length and 2.5 cm diameter, have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, low temperature photoluminescence (PL), atomic force microscopy (AFM), and optical absorption/transmission measurements. Single element devices up to 1 cm2 in area have been fabricated from the crystals and tested as radiation detectors by measuring current-voltage (I-V) characteristics and pulse height spectra using 241Am source. The crystals have shown high promise as nuclear detectors with their high dark resistivity (>=10 9 Ω .cm), good charge transport properties (μτ e ~ 1.4x10 -5 cm2/V and μτ h ~ 1.5x10 -5 cm2/V), and relatively good energy resolution (~4% energy resolution at 60 keV). Details of numerical modeling and simulation, detector fabrication, and testing using a 241Am energy source (60 keV) is presented in this paper.

  8. Photoluminescence and contactless electroreflectance characterization of BexCd1-xSe alloys

    NASA Astrophysics Data System (ADS)

    Huang, P. J.; Huang, Y. S.; Firszt, F.; Meczynska, H.; Maksimov, O.; Tamargo, M. C.; Tiong, K. K.

    2007-01-01

    A detailed optical characterization of a Bridgman-grown wurtzite- (WZ-) type Be0.075Cd0.925Se mixed crystal and three zinc-blende (ZB) BexCd1-xSe epilayers grown by MBE on InP substrates has been carried out via photoluminescence (PL) and contactless electroreflectance (CER) in the temperature range of 15-400 K. The PL spectrum of the WZ-BeCdSe at low temperature consists of an exciton line, an edge emission feature due to recombination of donor-acceptor pairs, and a broad band related to recombination through deep-level defects, while the PL emission peaks of the ZB-BeCdSe epilayers show an asymmetric shape with a tail on the low-energy side. Various interband transitions, originating from the band edge and spin-orbit splitting critical points, of the samples have been observed in the CER spectra. The peak positions of the exciton emission lines in the PL spectra correspond quite well to the energies of the fundamental transitions determined from electromodulation data. The parameters that describe the temperature dependence of the fundamental and spin split-off bandgaps and the broadening function of the band-edge exciton are evaluated and discussed.

  9. Atomistic Model of Physical Ageing in Se-rich As-Se Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchak,R.; Shpotyuk, O.; Kozdras, A.

    2007-01-01

    Thermal, optical, X-ray excited and magnetic methods were used to develop a microstructural model of physical ageing in Se-rich glasses. The glass composition As10Se90, possessing a typical cross-linked chain structure, was chosen as a model object for the investigations. The effect of physical ageing in this glass was revealed by differential scanning calorimetry, whereas the corresponding changes in its atomic arrangement were studied by extended X-ray absorption fine structure, Raman and solid-state 77Se nuclear magnetic resonance spectroscopy. Straightening-shrinkage processes are shown to be responsible for the physical ageing in this Se-rich As-Se glass.

  10. Preparation and Enhanced Thermoelectric Performance of Cu2Se-SnSe Composite Materials

    NASA Astrophysics Data System (ADS)

    Peng, Zhi; He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu

    2018-03-01

    A series of p-type xCu2Se-SnSe (x = 0%, 0.10%, 0.15%, 0.20%, and 0.25%) composite thermoelectric materials have been prepared by the combination of ultrasonic dispersion and spark plasma sintering methods. The effects of secondary phase Cu2Se on the phase composition, microstructure, and thermoelectric properties of the composites were investigated. Microstructure characterization and elemental maps indicated Cu2Se grains uniformly distributed on the boundaries of the matrix. Transport measurements demonstrated that enhancement of the power factor and reduction of the thermal conductivity can be realized simultaneously by optimizing the adding content of Cu2Se. The highest ZT value of 0.51 at 773 K was achieved for the sample with x = 0.15%, increased by 24% compared with that of the SnSe matrix. These results demonstrate that optimizing the Cu2Se content can improve the thermoelectric performance of p-type SnSe polycrystalline materials.

  11. Preparation and Enhanced Thermoelectric Performance of Cu2Se-SnSe Composite Materials

    NASA Astrophysics Data System (ADS)

    Peng, Zhi; He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu

    2018-06-01

    A series of p-type xCu2Se-SnSe ( x = 0%, 0.10%, 0.15%, 0.20%, and 0.25%) composite thermoelectric materials have been prepared by the combination of ultrasonic dispersion and spark plasma sintering methods. The effects of secondary phase Cu2Se on the phase composition, microstructure, and thermoelectric properties of the composites were investigated. Microstructure characterization and elemental maps indicated Cu2Se grains uniformly distributed on the boundaries of the matrix. Transport measurements demonstrated that enhancement of the power factor and reduction of the thermal conductivity can be realized simultaneously by optimizing the adding content of Cu2Se. The highest ZT value of 0.51 at 773 K was achieved for the sample with x = 0.15%, increased by 24% compared with that of the SnSe matrix. These results demonstrate that optimizing the Cu2Se content can improve the thermoelectric performance of p-type SnSe polycrystalline materials.

  12. The relationship between structural and optical properties of Se-Ge-As glasses

    NASA Astrophysics Data System (ADS)

    Ghayebloo, M.; Rezvani, M.; Tavoosi, M.

    2018-05-01

    In this study, the structural and optical characterization of bulk Se-Ge-As glasses has been investigated. In this regards, six different Se60Ge40-xAsx (0 ≤ x ≤ 25) glasses were prepared by conventional melt quenching technique in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, differential thermal analysis (DTA), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. According to achieved results, fully amorphous phase can easily form in different Se-Ge-As systems. The thermal and optical characteristic of Se60Ge40-xAsx glasses shows anomalous behavior at 5 mol% of As for the glass transition temperature, transmittance, absorption edge, optical energy gap and Urbach energy. The highest glass transition temperature, transmittance, optical energy gap and Urbach energy properties were achieved in Se60Ge35As5 glass as a result of the highest connectivity of cations and anions in glass network.

  13. Multicolor emission from intermediate band semiconductor ZnO 1-xSe x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welna, M.; Baranowski, M.; Linhart, W. M.

    Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E - and upper E + valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emissionmore » is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.« less

  14. Multicolor emission from intermediate band semiconductor ZnO 1-xSe x

    DOE PAGES

    Welna, M.; Baranowski, M.; Linhart, W. M.; ...

    2017-03-13

    Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E - and upper E + valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emissionmore » is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.« less

  15. Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2018-05-01

    A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron-hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron-hole interactions is observed with increasing external ZnS shell size. The strong electron-hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.

  16. Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/CdxZn1 - xS/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Yuan, Hang; Niu, Jin Zhong; Xu, Shasha; Zhou, Changhua; Ma, Lan; Li, Lin Song

    2011-09-01

    Highly photoluminescent (PL) reverse type-I ZnSe/CdSe nanocrystals (NCs) and ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs were successfully synthesized by a phosphine-free method. By this low-cost, 'green' synthesis route, more than 10 g of high-quality ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS NCs were synthesized in a large scale synthesis. After the overgrowth of a CdS/CdxZn1 - xS/ZnS multishell on ZnSe/CdSe cores, the PL quantum yields (QYs) increased from 28% to 75% along with the stability improvement. An amphiphilic oligomer was used as a surface coating agent to conduct a phase transfer experiment, core/multishell NCs were dissolved in water by such surface modification and the QYs were still kept above 70%. The as-prepared water dispersible ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs not only have high fluorescence QYs but also are extremely stable in various physiological conditions. Furthermore, a biosensor system (lateral flow immunoassay system, LFIA) for the detection of human hepatitis B surface antigen (HBsAg) was developed by using this water-soluble core/multishell NCs as a fluorescent label and a nitrocellulose filter membrane for lateral flow. The result showed that such ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs were excellent fluorescent labels to detect HBsAg. The sensitivity of HBsAg detection could reach as high as 0.05 ng ml - 1.

  17. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1−xFex)OHFeSe

    PubMed Central

    Du, Zengyi; Yang, Xiong; Lin, Hai; Fang, Delong; Du, Guan; Xing, Jie; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    In the field of iron-based superconductors, one of the frontier studies is about the pairing mechanism. The recently discovered (Li1−xFex)OHFeSe superconductor with the transition temperature of about 40 K provides a good platform to check the origin of double superconducting gaps and high transition temperature in the monolayer FeSe thin film. Here we report a scanning tunnelling spectroscopy study on the (Li1−xFex)OHFeSe single crystals. The tunnelling spectrum mimics that of the monolayer FeSe thin film and shows double gaps at about 14.3 and 8.6 meV. Further analysis based on the quasiparticle interference allows us to rule out the d-wave gap, and for the first time assign the larger (smaller) gap to the outer (inner) Fermi pockets (after folding) associating with the dxy (dxz/dyz) orbitals, respectively. The gap ratio amounts to 8.7, which demonstrates the strong coupling mechanism in the present superconducting system. PMID:26822281

  18. The molecular structures and conformation of o-selenobenzyl fluoride derivatives, ArSeX (Ar=C 6H 4CH 2F; X=CN, Cl, Me): ab initio and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeong, Myongho; Kwon, Younghi

    2000-10-01

    Ab initio and density functional theory methods are applied to investigate the molecular structures, intramolecular orbital interactions, and 19F and 77Se NMR chemical shifts of o-selenobenzyl fluoride derivatives, ArSeX ( Ar= C6H4CH2F; X= CN, Cl, Me) , at both RHF and B3LYP levels with the basis sets 6-311G ∗∗ and 6-311+G ∗∗. There are two stable rotational conformers for ArSeX. The energy differences between both conformers for each compound are small (within 2 kcal/mol) at various levels.

  19. Elemental Precursor Solution Processed (Cu1-xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency.

    PubMed

    Qi, Yafang; Tian, Qingwen; Meng, Yuena; Kou, Dongxing; Zhou, Zhengji; Zhou, Wenhui; Wu, Sixin

    2017-06-28

    The partial substitution of Cu + with Ag + into the host lattice of Cu 2 ZnSn(S,Se) 4 thin films can reduce the open-circuit voltage deficit (V oc,deficit ) of Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells. In this paper, elemental Cu, Ag, Zn, Sn, S, and Se powders were dissolved in solvent mixture of 1,2-ethanedithiol (edtH 2 ) and 1,2-ethylenediamine (en) and used for the formation of (Cu 1-x Ag x ) 2 ZnSn(S,Se) 4 (CAZTSSe) thin films with different Ag/(Ag + Cu) ratios. The key feature of this approach is that the impurity atoms can be absolutely excluded. Further results indicate that the variations of grain size, band gap, and depletion width of the CAZTSSe layer are generally determined by Ag substitution content. Benefiting from the V oc enhancement (∼50 mV), the power conversion efficiency is successfully increased from 7.39% (x = 0) to 10.36% (x = 3%), which is the highest efficiency of Ag substituted devices so far.

  20. Fe-vacancy ordering in superconducting K 1–xFe 2–ySe 2: First-principles calculations and Monte Carlo simulations

    DOE PAGES

    Fang, Yong; Tai, Yuan -Yen; Deng, Junkai; ...

    2015-07-20

    Fe vacancies in the 33 K superconductor K 1–xFe 2–ySe 2 show ordering schemes that may be correlated with its superconducting properties. First-principles calculations and kinetic Monte Carlo simulations lead to a very simple model for vacancy ordering. Repulsive dipolar interactions between Fe vacancies show three ground states: amore » $$\\sqrt{8}\\times \\sqrt{10}$$ rhombus-ordered structure for 12.5% vacancies, a $$\\sqrt{5}\\times \\sqrt{5}$$ squared lattice for 20% vacancies, and a $$\\sqrt{5}\\times \\sqrt{5}$$ rhombus-ordered structure for 25% vacancies. Other structural states are derived from these three ground states and may contain additional disordered spatial regions. As a result, the repulsive interaction between Fe vacancies arises from enhanced Fe–Se covalent bonds, which differs from the well-known attractive interaction of Fe vacancies in body-centered cubic Fe.« less

  1. Optical spectra and band structure of Ag(x)Ga(x)Ge(1-x)Se2 (x = 0.333, 0.250, 0.200, 0.167) single crystals: experiment and theory.

    PubMed

    Reshak, A H; Parasyuk, O V; Fedorchuk, A O; Kamarudin, H; Auluck, S; Chyský, J

    2013-12-05

    Theoretical and experimental studies of the Ag(x)Ga(x)Ge(1-x)Se2 (x = 0.333, 0.250, 0.200, 0.167) single crystals are performed. These crystals possess a lot of intrinsic defects which are responsible for their optoelectronic features. The theoretical investigations were performed by means of DFT calculations using different exchange-correlation potentials. The experimental studies were carried out using the modulated VUV ellipsometry for dielectric constants and birefringence studies. The comparison of the structure obtained from X-ray with the theoretically optimized structure is presented. The crucial role of the intrinsic defect states is manifested in the choice of the exchange correlation potential used. The data may be applicable for a large number of the ternary chalcogenides which are sensitive to the presence of the local disordered states near the band edges.

  2. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films

    NASA Astrophysics Data System (ADS)

    Hassanien, A. S.; Akl, Alaa A.

    2016-01-01

    Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.

  3. Application of electrochemical method to microfabricated region in single-crystal device of FeSe1- x Te x superconductors

    NASA Astrophysics Data System (ADS)

    Okada, Kazuhiro; Takagi, Tomohiro; Kobayashi, Masahiro; Ohnuma, Haruka; Noji, Takashi; Koike, Yoji; Ayukawa, Shin-ya; Kitano, Haruhisa

    2018-04-01

    The application of an electrochemical method to the iron-based chalcogenide superconductors has great potentials in enhancing their properties such as the superconducting transition temperature. Unfortunately, this method has been limited to polycrystalline powders or thin film samples with a large surface area. Here, we demonstrate that the electrochemical method can be usefully applied to single-crystal devices of FeSe1- x Te x superconductors by combining it with the focused ion beam (FIB) microfabrication techniques. Our results open a new route to developing the high-quality superconducting devices fabricated using layered iron-based chalcogenides, whose properties are electrochemically controlled.

  4. Dispersion of the refractive index of a samarium-doped Se{sup 95}Te{sup 5} chalcogenide glassy semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atayeva, S. U., E-mail: seva-atayeva@mail.ru; Mekhtiyeva, S. I.; Isayev, A. I.

    2015-07-15

    The transmission spectrum of a Se{sup 95}Te{sup 5} chalcogenide glassy semiconductor doped with samarium (0.05, 0.1, 0.25, 0.5, and 1 at %) is studied; the Swanepoel method and the single-oscillator model are used to determine the oscillator energy E{sup 0}, dispersion energy E{sup d}, optical width of the band gap E{sup g}, and linear (n) and nonlinear (n{sup 2}) refractive indices. The changes in the values of these parameters as a result of doping are attributed to modification of the local structure and to a change in the concentration of defect states.

  5. Ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires probed by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Lu, Junpeng; Yang, Zongyin; Teng, Jinghua; Ke, Lin; Zhang, Xinhai; Tong, Limin; Sow, Chorng Haur

    2016-06-01

    Superiorly high photoconductivity is desirable in optoelectronic materials and devices for information transmission and processing. Achieving high photoconductivity via bandgap engineering in a bandgap-graded semiconductor nanowire has been proposed as a potential strategy. In this work, we report the ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires and its detailed analysis by means of ultrafast optical-pump terahertz-probe (OPTP) spectroscopy. The recombination rates and carrier mobility are quantitatively obtained via investigation of the transient carrier dynamics in the nanowires. By analysis of the terahertz (THz) spectra, we obtain an insight into the bandgap gradient and band alignment to carrier transport along the nanowires. The demonstration of the ultrahigh photoconductivity makes bandgap-graded CdSxSe1-x nanowires a promising candidate as building blocks for nanoscale electronic and photonic devices.

  6. Upgrading to MARPLOT 5.x

    EPA Pesticide Factsheets

    MARPLOT 5.x versions include significant changes from both the previous 4.x versions and the 3.x versions. To ensure that your data is successfully transferred from your old MARPLOT, follow these instructions carefully.

  7. Evidence of nodes in the order parameter of the superconducting doped topological insulator Nb x Bi 2 Se 3 via penetration depth measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Claus, H.; Welp, U.

    2016-11-01

    The low-temperature variation of the London penetration depth lambda(T) in the candidate topological superconductor NbxBi2Se3 (x = 0.25) is reported for several crystals. The measurements were carried out by means of a tunnel-diode oscillator technique in both field orientations (H-rf || c and H-rf || ab planes). All samples exhibited power-law behavior at low temperatures (Delta lambda similar to T-2) clearly indicating the presence of point nodes in the superconducting order parameter. The results presented here are consistent with a nematic odd-parity spin-triplet E-u pairing state in NbxBi2Se3.

  8. AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Shaukat, A.

    2012-12-01

    This study describes structural, electronic and optical properties of MgxCd1-xX (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu-Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel-Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ɛ(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.

  9. Low-Cost, Efficient, and Durable H2 Production by Photoelectrochemical Water Splitting with CuGa3Se5 Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher; Klein, Walter E; Li, Zhen

    Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV andmore » decreased saturated photocurrent density from 18 to 8 mA/cm2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa3Se5) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (~12 mA/cm2 at -1 V vs RHE). This is equivalent to ~17 200 C/cm2, which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa3Se5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.« less

  10. Low-Cost, Efficient, and Durable H2 Production by Photoelectrochemical Water Splitting with CuGa3Se5 Photocathodes.

    PubMed

    Muzzillo, Christopher P; Klein, W Ellis; Li, Zhen; DeAngelis, Alexander Daniel; Horsley, Kimberly; Zhu, Kai; Gaillard, Nicolas

    2018-06-13

    Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H 2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV and decreased saturated photocurrent density from 18 to 8 mA/cm 2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa 3 Se 5 ) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (∼12 mA/cm 2 at -1 V vs RHE). This is equivalent to ∼17 200 C/cm 2 , which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa 3 Se 5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.

  11. Polytypism, polymorphism, and superconductivity in TaSe 2 –xTe x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Huixia; Xie, Weiwei; Tao, Jing

    2015-03-03

    Polymorphism in materials often leads to significantly different physical properties - the rutile and anatase polymorphs of TiO₂ are a prime example. Polytypism is a special type of polymorphism, occurring in layered materials when the geometry of a repeating structural layer is maintained but the layer stacking sequence of the overall crystal structure can be varied; SiC is an example of a material with many polytypes. Although polymorphs can have radically different physical properties, it is much rarer for polytypism to impact physical properties in a dramatic fashion. Here we study the effects of polytypism and polymorphism on the superconductivitymore » of TaSe₂, one of the archetypal members of the large family of layered dichalcogenides. We show that it is possible to access 2 stable polytypes and 2 stable polymorphs in the TaSe 2-xTe x solid solution, and find that the 3R polytype shows a superconducting transition temperature that is between 6 and 17 times higher than that of the much more commonly found 2H polytype. Thus, the reason for this dramatic change is not apparent, but we propose that it arises either from a remarkable dependence of T c on subtle differences in the characteristics of the single layers present, or from a surprising effect of the layer stacking sequence on electronic properties that instead are expected to be dominated by the properties of a single layer in materials of this kind.« less

  12. Antimicrobial activity of gamma-thionin-like soybean SE60 in E. coli and tobacco plants.

    PubMed

    Choi, Yeonhee; Choi, Yang Do; Lee, Jong Seob

    2008-10-17

    The SE60, a low molecular weight, sulfur-rich protein in soybean, is known to be homologous to wheat gamma-purothionin. To elucidate the functional role of SE60, we expressed SE60 cDNA in Escherichia coli and in tobacco plants. A single protein band was detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) after anti-FLAG affinity purification of the protein from transformed E. coli. While the control E. coli cells harboring pFLAG-1 showed standard growth with Isopropyl beta-d-1-thiogalactopyranoside (IPTG) induction, E. coli cells expressing the SE60 fusion protein did not grow at all, suggesting that SE60 has toxic effects on E. coli growth. Genomic integration and the expression of transgene in the transgenic tobacco plants were confirmed by Southern and Northern blot analysis, respectively. The transgenic plants demonstrated enhanced resistance against the pathogen Pseudomonas syringae. Taken together, these results strongly suggest that SE60 has antimicrobial activity and play a role in the defense mechanism in soybean plants.

  13. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  14. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Woods, Thomas N.; Stone, Jordan

    2013-03-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the 1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to 5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution ( 0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below 1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from 0.5 to >10 keV with 0.15 keV FWHM resolution (though, due to hardware limitations, with only 0.12 keV binning) and 2-sec cadence over 5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above 4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  15. Superconductivity enhanced by Se doping in Eu3Bi2(S,Se)4F4

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Zhai, H. F.; Tang, Z. J.; Li, L.; Li, Y. K.; Chen, Q.; Chen, J.; Wang, Z.; Feng, C. M.; Cao, G. H.; Xu, Z. A.

    2015-07-01

    We investigated the negative-chemical-pressure effect of Eu3Bi2S4-x Se x F4 (0 ≤ x ≤ 2.0) by the partial substitution of S with Se. The crystalline lattice substantially expands as Se is doped, suggesting an effective negative chemical pressure. With Se/S doping, the charge-density-wave-like anomaly is suppressed, and meanwhile the superconducting transition temperature (T_c) is enhanced. For x = 2.0 , T c reaches 3.35 K and bulk superconductivity is confirmed by the strong diamagnetic signal, with shielding volume fraction over 90%. Magnetic-susceptibility, specific-heat and Hall-effect measurements reveal that the Se/S doping increases the carrier density, corresponding to the increase of the average Eu valence. Our work provides a rare paradigm of negative-chemical-pressure effect.

  16. Impact of the charge density wave state in the electrodynamic response of ZrTe 3 - x Se x : Optical evidence for a pseudogap phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinotti, M.; Ethiraj, J.; Mirri, C.

    The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less

  17. Impact of the charge density wave state in the electrodynamic response of ZrTe 3 - x Se x : Optical evidence for a pseudogap phase

    DOE PAGES

    Chinotti, M.; Ethiraj, J.; Mirri, C.; ...

    2018-01-12

    The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less

  18. Crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1993-01-01

    The materials to be investigated are ZnSe and related ternary semiconducting alloys (e.g., ZnS(x)Se(1-x), ZnTe(x)Se(1-x), and Zn(1-x)Cd(x)Se). These materials are useful for opto-electronic applications such as high efficient light emitting diodes and low power threshold and high temperature lasers in the blue-green region of the visible spectrum. The recent demonstration of its optical bistable properties also makes ZnSe a possible candidate material for digital optical computers. The investigation consists of an extensive ground-based study followed by flight experimentation, and involves both experimental and theoretical work. The objectives of the ground-based work are to establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low gravity environment and to obtain the experimental data and perform the analyses required to define the optimum parameters for the flight experiments. During the six months of the Preliminary Definition Phase, the research efforts were concentrated on the binary compound ZnSe - the purification of starting materials of Se by zone refining, the synthesis of ZnSe starting materials, the heat treatments of the starting materials, the vapor transport rate measurements, the vapor partial pressure measurements of ZnSe, the crystal growth of ZnSe by physical vapor transport, and various characterization on the grown ZnSe crystals.

  19. Thomas-Reiche-Khun populations in X-CH 3 and X-C 2H 5 series of molecules

    NASA Astrophysics Data System (ADS)

    Zitto, M. E.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2000-09-01

    Calculations of nuclear electric shieldings, equivalent to dipole moment geometric derivatives, and related to atomic polar tensors, are presented for X-CH 3 and X-C 2H 5 molecules with X=NH 2, OH and F. The electric shielding tensors satisfy a constraint for the electrostatic equilibrium, i.e., the mixed length-acceleration Thomas-Reiche-Khun sum rule, which gives important indications on the reliability of theoretical predictions of IR intensities and leads to the definition of atomic populations. Numerical evidence was found for the additivity and transferability of atomic populations, within the X-substituted alkane series.

  20. Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection.

    PubMed

    Wibowo, Arief C; Malliakas, Christos D; Liu, Zhifu; Peters, John A; Sebastian, Maria; Chung, Duck Young; Wessels, Bruce W; Kanatzidis, Mercouri G

    2013-06-17

    We investigated an antimony chalcohalide compound, SbSeI, as a potential semiconductor material for X-ray and γ-ray detection. SbSeI has a wide band gap of 1.70 eV with a density of 5.80 g/cm(3), and it crystallizes in the orthorhombic Pnma space group with a one-dimensional chain structure comprised of infinite zigzag chains of dimers [Sb2Se4I8]n running along the crystallographic b axis. In this study, we investigate conditions for vertical Bridgman crystal growth using combinations of the peak temperature and temperature gradients as well as translation rate set in a three-zone furnace. SbSeI samples grown at 495 °C peak temperature and 19 °C/cm temperature gradient with 2.5 mm/h translation rate produced a single phase of columnar needlelike crystals aligned along the translational direction of the growth. The ingot sample exhibited an n-type semiconductor with resistivity of ∼10(8) Ω·cm. Photoconductivity measurements on these specimens allowed us to determine mobility-lifetime (μτ) products for electron and hole carriers that were found to be of similar order of magnitude (∼10(-4) cm(2)/V). Further, the SbSeI ingot with well-aligned, one-dimensional columnar needlelike crystals shows an appreciable response of Ag Kα X-ray.

  1. Highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots prepared via a phosphine synthetic route.

    PubMed

    Mordvinova, Natalia; Vinokurov, Alexander; Kuznetsova, Tatiana; Lebedev, Oleg I; Dorofeev, Sergey

    2017-01-24

    Here we report a simple method for the creation of highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots (QDs) on the basis of a phosphine synthetic route. In this method a Zn precursor was added to the reaction mixture at the beginning of the synthesis to form an In(Zn)P alloy structure, which promoted the formation of a ZnX shell. Core-shell InP/ZnX QDs exhibit highly intensive emission with a quantum yield over 50%. The proposed method is primarily important for practical applications. Advantages of this method compared to the widely used SILAR technique are discussed. We further demonstrate that the SILAR approach consisting of consequent addition of Zn and chalcogen precursors to pre-prepared non-doped InP colloidal nanoparticles is not quite suitable for shell growth without the addition of special activator agents or the use of very reactive precursors.

  2. Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Vermeulen, Paul. A.; Momand, Jamo; Kooi, Bart J.

    2014-07-01

    The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalline phase switching was achieved by consecutively melting, melt-quenching, and recrystallizing upon heating. Using a well-conditioned method, the composition of a single sample was allowed to shift slowly from 15 at. %Te to 60 at. %Te, eliminating sample-to-sample variability from the measurements. Using Energy Dispersive X-ray Spectroscopy composition analysis, the onset of melting for different Te-concentrations was confirmed to coincide with the literature solidus line, validating the use of the onset of melting Tm as a composition indicator. The glass transition Tg and crystallization temperature Tc could be determined accurately, allowing the construction of extended phase diagrams. It was found that Tm and Tg increase (but Tg/Tm decrease slightly) with increasing Te-concentration. Contrarily, the Tc decreases substantially, indicating that the amorphous phase becomes progressively unfavorable. This coincides well with the observation that the critical quench rate to prevent crystallization increases about three orders of magnitude with increasing Te concentration. Due to the employment of a large range of heating rates, non-Arrhenius behavior was detected, indicating that the undercooled liquid SeTe is a fragile liquid. The activation energy of crystallization was found to increase 0.5-0.6 eV when the Te concentration increases from 15 to 30 at. % Te, but it ceases to increase when approaching 50 at. % Te.

  3. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    NASA Astrophysics Data System (ADS)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  4. Structural, transport and magnetotransport properties of Ru-doped La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 & 0.05) manganite

    NASA Astrophysics Data System (ADS)

    Jethva, Sadaf; Katba, Savan; Udeshi, Malay; Kuberkar, D. G.

    2017-09-01

    We report the results of the structural, transport and magnetotransport studies on polycrystalline La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 and 0.05) manganite investigated using XRD and resistivity (with and without field) measurements. Rietveld refinement of XRD patterns confirms the single phasic tetragonal structure for both the samples crystalizing in I4/mcm space group (No. 140). Low-temperature resistivity and MR measurements with H = 0 T & 5 T field show thermal hysteresis which has been attributed to the first order phase transition. The increase in resistivity and decrease in metal - insulator transition temperature (TMI) with Ru - doping concentration in La0.5Sr0.5MnO3 (LSMO) has been understood in the context of superexchange interaction between Mn and Ru ions. The observed upturn in resistivity at low temperature under field has been explained using combined effect of electron - electron (e - e) interaction, Kondo-like spin-dependent scattering and electron - phonon interaction while the variation in resistivity at high temperature (T > Tp) has been explained using adiabatic small polaron hopping model.

  5. High-efficiency hybrid solar cells based on polymer/PbSx Se1-x nanocrystals benefiting from vertical phase segregation.

    PubMed

    Liu, Zeke; Sun, Yaxiang; Yuan, Jianyu; Wei, Huaixin; Huang, Xiaodong; Han, Lu; Wang, Weiwei; Wang, Haiqiao; Ma, Wanli

    2013-10-25

    Solution-processed hybrid solar cells employing a low band-gap polymer and PbSx Se1-x alloy nanocrystals, achieving a record high PCE of 5.50% and an optimal FF of 67% are presented. The remarkable device efficiency can be attributed to the high-performance active materials, the optimal polymer/NCs ratio and, more importantly, the vertical donor/(donor:acceptor)/acceptor structure which benefits charge dissociation and transport. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The effect of growth rate on the compositional variations in directionally solidified Hg(1-x)CdsubxSe

    NASA Technical Reports Server (NTRS)

    Andrews, R. N.

    1986-01-01

    Several Hg1-xCdxSe crystals of composition x = 0.2 were grown in a bridgman-type directional solidification furnace at varying translation rates. The influence of growth rate on both the longitudinal and radial compositional uniformity for the crystals was determined using density measurements and infrared transmission-edge mapping.

  7. E2 and SN2 Reactions of X(-) + CH3CH2X (X = F, Cl); an ab Initio and DFT Benchmark Study.

    PubMed

    Bento, A Patrícia; Solà, Miquel; Bickelhaupt, F Matthias

    2008-06-01

    We have computed consistent benchmark potential energy surfaces (PESs) for the anti-E2, syn-E2, and SN2 pathways of X(-) + CH3CH2X with X = F and Cl. This benchmark has been used to evaluate the performance of 31 popular density functionals, covering local-density approximation, generalized gradient approximation (GGA), meta-GGA, and hybrid density-functional theory (DFT). The ab initio benchmark has been obtained by exploring the PESs using a hierarchical series of ab initio methods [up to CCSD(T)] in combination with a hierarchical series of Gaussian-type basis sets (up to aug-cc-pVQZ). Our best CCSD(T) estimates show that the overall barriers for the various pathways increase in the order anti-E2 (X = F) < SN2 (X = F) < SN2 (X = Cl) ∼ syn-E2 (X = F) < anti-E2 (X = Cl) < syn-E2 (X = Cl). Thus, anti-E2 dominates for F(-) + CH3CH2F, and SN2 dominates for Cl(-) + CH3CH2Cl, while syn-E2 is in all cases the least favorable pathway. Best overall agreement with our ab initio benchmark is obtained by representatives from each of the three categories of functionals, GGA, meta-GGA, and hybrid DFT, with mean absolute errors in, for example, central barriers of 4.3 (OPBE), 2.2 (M06-L), and 2.0 kcal/mol (M06), respectively. Importantly, the hybrid functional BHandH and the meta-GGA M06-L yield incorrect trends and qualitative features of the PESs (in particular, an erroneous preference for SN2 over the anti-E2 in the case of F(-) + CH3CH2F) even though they are among the best functionals as measured by their small mean absolute errors of 3.3 and 2.2 kcal/mol in reaction barriers. OLYP and B3LYP have somewhat higher mean absolute errors in central barriers (5.6 and 4.8 kcal/mol, respectively), but the error distribution is somewhat more uniform, and as a consequence, the correct trends are reproduced.

  8. Superconductivity in the 2-Dimensional Homologous Series AMm Bi3 Q5+m (m=1, 2) (A=Rb, Cs; M=Pb, Sn; Q=Se, Te).

    PubMed

    Malliakas, Christos D; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G

    2018-05-17

    Superconductivity in the two-dimensional AM m Bi 3 Q 5+m family of semimetals is reported. The AMBi 3 Te 6 (m=1) and AM 2 Bi 3 Te 7 (m=2) members of the homologous series with A=Rb, Cs and M=Pb, Sn undergo a bulk superconducting transition ranging from 2.7 to 1.4 K depending on the composition. The estimated superconducting volume fraction is about 90 %. Superconducting phase diagrams as a function of chemical pressure are constructed for the solid solution products of each member of the homologous series, AMBi 3-x Sb x Te 6-y Se y and AM 2 Bi 3-x Sb x Te 7-y Se y (0≤x≤3 or 0≤y≤2). The structural flexibility of the ternary AM m M' 3 Te 5+m semiconducting homology to form isostructural analogues with a variety of metals, M=Pb, Sn; M'=Bi, Sb, gives access to a large number of electronic configurations and superconductivity due to chemical pressure effects. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. E 5 decay from the J π = 11 / 2 - isomer in Ba 137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, K.; McCutchan, E. A.; Lister, C. J.

    2014-10-01

    A new gamma-decay branch has been found from the well-known 661.659(3)-keV J(pi) = 11/2(-), T-1/2 = 2.552(1) min isomer in Ba-137 which is populated in the beta decay of Cs-137. The new 377.9(3)-keV gamma ray connects the isomer to the low-lying 283.5 keV, J(pi) = 1/2(-) state. It is of near-pure E5 character. The decay has a gamma branching ratio (Br-gamma = Gamma(gamma)/Gamma(tot)) of 1.12(9) x 10(-7). The new decay has a B(E5) of 0.71(6) W.u. [ B(E5) down arrow= 6.5(6) x 10(5) e(2) fm(10)], a value consistent with other "single-particle" E5 decays in the region. The new decay branchmore » is of topical interest, as it competes with the much-sought "two-photon" second-order electromagnetic decay from this state.« less

  10. Composition-dependent photoluminescence and electronic structure of 2-dimensional borocarbonitrides, BC X N (x = 1, 5)

    NASA Astrophysics Data System (ADS)

    Moses, Kota; Shirodkar, Sharmila N.; Waghmare, U. V.; Rao, C. N. R.

    2014-04-01

    Layered borocarbonitrides BCN and BC5N with a wide difference in composition have been prepared by the urea route. These 2D materials show a significant difference in the photoluminescence spectra, with BCN and BC5N showing maxima at 340 and 410 nm (3.61 and 3.0 eV), besides exhibiting different electrical resistivities. First-principles calculations show that BCN and BC5N are associated with different band gaps, the gap of the carbon-rich composition being lower. The change in the electronic structure and properties is related to the composition of BC X N i.e. the ordering of the graphene and BN domains.

  11. (Ba1-x Bi x )(Ti1-x Ni0.5x Sn0.5x )O3 Solid Solution: Phase Evolution, Microstructure, Dielectric Properties, and Impedance Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiuli; Li, Xiaoxia; Yan, Xiao; Liu, Gaofeng; Zhou, Huanfu

    2018-02-01

    (Ba1-x Bi x )(Ti1-x Ni0.5x Sn0.5x )O3 (BBTNS, 0.02 ≤ x ≤ 0.1) samples have been synthesized by traditional solid-state reaction technique and their structural transformation and dielectric properties investigated. X-ray diffraction (XRD) analysis revealed that BBTNS could form a homogeneous solid solution, and the transformation from tetragonal to pseudocubic phase occurred at 0.04 ≤ &!nbsp;x ≤ 0.06. Optimized properties with stable ɛ r (˜ 1829 to 1838), small Δɛ/ɛ 25°C values (± 15%) over a broad temperature range from -60°C to 140°C, and low tan Δ (≤ 0.02) from 4°C to 194°C were obtained at x = 0.1. The relaxation and conduction process in the high-temperature region are attributed to thermal activation, and oxygen vacancies may be the ionic charge carriers in perovskite ferroelectrics.

  12. Structural Changes in 2D BiSe Bilayers as n Increases in (BiSe)1+δ(NbSe2)n (n = 1-4) Heterostructures.

    PubMed

    Mitchson, Gavin; Hadland, Erik; Göhler, Fabian; Wanke, Martina; Esters, Marco; Ditto, Jeffrey; Bigwood, Erik; Ta, Kim; Hennig, Richard G; Seyller, Thomas; Johnson, David C

    2016-09-28

    (BiSe) 1+δ (NbSe 2 ) n heterostructures with n = 1-4 were synthesized using modulated elemental reactants. The BiSe bilayer structure changed from a rectangular basal plane with n = 1 to a square basal plane for n = 2-4. The BiSe in-plane structure was also influenced by small changes in the structure of the precursor, without significantly changing the out-of-plane diffraction pattern or value of the misfit parameter, δ. Density functional theory calculations on isolated BiSe bilayers showed that its lattice is very flexible, which may explain its readiness to adjust shape and size depending on the environment. Correlated with the changes in the BiSe basal plane structure, analysis of scanning transmission electron microscope images revealed that the occurrence of antiphase boundaries, found throughout the n = 1 compound, is dramatically reduced for the n = 2-4 compounds. X-ray photoelectron spectroscopy measurements showed that the Bi 5d 3/2 , 5d 5/2 doublet peaks narrowed toward higher binding energies as n increased from 1 to 2, also consistent with a reduction in the number of antiphase boundaries. Temperature-dependent electrical resistivity and Hall coefficient measurements of nominally stoichiometric samples in conjunction with structural refinements and XPS data suggest a constant amount of interlayer charge transfer independent of n. Constant interlayer charge transfer is surprising given the changes in the BiSe in-plane structure. The structural flexibility of the BiSe layer may be useful in designing multiple constituent heterostructures as an interlayer between structurally dissimilar constituents.

  13. Observation of multiple superconducting gaps in Fe1+y Se x Te 1-x through Andreev reflection

    NASA Astrophysics Data System (ADS)

    de, Debtanu; Diaz-Pinto, Carlos; Wu, Zheng; Hor, Pei-Herng; Peng, Haibing

    2011-03-01

    Iron-based superconductors have been under intensive study because of the high transition temperature and the intriguing physical mechanisms involving the superconductivity and magnetic orders. Theoretical studies on the role of spin fluctuation suggest unconventional S wave pairing and multiple superconducting (SC) gaps due to the five disjoint Fermi surfaces. However, this multiple SC-gap scenario has yet to be confirmed in experiments. Here we report the experimental observation of five SC gaps in Fe 1+y Se x Te 1-x from Andreev reflection spectra, along with negative differential conductance dips due to the pair breaking related to the largest SC gap. The evolution of the multiple SC gaps is further investigated as a function of both temperature and magnetic field. For the largest SC gap, the Andreev reflection signal persists above bulk Tc, suggesting the existence of phase incoherent Cooper pairs.

  14. Multi-band magnetotransport in exfoliated thin films of Cu x Bi2Se3

    NASA Astrophysics Data System (ADS)

    Alexander-Webber, J. A.; Huang, J.; Beilsten-Edmands, J.; Čermák, P.; Drašar, Č.; Nicholas, R. J.; Coldea, A. I.

    2018-04-01

    We report magnetotransport studies in thin (<100 nm) exfoliated films of Cu x Bi2Se3 and we detect an unusual electronic transition at low temperatures. Bulk crystals show weak superconductivity with T_c∼3.5 K and a possible electronic phase transition around 200 K. Following exfoliation, superconductivity is supressed and a strongly temperature dependent multi-band conductivity is observed for T  <  30 K. This transition between competing conducting channels may be enhanced due to the presence of electronic ordering, and could be affected by the presence of an effective internal stress due to Cu intercalation. By fitting to the weak antilocalisation conductivity correction at low magnetic fields we confirm that the low temperature regime maintains a quantum phase coherence length Lφ> 100 nm indicating the presence of topologically protected surface states.

  15. Structure of semiconducting versus fast-ion conducting glasses in the Ag–Ge–Se system

    PubMed Central

    2018-01-01

    The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Agx(Ge0.25Se0.75)(100−x) tie line (0≤x≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x=5 and x=25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag–Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag–Se coordination number increases from 2.6(3) at x=5 to 3.3(2) at x=25. For x=25, the measured Ag–Ag partial pair-distribution function gives 1.9(2) Ag–Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se–Se homopolar bonds as silver is added to the Ge0.25Se0.75 base glass, and the limit of glass-formation at x≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se–Se homopolar bonds as silver is added to the base glass. PMID:29410843

  16. Electronic structure of antifluorite Cu2X (X = S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb U.

    PubMed

    Zhang, Yubo; Wang, Youwei; Xi, Lili; Qiu, Ruihao; Shi, Xun; Zhang, Peihong; Zhang, Wenqing

    2014-02-21

    The traditional photon absorbers Cu2-xX (X = S, Se, and Te) have regained significant research attention in the search of earth-abundant photovoltaic materials. These moderate- and narrow-gap materials have also been shown to exhibit excellent thermoelectric properties recently. However, semimetallic band structures with inverted band orderings are predicted for antifluorite structure Cu2X using density functional theory with the local density approximation or the generalized gradient approximation. We find that semiconducting band structures and normal band orderings can be obtained using the modified Becke-Johnson potential plus an on-site Coulomb U (the mBJ+U approach), which is consistent with our earlier finding for diamond-like Cu-based multinary semiconductors [Y. Zhang, J. Zhang, W. Gao, T. A. Abtew, Y. Wang, P. Zhang, and W. Zhang, J. Chem. Phys. 139, 184706 (2013)]. The trend of the chemical bonding of Cu2X is analyzed, which shows that the positions of the valence band maximum and conduction band minimum are strongly affected by the inter-site pd and intra-site sp hybridizations, respectively. The calculated gaps of Cu2S and Cu2Se still seem to be underestimated compared with experimental results. We also discuss the effects of different structural phases and Cu disordering and deficiency on the bandgaps of these materials.

  17. Soft ferromagnetism in mixed valence Sr(1-x)La(x)Ti(0.5)Mn(0.5)O₃ perovskites.

    PubMed

    Qasim, Ilyas; Blanchard, Peter E R; Kennedy, Brendan J; Ling, Chris D; Jang, Ling-Yun; Kamiyama, Takashi; Miao, Ping; Torii, Shuki

    2014-05-14

    The structural, magnetic and electrical properties of the mixed Ti-Mn oxides Sr(1-x)La(x)Ti(0.5)Mn(0.5)O3 (0 ≤ x ≤ 0.5) are reported. At room temperature the oxides have a cubic structure in space group Pm3m for x ≤ 0.25 and rhombohedral in R3c for 0.3 ≤ x ≤ 0.50. X-ray absorption spectroscopic measurements demonstrate the addition of La(3+) is compensated by the partial reduction of Mn(4+) to Mn(3+). Variable temperature neutron diffraction measurements show that cooling Sr(0.6)La(0.4)Ti(0.5)Mn(0.5)O3 results in a first order transition from rhombohedra to an orthorhombic structure in Imma. Complex magnetic behaviour is observed. The magnetic behaviour of the mixed valent (Mn(3+/4+)) examples is dominated by ferromagnetic interactions, although cation disorder frustrates long range magnetic ordering.

  18. Effects of gamma-ray irradiation on the optical properties of amorphous Se100-xHgx thin films

    NASA Astrophysics Data System (ADS)

    Ahmad, Shabir; Islam, Shama; Nasir, Mohd.; Asokan, K.; Zulfequar, M.

    2018-06-01

    In this study, the thermal quenching technique was employed to prepare bulk samples of Se100-xHgx (x = 0, 5, 10, 15). Thin films with a thickness of ∼250 nm were deposited on glass substrates using the thermal evaporation technique. These films were irradiated with gamma rays at doses of 25-100 kGy. The elemental compositions of the as-deposited thin films were confirmed by energy dispersive X-ray analysis and Rutherford backscattering spectrometry. X-ray diffraction analysis confirmed the crystalline nature of these thin films upto the dose of 75 kGy. Fourier transform-infrared spectroscopy showed that the concentration of defects decreased after gamma irradiation. Microstructural analysis by field emission scanning electron microscopy indicated that the grain size increases after irradiation. Optical study based on spectrophotometry showed that the optical band gap values of these films increase after the addition of Hg whereas they decrease after gamma irradiation. We found that the absorption coefficient increases with doses up to 75 kGy but decreases at higher doses. These remarkable shifts in the optical band gap and absorption coefficient values are interpreted in terms of the creation and annihilation of defects, which are the main effects produced by gamma irradiation.

  19. Low temperature thermoelectric properties of Bi2-xSbxTeSe2 crystals near the n-p crossover

    NASA Astrophysics Data System (ADS)

    Fuccillo, M. K.; Charles, M. E.; Hor, Y. S.; Jia, Shuang; Cava, R. J.

    2012-07-01

    Seebeck coefficients, electrical resistivities, thermal conductivities and figure of merit ZT of Bi2-xSbxTeSe2 crystals (x=0.8, 0.9, 1.0, 1.1, and 1.2) measured along the hexagonal basal plane are presented. The crystals gradually change from n- to p-type with increasing Sb content, with the crossover lying in the region between x=1.0 and 1.1. The crossover is accounted for by a simple (p-n) electron-hole compensation model, as supported by carrier concentrations determined from Hall measurements. ZT was found to be maximized near the crossover on the p-type side, with the high electrical resistance of the Se-rich crystals apparently the limiting factor in the performance. These materials may serve as a basis for future nanostructuring or doping studies.

  20. New organoselenium compounds with intramolecular Se⋯O/ Se⋯H interactions: NMR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Fragoso, Erick; Azpiroz, Ramón; Sharma, Pankaj; Espinosa-Pérez, Georgina; Lara-Ochoa, Francisco; Toscano, Alfredo; Gutierrez, Rene; Portillo, Oscar

    2018-03-01

    New 1,3-bis(phenylselanylmethyl)benzene (1, 2 and 4) and butyl phenylselane derivatives (3 and 5) are synthesized and full heteronuclear NMR characterization of these compounds are reported. Interestingly, NMR spectrum of compounds 2-5 show coupling of 1H and 13C signals of groups involved in intramolecular nonbonding interactions with 77Se. The coupling constants JH-Se and JC-Se are in the range 13.6-21.6 Hz and 28-49 Hz, respectively. For compounds 4 and 5, JH-Se coupling constants of formyl proton are smaller than their respective acetal sbnd CH protons for compounds 2 and 3. However, this trend is opposite for JC-Se coupling constants, indicating that in formyl group containing compounds 4 and 5, Se⋯O interactions are present while in compounds 2 and 3 with acetal fragments, Se⋯H interactions also could be present because of steric constraints. To confirm these interactions, quantum chemical analyses were performed for 2, 4 and 5. The minimal energy conformation for these compounds present Se⋯O/Se⋯H interactions and are at lower energy in comparison to different conformers which do not show any interaction. For compounds 4 and 5, minimal energy conformation present Se⋯O interactions and for compound 2, Se⋯H is the favored conformation. These results are in accordance with the NMR data for these compounds. X-ray crystal structure of compound 1,3-bis(phenylselanylmethyl)benzene (1) was also determined during this work. In order to understand the effect of the Se⋯O/Se⋯H interactions and the position of phenylselanylmethyl groups, quantum chemical analyses were also carried out for 1,4-bis(phenylselanylmethyl)benzene derivatives (6 and 7). Interestingly, minimal energy conformers of 1,3-bis(phenylselanylmethyl)benzene derivatives 2 and 4 are more stable than their corresponding conformers of 1,4-bis-(phenylselanylmethyl)benzene derivatives 6 and 7.1,3-bis[{(2-(diethoxymethyl)phenyl)selanyl}methyl]benzene (2) with an

  1. Electron spin resonance in Cu1-xFexCr2Se4 nanoparticles synthesized with the thermal decomposition method

    NASA Astrophysics Data System (ADS)

    Edelman, I. S.; Zharkov, S. M.; Pankrats, A. I.; Vorotynov, A. M.; Tugarinov, V. I.; Ivantsov, R. D.; Petrov, D. A.; Velikanov, D. A.; Lin, Chun-Rong; Chen, Chin-Chang; Tseng, Yaw-Teng; Hsu, Hua-Shu

    2017-08-01

    In this paper, we present a study of the electron spin resonance (ESR) of nanoparticles (NPs) of Cu1-xFexCr2Se4 chalcogenides with x = 0, 0.2, and 0.4. NPs were synthesized via the thermal decomposition of metal chloride salts and selenium powder in a high-temperature organic solvent. According to the XRD and HRTEM data, the NPs were single crystalline nearly hexagonal plates with the structure close to CuCr2Se4 (Fd-3m, a = 10.337 Å). For x = 0 and 0.2, the NPs tend to form long stacks consisting of the plates ;face to face; attached to each other due to the magnetostatic interparticle interaction. Only separate NPs were observed in the case of x = 0.4. Peculiarities were revealed in the ESR temperature behavior for the NPs with x = 0 and 0.2 consistent with the features in the temperature dependences of the NPs magnetization. The non-monotonous dependence of the resonance field Hres on the temperature with a kink near 130 K and the energy gap in the resonance spectrum depending on the type of nanoparticle compacting are the distinct peculiarities. One of the main factors is discussed in order to explain the peculiarities: the coexistence of two types of anisotropy in the Cu1-xFexCr2Se4 NPs, in-plain shape anisotropy and magnetocrystalline anisotropy with four easy axes, which increases strongly with the temperature decrease.

  2. Phase relations in KxFe2-ySe2 and the structure of superconducting KxFe2Se2 via high-resolution synchrotron diffraction

    NASA Astrophysics Data System (ADS)

    Shoemaker, Daniel P.; Chung, Duck Young; Claus, Helmut; Francisco, Melanie C.; Avci, Sevda; Llobet, Anna; Kanatzidis, Mercouri G.

    2012-11-01

    Superconductivity in iron selenides has experienced a rapid growth, but not without major inconsistencies in the reported properties. For alkali-intercalated iron selenides, even the structure of the superconducting phase is a subject of debate, in part because the onset of superconductivity is affected much more delicately by stoichiometry and preparation than in cuprate or pnictide superconductors. If high-quality, pure, superconducting intercalated iron selenides are ever to be made, the intertwined physics and chemistry must be explained by systematic studies of how these materials form and by and identifying the many coexisting phases. To that end, we prepared pure K2Fe4Se5 powder and superconductors in the KxFe2-ySe2 system, and examined differences in their structures by high-resolution synchrotron and single-crystal x-ray diffraction. We found four distinct phases: semiconducting K2Fe4Se5, a metallic superconducting phase KxFe2Se2 with x ranging from 0.38 to 0.58, the phase KFe1.6Se2 with full K occupancy and no Fe vacancy ordering, and a oxidized phase K0.51(5)Fe0.70(2)Se that forms the PbClF structure upon exposure to moisture. We find that the vacancy-ordered phase K2Fe4Se5 does not become superconducting by doping, but the distinct iron-rich minority phase KxFe2Se2 precipitates from single crystals upon cooling from above the vacancy ordering temperature. This coexistence of separate metallic and semiconducting phases explains a broad maximum in resistivity around 100 K. Further studies to understand the solubility of excess Fe in the KxFe2-ySe2 structure will shed light on the maximum fraction of superconducting KxFe2Se2 that can be obtained by solid state synthesis.

  3. Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1-x)4 solid solutions

    NASA Astrophysics Data System (ADS)

    Levcenco, S.; Dumcenco, D.; Wang, Y. P.; Huang, Y. S.; Ho, C. H.; Arushanov, E.; Tezlevan, V.; Tiong, K. K.

    2012-06-01

    Single crystals of Cu2ZnSn(SxSe1-x)4 (CZTSSe) solid solutions were grown by chemical vapor transport technique using iodine trichloride as a transport agent. As confirmed by X-ray investigations, the as-grown CZTSSe solid solutions are single phase and crystallized in kesterite structure. The lattice parameters of CZTSSe were determined and the S contents of the obtained crystals were estimated by Vegard's law. The composition dependent band gaps of CZTSSe solid solutions were studied by electrolyte electroreflectance (EER) measurements at room temperature. From a detailed lineshape fit of the EER spectra, the band gaps of CZTSSe were determined accurately and were found to decrease almost linearly with the increase of Se content, which agreed well with the recent theoretical first-principle calculations by S. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P. X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B 83 (2011) 125201 (5pp).

  4. A multinuclear solid-state NMR study of the dimethyltin chalcogenides ((CH 3) 2SnE) 3, E  S,Se,Te

    NASA Astrophysics Data System (ADS)

    Gay, Ian D.; Jones, C. H. W.; Sharma, R. D.

    The solid-state NMR spectra, measured using MAS, are reported for 13C, 119Sn, 77Se, and 125Te in the compounds (Me 2SnE) 3, E  S, Se, or Te. For ((CH 3) 2SnS) 3, tetragonal, three inequivalent carbons and two inequivalent tins are observed consistent with a reinterpretation of the crystal structure data of this compound which shows a twofold axis through opposing tin and sulfur atoms, the molecule being in a twisted-boat conformation. For the monoclinic form six inequivalent carbons and three inequivalent tins were observed. Chemical shifts for 13C and 119Sn and the magnitudes of the 2JSn Sn coupling constants are reported. The tetragonal forms of ((CH 3) 2SnSe) 3 and ((CH 3) 2SnTe) 3 show the presence of two inequivalent tin and chalcogen atoms and three inequivalent carbons, again consistent with a twofold axis. In these compounds it is possible to identify the three different observed single-bond coupling constants with the distinct crystallographically determined tin-chalcogen bonds. The 13C, 119Sn, 77Se, and 125Te chemical shifts are reported, together with the magnitude of 1JSn E (ESe or Te). In addition to isotropic shifts and couplings, chemical-shift anisotropies are reported for Sn, Se, and Te.

  5. Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe) 5(Bi 2Se 3) 3

    DOE PAGES

    Ren, Xiaochen; Singh, Arunima K.; Fang, Lei; ...

    2016-09-07

    Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the totnographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom, probe tomography (APT). Also, APT analysis shows that Ag dopes both Bi 2Se 3 and PbSe layers in (PbSe) 5(Bi 2Se 3) 3, and correlations :in the position of Ag atoms suggest a pairing across neighboring Bi 2Se 3 and PbSe layers. Finally, density functional theory (DFT)more » calculations confirm the favorability of substitutional-doping for both Pb and Bi and provide insights into the,observed spatial correlations in dopant locations.« less

  6. Thallous chalcogenide (Tl 6I 4Se) for radiation detection at X-ray and γ-ray energies

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Peters, John A.; Wessels, Bruce W.; Johnsen, Simon; Kanatzidis, Mercouri G.

    2011-12-01

    The optical and charge transport properties of the thallous chalcogenide compound Tl6I4Se were characterized. The semiconductor crystals are grown by the modified Bridgman method. We have measured the refractive index, and absorption coefficient of the compound ranging from 300 to 1500 nm by analysis of the UV-vis-near IR transmission and reflection spectra. The band gap is 1.8 eV. For the evaluation of detector performance, the mobility-lifetime products for both the electron and hole carriers were measured. Tl6I4Se has mobility-lifetime products of 7.1×10-3 and 5.9×10-4 cm2/V for electron and hole carriers, respectively, which are comparable to those of Cd0.9Zn0.1Te. The γ-ray spectrum for a Tl6I4Se detector was measured. Its response to the 122 keV of 57Co source is comparable to that of Cd0.9Zn0.1Te.

  7. Electrical and switching properties of the Se 90Te 10-xAg x (0⩽ x⩽6) films

    NASA Astrophysics Data System (ADS)

    Afifi, M. A.; Hegab, N. A.; Bekheet, A. E.; Sharaf, E. R.

    2009-08-01

    Amorphous Se 90Te 10-xAg x (0⩽ x⩽6) films are obtained by thermal evaporation technique under vacuum from the synthesized bulk materials on pyrographite and glass substrates. X-ray analysis shows the amorphous nature of the obtained films. The dc electrical conductivity was studied for different thicknesses (165-711 nm) as a function of temperature in the range (298-323 K) below the corresponding T g for the studied films. The obtained results show that the conduction activation energy has a single value through the investigated range of temperature which can be explained in accordance with Mott and Davis model. The I- V characteristic curves for the film compositions are found to be typical for a memory switch. The mean value of the threshold voltage Vbar increases linearly with increasing film thickness (165-711 nm), while it decreases exponentially with increasing temperature in the investigated range for the studied compositions. The results are explained in accordance with the electrothermal model for the switching process. The effect of Ag on the studied parameters is also investigated.

  8. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure

    NASA Astrophysics Data System (ADS)

    Khyzhun, O. Y.; Parasyuk, O. V.; Tsisar, O. V.; Piskach, L. V.; Myronchuk, G. L.; Levytskyy, V. O.; Babizhetskyy, V. S.

    2017-10-01

    Crystal structure of a novel quaternary thallium indium germanium selenide TlInGe2Se6 was investigated by means of powder X-ray diffraction method. It was determined that the compound crystallizes in the trigonal space group R3 with the unit cell parameters a = 10.1798(2) Å, c = 9.2872(3) Å. The relationship with similar structures was discussed. The as-synthesized TlInGe2Se6 ingot was tested with X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, the XPS valence-band and core-level spectra were recorded for initial and Ar+ ion-bombarded surfaces of the sample under consideration. The XPS data allow for statement that the TlInGe2Se6 surface is rigid with respect to Ar+ ion-bombardment. Particularly, Ar+ ion-bombardment (3.0 keV, 5 min duration, ion current density fixed at 14 μA/cm2) did not cause substantial modifications of stoichiometry in topmost surface layers. Furthermore, comparison on a common energy scale of the XES Se Kβ2 and Ge Kβ2 bands and the XPS valence-band spectrum reveals that the principal contributions of the Se 4p and Ge 4p states occur in the upper and central portions of the valence band of TlInGe2Se6, respectively, with also their substantial contributions in other portions of the band. The bandgap energy of TlInGe2Se6 at the level of αg=103 cm-1 is equal to 2.38 eV at room temperature.

  9. Magneto-optical imaging of polycrystalline FeTe 1-xSe x prepared at various conditions

    NASA Astrophysics Data System (ADS)

    Ding, Q.; Taen, T.; Mohan, S.; Nakajima, Y.; Tamegai, T.

    2011-11-01

    We have prepared high-quality polycrystalline FeTe1-xSex by sintering at different temperatures and characterized their structural and magnetic properties with X-ray diffraction, magnetization measurements, and magneto-optical imaging. The intragranular Jc was estimated to be 5 × 104A/cm2, which is smaller than the single crystal, but still in the range for practical applications.

  10. Method of fabricating high-efficiency Cu(In,Ga)(Se,S){sub 2} thin films for solar cells

    DOEpatents

    Noufi, R.; Gabor, A.M.; Tuttle, J.R.; Tennant, A.L.; Contreras, M.A.; Albin, D.S.; Carapella, J.J.

    1995-08-15

    A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S){sub 2} comprises depositing a first layer of (In,Ga){sub x} (Se,S){sub y} followed by depositing just enough Cu+(Se,S) or Cu{sub x} (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga){sub x} (Se,S){sub y} is deposited first, followed by deposition of all the Cu+(Se,S) or Cu{sub x} (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu{sub x} (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga){sub x} (Se,S){sub y} to go slightly Cu-poor in the final Cu(In,Ga)(Se,S){sub 2} thin film. 5 figs.

  11. Electronic structure of antifluorite Cu{sub 2}X (X = S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yubo; Wang, Youwei; Xi, Lili

    The traditional photon absorbers Cu{sub 2−x}X (X = S, Se, and Te) have regained significant research attention in the search of earth-abundant photovoltaic materials. These moderate- and narrow-gap materials have also been shown to exhibit excellent thermoelectric properties recently. However, semimetallic band structures with inverted band orderings are predicted for antifluorite structure Cu{sub 2}X using density functional theory with the local density approximation or the generalized gradient approximation. We find that semiconducting band structures and normal band orderings can be obtained using the modified Becke-Johnson potential plus an on-site Coulomb U (the mBJ+U approach), which is consistent with our earliermore » finding for diamond-like Cu-based multinary semiconductors [Y. Zhang, J. Zhang, W. Gao, T. A. Abtew, Y. Wang, P. Zhang, and W. Zhang, J. Chem. Phys. 139, 184706 (2013)]. The trend of the chemical bonding of Cu{sub 2}X is analyzed, which shows that the positions of the valence band maximum and conduction band minimum are strongly affected by the inter-site pd and intra-site sp hybridizations, respectively. The calculated gaps of Cu{sub 2}S and Cu{sub 2}Se still seem to be underestimated compared with experimental results. We also discuss the effects of different structural phases and Cu disordering and deficiency on the bandgaps of these materials.« less

  12. Syntheses and luminescence study for La{sub 1−x}Eu{sub x}[B{sub 5}O{sub 8}(OH){sub 2}]·1.5H{sub 2}O (0≤x≤0.40) and the dehydrated products β-La{sub 1−x}Eu{sub x}B{sub 5}O{sub 9} (0≤x≤0.15)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaorui; Zhou, Zhengyang; Yang, Haixia

    La{sub 1−x}Eu{sub x}[B{sub 5}O{sub 8}(OH){sub 2}]·1.5H{sub 2}O with the Eu{sup 3+}-doping upper limit of 40 atom% were synthesized hydrothermally. Thereafter, thermal treatments at 710 °C were applied to obtain β-La{sub 1−x}Eu{sub x}B{sub 5}O{sub 9}. The solid solution range is even narrower, i.e. 0≤x≤0.15, due to the mismatch between La{sup 3+} and Eu{sup 3+}. The host borate system shows a typical concentration quenching effect at x=0.20 under CT excitation, and this is postponed to x=0.30 under the f−f excitation. β-La{sub 1−x}Eu{sub x}B{sub 5}O{sub 9} shows a very intense absorption of charge transfer, and gives strong red emissions at 615 nm withmore » large R/O ratios (1.9–2.4). The saturation effect appears at x=0.11, which is probably due to the lattice distortion. Eu{sup 3+} luminescence was applied as the structural probe to study the local coordination environment change during the dehydration and re-crystallization processes of La{sub 0.93}Eu{sub 0.07}[B{sub 5}O{sub 8}(OH){sub 2}]·1.5H{sub 2}O. - Highlights: • La{sub 1−x}Eu{sub x}[B{sub 5}O{sub 8}(OH){sub 2}]·1.5H{sub 2}O (0≤x≤0.40) were prepared by hydrothermal method. • The Eu{sup 3+}-doping limit in β-La{sub 1−x}Eu{sub x}B{sub 5}O{sub 9} is 15 atom% proved by powder XRD. • La{sub 1−x}Eu{sub x}[B{sub 5}O{sub 8}(OH){sub 2}]·1.5H{sub 2}O show relatively weaker red emissions. • β-La{sub 1−x}Eu{sub x}B{sub 5}O{sub 9} shows an intense CT absorption together with strong red emissions. • Eu{sup 3+} luminescence was studied when annealing La{sub 0.93}Eu{sub 0.07}[B{sub 5}O{sub 8}(OH){sub 2}]·1.5H{sub 2}O.« less

  13. 53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS AND ABSORPTION BUILDINGS IN THE BACKGROUND. MAY 29, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  14. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  15. 11. DETAIL VIEW OF WELDED DATES 1896/1941 (S.E. CORNER) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF WELDED DATES - 1896/1941 (S.E. CORNER) 3 Photocopies of drawings labeled 'Bridge Rating Program by Boswell Engineering Company - Abbett Avenue Bridge, Spanning Whippany River at Abbett Avenue, Morristown, Morris County, NJ

  16. Electrical control of truly two-dimensional neutral and charged excitons in monolayer MoSe2

    NASA Astrophysics Data System (ADS)

    Ross, Jason; Wu, Sanfeng; Yu, Hongyi; Ghimire, Nirmal; Jones, Aaron; Aivazian, Grant; Yan, Jiaqiang; Mandrus, David; Xiao, Di; Xiao, Di; Xu, Xiaodong

    2013-03-01

    Monolayer transition metal dichalcogenides (TMDs) have emerged as ideal 2D semiconductors with valley and spin polarized excitations expected to enable true valley-tronics. Here we investigate MoSe2, a TMD which has yet to be characterized in the monolayer limit. Specifically, we examine excitons and trions (their singly charged counterparts) in the ultimate 2D limit. Utilizing high quality exfoliated MoSe2 monolayers, we report the observation and electrostatic tunability of positively charged (X +) , neutral (Xo), and negatively charged (X-) excitons via photoluminescence in FETs. The trion charging energy is large (30 meV), enhanced by strong confinement and heavy effective masses, while the linewidth is narrow (5 meV) at temperatures below 55 K. This is greater spectral contrast than in any known quasi-2D system. Further, the charging energies for X + and X- to are nearly identical implying the same effective mass for electrons and holes, which supports their recent description as massive Dirac fermions. This work demonstrates that monolayer MoSe2 is an ultimate 2D semiconductor opening the door for the investigation of truly 2D exciton physics while laying the ground work necessary to begin valley-spin polarization studies. Support: US DoE, BES, Division of MSE. HY and WY supported by Research Grant Council of Hong Kong

  17. Effect of ZnSe and CdSe nanoparticles on the fluorescence and optical band gap of Sm3+ doped lead borate glasses

    NASA Astrophysics Data System (ADS)

    Fatokun, Stephen O.

    For the first part of this work, we prepared a series of Sm-doped lead borate (PbO-B2O3) glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles (NPs) and studied the Sm 3+ fluorescence by varying the glass composition and size of the NPs. We have chosen these heavy metal oxide glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Lead borate glasses with the following compositions xPbO:(96.5-x)B2O 3:0.5Sm2O3:3ZnSe/CdSe, x=36.5 and 56.5 mol%) are prepared using the melt-quenching method. Transmission electron microscopy characterization was done to confirm both nucleation and growth of the NPs for different annealing times. Fluorescence spectra of these samples are obtained with the excitation wavelengths at 403 and 477nm. Three fluorescence transitions are observed at 563 nm, 598 nm and 646 nm. The transition at 646 nm is a electric dipole (ED) transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at the Sm3+ site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. Longer annealing times tend to make the crystal field at the Sm3+ site more symmetric in nature for these glasses. The presence of CdSe NPs is seen to produce the greatest influence on the fluorescence intensity ratio. This is believed to be due to the larger size of the CdSe nanoparticles and its stronger influence on Sm3+ ions. The second part of this work was dedicated to the understanding of the optical band gap of samarium doped lead borate glasses with and without ZnSe/CdSe NPs. Optical absorption spectra for all these glass samples show their absorption edge in the ultraviolet region. Detailed analysis of the absorption edge was carried out using the Mott-Davis model and the optical band gap and the width of the tail in the band gap

  18. Credit WCT. Original 4"x5" black and white negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows Building E-39 under construction. E-39 is an example of the typical reinforced concrete block construction of the E-30s and E-40s structures (JPL negative no. 381-2586, 13 December 1962) - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  19. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    of 0, 1,3, and 10% and annealed at 400, 600 and 800°C in air. XAFS spectra show that low dopant concentrations and low processing temperatures limit the amount of secondary phase formation. The nanopowders did not show roomtemperature ferromagnetism and increased secondary phase formation increases the paramagnetic character of the hysteresis curves at 5°K. Keywords: X-ray absorption fine structures (XAFS), X-ray absorption near-edge structures (XANES), extended X-ray absorption fine structure (EXAFS), X-ray absorption spectroscopy(XAS), X-ray excited optical luminescence (XEOL), time-resolved, II-VI semiconductors, nanostructure, nanomaterial, nanoribbon, nanowire, nanopartic1e, heterostructure, ZnO, ZnS, ZnO-ZnS, CdS, CdSe, CdSSe, ZnO:Mn, ZnO:Co, ZnS:Mn, dilute magnetic semiconductor (DMS), dilute magnetic oxide (DMO), spintronics, magnetism, paramagnetism, ferromagnetism.

  20. Hydrothermal assisted growth of CdSe nanoparticles and study on its dielectric properties

    NASA Astrophysics Data System (ADS)

    Jamble, Shweta N.; Ghoderao, Karuna P.; Kale, Rohidas B.

    2017-11-01

    In this work, we have synthesized cadmium selenide (CdSe) nanoparticles by using cadmium chloride (CdCl2) as cadmium ion and sodium selenosulfate (Na2SeSO3) as selenium ion sources through a simple, convenient and cost-effective hydrothermal route at 180 °C temperature for 24 h. Aqueous ammonia was employed as a complex reagent to adjust the pH of the solution. Structural analysis of the obtained product was carried out by using x-ray diffractometer, which revealed that the final product has a cubic structure of CdSe with average crystallite size 13.15 nm. The cauliflower-like CdSe nanostructures were confirmed from the scanning electron microscopy and high-resolution transmission electron microscopy. EDS analysis indicates that the obtained product has a good elemental stoichiometric ratio. The electron diffraction pattern reveals the polycrystalline nature of CdSe. From UV-visible absorption spectral analysis, the optical energy bandgap of CdSe nanoparticles was found to be 1.90 eV. XPS spectra presented Cd 3d3/2, Cd 3d5/2 and Se 3d3/2 peaks at 411.04, 404.29 and 53.52 eV respectively. The CdSe nanoparticles exhibit photoluminescence with two distinct emission bands at 632 nm and 720 nm. FTIR study was used towards the understanding of the formation mechanism and bonding on the surface of the resulting nanoparticles. The dielectric properties of a pelletized sample of CdSe nanoparticles were carried out at room temperature.

  1. NACA Aircraft on Lakebed - D-558-2, X-1B, and X-1E

    NASA Technical Reports Server (NTRS)

    1955-01-01

    of increased capacity, and a thinner high-speed wing. The X-1E was used to obtain in-flight data at twice the speed of sound, with particular emphasis placed on investigating the improvements achieved with the high-speed wing. These wings, made by Stanley Aircraft, were only 3-3/8-inches thick at the root and had 343 gauges installed in them to measure structural loads and aerodynamic heating. The X-1E used its rocket engine to power it up to a speed of 1,471 miles per hour (Mach 2.24) and to an altitude of 73,000 feet. Like the X-1 it was air-launched. The X-1 aircraft were almost 31 feet long and had a wingspan of 28 feet. The X-1 was built of conventional aluminum stressed-skin construction to extremely high structural standards. The X-1E was also 31 feet long but had a wingspan of only 22 feet, 10 inches. It was powered by a Reaction Motors, Inc., XLR-8-RM-5, four-chamber rocket engine. As did all X-1 rocket engines, the LR-8-RM-5 engine did not have throttle capability, but instead, depended on ignition of any one chamber or group of chambers to vary speed. The X-1A, X-1B, and the X-1D were growth versions of the X-1. They were almost five feet longer, almost 2,500 pounds heavier and had conventional canopies. The X-1A and X-1B were modified to have ejection seats. Their mission was to continue the X-1 studies at higher speeds and altitudes. The X-1A began this research after the X-1D was destroyed in an explosion on a captive flight before it made any research flights. On December 12, 1953, Major Charles Yeager flew the X-1A up to a speed of 1,612 miles per hour (almost two-and-a-half times the speed of sound). Then on August 26, 1954, Major Arthur Murray took the X-1A up to an altitude of 90,440 feet. Those two performances were the records for the X-1 program. Later the X-1A was also destroyed after being jettisoned from the carrier aircraft because of an explosion. The X-1B was fitted with 300 thermocouples for exploratory aerodynamic heating tests. It also

  2. The effects of Sn addition on properties and structure in Ge-Se chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Fayek, S. A.

    2005-01-01

    Far infrared transmission spectra of homogeneous compositions in the glassy alloy system Ge 1- xSn xSe 2.5 0⩽ x⩽0.6 have been observed in the spectral range 200-500 cm -1 at room temperature. The infrared absorption spectra show strong bands around 231, 284 and 311 cm -1 which were assigned to GeSe, SeSn, Se-Se. Tin atoms appear to substitute for the germanium atoms in the outrigger sites of Ge(Se 1/2) 4 tetrahedra up to 0.4. For x>0.5, the glasses show a new vibrational band of an isolated F 2 mode of the Ge-centered tetrahedra outside the clusters. A pronounced peculiarity (maximum or minimum) appeared at around the same value of the average coordination number at Z=2.65 for all composition dependence topological phase transition from two-dimensional (2D) layer type to three- dimensional (3D) cross-linked network structures in the glass. It is clear that the theoretical ν-values for Se-Se bond is less than the experimental one and that for Se-Ge is greater than the experimental one. This difference may be due to the existence of more close lying modes which tends to broaden the absorption bands. Quantitative justification of the absorption bands shows that theoretical wave numbers agree with its experimental values for Ge-Se stretching vibration bond.

  3. Gamma rays of energy or = 10(15) eV from Cyg X-3

    NASA Technical Reports Server (NTRS)

    Kifune, T.; Nishijima, K.; Hara, T.; Hatano, Y.; Hayashida, N.; Honda, M.; Kamata, K.; Matsubara, Y.; Mori, M.; Nagano, M.

    1985-01-01

    The experimental data of extensive air showers observed at Akeno have been analyzed to detect the gamma ray signal from Cyg X-3. After muon poor air showers are selected, the correlation of data acquisition time with 4.8 hours X-ray period is studied, giving the data concentration near the phase 0.6, the time of X-ray maximum. The probability that uniform backgrounds create the distribution is 0.2%. The time averaged integral gamma ray flux is estimated as (1.1 + or - 0.4)x 10 to the -14th power cm(-2) sec(-1) for Eo 10 to the 15th power eV and (8.8 + or - 5.0)x 10 to the 14th power cm(-2) sec(-1) for Eo 6 x 10 to the 14th power eV.

  4. e-EVN radio detection of Aql X-1 in outburst

    NASA Astrophysics Data System (ADS)

    Tudose, V.; Paragi, Z.; Yang, J.; Miller-Jones, J. C. A.; Fender, R.; Garrett, M.; Rushton, A.; Spencer, R.

    2013-06-01

    The neutron star X-ray binary Aql X-1 is currently in outburst (ATel #5114, #5117, #5129, #5136, #5148). Using the European VLBI Network (e-EVN) we observed Aql X-1 at 5 GHz in two time-slots: 2013 June 18 between 19:48 - 20:36 UT (MJD 56461.825 - 56461.858), and 2013 June 19 between 02:53 - 05:54 UT (MJD 56462.120 - 56462.246). The two datasets were combined together and then calibrated. The participating radio telescopes were: Effelsberg (Germany), Jodrell Bank Mk2 (UK), Medicina (Italy), Noto (Italy), Onsala 25m (Sweden), Torun (Poland), Yebes (Spain), Westerbork Synthesis Radio Telescope (Netherlands), Shanghai (China), Hartebeesthoek (South Africa).

  5. Mechanical and magneto-electronic properties of half-metallic ferromagnetism in Ti-doped ZnSe and CdSe alloys: Ab initio study

    NASA Astrophysics Data System (ADS)

    El Amine Monir, Mohammed; Ullah, Hayat; Baltach, Hadj; Gulbahar Ashiq, M.; Khenata, R.

    2017-11-01

    In this article we have studied the structural, elastic, electronic and magnetic properties of Zn1-xTixSe and Cd1-xTixSe alloys at (x = 0.25, 0.50, 0.75) using first principles density functional theory calculations with local spin density approximation (LSDA) and generalized gradient approximation plus Hubbard parameter (GGA+U) as exchange-correlation potential. The physical properties of both alloys were investigated in the zinc-blend phase. The structural parameters at equilibrium are consistent with experimental and earlier theoretical predictions. The elastic constants are also computed and compared with the literature. The DOS curves of Zn1-xTixSe and Cd1-xTixSe alloys for all the concentrations show the existence of hybridization among Ti (3d) and Se (4p) states. The calculated exchange constants N0α(s-d) and N0β (p-d) are useful to determine the contribution in the valence band and conduction band and are also shows the magnetic character of these alloys. In addition, the p-d hybridization in the PDOS reduces local magnetic moment of Ti from its free space charge of 2 μB and results small magnetic moments on the nonmagnetic Zn, Cd and Se sites. The calculated negative values of formation energy (Ef) reveal that all the Zn1-xTixSe and Cd1-xTixSe alloys are thermodynamically stables. A larger/Smaller value of Curie temperature (TC) for all the Zn1-xTixSe and Cd1-xTixSe alloys shows the strong/low interaction among the magnetic atoms respectively.

  6. NT5E Mutations and Arterial Calcifications

    PubMed Central

    St. Hilaire, Cynthia; Ziegler, Shira G.; Markello, Thomas C.; Brusco, Alfredo; Groden, Catherine; Gill, Fred; Carlson-Donohoe, Hannah; Lederman, Robert J.; Chen, Marcus Y.; Yang, Dan; Siegenthaler, Michael P.; Arduino, Carlo; Mancini, Cecilia; Freudenthal, Bernard; Stanescu, Horia C.; Zdebik, Anselm A.; Chaganti, R. Krishna; Nussbaum, Robert L.; Kleta, Robert; Gahl, William A.; Boehm, Manfred

    2011-01-01

    BACKGROUND Arterial calcifications are associated with increased cardiovascular risk, but the genetic basis of this association is unclear. METHODS We performed clinical, radiographic, and genetic studies in three families with symptomatic arterial calcifications. Single-nucleotide-polymorphism analysis, targeted gene sequencing, quantitative polymerase-chain-reaction assays, Western blotting, enzyme measurements, transduction rescue experiments, and in vitro calcification assays were performed. RESULTS We identified nine persons with calcifications of the lower-extremity arteries and hand and foot joint capsules: all five siblings in one family, three siblings in another, and one patient in a third family. Serum calcium, phosphate, and vitamin D levels were normal. Affected members of Family 1 shared a single 22.4-Mb region of homozygosity on chromosome 6 and had a homozygous nonsense mutation (c.662C→A, p.S221X) in NT5E, encoding CD73, which converts AMP to adenosine. Affected members of Family 2 had a homozygous missense mutation (c.1073G→A, p.C358Y) in NT5E. The proband of Family 3 was a compound heterozygote for c.662C→A and c.1609dupA (p.V537fsX7). All mutations found in the three families result in nonfunctional CD73. Cultured fibroblasts from affected members of Family 1 showed markedly reduced expression of NT5E messenger RNA, CD73 protein, and enzyme activity, as well as increased alkaline phosphatase levels and accumulated calcium phosphate crystals. Genetic rescue experiments normalized the CD73 and alkaline phosphatase activity in patients’ cells, and adenosine treatment reduced the levels of alkaline phosphatase and calcification. CONCLUSIONS We identified mutations in NT5E in members of three families with symptomatic arterial and joint calcifications. This gene encodes CD73, which converts AMP to adenosine, supporting a role for this metabolic pathway in inhibiting ectopic tissue calcification. (Funded by the National Human Genome Research

  7. Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salon, J.; Sheng, J; Gan, J

    Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate themore » crystal growth with respect to the corresponding native DNA.« less

  8. Study of crystal structure and unique photoluminescence properties of Eu2-xFexO3 (x = 0 - 0.5) orthoferrites

    NASA Astrophysics Data System (ADS)

    Dhilip, M.; Anbarasu, V.; Kumar, K. Saravana; Sivakumar, K.

    2018-04-01

    A series of Europium orthoferrites, Eu2-xFexO3 (x = 0 - 0.5) are successfully prepared by employing solid state reaction technique. The structural analysis through powder X-Ray diffraction technique reveals the multiphase formation of all the prepared compounds. Further, the unit cell visualization of all the prepared compounds confirms the change of crystal structure from cubic to orthorhombic phase. The crystal structure analysis confirms the typical framework of Eu - Fe - O chains with unprecedented ratio of Eu3+ and Fe3+ ions. The optical properties of prepared compounds are investigated using photoluminescence (PL) analysis. Upon excitation at 495 nm wavelength, the emission spectrum of prepared compounds exhibits a broad band in the range of 500-700nm with maximum intensity peak at 548 nm (Blue - 2.26eV). Hence, the substitution of Fe3+ ion yields with intrinsic blue photoluminescence (5D0 → 7F0) of Eu3+ and is easily shielded by the substitution of Fe3+ which may be due to the closer conduction band gap of Eu3+ (2.26 eV) with Fe3+ (2.67 eV). The schematic energy level diagram for Fe3+ in the Eu3+ host matrix has been proposed for the better understanding of photoluminescence processes. The variation of intensity of PL peak between 500 and 700 nm for the substitution of Fe in the range of x = 0 - 0.5 yields with interesting optical properties for exploring new phosphor materials for optoelectronic device fabrications.

  9. Electron beam crystallization of Te 1-xSe x films

    NASA Astrophysics Data System (ADS)

    Vermaak, J. S.; Raubenheimer, D.

    1987-11-01

    In situ transmission electron microscopy has been used to study the effect of high energy electrons on the amorphous-to-crystalline phase transformation, the isothermal growth rates, as well as the structure and orientation of the recrystallized Te 0.7Se 0.3 thin films. It is shown that the beam effect is not a pure thermal effect. It is proposed that the electron beam initiates nucleation and promotes growth by the interaction of the high energy electrons with the van der Waals type bonds between the short composite Te-Se chains.

  10. Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.

    2008-01-01

    Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs < E < ergs. The spectra (fitted with a Comptonized blackbody) show that an increase in the temperature and area of a hot region, to 0.5 keV and -16% of the surface area of the neutron star, respectively, are primarily responsible for its increase in luminosity. The energy, spectrum, and timescale of decay are consistent with a deep crustal heating event, similar to an interpretation of the X-ray turn-on of the transient AXP XTE J18 10- 197. Simultaneous with the 4.6 hr ATdA4-Newton observation, we observed at 6.4 GHz with the Parkes telescope, measuring the phase relationship of the radio and X-ray pulse. The X-ray pulsed fraction of 1E 1547.0-5408 is only approx. 7 %, while its radio pulse is relatively broad for such a slow pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.

  11. Comets C/2003 X5-X11 and Y2-Y10 (SOHO)

    NASA Astrophysics Data System (ADS)

    Battams, K.; Boschat, M.; Zhou, X.-M.; Hoffman, T.; Leprette, X.; Matson, R.; Kracht, R.; Sachs, J.; Marsden, B. G.; Kisala, R.

    2004-06-01

    Further to IAUC 8356, K. Battams reports measurements for additional Kreutz sungrazing comets found on SOHO website C2 images by M. Boschat (C/2003 X5, X7, Y5, Y8), X.-m. Zhou (C/2003 X6, X9, X11), T. Hoffman (C/2003 X8), X. Leprette (C/2003 X10, Y2), R. Matson (2003 Y3, Y9, Y10), R. Kracht (C/2003 Y4, Y7), and J. Sachs (C/2003 Y6). C/2003 Y6 and Y7 were also visible on C3 images. The reductions by B. G. Marsden (and by R. Kisala for C/2003 Y8, Y9, Y10) and orbital elements by Marsden appear on the MPECs cited below. Comet 2003 UT R.A. (2000) Decl. MPEC C/2003 X5 Dec. 4.896 16 46.9 -24 12 2004-L24 C/2003 X6 6.396 16 52.2 -24 20 2004-L24 C/2003 X7 7.829 16 58.6 -24 27 2004-L24 C/2003 X8 8.246 17 00.9 -24 31 2004-L24 C/2003 X9 8.621 17 02.2 -24 34 2004-L24 C/2003 X10 11.188 17 14.5 -24 41 2004-L25 C/2003 X11 13.588 17 25.7 -24 57 2004-L25 C/2003 Y2 19.621 17 53.6 -25 08 2004-L25 C/2003 Y3 19.979 17 55.0 -25 02 2004-L25 C/2003 Y4 20.729 17 58.8 -25 14 2004-L25 C/2003 Y5 22.771 18 08.5 -25 08 2004-L25 C/2003 Y6 23.571 18 14.3 -27 22 2004-L26 C/2003 Y7 24.638 18 20.0 -27 44 2004-L26 C/2003 Y8 25.288 18 19.6 -25 00 2004-L67 C/2003 Y9 25.479 18 20.7 -24 46 2004-L67 C/2003 Y10 26.064 18 23.5 -24 50 2004-L67

  12. Ab-initio study of electronic structure and magnetic properties of half-metallic Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Go, Anna, E-mail: annago@alpha.uwb.edu.pl

    2014-11-15

    Ab-initio electronic structure calculations are carried out for quinternary Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys. When x=0 the alloy is half-metallic ferromagnet, with magnetic moment following the Slater–Pauling rule. Replacement of Mn by V, changes its electronic and magnetic structure. V-doped alloys exhibit half-metallic behavior for x≤0.25. However, even for higher V concentrations, electronic spin polarization is still very high, what makes the alloys interesting for spintronic applications. - Graphical abstract: Densities of states of Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} and magnetic moments of Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5}. - Highlights: • Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} is a half-metallicmore » ferromagnet with a minority band gap of 0.49 eV. • Half-metallic band gap is very stable against the change of the lattice parameter. • Half-metallic band gap is obtained for Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} for x≤0.25. • Electronic spin polarization is very high and equal to at least 95% for x≤0.625. • The main carrier of magnetism of the compound is manganese.« less

  13. Technical Note: Detective quantum efficiency simulation of a-Se imaging detectors using ARTEMIS.

    PubMed

    Fang, Yuan; Ito, Takaaki; Nariyuki, Fumito; Kuwabara, Takao; Badano, Aldo; Karim, Karim S

    2017-08-01

    This work studies the detective quantum efficiency (DQE) of a-Se-based solid state x-ray detectors for medical imaging applications using ARTEMIS, a Monte Carlo simulation tool for modeling x-ray photon, electron and charged carrier transport in semiconductors with the presence of applied electric field. ARTEMIS is used to model the signal formation process in a-Se. The simulation model includes x-ray photon and high-energy electron interactions, and detailed electron-hole pair transport with applied detector bias taking into account drift, diffusion, Coulomb interactions, recombination and trapping. For experimental validation, the DQE performance of prototype a-Se detectors is measured following IEC Testing Standard 62220-1-3. Comparison of simulated and experimental DQE results show reasonable agreement for RQA beam qualities. Experimental validation demonstrated within 5% percentage difference between simulation and experimental DQE results for spatial frequency above 0.25 cycles/mm using uniform applied electric field for RQA beam qualities (RQA5, RQA7 and RQA9). Results include two different prototype detectors with thicknesses of 240 μm and 1 mm. ARTEMIS can be used to model the DQE of a-Se detectors as a function of x-ray energy, detector thickness, and spatial frequency. The ARTEMIS model can be used to improve understanding of the physics of x-ray interactions in a-Se and in optimization studies for the development of novel medical imaging applications. © 2017 American Association of Physicists in Medicine.

  14. D Haas-Van Alphen Oscillations in the Diluted Magnetic Semiconductor MERCURY(1-X)IRON(X)SELENIUM.

    NASA Astrophysics Data System (ADS)

    Miller, Michael Montgomery

    de Haas-van Alphen measurements are performed in oriented single crystals of Hg_{ rm 1-x}Fe_{rm x}Se in the range 0.0 <=q x <=q 0.05 for 0.5 < T < 4.2K for the magnetic field range 0.2 T < H < 1.0 T. These data can be interpreted in terms of a closed orbit magnetic breakdown model. The effect of Fe on the conduction band is explored in some detail. It is found that the presence of Fe lowers the Dingle temperature in a non-monotonic fashion, i.e., there is a minimum in the Dingle temperature for x ~ 0.001. This effect cannot be attributed to a gross modification of the band structure. Effective mass measurements are in good agreement with those expected for HgSe. However, the presence of Fe is seen to have a subtle effect on the band structure. The overall symmetry of the band structure may be modified by the addition of Fe. Furthermore, the presence of Fe tends to decrease the inversion asymmetry splitting of the conduction band as evidenced in the low-field beating.

  15. New adatom model for Si(11) 7X7 and Si(111)Ge 5X5 reconstructed surfaces

    NASA Technical Reports Server (NTRS)

    Chadi, D. J.

    1985-01-01

    A new adatom model differing from the conventional model by a reconstruction of the substrate is proposed. The new adatom structure provides an explanation for the 7x7 and 5x5 size of the unit cells seen on annealed Si(111) and Si(111)-Ge surfaces, respectively. The model is consistent with structural information from vacuum-tunneling microscopy. It also provides simple explanations for stacking-fault-type features expected from Rutherford backscattering experiments and for similarities in the LEED and photoemission spectra of 2x1 and 7x7 surfaces.

  16. Heterovalent Substitution to Enrich Electrical Conductivity in Cu2CdSn1-xGaxSe4 Series for High Thermoelectric Performances

    PubMed Central

    Wang, Bo; Li, Yu; Zheng, Jiaxin; Xu, Ming; Liu, Fusheng; Ao, Weiqing; Li, Junqing; Pan, Feng

    2015-01-01

    Serials of Ga doping on Sn sites as heterovalent substitution in Cu2CdSnSe4 are prepared by the melting method and the spark plasma sintering (SPS) technique to form Cu2CdSn1-xGaxSe4 (x = 0, 0.025, 0.05, 0.075, 0.01, and 0.125). Massive atomic vacancies are found at x = 0.10 by the heterovalent substitution, which contributes significantly to the increase of electrical conductivity and the decrease of lattice thermal conductivity. The electrical conductivity is increased by about ten times at 300 K after Ga doping. Moreover, the seebeck coefficient only decreases slightly from 310 to 226 μV/K at 723 K, and a significant increase of the power factor is obtained. As a result, a maxium value of 0.27 for the figure of merit (ZT) is obtained at x = 0.10 and at 723 K. Through an ab initio study of the Ga doping effect, we find that the Fermi level of Cu2CdSnSe4 is shifted downward to the valence band, thus improving the hole concentration and enhancing the electrical conductivity at low doping levels. Our experimental and theoretical studies show that a moderate Ga doping on Sn sites is an effective method to improve the thermoelectric performance of Cu2CdSnSe4. PMID:25791823

  17. Optoelectronic and Thermoelectric Properties of Bi2OX 2 (X = S, Se, Te) for Solar Cells and Thermoelectric Devices

    NASA Astrophysics Data System (ADS)

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya

    2018-02-01

    We have explored the optoelectronic structure and related thermoelectric properties of Bi2OX 2 (X = S, Se, Te) using density functional theory and spin-orbit coupling (SOC). We report herein calculations of the bandgap of these bismuth sulfides/oxysulfides to participate in the recent debate regarding such values. The generalized gradient approximation calculations corrected using the SOC scheme estimated bandgaps of 0.950 eV, 0.635 eV, and 0.441 eV for Bi2OS2, Bi2OSe2, and Bi2OTe2, respectively, in close agreement with experimental results and showing better accuracy compared with available theoretical calculations. This bandgap range shows the potential use of Bi2OX 2 for solar cell applications. Hence, we derived their optical and thermoelectric properties. Similarly to one of the parent materials, Bi2S3, a semiconductor with special photovoltaic and thermoelectric properties, the present derivatives Bi2OX 2 show promising characteristics for exploration in the near future for use in solar cells and thermoelectric devices.

  18. BeppoSAX and Chandra Observations of SAX J0103.2-7209 = 2E 0101.5-7225: A New Persistent 345 Second X-Ray Pulsar in the Small Magellanic Cloud.

    PubMed

    Israel; Campana; Covino; Dal Fiume D; Gaetz; Mereghetti; Oosterbroek; Orlandini; Parmar; Ricci; Stella

    2000-03-10

    We report the results of a 1998 July BeppoSAX observation of a field in the Small Magellanic Cloud which led to the discovery of approximately 345 s pulsations in the X-ray flux of SAX J0103.2-7209. The BeppoSAX X-ray spectrum is well fitted by an absorbed power law with a photon index of approximately 1.0 plus a blackbody component with kT=0.11 keV. The unabsorbed luminosity in the 2-10 keV energy range is approximately 1.2x1036 ergs s-1. In a very recent Chandra observation, the 345 s pulsations are also detected. The available period measurements provide a constant period derivative of -1.7 s yr-1 over the last 3 years, making SAX J0103.2-7209 one of the most rapidly spinning up X-ray pulsars known. The BeppoSAX position (30&arcsec; uncertainty radius) is consistent with that of the Einstein source 2E 0101.5-7225 and the ROSAT source RX J0103.2-7209. This source was detected at a luminosity level of a few times 1035-1036 ergs s-1 in all data sets of past X-ray missions since 1979. The ROSAT HRI and Chandra positions are consistent with that of a mV=14.8 Be spectral-type star already proposed as the likely optical counterpart of 2E 0101.5-7225. We briefly report and discuss photometric and spectroscopic data carried out at the ESO telescopes 2 days before the BeppoSAX observation. We conclude that SAX J0103.2-7209 and 2E 0101.5-7225 are the same source: a relatively young and persistent X-ray pulsar in the SMC.

  19. Non-isothermal crystallization kinetics of ternary Se90Te10-xPbx glasses

    NASA Astrophysics Data System (ADS)

    Atyia, H. E.; Farid, A. S.

    2016-02-01

    Ternary Se90Te10-xPbx with (x=2 and 6 at%) glass compositions have been prepared using a melt quenching technique and performed the non-isothermal kinetics by differential thermal analysis (DTA) at various heating rates. The glassy state of the studied samples has been characterized using x-ray diffraction analysis. The glass transition temperature Tg, the onset temperature of crystallization Tc and the peak temperature of crystallization Tp are found to be composition and heating rate dependent. From heating rate dependence of Tg and Tp, the glass transition activation energies Eg and the crystallization activation energies Ec have been determined according to different methods. The transformation mechanisms have been examined by the values of Avrami exponent n and dimensionality of growth m. Thermal stability and glass formation ability have been monitored through the calculation of the thermal stability S, temperature difference ΔT, Hurby parameter Hr, frequency factor Ko, crystallization rate factor K and fragility index F. The compositional dependence of the above-mentioned parameters indicate that, the stability of the studied glass samples decreases with increasing Pb at% content.

  20. 5. Perspective view of SE corner of Building 59. In ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Perspective view of SE corner of Building 59. In distance, note change in the roff line where the 1896 south section of building ends and the 1904 middle section begins. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  1. INFLUENCE OF THE CHEMICAL POTENTIAL ON THE CARRIER EFFECTIVE MASS IN THE THERMOELECTRIC SOLID SOLUTION Cu2Zn1-xFexGeSe4

    NASA Astrophysics Data System (ADS)

    Zeier, Wolfgang G.; Day, Tristan; Schechtel, Eugen; Snyder, G. Jeffrey; Tremel, Wolfgang

    2013-08-01

    In this paper, we describe the synthesis and characterization of the solid solution Cu2Zn1-xFexGeSe4. Electronic transport data have been analyzed using a single parabolic band model and have been compared to Cu2+xZn1-xGeSe4. The effective mass of these undoped, intrinsically hole conducting materials increases linearly with increasing carrier concentration, showing a non-parabolic transport behavior within the valence band.

  2. Influence of Sodium Chloride Doping on Thermoelectric Properties of p-type SnSe

    NASA Astrophysics Data System (ADS)

    Yang, Shi Dan; Nutor, Raymond Kwesi; Chen, Zi Jie; Zheng, Hao; Wu, Hai Fei; Si, Jian Xiao

    2017-11-01

    We investigated the effect of NaCl doping on the thermoelectric properties of p-type Sn 1- x Na x SeCl x ( x = 0, 0.005, 0.01, 0.02, 0.03 and 0.04) prepared by a method which combines rapid induction melting and rapid hot pressing. After introducing the NaCl into the SnSe system, the carrier concentration of SnSe is significantly increased from ˜4.55 × 1017 cm-3 to ˜3.95 × 1019 cm-3 at 300 K. An electrical conductivity of ˜102.5 S cm-1 was obtained at 473 K by addition of 2 mol.% NaCl. It was found that Cl was effective in reducing the thermal conductivity by inducing abundant defects. A maximum ZT value of 0.84 was achieved in the Na0.005Sn0.995SeCl0.005 sample at 810 K. This suggests that doping with NaCl is a facile and cost-effective method in optimizing the thermoelectric properties of SnSe materials.

  3. Tunable inverse topological heterostructure utilizing ( B i 1 - x I n x ) 2 S e 3 and multichannel weak-antilocalization effect

    DOE PAGES

    Brahlek, Matthew J.; Koirala, Nikesh; Liu, Jianpeng; ...

    2016-03-10

    In typical topological insulator (TI) systems the TI is bordered by a non-TI insulator, and the surrounding conventional insulators, including vacuum, are not generally treated as part of the TI system. Here, we implement a material system where the roles are reversed, and the topological surface states form around the non-TI (instead of the TI) layers. This is realized by growing a layer of the tunable non-TI (Bi 1-xIn x) 2Se 3 in between two layers of the TI Bi 2Se 3 using the atomically precise molecular beam epitaxy technique. On this tunable inverse topological platform, we systematically vary themore » thickness and the composition of the (Bi 1-xIn x) 2Se 3 layer and show that this tunes the coupling between the TI layers from strongly coupled metallic to weakly coupled, and finally to a fully decoupled insulating regime. This system can be used to probe the fundamental nature of coupling in TI materials and provides a tunable insulating layer for TI devices.« less

  4. Wide emission-tunable CdTeSe/ZnSe/ZnS core–shell quantum dots and their conjugation with E. coli O-157

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Haifeng; Zhou, Guangjun, E-mail: gjzhou@sdu.edu.cn; Zhou, Juan

    2015-05-15

    Highlights: • QDs with variety morphology were obtained via an injection controlled process. • 3-D PL spectra of core–shell QDs show different excitation wavelength dependence. • The PL intensity of QDs with ZnSe transition layer increases dramatically. • Core–shell QDs were processed into aqueous phase and conjugated with E. coli O-157. - Abstract: Wide emission-tunable and different morphological alloyed CdTeSe quantum dots (QDs), CdTeSe/ZnS and CdTeSe/ZnSe/ZnS core–shell QDs were successfully synthesized via an injection controlled process. The effect of injection procedure and reaction temperature were systematically discussed and the growth mechanism was proposed. Most efficient PL wavelength was correlated withmore » reaction time and temperature. The 3-D PL spectra of spherical bare CdTeSe and core–shell QDs with different passivation showed different excitation wavelength dependency. The PL intensity of CdTeSe/ZnSe/ZnS core–shell QDs increased greatly in comparison with that of CdTeSe and CdTeSe/ZnSe QDs. ZnSe transition layer played an important role in improving the PL intensity by providing a smoothened interface and gradient band offsets. The core–shell QDs were transferred into aqueous phase and successfully conjugated with Escherichia coli O-157. The proposed phase-transfer and bio-labeling strategy may be applicable to various QDs with different compositions.« less

  5. Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Rebrov, Evgeny V.; Gao, Pengzhao; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Turgut, Zafer; Kozlowski, Gregory

    2011-03-01

    Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x=0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.

  6. Influence of substrate type on transport properties of superconducting FeSe0.5Te0.5 thin films

    NASA Astrophysics Data System (ADS)

    Yuan, Feifei; Iida, Kazumasa; Langer, Marco; Hänisch, Jens; Ichinose, Ataru; Tsukada, Ichiro; Sala, Alberto; Putti, Marina; Hühne, Ruben; Schultz, Ludwig; Shi, Zhixiang

    2015-06-01

    FeSe0.5Te0.5 thin films were grown by pulsed laser deposition on CaF2, LaAlO3 and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane lattice mismatch between FeSe0.5Te0.5 bulk and the substrate shows no influence on the lattice parameters of the films, whereas the type of substrate affects the crystalline quality of the films and, therefore, the superconducting properties. The film on MgO showed an extra peak in the angular dependence of critical current density Jc(θ) at θ = 180° (H||c), which arises from c-axis defects as confirmed by transmission electron microscopy. In contrast, no Jc(θ) peaks for H||c were observed in films on CaF2 and LaAlO3. Jc(θ) can be scaled successfully for both films without c-axis correlated defects by the anisotropic Ginzburg-Landau approach with appropriate anisotropy ratio γJ. The scaling parameter γJ is decreasing with decreasing temperature, which is different from what we observed in FeSe0.5Te0.5 films on Fe-buffered MgO substrates.

  7. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  8. Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.

    Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less

  9. Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe

    DOE PAGES

    Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.; ...

    2017-06-13

    Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less

  10. Fabrication of Fe1.1Se0.5Te0.5 bulk by a high energy ball milling technique

    NASA Astrophysics Data System (ADS)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2017-11-01

    Fe1.1Se0.5Te0.5 superconducting bulks were successfully synthesized by a high energy ball milling (HEBM) aided sintering technique. Two advantages of this new technique have been revealed compared with traditional solid state sintering method. One is greatly increased the density of sintered bulks. It is because the precursor powders with β-Fe(Se, Te) and δ-Fe(Se, Te) were obtained directly by the HEBM process and without formation of liquid Se (and Te), which could avoid the huge volume expansion. The other is the obvious decrease of sintering temperature and dwell time due to the effective shortened length of diffusion paths. The superconducting critical temperature Tc of 14.2 K in our sample is comparable with those in previous reports, and further optimization of chemical composition is on the way.

  11. Core-Shell Fe1- xS@Na2.9PS3.95Se0.05 Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density.

    PubMed

    Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Liu, Xin; Xu, Xiaoxiong; Li, Hong; Hu, Yong-Sheng; Yao, Xiayin

    2018-03-27

    High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na 2.9 PS 3.95 Se 0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10 -4 S cm -1 , which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na 2.9 PS 3.95 Se 0.05 electrolyte uniformly anchored on Fe 1- x S nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core-shell structured Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 nanorods and thus realizing an intimate contact interface. The Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 /Na 2.9 PS 3.95 Se 0.05 /Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g -1 at current densities of 20, 50, 100, 150, and 200 mA g -1 , respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg -1 and 201.6 W kg -1 based on the mass of Fe 1- x S at current densities of 20 and 200 mA g -1 , respectively. Moreover, the reaction mechanism of Fe 1- x S is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe 1- x S electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g -1 after cycling at 100 mA g -1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.

  12. Magnetism of hexagonal Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuglsby, R.; Kharel, P., E-mail: parashu.kharel@sdstate.edu; Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588

    2015-05-07

    Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni{sub 2}In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn{sub 1.5}X{sub 0.5}Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm{sup 3} for Mn{sub 1.5}Fe{sub 0.5}Sn, but their Curie temperatures are less than 300 K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100 K are on the order of 1 Merg/cm{sup 3}. The vacuum annealing of the ribbons at 550 °C significantly improved theirmore » magnetic properties with the Curie temperature increasing from 206 K to 273 K for Mn{sub 1.5}Fe{sub 0.5}Sn.« less

  13. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE PAGES

    Rice, W. D.; Liu, W.; Pinchetti, V.; ...

    2017-04-07

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  14. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, W. D.; Liu, W.; Pinchetti, V.

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  15. Atomistic tight-binding theory of excitonic splitting energies in CdX(X = Se, S and Te)/ZnS core/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak; Pinsook, Udomsilp

    2017-01-01

    Using the atomistic tight-binding theory (TB) and a configuration interaction description (CI), we numerically compute the excitonic splitting of CdX(X = Se, S and Te)/ZnS core/shell nanocrystals with the objective to explain how types of the core materials and growth shell thickness can provide the detailed manipulation of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting, beneficial for the active application of quantum information. To analyze the splitting of the excitonic states, the optical band gaps, ground-state wave function overlaps and atomistic electron-hole interactions tend to be numerically demonstrated. Based on the atomistic computations, the single-particle and excitonic gaps are mainly reduced with the increasing ZnS shell thickness owing to the quantum confinement. In the range of the higher to lower energies, the order of the single-particle gaps is CdSe/ZnS, CdS/ZnS and CdTe/ZnS core/shell nanocrystals, while one of the excitonic gaps is CdS/ZnS, CdSe/ZnS and CdTe/ZnS core/shell nanocrystals because of the atomistic electron-hole interaction. The strongest electron-hole interactions are mainly observed in CdSe/ZnS core/shell nanocrystals. In addition, the computational results underline that the energies of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting are generally reduced with the increasing ZnS growth shell thickness as described by the trend of the electron-hole exchange interaction. The high-to-low splitting of the excitonic states is demonstrated in CdSe/ZnS, CdTe/ZnS and CdS/ZnS core/shell nanocrystals because of the fashion in the electron-hole exchange interaction and overlaps of the electron-hole wave functions. As the resulting calculations, it is expected that CdS/ZnS core/shell nanocrystals are the best candidates to be the source of entangled photons. Finally, the comprehensive information on the excitonic splitting can enable the use of suitable core

  16. Throughput Calibration of the 52x0.2E1 Aperture

    NASA Astrophysics Data System (ADS)

    Heap, Sara

    2009-07-01

    The Next Generation Spectral Library {NGSL} is a library of low-dispersion STIS spectra extending from 0.2-1.0 microns. So far, 378 stars with a wide range in metallicity have been observed. Despite their high S/N>100, many NGSL spectra have 5-10% systematic errors in their spectral energy distributions, which can be traced to throughput variations in the 52x0.2E1 aperture caused by vignetting of a wavelength-dependent asymmetric PSF. We propose to obtain STIS spectra of the HST standard star, BD+75D325, at several positions in the 52x0.2E1 aperture, which will enable us to calibrate the NGSL spectra properly.

  17. Preparation of AgInSe2 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Yoshino, K.; Ikari, T.

    2006-09-01

    Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.

  18. Structural And Electrical Properties oF (La{sub 0.5-x}Pr{sub x}Ba{sub 0.5})(Mn{sub 0.5}Ti{sub 0.5})O{sub 3} Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alias, Nor Hayati; Department of Physics, Faculty Science, University Putra of Malaysia; Shaari, Abdul Halim

    2010-01-05

    A single phase monoclinic new perovskite based titano-manganite (La{sub 0.5-x}Pr{sub x}Ba{sub 0.5})(Mn{sub 0.5}Ti{sub 0.5})O{sub 3} has been successfully prepared by ceramic solid-state technique at sintering temperature of 1300 deg. C. The concentration of Pr (Praseodymium), x, in molar proportion in A site has been varied as x = 0, 0.02 and 0.2. Analysis has been carried out to determine the electrical properties of the synthesized material at frequency ranging from 5 Hz to 1 MHz; and at temperature range between 25 deg. C to 200 deg. C. It is found that Pr addition promoted liquid phase sintering diffusion, porosity andmore » agglomeration formation at 1300 deg. C. Dual relaxation is observed in unsubstituted Pr sample x = 0 and high Pr substituted sample x = 0.2. This phenomenon was a combinational contribution from a quasi dc (QDC) or low frequency dispersion (LFD), two cole-cole relaxational responses and a resistor. While low concentrated Pr substituted sampled x = 0.02 shows a combinational contribution from a quasi dc (QDC) or low frequency dispersion (LFD), single cole-cole relaxational response and a resistor at room temperature. Pr substitution at x = 0(max 12000) and x = 0.2(max 16000) showed high dielectric values compared to low substituted sample x = 0.02. Variation of dielectric loss tangent (tan delta) are observed for all samples at temperature ranged studied.« less

  19. Estudo espectral em raios-X duros de fontes do tipo Z com o HEXTE/RXTE

    NASA Astrophysics Data System (ADS)

    D'Amico, F.; Heindl, W. A.; Rothschild, R. E.

    2003-08-01

    Apresentam-se os resultados de um estudo espectral em raios-X de fontes do tipo Z. As fontes do tipo Z são binárias de raios-X de baixa massa (BXBM) com campo magnético intermediário (B~109G). Esta classe de fontes é composta por apenas 6 fontes Galácticas (a saber: ScoX-1, 9, 7, CygX-2, 5 e 0). A nossa análise se concentra na faixa de raios-X duros (E ~ 20keV), até cerca de 200keV, faixa ótima de operação do telescópio "High Energy X-ray Timing Experiment" (HEXTE), um dos três telescópios de raios-X à bordo do Rossi X-ray Timing Explorer (RXTE). Nossa motivação para tal estudo, uma busca de caudas em raios-X duros em fontes do tipo Z, foi o pouco conhecimento sobre a emissão nesta faixa de energia das referidas fontes quando comparadas, por exemplo, as fontes do tipo atoll (também BXBM). Apresentam-se a análise/redução de dados e explicita-se a maneira como o HEXTE mede o ru1do de fundo. Especial atenção é direcionada a este item devido a localização das fontes do tipo Z e também ao problema de contaminação por fontes próximas. Com exceção de ScoX-1, nenhuma cauda em raios-X duros foi encontrada para as outras fontes, a despeito de resultados de detecção dessas caudas em algumas fontes pelo satélite BeppoSAX. As interpretações deste resultado serão apresentadas. Do ponto de vista deste estudo, nós deduzimos que a produção de caudas de raios-X duros em fontes do tipo Z é um processo disparado quando, pelo menos, uma condição é satisfeita: o brilho da componente térmica do espectro precisa estar acima de um certo valor limiar de ~4´1036ergs-1.

  20. Rare earth substitution on structural and optical behaviour of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sarika; Shrivastava, A. K.; Tapdiya, Swati

    2018-05-01

    A series of Sm2+,Gd2+ doped with Cadmium selenide CdSe (x =0.01) has been prepared by using Chemical bath deposition technique. Structural, Optical and Morphological studies were performed using X-ray diffraction (XRD), UV-Visible spectrometer, Raman Studies and Scanning Electron Microscopy (SEM). XRD patterns confirm the samples with Sm,Gd ions, some diffraction peaks appeared which belongs to the cubic phase structure. The values of lattice parameter (a) decreased and particle size decrease on doping. Morphology of the grown films reveals that surface are homogeneous and uniformly spread on the substrates. The elemental analysis of CdSe doped Sm and Gd (1%) different composition was analyzed by Energy Dispersive X-Rays (EDX). The optical values of some important parameters of the studied films were calculated by UVstudy are determined from transmission spectra at wavelength 200 to 900nm. Optical band gap Eg was calculated by tauc relation. Energy band gap of CdSe doped with Sm and Gd varies at 1.8eV and 1.9eV respectively. Bandgap In Raman analysis, a prominent peak shows that confirmation of nano crystalline phase. And intensity of peaks was decreasing after doping.

  1. Origin of Pressure-induced Superconducting Phase in K xFe 2-ySe 2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    DOE PAGES

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...

    2016-08-08

    Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less

  2. The X-ray Halo of GX5-1

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Dame, T. M.; Costantini, Elisa; Predehl, Peter

    2006-01-01

    Using Chandra observations we have measured the energy-resolved dust-scattered X-ray halo around the low-mass X-ray binary GX5-1, detecting for the first time multiply scattered X-rays from interstellar dust. % e compared the observed X-ray halo at various energies to predictions from a range of dust models. These fits used both smoothly-distributed dust as well as dust in clumped clouds, with CO and 21 cm observations helping to determine the position of the clouds along the line of sight. We found that the BARE-GR-B model of Zubko, Dwek & Arendt (2004) generally led to the best results, although inadequacies in both the overall model and the data limit our conclusions. We did find that the composite dust models of Zubko, Dwek & Arendt (2004), especially the "no carbon" models, gave uniformly poor results. Although models using cloud positions and densities derived naively from CO and 21 cm data gave generally poor results, plausible adjustments to the distance of the largest cloud and the mass of a cloud in the expanding 3 kpc Arm lead to significantly improved fits. We suggest that combining X-ray halo, CO, and 21 cm observations will be a fruitful method to improve our understanding of both the gas and dust phases of the interstellar medium.

  3. Fabrication of Lead-free (K0.5Na0.5)1- x Ag x NbO3 Ferroelectric Ceramics and Their Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Byun, Jaeduk; Hyun, June Won; Kim, Yeon Jung; Bobor, Kristóf

    2018-03-01

    In this study, lead-free (K0.5Na0.5)1- x Ag x NbO3 ( x = 0.00, 0.10, 0.15, 0.20, 0.25, and 0.30) ferroelectric ceramics were fabricated using solid-state synthesis without A-site and B-site manufacturing step. The (K0.5Na0.5)1- x Ag x NbO3 ceramics were sintered at 1110 °C for 4 h after calcination at 800 °C for 3 h. The sintered sample was dense, and the grain size was 1.02 7.8 μm. For x ≤ 0.2, the sintered ceramic samples had a single perovskite structure. The temperature dependence of the dielectric constant in the (K0.5Na0.5)1- x Ag x NbO3 was measured at 1 kHz using an LCR meter. The high dielectric constant properties could be obtained in (K0.5Na0.5)1- x Ag x NbO3 ceramics. The orthorhombic-to-tetragonal phase transition temperature and ferroelectric Curie temperature decreased linearly with increasing mole fraction of the Ag content. The Curie temperature shifted from 393 °C for (K0.5Na0.5)NbO3 ceramics to 317 °C for (K0.5Na0.5)0.7Ag0.3NbO3 ceramics. The maximum dielectric constant was 8930 at 330 °C in the (K0.5Na0.5)0.8Ag0.2NbO3 ceramics.

  4. Topological phases in (Na2O)x (P2O5)100-x glasses

    NASA Astrophysics Data System (ADS)

    Mohanty, Chandi; Chbeir, Ralph; Czaja, Andrew; Chen, Ping; Boolchand, Punit

    We have synthesized titled glasses in the 0 <x <0.50 range of soda paying special attention to their dryness. Pure P2O5 glass was synthesized by flash evaporation of bulk powder in a quartz tube as it was pumped in several attempts, and the variation of Tg and enthalpy of relaxation (ΔHnr) measured for each attempt. These data show that as the glass got drier, Tg increased to 431°C and ΔHnr became miniscule. At higher soda content (x >20%), Tg(x) increased steadily, but with appearance of a local maximum near x = 37.5%. On the other hand ΔHnr term, revealed a Trapezoidal-like minimum in the 32.5 % <x <42.5% range, suggestive of a reversibility window or the isostatically rigid Intermediate Phase, with glasses at x >42.5% in the flexible phase while those in the 20% <x <32.5% range in the stressed rigid phase. We have also obtained Raman scattering, IR reflectance and fragility index measurements on the present glasses, and these will discussed with recent results in the field.

  5. Magnetic excitation and local magnetic susceptibility of the excitonic insulator Ta2NiSe5 investigated by 77Se NMR

    NASA Astrophysics Data System (ADS)

    Li, Shang; Kawai, Shunsuke; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-04-01

    77Se NMR measurements were made on polycrystalline and single-crystalline samples to elucidate local magnetic susceptibility and magnetic excitation of Ta2NiSe5 , which is proposed to undergo an exciton condensation accompanied by a structural transition at Tc=328 K . We determine the 77Se Knight shift tensors for the three Se sites and analyze their anisotropy based on the site symmetry. The temperature dependence of the Knight shift is discussed on the basis of spin and orbital susceptibilities calculated for two-chain and two-dimensional three-band models. The large fraction of the Se 4 p orbital polarization due to the mixing between Ni 3 d and Se 4 p orbitals is estimated from the analysis of the transferred hyperfine coupling constant. Also the nuclear spin-lattice relaxation rate 1 /T1 is found not to show a coherent peak just below Tc and to obey the thermally activated temperature dependence with a spin gap energy of 1770 ±40 K . This behavior of 1 /T1 monitors the exciton condensation as proposed by the theoretical study of 1 /T1 based on the three-chain Hubbard model for the excitonic insulator.

  6. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications

    PubMed Central

    Zaiats, Gary; Yanover, Diana; Vaxenburg, Roman; Tilchin, Jenya; Sashchiuk, Aldona; Lifshitz, Efrat

    2014-01-01

    Lead-based (IV–VI) colloidal quantum dots (QDs) are of widespread scientific and technological interest owing to their size-tunable band-gap energy in the near-infrared optical region. This article reviews the synthesis of PbSe-based heterostructures and their structural and optical investigations at various temperatures. The review focuses on the structures consisting of a PbSe core coated with a PbSexS1–x (0 ≤ x ≤ 1) or CdSe shell. The former-type shells were epitaxially grown on the PbSe core, while the latter-type shells were synthesized using partial cation-exchange. The influence of the QD composition and the ambient conditions, i.e., exposure to oxygen, on the QD optical properties, such as radiative lifetime, Stokes shift, and other temperature-dependent characteristics, was investigated. The study revealed unique properties of core/shell heterostructures of various compositions, which offer the opportunity of fine-tuning the QD electronic structure by changing their architecture. A theoretical model of the QD electronic band structure was developed and correlated with the results of the optical studies. The review also outlines the challenges related to potential applications of colloidal PbSe-based heterostructures. PMID:28788244

  7. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahariya, Vikas

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blendmore » crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4 eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.« less

  8. Critical thickness and strain relaxation in high-misfit heteroepitaxial systems: PbTe1-xSex on PbSe (001)

    NASA Astrophysics Data System (ADS)

    Wiesauer, Karin; Springholz, G.

    2004-06-01

    Strain relaxation and misfit dislocation formation is investigated for the high-misfit PbTe1-xSex/PbSe (001) heteroepitaxial system in which the lattice mismatch varies from 0% to 5.5%. Because a two-dimensional (2D) layer growth prevails for all PbTe1-xSex ternary compositions, the lattice mismatch is relaxed purely by misfit dislocations. In addition, it is found that strain relaxation is not hindered by dislocation kinetics. Therefore, this material combination is an ideal model system for testing the equilibrium Frank van der Merwe and Matthews Blakeslee strain relaxation models. In our experiments, we find significantly lower values of the critical layer thickness as compared to the model predictions. This discrepancy is caused by the inappropriate description of the dislocation self-energies when the layer thickness becomes comparable to the dislocation core radius. To resolve this problem, a modified expression for the dislocation self-energy is proposed. The resulting theoretical critical thicknesses are in excellent agreement with the experimental data. In addition, a remarkable universal scaling behavior is found for the strain relaxation data. This underlines the breakdown of the current strain relaxation models.

  9. 44. U.S. NITRATE PLANT UNDER CONSTRUCTION, VIEW LOOKING S.E. AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. U.S. NITRATE PLANT UNDER CONSTRUCTION, VIEW LOOKING S.E. AT THE LIME-NITROGEN OVEN ROOM UNDER CONSTRUCTION, APRIL 23, 1918. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  10. X2Y2 isomers: tuning structure and relative stability through electronegativity differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te).

    PubMed

    El-Hamdi, Majid; Poater, Jordi; Bickelhaupt, F Matthias; Solà, Miquel

    2013-03-04

    We have studied the XYYX and X2YY isomers of the X2Y2 species (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te) using density functional theory at the ZORA-BP86/QZ4P level. Our computations show that, over the entire range of our model systems, the XYYX isomers are more stable than the X2YY forms except for X = F and Y = S and Te, for which the F2SS and F2TeTe isomers are slightly more stable. Our results also point out that the Y-Y bond length can be tuned quite generally through the X-Y electronegativity difference. The mechanism behind this electronic tuning is the population or depopulation of the π* in the YY fragment.

  11. Columnar recombination for X-ray generated electron-holes in amorphous selenium and its significance in a-Se x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubon, O.; Thunder Bay Regional Research Institute, Thunder Bay, Ontario, P7A 7T1; Jandieri, K.

    Although amorphous selenium (a-Se) has a long and successful history of application in optical and X-ray imaging, some of its fundamental properties are still puzzling. In particularly, the mechanism of carrier recombination following x-ray excitation and electric field and temperature dependences of the electron-hole pair creation energy (W{sub ehp}) remain unclear. Using the combination of X-ray photocurrent and pulse height spectroscopy measurements, we measure W{sub ehp} in a wide range of temperatures (218–320 K) and electric fields (10–100 V/µm) and show that the conventional columnar recombination model which assumes Langevin recombination within a column (a primary electron track) fails to explain experimentalmore » results in a wide range of electric fields and temperatures. The reason for the failure of the conventional model is revealed in this work, and the theory of the columnar recombination is modified to include the saturation of the recombination rate at high electric field in order to account for the experimental results in the entire range of fields and temperatures.« less

  12. ZnxCd1-xSe alloy nanowires covering the entire compositional range grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shan, C. X.; Liu, Z.; Ng, C. M.; Hark, S. K.

    2005-07-01

    We show that preferentially oriented, single-crystalline ZnxCd1-xSe alloy nanowires can be grown on GaAs (100) surface using Au as a catalyst over the entire compositional range in a metalorganic chemical vapor deposition system. The composition of the alloy nanowires can be simply adjusted through the ratio of the flow rates of group-II precursors. Electron microscopy shows that the nanowires are smooth and uniform in shape; their diameters range from 20 to 80 nm and lengths exceed a few micrometers. Nanowires containing more than 13% Zn are zinc blende structured and grow along the ⟨110⟩ direction. Those containing less Zn are wurtzite structured and grow along the ⟨210⟩ direction. Compared with the bulk alloy, the change from zinc blende to wurtzite structure in nanowires occurs at far smaller x. The preferred orientation and the persistence of the zinc blende structure both reflect the influence of the substrate on the growth of the nanowires. Photoluminescence measurements identify a strong near-band-edge emission for all samples and show that its peak energy tracks the band gap of ZnxCd1-xSe epilayer for x>0.13. The growth of alloy nanowires at many compositions opens up the possibility of realizing quasi-one-dimensional heterojunctions.

  13. Dielectric and AC conductivity studies of Nd substituted 0.8BaTiO{sub 3}-0.2(Bi{sub 0.5(1-x)}Nd{sub 0.5x}K{sub 0.5})TiO{sub 3} lead free ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramesh, M. N. V.; Ramesh, K. V., E-mail: kv-ramesh5@yahoo.co.in

    2016-05-23

    0.8BaTiO{sub 3} – 0.2(Bi{sub 0.5(1-x)}Nd{sub 0.5x}K{sub 0.5})TiO{sub 3} (0.01 ≤ x ≤ 0.06) lead free ceramic materials have been prepared by solid state reaction method and followed by high energy ball milling process. X-ray diffraction studies confirm the tetragonal structure of the materials at room temperature. Lattice parameters and density are decreasing with increase of Nd substitution. Microstructure studies were done by using Scanning electron microscope and it found that grain size is decreasing with increase of Nd substitution. Temperature and frequency dependent dielectric studies reveal relaxor behaviour of the materials. Dielectric constant, dielectric loss and Curie temperature are decreasingmore » with Nd substitution. Maximum Curie temperature of 195°C was observed at 1 MHz for x=0.01 Nd substituted sample. Degree of diffuseness was calculated from the modified Curie-Weiss law and it is increasing with Nd substitution. AC conductivity is increasing with increase of Nd substitution and observed maximum activation energy of 0.52 eV for x=0.02 Nd substituted sample.« less

  14. Vertical beam size measurement in the CESR-TA e+e- storage ring using x-rays from synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Fontes, E.; Heltsley, B. K.; Hopkins, W.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Savino, J.; Seeley, R.; Shanks, J.; Flanagan, J. W.

    2014-06-01

    We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10-100μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of ~2GeV. At such beam energies the xBSM images X-rays of ɛ≈1-10keV (λ≈0.1-1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×109 particles) per bunch and inter-bunch spacing of as little as 4 ns. At Eb=2.1GeV, systematic precision of ~1μm is achieved for a beam size of ~12μm; this is expected to scale as ∝1/σb and ∝1/Eb. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.

  15. Effect of 50MeV Li{sup 3+} ion irradiation on structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Shabir, E-mail: shaphyjmi@gmail.com; Sethi, Riti; Nasir, Mohd

    2015-08-28

    Present work focuses on the effect of swift heavy ion (SHI) irradiation of 50MeV Li{sup 3+} ions by varying the fluencies in the range of 1×10{sup 12} to 5×10{sup 13} ions/cm{sup 2} on the morphological, structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films. Thin films of ~250nm thickness were deposited on cleaned glass substrates by thermal evaporation technique. X-ray diffraction (XRD) analysis shows the pristine thin film of Se{sub 95}Zn{sub 5} growsin hexagonal phase structure. Also it was found that the small peak observed in XRD spectra vanishes after SHI irradiation indicates the defects of themore » material increases. The optical parameters: absorption coefficient (α), extinction coefficient (K), refractive index (n) optical band gap (E{sub g}) and Urbach’s energy (E{sub U}) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200-1000nm. It was found that the values of absorption coefficient, refractive index and extinction coefficient increases while the value optical band gap decreases with the increase of ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model. Electrical properties such as dc conductivity and temperature dependent photoconductivity of investigated thin films were carried out in the temperature range 309-370 K. Analysis of data shows activation energy of dark current is greater as compared to activation energy photocurrent. The value of activation energy decreases with the increase of ion fluence indicates that the defect density of states increases.Also it was found that the value of dc conductivity and photoconductivity increases with the increase of ion fluence.« less

  16. Structural phase transitions of (Bi 1$-$xSb x ) 2(Te 1$-$y Se y) 3 compounds under high pressure and the influence of the atomic radius on the compression processes of tetradymites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jinggeng; Yu, Zhenhai; Hu, Qingyang

    Recently, A 2B 3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi 2Te 2Se, BiSbTeSe 2, and Sb 2Te 2Se tetradymites under high pressure. Bi 2Te 2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi 2Te 3. Thus, themore » compression behavior of Bi 2Te 2Se is the same as that of Bi 2Se 3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe 2 and Sb 2Te 2Se undergo similar structural phase transitions to Bi 2Te 2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A 2B 3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. Lastly, the influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.« less

  17. Structural phase transitions of (Bi 1$-$xSb x ) 2(Te 1$-$y Se y) 3 compounds under high pressure and the influence of the atomic radius on the compression processes of tetradymites

    DOE PAGES

    Zhao, Jinggeng; Yu, Zhenhai; Hu, Qingyang; ...

    2016-12-14

    Recently, A 2B 3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi 2Te 2Se, BiSbTeSe 2, and Sb 2Te 2Se tetradymites under high pressure. Bi 2Te 2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi 2Te 3. Thus, themore » compression behavior of Bi 2Te 2Se is the same as that of Bi 2Se 3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe 2 and Sb 2Te 2Se undergo similar structural phase transitions to Bi 2Te 2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A 2B 3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. Lastly, the influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.« less

  18. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups.

    PubMed

    Farrow, Blake; Kamat, Prashant V

    2009-08-12

    The charge separation between excited CdSe semiconductor quantum dots and stacked-cup carbon nanotubes (SCCNTs) has been successfully tapped to generate photocurrent in a quantum dot sensitized solar cell (QDSC). By employing an electrophoretic deposition technique we have cast SCCNT-CdSe composite films on optically transparent electrodes (OTEs). The quenching of CdSe emission, as well as transient absorption measurements, confirms ultrafast electron transfer to SCCNTs. The rate constant for electron transfer increases from 9.51 x 10(9) s(-1) to 7.04 x 10(10) s(-1) as we decrease the size of CdSe nanoparticles from 4.5 to 3 nm. The ability of SCCNTs to collect and transport electrons from excited CdSe has been established from photocurrent measurements. The morphological and excited state properties of SCCNT-CdSe composites demonstrate their usefulness in energy conversion devices.

  19. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    DOE PAGES

    Wright, Joshua T.; Su, Dong; van Buuren, Tony; ...

    2014-08-21

    Here, the electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and anmore » octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.« less

  20. The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk; Aliev, V. Sh.

    2014-02-17

    The origin of a blue luminescence band at 2.7 eV and a luminescence excitation band at 5.2 eV of hafnia has been studied in stoichiometric and non-stoichiometric hafnium oxide films. Experimental and calculated results from the first principles valence band spectra showed that the stoichiometry violation leads to the formation of the peak density of states in the band gap caused by oxygen vacancies. Cathodoluminescence in the non-stoichiometric film exhibits a band at 2.65 eV that is excited at the energy of 5.2 eV. The optical absorption spectrum calculated for the cubic phase of HfO{sub 2} with oxygen vacancies showsmore » a peak at 5.3 eV. Thus, it could be concluded that the blue luminescence band at 2.7 eV and HfO{sub x} excitation peak at 5.2 eV are due to oxygen vacancies. The thermal trap energy in hafnia was estimated.« less