Sample records for e-cadherin repressor snail

  1. High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression.

    PubMed

    Oh, Ji Young; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Chae, Chang Woo; Kim, Jun Sung; Kim, Seo Yihl; Lim, Jae Ryong; Lee, Chang-Kyu; Han, Ho Jae

    2018-01-01

    Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) migration, and analyze the mechanism accompanied by this effect. Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. High concentration glucose (25 mM) elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS) promotes two signaling; JNK which regulates γ-secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3β phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3β pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells.

    PubMed

    Shan, Yujuan; Zhang, Lanwei; Bao, Yongping; Li, Baolong; He, Canxia; Gao, Mingming; Feng, Xue; Xu, Weili; Zhang, Xiaohong; Wang, Shuran

    2013-06-01

    Metastasis and recurrence of bladder cancer are the main reasons for its poor prognosis and high mortality rates. Because of its biological activity and high metabolic accumulation in urine, sulforaphane, a phytochemical exclusively occurring in cruciferous vegetables, has a powerful and specific potential for preventing bladder cancer. In this paper, sulforaphane is shown to significantly suppress a variety of biochemical pathways including the attachment, invasion, migration and chemotaxis motion in malignant transitional bladder cancer T24 cells. Transfection with cyclooxygenase-2 (COX-2) overexpression plasmid largely abolished inhibition of MMP2/9 expression as well as cell invasive capability by sulforaphane. Moreover, sulforaphane inhibited the epithelial-to-mesenchymal transition (EMT) process which underlies tumor cell invasion and migration mediated by E-cadherin induction through reducing transcriptional repressors, such as ZEB1 and Snail. Under conditions of over-expression of COX-2 and/or MMP2/9, sulforaphane was still able to induce E-cadherin or reduce Snail/ZEB1 expression, suggesting that additional pathways might be involved. Further studies indicated that miR-200c played a role in the regulation of E-cadherin via the ZEB1 repressor but not by the Snail repressor. In conclusion, the EMT and two recognized signaling pathways (COX-2/MMP2,9/ ZEB1, Snail and miR-200c/ZEB1) are all targets for sulforaphane. This study indicated that sulforaphane may possess therapeutic potential in preventing recurrence of human bladder cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma.

    PubMed

    Liu, Shujing; Kumar, Suresh M; Lu, Hezhe; Liu, Aihua; Yang, Ruifeng; Pushparajan, Anitha; Guo, Wei; Xu, Xiaowei

    2012-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression. Hsa-miR-9 has been shown to have opposite functions in different tumour types; however, the underlying mechanism is unclear. Here we show that hsa-miR-9 is down-regulated in metastatic melanomas compared to primary melanomas. Overexpression of miR-9 in melanoma cells resulted in significantly decreased cell proliferation and migratory capacity with decreased F-actin polymerization and down-regulation of multiple GTPases involved in cytoskeleton remodelling. miR-9 overexpression induced significant down-regulation of Snail1 with a concomitant increase in E-cadherin expression. In contrast, knockdown of miR-9 increased Snail1 expression as well as melanoma cell proliferation and migration capacity. Mechanistically, miR-9 expression down-regulated NF-κB1 in melanoma and the effect was abolished by mutations in the putative miR-9 binding sites within the 3'-untranslated region (UTR) of NF-κB1. Anti-miR-9 miRNA inhibitor also increased the expression of NF-κB1. The effects of miR-9 on Snail1 expression and melanoma cell proliferation and migration were rescued by overexpression of NF-κB1 in these cells. Furthermore, miR-9 overexpression resulted in significantly decreased melanoma growth and metastasis in vivo. In summary, miR-9 inhibits melanoma proliferation and metastasis through down-regulation of the NF-κB1-Snail1 pathway. This study finds a new mechanism that miR-9 utilizes to decrease E-cadherin expression and inhibit melanoma progression. The results suggest that function of microRNAs is context and tumour type-specific. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail

    PubMed Central

    She, Qing-Bai

    2014-01-01

    The cap-dependent translation is frequently deregulated in a variety of cancers associated with tumor progression. However, the molecular basis of the translation activation for metastatic progression of cancer remains largely elusive. Here, we demonstrate that activation of cap-dependent translation by silencing the translational repressor 4E-BP1 causes cancer epithelial cells to undergo epithelial-mesenchymal transition (EMT), which is associated with selective upregulation of the EMT inducer Snail followed by repression of E-cadherin expression and promotion of cell migratory and invasive capabilities as well as metastasis. Conversely, inhibition of cap-dependent translation by a dominant active mutant 4E-BP1 effectively downregulates Snail expression and suppresses cell migration and invasion. Furthermore, dephosphorylation of 4E-BP1 by mTORC1 inhibition or directly targeting the translation initiation also profoundly attenuates Snail expression and cell motility, whereas knockdown of 4E-BP1 or overexpression of Snail significantly rescues the inhibitory effects. Importantly, 4E-BP1-regulated Snail expression is not associated with its changes in the level of transcription or protein stability. Together, these findings indicate a novel role of 4E-BP1 in the regulation of EMT and cell motility through translational control of Snail expression and activity, and suggest that targeting cap-dependent translation may provide a promising approach for blocking Snail-mediated metastatic potential of cancer. PMID:24970798

  5. Antioxidants Maintain E-Cadherin Levels to Limit Drosophila Prohemocyte Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Simon, LaTonya; Fossett, Nancy

    2014-01-01

    Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation. PMID:25226030

  6. E-cadherin regulators are differentially expressed in the epithelium and stroma of keratocystic odontogenic tumors.

    PubMed

    Porto, Lia Pontes Arruda; dos Santos, Jean Nunes; Ramalho, Luciana Maria Pedreira; Figueiredo, Andreia Leal; Carneiro Júnior, Bráulio; Gurgel, Clarissa Araújo; Paiva, Katiúcia Batista Silva; Xavier, Flávia Caló Aquino

    2016-04-01

    The epithelial-mesenchymal transition (EMT) is the process where cells lose their epithelial features and acquire properties of typical mesenchymal cells. The dissociation of tumor cells due to changes in cell-cell adhesion is one of the key principles of tumor invasion and EMT. Thus, the knowledge of the molecular features of EMT in keratocyst odontogenic tumor (KOT) can provide useful markers to aid in the diagnosis and prognosis and perhaps contribute to an alternative therapeutic approach as it shows an aggressive clinical behavior and high recurrence rates. This study aimed to evaluate the EMT in KOT by the immunoexpression of E-cadherin, N-cadherin, Snail, and Slug and comparing to radicular cysts and dental follicles. Thirty-two KOTs, 15 radicular cysts, and 08 dental follicles were used for immunohistochemistry, evaluating the extent, intensity, labeling pattern, cellular compartment in the epithelium and stroma, and the presence of inflammation. E-cadherin was preserved in most cases of keratocystic odontogenic tumor. N-cadherin was increased in the tumor epithelium, a result that was positively correlated with the heterogeneous and nuclear immunoexpression of Slug in the epithelium; Slug also correlated with high Snail immunoexpression. N-cadherin was positively correlated with Slug in the stroma of keratocystic odontogenic tumors. The high immunoexpression of Snail and nuclear Slug in keratocystic odontogenic tumors suggests these proteins as transcription factors without necessarily participating in 'cadherin switching'. However, the knowledge of their induction of the epithelial-mesenchymal transition in odontogenic tumors is still limited. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The Effects of HSP27 on Gemcitabine-Resistant Pancreatic Cancer Cell Line Through Snail.

    PubMed

    Zhang, Song; Zhang, Xiao-qi; Huang, Shu-ling; Chen, Min; Shen, Shan-shan; Ding, Xi-wei; Lv, Ying; Zou, Xiao-ping

    2015-10-01

    To evaluate the regulation mechanism of heat shock protein 27 (HSP27) on gemcitabine (GEM) resistance of pancreatic cancer cell. The expression vectors pEGFP-C1-HSP27 and the vectors of MicroRNA targeting Snail were introduced into GEM-sensitive pancreatic cancer SW1990 cells, and the vectors of small hairpin RNA targeting HSP27 were transfected into SW1990 and GEM-resistant SW1990/GEM cells. The expressions of HSP27, p-HSP27 (Ser82), Snail, ERCC1, and E-cadherin were evaluated by Western blotting. The sensitivity of transfected cells to GEM was detected by CCK-8 assay and Annexin V-FITC apoptosis assay. As compared to SW1990, SW1990/GEM showed significantly increased expressions of HSP27, p-HSP27, Snail and ERCC1 with decreased expression of E-cadherin. By increasing HSP27 expression, we found increase of Snail and ERCC1 with reduction of E-cadherin expressions, while reduction of HSP27 expression caused reduction of Snail and ERCC1 but increase of E-cadherin expressions. Downregulation of Snail resulted in the reduction of ERCC1 expression and increase of E-cadherin. Furthermore, downregulation of HSP27 or snail caused increased GEM sensitivity of pancreatic cancer cells, and upregulation of HSP27 showed the opposite results. There is an inverse correlation between HSP27 expression and GEM sensitivity of SW1990 cells, which might be realized by regulating E-cadherin and ERCC1 expressions through Snail.

  8. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma.

    PubMed

    Elloul, Sivan; Elstrand, Mari Bukholt; Nesland, Jahn M; Tropé, Claes G; Kvalheim, Gunnar; Goldberg, Iris; Reich, Reuven; Davidson, Ben

    2005-04-15

    It was demonstrated previously that the Snail family of transcription factors and Smad-interacting protein 1 (Sip1) regulate E-cadherin and matrix metalloproteinase 2 (MMP-2) expression, cellular morphology, and invasion in carcinoma. For the current study, the authors analyzed the relation between the expression of Snail, Slug, and Sip1; the expression of MMP-2 and E-cadherin; and clinical parameters in patients with metastatic ovarian and breast carcinoma. One hundred one fresh-frozen, malignant effusions from patients who were diagnosed with gynecologic carcinomas (78 ovarian carcinomas and 23 breast carcinomas) were studied for mRNA expression of Snail, Slug, Sip1, MMP-2, and E-cadherin using reverse transcriptase-polymerase chain reaction analysis. Snail mRNA and E-cadherin protein expression levels also were studied in ovarian carcinoma effusions using in situ hybridization and immunocytochemistry. The results were analyzed for possible correlation with clinicopathologic parameters in both tumor types. E-cadherin mRNA expression was lower in breast carcinoma (P = 0.001), whereas Snail expression was higher (P = 0.003). The Snail/E-cadherin ratio (P < 0.001) and the Sip1/E-cadherin ratio (P = 0.002) were higher in breast carcinomas. Sip1 mRNA expression (P < 0.001) and Slug mRNA expression (P < 0.001) were correlated with the expression of MMP-2 in ovarian carcinomas. The Sip1/E-cadherin ratio was higher in primary ovarian carcinomas at the time of diagnosis compared with postchemotherapy ovarian carcinoma effusions (P = 0.003), higher in Stage IV tumors compared with Stage III tumors (P = 0.049), and higher in pleural effusions compared with peritoneal effusions (P = 0.044). In a univariate survival analysis of patients with ovarian carcinoma, a high Sip1/E-cadherin ratio predicted poor overall survival (P = 0.018). High E-cadherin mRNA expression predicted better disease-free survival (P = 0.023), with a similar trend for a low Slug/E-cadherin ratio (P = 0

  9. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells.

    PubMed

    Haraguchi, Misako; Sato, Masahiro; Ozawa, Masayuki

    2015-01-01

    Snail1 is a transcription factor that induces the epithelial to mesenchymal transition (EMT). During EMT, epithelial cells lose their junctions, reorganize their cytoskeletons, and reprogram gene expression. Although Snail1 is a prominent repressor of E-cadherin transcription, its precise roles in each of the phenomena of EMT are not completely understood, particularly in cytoskeletal changes. Previous studies have employed gene knockdown systems to determine the functions of Snail1. However, incomplete protein knockdown is often associated with these systems, which may cause incorrect interpretation of the data. To more precisely evaluate the functions of Snail1, we generated a stable cell line with a targeted ablation of Snail1 (Snail1 KO) by using the CRISPR/Cas9n system. Snail1 KO cells show increased cell-cell adhesion, decreased cell-substrate adhesion and cell migration, changes to their cytoskeletal organization that include few stress fibers and abundant cortical actin, and upregulation of epithelial marker genes such as E-cadherin, occludin, and claudin-1. However, morphological changes were induced by treatment of Snail1 KO cells with TGF-beta. Other transcription factors that induce EMT were also induced by treatment with TGF-beta. The precise deletion of Snail1 by the CRISPR/Cas9n system provides clear evidence that loss of Snail1 causes changes in the actin cytoskeleton, decreases cell-substrate adhesion, and increases cell-cell adhesion. Treatment of RMG1 cells with TGF-beta suggests redundancy among the transcription factors that induce EMT.

  10. Analysis of Snail1 function and regulation by Twist1 in palatal fusion.

    PubMed

    Yu, Wenli; Zhang, Yanping; Ruest, L Bruno; Svoboda, Kathy K H

    2013-01-01

    Palatal fusion is a tightly controlled process which comprises multiple cellular events, including cell movement and differentiation. Midline epithelial seam (MES) degradation is essential to palatal fusion. In this study, we analyzed the function of Snail1 during the degradation of the MES. We also analyzed the mechanism regulating the expression of the Snail1 gene in palatal shelves. Palatal explants treated with Snail1 siRNA did not degrade the MES and E-cadherin was not repressed leading to failure of palatal fusion. Transforming growth factor beta 3 (Tgfβ3) regulated Snail1 mRNA, as Snail1 expression decreased in response to Tgfβ3 neutralizing antibody and a PI-3 kinase (PI3K) inhibitor. Twist1, in collaboration with E2A factors, regulated the expression of Snail1. Twist1/E47 dimers bond to the Snail1 promoter to activate expression. Without E47, Twist1 repressed Snail1 expression. These results support the hypothesis that Tgfβ3 may signal through Twist1 and then Snail1 to downregulate E-cadherin expression during palatal fusion.

  11. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines.

    PubMed

    Witta, Samir E; Gemmill, Robert M; Hirsch, Fred R; Coldren, Christopher D; Hedman, Karla; Ravdel, Larisa; Helfrich, Barbara; Dziadziuszko, Rafal; Chan, Daniel C; Sugita, Michio; Chan, Zeng; Baron, Anna; Franklin, Wilbur; Drabkin, Harry A; Girard, Luc; Gazdar, Adi F; Minna, John D; Bunn, Paul A

    2006-01-15

    The epidermal growth factor receptor (EGFR) is overexpressed in the majority of non-small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors, such as gefitinib and erlotinib, produce 9% to 27% response rates in NSCLC patients. E-Cadherin, a calcium-dependent adhesion molecule, plays an important role in NSCLC prognosis and progression, and interacts with EGFR. The zinc finger transcriptional repressor, ZEB1, inhibits E-cadherin expression by recruiting histone deacetylases (HDAC). We identified a significant correlation between sensitivity to gefitinib and expression of E-cadherin, and ZEB1, suggesting their predictive value for responsiveness to EGFR-tyrosine kinase inhibitors. E-Cadherin transfection into a gefitinib-resistant line increased its sensitivity to gefitinib. Pretreating resistant cell lines with the HDAC inhibitor, MS-275, induced E-cadherin along with EGFR and led to a growth-inhibitory and apoptotic effect of gefitinib similar to that in gefitinib-sensitive NSCLC cell lines including those harboring EGFR mutations. Thus, combined HDAC inhibitor and gefitinib treatment represents a novel pharmacologic strategy for overcoming resistance to EGFR inhibitors in patients with lung cancer.

  12. E-cadherin can replace N-cadherin during secretory-stage enamel development.

    PubMed

    Guan, Xiaomu; Bidlack, Felicitas B; Stokes, Nicole; Bartlett, John D

    2014-01-01

    N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development. The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ. The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous

  13. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells

    PubMed Central

    Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.

    2016-01-01

    Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169

  14. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation between primary and metastatic nodal lesion in colorectal cancer.

    PubMed

    Jang, Tae Jung

    2016-02-01

    O-GlcNAcylation is an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the side chain hydroxyl of a serine or threonine residue. The E-cadherin/β-catenin system, an integral component of epithelial to mesenchymal transition (EMT)/mesenchymal to epithelial transition (MET), is affected through O-GlcNAcylation. The current study examined the status of EMT/MET in both the tumor center and invasive front of the primary colorectal carcinoma (CRC) and metastatic nodal lesions, which were compared to O-GlcNAcylation expression levels in those areas. In addition, the cliniopathological significance of O-GlcNAcylation was studied Immunohistochemical staining for E-cadherin, β-catenin, Snail, O-GlcNAc and Ki67 was performed in 40 primary CRC tissues, 40 nonneoplastic colons, and 17 nodal metastatic lesions. Western blot was also conducted in primary CRC tissue Membranous E-cadherin expression was lowest in the invasive front, but showed greater increases in metastatic nodal lesions. Moreover, its expression level was negatively correlated with that of nuclear β-catenin and Snail. The Ki67 labeling index (LI) was lowest in the invasive front, and increased in metastatic nodal lesions. Primary CRC showed higher expression of O-GlcNAcylation and O-GlcNAc-transferase (OGT) than nonneoplastic colons. O-GlcNAcylation expression decreased in metastatic nodal lesions compared to the invasive front and tumor center, and was inversely correlated with Ki67 LI. However, O-GlcNAcylation expression was only slightly changed between tumor center and invasive front. In addition, there was no correlation between its expression and the level of nuclear β-catenin, membranous E-cadherin and Snail. No significant relationship was observed between O-GlcNAcylation level and cliniopathological parameters. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation in metastatic nodal lesion compared to primary CRC may play role in establishing its lesions

  15. Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition.

    PubMed

    Kakihana, Masatoshi; Ohira, Tatsuo; Chan, Daniel; Webster, Robin B; Kato, Harubumi; Drabkin, Harry A; Gemmill, Robert M

    2009-12-01

    Loss of E-cadherin confers a poor prognosis in lung cancer patients and is associated with in vitro resistance to endothelial growth factor receptor inhibitors. Zinc finger E box-binding homeobox (ZEB)-1, the predominant transcriptional suppressor of E-cadherin in lung tumor lines, recruits histone deacetylases (HDACs) as co-repressors. NSCLC cell lines were treated with HDAC inhibitors and analyzed for E-cadherin induction, growth inhibition and apoptosis. National Cancer Institute-H157 cells expressing ectopic E-cadherin were tested for tumorigenicity in murine xenografts. We found that treatment with MS-275, compared to vorinostat (SAHA), valproic acid or trichostatin A, was most effective in E-cadherin up-regulation and persistence in non-small cell lung cancers. As with other tumor types and HDAC inhibitors, MS-275 inhibited growth and induced apoptosis. Importantly, blocking E-cadherin induction by short hairpin RNA resulted in less inhibition by MS-275, implicating the epithelial to mesenchymal phenotype process as a contributing factor. In contrast to H460 and H661, H157 cells were resistant to E-cadherin up-regulation by HDAC inhibitors. However, E-cadherin was restored, in a synergistic manner, by combined knockdown of ZEB-1 and ZEB-2. In addition, H157 cells stably transfected with E-cadherin were markedly attenuated in their tumor forming ability. Lastly, combining MS-275 with the microtubule stabilizing agent, paclitaxel, or 17-(allylamino)-17-demethoxygeldanamycin, a heat shock protein 90 inhibitor, resulted in synergistic growth inhibition. Since MS-275 has no reported activity against HDAC6, which regulates both microtubule and heat shock protein 90 functions, other mechanisms of synergy are anticipated. These results support the role of ZEB proteins and HDAC inhibitors in the pathogenesis and treatment of lung cancer.

  16. Allosteric Regulation of E-Cadherin Adhesion.

    PubMed

    Shashikanth, Nitesh; Petrova, Yuliya I; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M; Leckband, Deborah E

    2015-08-28

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Allosteric Regulation of E-Cadherin Adhesion*

    PubMed Central

    Shashikanth, Nitesh; Petrova, Yuliya I.; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M.; Leckband, Deborah E.

    2015-01-01

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120ctn, increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120ctn dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120ctn dephosphorylation. PMID:26175155

  18. Human Langerhans cells express E-cadherin.

    PubMed

    Blauvelt, A; Katz, S I; Udey, M C

    1995-02-01

    Murine Langerhans cells (LC) synthesize and express E-cadherin, a Ca(++)-dependent homophilic cell adhesion molecule that mediates LC-keratinocyte (KC) binding in vitro. In vivo, E-cadherin expression by LC may promote localization and persistence of LC within the epidermis through LC-KC adhesion. In addition, changes in LC E-cadherin expression or affinity may be an important factor in the egress of LC from the epidermis after exposure to antigen. The aim of the present study was to determine if human LC also express E-cadherin. Suction blister roofs were obtained from normal volunteers and epidermal cell (EC) suspensions were prepared by limited trypsinization in the presence of 1 mM Ca++. EC were then incubated with antibodies to E-cadherin and CD1a or HLA-DR, and examined by two-color analytical flow cytometry or immunofluorescence microscopy. Most (82.9% +/- 7.4% [mean +/- SD], range 67-89%, n = 7) freshly prepared human LC expressed E-cadherin, as did the majority of KC. The amount of E-cadherin (as determined by mean fluorescence intensity) expressed by LC and KC was similar. Trypsin/EDTA treatment of freshly prepared EC abrogated expression of E-cadherin by LC and KC, whereas E-cadherin was not degraded by trypsin in the presence of Ca++. LC expressed lower levels of E-cadherin after 3 d in culture. Thus, human LC, like murine LC, express the homophilic adhesion molecule E-cadherin, which may be important in establishing and maintaining interactions between LC and KC in mammalian epidermis.

  19. Epithelial-mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK-3β-mediated stabilization of snail in colorectal cancer.

    PubMed

    Wang, Hao; Wang, Hong-Sheng; Zhou, Bin-Hua; Li, Cui-Lin; Zhang, Fan; Wang, Xian-Feng; Zhang, Ge; Bu, Xian-Zhang; Cai, Shao-Hui; Du, Jun

    2013-01-01

    Chronic inflammation-promoted metastasis has been considered as a major challenge in cancer therapy. Pro-inflammatory cytokine TNFα can induce cancer invasion and metastasis associated with epithelial-mesenchymal transition (EMT). However, the underlying mechanisms are not entirely clear. In this study, we showed that TNFα induces EMT in human HCT116 cells and thereby promotes colorectal cancer (CRC) invasion and metastasis. TNFα-induced EMT was characterized by acquiring mesenchymal spindle-like morphology and increasing the expression of N-cadherin and fibronectin with a concomitant decrease of E-cadherin and Zona occludin-1(ZO-1). TNFα treatment also increased the expression of transcription factor Snail, but not Slug, ZEB1 and Twist. Overexpression of Snail induced a switch from E-cadherin to N-cadherin expression in HCT116 cells, which is a characteristic of EMT. Conversely, knockdown of Snail significantly attenuated TNFα-induced EMT in HCT116 cells, suggesting that Snail plays a crucial role in TNFα-induced EMT. Interestingly, exposure to TNFα rapidly increased Snail protein expression and Snail nuclear localization but not mRNA level upregulation. Finally, we demonstrated that TNFα elevated Snail stability by activating AKT pathway and subsequently repressing GSK-3β activity and decreasing the association of Snail with GSK-3β. Knockdown of GSK-3β further verified our finding. Taken together, these results revealed that AKT/GSK-3β-mediated stabilization of Snail is required for TNFα-induced EMT in CRC cells. Our study provides a better understanding of inflammation-induced CRC metastasis.

  20. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma.

    PubMed

    Cappellesso, Rocco; Marioni, Gino; Crescenzi, Marika; Giacomelli, Luciano; Guzzardo, Vincenza; Mussato, Alessio; Staffieri, Alberto; Martini, Alessandro; Blandamura, Stella; Fassina, Ambrogio

    2015-10-01

    Laryngeal squamous cell carcinoma (LSCC) prognosis is definitely related to lymph node metastasis. Epithelial-mesenchymal transition (EMT) allows neoplastic cells to gain the plasticity and motility required for tumour progression and metastasis. The aim of this study was to investigate the role of EMT in the prognosis of LSCC. Immunohistochemical analysis of E-cadherin, N-cadherin, Snail, Slug, ZEB1, and ZEB2 was performed in 37 consecutive LSCC cases. Low E-cadherin levels and high Slug levels correlated with both disease recurrence (P = 0.02 and P =0.01, respectively) and shorter disease-free survival (DFS) (P = 0.04 and P = 0.02, respectively). Relative expression levels of CDH1, SNAI2, miR-1 and the miR-200 family were also evaluated. CDH1, miR-200a and miR-200c down-regulation and SNAI2 overexpression were significantly associated with disease recurrence (P = 0.03, P = 0.02, P = 0.04, and P = 0.04, respectively). EMT increases tumour recurrence risk and shortens DFS in LSCC. E-cadherin and Slug immunohistochemical analysis could be useful for identifying patients requiring more aggressive treatment after surgery. © 2015 John Wiley & Sons Ltd.

  1. By inhibiting snail signaling and miR-23a-3p, osthole suppresses the EMT-mediated metastatic ability in prostate cancer.

    PubMed

    Wen, Yu-Ching; Lee, Wei-Jiunn; Tan, Peng; Yang, Shun-Fa; Hsiao, Michael; Lee, Liang-Ming; Chien, Ming-Hsien

    2015-08-28

    Here we showed that Osthole, 7-methoxy-8-(3-methyl-2-butenyl) coumarin, a bioactive coumarin derivative extracted from medicinal plants, inhibited migration, invasion, epithelial to mesenchymal transition (EMT) in androgen-independent prostate cancer (AIPC) cells in vitro and metastasis of AIPC in vivo. In patients, high Snail levels were correlated with a higher histological Gleason sum and poor survival rates. Osthole inhibited the TGF-β/Akt/MAPK pathways, reduced Snail-DNA-binding activity and induced E-cadherin. We found that osthole decreased miR-23a-3p. Ectopic miR-23a-3p suppressed E-cadherin 3' untranslated region reporter activity and E-cadherin expression, and relieved the motility suppression caused by osthole treatment.

  2. A Pathway for the Control of Anoikis Sensitivity by E-Cadherin and Epithelial-to-Mesenchymal Transition▿‡

    PubMed Central

    Kumar, Sanjeev; Park, Sun Hee; Cieply, Benjamin; Schupp, Jane; Killiam, Elizabeth; Zhang, Fan; Rimm, David L.; Frisch, Steven M.

    2011-01-01

    Detachment of epithelial cells from matrix or attachment to an inappropriate matrix engages an apoptotic response known as anoikis, which prevents metastasis. Cellular sensitivity to anoikis is compromised during the oncogenic epithelial-to-mesenchymal transition (EMT), through unknown mechanisms. We report here a pathway through which EMT confers anoikis resistance. NRAGE (neurotrophin receptor-interacting melanoma antigen) interacted with a component of the E-cadherin complex, ankyrin-G, maintaining NRAGE in the cytoplasm. Oncogenic EMT downregulated ankyrin-G, enhancing the nuclear localization of NRAGE. The oncogenic transcriptional repressor protein TBX2 interacted with NRAGE, repressing the tumor suppressor gene p14ARF. P14ARF sensitized cells to anoikis; conversely, the TBX2/NRAGE complex protected cells against anoikis by downregulating this gene. This represents a novel pathway for the regulation of anoikis by EMT and E-cadherin. PMID:21746881

  3. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    PubMed

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. E-cadherin in contact inhibition and cancer.

    PubMed

    Mendonsa, Alisha M; Na, Tae-Young; Gumbiner, Barry M

    2018-05-21

    E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.

  5. By inhibiting snail signaling and miR-23a-3p, osthole suppresses the EMT-mediated metastatic ability in prostate cancer

    PubMed Central

    Wen, Yu-Ching; Lee, Wei-Jiunn; Tan, Peng; Yang, Shun-Fa; Hsiao, Michael; Lee, Liang-Ming; Chien, Ming-Hsien

    2015-01-01

    Here we showed that Osthole, 7-methoxy-8-(3-methyl-2-butenyl) coumarin, a bioactive coumarin derivative extracted from medicinal plants, inhibited migration, invasion, epithelial to mesenchymal transition (EMT) in androgen-independent prostate cancer (AIPC) cells in vitro and metastasis of AIPC in vivo. In patients, high Snail levels were correlated with a higher histological Gleason sum and poor survival rates. Osthole inhibited the TGF-β/Akt/MAPK pathways, reduced Snail-DNA-binding activity and induced E-cadherin. We found that osthole decreased miR-23a-3p. Ectopic miR-23a-3p suppressed E-cadherin 3′ untranslated region reporter activity and E-cadherin expression, and relieved the motility suppression caused by osthole treatment. PMID:26110567

  6. Hypoxia reduces the E-cadherin expression and increases OSCC cell migration regardless of the E-cadherin methylation profile.

    PubMed

    Domingos, Patrícia Luciana Batista; Souza, Marcela Gonçalves; Guimarães, Talita Antunes; Santos, Eliane Sobrinho; Farias, Lucyana Conceição; de Carvalho Fraga, Carlos Alberto; Jones, Kimberly Marie; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2017-05-01

    The purpose of the current study is to investigate the association between E-cadherin methylation status, hypoxia and OSCC. HaCat and SCC9 cell lines were submitted to hypoxic treatment, followed by methylation profile analysis (MS-PCR) and analysis of the expression of mRNA gene E-cadherin (RT-PCR). Study group samples comprise individuals affected by potentially malignant lesions Potential Malignant Oral Lesion (PMOL, n=18) and oral squamous cell carcinoma (OSCC, n=28). The control group oral mucosa (OM, n=15) of patients with an oral mucocele. Cell migration ability was evaluated a scratch wound assay in SCC9 and HaCat cell lines RESULTS: E-cadherin mRNA expression in the cell lines SCC9 and HaCat was significantly reduced under hypoxia, regardless of the methylation profile, when compared to the control group. No differences in methylation profile of the E-cadherin were observed among the groups OM, PMOL and OSCC. HaCat and SCC9 presented increases in cell migration rates under hypoxia. The current study demonstrates that hypoxia reduces E-cadherin expression and increase cell migration, regardless of the methylation profile. Additionally, no differences in E-cadherin methylation patterns were observed among OM, PMOL and OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. WNT7a induces E-cadherin in lung cancer cells.

    PubMed

    Ohira, Tatsuo; Gemmill, Robert M; Ferguson, Kevin; Kusy, Sophie; Roche, Joëlle; Brambilla, Elisabeth; Zeng, Chan; Baron, Anna; Bemis, Lynne; Erickson, Paul; Wilder, Elizabeth; Rustgi, Anil; Kitajewski, Jan; Gabrielson, Edward; Bremnes, Roy; Franklin, Wilbur; Drabkin, Harry A

    2003-09-02

    E-cadherin loss in cancer is associated with de-differentiation, invasion, and metastasis. Drosophila DE-cadherin is regulated by Wnt/beta-catenin signaling, although this has not been demonstrated in mammalian cells. We previously reported that expression of WNT7a, encoded on 3p25, was frequently downregulated in lung cancer, and that loss of E-cadherin or beta-catenin was a poor prognostic feature. Here we show that WNT7a both activates E-cadherin expression via a beta-catenin specific mechanism in lung cancer cells and is involved in a positive feedback loop. Li+, a GSK3 beta inhibitor, led to E-cadherin induction in an inositol-independent manner. Similarly, exposure to mWNT7a specifically induced free beta-catenin and E-cadherin. Among known transcriptional suppressors of E-cadherin, ZEB1 was uniquely correlated with E-cadherin loss in lung cancer cell lines, and its inhibition by RNA interference resulted in E-cadherin induction. Pharmacologic reversal of E-cadherin and WNT7a losses was achieved with Li+, histone deacetylase inhibition, or in some cases only with combined inhibitors. Our findings provide support that E-cadherin induction by WNT/beta-catenin signaling is an evolutionarily conserved pathway operative in lung cancer cells, and that loss of WNT7a expression may be important in lung cancer development or progression by its effects on E-cadherin.

  8. E-Cadherin and Gastric Cancer: Cause, Consequence, and Applications

    PubMed Central

    Liu, Xin

    2014-01-01

    E-cadherin (epithelial-cadherin), encoded by the CDH1 gene, is a transmembrane glycoprotein playing a crucial role in maintaining cell-cell adhesion. E-cadherin has been reported to be a tumor suppressor and to be down regulated in gastric cancer. Besides genetic mutations in CDH1 gene to induce hereditary diffuse gastric cancer (HDGC), epigenetic factors such as DNA hypermethylation also contribute to the reduction of E-cadherin in gastric carcinogenesis. In addition, expression of E-cadherin could be mediated by infectious agents such as H. pylori (Helicobacter pylori). As E-cadherin is vitally involved in signaling pathways modulating cell proliferation, survival, invasion, and migration, dysregulation of E-cadherin leads to dysfunction of gastric epithelial cells and contributes to gastric cancer development. Moreover, changes in its expression could reflect pathological conditions of gastric mucosa, making its role in gastric cancer complicated. In this review, we summarize the functions of E-cadherin and the signaling pathways it regulates. We aim to provide comprehensive perspectives in the molecular mechanism of E-cadherin and its involvement in gastric cancer initiation and progression. We also focus on its applications for early diagnosis, prognosis, and therapy in gastric cancer in order to open new avenues in this field. PMID:25184143

  9. Paradoxical expression of E-cadherin in prostatic bone metastases.

    PubMed

    Bryden, A A; Freemont, A J; Clarke, N W; George, N J

    1999-12-01

    To determine whether the calcium-dependent cell adhesion molecule E-cadherin is expressed in metastatic deposits of prostate cancer in bone. Ten bone biopsies containing metastatic deposits of untreated prostatic cancer were obtained and immunohistochemically stained for E-cadherin with the monoclonal antibody HECD-1, using the streptavidin-biotin complex technique. Benign prostatic tissue was used as the control. Of the 10 specimens, nine showed positive expression of E-cadherin, graded as strong in four. E-cadherin expression was strongest in well-differentiated metastases and decreased with increasing tumour grade. In some specimens there were mixed patterns of expression. E-cadherin is strongly expressed in prostatic bone metastases and the degree of expression appears to reflect local tumour grade. This suggests that loss of E-cadherin expression may not be critically linked to metastatic potential.

  10. Silibinin Synergizes with Histone Deacetylase and DNA Methyltransferase Inhibitors in Upregulating E-cadherin Expression Together with Inhibition of Migration and Invasion of Human Non-small Cell Lung Cancer Cells

    PubMed Central

    Mateen, Samiha; Raina, Komal; Agarwal, Chapla; Chan, Daniel

    2013-01-01

    Aggressive cancers in the epithelial-to-mesenchymal transition (EMT) phase are characterized by loss of cell adhesion, repression of E-cadherin, and increased cell mobility. Non-small cell lung cancer (NSCLC) differs in basal level of E-cadherin; predominantly exhibiting silenced expression due to epigenetic-related modifications. Accordingly, effective treatments are needed to modulate these epigenetic events that in turn can positively regulate E-cadherin levels. Herein, we investigated silibinin, a natural flavonolignan with anticancer efficacy against lung cancer, either alone or in combination with epigenetic therapies to modulate E-cadherin expression in a panel of NSCLC cell lines. Silibinin combined with HDAC inhibitor Trichostatin A [TSA; 7-[4-(dimethylamino)phenyl]-N-hydroxy-4,6-dimethyl-7-oxohepta-2,4-dienamide] or DNMT inhibitor 5′-Aza-deoxycytidine (Aza) significantly restored E-cadherin levels in NSCLC cells harboring epigenetically silenced E-cadherin expression. These combination treatments also strongly decreased the invasion/migration of these cells, which further emphasized the biologic significance of E-cadherin restoration. Treatment of NSCLC cells, with basal E-cadherin levels, by silibinin further increased the E-cadherin expression and inhibited their migratory and invasive potential. Additional studies showed that silibinin alone as well as in combination with TSA or Aza downmodulate the expression of Zeb1, which is a major transcriptional repressor of E-cadherin. Overall these findings demonstrate the potential of combinatorial treatments of silibinin with HDAC or DNMT inhibitor to modulate EMT events in NSCLC cell lines, leading to a significant inhibition in their migratory and invasive potentials. These results are highly significant, since loss of E-cadherin and metastatic spread of the disease via EMT is associated with poor prognosis and high mortalities in NSCLC. PMID:23461975

  11. ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma.

    PubMed

    Romero-Pérez, Laura; López-García, M Ángeles; Díaz-Martín, Juan; Biscuola, Michele; Castilla, M Ángeles; Tafe, Laura J; Garg, Karuna; Oliva, Esther; Matias-Guiu, Xavier; Soslow, Robert A; Palacios, José

    2013-11-01

    Undifferentiated endometrial carcinomas are very aggressive high-grade endometrial carcinomas that are frequently under-recognized. This study aimed to analyze the molecular alterations underlying the development of these endometrial carcinomas, focusing on those related to dedifferentiation. We assessed a series of 120 tumors: 57 grade 1 and 2 endometrioid endometrial carcinomas, 15 grade 3 endometrioid endometrial carcinomas, 27 endometrial serous carcinomas, and 21 undifferentiated endometrial carcinomas. We found a high frequency of DNA mismatch repair deficiency (38%) and moderate rate of p53 overexpression (∼33%) in undifferentiated carcinomas. In contrast to the characteristic endometrioid phenotype, there was a dramatic downregulation of E-cadherin expression in the undifferentiated subtype. Quantitative methylation studies dismissed CDH1 promoter hypermethylation as the mechanism responsible for this change in gene expression, while immunohistochemistry revealed that the E-cadherin repressor ZEB1 was frequently overexpressed (62%) in undifferentiated endometrial carcinomas. This finding was accompanied by a sharp downregulation in the expression of the miR-200 family of microRNAs, well-known targets of ZEB1. Furthermore, there was enhanced expression of epithelial-to-mesenchymal transition markers in undifferentiated endometrial carcinomas, such as N-cadherin, cytoplasmic p120, and osteonectin. In addition, HMGA2, a regulator of epithelial-to-mesenchymal transition that is expressed in aggressive endometrial tumors, such as endometrial serous carcinomas and carcinosarcomas, was expressed in >20% of undifferentiated carcinomas. These results suggest that ZEB1 overexpression, associated with E-cadherin and miR-200s downregulation, and the expression of mesenchymal markers might enhance the metastatic potential of undifferentiated endometrial carcinomas, leading to a poor prognosis. In addition, our observations suggest that the immnohistochemical analysis

  12. E-cadherin and, in its absence, N-cadherin promotes Nanog expression in mouse embryonic stem cells via STAT3 phosphorylation.

    PubMed

    Hawkins, Kate; Mohamet, Lisa; Ritson, Sarah; Merry, Catherine L R; Ward, Christopher M

    2012-09-01

    We have recently shown that loss of E-cadherin in mouse embryonic stem cells (mESCs) results in significant alterations to both the transcriptome and hierarchy of pluripotency-associated signaling pathways. Here, we show that E-cadherin promotes kruppel-like factor 4 (Klf4) and Nanog transcript and protein expression in mESCs via STAT3 phosphorylation and that β-catenin, and its binding region in E-cadherin, is required for this function. To further investigate the role of E-cadherin in leukemia inhibitory factor (LIF)-dependent pluripotency, E-cadherin null (Ecad(-/-)) mESCs were cultured in LIF/bone morphogenetic protein supplemented medium. Under these conditions, Ecad(-/-) mESCs exhibited partial restoration of cell-cell contact and STAT3 phosphorylation and upregulated Klf4, Nanog, and N-cadherin transcripts and protein. Abrogation of N-cadherin using an inhibitory peptide caused loss of phospho STAT3, Klf4, and Nanog in these cells, demonstrating that N-cadherin supports LIF-dependent pluripotency in this context. We therefore identify a novel molecular mechanism linking E- and N-cadherin to the core circuitry of pluripotency in mESCs. This mechanism may explain the recently documented role of E-cadherin in efficient induced pluripotent stem cell reprogramming. Copyright © 2012 AlphaMed Press.

  13. Cleavage and shedding of E-cadherin after induction of apoptosis.

    PubMed

    Steinhusen, U; Weiske, J; Badock, V; Tauber, R; Bommert, K; Huber, O

    2001-02-16

    Apoptotic cell death induces dramatic molecular changes in cells, becoming apparent on the structural level as membrane blebbing, condensation of the cytoplasm and nucleus, and loss of cell-cell contacts. The activation of caspases is one of the fundamental steps during programmed cell death. Here we report a detailed analysis of the fate of the Ca(2+)-dependent cell adhesion molecule E-cadherin in apoptotic epithelial cells and show that during apoptosis fragments of E-cadherin with apparent molecular masses of 24, 29, and 84 kDa are generated by two distinct proteolytic activities. In addition to a caspase-3-mediated cleavage releasing the cytoplasmic domain of E-cadherin, a metalloproteinase sheds the extracellular domain from the cell surface during apoptosis. Immunofluorescence analysis confirmed that concomitant with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulates in the cytosol. In the presence of inhibitors of caspase-3 and/or metalloproteinases, cleavage of E-cadherin was almost completely blocked. The simultaneous cleavage of the intracellular and extracellular domains of E-cadherin may provide a highly efficient mechanism to disrupt cadherin-mediated cell-cell contacts in apoptotic cells, a prerequisite for cell rounding and exit from the epithelium.

  14. Expression of E-cadherin and vimentin in oral squamous cell carcinoma

    PubMed Central

    Zhou, Jingping; Tao, Detao; Xu, Qing; Gao, Zhenlin; Tang, Daofang

    2015-01-01

    The aim of the study is to determine the levels of E-cadherin, vimentin expression in tumor tissues from patients with oral squamous cell carcinoma (OSCC), and the relationship between the expression of E-cadherin, vimentin and epithelial-mesenchymal transition, in order to explore its values for predicting the invasion and metastasis of oral squamous cell carcinoma, short survival of patients in many types of cancer. E-cadherin and vimentin expression of 10 benign and 42 OSCC tumor tissues was examined by immunohistochemical staining. E-cadherin is positively expressed in normal oral mucosa epithelium, but vimentin expression is not found in normal oral mucosa epithelia; the E-cadherin and vimentin were expressed in 26 of 42 (61.9%) and 16 of 42 (38.1%), respectively. No statistically difference was found for E-cadherin and vimentin expression in patients with different age, gender and tumor location, E-cadherin and vimentin expression was significantly associated with lymph node metastasis and tissue location (P < 0.05); E-cadherin expression was also significantly associated with tumor stage (P < 0.05); there are significantly difference between infiltrative margin and central area in patients with oral squamous cell carcinoma for E-cadherin and vimentin positive expression (P < 0.05). E-cadherin and vimentin positive expression was associated with tumor metastasis of oral squamous cell carcinoma. Our study preliminarily confirmed that EMT phenomenon is existed during the development of oral squamous cell carcinoma. Co-evaluation of E-cadherin and vimentin might be a valuable tool for predicting OSCC patient outcome. PMID:26045832

  15. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  16. E-cadherin-mediated force transduction signals regulate global cell mechanics

    PubMed Central

    Muhamed, Ismaeel; Wu, Jun; Sehgal, Poonam; Kong, Xinyu; Tajik, Arash; Wang, Ning

    2016-01-01

    ABSTRACT This report elucidates an E-cadherin-based force-transduction pathway that triggers changes in cell mechanics through a mechanism requiring epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), and the downstream formation of new integrin adhesions. This mechanism operates in addition to local cytoskeletal remodeling triggered by conformational changes in the E-cadherin-associated protein α-catenin, at sites of mechanical perturbation. Studies using magnetic twisting cytometry (MTC), together with traction force microscopy (TFM) and confocal imaging identified force-activated E-cadherin-specific signals that integrate cadherin force transduction, integrin activation and cell contractility. EGFR is required for the downstream activation of PI3K and myosin-II-dependent cell stiffening. Our findings also demonstrated that α-catenin-dependent cytoskeletal remodeling at perturbed E-cadherin adhesions does not require cell stiffening. These results broaden the repertoire of E-cadherin-based force transduction mechanisms, and define the force-sensitive signaling network underlying the mechano-chemical integration of spatially segregated adhesion receptors. PMID:26966187

  17. Numb controls E-cadherin endocytosis through p120 catenin with aPKC

    PubMed Central

    Sato, Kazuhide; Watanabe, Takashi; Wang, Shujie; Kakeno, Mai; Matsuzawa, Kenji; Matsui, Toshinori; Yokoi, Keiko; Murase, Kiyoko; Sugiyama, Ikuko; Ozawa, Masayuki; Kaibuchi, Kozo

    2011-01-01

    Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity. PMID:21775625

  18. E-cadherin junction formation involves an active kinetic nucleation process

    PubMed Central

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  19. E-cadherin junction formation involves an active kinetic nucleation process

    DOE PAGES

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; ...

    2015-08-19

    Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less

  20. E-cadherin junction formation involves an active kinetic nucleation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han

    Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less

  1. Unconventional Cadherin Localization in Honey Bee Gonads Revealed Through Domain-Specific Apis mellifera E- and N-Cadherin Antibodies Indicates Alternative Functions.

    PubMed

    Florecki, Mônica M; Hartfelder, Klaus

    2012-11-22

    As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i) associated with cell membranes, (ii) as homogeneously distributed throughout the cytoplasm, and (iii) as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes.

  2. Unconventional Cadherin Localization in Honey Bee Gonads Revealed Through Domain-Specific Apis mellifera E- and N-Cadherin Antibodies Indicates Alternative Functions

    PubMed Central

    Florecki, Mônica M.; Hartfelder, Klaus

    2012-01-01

    As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i) associated with cell membranes, (ii) as homogeneously distributed throughout the cytoplasm, and (iii) as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes. PMID:26466735

  3. [Immunohistochemical expression of the E-cadherin-catenin complex in gastric cancer].

    PubMed

    Guzmán, Pablo; Araya, Juan; Villaseca, Miguel; Roa, Iván; Melo, Angélica; Muñoz, Sergio; Roa, Juan

    2006-08-01

    The E-cadherin/catenin complex plays an essential role in the control of epithelial differentiation. Abnormal expression in tumors correlates with histological grade, advanced stage and poor prognosis. To evaluate the expression pattern of E-cadherin/catenin complex in gastric carcinoma and analyze their association with tumor clinicopathological features and patient survival. Inmunohistochemical staining of E-cadherin, alpha and ss-catenin was performed from paraffin specimens of 65 gastric carcinomas. Abnormal expression of E-cadherin, alpha and ss-catenin was demonstrated in 82%, 85% and 88% of gastric carcinomas, respectively. There was a significant correlation between abnormal expression and Lauren pathological classification and depth of infiltration, but not with tumor stage, positive lymph node metastases and survival. Abnormal expression of E-cadherin, alpha and ss-catenin occurs frequently in gastric carcinoma and correlates with histological grade.

  4. Analysis of snail genes in the crustacean Parhyale hawaiensis: insight into snail gene family evolution.

    PubMed

    Hannibal, Roberta L; Price, Alivia L; Parchem, Ronald J; Patel, Nipam H

    2012-05-01

    The transcriptional repressor snail was first discovered in Drosophila melanogaster, where it initially plays a role in gastrulation and mesoderm formation, and later plays a role in neurogenesis. Among arthropods, this role of snail appears to be conserved in the insects Tribolium and Anopheles gambiae, but not in the chelicerates Cupiennius salei and Achaearanea tepidariorum, the myriapod Glomeris marginata, or the Branchiopod crustacean Daphnia magna. These data imply that within arthropoda, snail acquired its role in gastrulation and mesoderm formation in the insect lineage. However, crustaceans are a diverse group with several major taxa, making analysis of more crustaceans necessary to potentially understand the ancestral role of snail in Pancrustacea (crustaceans + insects) and thus in the ancestor of insects as well. To address these questions, we examined the snail family in the Malacostracan crustacean Parhyale hawaiensis. We found three snail homologs, Ph-snail1, Ph-snail2 and Ph-snail3, and one scratch homolog, Ph-scratch. Parhyale snail genes are expressed after gastrulation, during germband formation and elongation. Ph-snail1, Ph-snail2, and Ph-snail3 are expressed in distinct patterns in the neuroectoderm. Ph-snail1 is the only Parhyale snail gene expressed in the mesoderm, where its expression cycles in the mesodermal stem cells, called mesoteloblasts. The mesoteloblasts go through a series of cycles, where each cycle is composed of a migration phase and a division phase. Ph-snail1 is expressed during the migration phase, but not during the division phase. We found that as each mesoteloblast division produces one segment's worth of mesoderm, Ph-snail1 expression is linked to both the cell cycle and the segmental production of mesoderm.

  5. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.

    PubMed

    Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R

    2002-03-01

    To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.

  6. E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness

    PubMed Central

    Devis, Laura; Lapyckyj, Lara; Besso, María José; Llauradó, Marta; Abascal, María Florencia; Matos, María Laura; Lanau, Lucia; Castellví, Josep; Sánchez, José Luis; Pérez Benavente, Asunción; Gil-Moreno, Antonio; Reventós, Jaume; Santamaria Margalef, Anna; Rigau, Marina; Vazquez-Levin, Mónica Hebe

    2017-01-01

    Ovarian cancer (OC) is the fifth cancer death cause in women worldwide. The malignant nature of this disease stems from its unique dissemination pattern. Epithelial-to-mesenchymal transition (EMT) has been reported in OC and downregulation of Epithelial cadherin (E-cadherin) is a hallmark of this process. However, findings on the relationship between E-cadherin levels and OC progression, dissemination and aggressiveness are controversial. In this study, the evaluation of E-cadherin expression in an OC tissue microarray revealed its prognostic value to discriminate between advanced- and early-stage tumors, as well as serous tumors from other histologies. Moreover, E-cadherin, Neural cadherin (N-cadherin), cytokeratins and vimentin expression was assessed in TOV-112, SKOV-3, OAW-42 and OV-90 OC cell lines grown in monolayers and under anchorage-independent conditions to mimic ovarian tumor cell dissemination, and results were associated with cell aggressiveness. According to these EMT-related markers, cell lines were classified as mesenchymal (M; TOV-112), intermediate mesenchymal (IM; SKOV-3), intermediate epithelial (IE; OAW-42) and epithelial (E; OV-90). M- and IM-cells depicted the highest migration capacity when grown in monolayers, and aggregates derived from M- and IM-cell lines showed lower cell death, higher adhesion to extracellular matrices and higher invasion capacity than E- and IE-aggregates. The analysis of E-cadherin, N-cadherin, cytokeratin 19 and vimentin mRNA levels in 20 advanced-stage high-grade serous human OC ascites showed an IM phenotype in all cases, characterized by higher proportions of N- to E-cadherin and vimentin to cytokeratin 19. In particular, higher E-cadherin mRNA levels were associated with cancer antigen 125 levels more than 500 U/mL and platinum-free intervals less than 6 months. Altogether, E-cadherin expression levels were found relevant for the assessment of OC progression and aggressiveness. PMID:28934230

  7. E-cadherin immunohistochemical expression in mammary gland neoplasms in bitches.

    PubMed

    Rodo, A; Malicka, E

    2008-01-01

    The aim of the study was to investigate E-cadherin expression in correlation with other neoplasm traits such as: histological type, the differentiation grade and proliferative activity. Material for the investigation comprised mammary gland tumours, collected from dogs, the patients of veterinary clinics, during surgical procedures and archival samples. All together 21 adenomas, 32 complex carcinomas, 35 simple carcinomas and 13 solid carcinomas were qualified for further investigation. E-cadherin expression was higher in adenomas as compared with carcinomas but lower in solid carcinomas as compared with simple and complex carcinomas. More over, the expression of E-cadherin decreased with the increase in the neoplasm malignancy and proliferative activity (value of the mitotic index and number of cells showing Ki67). The study has shown that the expression of E-cadherin can be used as a prognostic factor.

  8. E-Cadherin As A Chemotherapy Resistance Mechanism On Metastatic Breast Cancer

    DTIC Science & Technology

    2011-05-01

    chemotherapy. REPORTABLE OUTCOMES Publications 1. Chao Y, Wu Q, Shepard C, and Wells A. “Hepatocyte induced re-expression of E-cadherin in breast...Microenvironment (Appendix 2) 3. Chao Y*, Shepard CR*, Wells A (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial...Metastases.” Academy of Clinical Laboratory Physicians and Scientists. Redondo Beach, PA. June 2009. 2. Chao Y, Shepard CR, Wells, A. “E-cadherin

  9. There are four dynamically and functionally distinct populations of E-cadherin in cell junctions

    PubMed Central

    Erami, Zahra; Timpson, Paul; Yao, Wu; Zaidel-Bar, Ronen; Anderson, Kurt I.

    2015-01-01

    ABSTRACT E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation. PMID:26471767

  10. Disruption of basement membrane, extracellular matrix metalloproteinases and E-cadherin in renal-cell carcinoma.

    PubMed

    Morell-Quadreny, L; Rubio, Jose; Lopez-Guerrero, Jose Antonio; Casanova, Juan; Ramos, D; Iborra, Inmaculada; Solsona, Eduardo; Llombart-Bosch, A

    2003-01-01

    A retrospective study was performed to determine the prognostic value of Basement Membrane (BM) integrity, Matrix Metalloproteinases (MMPs) and E-Cadherin expression in renal cell carcinoma (RCC). An immunohistochemical study on laminin and collagen IV, MMPs 1 and 2, and E-Cadherin was carried out on 71 RCCs. BM fragmentation was considered taking 75% as a cut-off. MMP 1 and MMP2 immunostaining, as well as E-Cadherin was considered taking 25% as a cut-off. An inverse relationship was seen between E-Cadherin with laminin, collagen IV and MMPs. More than 75% loss of laminin, collagen IV and E-Cadherin, as well as higher expression of MMPs, were associated with symptoms, tumoral size and worse grade. Loss of collagen IV and E-Cadherin were of prognostic value. Both BM and E-Cadherin are good prognostic markers. MMPs patterns show a relationship between BM proteins and E-Cadherin, but evaluation is more time-consuming and provide no better prognostication; consequently they are not useful in routine clinical applications.

  11. DNA methylation-induced E-cadherin silencing is correlated with the clinicopathological features of melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Catalano, Teresa; Biondo, Carmelo; Beninati, Concetta; Teti, Diana; Venza, Isabella

    2016-04-01

    E-cadherin, a calcium-dependent cell-cell adhesion molecule, has an important role in epithelial cell function, maintenance of tissue architecture and cancer suppression. Loss of E-cadherin promotes tumor metastatic dissemination and predicts poor prognosis. The present study investigated the clinicopathological significance of E-cadherin expression in cutaneous, mucosal and uveal melanoma related to epigenetic mechanisms that may contribute to E-cadherin silencing. E-cadherin expression was reduced in 55/130 cutaneous (42.3%), 49/82 mucosal (59.7%) and 36/64 uveal (56.2%) melanoma samples as compared to normal skin controls and was inversely associated with promoter methylation. Of the 10 different CpG sites studied (nt 863, 865, 873, 879, 887, 892, 901, 918, 920 and 940), two sites (nt 892 and 940) were 90-100% methylated in all the melanoma specimens examined and the other ones were partially methylated (range, 53-86%). In contrast, the methylation rate of the E-cadherin gene was low in normal tissues (range, 5-24%). In all the three types of melanoma studied, a significant correlation was found between reduced levels of E-cadherin and reduced survival, high mitotic index and metastasis, accounting for the predilection of lymph nodal localization. In cutaneous and mucosal melanoma, low E-cadherin expression was positively correlated also with head/neck localization and ulceration. A high frequency of reduced E-cadherin levels occurred in choroid melanomas. In vitro experiments showed that E-cadherin transcription was restored following 5-aza-2'-deoxycytidine (5-aza-dC) treatment or DNMT1 silencing and was negatively correlated with the invasive potential of melanoma cells. The significant relationship between E-cadherin silencing and several poor prognostic factors indicates that this adhesion molecule may play an important role in melanomagenesis. Therefore, the inverse association of E-cadherin expression with promoter methylation raises the intriguing

  12. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP.

    PubMed

    Baritaki, Stavroula; Huerta-Yepez, Sara; Sahakyan, Anna; Karagiannides, Iordanis; Bakirtzi, Kyriaki; Jazirehi, Ali; Bonavida, Benjamin

    2010-12-15

    The role of nitric oxide (NO) in cancer has been controversial and is based on the levels of NO and the responsiveness of the tumor type. It remains unclear whether NO can inhibit the epithelial to mesenchymal transition (EMT) in cancer cells. EMT induction is mediated, in part, by the constitutive activation of the metastasis-inducer transcription factor, Snail and EMT can be inhibited by the metastasis-suppressor Raf-1 kinase inhibitor protein (RKIP) and E-cadherin. Snail is transcriptionally regulated by NF-κB and in turn, Snail represses RKIP transcription. Hence, we hypothesized that high levels of NO, that inhibit NF-κB activity, may also inhibit Snail and induce RKIP and leading to inhibition of EMT. We show that treatment of human prostate metastatic cell lines with the NO donor, DETANONOate, inhibits EMT and reverses both the mesenchymal phenotype and the cell invasive properties. Further, treatment with DETANONOate inhibits Snail expression and DNA-binding activity in parallel with the upregulation of RKIP and E-cadherin protein levels. The pivotal roles of Snail inhibition and RKIP induction in DETANONOate-mediated inhibition of EMT were corroborated by both Snail silencing by siRNA and by ectopic expression of RKIP. The in vitro findings were validated in vivo in mice bearing PC-3 xenografts and treated with DETANONOate. The present findings show, for the first time, the novel role of high subtoxic concentrations of NO in the inhibition of EMT. Thus, NO donors may exert therapeutic activities in the reversal of EMT and metastasis.

  13. Drosophila E-Cadherin Functions in Hematopoietic Progenitors to Maintain Multipotency and Block Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Fossett, Nancy

    2013-01-01

    A fundamental question in stem cell biology concerns the regulatory strategies that control the choice between multipotency and differentiation. Drosophila blood progenitors or prohemocytes exhibit key stem cell characteristics, including multipotency, quiescence, and niche dependence. As a result, studies of Drosophila hematopoiesis have provided important insights into the molecular mechanisms that control these processes. Here, we show that E-cadherin is an important regulator of prohemocyte fate choice, maintaining prohemocyte multipotency and blocking differentiation. These functions are reminiscent of the role of E-cadherin in mammalian embryonic stem cells. We also show that mis-expression of E-cadherin in differentiating hemocytes disrupts the boundary between these cells and undifferentiated prohemocytes. Additionally, upregulation of E-cadherin in differentiating hemocytes increases the number of intermediate cell types expressing the prohemocyte marker, Patched. Furthermore, our studies indicate that the Drosophila GATA transcriptional co-factor, U-shaped, is required for E-cadherin expression. Consequently, E-cadherin is a downstream target of U-shaped in the maintenance of prohemocyte multipotency. In contrast, we showed that forced expression of the U-shaped GATA-binding partner, Serpent, repressed E-cadherin expression and promoted lamellocyte differentiation. Thus, U-shaped may maintain E-cadherin expression by blocking the inhibitory activity of Serpent. Collectively, these observations suggest that GATA:FOG complex formation regulates E-cadherin levels and, thereby, the choice between multipotency and differentiation. The work presented in this report further defines the molecular basis of prohemocyte cell fate choice, which will provide important insights into the mechanisms that govern stem cell biology. PMID:24040319

  14. Arf6 regulates EGF-induced internalization of E-cadherin in breast cancer cells.

    PubMed

    Xu, Rui; Zhang, Yujie; Gu, Luo; Zheng, Jianchao; Cui, Jie; Dong, Jing; Du, Jun

    2015-01-01

    E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6 on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml. Meanwhile, EGF treatment markedly increased Arf6 activation. Arf6 was involved in complexes of E-cadherin, and more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6 siRNA suppressed EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arf6 on promoting breast cancer cell metastasis.

  15. Rab11 in Recycling Endosomes Regulates the Sorting and Basolateral Transport of E-CadherinV⃞

    PubMed Central

    Lock, John G.; Stow, Jennifer L.

    2005-01-01

    E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, ΔS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical ΔS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, μ1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion. PMID:15689490

  16. Matrilysin (Matrix Metalloproteinase-7) Mediates E-Cadherin Ectodomain Shedding in Injured Lung Epithelium

    PubMed Central

    McGuire, John K.; Li, Qinglang; Parks, William C.

    2003-01-01

    Matrilysin (matrix metalloproteinase-7) is highly expressed in lungs of patients with pulmonary fibrosis and other conditions associated with airway and alveolar injury. Although matrilysin is required for closure of epithelial wounds ex vivo, the mechanism of its action in repair is unknown. We demonstrate that matrilysin mediates shedding of E-cadherin ectodomain from injured lung epithelium both in vitro and in vivo. In alveolar-like epithelial cells, transfection of activated matrilysin resulted in shedding of E-cadherin and accelerated cell migration. In vivo, matrilysin co-localized with E-cadherin at the basolateral surfaces of migrating tracheal epithelium, and the reorganization of cell-cell junctions seen in wild-type injured tissue was absent in matrilysin-null samples. E-cadherin ectodomain was shed into the bronchoalveolar lavage fluid of bleomycin-injured wild-type mice, but was not shed in matrilysin-null mice. These findings identify E-cadherin as a novel substrate for matrilysin and indicate that shedding of E-cadherin ectodomain is required for epithelial repair. PMID:12759241

  17. Slug, Twist, and E-Cadherin as Immunohistochemical Biomarkers in Meningeal Tumors

    PubMed Central

    Nagaishi, Masaya; Nobusawa, Sumihito; Tanaka, Yuko; Ikota, Hayato; Yokoo, Hideaki; Nakazato, Yoichi

    2012-01-01

    The overexpression of Twist and Slug and subsequent down-regulation of E-cadherin facilitate the acquirement of invasive growth properties in cancer cells. It is unclear which of these molecules are expressed in mesenchymal tumors in the central nervous system. Here, we investigated 10 cases each of hemangiopericytoma, solitary fibrous tumor, meningothelial, fibrous, angiomatous, and atypical meningiomas, and 5 cases of anaplastic meningioma for Slug, Twist, E-cadherin, and N-cadherin immunoexpression. Nuclear Slug expression was observed in 9/10 (90%) hemangiopericytomas and 5/10 (50%) solitary fibrous tumors, but not in any meningiomas, except for 1 case. Similarly, nuclear Twist expression was more extensive in hemangiopericytomas and solitary fibrous tumors than meningiomas. In contrast to Slug and Twist, the positive expression of E-cadherin was observed in 39/45 (87%) meningiomas, but not in any hemangiopericytomas or solitary fibrous tumors (P<0.0001). The fraction of tumor cells expressing E-cadherin in meningeal tumors was negatively correlated to those of Twist (P = 0.004) and Slug (P<0.0001). The overexpression of Slug and Twist with down-regulation of E-cadherin was characteristic findings in hemangiopericytomas and solitary fibrous tumors, but not in meningiomas. The immunohistochemical profiles of the two tumor groups may be useful as diagnostic markers in cases that present a differential diagnosis challenge. PMID:23029385

  18. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Min; Xu, Ding

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathymore » (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.« less

  19. E-Cadherin as a Chemotherapy Resistance Mechanism on Metastatic Breast Cancer

    DTIC Science & Technology

    2011-01-01

    Gold Kit (Zymo, San Diego, CA) per the manufacturer’s specifications. MSP was performed in the way of Corn et al [62] or using the CpG WIZ E-cadherin...Amplification Kit per the manufacturer’s instructions (Millipore, Temecula, CA). Briefly, in the method of Corn , a nested PCR method was used, in...cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 92(11): 2786-95. 29. Corn , PG, BD Smith, ES Ruckdeschel et al (2000) E-cadherin

  20. CD8 T-cells and E-cadherin in host responses against oropharyngeal candidiasis

    PubMed Central

    Quimby, K.; Lilly, E.A.; Zacharek, M.; McNulty, K.; Leigh, J.E.; Vazquez, J.E.; Fidel, P.L.

    2011-01-01

    Oropharyngeal candidiasis (OPC) is the most common oral infection in HIV+ persons. Previous studies suggest a role for CD8+ T-cells against OPC when CD4+ T-cells are lost, but enhanced susceptibility to infection occurs when CD8+ T-cell migration is inhibited by reduced tissue E-cadherin. Objective Conduct a longitudinal study of tissue CD8+ T-cells and E-cadherin expression before, during, and after episodes of OPC. Methods Oral fungal burden was monitored and tissue was evaluated for CD8+ T-cells and E-cadherin over a one-year period in HIV+ persons with a history of, or an acute episode of OPC. Results While longitudinal analyses precluded formal interpretations, point prevalence analyses of the dataset revealed that when patients experiencing OPC were successfully treated, tissue E-cadherin expression was similar to patients who had not experienced OPC, and higher numbers of CD8+ T-cells were distributed throughout OPC− tissue under normal expression of E-cadherin. Conclusion These results suggest that 1) reduction in tissue E-cadherin expression in OPC+ patients is not permanent, and 2) high numbers of CD8+ T-cells can be distributed throughout OPC− tissue under normal E-cadherin expression. Together these results extend our previous studies and continue to support a role for CD8+ T-cells in host defense against OPC. PMID:21958417

  1. Changes in E-cadherin rigidity sensing regulate cell adhesion.

    PubMed

    Collins, Caitlin; Denisin, Aleksandra K; Pruitt, Beth L; Nelson, W James

    2017-07-18

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.

  2. HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo.

    PubMed

    Hu, Dongxiao; Zhou, Jiansong; Wang, Fenfen; Shi, Haiyan; Li, Yang; Li, Baohua

    2015-12-01

    Cadherin switch, as a key hallmark of epithelial-mesenchymal transition (EMT), is characterized by reduced E-cadherin expression and increased N-cadherin or P-cadherin expression, and has been implicated in many aggressive tumors, but the importance and regulatory mechanism of cadherin switch in cervical cancer have not been investigated. Our study aimed to explore the role of cadherin switch by regulation of HPV-16 E6/E7 in progression and metastasis of cervical cancer. The expressions of E-cadherin and P-cadherin were examined by immunohistochemical staining in 40 cases of high-grade cervical lesions with HPV-16 infection only in which HPV-16 E6 and E7 expression had been detected using qRT-PCR method. Through modulating E6 and E7 expression using HPV-16 E6/E7 promoter-targeting siRNAs or expressed vector in vitro, cell growth, migration, and invasion were separately tested by MTT, wound-healing and transwell invasion assays, as well as the expressions of these cadherins by western blot analyses. Finally, the expressions of these cadherins in cancerous tissues of BALB/c-nu mouse model inoculated with the stable HPV-16 E6/E7 gene silencing Siha and Caski cells were also measured by immunohistochemical staining. Pearson correlation coefficient analyses showed the strongly inverse correlation of E-cadherin expression and strongly positive correlation of P-cadherin expression with E6/E7 level in 40 cases of high-grade cervical lesions. Furthermore, the modulation of HPV-16 E6/E7 expression remarkably influenced cell proliferation, migration, and invasion, as well as the protein levels of E-cadherin and P-cadherin in cervical cell lines. Finally, the reduction of HPV-16 E6/E7 expression led to up-regulated expression of E-cadherin and down-regulated expression of P-cadherin in BALB/c-nu mouse model in vivo assay. Our results unraveled the possibility that HPV-16 E6/E7 could promote cell invasive potential via regulating cadherin switching, and consequently contribute

  3. Differences in E-Cadherin and Syndecan-1 Expression in Different Types of Ameloblastomas

    PubMed Central

    López-Verdín, Sandra; Pereira-Prado, Vanesa

    2018-01-01

    Ameloblastomas are a group of benign, locally aggressive, recurrent tumors characterized by their slow and infiltrative growth. E-Cadherin and syndecan-1 are cell adhesion molecules related to the behavior of various tumors, including ameloblastomas. Ninety-nine ameloblastoma samples were studied; the expression of E-cadherin and syndecan-1 were evaluated by immunohistochemistry. E-Cadherin and epithelial syndecan-1 were more highly expressed in intraluminal/luminal unicystic ameloblastoma than in mural unicystic ameloblastoma and solid/multicystic ameloblastoma, whereas the stromal expression of syndecan-1 was higher in mural unicystic ameloblastoma and solid/multicystic ameloblastoma. Synchronicity was observed between E-cadherin and epithelial syndecan-1; the expression was correlated with intensity in all cases. There was a strong association between expression and tumor size and recurrence. The evaluation of the expression of E-cadherin and syndecan-1 are important for determining the potential aggressiveness of ameloblastoma variants. Future studies are required to understand how the expression of these markers is related to tumor aggressiveness.

  4. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex.

    PubMed

    Lee, Kwangkook; Zhong, Xiaofen; Gu, Shenyan; Kruel, Anna Magdalena; Dorner, Martin B; Perry, Kay; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2014-06-20

    How botulinum neurotoxins (BoNTs) cross the host intestinal epithelial barrier in foodborne botulism is poorly understood. Here, we present the crystal structure of a clostridial hemagglutinin (HA) complex of serotype BoNT/A bound to the cell adhesion protein E-cadherin at 2.4 angstroms. The HA complex recognizes E-cadherin with high specificity involving extensive intermolecular interactions and also binds to carbohydrates on the cell surface. Binding of the HA complex sequesters E-cadherin in the monomeric state, compromising the E-cadherin-mediated intercellular barrier and facilitating paracellular absorption of BoNT/A. We reconstituted the complete 14-subunit BoNT/A complex using recombinantly produced components and demonstrated that abolishing either E-cadherin- or carbohydrate-binding of the HA complex drastically reduces oral toxicity of BoNT/A complex in vivo. Together, these studies establish the molecular mechanism of how HAs contribute to the oral toxicity of BoNT/A. Copyright © 2014, American Association for the Advancement of Science.

  5. Effects of Cd{sup 2+} on cis-dimer structure of E-cadherin in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Hiroshi, E-mail: hirotake@sapmed.ac.jp

    2014-02-21

    Highlights: • The effects of Cd on the dimer of cadherin in living cells was analyzed. • Cd induced cadherin dimer formation was not detected in living cell with low Ca. • Ca mediated structural cooperativity and allostery in the native cadherin. • Ca concentration-dependent competitive displacement of Cd from cadherin is proposed. - Abstract: E-cadherin, a calcium (Ca{sup 2+})-dependent cell–cell adhesion molecule, plays a key role in the maintenance of tissue integrity. We have previously demonstrated that E-cadherin functions in vivo as a cis-dimer through chemical cross-linking reagents. Ca{sup 2+} plays an important role in the cis-dimer formation ofmore » cadherin. However, the molecular mechanisms by which Ca{sup 2+} interacts with the binding sites that regulate cis-dimer structures have not been completely elucidated. As expected for a Ca{sup 2+} antagonist, cadmium (Cd{sup 2+}) disrupts cadherin function by displacing Ca{sup 2+} from its binding sites on the cadherin molecules. We used Cd{sup 2+} as a probe for investigating the role of Ca{sup 2+} in the dynamics of the E-cadherin extracellular region that involve cis-dimer formation and adhesion. While cell–cell adhesion assembly was completely disrupted in the presence of Cd{sup 2+}, the amount of cis-dimers of E-cadherin that formed at the cell surface was not affected. In our “Cd{sup 2+}-switch” experiments, we did not find that Cd{sup 2+}-induced E-cadherin cis-dimer formation in EL cells when they were incubated in low-Ca{sup 2+} medium. In the present study, we demonstrated for the first time the effects of Cd{sup 2+} on the cis-dimer structure of E-cadherin in living cells using a chemical cross-link analysis.« less

  6. Application of APTES-Anti-E-cadherin film for early cancer monitoring.

    PubMed

    Ben Ismail, Manel; Carreiras, Franck; Agniel, Rémy; Mili, Donia; Sboui, Dejla; Zanina, Nahla; Othmane, Ali

    2016-10-01

    Cancer staging is a way to classify cancer according to the extent of the disease in the body. The stage is usually determined by several factors such as the location of the primary tumor, the tumor size, the degree of spread in the surrounding tissues, etc. The study of E-cadherin (EC) expression on cancerous cells of patients has revealed variations in the molecular expression patterns of primary tumors and metastatic tumors. The detection of these cells requires a long procedure involving conventional techniques, thus, the requirement for development of new rapid devices that permit direct and highly sensitive detection stimulates the sensing field progress. Here, we explore if E-cadherin could be used as a biomarker to bind and detect epithelial cancer cells. Hence, the sensitive and specific detection of E-cadherin expressed on epithelial cells is approached by immobilizing anti-E-cadherin antibody (AEC) onto aminosilanized indium-tin oxide (ITO) surface. The immunosensing surfaces have been characterized by electrochemical measurements, wettability and confocal microscopy and their performance has been assessed in the presence of cancer cell lines. Under optimal conditions, the resulting immunosensor displayed a selective detection of E-cadherin expressing cells, which could be detected either by fluorescence or electrochemical techniques. The developed immunosensing surface could provide a simple tool that can be applied to cancer staging. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Expression of E-cadherin in canine anal sac gland carcinoma and its association with survival.

    PubMed

    Polton, G A; Brearley, M J; Green, L M; Scase, T J

    2007-12-01

    The objective of this study was to determine whether an association could be demonstrated between survival and the expression of the adhesion molecule E-cadherin by the neoplastic cells in a group of dogs with anal sac gland carcinomas (ASGCs). Archived formalin-fixed, paraffin wax-embedded primary tumour specimens were obtained for 36 cases of canine ASGC with known clinical management and survival data. Immunohistochemical methods were used to evaluate E-cadherin expression by the neoplastic cells and data were evaluated for an association between E-cadherin expression and survival. On univariate analysis, the median survival time for cases with tumours expressing E-cadherin in more than 75% of cells was significantly greater than that for cases with tumours expressing E-cadherin in fewer than 75% of cells (1168 versus 448 days, P = 0.0246). Both E-cadherin expression and presence or absence of distant metastases were significantly associated with survival on multivariate analysis. This study demonstrates that expression of E-cadherin at the cytoplasmic membrane in canine ASGCs is variable and potentially predictive of survival.

  8. An analysis of suppressing migratory effect on human urinary bladder cancer cell line by silencing of snail-1.

    PubMed

    Salehi, Shima; Mansoori, Behzad; Mohammadi, Ali; Davoudian, Sadaf; Musavi Shenas, Seyed Mohammad Hossein; Shajari, Neda; Majidi, Jafar; Baradaran, Behzad

    2017-12-01

    Snail-1 actively participates in tumor progression, invasion, and migration. Targeting snail-1 expression can suppress the EMT process in cancer. The aim of this study was to investigate the effect of snail1 silencing on urinary bladder cancer. Quantitative RT-PCR was used to detect snail-1 and other related metastatic genes expression following siRNA knockdown in urinary bladder cancer EJ-138 cells. The protein level of snail1 was assessed by Western blot. MTT and TUNEL assays were assessed to understand if snail-1 had survival effects on EJ-138 cells. Scratch wound healing assay measured cell motility effects after snail1 suppression. The significant silencing of snail-1 reached 60pmol siRNA in a 48-h post-transfection. The result of scratch assay showed that snail-1 silencing significantly decreased Vimentin, MMPs, and CXCR4 expression; however, expression of E-cadherin was induced. The cell death assay indicated that snail-1 played the crucial role in bladder cancer survival rate. These results propose that snail-1 plays a major role in the progression and migration of urinary bladder cancer, and can be a potential therapeutic target for target therapy of invasive urinary bladder cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix.

    PubMed

    Mayer, A; Höckel, M; Schlischewsky, N; Schmidberger, H; Horn, L-C; Vaupel, P

    2013-02-05

    Experimental studies have established a causal connection between tumour hypoxia, hypoxia-associated proteome changes and downregulation of E-cadherin, the final common pathway of epithelial-to-mesenchymal transition (EMT). Our study aimed at elucidating the interrelationship of these processes in cancers of the uterine cervix in vivo. Tumour oxygenation was assessed in 48 squamous cell carcinomas (SCC) of the uterine cervix using polarographic needle electrodes. The expression pattern of E-cadherin was investigated by immunohistochemistry and western blotting, and was compared with that of the hypoxia-inducible proteins glucose transporter (GLUT)-1 and carbonic anhydrase (CA) IX in biopsy specimens of the oxygenation measurement tracks. The majority of cervical cancers (52%) were E-cadherin positive, with a complete absence of the antigen in only 10% of the tumours. No correlation was found between the level of E-cadherin expression and the oxygenation status (mean pO(2), median pO(2) and hypoxic fractions). In patients showing partial expression of E-cadherin (38%), staining was not preferentially diminished in GLUT-1- or CA IX-positive areas, and loss of E-cadherin occurred independently of tumour cell scattering. Our data provide no evidence in favour of a hypoxia-induced EMT as a mechanistic basis of cervical cancer invasiveness.

  10. Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix

    PubMed Central

    Mayer, A; Höckel, M; Schlischewsky, N; Schmidberger, H; Horn, L-C; Vaupel, P

    2013-01-01

    Background: Experimental studies have established a causal connection between tumour hypoxia, hypoxia-associated proteome changes and downregulation of E-cadherin, the final common pathway of epithelial-to-mesenchymal transition (EMT). Our study aimed at elucidating the interrelationship of these processes in cancers of the uterine cervix in vivo. Methods: Tumour oxygenation was assessed in 48 squamous cell carcinomas (SCC) of the uterine cervix using polarographic needle electrodes. The expression pattern of E-cadherin was investigated by immunohistochemistry and western blotting, and was compared with that of the hypoxia-inducible proteins glucose transporter (GLUT)-1 and carbonic anhydrase (CA) IX in biopsy specimens of the oxygenation measurement tracks. Results: The majority of cervical cancers (52%) were E-cadherin positive, with a complete absence of the antigen in only 10% of the tumours. No correlation was found between the level of E-cadherin expression and the oxygenation status (mean pO2, median pO2 and hypoxic fractions). In patients showing partial expression of E-cadherin (38%), staining was not preferentially diminished in GLUT-1- or CA IX-positive areas, and loss of E-cadherin occurred independently of tumour cell scattering. Conclusion: Our data provide no evidence in favour of a hypoxia-induced EMT as a mechanistic basis of cervical cancer invasiveness. PMID:23322209

  11. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

    NASA Astrophysics Data System (ADS)

    Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-03-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.

  12. Mucinous Colorectal Adenocarcinoma: Influence of EGFR and E-Cadherin Expression on Clinicopathologic Features and Prognosis.

    PubMed

    Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I

    2015-08-01

    Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA.

  13. Modulation of N-glycosylation by mesalamine facilitates membranous E-cadherin expression in colon epithelial cells☆

    PubMed Central

    Khare, Vineeta; Lang, Michaela; Dammann, Kyle; Campregher, Christoph; Lyakhovich, Alex; Gasche, Christoph

    2014-01-01

    Genome wide association studies have implicated intestinal barrier function genes in the pathogenesis of ulcerative colitis. One of such loci CDH1, encoding E-cadherin, a transmembrane glycoprotein with known tumor suppressor functions, is also linked to the susceptibility to colorectal cancer. Loss of membranous E-cadherin expression is common in both colitis and cancer. We have recently demonstrated that mesalamine (5-ASA); the anti-inflammatory drug used to treat ulcerative colitis, induces membranous expression of E-cadherin and increases intercellular adhesion. Using colorectal cancer epithelial cells with aberrant E-cadherin expression, we investigated the mechanism underlying such an effect of 5-ASA. Post-translational modification of E-cadherin glycosylation was analyzed by biotin/streptavidin detection of sialylated glycoproteins. GnT-III (N-acetylglucosaminyltransferase III) expression was assessed by qRT-PCR, Western blot and immunofluorescence. GnT-III activity was analyzed by reactivity with E-4/L-4-PHA. Expression, localization and interaction of E-cadherin and β-catenin were analyzed by Western blot, immunocytochemistry and RNA interference. 5-ASA activity modulated E-cadherin glycosylation and increased both mRNA and protein levels of GnT-III and its activity as detected by increased E4-lectin reactivity. Intestinal APCMin polyps in mice showed low expression of GnT-III and 5-ASA was effective in increasing its expression. The data demonstrated that remodeling of glycans by GnT-III mediated bisect glycosylation, contributes to the membranous retention of E-cadherin by 5-ASA; facilitating intercellular adhesion. Induction of membranous expression of E-cadherin by 5-ASA is a novel mechanism for mucosal healing in colitis that might impede tumor progression by modulation of GnT-III expression. PMID:24184502

  14. E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs.

    PubMed

    Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Crawford, Howard C; Fusenig, Norbert E; Garlick, Jonathan A

    2005-03-01

    We studied the link between loss of E-cadherin-mediated adhesion and acquisition of malignant properties in three-dimensional, human tissue constructs that mimicked the initial stages of squamous cell cancer progression. Suppression of E-cadherin expression in early-stage, skin-derived tumor cells (HaCaT-II-4) was induced by cytoplasmic sequestration of beta-catenin upon stable expression of a dominant-negative E-cadherin fusion protein (H-2Kd-Ecad). In monolayer cultures, expression of H-2Kd-Ecad resulted in decreased levels of E-cadherin, redistribution of beta-catenin to the cytoplasm, and complete loss of intercellular adhesion when compared with control II-4 cells. This was accompanied by a 7-fold decrease in beta-catenin-mediated transcription and a 12-fold increase in cell migration. In three-dimensional constructs, E-cadherin-deficient tissues showed disruption of architecture, loss of adherens junctional proteins from cell contacts, and focal tumor cell invasion. Invasion was linked to activation of matrix metalloproteinase (MMP)-mediated degradation of basement membrane in H-2Kd-Ecad-expressing tissue constructs that was blocked by MMP inhibition (GM6001). Quantitative reverse transcription-PCR showed a 2.5-fold increase in MMP-2 and an 8-fold increase in MMP-9 in cells expressing the H-2Kd-Ecad fusion protein when compared with controls, and gel zymography showed increased MMP protein levels. Following surface transplantation of three-dimensional tissues, suppression of E-cadherin expression greatly accelerated tumorigenesis in vivo by inducing a switch to high-grade carcinomas that resulted in a 5-fold increase in tumor size after 4 weeks. Suppression of E-cadherin expression and loss of its function fundamentally modified squamous cell carcinoma progression by activating a highly invasive, aggressive tumor phenotype, whereas maintenance of E-cadherin prevented invasion in vitro and limited tumor progression in vivo.

  15. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  16. Low-expression of E-cadherin in leukaemia cells causes loss of homophilic adhesion and promotes cell growth.

    PubMed

    Rao, Qing; Wang, Ji-Ying; Meng, Jihong; Tang, Kejing; Wang, Yanzhong; Wang, Min; Xing, Haiyan; Tian, Zheng; Wang, Jianxiang

    2011-09-01

    E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.

  17. Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway.

    PubMed

    Wang, Yu; Ma, Jun; Shen, Haoran; Wang, Chengjie; Sun, Yueping; Howell, Stephen B; Lin, Xinjian

    2014-11-01

    Reactive oxygen species (ROS) can drive the de‑differentiation of tumor cells leading to the process of epithelial-to-mesenchymal transition (EMT) to enhance invasion and metastasis. The invasive and metastatic phenotype of malignant cells is often linked to loss of E-cadherin expression, a hallmark of EMT. Recent studies have demonstrated that hypoxic exposure causes HIF-1-dependent repression of E-cadherin. However, the mechanism by which ROS and/or HIF suppresses E-cadherin expression remains less clear. In the present study, we found that ROS accumulation in ovarian carcinoma cells upregulated HIF-1α expression and subsequent transcriptional induction of lysyl oxidase (LOX) which repressed E-cadherin. Loss of E-cadherin facilitated ovarian cancer (OC) cell migration in vitro and promoted tumor growth in vivo. E-cadherin immunoreactivity correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, tumor differentiation and metastasis. Negative E-cadherin expression along with FIGO stage, tumor differentiation and metastasis significantly predicted for a lower 5-year survival rate. These findings suggest that ROS play an important role in the initiation of metastatic growth of OC cells and support a molecular pathway from ROS to aggressive transformation which involves upregulation of HIF-1α and its downstream target LOX to suppress E-cadherin expression leading to an increase in cell motility and invasiveness.

  18. Changes in E-cadherin rigidity sensing regulate cell adhesion

    PubMed Central

    Collins, Caitlin; Pruitt, Beth L.; Nelson, W. James

    2017-01-01

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion. PMID:28674019

  19. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    PubMed

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  20. Soluble E-cadherin is an independent pretherapeutic factor for long-term survival in gastric cancer.

    PubMed

    Chan, Annie On-On; Chu, Kent-Man; Lam, Shiu-Kum; Wong, Benjamin Chun-Yu; Kwok, Ka-Fai; Law, Simon; Ko, Samuel; Hui, Wai-Mo; Yueng, Yui-Hung; Wong, John

    2003-06-15

    To evaluate whether pretherapeutic serum soluble E-cadherin is an independent factor predicting long-term survival in gastric cancer. Gastric cancer remains the second leading cause of cancer-related deaths in the world, but a satisfactory tumor marker is currently unavailable for gastric cancer. Soluble E-cadherin has recently been found to have prognostic value in gastric cancer. One hundred sixteen patients with histologically proven gastric adenocarcinoma were included in the trial. Pretherapeutic serum was collected, and soluble E-cadherin was assayed using a commercially available enzyme-linked immunosorbent assay kit. The patients were followed up prospectively at the outpatient clinic. There were 75 men and 41 women, with a mean (+/- SD) age of 66 +/- 14 years. Forty-eight percent of tumors were located in the gastric antrum. The median survival time was 11 months. The mean pretherapeutic value of soluble E-cadherin was 9,159 ng/mL (range, 6,002 to 10,025 ng/mL), and the mean pretherapeutic level of carcinoembryonic antigen was 11 ng/mL (range, 0.3 to 4,895 ng/mL). On multivariate analysis, soluble E-cadherin is an independent factor predicting long-term survival. Ninety percent of patients with a serum level of E-cadherin greater than 10,000 ng/mL had a survival time of less than 3 years (P =.009). Soluble E-cadherin is a potentially valuable pretherapeutic prognostic factor in patients with gastric cancer.

  1. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT

    PubMed Central

    Rogers, Crystal D.; Saxena, Ankur

    2013-01-01

    The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT. PMID:24297751

  2. Alterations induced by E-cadherin and beta-catenin antibodies during the development of Bufo arenarum (Anura-Bufonidae).

    PubMed

    Izaguirre, M F; Adur, J F; Soler, A P; Casco, V H

    2001-10-01

    E(epithelial)-cadherin is a member of a calcium-dependent family of cell surface glycoproteins involved in cell-cell adhesion and morphogenesis. Catenins are a large family of proteins that connect the cadherins to the cytoskeleton. They are important for cadherin function and for transducing signals involved in specification of cell fate during embryogenesis. The best characterized catenins include alpha-, beta-, gamma-, and p120-catenin. Using specific antibodies, we studied the expression and distribution of E-cadherin, and alpha- and beta-catenin in developmental stages of Bufo arenarum toad. The three proteins were found co-localized in stages 19 to 41 of development. Surprisingly, E-cadherin was the only of these three proteins found earlier than stage 19. To test whether E-cadherin and beta-catenin have a functional role in Bufo arenarum embryogenesis, stage 17 whole embryos were incubated with anti-E-cadherin and beta-catenin antibodies. Both anti-E-cadherin and anti-beta-catenin antibodies induced severe morphological alterations. However, while alterations produced by the anti-beta-catenin antibody, showed some variability from the most severe (neural tube and notochord duplication) to a simple delay in development, the alterations with anti-E-cadherin were homogeneous. These observations suggest a critical role for E-cadherin and beta-catenin in the early embryonic development of the Bufo arenarum toad. Our results are consistent with the developmental role of these proteins in other species. One of the most surprising findings was the blockage with the anti-beta-catenin antibodies on later embryo stages, and we hypothesize that the partial axes duplication could be mediated by the notochord induction.

  3. Post-transcription mediated Snail stabilization is involved in radiation exposure induced invasion and migration of hepatocarcinoma cells.

    PubMed

    Dong, Liyang; Zhang, Xuebang; Xiang, Wei; Ni, Junwei; Zhou, Weizhong; Li, Haiyan

    2018-04-20

    Increasing evidences suggested that radiotherapy can paradoxically promote tumor invasion and metastatic processes, while its detailed mechanism is not well illustrated. Our present study found that radiation can promote the migration and invasion of hepatocellular carcinoma (HCC) cells via induction of epithelial mesenchymal transition (EMT), which was evidenced by the results that radiation induced up regulation of vimentin while down regulation of E-Cadherin. As to the EMT-related transcription factors, radiation increased the expression of Snail, while not Slug, ZEB1 or TWIST. This was confirmed by the results that radiation increased the nuclear translocation of Snail in HCC cells. However, radiation had no effect on the expression or half-life of Snail mRNA. In HCC cells treated by cycloheximide (CHX, the translation inhibitor), radiation significantly increased the half-life of Snail protein, which suggested that radiation increased the expression of Snail via up regulation of its protein stability. Radiation increased the expression of COP9 signalosome 2 (CSN2), which has been reported to block the ubiquitination and degradation of Snail. Silence of CSN2/Snail can attenuate radiation induced cell migration and EMT of HCC cells. Collectively, our data suggested that radiation can promote HCC cell invasion and EMT by stabilization of Snail via CSN2 signals. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    PubMed

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    PubMed Central

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  6. The Wnt5A/Protein Kinase C Pathway Mediates Motility in Melanoma Cells via the Inhibition of Metastasis Suppressors and Initiation of an Epithelial to Mesenchymal Transition*S

    PubMed Central

    Dissanayake, Samudra K.; Wade, Michael; Johnson, Carrie E.; O’Connell, Michael P.; Leotlela, Poloko D.; French, Amanda D.; Shah, Kavita V.; Hewitt, Kyle J.; Rosenthal, Devin T.; Indig, Fred E.; Jiang, Yuan; Nickoloff, Brian J.; Taub, Dennis D.; Trent, Jeffrey M.; Moon, Randall T.; Bittner, Michael; Weeraratna, Ashani T.

    2008-01-01

    We have shown that Wnt5A increases the motility of melanoma cells. To explore cellular pathways involving Wnt5A, we compared gain-of-function (WNT5A stable transfectants) versus loss-of-function (siRNA knockdown) of WNT5A by microarray analysis. Increasing WNT5A suppressed the expression of several genes, which were re-expressed after small interference RNA-mediated knockdown of WNT5A. Genes affected by WNT5A include KISS-1, a metastasis suppressor, and CD44, involved in tumor cell homing during metastasis. This could be validated at the protein level using both small interference RNA and recombinant Wnt5A (rWnt5A). Among the genes up-regulated by WNT5A was the gene vimentin, associated with an epithelial to mesenchymal transition (EMT), which involves decreases in E-cadherin, due to up-regulation of the transcriptional repressor, Snail. rWnt5A treatment increases Snail and vimentin expression, and decreases E-cadherin, even in the presence of dominant-negativeTCF4, suggesting that this activation is independent of Wnt/β-catenin signaling. Because Wnt5A can signal via protein kinase C (PKC), the role of PKC in Wnt5A-mediated motility and EMT was also assessed using PKC inhibition and activation studies. Treating cells expressing low levels of Wnt5A with phorbol ester increased Snail expression inhibiting PKC in cells expressing high levels of Wnt5A decreased Snail. Furthermore, inhibition of PKC before Wnt5A treatment blocked Snail expression, implying that Wnt5A can potentiate melanoma metastasis via the induction of EMT in a PKC-dependent manner. PMID:17426020

  7. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin

    PubMed Central

    Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.

    2014-01-01

    Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125

  8. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin.

    PubMed

    Wakae-Takada, N; Xuan, S; Watanabe, K; Meda, P; Leibel, R L

    2013-04-01

    In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.

  9. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    PubMed

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  10. The juxtamembrane domain of the E-cadherin cytoplasmic tail contributes to its interaction with Myosin VI

    PubMed Central

    Mangold, Sabine; Norwood, Suzanne J.; Yap, Alpha S.; Collins, Brett M.

    2012-01-01

    We recently identified the atypical myosin, Myosin VI, as a component of epithelial cell-cell junctions that interacts with E-cadherin. Recombinant proteins bearing the cargo-binding domain of Myosin VI (Myo VI-CBD) or the cytoplasmic tail of E-cadherin can interact directly with one another. In this report we further investigate the molecular requirements of the interaction between Myo VI-CBD and E-cadherin combining truncation mutation analysis with in vitro binding assays. We report that a short (28 amino acid) juxtamembrane region of the cadherin cytoplasmic tail is sufficient to bind Myo VI-CBD. However, central regions of the cadherin tail adjacent to the juxtamembrane sequence also display binding activity for Myo VI-CBD. It is therefore possible that the cadherin tail bears two binding sites for Myosin VI, or an extended binding site that includes the juxtamembrane region. Nevertheless, our biochemical data highlight the capacity for the juxtamembrane region to interact with functionally-significant cytoplasmic proteins. PMID:23007415

  11. O-mannosylation and N-glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer

    PubMed Central

    Bartels, Markus F.; Miyoshi, Eiji; Pierce, Michael; Taniguchi, Naoyuki; Carneiro, Fátima; Seruca, Raquel; Reis, Celso A.; Strahl, Sabine; Pinho, Salomé S.

    2016-01-01

    Dysregulation of tumor suppressor protein E-cadherin is an early molecular event in cancer. O-mannosylation profile of E-cadherin is a newly-described post-translational modification crucial for its adhesive functions in homeostasis. However, the role of O-mannosyl glycans in E-cadherin-mediated cell adhesion in cancer and their interplay with N-glycans remains largely unknown. We herein demonstrated that human gastric carcinomas exhibiting a non-functional E-cadherin display a reduced expression of O-mannosyl glycans concomitantly with increased modification with branched complex N-glycans. Accordingly, overexpression of MGAT5-mediated branched N-glycans both in gastric cancer cells and transgenic mice models led to a significant decrease of O-mannosyl glycans attached to E-cadherin that was associated with impairment of its tumour suppressive functions. Importantly, overexpression of protein O-mannosyltransferase 2 (POMT2) induced a reduced expression of branched N-glycans which led to a protective effect of E-cadherin biological functions. Overall, our results reveal a newly identified mechanism of (dys)regulation of E-cadherin that occur through the interplay between O-mannosylation and N-glycosylation pathway. PMID:27533452

  12. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  13. [The expression and clinical significance of EphA2 and E-cadherin in papillary thyroid carcinoma].

    PubMed

    Liu, Yan; Miao, Yuhua; Li, Xiaoming

    2015-06-01

    To investigate the expression and clinical significance of EphA2 and E cadherin proteins in papillary thyroid carcinoma tissues, and to explore the relationship between them. Using immunohistochemical SP/PV method, we detected the expression of EphA2 and E cadherin in tumors of 43 papillary thyroid carcinomas, 11 thyroid adenoma and 10 normal thyroid tissues, then studied their relationships with clinic pathological factors. The total positive rates of EphA2 and E cadherin expression were 58. 14% and 32. 56% in papillary thyroid carcinoma tissues, 18. 18% and 81. 81% in thyroid adenoma.tissues and they were 10. 00% and 100. 00% in normal thyroid tissues respectively. The positive expression of EphA2 in carcinoma tissues was higher than in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05) and the positive expression of E cadherin in carcinoma tissues was lower than that in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05). The positive expression of EphA2 and E cadherin was associated with lymph node metastasis and histological grade (P<0. 05), but it was not associated with all the clinic-pathological factors including age, sex and the tumor size (P>0. 05). In papillary thyroid carcinoma tissues, the expression of EphA2 was negatively correlated with the expression of E cadherin protein (r= -0. 416, P<0. 01). EphA2 and E cadherin may be involved in carcinogenesis and development of papillary thyroid carcinoma.

  14. E-cadherin Is Critical for Collective Sheet Migration and Is Regulated by the Chemokine CXCL12 Protein During Restitution*

    PubMed Central

    Hwang, Soonyean; Zimmerman, Noah P.; Agle, Kimberle A.; Turner, Jerrold R.; Kumar, Suresh N.; Dwinell, Michael B.

    2012-01-01

    Chemokines and other immune mediators enhance epithelial barrier repair. The intestinal barrier is established by highly regulated cell-cell contacts between epithelial cells. The goal of these studies was to define the role for the chemokine CXCL12 in regulating E-cadherin during collective sheet migration during epithelial restitution. Mechanisms regulating E-cadherin were investigated using Caco2BBE and IEC-6 model epithelia. Genetic knockdown confirmed a critical role for E-cadherin in in vitro restitution and in vivo wound repair. During restitution, both CXCL12 and TGF-β1 tightened the monolayer by decreasing the paracellular space between migrating epithelial cells. However, CXCL12 differed from TGF-β1 by stimulating the significant increase in E-cadherin membrane localization during restitution. Chemokine-stimulated relocalization of E-cadherin was paralleled by an increase in barrier integrity of polarized epithelium during restitution. CXCL12 activation of its cognate receptor CXCR4 stimulated E-cadherin localization and monolayer tightening through Rho-associated protein kinase activation and F-actin reorganization. These data demonstrate a key role for E-cadherin in intestinal epithelial restitution. PMID:22549778

  15. Y Box-Binding Protein 1 Promotes Epithelial-Mesenchymal Transition, Invasion, and Metastasis of Cervical Cancer via Enhancing the Expressions of Snail.

    PubMed

    Pang, Tianyun; Li, Min; Zhang, Ye; Yong, Weiwei; Kang, Haixian; Yao, Yunhong; Hu, Xinrong

    2017-10-01

    Y box-binding protein 1 (YB-1) is a potent oncogenic protein. How it regulates Snail in most tumors including cervical cancer is unknown. This article is to study if YB-1 plays a role in cervical cancer via regulating the expression of Snail. Immunohistochemical staining of YB-1, Snail, and E-cadherin (E-cad) was performed on tissue specimens including 35 cases of chronic cervicitis (as a control), 35 cases of cervical intraepithelial neoplasm (CIN) I, 35 cases of CIN II/III, 28 cases of unmetastatic cervical squamous cell carcinoma, and 19 cases of metastatic cervical squamous cell carcinoma. RNA interference technique was used to knock down YB-1, E6, and Snail genes. Quantitative polymerase chain reaction, western blot, and transwell experiment were used to detect RNA, protein, and cell invasion of cervical cancer cell lines Hela and C33A, respectively. First, YB-1 knockdown significantly reduced messenger RNA (mRNA) and protein levels of Snail, followed by the increased mRNA and protein levels of E-cad and the decreased invasive ability in both Hela (human papillomavirus [HPV] 18+) and C33A (HPV-) cell lines. Second, YB-1 and Snail protein were correlatively expressed in the group order of metastatic cervical squamous cell carcinoma > unmetastatic cervical squamous cell carcinoma > CINs > cervicitis, with the inverse expression mode of E-cad in the group order, P value less than 0.01, between any 2 groups. Finally, HPV18 E6 knockdown reduced the mRNA and protein levels of YB-1 and Snail in Hela cells. The results firstly reported that YB-1 whose mRNA expression is regulated by HPV18 E6 promotes epithelial-mesenchymal transition and progression of cervical cancer via enhancing the expressions of Snail, which indicated that YB-1/Snail/epithelial-mesenchymal transition axis could have a potential use in the diagnosis and therapy of cervical cancer metastasis as a cancer marker and molecular target.

  16. E-cadherin genetic variants predict survival outcome in breast cancer patients.

    PubMed

    Memni, Hager; Macherki, Yosra; Klayech, Zahra; Ben-Haj-Ayed, Ahlem; Farhat, Karim; Remadi, Yassmine; Gabbouj, Sallouha; Mahfoudh, Wijden; Bouzid, Nadia; Bouaouina, Noureddine; Chouchane, Lotfi; Zakhama, Abdelfattah; Hassen, Elham

    2016-11-16

    E-cadherin is a major component of adherens junctions that regulates cell shape and maintains tissue integrity. A complete loss or any decrease in cell surface expression of E-cadherin will interfere with the cell-to-cell junctions' strength and leads to cell detachment and escape from the primary tumor site. In this prospective study, three functional single nucleotide polymorphisms (-347G/GA, rs5030625; -160C/A, rs16260; +54C/T, rs1801026), were found to modulate E-cadherin expression. 577 DNA samples from breast cancer (BC) cases were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). We detected no significant correlations between each polymorphism and the clinical parameters of the patients whereas the GACC haplotype was significantly associated with low SBR grading. Overall survival analysis showed that both -347G/G and +54C/C wild (wt) genotypes had a significantly worse effect compared to the other genotypes (non-wt). Moreover, carrying simultaneously both the -347 and +54 wt genotypes confers a significantly higher risk of death. However, with metastatic recurrence, the death-rate was null in patients carrying the non-wt genotypes, and attained 37% in those carrying the wt genotype. A multivariate analysis showed that these two polymorphisms are independent prognostic factors for overall survival in BC patients. Our results support the fact that E-cadherin genetic variants control disease severity and progression and could be a marker of disease outcome. These findings could be useful in selecting patients that should be monitored differently.

  17. E-cadherin and β-catenin adhesion proteins correlate positively with connexins in colorectal cancer

    PubMed Central

    KANCZUGA-KODA, LUIZA; WINCEWICZ, ANDRZEJ; FUDALA, ANDRZEJ; ABRYCKI, TOMASZ; FAMULSKI, WALDEMAR; BALTAZIAK, MAREK; SULKOWSKI, STANISLAW; KODA, MARIUSZ

    2014-01-01

    The majority of solid cancers present with qualitative and quantitative aberrations of adhesion proteins, including E-cadherin and β-catenin, and connexin (Cx) gap junction proteins, which is consistent with alterations in the expression and location of such proteins in neoplastic cells. Since there are no data on the correlation between adhesion proteins and Cxs in human colorectal cancer (CRC), the aim of the present study was to evaluate the expression and correlation between these proteins. Tissue specimens were obtained from 151 cases of surgically removed colorectal adenocarcinomas. The samples were examined by immunohistochemistry with the use of antibodies against E-cadherin, β-catenin and the three Cxs: Cx26, Cx32 and Cx43. The aberrant expression of the studied adhesion proteins (primarily cytoplasmic for E-cadherin and cytoplasmic and/or nuclear for β-catenin) was observed, whereas only a minority of cases revealed normal membranous distribution of the labeling. The present study is the first in the literature to reveal a correlation between the expression of E-cadherin and β-catenin and the examined Cxs in CRC in humans. The positive correlation between the Cxs, particularly Cx26 and Cx32, and the adhesive proteins occurred in patients without lymph node metastases and in the moderately differentiated tumors (G2). Such a dependency was not observed in the analysis of the correlation between Cx43 and E-cadherin. However, a positive correlation between these proteins was observed in patients with lymph nodes metastases. Additionally, a link between the expression of these adhesion proteins was observed. The present study indicates, for the first time, that the expression of adhesion proteins, E-cadherin and β-catenin, is closely associated with the expression of three studied Cxs in CRC, and that this correlation may improve an understanding of the carcinogenic process in this cancer. PMID:24932249

  18. Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells.

    PubMed

    Cho, Hyun-Soo; Kang, Jeong Gu; Lee, Jae-Hye; Lee, Jeong-Ju; Jeon, Seong Kook; Ko, Jeong-Heon; Kim, Dae-Soo; Park, Kun-Hyang; Kim, Yong-Sam; Kim, Nam-Soon

    2015-09-15

    TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.

  19. Systems analysis reveals a transcriptional reversal of the mesenchymal phenotype induced by SNAIL-inhibitor GN-25

    PubMed Central

    2013-01-01

    Background HMLEs (HMLE-SNAIL and Kras-HMLE, Kras-HMLE-SNAIL pairs) serve as excellent model system to interrogate the effect of SNAIL targeted agents that reverse epithelial-to-mesenchymal transition (EMT). We had earlier developed a SNAIL-p53 interaction inhibitor (GN-25) that was shown to suppress SNAIL function. In this report, using systems biology and pathway network analysis, we show that GN-25 could cause reversal of EMT leading to mesenchymal-to-epithelial transition (MET) in a well-recognized HMLE-SNAIL and Kras-HMLE-SNAIL models. Results GN-25 induced MET was found to be consistent with growth inhibition, suppression of spheroid forming capacity and induction of apoptosis. Pathway network analysis of mRNA expression using microarrays from GN-25 treated Kras-HMLE-SNAIL cells showed an orchestrated global re-organization of EMT network genes. The expression signatures were validated at the protein level (down-regulation of mesenchymal markers such as TWIST1 and TWIST2 that was concurrent with up-regulation of epithelial marker E-Cadherin), and RNAi studies validated SNAIL dependent mechanism of action of the drug. Most importantly, GN-25 modulated many major transcription factors (TFs) such as inhibition of oncogenic TFs Myc, TBX2, NR3C1 and led to enhancement in the expression of tumor suppressor TFs such as SMAD7, DD1T3, CEBPA, HOXA5, TFEB, IRF1, IRF7 and XBP1, resulting in MET as well as cell death. Conclusions Our systems and network investigations provide convincing pre-clinical evidence in support of the clinical application of GN-25 for the reversal of EMT and thereby reducing cancer cell aggressiveness. PMID:24004452

  20. Reevaluating αE-catenin monomer and homodimer functions by characterizing E-cadherin/αE-catenin chimeras

    PubMed Central

    Bianchini, Julie M.; Kitt, Khameeka N.; Gloerich, Martijn; Pokutta, Sabine; Weis, William I.

    2015-01-01

    As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion. PMID:26416960

  1. Homeoprotein Six2 promotes breast cancer metastasis via transcriptional and epigenetic control of E-cadherin expression

    PubMed Central

    Wang, Chu-An; Drasin, David; Pham, Catherine; Jedlicka, Paul; Zaberezhnyy, Vadym; Guney, Michelle; Li, Howard; Nemenoff, Raphael; Costello, James C.; Tan, Aik-Choon; Ford, Heide L.

    2014-01-01

    Misexpression of developmental transcription factors occurs often in human cancers, where embryonic programs may be reinstated in a context that promotes or sustains malignant development. In this study, we report the involvement of the kidney development transcription factor Six2 in the metastatic progression of human breast cancer. We found that Six2 promoted breast cancer metastasis by a novel mechanism involving both transcriptional and epigenetic regulation of E-cadherin. Downregulation of E-cadherin by Six2 was necessary for its ability to increase soft agar growth and in vivo metastasis in an immune competent mouse model of breast cancer. Mechanistic investigations showed that Six2 represses E-cadherin expression by upregulating Zeb2, in part through a microRNA-mediated mechanism, and by stimulating promoter methylation of the E-cadherin gene (Cdh1). Clinically, SIX2 expression correlated inversely with CDH1 expression in human breast cancer specimens, corroborating the disease relevance of their interaction. Our findings establish Six2 as a regulator of metastasis in human breast cancers and demonstrate an epigenetic function for SIX family transcription factors in metastatic progression through the regulation of E-cadherin. PMID:25348955

  2. CDH4 suppresses the progression of salivary adenoid cystic carcinoma via E-cadherin co-expression.

    PubMed

    Xie, Jian; Feng, Yan; Lin, Ting; Huang, Xiao-Yu; Gan, Rui-Huan; Zhao, Yong; Su, Bo-Hua; Ding, Lin-Can; She, Lin; Chen, Jiang; Lin, Li-Song; Lin, Xu; Zheng, Da-Li; Lu, You-Guang

    2016-12-13

    The cadherin-4 gene (CDH4) of the cadherin family encodes non-epithelial R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. In this study, we found higher expression of CDH4 mRNA in a salivary adenoid cystic carcinoma (SACC) cell line with low metastatic potential (SACC-83) than in a cell line with high metastatic potential (SACC-LM). By analyzing 67 samples of SACC tissues and 40 samples of paraneoplastic normal tissues, we found R-cad highly expressed in 100% of normal paraneoplastic tissue but only expressed in 64% of SACC tumor tissues (P<0.001). Knockdown of CDH4 expression in vitro promoted the growth, mobility and invasion of SACC cells, and in vivo experiments showed that decreased CDH4 expression enhanced SACC tumorigenicity. Furthermore, CDH4 suppression resulted in down-regulation of E-cadherin (E-cad), which is encoded by CDH1 gene and is a well-known tumor suppressor gene by inhibition of cell proliferation and migration. These results indicate that CDH4 may play a negative role in the growth and metastasis of SACC via co-expression with E-cadherin.

  3. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    PubMed

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  4. Relation of glypican-3 and E-cadherin expressions to clinicopathological features and prognosis of mucinous and non-mucinous colorectal adenocarcinoma.

    PubMed

    Foda, Abd Al-Rahman Mohammad; Mohammad, Mie Ali; Abdel-Aziz, Azza; El-Hawary, Amira Kamal

    2015-06-01

    Glypican-3 (GPC3) is a member of the membrane-bound heparin sulfate proteoglycans. E-cadherin is an adhesive receptor that is believed to act as a tumor suppressor gene. Many studies had investigated E-cadherin expressions in colorectal carcinoma (CRC) while only one study had investigated GPC3 expression in CRC. This study aims to investigate expression of GCP3 and E-cadherin in colorectal mucinous carcinoma (MA) and non-mucinous adenocarcinoma (NMA) using manual tissue microarray technique. Tumor tissue specimens are collected from 75 cases of MC and 75 cases of NMA who underwent radical surgery from Jan 2007 to Jan 2012 at the Gastroenterology Centre, Mansoura University, Egypt. Their clinicopathological parameters and survival data were revised and analyzed using established statistical methodologies. High-density manual tissue microarrays were constructed using modified mechanical pencil tip technique and immunohistochemistry for GPC3 and E-cadherin was done. NMA showed higher expression of GPC3 than MA with no statistically significant relation. NMA showed a significantly higher E-cadherin expression than MA. GPC3 and E-cadherin positivity rates were significantly interrelated in NMA, but not in MA, group. In NMA group, there was no significant relation between either GPC3 or E-cadherin expression and the clinicopathological features. In a univariate analysis, neither GPC3 nor E-cadherin expression showed a significant impact on disease-free survival (DFS) or overall survival (OS). GPC3 and E-cadherin expressions are not independent prognostic factors in CRC. However, expressions of both are significantly interrelated in NMA patients, suggesting an excellent interplay between both, in contrast to MA. Further molecular studies are needed to further explore the relationship between GCP3 and E-cadherin in colorectal carcinogenesis.

  5. Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin-Deficient Cells.

    PubMed

    Telford, Bryony J; Chen, Augustine; Beetham, Henry; Frick, James; Brew, Tom P; Gould, Cathryn M; Single, Andrew; Godwin, Tanis; Simpson, Kaylene J; Guilford, Parry

    2015-05-01

    The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. ©2015 American Association for Cancer Research.

  6. BDE-99 (2,2',4,4',5-pentabromodiphenyl ether) triggers epithelial-mesenchymal transition in colorectal cancer cells via PI3K/Akt/Snail signaling pathway.

    PubMed

    Wang, Fei; Ruan, Xin-Jian; Zhang, Hong-Yan

    2015-01-01

    The gut is in direct contact with BDE-99 (2,2',4,4',5-pentabromodiphenyl ether), one of the most abundant PBDE congeners in the environment and in human tissues. The objective of the present study was to investigate the effects of BDE-99 on colorectal cancer (CRC) cells. The effects of BDE-99 on cell proliferation were measured by CCK-8 assay in the CRC cell line HCT-116. Wound healing and transwell migration/invasion assays were used to test the migration and invasion of CRC cells. Factors related to epithelial-to-mesenchymal transition (EMT) were measured by real-time PCR and Western blot analysis for mRNA and protein levels, respectively. BDE-99 was found to increase migration and invasion and trigger EMT in HCT-116 cells; EMT was characterized by cells acquiring mesenchymal spindle-like morphology and by increased expression of N-cadherin with a concomitant decrease in E-cadherin. BDE-99 treatment also increased the protein and mRNA levels of the transcription factor Snail, but not Slug, Twist, and ZEB1. Knockdown of Snail by siRNA significantly attenuated BDE-99-induced EMT in HCT-116 cells, suggesting that Snail plays a crucial role in BDE-99-induced EMT. The PI3K/Akt inhibitor LY294002 completely blocked BDE-99-induced Snail and invasion of HCT-116 cells. Our results revealed that BDE-99 can trigger the EMT of colon cancer cells via the PI3K/AKT/Snail signaling pathway. This study provides new insight into the tumorigenesis and metastasis of CRC stimulated by BDE-99 and possibly other PBDE congeners.

  7. Nickel-induced Epithelial-Mesenchymal Transition by Reactive Oxygen Species Generation and E-cadherin Promoter Hypermethylation*

    PubMed Central

    Wu, Chih-Hsien; Tang, Sheau-Chung; Wang, Po-Hui; Lee, Huei; Ko, Jiunn-Liang

    2012-01-01

    Epithelial-mesenchymal transition (EMT) is considered a critical event in the pathogenesis of lung fibrosis and tumor metastasis. During EMT, the expression of differentiation markers switches from cell-cell junction proteins such as E-cadherin to mesenchymal markers such as fibronectin. Although nickel-containing compounds have been shown to be associated with lung carcinogenesis, the role of nickel in the EMT process in bronchial epithelial cells is not clear. The aim of this study was to examine whether nickel contributes to EMT in human bronchial epithelial cells. We also attempted to clarify the mechanisms involved in NiCl2-induced EMT. Our results showed that NiCl2 induced EMT phenotype marker alterations such as up-regulation of fibronectin and down-regulation of E-cadherin. In addition, the potent antioxidant N-acetylcysteine blocked EMT and expression of HIF-1α induced by NiCl2, whereas the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine restored the down-regulation of E-cadherin induced by NiCl2. Promoter hypermethylation of E-cadherin, determined by quantitative real time methyl-specific PCR and bisulfate sequencing, was also induced by NiCl2. These results shed new light on the contribution of NiCl2 to carcinogenesis. Specifically, NiCl2 induces down-regulation of E-cadherin by reactive oxygen species generation and promoter hypermethylation. This study demonstrates for the first time that nickel induces EMT in bronchial epithelial cells. PMID:22648416

  8. Cooperativity of E-cadherin and Smad4 loss to promote diffuse-type gastric adenocarcinoma and metastasis.

    PubMed

    Park, Jun Won; Jang, Seok Hoon; Park, Dong Min; Lim, Na Jung; Deng, Chuxia; Kim, Dae Yong; Green, Jeffrey E; Kim, Hark Kyun

    2014-08-01

    Loss of E-cadherin (CDH1), Smad4, and p53 has been shown to play an integral role in gastric, intestinal, and breast cancer formation. Compound conditional knockout mice for Smad4, p53, and E-cadherin were generated to define and compare the roles of these genes in gastric, intestinal, and breast cancer development by crossing with Pdx-1-Cre, Villin-Cre, and MMTV-Cre transgenic mice. Interestingly, gastric adenocarcinoma was significantly more frequent in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice than in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(+/+) mice, demonstrating that Cdh1 heterozygosity accelerates the development and progression of gastric adenocarcinoma, in combination with loss of Smad4 and p53. Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice developed gastric adenocarcinomas without E-cadherin expression. However, intestinal and mammary adenocarcinomas with the same genetic background retained E-cadherin expression and were phenotypically similar to mice with both wild-type Cdh1 alleles. Lung metastases were identified in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice, but not in the other genotypes. Nuclear β-catenin accumulation was identified at the invasive tumor front of gastric adenocarcinomas arising in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice. This phenotype was less prominent in mice with intact E-cadherin or Smad4, indicating that the inhibition of β-catenin signaling by E-cadherin or Smad4 downregulates signaling pathways involved in metastases in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice. Knockdown of β-catenin significantly inhibited the migratory activity of Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) cell lines. Thus, loss of E-cadherin and Smad4 cooperates with p53 loss to promote the development and metastatic progression of gastric adenocarcinomas, with similarities to human gastric adenocarcinoma. This study demonstrates that inhibition of β-catenin is a converging node for the antimetastatic signaling

  9. Involvement of microRNAs-MMPs-E-cadherin in the migration and invasion of gastric cancer cells infected with Helicobacter pylori.

    PubMed

    Yang, Yongmei; Li, Xiaohui; Du, Jie; Yin, Youcong; Li, Yuanjian

    2018-06-15

    It has been found that Helicobacter pylori (H. pylori)is not only the main cause of gastric cancer, but also closely related to its metastasis. E-cadherin cleavage induced by matrix metalloproteinases (MMPs) plays an important role in the tumor metastasis. In the present study, we investigated the role of microRNAs-MMPs-E-cadherin in migration and invasion of gastric cancer cells treated with H. pylori. The results showed that H. pylori induced migration and invasion of SGC-7901 cells with a down-regulation of E-cadherin expression, which were abolished by MMPs knock down, E-cadherin overexpression, mimics of miR128 and miR148a. MiR128/miR148a inhibitors restored MMP-3/MMP-7 expression, down-regulated E-cadherin level, and accelerated cellular migration and invasion. This study suggests that H. pylori induces migration and invasion of gastric cancer cells through reduction of E-cadherin function by activation of MMP-3, - 7. The present results also suggest that the activated MMPs/E-cadherin pathway is related with down-regulation of miR128/miR148a in the human gastric cancer cells infected with H. pylori. Copyright © 2018. Published by Elsevier Inc.

  10. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition.

    PubMed

    Li, Qisheng; Sodroski, Catherine; Lowey, Brianna; Schweitzer, Cameron J; Cha, Helen; Zhang, Fang; Liang, T Jake

    2016-07-05

    Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.

  11. Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin

    PubMed Central

    Dias, Ana M.; Oliveira, Patrícia; Cabral, Joana; Seruca, Raquel; Oliveira, Carla; Morgado-Díaz, José Andrés; Reis, Celso A.; Pinho, Salomé S.

    2013-01-01

    Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications. PMID:24282611

  12. E-cadherin roles in animal biology: A perspective on thyroid hormone-influence.

    PubMed

    Izaguirre, María Fernanda; Casco, Victor Hugo

    2016-11-04

    The establishment, remodeling and maintenance of tissular architecture during animal development, and even across juvenile to adult life, are deeply regulated by a delicate interplay of extracellular signals, cell membrane receptors and intracellular signal messengers. It is well known that cell adhesion molecules (cell-cell and cell-extracellular matrix) play a critical role in these processes. Particularly, adherens junctions (AJs) mediated by E-cadherin and catenins determine cell-cell contact survival and epithelia function. Consequently, this review seeks to encompass the complex and prolific knowledge about E-cadherin roles during physiological and pathological states, particularly focusing on the influence exerted by the thyroid hormone (TH).

  13. Ezrin and E-cadherin expression profile in cervical cytology: a prognostic marker for tumor progression in cervical cancer.

    PubMed

    Zacapala-Gómez, Ana E; Navarro-Tito, Napoleón; Alarcón-Romero, Luz Del C; Ortuño-Pineda, Carlos; Illades-Aguiar, Berenice; Castañeda-Saucedo, Eduardo; Ortiz-Ortiz, Julio; Garibay-Cerdenares, Olga L; Jiménez-López, Marco A; Mendoza-Catalán, Miguel A

    2018-03-27

    Cervical cancer (CC) is the fourth cause of mortality by neoplasia in women worldwide. The use of immunomarkers is an alternative tool to complement currently used algorithms for detection of cancer, and to improve selection of therapeutic schemes. Aberrant expression of Ezrin and E-cadherin play an important role in tumor invasion. In this study we analyzed Ezrin and E-cadherin expression in liquid-based cervical cytology samples, and evaluated their potential use as prognostic immunomarkers. Immunocytochemical staining of Ezrin and E-cadherin was performed in cervical samples of 125 patients. The cytological or histological diagnostic was performed by Papanicolaou staining or H&E staining, respectively. HPV genotyping was determined using INNO-LIPA Genotyping Extra kit and the HPV physical status by in situ hybridization. Ezrin expression in HaCaT, HeLa and SiHa cell lines was determined by immunocytochemistry, immunofluorescence and Western blot. High Ezrin expression was observed in cervical cancer samples (70%), samples with multiple infection by HR-HPV (43%), and samples with integrated viral genome (47%). High Ezrin expression was associated with degree of SIL, viral genotype and physical status. In contrast, low E-cadherin expression was found in cervical cancer samples (95%), samples with multiple infection by HR-HPV/LR-HPV (87%) and integrated viral genome (72%). Low E-cadherin expression was associated with degree of SIL and viral genotype. Interestingly, Ezrin nuclear staining was associated with degree of SIL and viral genotype. High Ezrin expression, high percent of nuclear Ezrin and low E-cadherin expression behaved as risk factors for progression to HSIL and cervical cancer. Ezrin and E-cadherin expression profile in cervical cytology samples could be a potential prognostic marker, useful for identifying cervical lesions with a high-risk of progression to cervical cancer.

  14. Expression of Inapproptriate Cadherins in Human Breast Carcinomas

    DTIC Science & Technology

    2000-08-01

    fibroblast growth factor receptor signaling. * We showed that cadherin 11 acts in a manner... fibroblast growth factor receptor signaling; and that cadherin 11 promotes epithelial cell motility in a manner similar to N-cadherin. 28 N-Cadherin...levels of E-cadherin; and that N- cadherin-dependent motility may be mediated by fibroblast growth factor receptor signaling. 14. SUBJECT TERMS

  15. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    PubMed

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James

    2016-12-20

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  16. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth.

    PubMed

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-10-13

    Intercellular bridges called "ring canals" (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs' anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin-containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs' anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin-dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth.

  17. GPER activates Notch signaling in breast cancer cells and cancer-associated fibroblasts (CAFs).

    PubMed

    Pupo, Marco; Pisano, Assunta; Abonante, Sergio; Maggiolini, Marcello; Musti, Anna Maria

    2014-01-01

    The G protein-coupled receptor GPR30/GPER has been shown to mediate rapid effects of 17β-estradiol (E2) in diverse types of cancer cells. Here, we provide evidence for a novel crosstalk between GPER and the Notch signaling pathway in breast cancer cells and cancer-associated fibroblasts (CAFs). We show that E2 and the GPER selective ligand G-1 induce both the γ-secretase-dependent activation of Notch-1 and the expression of the Notch target gene Hes-1. These inductions are prevented by knocking down GPER or by using a dominant-negative mutant of the Notch transcriptional co-activator Master-mind like-1 (DN-MAML-1), hence suggesting the involvement of GPER in the Notch-dependent transcription. By performing chromatin-immunoprecipitation experiments and luciferase assays, we also demonstrate that E2 and G-1 induce the recruitment of the intracellular domain of Notch-1 (N1ICD) to the Hes-1 promoter and the transactivation of a Hes-1-reporter gene, respectively. Functionally, the E2 and G-1-induced migration of breast cancer cells and CAFs is abolished in presence of the γ-secretase inhibitor GSI or DN-MAML-1, which both inhibit the Notch signaling pathway. In addition, we demonstrate that E2 and G-1 prevent the expression of VE-Cadherin, while both compounds induce the expression of Snail, a Notch target gene acting as a repressor of cadherins expression. Notably, both GSI and DN-MAML-1 abolish the up-regulation of Snail-1 by E2 and G-1, whereas the use of GSI rescues VE-Cadherin expression. Taken together, our results prove the involvement of the Notch signaling pathway in mediating the effects of estrogenic GPER signaling in breast cancer cells and CAFs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Thrombomodulin reduces tumorigenic and metastatic potential of lung cancer cells by up-regulation of E-cadherin and down-regulation of N-cadherin expression.

    PubMed

    Zheng, Nana; Huo, Zihe; Zhang, Bin; Meng, Mei; Cao, Zhifei; Wang, Zhiwei; Zhou, Quansheng

    2016-08-05

    Thrombomodulin (TM) is an endothelial cell membrane protein and plays critical roles in anti-thrombosis, anti-inflammation, vascular endothelial protection, and is traditionally regarded as a "vascular protection god". In recent years, although TM has been reported to be down-regulated in a variety of malignant tumors including lung cancer, the role and mechanism of TM in lung cancer are enigmatic. In this study, we found that induction of TM overexpression by cholesterol-reducing drug atorvastatin significantly diminished the tumorigenic capability of the lung cancer cells. Moreover, we demonstrated that TM overexpression caused G0/G1 phase arrest and markedly reduced the colony forming capability of the cells. Furthermore, overexpression of TM inhibited cell migration and invasion. Consistently, depletion of TM promoted cell growth, reduced the cell population at the G0/G1 phase, and enhanced cell migratory ability. Mechanistic study revealed that TM up-regulated E-cadherin but down-regulated N-cadherin expression, resulting in reversal of epithelial-mesenchymal transition (EMT) in the lung cancer cells. Moreover, silencing TM expression led to decreased E-cadherin and increased N-cadherin. Taken together, our study suggests that TM functions as a tumor suppressive protein, providing a conceptual framework for inducing TM overexpression as a sensible strategy and approach for novel anti-lung cancer drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds.

    PubMed

    Tafrihi, Majid; Nakhaei Sistani, Roohollah

    2017-07-01

    Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.

  20. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Bin; Lee, Eun Byul; Cui, Jun

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced themore » expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.« less

  1. αE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion

    PubMed Central

    Benjamin, Jacqueline M.; Kwiatkowski, Adam V.; Yang, Changsong; Korobova, Farida; Pokutta, Sabine; Svitkina, Tatyana

    2010-01-01

    αE-catenin binds the cell–cell adhesion complex of E-cadherin and β-catenin (β-cat) and regulates filamentous actin (F-actin) dynamics. In vitro, binding of αE-catenin to the E-cadherin–β-cat complex lowers αE-catenin affinity for F-actin, and αE-catenin alone can bind F-actin and inhibit Arp2/3 complex–mediated actin polymerization. In cells, to test whether αE-catenin regulates actin dynamics independently of the cadherin complex, the cytosolic αE-catenin pool was sequestered to mitochondria without affecting overall levels of αE-catenin or the cadherin–catenin complex. Sequestering cytosolic αE-catenin to mitochondria alters lamellipodia architecture and increases membrane dynamics and cell migration without affecting cell–cell adhesion. In contrast, sequestration of cytosolic αE-catenin to the plasma membrane reduces membrane dynamics. These results demonstrate that the cytosolic pool of αE-catenin regulates actin dynamics independently of cell–cell adhesion. PMID:20404114

  2. Correlation between E-cadherin-regulated cell adhesion and human osteosarcoma MG-63 cell anoikis.

    PubMed

    Lin, Ding-Sheng; Cai, Le-Yi; Ding, Jian; Gao, Wei-Yang

    2014-01-01

    The aim of this study was to investigate the relationship between cell adhesion and anoikis evasion among human osteosarcoma cells (MG-63), and to further study the molecular mechanisms. Human osteosarcoma cells (MG-63) were assessed for apoptosis, and caspase-3, E-cadherin and β-catenin expression in EDTA and control non-EDTA groups. MG-63 cells were predominantly aggregated when in suspension, and the suspended cells were more dispersed in the EDTA group. Following culture in suspension for 24 h, 48 h, or 72 h, the rates of apoptosis were 34.88%±3.64%, 59.3%±7.22% and 78.5%±5.21% in the experimental group and 7.34%±2.13%, 14.7%±3.69%, and 21.4%±3.60% in the control group, respectively. Caspase-3 expression progressively increased and E-cadherin and β-catenin were decreased in the experimental group, whereas there was no change in the control group. MG-63 cells could avoid anoikis through cell adhesion, and E-cadherin might play a role in this process.

  3. E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97.

    PubMed

    Lock, John G; Hammond, Luke A; Houghton, Fiona; Gleeson, Paul A; Stow, Jennifer L

    2005-12-01

    E-cadherin is a cell-cell adhesion protein that is trafficked and delivered to the basolateral cell surface. Membrane-bound carriers for the post-Golgi exocytosis of E-cadherin have not been characterized. Green fluorescent protein (GFP)-tagged E-cadherin (Ecad-GFP) is transported from the trans-Golgi network (TGN) to the recycling endosome on its way to the cell surface in tubulovesicular carriers that resemble TGN tubules labeled by members of the golgin family of tethering proteins. Here, we examine the association of golgins with tubular carriers containing E-cadherin as cargo. Fluorescent GRIP domains from golgin proteins replicate the membrane binding of the full-length proteins and were coexpressed with Ecad-GFP. The GRIP domains of p230/golgin-245 and golgin-97 had overlapping but nonidentical distributions on the TGN; both domains were on TGN-derived tubules but only the golgin-97 GRIP domain coincided with Ecad-GFP tubules in live cells. When the Arl1-binding endogenous golgins, p230/golgin-245 and golgin-97 were displaced from Golgi membranes by overexpression of the p230 GRIP domain, trafficking of Ecad-GFP was inhibited. siRNA knockdown of golgin-97 also inhibited trafficking of Ecad-GFP. Thus, the GRIP domains of p230/golgin-245 and golgin-97 bind discriminately to distinct membrane subdomains of the TGN. Golgin-97 is identified as a selective and essential component of the tubulovesicular carriers transporting E-cadherin out of the TGN.

  4. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells

    PubMed Central

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B.; Biliran, Hector

    2016-01-01

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental

  5. E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium.

    PubMed

    Horne, Hisani N; Oh, Hannah; Sherman, Mark E; Palakal, Maya; Hewitt, Stephen M; Schmidt, Marjanka K; Milne, Roger L; Hardisson, David; Benitez, Javier; Blomqvist, Carl; Bolla, Manjeet K; Brenner, Hermann; Chang-Claude, Jenny; Cora, Renata; Couch, Fergus J; Cuk, Katarina; Devilee, Peter; Easton, Douglas F; Eccles, Diana M; Eilber, Ursula; Hartikainen, Jaana M; Heikkilä, Päivi; Holleczek, Bernd; Hooning, Maartje J; Jones, Michael; Keeman, Renske; Mannermaa, Arto; Martens, John W M; Muranen, Taru A; Nevanlinna, Heli; Olson, Janet E; Orr, Nick; Perez, Jose I A; Pharoah, Paul D P; Ruddy, Kathryn J; Saum, Kai-Uwe; Schoemaker, Minouk J; Seynaeve, Caroline; Sironen, Reijo; Smit, Vincent T H B M; Swerdlow, Anthony J; Tengström, Maria; Thomas, Abigail S; Timmermans, A Mieke; Tollenaar, Rob A E M; Troester, Melissa A; van Asperen, Christi J; van Deurzen, Carolien H M; Van Leeuwen, Flora F; Van't Veer, Laura J; García-Closas, Montserrat; Figueroa, Jonine D

    2018-04-26

    E-cadherin (CDH1) is a putative tumor suppressor gene implicated in breast carcinogenesis. Yet, whether risk factors or survival differ by E-cadherin tumor expression is unclear. We evaluated E-cadherin tumor immunohistochemistry expression using tissue microarrays of 5,933 female invasive breast cancers from 12 studies from the Breast Cancer Consortium. H-scores were calculated and case-case odds ratios (OR) and 95% confidence intervals (CIs) were estimated using logistic regression. Survival analyses were performed using Cox regression models. All analyses were stratified by estrogen receptor (ER) status and histologic subtype. E-cadherin low cases (N = 1191, 20%) were more frequently of lobular histology, low grade, >2 cm, and HER2-negative. Loss of E-cadherin expression (score < 100) was associated with menopausal hormone use among ER-positive tumors (ever compared to never users, OR = 1.24, 95% CI = 0.97-1.59), which was stronger when we evaluated complete loss of E-cadherin (i.e. H-score = 0), OR = 1.57, 95% CI = 1.06-2.33. Breast cancer specific mortality was unrelated to E-cadherin expression in multivariable models. E-cadherin low expression is associated with lobular histology, tumor characteristics and menopausal hormone use, with no evidence of an association with breast cancer specific survival. These data support loss of E-cadherin expression as an important marker of tumor subtypes.

  6. Left-right axis asymmetry determining human Cryptic gene is transcriptionally repressed by Snail.

    PubMed

    Gupta, Kartik; Pilli, Vijaya Satish Sekhar; Aradhyam, Gopala Krishna

    2016-10-28

    Establishment of the left-right axis is important for positioning organs asymmetrically in the developing vertebrate-embryo. A number of factors like maternally deposited molecules have emerged essential in initiating the specification of the axis; the downstream events, however, are regulated by signal-transduction and gene-expression changes identifying which remains a crucial challenge. The EGF-CFC family member Cryptic, that functions as a co-receptor for some TGF-beta ligands, is developmentally expressed in higher mammals and mutations in the gene cause loss or change in left-right axis asymmetry. Despite the strong phenotype, no transcriptional-regulator of this gene is known till date. Using promoter-analyses tools, we found strong evidence that the developmentally essential transcription factor Snail binds to the human Cryptic-promoter. We cloned the promoter-region of human Cryptic in a reporter gene and observed decreased Cryptic-promoter activation upon increasing Snail expression. Further, the expression of Cryptic is down-regulated upon exogenous Snail expression, validating the reporter assays and the previously identified role of Snail as a transcriptional repressor. Finally, we demonstrate using gel-shift assay that Snail in nuclear extract of PANC1 cells interacts with the promoter-construct bearing putative Snail binding sites and confirm this finding using chromatin immunoprecipitation assay. Snail represses the expression of human Cryptic and therefore, might affect the signaling via Nodal that has previously been demonstrated to specify the left-right axis using the EGF-CFC co-receptors.

  7. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS.

    PubMed

    Wilcz-Villega, E; McClean, S; O'Sullivan, M

    2014-03-01

    Increased intestinal permeability and altered expression of tight junction (TJ) proteins may be implicated in the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the expression of adherens junction (AJ) protein E-cadherin and TJ proteins zonula occludens (ZO)-1 and claudin (CLD)-1 and associations with IBS symptoms. Junctional proteins were immunostained in cecal biopsy tissue of Rome II IBS patients (n = 34) comprising both alternating (IBS-A) and diarrhea predominant (IBS-D) subtypes, and controls (n = 12). IBS symptom duration, abdominal pain severity and stool frequency were assessed for IBS patients. Protein expression was determined by immunofluorescence. E-cadherin and ZO-1 protein expression was significantly lower (p = 0.03 and p = 0.016, respectively) in the cecal surface epithelium of the IBS group comprising both IBS-A and IBS-D subtypes. CLD-1 expression was not significantly altered compared with controls. On subtype analysis, ZO-1 expression was significantly reduced in both IBS-A and IBS-D compared with controls, whereas E-cadherin was reduced only in IBS-A. Lower E-cadherin expression was associated with longer symptoms duration specifically in IBS-A patients (rs = -0.76, p = 0.004). Reduced E-cadherin associated with abdominal pain severity in the overall IBS group (rs = -0.36, p = 0.041), but this association was unrelated to IBS subtype. E-cadherin protein expression in the cecum was significantly lower in IBS-A compared with controls and associated with longstanding symptoms. E-cadherin was further associated with abdominal pain severity in the IBS group overall, but unrelated to IBS subtype. Altered E-cadherin expression may provide novel insights into mechanisms underlying intestinal barrier dysfunction in IBS. © 2013 John Wiley & Sons Ltd.

  8. Targeting the Nuclear Cathepsin L CCAAT Displacement Protein/Cut Homeobox Transcription Factor-Epithelial Mesenchymal Transition Pathway in Prostate and Breast Cancer Cells with the Z-FY-CHO Inhibitor

    PubMed Central

    Burton, Liza J.; Dougan, Jodi; Jones, Jasmine; Smith, Bethany N.; Randle, Diandra; Henderson, Veronica

    2016-01-01

    ABSTRACT The epithelial mesenchymal transition (EMT) promotes tumor migration and invasion by downregulating epithelial markers such as E-cadherin and upregulating mesenchymal markers such as vimentin. Cathepsin L (Cat L) is a cysteine protease that can proteolytically activate CCAAT displacement protein/cut homeobox transcription factor (CUX1). We hypothesized that nuclear Cat L may promote EMT via CUX1 and that this could be antagonized with the Cat L-specific inhibitor Z-FY-CHO. Mesenchymal prostate (ARCaP-M and ARCaP-E overexpressing Snail) and breast (MDA-MB-468, MDA-MB-231, and MCF-7 overexpressing Snail) cancer cells expressed lower E-cadherin activity, higher Snail, vimentin, and Cat L activity, and a p110/p90 active CUX1 form, compared to epithelial prostate (ARCaP-E and ARCaP-Neo) and breast (MCF-7 and MCF-7 Neo) cancer cells. There was increased binding of CUX1 to Snail and the E-cadherin promoter in mesenchymal cells compared to epithelial prostate and breast cells. Treatment of mesenchymal cells with the Cat L inhibitor Z-FY-CHO led to nuclear-to-cytoplasmic relocalization of Cat L, decreased binding of CUX1 to Snail and the E-cadherin promoter, reversed EMT, and decreased cell migration/invasion. Overall, our novel data suggest that a positive feedback loop between Snail-nuclear Cat L-CUX1 drives EMT, which can be antagonized by Z-FY-CHO. Therefore, Z-FY-CHO may be an important therapeutic tool to antagonize EMT and cancer progression. PMID:27956696

  9. Targeting the Nuclear Cathepsin L CCAAT Displacement Protein/Cut Homeobox Transcription Factor-Epithelial Mesenchymal Transition Pathway in Prostate and Breast Cancer Cells with the Z-FY-CHO Inhibitor.

    PubMed

    Burton, Liza J; Dougan, Jodi; Jones, Jasmine; Smith, Bethany N; Randle, Diandra; Henderson, Veronica; Odero-Marah, Valerie A

    2017-03-01

    The epithelial mesenchymal transition (EMT) promotes tumor migration and invasion by downregulating epithelial markers such as E-cadherin and upregulating mesenchymal markers such as vimentin. Cathepsin L (Cat L) is a cysteine protease that can proteolytically activate CCAAT displacement protein/cut homeobox transcription factor (CUX1). We hypothesized that nuclear Cat L may promote EMT via CUX1 and that this could be antagonized with the Cat L-specific inhibitor Z-FY-CHO. Mesenchymal prostate (ARCaP-M and ARCaP-E overexpressing Snail) and breast (MDA-MB-468, MDA-MB-231, and MCF-7 overexpressing Snail) cancer cells expressed lower E-cadherin activity, higher Snail, vimentin, and Cat L activity, and a p110/p90 active CUX1 form, compared to epithelial prostate (ARCaP-E and ARCaP-Neo) and breast (MCF-7 and MCF-7 Neo) cancer cells. There was increased binding of CUX1 to Snail and the E-cadherin promoter in mesenchymal cells compared to epithelial prostate and breast cells. Treatment of mesenchymal cells with the Cat L inhibitor Z-FY-CHO led to nuclear-to-cytoplasmic relocalization of Cat L, decreased binding of CUX1 to Snail and the E-cadherin promoter, reversed EMT, and decreased cell migration/invasion. Overall, our novel data suggest that a positive feedback loop between Snail-nuclear Cat L-CUX1 drives EMT, which can be antagonized by Z-FY-CHO. Therefore, Z-FY-CHO may be an important therapeutic tool to antagonize EMT and cancer progression. Copyright © 2017 American Society for Microbiology.

  10. Colorectal adenocarcinoma with mucinous component: relation of MMP-13, EGFR, and E-cadherin expressions to clinicopathological features and prognosis.

    PubMed

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira Kamal; Aziz, Azza Abdel

    2015-06-01

    The aim of this study was to compare colorectal adenocarcinoma with mucinous component, ordinary adenocarcinoma (OA) and mucinous adenocarcinoma (MA) regarding clinicopathological parameters, survival, EGFR, MMP-13, and E-cadherin. We studied tumor tissue specimens from 28 patients with adenocarcinoma with mucinous component, 47 with OA, and 56 with MA, who underwent radical surgery from January 2007 to January 2012 at the Gastroenterology Centre, Mansoura University, Egypt. High density manual tissue microarrays were constructed and immunohistochemistry for EGFR, MMP-13, and E-cadherin was done. Colorectal adenocarcinoma with mucinous component (AWMC) was significantly associated with more perineural invasion, lower EGFR, and MMP-13 expressions than OA, with no difference in E-cadherin expression. Conversely, only microscopic abscess formation was significantly more with colorectal AWMC than MC with no difference in EGFR, MMP-13 and E-cadherin expression between both groups. Colorectal AWMC showed a better survival than MA with no difference with OA. In a univariate analysis, EGFR, MMP-13, and E-cadherin expressions did not show a significant impact on disease-free or overall survival in patients with colorectal AWMC. Colorectal AWMC remains a vague entity that resembles OA in some clinicopathological and molecular respects as well as MA. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  11. Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity.

    PubMed

    Bosco, Domenico; Rouiller, Dominique G; Halban, Philippe A

    2007-07-01

    The aim of this study was to assess whether the expression of E-cadherin at the surface of rat beta-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all beta-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two beta-cell sub-populations were sorted: one that was poorly labeled ('ECad-low') and another that was highly labeled ('ECad-high'). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high beta-cells was higher than that from ECad-low beta-cells. Ca2+-dependent beta-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of beta-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochalasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet beta-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of beta-cell function.

  12. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Ming, Jia; Xu, Yan

    2015-02-06

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we foundmore » that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.« less

  13. Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Eckardt, Dominik; Ritson, Sarah; Eastham, Angela M; Bobola, Nicoletta; Russell, Angela; Davies, Steve; Kemler, Rolf; Merry, Catherine L R; Ward, Christopher M

    2009-09-01

    We have previously demonstrated that differentiation of embryonic stem (ES) cells is associated with downregulation of cell surface E-cadherin. In this study, we assessed the function of E-cadherin in mouse ES cell pluripotency and differentiation. We show that inhibition of E-cadherin-mediated cell-cell contact in ES cells using gene knockout (Ecad(-/-)), RNA interference (EcadRNAi), or a transhomodimerization-inhibiting peptide (CHAVC) results in cellular proliferation and maintenance of an undifferentiated phenotype in fetal bovine serum-supplemented medium in the absence of leukemia inhibitory factor (LIF). Re-expression of E-cadherin in Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells restores cellular dependence to LIF supplementation. Although reversal of the LIF-independent phenotype in Ecad(-/-) ES cells is dependent on the beta-catenin binding domain of E-cadherin, we show that beta-catenin null (betacat(-/-)) ES cells also remain undifferentiated in the absence of LIF. This suggests that LIF-independent self-renewal of Ecad(-/-) ES cells is unlikely to be via beta-catenin signaling. Exposure of Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells to the activin receptor-like kinase inhibitor SB431542 led to differentiation of the cells, which could be prevented by re-expression of E-cadherin. To confirm the role of transforming growth factor beta family signaling in the self-renewal of Ecad(-/-) ES cells, we show that these cells maintain an undifferentiated phenotype when cultured in serum-free medium supplemented with Activin A and Nodal, with fibroblast growth factor 2 required for cellular proliferation. We conclude that transhomodimerization of E-cadherin protein is required for LIF-dependent ES cell self-renewal and that multiple self-renewal signaling networks subsist in ES cells, with activity dependent upon the cellular context.

  14. N-cadherin is required for cytodifferentiation during zebrafish odontogenesis.

    PubMed

    Verstraeten, B; van Hengel, J; Sanders, E; Van Roy, F; Huysseune, A

    2013-04-01

    N-cadherin is a well-studied classic cadherin involved in multiple developmental processes and is also known to have a signaling function. Using the zebrafish (Danio rerio) as a model, we tested the hypothesis that tooth morphogenesis is accompanied by dynamic changes in N-cadherin distribution and that absence of N-cadherin disturbs tooth development. N-cadherin, encoded by the gene cdh2, is absent during the initiation and morphogenesis stages of both primary (first-generation) and replacement teeth, as demonstrated by immunohistochemistry. However, N-cadherin is up-regulated at the onset of differentiation of cells of the inner dental epithelium and the dental papilla, i.e., the ameloblasts and odontoblasts, respectively. In the inner dental epithelium, N-cadherin is co-expressed with E-cadherin, excluding the occurrence of cadherin switching such as observed during human tooth development. While early lethality of N-cadherin knockout mice prevents any functional study of N-cadherin in mouse odontogenesis, zebrafish parachute (pac) mutants, deficient for N-cadherin, survive beyond the age when primary teeth normally start to form. In these mutants, the first tooth forms, but its development stops at the early cytodifferentiation stage. N-cadherin deficiency also completely inhibits the development of the other first-generation teeth, possibly due to the absence of N-cadherin signaling once the first tooth has differentiated.

  15. IGF-1 induces the epithelial-mesenchymal transition via Stat5 in hepatocellular carcinoma.

    PubMed

    Zhao, Chuanzong; Wang, Qian; Wang, Ben; Sun, Qi; He, Zhaobin; Hong, Jianguo; Kuehn, Florian; Liu, Enyu; Zhang, Zongli

    2017-12-19

    It has been reported that the epithelial-mesenchymal transition (EMT) plays an important role in hepatocellular carcinoma (HCC). However, the relationship between the insulin-like growth factor-1 (IGF-1) and EMT of HCC was not fully elucidated. In the present work, we found that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively associated with IGF-1R expression, while E-cadherin expression was negatively associated with IGF-1 expression in human HCC samples. Furthermore, we observed that IGF-1 up-regulated the expression of N-cadherin, Vimentin, Snail1, Snail2 and Twist1, and down-regulated the expression of E-cadherin. In addition, Stat5 was induced in IGF-1-treated HepG2 and Hep3B cells, and Stat5 inhibition or siRNA significantly affected IGF-1-induced EMT in HepG2 and Hep3B cells. In conclusion, IGF-1 induces EMT of HCC via Stat5 signaling pathway. Thus, IGF-1/Stat5 can be recommended as a potential and novel therapeutic strategy for HCC patients.

  16. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium

    PubMed Central

    Faris, Andrea N.; Ganesan, Shyamala; Chattoraj, Asamanja; Chattoraj, Sangbrita S.; Comstock, Adam T.; Unger, Benjamin L.; Hershenson, Marc B.

    2016-01-01

    Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia. PMID:27119973

  17. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae.

    PubMed

    Luo, Wen-Wei; Wang, Xin-Wei; Ma, Rui; Chi, Fang-Lu; Chen, Ping; Cong, Ning; Gu, Yu-Yan; Ren, Dong-Dong; Yang, Juan-Mei

    2018-01-01

    Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  18. Comparative study of the Ar and He atmospheric pressure plasmas on E-cadherin protein regulation for plasma-mediated transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June

    2018-05-01

    The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.

  19. Plasticity as Phenotype: G x E Interaction in a Freshwater Snail

    NASA Astrophysics Data System (ADS)

    Brunkow, P. E.; Calloway, S. A.

    2005-05-01

    Plasticity in morphological development allows species to accommodate environmental variation experienced during growth; however, genetic variation for phenotypic plasticity per se has been relatively under-studied. We utilized the well-documented plastic response of shell development to predator cues in a freshwater snail to quantify genetic variation for plasticity in growth rate and shell shape. Field-caught pairs of snails reproduced in the laboratory to create families of full siblings, which were then divided and allowed to grow in control and predator cue treatments. Predator (crayfish) cues had significant effects on both size-corrected growth rate and shell shape; family identity also significantly affected both final shell shape and growth rate. The interaction between predator treatment and family identity significantly affected snail growth rate but not final shell shape, suggesting genetic variation in the plastic response to predator cues for a physiological variable (growth rate) but not for a variable known to mechanically reduce the risk of predation (shell shape), at least in this population of snails. The possibility that risk of multiple modes of predation (i.e., both fish and crayfish) in some populations might maintain genetic variation in morphological plasticity is discussed.

  20. Fragments of e-Cadherin as Biomarkers of Non-erosive Reflux Disease.

    PubMed

    Jovov, Biljana; Reed, Craig C; Shaheen, Nicholas J; Pruitt, Amy; Ferrell, Kathleen; Orlando, Geraldine S; Djukic, Zorka; Orlando, Roy C

    2018-03-01

    Approximately, 20% of patients with heartburn and normal endoscopic findings do not symptomatically improve on proton pump inhibitor (PPI) therapy making diagnosis and treatment uncertain. A biomarker distinguishing PPI-responsive from PPI-refractory heartburn is desirable. We performed a pilot study assessing whether carboxy(C)-terminal fragments (CTFs) of e-cadherin in esophageal biopsies or amino(N)-terminal fragments (NTFs) of e-cadherin in serum could serve this purpose. Twenty-nine patients with endoscopy-negative heartburn had esophageal biopsies for CTFs on Western blot and blood for serum NTFs on ELISA. All patients received dexlansoprazole 30 mg daily for 4 weeks, and heartburn was assessed by daily diary entry. Post-treatment blood samples were obtained for serum NTFs. A control group without GERD symptoms (n = 6) had biopsies for CTFs and a second control group (n = 20) blood serum for serum NTFs. Twenty-seven of 29 patients (93.1%) with endoscopy-negative heartburn, but 0 of 6 controls, were positive for CTFs. All patients and controls had measureable serum NTFs, but mean NTFs were significantly higher in those with PPI-responsive heartburn compared to those with PPI-refractory heartburn and controls. Following treatment, 24 of 29 (82.8) patients had relief of heartburn, which associated with a decline in mean NTFs compared to controls. NTFs in PPI-refractory patients (n = 5) were similar to controls before and after PPI therapy. When heartburn responds to PPI, elevated serum NTFs decline to normal. These data suggest that cleaved products of e-cadherin may serve as biomarkers of NERD. Further data are needed to assess and confirm this concept.

  1. [Effect of genetics, epigenetics and variations in the transcriptional expression of cadherin-E in breast cancer susceptibility].

    PubMed

    Aristizábal-Pachón, Andrés Felipe; Takahashi, Catarina Satie

    2016-12-01

    Cadherin-E (CDH1) is an important regulator of epithelial-mesenchymal transition, invasion and metastasis in many carcinomas. However, germinal epimutations and mutations effect in breast cancer susceptibility is not clear. To evaluate rs334558 polymorphism, promoter methylation status and CDH1 expression profile in breast cancer patients. We collected peripheral blood samples from 102 breast cancer patients and 102 healthy subjects. The identification of rs334558 polymorphism was performed using PCR-RFLP, while methylation-specific PCR (MSP) and methylation-sensitive high-resolution melting (MS-HRM) were used to explore CDH1 methylation status; finally, CDH1 transcriptional expression profile was evaluated using RT-qPCR. We found no association between rs334558 polymorphism and breast cancer. Aberrant promoter methylation profile was found in breast cancer patients and it was related with early cancer stages. CDH1 down-regulation was significantly associated with metastasis and promoter methylation. CDH1 alterations were associated with invasion and metastasis in breast cancer. Our results offer further evidence of CDH1 relevance in breast cancer development and progression.

  2. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin

    PubMed Central

    Farr, Glen A.; Hull, Michael; Stoops, Emily H.; Bateson, Rosalie; Caplan, Michael J.

    2015-01-01

    Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking. PMID:26424804

  3. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    PubMed

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  4. Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells.

    PubMed

    Lee, K H; Choi, E Y; Hyun, M S; Jang, B I; Kim, T N; Kim, S W; Song, S K; Kim, J H; Kim, J-R

    2007-01-01

    Proteolytic shedding of the ectodomain of a variety of transmembrane proteins, including cell-to-cell adhesion molecules, has been observed in solid cancers. We have investigated whether extracellular cleavage of E-cadherin mediated by matrix metalloproteinase-7 (MMP-7) is involved in hepatocyte growth factor (HGF) induced in vitro invasion in stomach cancer cells. The effects of HGF on the expression of E-cadherin/beta-catenin and MMP-7 at both the protein and mRNA levels were assessed in stomach cancer cells, NUGC-3 and MKN-28, and in cells in which the expression of MMP-7 was downregulated by transfection with a MMP-7 short hairpin RNA plasmid. Treatment with HGF increased the extracellular cleavage of E-cadherin and the release of MMP-7 and reduced the level of E-cadherin in a dose- and time-dependent manner. HGF treatment repressed the phosphorylation of beta-catenin in a Triton-soluble fraction, but enhanced this phosphorylation in a Triton-insoluble fraction. The association of E-cadherin with beta-catenin was decreased by HGF treatment in the Triton-soluble fraction. In addition, treatment of MMP-7 short hairpin RNA transfected NUGC-3 cells with HGF resulted in no extracellular cleavage of E-cadherin and also decreased the in vitro cell invasion. These results suggest that incubation with HGF mediated the release of MMP-7, resulting in extracellular cleavage of E-cadherin from stomach cancer cells. This might be a key mechanism in HGF-induced in vitro invasion and metastasis. Copyright 2007 S. Karger AG, Basel.

  5. E-cadherin germline mutation carriers: clinical management and genetic implications.

    PubMed

    Corso, Giovanni; Figueiredo, Joana; Biffi, Roberto; Trentin, Chiara; Bonanni, Bernardo; Feroce, Irene; Serrano, Davide; Cassano, Enrico; Annibale, Bruno; Melo, Soraia; Seruca, Raquel; De Lorenzi, Francesca; Ferrara, Francesco; Piagnerelli, Riccardo; Roviello, Franco; Galimberti, Viviana

    2014-12-01

    Hereditary diffuse gastric cancer is an autosomic dominant syndrome associated with E-cadherin protein (CDH1) gene germline mutations. Clinical criteria for genetic screening were revised in 2010 by the International Gastric Cancer Linkage Consortium at the Cambridge meeting. About 40 % of families fulfilling clinical criteria for this inherited disease present deleterious CDH1 germline mutations. Lobular breast cancer is a neoplastic condition associated with hereditary diffuse gastric cancer syndrome. E-cadherin constitutional mutations have been described in both settings, in gastric and breast cancers. The management of CDH1 asymptomatic mutation carriers requires a multidisciplinary approach; the only life-saving procedure is the prophylactic total gastrectomy after thorough genetic counselling. Several prophylactic gastrectomies have been performed to date; conversely, no prophylactic mastectomies have been described in CDH1 mutant carriers. However, the recent discovery of novel germline alterations in pedigree clustering only for lobular breast cancer opens up a new debate in the management of these individuals. In this critical review, we describe the clinical management of CDH1 germline mutant carriers providing specific recommendations for genetic counselling, clinical criteria, surveillance and/ or prophylactic surgery.

  6. Disrupting Androgen Receptor Signaling Induces Snail-Mediated Epithelial-Mesenchymal Plasticity in Prostate Cancer.

    PubMed

    Miao, Lu; Yang, Lin; Li, Rui; Rodrigues, Daniel N; Crespo, Mateus; Hsieh, Jer-Tsong; Tilley, Wayne D; de Bono, Johann; Selth, Luke A; Raj, Ganesh V

    2017-06-01

    Epithelial-to-mesenchymal plasticity (EMP) has been linked to metastasis, stemness, and drug resistance. In prostate cancer, EMP has been associated with both suppression and activation of the androgen receptor (AR) signaling. Here we investigated the effect of the potent AR antagonist enzalutamide on EMP in multiple preclinical models of prostate cancer and patient tissues. Enzalutamide treatment significantly enhanced the expression of EMP drivers (ZEB1, ZEB2, Snail, Twist, and FOXC2) and mesenchymal markers (N-cadherin, fibronectin, and vimentin) in prostate cancer cells, enhanced prostate cancer cell migration, and induced prostate cancer transformation to a spindle, fibroblast-like morphology. Enzalutamide-induced EMP required concomitant suppression of AR signaling and activation of the EMP-promoting transcription factor Snail, as evidenced by both knockdown and overexpression studies. Supporting these findings, AR signaling and Snail expression were inversely correlated in C4-2 xenografts, patient-derived castration-resistant metastases, and clinical samples. For the first time, we elucidate a mechanism explaining the inverse relationship between AR and Snail. Specifically, we found that AR directly repressed SNAI1 gene expression by binding to specific AR-responsive elements within the SNAI1 promoter. Collectively, our findings demonstrate that de-repression of Snail and induction of EMP is an adaptive response to enzalutamide with implications for therapy resistance. Cancer Res; 77(11); 3101-12. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. CD147 Induces Epithelial-to-Mesenchymal Transition by Disassembling Cellular Apoptosis Susceptibility Protein/E-Cadherin/β-Catenin Complex in Human Endometriosis.

    PubMed

    Wang, Chaoqun; Zhang, Jieting; Fok, Kin Lam; Tsang, Lai Ling; Ye, Mei; Liu, Jianni; Li, Fanghong; Zhao, Allan Zijian; Chan, Hsiao Chang; Chen, Hao

    2018-04-06

    Epithelial-to-mesenchymal transition (EMT) is postulated to be a prerequisite for the establishment of endometriosis (EMS), a common reproductive disorder in women. Our previous studies have demonstrated the elevated expression of transmembrane glycoprotein CD147 and its prosurvival effect on abnormal cells in endometriosis. Intriguingly, CD147 is known to promote EMT in cancers. However, the involvement of CD147 in EMT during the establishment of endometriosis remains incompletely understood. We found that CD147 promotes EMT in human endometrial adenocarcinoma cell line Ishikawa. We identified a novel CD147-interacting partner, cellular apoptosis susceptibility protein (CAS), which stabilized the interaction between E-cadherin (E-cad) and β-catenin (β-cat) by forming the CAS/E-cad/β-cat complex. Down-regulation of CAS led to the release and nuclear translocation of β-cat from E-cad, resulting in the overexpression of the EMT-promoting gene SNAIL. Interestingly, overexpression of CD147 impaired the interaction between CAS and E-cad and triggered the release of β-cat from the CAS/E-cad/β-cat complex, which in turn led to EMT. Furthermore, CAS was down-regulated in EMS, with elevated levels of CD147 and nuclear β-cat. These findings suggest a previously undefined role of CAS in regulating EMT and reveal the involvement of a CD147-induced EMT signaling pathway in pathogenic progression of EMS. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin.

    PubMed

    Hoh, Brian L; Rojas, Kelley; Lin, Li; Fazal, Hanain Z; Hourani, Siham; Nowicki, Kamil W; Schneider, Matheus B; Hosaka, Koji

    2018-04-13

    Estrogen deficiency is associated with the development of cerebral aneurysms; however, the mechanism remains unknown. We explored the pathway of cerebral aneurysm development by investigating the potential link between estrogen deficiency and inflammatory factors. First, we established the role of interleukin-17 (IL-17)A. We performed a cytokine screen demonstrating that IL-17A is significantly expressed in mouse and human aneurysms ( P =0.03). Likewise, IL-17A inhibition was shown to prevent aneurysm formation by 42% ( P =0.02) and rupture by 34% ( P <0.05). Second, we found that estrogen deficiency upregulates T helper 17 cells and IL-17A and promotes aneurysm rupture. Estrogen-deficient mice had more ruptures than control mice (47% versus 7%; P =0.04). Estradiol supplementation or IL-17A inhibition decreased the number of ruptures in estrogen-deficient mice (estradiol 6% versus 37%; P =0.04; IL-17A inhibition 18% versus 47%; P =0.018). Third, we found that IL-17A-blockade protects against aneurysm formation and rupture by increased E-cadherin expression. IL-17-inhibited mice had increased E-cadherin expression ( P =0.003). E-cadherin inhibition reversed the protective effect of IL-17A inhibition and increased the rate of aneurysm formation (65% versus 28%; P =0.04) and rupture (12% versus 0%; P =0.22). However, E-cadherin inhibition alone does not significantly increase aneurysm formation in normal mice or in estrogen-deficient mice. In cell migration assays, E-cadherin inhibition promoted macrophage infiltration across endothelial cells ( P <0.05), which may be the mechanism for the estrogen deficiency/IL-17/E-cadherin aneurysm pathway. Our data suggest that estrogen deficiency promotes cerebral aneurysm rupture by upregulating IL-17A, which downregulates E-cadherin, encouraging macrophage infiltration in the aneurysm vessel wall. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src

    PubMed Central

    Alt-Holland, Addy; Sowalsky, Adam; Szwec-Levin, Yonit; Shamis, Yulia; Hatch, Harold; Feig, Larry A.; Garlick, Jonathan A.

    2011-01-01

    Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC. PMID:21716326

  10. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp; Fujiwara, Yuki; Yamaguchi, Hideki

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however,more » its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Li; Guo, Linlin

    Polychlorinated biphenyls (PCBs) are classic persistent organic pollutants (POPs). Many studies have found a positive association between the progression of hepatocellular carcinoma (HCC) and PCBs exposure. However, the influence of PCBs on epithelial-mesenchymal transition (EMT) of HCC remains to be unclear. In this study, we explored the effect of PCB126 on EMT in HCC cells and its underlying mechanisms. The data showed that PCB126, exposing both Bel-7402 and SMMC-7721 cells for 48 h, promoted EMT that was demonstrated by E-cadherin repression, up-regulation of N-cadherin and vimentin, and morphological alteration. We found that signal transducer and activator of transcription 3 (STAT3)/Snail1more » signaling was activated after PCB126 exposure, and the addition of STAT3 inhibitor WP1066 blocked PCB126-induced down-regulation of E-cadherin as well as up-regulation of N-cadherin and vimentin. Moreover, PCB126 exposure increased pyruvate kinase M2 (PKM2) expression and its nuclear translocation, whereas treatment with PKM2 shRNA suppressed the activation of STAT3/Snail1 signaling and the alternation of EMT-related molecules (E-cadherin, N-cadherin and vimentin). Furthermore, this study indicated estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) were involved in PCB126-induced effects on PKM2, STAT3/Snail1 signaling and EMT by according treatment using ER inhibitor ICI and AhR shRNA. Notably, PCB126-increased reactive oxygen species (ROS) production via AhR is associated with activation of PKM2/STAT3/Snail1 cascades and contributes to EMT. Taken together, these results indicated that PCB126 promotes EMT process of HCC cells via PKM2/STAT3/Snail1 signaling which is mediated by ER and AhR. - Highlights: • PCB126 promotes epithelial-mesenchymal transition of HCC cells. • PCB126 regulates EMT through the activation of STAT3/Snail1 signaling. • PKM2 is responsible for PCB126-induced activation of STAT3/Snail1 signaling. • AhR-induced ROS generation

  13. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  14. Expression of p27Kip1 and E-cadherin in Head and Neck Squamous Cell Carcinoma of Indonesian Patients.

    PubMed

    E I, Auerkari; V, Joewono; D R, Handjari; A T, Sarwono; A W, Suhartono; K, Eto; M A, Ikeda

    2014-01-01

    Cancer cells exhibit characteristic damage of DNA and its expression. The expression of the tumor suppressors E-cadherin and p27(Kip1) has been tested on 57 head and neck squamous cell carcinomas (HNSCC) of Indonesian subjects. HNSCC tumor samples including both primary and (unrelated) nodal cases were obtained from the archives of Indonesian hospitals, in accordance with acknowledged ethical requirements. Only modest correlation was found between reduced expression of E-cadherin or p27(Kip1) with increased malignancy of primary and nodal growth. The observed strong correlation regardless of malignancy between the expressed levels of E-cadherin and p27(Kip1) suggests that also in combination these would not help to better predict the outcome of HNSCC.

  15. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling.

    PubMed

    Müller-Röver, S; Tokura, Y; Welker, P; Furukawa, F; Wakita, H; Takigawa, M; Paus, R

    1999-08-01

    The role of adhesion molecules in the control of hair follicle (HF) morphogenesis, regression and cycling is still rather enigmatic. Since the adhesion molecules E- and P-cadherin (Ecad and Pcad) are functionally important, e.g. during embryonic pattern formation, we have studied their expression patterns during neonatal HF morphogenesis and cycling in C57/BL6 mice by immunohistology and semi-quantitative RT-PCR. The expression of both cadherins was strikingly hair cycle-dependent and restricted to distinct anatomical HF compartments. During HF morphogenesis, hair bud keratinocytes displayed strong Ecad and Pcad immunoreactivity (IR). While neonatal epidermis showed Ecad IR in all epidermal layers, Pcad IR was restricted to the basal layer. During later stages of HF morphogenesis and during anagen IV-VI of the adolescent murine hair cycle, the outer root sheath showed strong E- and Pcad IR. Instead, the outermost portion of the hair matrix and the inner root sheath displayed isolated Ecad IR, while the innermost portion of the hair matrix exhibited isolated Pcad IR. During telogen, all epidermal and follicular keratinocytes showed strong Ecad IR. This is in contrast to Pcad, whose IR was stringently restricted to matrix and secondary hair germ keratinocytes which are in closest proximity to the dermal papilla. These findings suggest that isolated or combined E- and/or Pcad expression is involved in follicular pattern formation by segregating HF keratinocytes into functionally distinct subpopulations; most notably, isolated Pcad expression may segregate those hair matrix keratinocytes into one functional epithelial tissue unit, which is particularly susceptible to growth control by dermal papilla-derived morphogens. The next challenge is to define which secreted agents implicated in hair growth control modulate these follicular cadherin expression patterns, and to define how these basic parameters of HF topobiology are altered during common hair growth disorders.

  16. Rubus idaeus L. reverses epithelial-to-mesenchymal transition and suppresses cell invasion and protease activities by targeting ERK1/2 and FAK pathways in human lung cancer cells.

    PubMed

    Hsieh, Yih-Shou; Chu, Shu-Chen; Hsu, Li-Sung; Chen, Kuo-Shuen; Lai, Ming-Tsung; Yeh, Chia-Heng; Chen, Pei-Ni

    2013-12-01

    Epithelial to mesenchymal transition (EMT) has been considered essential for cancer metastasis, a multistep complicated process including local invasion, intravasation, extravasation, and proliferation at distant sites. Herein we provided molecular evidence associated with the antimetastatic effect of Rubus idaeus L. extracts (RIE) by showing a nearly complete inhibition on the invasion (p<0.001) of highly metastatic A549 cells via reduced activities of matrix metalloproteinase-2 (MMP-2) and urokinasetype plasminogen activator (u-PA). We performed Western blot to find that RIE could induce up-regulation of epithelial marker such as E-cadherin and α-catenin and inhibit the mesenchymal markers such as N-cadherin, fibronectin, snail-1, and vimentin. Selective snail-1 inhibition by snail-1-specific-siRNA also showed increased E-cadherin expression in A549 cells suggesting a possible involvement of snail-1 inhibition in RIE-caused increase in E-cadherin level. RIE also inhibited p-FAK, p-paxillin and AP-1 by Western blot analysis, indicating the anti-EMT effect of RIE in human lung carcinoma. Importantly, an in vivo BALB/c nude mice xenograft model showed that RIE treatment reduced tumor growth by oral gavage, and RIE represent promising candidates for future phytochemical-based mechanistic pathway-targeted cancer prevention strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. E-Cadherin-Dependent Stimulation of Traction Force at Focal Adhesions via the Src and PI3K Signaling Pathways

    PubMed Central

    Jasaitis, Audrius; Estevez, Maruxa; Heysch, Julie; Ladoux, Benoit; Dufour, Sylvie

    2012-01-01

    The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior. PMID:22853894

  18. Distinct regulation of Snail in two muscle lineages of the ascidian embryo achieves temporal coordination of muscle development.

    PubMed

    Tokuoka, Miki; Kobayashi, Kenji; Satou, Yutaka

    2018-06-06

    The transcriptional repressor Snail is required for proper differentiation of the tail muscle of ascidian tadpole larvae. Two muscle lineages (B5.1 and B6.4) contribute to the anterior tail muscle cells, and are consecutively separated from a transcriptionally quiescent germ cell lineage at the 16- and 32-cell stages. Concomitantly, cells of these lineages begin to express Tbx6.b ( Tbx6-r.b ) at the 16- and 32-cell stages, respectively. Meanwhile, Snail expression begins in these two lineages simultaneously at the 32-cell stage. Here, we show that Snail expression is regulated differently between these two lineages. In the B5.1 lineage, Snail was activated through Tbx6.b , which is activated by maternal factors, including Zic-r.a. In the B6.4 lineage, the MAPK pathway was cell-autonomously activated by a constitutively active form of Raf, enabling Zic-r.a to activate Snail independently of Tbx6.b As a result, Snail begins to be expressed at the 32-cell stage simultaneously in these two lineages. Such shortcuts might be required for coordinating developmental programs in embryos in which cells become separated progressively from stem cells, including germline cells. © 2018. Published by The Company of Biologists Ltd.

  19. Expression of P-aPKC-iota, E-cadherin, and beta-catenin related to invasion and metastasis in hepatocellular carcinoma.

    PubMed

    Du, Guang-Sheng; Wang, Jian-Ming; Lu, Jin-Xi; Li, Qiang; Ma, Chao-Qun; Du, Ji-Tao; Zou, Sheng-Quan

    2009-06-01

    Atypical protein kinase C iota (aPKC-iota) and its associated intracellular molecules, E-cadherin and beta-catenin, are important for cell polarization in tumorigenesis and progression. Expression of aPKC-iota, P-aPKC-iota (activated aPKC-iota), E-cadherin, and beta-catenin in hepatocellular carcinoma (HCC) was measured, and correlation with clinicopathological characteristics of HCC was analyzed. Paraffin-embedded tumor tissue was obtained from patients with HCC after resection without preoperative radiotherapy or chemotherapy. Gene expression was detected by polymerase chain reaction (PCR), and protein expression was detected by immunohistochemistry and Western blot analysis. Expressions of aPKC-iota, P-aPKC-iota, E-cadherin, and beta-catenin were analyzed with relation to the clinicopathological data. The gene and protein expression of aPKC-iota are obviously higher in HCC tissues than that in peritumoral tissues and normal tissues by semiquantitative PCR and immunohistochemistry methods. Accumulation of aPKC-iota in HCC cytoplasm and nucleolus inhibited the later formation of belt-like adherens junctions (AJs) and/or tight junctions (TJs) in cell-cell contact. E-cadherin was reduced and accumulation of cytoplasm beta-catenin was increased in HCC. The expression of aPKC-iota was closely related to pathological differentiation, tumor size, invasion, and metastasis of HCC. Accumulation of cytoplasm aPKC-iota may reflect pathological differentiation, invasion, and metastasis potential of HCC. In this regard, our study on HCC revealed the potential usefulness of aPKC-iota, E-cadherin, and beta-catenin as a prognostic marker, closely related to pathological differentiation, invasion, metastasis, and prognosis of HCC.

  20. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    PubMed Central

    Battistelli, C; Cicchini, C; Santangelo, L; Tramontano, A; Grassi, L; Gonzalez, F J; de Nonno, V; Grassi, G; Amicone, L; Tripodi, M

    2017-01-01

    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT. PMID:27452518

  1. Enterolactone modulates the ERK/NF-κB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-β-induced epithelial-mesenchymal transition.

    PubMed

    Mali, Aniket V; Joshi, Asavari A; Hegde, Mahabaleshwar V; Kadam, Shivajirao S

    2018-05-01

    Triple-negative breast cancer (TNBC) is highly metastatic, and there is an urgent unmet need to develop novel therapeutic strategies leading to the new drug discoveries against metastasis. The transforming growth factor-β (TGF-β) is known to promote the invasive and migratory potential of breast cancer cells through induction of epithelial-mesenchymal transition (EMT) via the ERK/NF-κB/Snail signaling pathway, leading to breast cancer metastasis. Targeting this pathway to revert the EMT would be an attractive, novel therapeutic strategy to halt breast cancer metastasis. Effects of enterolactone (EL) on the cell cycle and apoptosis were investigated using flow cytometry and a cleaved caspase-3 enzyme-linked immunosorbent assay (ELISA), respectively. Effects of TGF-β induction and EL treatment on the functional malignancy of MDA-MB-231 breast cancer cells were investigated using migration and chemo-invasion assays. The effects of EL on EMT markers and the ERK/NF-κB/Snail signaling pathway after TGF-β induction were studied using confocal microscopy, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and flow cytometry. Herein, we report that EL exhibits a significant antimetastatic effect on MDA-MB-231 cells by almost reverting the TGF-β-induced EMT in vitro . EL downregulates the mesenchymal markers N-cadherin and vimentin, and upregulates the epithelial markers E-cadherin and occludin. It represses actin stress fiber formation via inhibition of mitogen-activated protein kinase p-38 (MAPK-p38) and cluster of differentiation 44 (CD44). EL also suppresses ERK-1/2, NF-κB, and Snail at the mRNA and protein levels. Briefly, EL was found to inhibit TGF-β-induced EMT by blocking the ERK/NF-κB/Snail signaling pathway, which is a promising target for breast cancer metastasis therapy.

  2. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction

    PubMed Central

    Cohen, Daniel J.; Gloerich, Martijn; Nelson, W. James

    2016-01-01

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell–cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin–mediated cell–cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell–cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue–material interfaces. PMID:27930308

  3. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth

    PubMed Central

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-01-01

    Intercellular bridges called “ring canals” (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs’ anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin–containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs’ anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin–dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth. PMID:26424451

  4. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, Paola; Matteucci, Emanuela; Drago, Lorenzo

    The present study deals with the molecular mechanisms involved in the regulation of E-cadherin expression under hypoxia, because the adjustment of the amount of E-cadherin due to physical stimuli of the microenvironment might influence the colonization of metastasis to skeleton. We analyzed the effect of 1% oxygen tension, that is similar to that encountered in the bone marrow by metastatic cells spreading from breast carcinoma. The purpose was to evaluate the hypoxia-orchestrated control of E-cadherin transactivation via hypoxia inducible factor-1 (HIF-1) and peroxisome proliferator activated receptor-γ (PPARγ), and the involvement of Hippo pathway members, as regulators of transcription factors. Tomore » give a translational significance to the study, we took into consideration human pair-matched ductal breast carcinoma and bone metastasis: E-cadherin and Wwox were expressed in bone metastasis but not in breast carcinoma, while HIF-1α and TAZ seemed localized principally in nuclei of metastasis and were found in all cell compartments of breast carcinoma. A close examination of the regulatory mechanisms underlying E-cadherin expression in bone metastasis was done in 1833 clone derived from MDA-MB231 cells. Hypoxia induced E-cadherin only in 1833 clone, but not in parental cells, through HIF-1 and PPARγ activities, while Wwox decreased. Since Wwox was highly expressed in bone metastasis, the effect of ectopic Wwox was evaluated, and we showed E-cadherin transactivation and enhanced invasiveness in WWOX transfected 1833 cells. Also, hypoxia was additive with ectopic Wwox remarkably enhancing HIF-1α nuclear shuttle and accumulation due to the lengthening of the half-life of HIF-1α protein; under this experimental condition HIF-1α appeared as a slower migrated band compared with control, in agreement with the phosphorylation state. The in vitro data strongly supported the almost exclusive presence of HIF-1α in nuclei of human-bone metastasis. Thus, we

  5. E-cadherin expression in sporadic gastric cancer from Mexico: exon 8 and 9 deletions are infrequent events associated with poor survival.

    PubMed

    Gamboa-Dominguez, Armando; Dominguez-Fonseca, Claudia; Chavarri-Guerra, Yanin; Vargas, Roberto; Reyes-Gutierrez, Edgardo; Green, Dan; Quintanilla-Martinez, Leticia; Luber, Birgit; Busch, Raymonde; Becker, Karl-Friedrich; Becker, Ingrid; Höfler, Heinz; Fend, Falko

    2005-01-01

    Aberrant expression and mutation of E-cadherin is frequent in gastric carcinoma (GC) especially of the diffuse type. The frequency of CDH1 (gene encoding E-cadherin) mutation in populations with high incidence of diffuse GC and its prognostic significance is unknown. One hundred seventy-seven gastrectomies from Mexican mestizo patients with intestinal (53), mixed (55), or diffuse (69) GC were included. In addition, 101 endoscopic biopsies from patients with GC not subjected to surgery were analyzed. Immunohistochemistry against wild-type E-cadherin (clone 36) and against 2 mutation-specific antibodies (MSA) recognizing mutant CDH1 lacking exon-8 (del 8) or exon-9 (del 9) were performed. Staining was correlated with histotype, tumor node metastasis stage, and follow-up. Abnormal or absent E-cadherin expression (clone 36) was identified in 84% GC, predominantly in diffuse or mixed tumors (P = 0.004) in advanced stages (P = 0.003). No survival differences at 1 and 2 years were observed among patients showing normal, abnormal, or absent wild type E-cadherin expression. Overall reactivity with the MSA was observed in 10 (5.6%) patients who were treated with surgery. In 140 patients, dead from the disease or alive with the disease, the survival at 1 and 2 years was 37% versus 17% and 14% versus 0 for patients without and with del 8/9 positivity, respectively (log rank P = 0.01). Biopsies from patients with inoperable-GC (101) rendered 5 (4.95%) with del 8 or 9 immunoreactivity. Abnormal E-cadherin expression is frequent in GC. However, exon 8 or 9 deletions were observed in only 5.3% tumors in this series from Mexico, at a lower rate than previously published, but associated with a worse prognosis.

  6. Novel metastatic models of esophageal adenocarcinoma derived from FLO-1 cells highlight the importance of E-cadherin in cancer metastasis.

    PubMed

    Liu, David S; Hoefnagel, Sanne J M; Fisher, Oliver M; Krishnadath, Kausilia K; Montgomery, Karen G; Busuttil, Rita A; Colebatch, Andrew J; Read, Matthew; Duong, Cuong P; Phillips, Wayne A; Clemons, Nicholas J

    2016-12-13

    There is currently a paucity of preclinical models available to study the metastatic process in esophageal cancer. Here we report FLO-1, and its isogenic derivative FLO-1LM, as two spontaneously metastatic cell line models of human esophageal adenocarcinoma. We show that FLO-1 has undergone epithelial-mesenchymal transition and metastasizes following subcutaneous injection in mice. FLO-1LM, derived from a FLO-1 liver metastasis, has markedly enhanced proliferative, clonogenic, anti-apoptotic, invasive, immune-tolerant and metastatic potential. Genome-wide RNAseq profiling revealed a significant enrichment of metastasis-related pathways in FLO-1LM cells. Moreover, CDH1, which encodes the adhesion molecule E-cadherin, was the most significantly downregulated gene in FLO-1LM compared to FLO-1. Consistent with this, repression of E-cadherin expression in FLO-1 cells resulted in increased metastatic activity. Importantly, reduced E-cadherin expression is commonly reported in esophageal adenocarcinoma and independently predicts poor patient survival. Collectively, these findings highlight the biological importance of E-cadherin activity in the pathogenesis of metastatic esophageal adenocarcinoma and validate the utility of FLO-1 parental and FLO-1LM cells as preclinical models of metastasis in this disease.

  7. Luteolin attenuates TGF-β1-induced epithelial-mesenchymal transition of lung cancer cells by interfering in the PI3K/Akt-NF-κB-Snail pathway.

    PubMed

    Chen, Kun-Chieh; Chen, Chiu-Yuan; Lin, Chih-Ru; Lin, Chih-Ju; Yang, Tsung-Ying; Chen, Tzu-Hsiu; Wu, Li-Chen; Wu, Chun-Chi

    2013-12-05

    Luteolin is a natural flavonoid that possesses a variety of pharmacological activities, such as anti-inflammatory and anti-cancer abilities. Whether luteolin regulates the transformation ability of lung cancer cells remains unclear. The current study aims to uncover the effects and underlying mechanisms of luteolin in regulation of and epithelial-mesenchymal transition of lung cancer cells. The lung adenocarcinoma A549 cells were used in this experiment; the cells were pretreated with luteolin followed by administration with TGF-β1. The expression levels of various cadherin and related upstream regulatory modules were examined. Pretreatment of luteolin prevented the morphological change and downregulation of E-cadherin of A549 cells induced by TGF-β1. In addition, the activation of PI3K-Akt-IκBa-NF-κB-Snail pathway which leads to the decline of E-cadherin induced by TGF-β1 was also attenuated under the pretreatment of luteolin. We provide the mechanisms about how luteolin attenuated the epithelial-mesenchymal transition of A549 lung cancer cells induced by TGF-β1. This finding will strengthen the anti-cancer effects of flavonoid compounds via the regulation of migration/invasion and EMT ability of various cancer cells. © 2013.

  8. E-cadherin Mediates the Preventive Effect of Vitamin D3 in Colitis-associated Carcinogenesis.

    PubMed

    Xin, Yu; He, Longmei; Luan, Zijian; Lv, Hong; Yang, Hong; Zhou, Ying; Zhao, Xinhua; Zhou, Weixun; Yu, Songlin; Tan, Bei; Wang, Hongying; Qian, Jiaming

    2017-09-01

    Vitamin D3 is beneficial in ameliorating or preventing inflammation and carcinogenesis. Here, we evaluated if vitamin D3 has a preventive effect on colitis-associated carcinogenesis. Administration of azoxymethane (AOM), followed with dextran sulfate sodium (DSS), was used to simulate colitis-associated colon cancer in mice. The supplement of vitamin D3 at different dosages (15, 30, 60 IU·g·w), started before AOM or immediately after DSS treatment (post 60), was sustained to the end of the experiment. Dietary vitamin D3 significantly reduced the number of tumors and tumor burden in a dose-dependent manner. Of note, vitamin D3 in high doses showed significant preventive effects on carcinogenesis regardless of administration before or after AOM-DSS treatment. Cell proliferation decreased in vitamin D3 groups compared with the control group after inhibition of expression of β-catenin and its downstream target gene cyclin D1 in the colon. In vitro, vitamin D3 reduced the transcriptional activity and nuclear level of β-catenin, and it also increased E-cadherin expression and its binding affinity for β-catenin. Moreover, repression of E-cadherin was rescued by supplemental vitamin D3 in mouse colons. Taken together, our results indicate that vitamin D3 effectively suppressed colonic carcinogenesis in the AOM-DSS mouse model. Our findings further suggest that upregulation of E-cadherin contributes to the preventive effect of vitamin D3 on β-catenin activity.

  9. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    PubMed

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  10. Influence of E-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres.

    PubMed

    González, Sheyla; Ibáñez, Elena; Santaló, Josep

    2011-09-01

    Efforts to efficiently derive embryonic stem cells (ESC) from isolated blastomeres have been done to minimize ethical concerns about human embryo destruction. Previous studies in our laboratory indicated a poor derivation efficiency of mouse ESC lines from isolated blastomeres at the 8-cell stage (1/8 blastomeres) due, in part, to a low division rate of the single blastomeres in comparison to their counterparts with a higher number of blastomeres (2/8, 3/8 and 4/8 blastomeres). Communication and adhesion between blastomeres from which the derivation process begins could be important aspects to efficiently derive ESC lines. In the present study, an approach consisting in the adhesion of a chimeric E-cadherin (E-cad-Fc) to the blastomere surface was devised to recreate the signaling produced by native E-cadherin between neighboring blastomeres inside the embryo. By this approach, the division rate of 1/8 blastomeres increased from 44.6% to 88.8% and a short exposure of 24 h to the E-cad-Fc produced an ESC derivation efficiency of 33.6%, significantly higher than the 2.2% obtained from the control group without E-cad-Fc. By contrast, a longer exposure to the same chimeric protein resulted in higher proportions of trophoblastic vesicles. Thus, we establish an important role of E-cadherin-mediated adherens junctions in promoting both the division of single 1/8 blastomeres and the efficiency of the ESC derivation process.

  11. Prognostic value of E-cadherin, beta-catenin, CD44v6, and HER2/neu in metastatic cutaneous adenocarcinoma.

    PubMed

    Pozdnyakova, Olga; Hoang, Mai M P; Dresser, Karen A; Mahalingam, Meera

    2009-08-01

    Our recent experience with a patient developing cutaneous metastases within 3 months of diagnosis of esophageal adenocarcinoma suggests that altered expression of the cellular adhesion molecules, E-cadherin and CD44v6, may have had a role to play in the rapid onset of metastases. To corroborate these findings, we designed a cross-sectional study to investigate the expression of select molecules involved in the metastatic cascade. E-cadherin, beta-catenin, CD44v6, and HER2/neu immunohistochemical stains were performed on archival materials of metastatic adenocarcinoma to the skin from 27 patients and the available corresponding primary tumors in 10 patients. The primary sites included breast (n = 10; 37%), gastrointestinal tract (n = 10; 37%), ovary (n = 1; 4%), thyroid (n = 2; 7%), lung (n = 1; 4%), and unknown primary (n = 3; 11%). Expression of all markers was noted with the most significant increases observed in beta-catenin (26 of 27 cases; 96%), followed by CD44v6 (24 of 27 cases; 89%), E-cadherin (22 of 27 cases; 82%), and HER2/neu (11 of 27 cases; 41%). Contrasting expression of these molecules in the primary versus the metastatic tumors, enhanced expression of CD44v6 was observed in the cutaneous metastases relative to the primary in 6 of 10 (60%) cases. Of interest, 2 of these 6 cases (33%) also showed reduction in E-cadherin--a member of the cadherin family functioning as an invasion suppressor molecule. These findings reinforce the complexities of the metastatic cascade and imply that the variation in adhesive properties of tumor cells is, perhaps, a consequence of the difference in density of the molecules mediating this process.

  12. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion.

    PubMed

    Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong

    2017-05-04

    E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking.

  13. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion

    PubMed Central

    Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong

    2017-01-01

    ABSTRACT E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking. PMID:27254775

  14. Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells

    PubMed Central

    Streets, Andrew J.; Wagner, Bart E.; Harris, Peter C.; Ward, Christopher J.; Ong, Albert C. M.

    2009-01-01

    Summary Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited human renal disease and is caused by mutations in two genes, PKD1 (85%) and PKD2 (15%). Cyst epithelial cells are characterised by a complex cellular phenotype including changes in proliferation, apoptosis, basement membrane composition and apicobasal polarity. Since polycystin 1 (PC1), the PKD1 protein, has been located in the basolateral membrane of kidney epithelial cells, we hypothesised that it might have a key role in mediating or stabilising cell-cell interactions. In non-ciliated L929 cells, stable or transient surface expression of the PC1 extracellular domain was sufficient to confer an adhesive phenotype and stimulate junction formation. In MDCK cells, we found that PC1 was recruited to the lateral membranes coincident with E-cadherin within 30 minutes after a `calcium switch'. Recruitment of both proteins was significantly delayed when cells were treated with a PC1 blocking antibody raised to the PKD domains. Finally, PC1 and E-cadherin could be coimmunoprecipitated together from MDCK cells. We conclude that PC1 has a key role in initiating junction formation via initial homophilic interactions and facilitates junction assembly and the establishment of apicobasal polarity by E-cadherin recruitment. PMID:19351715

  15. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx

    PubMed Central

    2011-01-01

    Background Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. Objectives To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. Methods E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. Results pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. Conclusion These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. Level of evidence: 2b PMID:21639893

  16. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx.

    PubMed

    Huber, Gerhard F; Züllig, Lena; Soltermann, Alex; Roessle, Matthias; Graf, Nicole; Haerle, Stephan K; Studer, Gabriela; Jochum, Wolfram; Moch, Holger; Stoeckli, Sandro J

    2011-06-03

    Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. 2b.

  17. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice.

    PubMed

    Derksen, Patrick W B; Braumuller, Tanya M; van der Burg, Eline; Hornsveld, Marten; Mesman, Elly; Wesseling, Jelle; Krimpenfort, Paul; Jonkers, Jos

    2011-05-01

    Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30-40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10-15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.

  18. An artificial perch to help Snail Kites handle an exotic Apple Snail

    USGS Publications Warehouse

    Pias, Kyle E.; Welch, Zach C.; Kitchens, Wiley M.

    2012-01-01

    In the United States, the Snail Kite (Rostrhamus sociabilis plumbeus) is a federally endangered species and restricted to the wetlands of south-central Florida where the current population numbers less than 1,500. The Snail Kite is an extreme dietary specialist, previously feeding almost exclusively on one species of snail, the Florida Apple Snail (Pomacea paludosa). Within the past decade, an exotic species of apple snail, the Island Apple Snail (Pomacea insularum), has become established on lakes in central Florida. Island Apple Snails are larger than the native Florida Apple Snails, and Snail Kites handle the exotic snails less efficiently. Juvenile Snail Kites, in particular, have lower daily energy balances while feeding on Island Apple Snails. An inexpensive, easy-to-construct platform was developed that would provide Snail Kites with a flat, stable surface on which to extract snails. The platform has the potential to reduce the difficulties Snail Kites experience when handling exotic snails, and may benefit the Snail Kite population as a whole. Initial observations indicate that Snail Kites use the platforms frequently, and snails extracted at the platforms are larger than snails extracted at other perches.

  19. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, modulates the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3.

    PubMed

    Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi

    2002-07-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.

  20. O-GlcNAcylation affects β-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer.

    PubMed

    Harosh-Davidovich, Shani Ben; Khalaila, Isam

    2018-03-01

    O-GlcNAcylation, the addition of β-N-acetylglucosamine (O-GlcNAc) moiety to Ser/Thr residues, is a sensor of the cell metabolic state. Cancer diseases such as colon, lung and breast cancer, possess deregulated O-GlcNAcylation. Studies during the last decade revealed that O-GlcNAcylation is implicated in cancer tumorigenesis and proliferation. The Wnt/β-catenin signaling pathway and cadherin-mediated adhesion are also implicated in epithelial-mesenchymal transition (EMT), a key cellular process in invasion and cancer metastasis. Often, deregulation of the Wnt pathway is caused by altered phosphorylation of its components. Specifically, phosphorylation of Ser or Thr residues of β-catenin affects its location and interaction with E-cadherin, thus facilitating cell-cell adhesion. Consistent with previous studies, the current study indicates that β-catenin is O-GlcNAcylated. To test the effect of O-GlcNAcylation on cell motility and how O-GlcNAcylation might affect β-catenin and E-cadherin functions, the enzyme machinery of O-GlcNAcylation was modulated either with chemical inhibitors or by gene silencing. When O-GlcNAcase (OGA) was inhibited, a global elevation of protein O-GlcNAcylation and increase in the expression of E-cadherin and β-catenin were noted. Concomitantly with enhanced O-GlcNAcylation, β-catenin transcriptional activity were elevated. Additionally, fibroblast cell motility was enhanced. Stable silenced cell lines with adenoviral OGA or adenoviral O-GlcNAc transferase (OGT) were established. Consistent with the results obtained by OGA chemical inhibition by TMG, OGT-silencing led to a significant reduction in β-catenin level. In vivo, murine orthotropic colorectal cancer model indicates that elevated O-GlcNAcylation leads to increased mortality rate, tumor and metastasis development. However, reduction in O-GlcNAcylation promoted survival that could be attributed to attenuated tumor and metastasis development. The results described herein provide

  1. Immunohistochemical localization of cell adhesion molecule epithelial cadherin in human arachnoid villi and meningiomas.

    PubMed

    Tohma, Y; Yamashima, T; Yamashita, J

    1992-04-01

    Cadherins are a family of intercellular glycoproteins responsible for calcium-dependent cell adhesion and are currently divided into four types: epithelial (E), neuronal (N), placental (P), and vascular (V). Since cadherins are known to be indispensable for not only morphogenesis in the embryo but also maintenance of tumor cell nest, we examined the expression of E-cadherin in 31 meningiomas (11 syncytial, 12 transitional, 8 fibroblastic) and 3 arachnoid villi by immunoblot and immunohistochemical analyses. In the immunoblot analysis, E-cadherin was detected at the main band of Mr 124,000 in all of the arachnoid villi, as well as syncytial and transitional types of meningiomas, but not in the fibroblastic type. The immunohistochemical examination showed that E-cadherin was expressed at the cell borders of syncytial and transitional types, but the expression was absent in the fibroblastic type. Immunoelectron microscopy showed that E-cadherin was localized at the intermediate junctions in arachnoid villi, while it was detected diffusely at the cell surface in meningiomas. It is suggested from these data that the expression of E-cadherin might be closely related to the differentiation and organogenesis of meningioma cells.

  2. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity

    PubMed Central

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit

    2015-01-01

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity. PMID:26195669

  3. Biophysics of cadherin adhesion.

    PubMed

    Leckband, Deborah; Sivasankar, Sanjeevi

    2012-01-01

    Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.

  4. An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin.

    PubMed

    Vergara, Daniele; Bianco, Monica; Pagano, Rosanna; Priore, Paola; Lunetti, Paola; Guerra, Flora; Bettini, Simona; Carallo, Sonia; Zizzari, Alessandra; Pitotti, Elena; Giotta, Livia; Capobianco, Loredana; Bucci, Cecilia; Valli, Ludovico; Maffia, Michele; Arima, Valentina; Gaballo, Antonio

    2018-06-11

    Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred μl of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. CpG site hypermethylation of E-cadherin and Connexin26 genes in hepatocellular carcinomas induced by a choline-deficient L-Amino Acid-defined diet in rats.

    PubMed

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Itsuzaki, Yumi; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Honoki, Kanya

    2007-04-01

    We investigated DNA methylation patterns of E-cadherin and Connexin26 (Cx26) genes in rat hepatocellular carcinomas (HCCs) induced by a choline-deficient L-Amino Acid-defined (CDAA) diet. Six-wks-old F344 male rats were continuously fed with a CDAA diet for 75 wks, and were then killed. A total of five HCCs were obtained, and genomic DNA was extracted from each HCC for assessment of methylation status in the 5' upstream regions of E-cadherin and Cx26 genes by bisulfite sequencing, comparing to two normal liver tissues. The five HCCs showed highly methylated E-cadherin and Cx26 genes, while these genes in two normal liver tissues were all unmethylated. For analysis of gene expression, real-time quantitative reverse transcription (RT)-polymerase chain reaction (PCR) was performed. Expressions of E-cadherin and Cx26 genes were significantly reduced in the five HCCs (P < 0.0001 and P < 0.001, respectively) compared to normal liver tissues, correlating with their methylation statuses. These results suggested that hypermethylation of E-cadherin and Cx26 genes may be involved in the development of HCCs induced by a CDAA diet in rats.

  6. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin.

    PubMed

    Lecuit, Marc; Nelson, D Michael; Smith, Steve D; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I; Cossart, Pascale

    2004-04-20

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA-E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA-E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand-receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously.

  7. High expression of P-cadherin is significantly associated with poor prognosis in patients with non-small-cell lung cancer.

    PubMed

    Imai, Sachiko; Kobayashi, Masashi; Takasaki, Chihiro; Ishibashi, Hironori; Okubo, Kenichi

    2018-04-01

    Placental (P)-cadherin expression is associated with malignant phenotype of cancer cell. The loss of E-cadherin has been thought to play a key role in tumor progression in several cancers. In this study, we aimed to clarify the role of P-cadherin expression in non-small-cell lung cancer (NSCLC). NSCLC patients (n = 172) were enrolled in this study; among them, 107 harbored adenocarcinomas, and 65 had squamous cell carcinomas. We examined P-cadherin and E-cadherin expression by immunohistochemical analysis and assessed the associations between each cadherin expression and both cadherin expression patterns with clinicopathological factors and prognosis. To investigate the pathway to acquire tumor progression associated with P-cadherin and E-cadherin, we examined p120 catenin localization by immunohistochemical analysis. High P-cadherin expression was significantly associated with lymphatic metastasis, pathological stage, and Ki-67 proliferation index (P < .05, respectively). Low E-cadherin expression was significantly associated with maximum standardized uptake value, lymphatic metastasis, and pathological stage (P < .05, respectively). The cytoplasmic p120 catenin localization was associated with the low E-cadherin and high P-cadherin expression group (P < .001). High P-cadherin expression was associated with shorter disease-free survival (P = .044) and shorter overall survival (OS; P = .044). The low E-cadherin and high P-cadherin expression group was associated with shorter OS (P = .024). High P-cadherin expression was associated with tumor progression and poor patient survival in NSCLC. In these patients, the low E-cadherin expression might be associated with tumor progression involving cytoplasmic p120 catenin. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Heterogeneous Cadherin Expression and Multicellular Aggregate Dynamics in Ovarian Cancer Dissemination.

    PubMed

    Klymenko, Yuliya; Johnson, Jeffrey; Bos, Brandi; Lombard, Rachel; Campbell, Leigh; Loughran, Elizabeth; Stack, M Sharon

    2017-07-01

    Epithelial ovarian carcinoma spreads via shedding of cells and multicellular aggregates (MCAs) from the primary tumor into peritoneal cavity, with subsequent intraperitoneal tumor cell:mesothelial cell adhesion as a key early event in metastatic seeding. Evaluation of human tumor extracts and tissues confirms that well-differentiated ovarian tumors express abundant E-cadherin (Ecad), whereas advanced lesions exhibit upregulated N-cadherin (Ncad). Two expression patterns are observed: "mixed cadherin," in which distinct cells within the same tumor express either E- or Ncad, and "hybrid cadherin," wherein single tumor cell(s) simultaneously expresses both cadherins. We demonstrate striking cadherin-dependent differences in cell-cell interactions, MCA formation, and aggregate ultrastructure. Mesenchymal-type Ncad+ cells formed stable, highly cohesive solid spheroids, whereas Ecad+ epithelial-type cells generated loosely adhesive cell clusters covered by uniform microvilli. Generation of "mixed cadherin" MCAs using fluorescently tagged cell populations revealed preferential sorting into cadherin-dependent clusters, whereas mixing of cell lines with common cadherin profiles generated homogeneous aggregates. Recapitulation of the "hybrid cadherin" Ecad+/Ncad+ phenotype, via insertion of the CDH2 gene into Ecad+ cells, resulted in the ability to form heterogeneous clusters with Ncad+ cells, significantly enhanced adhesion to organotypic mesomimetic cultures and peritoneal explants, and increased both migration and matrix invasion. Alternatively, insertion of CDH1 gene into Ncad+ cells greatly reduced cell-to-collagen, cell-to-mesothelium, and cell-to-peritoneum adhesion. Acquisition of the hybrid cadherin phenotype resulted in altered MCA surface morphology with increased surface projections and increased cell proliferation. Overall, these findings support the hypothesis that MCA cadherin composition impacts intraperitoneal cell and MCA dynamics and thereby affects

  9. Purification of bacteriophage lambda repressor

    PubMed Central

    Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David

    2013-01-01

    Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434

  10. E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells

    PubMed Central

    Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L. R.; Ward, Christopher M.

    2011-01-01

    Background We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. Methodology In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. Results We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation. PMID:21779327

  11. E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L R; Ward, Christopher M

    2011-01-01

    We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation.

  12. DE-Cadherin Is Required for Intercellular Motility during Drosophila Oogenesis

    PubMed Central

    Niewiadomska, Paulina; Godt, Dorothea; Tepass, Ulrich

    1999-01-01

    Cadherins are involved in a variety of morphogenetic movements during animal development. However, it has been difficult to pinpoint the precise function of cadherins in morphogenetic processes due to the multifunctional nature of cadherin requirement. The data presented here indicate that homophilic adhesion promoted by Drosophila E-cadherin (DE-cadherin) mediates two cell migration events during Drosophila oogenesis. In Drosophila follicles, two groups of follicle cells, the border cells and the centripetal cells migrate on the surface of germline cells. We show that the border cells migrate as an epithelial patch in which two centrally located cells retain epithelial polarity and peripheral cells are partially depolarized. Both follicle cells and germline cells express DE-cadherin, and border cells and centripetal cells strongly upregulate the expression of DE-cadherin shortly before and during their migration. Removing DE-cadherin from either the follicle cells or the germline cells blocks migration of border cells and centripetal cells on the surface of germline cells. The function of DE-cadherin in border cells appears to be specific for migration as the formation of the border cell cluster and the adhesion between border cells are not disrupted in the absence of DE-cadherin. The speed of migration depends on the level of DE-cadherin expression, as border cells migrate more slowly when DE-cadherin activity is reduced. Finally, we show that the upregulation of DE-cadherin expression in border cells depends on the activity of the Drosophila C/EBP transcription factor that is essential for border cell migration. PMID:9971747

  13. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    PubMed

    Hanemann, João Adolfo Costa; Oliveira, Denise Tostes; Nonogaki, Suely; Nishimoto, Inês Nobuko; de Carli, Marina Lara; Landman, Gilles; Kowalski, Luiz Paulo

    2014-06-03

    Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas.

  14. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  15. Snails home

    NASA Astrophysics Data System (ADS)

    Dunstan, D. J.; Hodgson, D. J.

    2014-06-01

    Many gardeners and horticulturalists seek non-chemical methods to control populations of snails. It has frequently been reported that snails that are marked and removed from a garden are later found in the garden again. This phenomenon is often cited as evidence for a homing instinct. We report a systematic study of the snail population in a small suburban garden, in which large numbers of snails were marked and removed over a period of about 6 months. While many returned, inferring a homing instinct from this evidence requires statistical modelling. Monte Carlo techniques demonstrate that movements of snails are better explained by drift under the influence of a homing instinct than by random diffusion. Maximum likelihood techniques infer the existence of two groups of snails in the garden: members of a larger population that show little affinity to the garden itself, and core members of a local garden population that regularly return to their home if removed. The data are strongly suggestive of a homing instinct, but also reveal that snail-throwing can work as a pest management strategy.

  16. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of β-catenin/E-cadherin signaling.

    PubMed

    Cho, Sun Wook; Kim, Young A; Sun, Hyun Jin; Ahn, Hwa Young; Lee, Eun Kyung; Yi, Ka Hee; Oh, Byung-Chul; Park, Do Joon; Cho, Bo Youn; Park, Young Joo

    2014-09-01

    Aberrant activation of the Wnt/β-catenin pathway is a common pathogenesis of various human cancers. We investigated the role of the Wnt inhibitor, Dkk-1, in papillary thyroid cancer (PTC). Immunohistochemical β-catenin staining was performed in tissue microarray containing 148 PTCs and five normal thyroid tissues. In vivo effects of Dkk-1 were explored using ectopic tumors with BHP10-3SC cells. In 27 PTC patients, 60% of patients showed β-catenin up-regulation and Dkk-1 down-regulation in tumor vs normal tissues. Tissue microarray analysis showed that 14 of 148 PTC samples exhibited cytoplasmic-dominant β-catenin expression compared to membranous-dominant expression in normal tissues. Aberrant β-catenin expression was significantly correlated with higher rates of the loss of membranous E-cadherin expression and poor disease-free survival than that in the normal membranous expression group over a median follow-up period of 14 years. Implantation of Dkk-1-overexpressing BHP10-3SC cells revealed delayed tumor growth, resulting from the rescue of membranous β-catenin and E-cadherin expressions. Furthermore, tissue microarray analysis demonstrated that BRAF(WT) patients had higher rates of aberrant expressions of β-catenin and E-cadherin than BRAF(V600E) patients. Indeed, the inhibitory effects of Dkk-1 on cell survival were more sensitive in BRAF(WT) (BHP10-3SC and TPC-1) than in BRAF(V600E) (SNU-790 and BCPAP) cells. Overexpression of BRAF(V600E) in normal thyroid epithelial (H tori) cells also reduced the effects of Dkk-1 on cell survival. A subset of PTC patients showed aberrant expression of β-catenin/E-cadherin signaling and poor disease-free survival. Dkk-1 might have a therapeutic role, particularly in BRAF(WT) patients.

  17. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin

    PubMed Central

    Lecuit, Marc; Nelson, D. Michael; Smith, Steve D.; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I.; Cossart, Pascale

    2004-01-01

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA–E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA–E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand–receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously. PMID:15073336

  18. Production of apple snail for space diet

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Motoki, Shigeru; Space Agriculture Task Force, J.; Katayama, Naomi

    For food production in space at recycling bio-elements under closed environment, appropriate organisms should be chosen to drive the closed materials recycle loop. We propose a combination of green algae, photosynthetic protozoa, and aquatic plants such as Wolffia spp., for the primary producer fixing solar energy to chemical form in biomass, and apple snail, Pomacea bridgesii, which converts this biomass to animal meat. Because of high proliferation rate of green algae or protozoa compared to higher plants, and direct conversion of them to apple snail, the efficiency of food production in this combination is high, in terms of energy usage, space for rearing, and yield of edible biomass. Furthermore, green algae and apple snail can form a closed ecological system with exchanging bio-elements between two member, i.e. excreta of snail turn to fertilizer of algae, and grown algae become feed for snail. Since apple snail stays in water or on wet substrate, control of rearing is easy to make. Mass production technology of apple snail has been well established to utilize it as human food. Nutrients of apple snail are also listed in the standard tables of food composition in Japan. Nutrients for 100 g of apple snail canned in brine are energy 340 kJ, protein 16.5 g, lipid 1.0 g, cholesterol 240 mg, carbohydrate 0.8 g, Ca 400 mg, Fe 3.9 mg, Zn 1.5 mg. It is rich in minerals, especially Ca and Fe. Vitamin contents are quite low, but K 0.005 mg, B2 0.09 mg, B12 0.0006 mg, folate 0.001 mg, and E 0.6 mg. The amino acid score of apple snail could not be found in literature. Overall, apple snail provides rich protein and animal lipid such as cholesterol. It could be a good source of minerals. However, it does not give enough vitamin D and B12 , which are supposed to be supplemented by animal origin foods. In terms of acceptance in food culture, escargot is a gourmet menu in French dishes, and six to ten snail, roughly 50 g, are served for one person. Apple snail reaches to 30 g

  19. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    PubMed Central

    1996-01-01

    Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein

  20. Reduced expression of E-cadherin and p120-catenin and elevated expression of PLC-γ1 and PIKE are associated with aggressiveness of oral squamous cell carcinoma

    PubMed Central

    Jiang, Yi; Liao, Liyan; Shrestha, Chandrama; Ji, Shangli; Chen, Ying; Peng, Jian; Wang, Larry; Liao, Eryuan; Xie, Zhongjian

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most lethal malignant tumors. The cadherin/catenin cell-cell adhesion complex plays a major role in cancer development and progression. p120-catenin (p120) is a cytoplasmic molecule closely associated with E-cadherin which activates phospholipase C-γ1 (PLC-γ1). Our previous studies indicate that activation of PLC-γ1 plays a critical role in epidermal growth factor (EGF)-induced migration and proliferation of squamous cell carcinoma (SCC) cells and phosphatidylinositol 3-kinase enhancer (PIKE) is highly expressed in SCC cells and mediates EGFR-dependent SCC cell proliferation. Our current study was to determine whether the expression of E-cadherin, p120, PLC-γ1, and PIKE, is associated with OSCC. To address this issue, we assessed levels and localization of E-cadherin, p120, PLC-γ1, and PIKE in specimen of 92 patients with OSCC by immunohistochemistry. The results showed that the expression of E-cadherin, and p120 negatively correlated with the tumor differentiation and the expression of PLC-γ1 and PIKE positively correlated with the tumor differentiation. The expression of PLC-γ1 and PIKE in OSCC stage T3 + T4 or in OSCC with lymph node metastasis was significantly higher than that in OSCC stage T1 + T2 or in OSCC without lymph node metastasis. The expression of p120 positively correlated with levels of E-cadherin but negatively correlated with levels of PLC-γ1 and PIKE in OSCC. These data indicate that increased expression of PLC-γ1 and PIKE and decreased expression of E-cadherin and p120 are associated with the aggressiveness of OSCC. PMID:26464646

  1. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    PubMed Central

    2014-01-01

    Background Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Methods Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. Results For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. Conclusions The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas. PMID:24893577

  2. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells.

    PubMed

    Grabowska, Magdalena M; Sandhu, Brindar; Day, Mark L

    2012-02-01

    During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG(1), fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. New Fluorescent Reporter Systems for Evaluation of the Expression of E- and N-Cadherins.

    PubMed

    Burmistrova, O A; Nikulin, S V; Zakharova, G S; Fomicheva, K A; Alekseev, B Ya; Shkurnikov, M Yu

    2018-05-24

    During metastatic growth, cells of solid tumors undergo phenotypical changes related to epithelial-mesenchymal transition. Epithelial-mesenchymal transition is regarded as a potential target for prospective antitumor drugs. Fluorescent reporter systems for evaluation of the expression of markers of epithelial and mesenchymal status (E- and N-cadherins) were created. The described approaches can be used for creation of analogous reporter systems.

  4. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    PubMed Central

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  5. Function and regulation of MTA1 and MTA3 in malignancies of the female reproductive system.

    PubMed

    Brüning, Ansgar; Blankenstein, Thomas; Jückstock, Julia; Mylonas, Ioannis

    2014-12-01

    The family of metastasis-associated (MTA) genes is a small group of transcriptional co-regulators which are involved in various physiological functions, ranging from lymphopoietic cell differentiation to the development and maintenance of epithelial cell adhesions. By recruiting histone-modifying enzymes to specific promoter sequences, MTA proteins can function both as transcriptional repressors and activators of a number of cancer-relevant proteins, including Snail, E-cadherin, signal transducer and activator of transcriptions (STATs), and the estrogen receptor. Their involvement in the epithelial-mesenchymal transition process and regulatory interactions with estrogen receptor activity has made MTA proteins highly interesting research candidates, especially in the field of hormone-sensitive breast cancer and malignancies of the female reproductive tract. This review focuses on the current knowledge about the function and regulation of MTA1 and MTA3 proteins in gynecological cancer, including ovarian, endometrial, and cervical tumors.

  6. A complex of α6 integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6.

    PubMed

    Marchiò, Serena; Soster, Marco; Cardaci, Sabrina; Muratore, Andrea; Bartolini, Alice; Barone, Vanessa; Ribero, Dario; Monti, Maria; Bovino, Paola; Sun, Jessica; Giavazzi, Raffaella; Asioli, Sofia; Cassoni, Paola; Capussotti, Lorenzo; Pucci, Piero; Bugatti, Antonella; Rusnati, Marco; Pasqualini, Renata; Arap, Wadih; Bussolino, Federico

    2012-11-01

    Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α(6) integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α(6) integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α(6) integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC. Copyright © 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  7. A complex of α6 integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6

    PubMed Central

    Marchiò, Serena; Soster, Marco; Cardaci, Sabrina; Muratore, Andrea; Bartolini, Alice; Barone, Vanessa; Ribero, Dario; Monti, Maria; Bovino, Paola; Sun, Jessica; Giavazzi, Raffaella; Asioli, Sofia; Cassoni, Paola; Capussotti, Lorenzo; Pucci, Piero; Bugatti, Antonella; Rusnati, Marco; Pasqualini, Renata; Arap, Wadih; Bussolino, Federico

    2012-01-01

    Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α6 integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α6 integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α6 integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC. PMID:23070965

  8. High expression of SALL4 and fascin, and loss of E-cadherin expression in undifferentiated/dedifferentiated carcinomas of the endometrium

    PubMed Central

    Onder, Semen; Taskin, Orhun Cig; Sen, Fatma; Topuz, Samet; Kucucuk, Seden; Sozen, Hamdullah; Ilhan, Ridvan; Tuzlali, Sitki; Yavuz, Ekrem

    2017-01-01

    Abstract Undifferentiated/dedifferentiated endometrial carcinomas (UCE/DCEs) of the endometrium are rare tumors with poor prognosis. There are few clinicopathologic studies with detailed immunohistochemical analysis regarding UCE/DCEs. We evaluated the diagnostic value of a selected tumor stem-cell marker and epithelial-mesenchymal transition (EMT) markers, in addition to previously studied markers in identifying UCE/DCEs from other types of high-grade endometrial carcinomas. Eleven cases of UCE/DCEs with complete clinical follow-up that were diagnosed between 2006 and 2015 were included in the study. For immunohistochemical comparison, 11 clinically matched cases for each type of other high-grade endometrial carcinomas (high-grade endometrioid (F3-EC), serous [SC], and clear cell carcinoma [CCC]) were used as a control group. An immunohistochemical analysis including fascin, SALL4, E-cadherin, and β-catenin, in addition to epithelial and neuroendocrine markers was performed in each case. The majority of UCE/DCEs displayed diffuse expression of fascin (81.9%) and loss of E-cadherin expression (54.5%). SALL4 expression was detected in 36.3% of the UCE/DCE cases. SALL4 expression was significantly more frequent in UCE/DCEs than all other high-grade carcinomas (P < 0.001). Loss of E-cadherin and fascin expression was significantly more frequent in UCE/DCEs than high-grade endometrioid and clear cell adenocarcinomas (P = 0.012, 0.014 and P = 0.01, 0.003, respectively). We suggest that loss of E-cadherin expression together with fascin and SALL4 immunopositivity in addition to morphologic features have an impact in differential diagnosis of UCE/DCEs from other high-grade endometrial carcinomas. PMID:28272224

  9. Epithelial-mesenchymal transition and nuclear β-catenin induced by conditional intestinal disruption of Cdh1 with Apc is E-cadherin EC1 domain dependent

    PubMed Central

    Carter, Emma J.; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A. Bassim

    2016-01-01

    Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity. PMID:27566565

  10. The Integrated Role of Wnt/β-Catenin, N-Glycosylation, and E-Cadherin-Mediated Adhesion in Network Dynamics

    PubMed Central

    Vargas, Diego A.; Sun, Meng; Sadykov, Khikmet; Kukuruzinska, Maria A.; Zaman, Muhammad H.

    2016-01-01

    The cellular network composed of the evolutionarily conserved metabolic pathways of protein N-glycosylation, Wnt/β-catenin signaling pathway, and E-cadherin-mediated cell-cell adhesion plays pivotal roles in determining the balance between cell proliferation and intercellular adhesion during development and in maintaining homeostasis in differentiated tissues. These pathways share a highly conserved regulatory molecule, β-catenin, which functions as both a structural component of E-cadherin junctions and as a co-transcriptional activator of the Wnt/β-catenin signaling pathway, whose target is the N-glycosylation-regulating gene, DPAGT1. Whereas these pathways have been studied independently, little is known about the dynamics of their interaction. Here we present the first numerical model of this network in MDCK cells. Since the network comprises a large number of molecules with varying cell context and time-dependent levels of expression, it can give rise to a wide range of plausible cellular states that are difficult to track. Using known kinetic parameters for individual reactions in the component pathways, we have developed a theoretical framework and gained new insights into cellular regulation of the network. Specifically, we developed a mathematical model to quantify the fold-change in concentration of any molecule included in the mathematical representation of the network in response to a simulated activation of the Wnt/ β-catenin pathway with Wnt3a under different conditions. We quantified the importance of protein N-glycosylation and synthesis of the DPAGT1 encoded enzyme, GPT, in determining the abundance of cytoplasmic β-catenin. We confirmed the role of axin in β-catenin degradation. Finally, our data suggest that cell-cell adhesion is insensitive to E-cadherin recycling in the cell. We validate the model by inhibiting β-catenin-mediated activation of DPAGT1 expression and predicting changes in cytoplasmic β-catenin concentration and stability

  11. Conformational epitopes at cadherin calcium-binding sites and p120-catenin phosphorylation regulate cell adhesion

    PubMed Central

    Petrova, Yuliya I.; Spano, MarthaJoy M.; Gumbiner, Barry M.

    2012-01-01

    We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin–catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor–induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane. PMID:22513089

  12. Differential Function of N-Cadherin and Cadherin-7 in the Control of Embryonic Cell Motility

    PubMed Central

    Dufour, Sylvie; Beauvais-Jouneau, Alice; Delouvée, Annie; Thiery, Jean Paul

    1999-01-01

    Similar amounts of N-cadherin and cadherin-7, the prototypes of type I and type II cadherin, induced cell-cell adhesion in murine sarcoma 180 transfectants, Ncad-1 and cad7-29, respectively. However, in the initial phase of aggregation, Ncad-1 cells aggregated more rapidly than cad7-29 cells. Isolated Ncad-1 and cad7-29 cells adhered and spread in a similar manner on fibronectin (FN), whereas aggregated cad7-29 cells were more motile and dispersed than aggregated Ncad-1 cells. cad7-29 cells established transient contacts with their neighbors which were stabilized if FN-cell interactions were perturbed. In contrast, Ncad-1 cells remained in close contact when they migrated on FN. Both β-catenin and cadherin were more rapidly downregulated in cad7-29 than in Ncad-1 cells treated with cycloheximide, suggesting a higher turnover rate for cadherin-7–mediated cell-cell contacts than for those mediated by N-cadherin. The extent of FN-dependent focal adhesion kinase phosphorylation was much lower if the cells had initiated N-cadherin–mediated rather than cadherin-7–mediated cell adhesion before plating. On grafting into the embryo, Ncad-1 cells did not migrate and remained at or close to the graft site, even after 48 h, whereas grafted cad7-29 cells dispersed efficiently into embryonic structures. Thus, the adhesive phenotype of cadherin-7–expressing cells is regulated by the nature of the extracellular matrix environment which also controls the migratory behavior of the cells. In addition, adhesions mediated by different cadherins differentially regulate FN-dependent signaling. The transient contacts specifically observed in cadherin- 7–expressing cells may also be important in the control of cell motility. PMID:10427101

  13. Cytoplasmic and nuclear localization of cadherin in honey bee (Apis mellifera L.) gonads.

    PubMed

    Florecki, Mônica M; Hartfelder, Klaus

    2011-01-01

    Cadherins are crucial molecules mediating cell-cell interactions between somatic and germline cells in insect and mammalian male and female gonads. We analysed the presence and localization of cadherins in ovaries of honeybee queens and in testes of drones. Transcripts representing two classical cadherins, E-cadherin (shotgun) and N-cadherin, as well as three protocadherins (Starry night, Fat and Fat-like) were detected in gonads of both sexes. Pan-cadherin antibodies, which most probably detect a honeybee N-cadherin, were used in immunolocalization analyses. In the germarium of ovarioles, cadherin-IR (cadherin immunoreactivity) was evidenced as homogeneously distributed in the cytoplasm and as nuclear foci, in both germline and somatic cells. It was also detected in polyfusomes and ring canals. In testiolar tubules, cadherin-IR showed a cytoplasmic and nuclear distributon alike in ovaries. The unexpected nuclear localization and cytoplasmic distribution in ovaries and testes were corroborated by immunogold electron microscopy, which revealed cadherin aggregates associated with electron-dense nuclear structures. With respect to cadherin localization, the honeybee differs from Drosophila, the model for gametogenesis in insects, raising the question as to how differences among solitary and social species may be built into and generated from the general architecture of polytrophic meroistic ovaries. It also indicates the possibility of divergent roles for cadherin in the functional architecture of insect gonads, in general, especially in taxa with high reproductive output.

  14. Relationship between snail population density and infection status of snails and fish with zoonotic trematodes in Vietnamese carp nurseries.

    PubMed

    Clausen, Jesper Hedegaard; Madsen, Henry; Murrell, K Darwin; Phan Thi, Van; Nguyen Manh, Hung; Viet, Khue Nguyen; Dalsgaard, Anders

    2012-01-01

    -pond snail control, but also include water sources of allochthonous cercariae, i.e. canals supplying water to ponds as well as snail habitats outside the pond such as rice fields and surrounding ponds.

  15. A Regulatory Network Involving β-Catenin, e-Cadherin, PI3k/Akt, and Slug Balances Self-Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling.

    PubMed

    Huang, Tyng-Shyan; Li, Li; Moalim-Nour, Lilian; Jia, Deyong; Bai, Jian; Yao, Zemin; Bennett, Steffany A L; Figeys, Daniel; Wang, Lisheng

    2015-05-01

    The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self-renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self-renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two-layer regulatory circuit involving β-catenin, E-cadherin, PI3K/Akt, and Slug in a time-dependent manner. Short-term upregulation of β-catenin does not lead to the activation of T-cell factor (TCF)-eGFP Wnt reporter in hESCs. Instead, it enhances E-cadherin expression on the cell membrane, thereby enhancing hESC self-renewal through E-cadherin-associated PI3K/Akt signaling. Conversely, long-term Wnt activation or loss of E-cadherin intracellular β-catenin binding domain induces TCF-eGFP activity and promotes hESC differentiation through β-catenin-induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E-cadherin that serves as a β-catenin "sink" sequestering free cytoplasmic β-catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self-renewal associated with short-term Wnt/β-catenin activation to definitive differentiation. Stem Cells 2015;33:1419-1433. © 2015 AlphaMed Press.

  16. Deregulation of E-cadherin, β-catenin, APC and Caveolin-1 expression occurs in canine prostate cancer and metastatic processes.

    PubMed

    Kobayashi, Priscila E; Fonseca-Alves, Carlos E; Rivera-Calderón, Luis G; Carvalho, Márcio; Kuasne, Hellen; Rogatto, Silvia R; Laufer-Amorim, Renée

    2018-06-01

    Prostate cancer is a heterogeneous disease with high levels of clinical and gene heterogeneity, consequently offering several targets for therapy. Dogs with naturally occurring prostate cancer are useful models for molecular investigations and studying new treatment efficacy. Three genes and proteins associated with the WNT pathway (β-catenin, APC and E-cadherin) and Caveolin-1 (CAV-1) were evaluated in canine pre-neoplastic proliferative inflammatory atrophy (PIA), prostate cancer and metastatic disease. The APC gene methylation status was also investigated. As in human prostate cancer, cytoplasmic and nuclear β-catenin, which are fundamental for activating the canonical WNT pathway, were found in canine prostate cancer and metastasis. Membranous E-cadherin was also lost in these lesions, allowing cellular migration to the stroma and nuclear localization of β-catenin. In contrast to human prostate tumours, no APC downregulation or hypermethylation was found in canine prostate cancer. The CAV-1 gene and protein overexpression were found in canine prostate cancer, and as in humans, the highest levels were found in Gleason scores ≥8. In conclusion, as with human prostate cancer, β-catenin and E-cadherin in the WNT pathway, as well as Caveolin-1, are molecular drivers in canine prostate cancer. These findings provide additional evidence that dogs are useful models for studying new therapeutic targets in prostate cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins

    PubMed Central

    Jones, Kelly A.; Kopeikina, Katherine J.; Burette, Alain C.; Copits, Bryan A.; Forrest, Marc P.; Fawcett-Patel, Jessica M.

    2017-01-01

    Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions. SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for

  18. Seasonal dynamics of snail populations in coastal Kenya: Model calibration and snail control

    NASA Astrophysics Data System (ADS)

    Gurarie, D.; King, C. H.; Yoon, N.; Wang, X.; Alsallaq, R.

    2017-10-01

    A proper snail population model is important for accurately predicting Schistosoma transmission. Field data shows that the overall snail population and that of shedding snails have a strong pattern of seasonal variation. Because human hosts are infected by the cercariae released from shedding snails, the abundance of the snail population sets ultimate limits on human infection. For developing a predictive dynamic model of schistosome infection and control strategies we need realistic snail population dynamics. Here we propose two such models based on underlying environmental factors and snail population biology. The models consist of two-stage (young-adult) populations with resource-dependent reproduction, survival, maturation. The key input in the system is seasonal rainfall which creates snail habitats and resources (small vegetation). The models were tested, calibrated and validated using dataset collected in Msambweni (coastal Kenya). Seasonal rainfall in Msambweni is highly variable with intermittent wet - dry seasons. Typical snail patterns follow precipitation peaks with 2-4-month time-lag. Our models are able to reproduce such seasonal variability over extended period of time (3-year study). We applied them to explore the optimal seasonal timing for implementing snail control.

  19. Surface engineered magnetic nanoparticles for specific immunotargeting of cadherin expressing cells

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Delhaes, Flavien; Puertas, Sara; Saez, Berta; de la Fuente, Jesús M.; Grazú, Valeria; Feracci, Helene

    2016-02-01

    In spite of historic advances in cancer biology and recent development of sophisticated chemotherapeutics, the outlook for patients with advanced cancer is still grim. In this sense nanoparticles (NPs), through their unique physical properties, enable the development of new approaches for cancer diagnosis and treatment. Thus far the most used active targeting scheme involves NPs functionalization with antibodies specific to molecules overexpressed on cancer cell’s surface. Therefore, such active targeting relies on differences in NPs uptake kinetics rates between tumor and healthy cells. Many cancers of epithelial origin are associated with the inappropriate expression of non-epithelial cadherins (e.g. N-, P-, -11) with concomitant loss of E-cadherin. Such phenomenon named cadherin switching favors tumor development and metastasis via interactions of tumor cells with stromal components. That is why we optimized the oriented functionalization of fluorescently labelled magnetic NPs with a novel antibody specific for the extracellular domain of cadherin-11. The obtained Ab-NPs exhibited high specificity when incubated with two cell lines used as models of tumor and healthy cells. Thus, cadherin switching offers a great opportunity for the development of active targeting strategies aimed to improve the early detection and treatment of cancer.

  20. The role of epithelial-mesenchymal transition in squamous cell carcinoma of the oral cavity.

    PubMed

    Zidar, Nina; Boštjančič, Emanuela; Malgaj, Marija; Gale, Nina; Dovšak, Tadej; Didanovič, Vojko

    2018-02-01

    Epithelial-mesenchymal transition (EMT) has emerged as a possible mechanism of cancer metastasizing, but strong evidence for EMT involvement in human cancer is lacking. Our aim was to compare oral spindle cell carcinoma (SpCC) as an example of EMT with oral conventional squamous cell carcinoma (SCC) with and without nodal metastases to test the hypothesis that EMT contributes to metastasizing in oral SCC. Thirty cases of oral SCC with and without nodal metastasis and 15 cases of SpCC were included. Epithelial (cytokeratin, E-cadherin), mesenchymal (vimentin, N-cadherin), and stem cell markers (ALDH-1, CD44, Nanog, Sox-2) and transcription repressors (Snail, Slug, Twist) were analyzed immunohistochemically. We also analyzed the expression of microRNAs miR-141, miR-200 family, miR-205, and miR-429. SpCC exhibited loss of epithelial markers and expression of mesenchymal markers or coexpression of both up-regulation of transcription repressors and down-regulation of the investigated microRNAs. SCC showed only occasional focal expression of mesenchymal markers at the invasive front. No other differences were observed between SCC with and without nodal metastases except for a higher expression of ALDH-1 in SCC with metastases. Our results suggest that SpCC is an example of true EMT but do not support the hypothesis that EMT is involved in metastasizing of conventional SCC. Regarding oral SCC progression and metastasizing, we have been facing a shift from the initial enthusiasm for the EMT concept towards a more critical approach with "EMT-like" and "partial EMT" concepts. The real question, though, is, is there no EMT at all?

  1. Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development.

    PubMed

    Babb, S G; Barnett, J; Doedens, A L; Cobb, N; Liu, Q; Sorkin, B C; Yelick, P C; Raymond, P A; Marrs, J A

    2001-06-01

    Zebrafish E-cadherin (cdh1) cell adhesion molecule cDNAs were cloned. We investigated spatial and temporal expression of cdh1 during early embryogenesis. Expression was observed in blastomeres, the anterior mesoderm during gastrulation, and developing epithelial structures. In the developing nervous system, cdh1 was detected at the pharyngula stage (24 hpf) in the midbrain-hindbrain boundary (MHB). Developmental regulation of MHB formation involves wnt1 and pax2.1. wnt1 expression preceded cdh1 expression during MHB formation, and cdh1 expression in the MHB was dependent on normal development of this structure. Copyright 2001 Wiley-Liss, Inc.

  2. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    PubMed

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-08

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    PubMed

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  4. A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP.

    PubMed

    Pagan, Julia K; Arnold, Jeremy; Hanchard, Kim J; Kumar, Raman; Bruno, Tiziana; Jones, Mathew J K; Richard, Derek J; Forrest, Alistair; Spurdle, Amanda; Verdin, Eric; Crossley, Merlin; Fanciulli, Maurizio; Chenevix-Trench, Georgia; Young, David B; Khanna, Kum Kum

    2007-05-18

    Corepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR. When tethered to a heterologous promoter, BCoR-L1 is capable of strong repression. Like other corepressors, BCoR-L1 associates with histone deacetylase (HDAC) activity. Specifically, BCoR-L1 coprecipitates with the Class II HDACs, HDAC4, HDAC5, and HDAC7, suggesting that they are involved in its role as a transcriptional repressor. BCoR-L1 also interacts with the CtBP corepressor through a CtBP-interacting motif in its amino terminus. Abrogation of the CtBP binding site within BCoR-L1 partially relieves BCoR-L1-mediated transcriptional repression. Furthermore, BCoR-L1 is located on the E-cadherin promoter, a known CtBP-regulated promoter, and represses the E-cadherin promoter activity in a reporter assay. The inhibition of BCoR-L1 expression by RNA-mediated interference results in derepression of E-cadherin in cells that do not normally express E-cadherin, indicating that BCoR-L1 contributes to the repression of an authentic endogenous CtBP target.

  5. Epidermal E-Cadherin Dependent β-Catenin Pathway Is Phytochemical Inducible and Accelerates Anagen Hair Cycling.

    PubMed

    Ahmed, Noha S; Ghatak, Subhadip; El Masry, Mohamed S; Gnyawali, Surya C; Roy, Sashwati; Amer, Mohamed; Everts, Helen; Sen, Chandan K; Khanna, Savita

    2017-11-01

    Unlike the epidermis, which regenerates continually, hair follicles anchored in the subcutis periodically regenerate by spontaneous repetitive cycles of growth (anagen), degeneration (catagen), and rest (telogen). The loss of hair follicles in response to injuries or pathologies such as alopecia endangers certain inherent functions of the skin. Thus, it is of interest to understand mechanisms underlying follicular regeneration in adults. In this work, a phytochemical rich in the natural vitamin E tocotrienol (TRF) served as a productive tool to unveil a novel epidermal pathway of hair follicular regeneration. Topical TRF application markedly induced epidermal hair follicle development akin to that during fetal skin development. This was observed in the skin of healthy as well as diabetic mice, which are known to be resistant to anagen hair cycling. TRF suppressed epidermal E-cadherin followed by 4-fold induction of β-catenin and its nuclear translocation. Nuclear β-catenin interacted with Tcf3. Such sequestration of Tcf3 from its otherwise known function to repress pluripotent factors induced the plasticity factors Oct4, Sox9, Klf4, c-Myc, and Nanog. Pharmacological inhibition of β-catenin arrested anagen hair cycling by TRF. This work reports epidermal E-cadherin/β-catenin as a novel pathway capable of inducing developmental folliculogenesis in the adult skin. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  6. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors ormore » siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.« less

  7. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul

    2012-01-01

    Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  8. Smad4 and epithelial-mesenchymal transition proteins in colorectal carcinoma: an immunohistochemical study.

    PubMed

    Ioannou, M; Kouvaras, E; Papamichali, R; Samara, M; Chiotoglou, I; Koukoulis, G

    2018-06-01

    Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. During EMT, tumor cells acquire the capacity to migrate and invade the stroma. Activation of the transforming growth factor-b (TGF-b) signaling pathway is of major importance for the initiation of EMT. Smad4, an essential protein of this pathway, is known to complex with multiple transcription factors (e.g. Snail-1, Slug, Twist-1), in various types of cancer, promoting the repression or activation of target genes. The role of Smad4 in colorectal cancer (CRC) is not straightforward so far. In the present study forty eight resected CRC tumor specimens were immunohistochemically examined in order to assess the expression of Smad4 and its association with E-cadherin, Snail-1, Slug, Twist-1 protein expression and with various pathological parameters. Smad4 was found to be positively correlated with Snail-1, Slug and Twist-1 expression (p < 0.001). On the other hand it was negatively correlated with the expression of E-cadherin (p < 0.001). Furthermore, lymphatic invasion could be clearly associated with Smad4 expression, a finding complying with the metastatic ability of EMT cells. In conclusion, Smad4 could be considered as a central component of EMT transition in human colorectal cancer that combines with transcriptional factors to reduce E-cadherin and alter the expression of the epithelial phenotype.

  9. 14-3-3ε Overexpression Contributes to Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma

    PubMed Central

    Liang, Shu-Man; Chen, Shyh-Chang; Wang, John; Hsu, Chiun; Wu, Yao-Ming; Liou, Jun-Yang

    2013-01-01

    Background 14-3-3ε is implicated in regulating tumor progression, including hepatocellular carcinoma (HCC). Our earlier study indicated that elevated 14-3-3ε expression is significantly associated with higher risk of metastasis and lower survival rates of HCC patients. However, the molecular mechanisms of how 14-3-3ε regulates HCC tumor metastasis are still unclear. Methodology and Principal Findings In this study, we show that increased 14-3-3ε expression induces HCC cell migration and promotes epithelial-mesenchymal transition (EMT), which is determined by the reduction of E-cadherin expression and induction of N-cadherin and vimentin expression. Knockdown with specific siRNA abolished 14-3-3ε-induced cell migration and EMT. Furthermore, 14-3-3ε selectively induced Zeb-1 and Snail expression, and 14-3-3ε-induced cell migration was abrogated by Zeb-1 or Snail siRNA. In addition, the effect of 14-3-3ε-reduced E-cadherin was specifically restored by Zeb-1 siRNA. Positive 14-3-3ε expression was significantly correlated with negative E-cadherin expression, as determined by immunohistochemistry analysis in HCC tumors. Analysis of 14-3-3ε/E-cadherin expression associated with clinicopathological characteristics revealed that the combination of positive 14-3-3ε and negative E-cadherin expression is significantly correlated with higher incidence of HCC metastasis and poor 5-year overall survival. In contrast, patients with positive 14-3-3ε and positive E-cadherin expression had better prognostic outcomes than did those with negative E-cadherin expression. Significance Our findings show for the first time that E-cadherin is one of the downstream targets of 14-3-3ε in modulating HCC tumor progression. Thus, 14-3-3ε may act as an important regulator in modulating tumor metastasis by promoting EMT as well as cell migration, and it may serve as a novel prognostic biomarker or therapeutic target for HCC. PMID:23483955

  10. Leptospira interrogans Binds to Cadherins

    PubMed Central

    Evangelista, Karen; Franco, Ricardo; Schwab, Andrew; Coburn, Jenifer

    2014-01-01

    Leptospirosis, caused by pathogenic species of Leptospira, is the most widespread zoonosis and has emerged as a major public health problem worldwide. The adhesion of pathogenic Leptospira to host cells, and to extracellular matrix (ECM) components, is likely to be necessary for the ability of leptospires to penetrate, disseminate and persist in mammalian host tissues. Previous work demonstrated that pathogenic L. interrogans binds to host cells more efficiently than to ECM. Using two independent screening methods, mass spectrometry and protein arrays, members of the cadherin family were identified as potential L. interrogans receptors on mammalian host surfaces. We focused our investigation on vascular endothelial (VE)-cadherin, which is widely expressed on endothelia and is primarily responsible for endothelial cell-cell adhesion. Monolayers of EA.hy926 and HMEC-1 endothelial cells produce VE-cadherin, bind L. interrogans in vitro, and are disrupted upon incubation with the bacteria, which may reflect the endothelial damage seen in vivo. Dose-dependent and saturable binding of L. interrogans to the purified VE-cadherin receptor was demonstrated and pretreatment of purified receptor or endothelial cells with function-blocking antibody against VE-cadherin significantly inhibited bacterial attachment. The contribution of VE-cadherin to leptospiral adherence to host endothelial cell surfaces is biologically significant because VE-cadherin plays an important role in maintaining the barrier properties of the vasculature. Attachment of L. interrogans to the vasculature via VE-cadherin may result in vascular damage, facilitating the escape of the pathogen from the bloodstream into different tissues during disseminated infection, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to describe a mammalian cell surface protein as a receptor for L. interrogans. PMID:24498454

  11. Microbiological quality of raw and processed wild and cultured edible snails.

    PubMed

    Parlapani, Foteini F; Neofitou, Christos; Boziaris, Ioannis S

    2014-03-15

    An increasing interest in snail farming in Greece and other European countries has been observed. Despite the fact that edible snails have been involved with problems of Salmonella spp. contamination, there are to our knowledge only limited studies regarding microbiological safety and hygiene of such products. Enumeration of microbial populations and presence/absence of Salmonella spp. in snail meat and intestines of wild Cornu aspersum, Helix lucorum and cultured Cornu aspersum snails from indoor/outdoor type farms was conducted. Furthermore, snail-processing steps were simulated in the laboratory and the population reduction in snail meat was determined. Microbial populations were higher in intestines than snail meat in almost all cases. Escherichia coli/coliforms and Enterococcus spp. populations were lower in the intestines and snail meat of cultured C. aspersum. Salmonella spp. were detected in the intestines and snail meat of wild snails only. The high levels of bacterial populations were considerably reduced after the appropriate processing. The lower populations of E. coli/coliforms, Enterococcus spp. and especially the absence of Salmonella spp. in cultured snails show that the controlled conditions decrease the possibility of pathogen presence and contribute to food safety and public health. © 2013 Society of Chemical Industry.

  12. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye

    PubMed Central

    Chan, Eunice HoYee; Chavadimane Shivakumar, Pruthvi; Clément, Raphaël; Laugier, Edith; Lenne, Pierre-François

    2017-01-01

    Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI: http://dx.doi.org/10.7554/eLife.22796.001 PMID:28537220

  13. Dimethoxy Curcumin Induces Apoptosis by Suppressing Survivin and Inhibits Invasion by Enhancing E-Cadherin in Colon Cancer Cells.

    PubMed

    Chen, Dong; Dai, Fang; Chen, Zhehang; Wang, Saisai; Cheng, Xiaobin; Sheng, Qinsong; Lin, Jianjiang; Chen, Wenbin

    2016-09-11

    BACKGROUND Dimethoxy curcumin (DMC) is a kind of lipophilic analog of curcumin with great improvement in chemical and metabolic stability. DMC has been studied in breast and renal cancer, but no research in colon cancer has been found yet. MATERIAL AND METHODS Two colon cancer cells (HT-29 and SW480) and one normal human colon mucosal epithelial cell (NCM460) were used in this study. We studied the effect of DMC on the proliferation in vitro and in vivo. Transwell migration assay was used to estimate the inhibition of DMC on invasion. Moreover, the expressions of PARP, caspase-3, survivin and E-cadherin were detected to uncover the related signaling pathways by western blotting assay both in vitro and in vivo. RESULTS DMC significantly inhibited the growth of colon cancer cells in dose-dependent manner; IC50 for DMC was calculated to be 43.4, 28.2 and 454.8µM on HT-29, SW480 and NCM460. DMC significantly increased the apoptosis in both HT-29 (p=0.0051) and SW480 (p=0.0013) cells in vitro, and significantly suppressed the growth of both cell lines in vivo. Moreover, DMC reduced the number of migrated cells in both HT-29 (p=0.007) and SW480 (p=0.004) cells. By western blotting analysis, the cleavage of pro-caspases-3 and PARP were clearly induced by DMC to their active form, while the expression of survivin was reduced and E-cadherin was enhanced in both cells in vitro and in vivo. CONCLUSIONS DMC may exert an effective anti-tumor effect in colon cancer cells by down-regulating survivin and upregulating E-cadherin.

  14. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces

    PubMed Central

    Plutoni, Cédric; Bazellieres, Elsa; Le Borgne-Rochet, Maïlys; Comunale, Franck; Brugues, Agusti; Séveno, Martial; Planchon, Damien; Thuault, Sylvie; Morin, Nathalie; Bodin, Stéphane; Trepat, Xavier

    2016-01-01

    Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM. PMID:26783302

  15. Neuroglian and DE-cadherin activate independent cytoskeleton assembly pathways in Drosophila S2 cells.

    PubMed

    Dubreuil, R R; Grushko, T

    1999-11-19

    The cytoskeletal proteins spectrin and ankyrin colocalize with sites of E-cadherin-mediated cell-cell adhesion in mammalian cells. Here we examined the effects of Drosophila DE-cadherin expression on spectrin and ankyrin in Drosophila S2 tissue culture cells. DE-cadherin caused a dramatic change in the cytoplasmic concentration and distribution of armadillo, the Drosophila homolog of beta catenin. However, DE-cadherin expression had no detectable effect on the quantity or subcellular distribution of ankyrin or spectrin. In reciprocal experiments, recruitment of ankyrin and alphabeta spectrin to the plasma membrane by another cell adhesion molecule, neuroglian, had no effect on the quantity or distribution of armadillo. The results indicate that DE-cadherin-catenin complexes and neuroglian-spectrin/ankyrin complexes form by nonintersecting pathways. Recruitment of spectrin does not appear to be a conserved feature of DE-cadherin function. Copyright 1999 Academic Press.

  16. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor).

    PubMed Central

    Ishiai, M; Wada, C; Kawasaki, Y; Yura, T

    1994-01-01

    Replication of mini-F plasmid requires the plasmid-encoded RepE initiator protein and several host factors including DnaJ, DnaK, and GrpE, heat shock proteins of Escherichia coli. The RepE protein plays a crucial role in replication and exhibits two major functions: initiation of replication from the origin, ori2, and autogenous repression of repE transcription. One of the mini-F plasmid mutants that can replicate in the dnaJ-defective host produces an altered RepE (RepE54) with a markedly enhanced initiator activity but little or no repressor activity. RepE54 has been purified from cell extracts primarily in monomeric form, unlike the wild-type RepE that is recovered in dimeric form. Gel-retardation assays revealed that RepE54 monomers bind to ori2 (direct repeats) with a very high efficiency but hardly bind to the repE operator (inverted repeat), in accordance with the properties of RepE54 in vivo. Furthermore, the treatment of wild-type RepE dimers with protein denaturants enhanced their binding to ori2 but reduced binding to the operator: RepE dimers were partially converted to monomers, and the ori2 binding activity was uniquely associated with monomers. These results strongly suggest that RepE monomers represent an active form by binding to ori2 to initiate replication, whereas dimers act as an autogenous repressor by binding to the operator. We propose that RepE is structurally and functionally differentiated and that monomerization of RepE dimers, presumably mediated by heat shock protein(s), activates the initiator function and participates in regulation of mini-F DNA replication. Images PMID:8170998

  17. IL-27 inhibits epithelial-mesenchymal transition and angiogenic factor production in a STAT1-dominant pathway in human non-small cell lung cancer

    PubMed Central

    2013-01-01

    Background Interleukin-27 signaling is mediated by the JAK-STAT pathway via activation of STAT1 and STAT3, which have tumor suppressive and oncogenic activities, respectively. Epithelial–mesenchymal transition (EMT) and angiogenesis are key processes in carcinogenesis. Although IL-27 has been shown to have potent anti-tumor activity in various cancer models, the role of IL-27 in EMT and angiogenesis is poorly understood. In this study, we investigated the role of IL-27 in regulating EMT and angiogenesis through modulation of the STAT pathways in human non-small cell lung carcinoma (NSCLC) cells. Methods STAT activation following IL-27 exposure was measured in human NSCLC cell lines. Expression of epithelial (E-cadherin, γ-catenin) and mesenchymal (N-cadherin, vimentin) markers were assessed by Western blot analysis. Production of pro-angiogenic factors (VEGF, IL-8/CXCL8, CXCL5) were examined by ELISA. Cell motility was examined by an in vitro scratch and transwell migration assays. Selective inhibitors of STAT1 (STAT1 siRNAs) and STAT3 (Stattic) were used to determine whether both STAT1 and STAT3 are required for IL-27 mediated inhibition of EMT and secretion of angiogenic factors. Results Our results demonstrate that IL-27 stimulation in NSCLC resulted in 1) STAT1 and STAT3 activation in a JAK-dependent manner, 2) development of epithelial phenotypes, including a decrease in the expression of a transcriptional repressor for E-cadherin (SNAIL), and mesenchymal marker (vimentin) with a reciprocal increase in the expression of epithelial markers, 3) inhibition of cell migration, and 4) reduced production of pro-angiogenic factors. STAT1 inhibition in IL-27–treated cells reversed the IL-27 effect with resultant increased expression of Snail, vimentin and the pro-angiogenic factors. The inhibition of STAT3 activation had no effect on the development of the epithelial phenotype. Conclusion IL-27 induces mesenchymal to epithelial transition and inhibits the

  18. Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri.

    PubMed

    Lin, Jiaying; Liu, Xishi; Ding, Ding

    2015-01-01

    The cancer stem cell (CSC) paradigm is one possible way to understand the genesis of cancer, and cervical cancer in particular. We quantified and enriched ALDH1(+) cells within cervical cancer cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). ALDH1 expression in spheroid-derived cells (SDC) and the parental monolayer-derived cell (MDC) line was compared by flow-cytometry. Invasion capability was evaluated by Matrigel assay and expression of EMT-related genes Twist 1, Twist 2, Snail 1, Snail 2, Vimentin and E-cadherin by real-time PCR. ALDH1 expression was significantly higher in SDC. ALDH1(+) cells showed increased colony-formation. SDC expressed lower levels of E-cadherin and elevated levels of Twist 1, Twist 2, Snail 1, Snail 2 and Vimentin compared to MDC. Cervical cancer cell lines harbor potential CSC, characterized by ALDH1 expression as well as properties like invasiveness, colony-forming ability, and EMT. CSC can be enriched by anchorage-independent culture techniques, which may be important for the investigation of their contribution to therapy resistance, tumor recurrence and metastasis.

  19. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

    PubMed

    Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N

    2018-06-19

    Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

  20. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape

    PubMed Central

    Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L.; Sivasankar, Sanjeevi

    2016-01-01

    Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473

  1. An Easy Phylogenetically Informative Method to Trace the Globally Invasive Potamopyrgus Mud Snail from River's eDNA.

    PubMed

    Clusa, Laura; Ardura, Alba; Gower, Fiona; Miralles, Laura; Tsartsianidou, Valentina; Zaiko, Anastasija; Garcia-Vazquez, Eva

    2016-01-01

    Potamopyrgus antipodarum (New Zealand mud snail) is a prosobranch mollusk native to New Zealand with a wide invasive distribution range. Its non-indigenous populations are reported from Australia, Asia, Europe and North America. Being an extremely tolerant species, Potamopyrgus is capable to survive in a great range of salinity and temperature conditions, which explains its high invasiveness and successful spread outside the native range. Here we report the first finding of Potamopyrgus antipodarum in a basin of the Cantabrian corridor in North Iberia (Bay of Biscay, Spain). Two haplotypes already described in Europe were found in different sectors of River Nora (Nalon basin), suggesting the secondary introductions from earlier established invasive populations. To enhance the surveillance of the species and tracking its further spread in the region, we developed a specific set of primers for the genus Potamopyrgus that amplify a fragment of 16S rDNA. The sequences obtained from PCR on DNA extracted from tissue and water samples (environmental DNA, eDNA) were identical in each location, suggesting clonal reproduction of the introduced individuals. Multiple introduction events from different source populations were inferred from our sequence data. The eDNA tool developed here can serve for tracing New Zealand mud snail populations outside its native range, and for inventorying mud snail population assemblages in the native settings if high throughput sequencing methodologies are employed.

  2. SASH1 regulates melanocyte transepithelial migration through a novel Gαs-SASH1-IQGAP1-E-Cadherin dependent pathway.

    PubMed

    Zhou, Ding'an; Wei, Zhiyun; Deng, Shanshan; Wang, Teng; Zai, Meiqing; Wang, Honglian; Guo, Luo; Zhang, Junyu; Zhong, Hailei; He, Lin; Xing, Qinghe

    2013-06-01

    One important function of melanocytes (MCs) is to produce and transfer melanin to neighbouring keratinocytes (KCs) to protect epithelial cells from UV radiation. The mechanisms regulating the specific migration and localisation of the MC lineage remain unknown. We have found three heterozygous mutations that cause amino acid substitutions in the SASH1 gene in individuals with a kind of dyschromatosis. In epidermal tissues from an affected individual, we observed the increased transepithelial migration of melanocytes. Functional analyses indicate that these SASH1 mutations not only cause the increased migration of A375 cells and but also induce intensive bindings with two novel cell adhesion partners IQGAP1 and Gαs. Further, SASH1 mutations induce uniform loss of E-Cadherin in human A375 cells. Our findings suggest a new scaffold protein SASH1 to regulate IQGAP1-E-Cadherin signalling and demonstrate a novel crosstalking between GPCR signalling, calmodulin signalling for the modulation of MCs invasion. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. BHC80 is Critical in Suppression of Snail-LSD1 Interaction and Breast Cancer Metastasis

    DTIC Science & Technology

    2014-04-01

    Epithelial-mesenchymal transitions in development and disease . Cell 2009; 139:871-90. 9. Wu Y, Zhou BP. Snail: More than EMT. Cell Adh Migr 2010; 4:199...Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease . Cell 2009; 139:871-90. 9. Wu Y, Zhou BP. Snail: More than EMT. Cell...QSRKAFNCKYC Snail ( Canine ) QTRKAFNCKYC Snail (Monkey) QSRKAFNCKYC Snail (Opossum) QPRKAFICKVC A D E F CHX 0 1 3 5 7 0 1 3 5 7 WT Snail

  4. Seasonal variation in abiotic factors and ferulic acid toxicity in snail-attractant pellets against the intermediate host snail Lymnaea acuminata.

    PubMed

    Agrahari, P; Singh, D K

    2013-11-01

    Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline + ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12 months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid + starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September. © 2012 Blackwell Verlag GmbH.

  5. Euparyphium albuferensis and Echinostoma friedi (Trematoda: Echinostomatidae): experimental cercarial transmission success in sympatric snail communities.

    PubMed

    Muñoz-Antoli, Carla; Marin, Antoni; Vidal, Amparo; Toledo, Rafael; Esteban, José Guillermo

    2008-06-01

    Euparyphium albuferensis and Echinostoma friedi cercarial infectivity to four species of sympatric snails was examined under single- or multiple-choice laboratory conditions to show the level of parasite-snail host compatibility. Radix peregra, Lymnaeafuscus, Physella acuta and Gyraulus chinensis act as second intermediate hosts of both parasite species although different cercarial transmission success (CTS) was observed. In single-host experiments, R. peregra and P. acuta showed a high degree of compatibility with E. albuferensis, while only P. acuta in the case of E. friedi. In two-choice snail communities, a snail with high CTS increased the values of another with low compatibility, in both parasite species. In multiple-choice snail communities, high CTS of some hosts decreased, while low CTS of other hosts increased. The degree of parasite-host compatibility of each snail species could be determined by the presence of other snails in the community.

  6. Snail Trails

    ERIC Educational Resources Information Center

    Galus, Pamela

    2002-01-01

    The slime trails of snails lead the author's students to a better understanding of science as inquiry and the processes of science. During this five-day activity, students get up close and personal with one of her favorite creatures, the land snail. Students begin by observing the organism and recording their observations. After making initial…

  7. Downregulation of Bit1 expression promotes growth, anoikis resistance, and transformation of immortalized human bronchial epithelial cells via Erk activation-dependent suppression of E-cadherin.

    PubMed

    Yao, Xin; Gray, Selena; Pham, Tri; Delgardo, Mychael; Nguyen, An; Do, Stephen; Ireland, Shubha Kale; Chen, Renwei; Abdel-Mageed, Asim B; Biliran, Hector

    2018-01-01

    The mitochondrial Bit1 protein exerts tumor-suppressive function in NSCLC through induction of anoikis and inhibition of EMT. Having this dual tumor suppressive effect, its downregulation in the established human lung adenocarcinoma A549 cell line resulted in potentiation of tumorigenicity and metastasis in vivo. However, the exact role of Bit1 in regulating malignant growth and transformation of human lung epithelial cells, which are origin of most forms of human lung cancers, has not been examined. To this end, we have downregulated the endogenous Bit1 expression in the immortalized non-tumorigenic human bronchial epithelial BEAS-2B cells. Knockdown of Bit1 enhanced the growth and anoikis insensitivity of BEAS-2B cells. In line with their acquired anoikis resistance, the Bit1 knockdown BEAS-2B cells exhibited enhanced anchorage-independent growth in vitro but failed to form tumors in vivo. The loss of Bit1-induced transformed phenotypes was in part attributable to the repression of E-cadherin expression since forced exogenous E-cadherin expression attenuated the malignant phenotypes of the Bit1 knockdown cells. Importantly, we show that the loss of Bit1 expression in BEAS-2B cells resulted in increased Erk activation, which functions upstream to promote TLE1-mediated transcriptional repression of E-cadherin. These collective findings indicate that loss of Bit1 expression contributes to the acquisition of malignant phenotype of human lung epithelial cells via Erk activation-induced suppression of E-cadherin expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Interactions between freshwater snails and tadpoles: competition and facilitation.

    PubMed

    Brönmark, Christer; Rundle, Simon D; Erlandsson, Ann

    1991-06-01

    Freshwater snails and anuran tadpoles have been suggested to have their highest population densities in ponds of intermediate size where abiotic disturbance (e.g. desiccation) is low and large predators absent. Both snails and tadpoles feed on periphytic algae and, thus, there should be a large potential for competitive interactions to occur between these two distantly related taxa. In a field experiment we examined the relative strength of competition between two closely related snail species, Lymnaea stagnalis and L. peregra, and between L. stagnalis and tadpoles of the common frog, Rana temporaria. Snail growth and egg production and tadpole size at and time to metamorphosis were determined. Effects on the common food source, periphyton, were monitored with the aid of artificial substrates. Periphyton dry weight was dramatically reduced in the presence of snails and/or tadpoles. There were no competitive effects on growth or egg production of the two snail species when they were coexisting. Mortality of L. peregra was high (95%) after reproduction, but independent of treatment. Growth of L. stagnalis was reduced only at the highest tadpole densities, whereas egg production was reduced both by intraspecific competition and by competition with tadpoles. Differences in egg production were retained after tadpole metamorphosis. Tadpole larval period increased, weight of metamorphosing frogs decreased and growth rate was reduced as a function of increasing tadpole density. However, contrary to expectation, snails had a positive effect on tadpole larval period, weight and growth rate. Further, in experimental containers without snails there was a dense growth of the filamentous green alga Cladophora sp. We suggest that the facilitative effects of snails on tadpoles are due to an "indirect mutualistic" mechanism, involving competition between food sources of different quality (microalgae and Cladophora sp.) and tadpoles being competitively dominant over snails for the

  9. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface.

    PubMed Central

    Iino, R; Koyama, I; Kusumi, A

    2001-01-01

    Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443

  10. Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of SNAIL/beta-catenin signaling.

    PubMed

    Roy, Hemant K; Kunte, Dhananjay P; Koetsier, Jennifer L; Hart, John; Kim, Young L; Liu, Yang; Bissonnette, Marc; Goldberg, Michael; Backman, Vadim; Wali, Ramesh K

    2006-08-01

    Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1-beta-catenin-mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-76A diet alone or supplemented with 5% PEG-8000. After 30 weeks, animals were euthanized and biopsies of aberrant crypt foci and uninvolved crypts were subjected to immunohistochemical and immunoblot analyses. PEG markedly suppressed both early and late markers of azoxymethane-induced colon carcinogenesis (fractal dimension by 80%, aberrant crypt foci by 64%, and tumors by 74%). In both azoxymethane-treated rats and HT-29 cells treated with 5% PEG-3350 for 24 hours, PEG decreased proliferation (45% and 52%, respectively) and cyclin D1 (78% and 56%, respectively). Because beta-catenin is the major regulator of cyclin D1 in colorectal cancer, we used the T-cell factor (Tcf)-TOPFLASH reporter assay to show that PEG markedly inhibited beta-catenin transcriptional activity. PEG did not alter total beta-catenin expression but rather its nuclear localization, leading us to assess E-cadherin expression (a major determinant of beta-catenin subcellular localization), which was increased by 73% and 71% in the azoxymethane-rat and HT-29 cells, respectively. We therefore investigated the effect of PEG treatment on levels of the negative regulator of E-cadherin, SNAIL, and observed a 50% and 75% decrease, respectively. In conclusion, we show, for the first time, a molecular mechanism through which PEG imparts its antiproliferative and hence profound chemopreventive effect.

  11. Behavioural responses of the snail Lymnaea acuminata to carbohydrates in snail-attractant pellets

    NASA Astrophysics Data System (ADS)

    Tiwari, Farindra; Singh, D. K.

    Snail control is one of the most important tools in the campaign to reduce the incidence of fascioliasis. In order to attain this objective, the method of bait formulation in order to contain an attractant and a molluscicide is an expedient approach to lure the target snail population to the molluscicide. This study identifies certain carbohydrates, namely sucrose, maltose, glucose, fructose and starch, for preparing such baits. These were tested on Lymnaea acuminata, an intermediate host of the digenean trematodes Fasciola hepatica and Fasciola gigantica. The behavioural responses of snails to these carbohydrates were examined. Significant variations in behavioural responses were observed in the snail even when the five carbohydrates were used in low concentrations in snail-attractant pellets. Starch emerged as the strongest attractant for Lymnaea acuminata, followed by maltose.

  12. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines.

    PubMed

    Sandquist, Elizabeth J; Somji, Seema; Dunlevy, Jane R; Garrett, Scott H; Zhou, Xu Dong; Slusser-Nore, Andrea; Sens, Donald A

    2016-01-01

    Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition

  13. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2013-10-01

    4A, TGFbeta decreased E- cadherin expression and increase Col1a1 expression in MLE12 cells. Soluble Cad11 Fc fusion protein inhibited EMT induced by...TGFbeta as noted my higher E-cadherin levels and a significant reduction in Col1a1 mRNA. In contrast, when Cad11 Fc fusion protein was immobilized...Fc fusion protein alone was able to induce Col1a1 expression at the 50 ug/ml concentration, although E-cadherin expression was also increased. In

  14. Cadherin genes and evolutionary novelties in the octopus.

    PubMed

    Wang, Z Yan; Ragsdale, Clifton W

    2017-09-01

    All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. FOXQ1 promotes gastric cancer metastasis through upregulation of Snail.

    PubMed

    Zhang, Jing; Liu, Yimin; Zhang, Jia; Cui, Xiaohai; Li, Gang; Wang, Jiansheng; Ren, Hong; Zhang, Yunfeng

    2016-06-01

    Gastric cancer (GC) is one of the most common cancers, and the second most common cause of cancer deaths worldwide. Forkhead box Q1 (FOXQ1) is a member of the forkhead transcription factor family and its upregulation is closely correlated with tumor progression and prognosis of multiple cancer types, including GC. FOXQ1 has been shown to regulate EMT and function in human cancers. However, the role of FOXQ1 in regulating EMT in GC and the exactly mechanism has not been clarified. The purpose of this study was to investigate the effects of FOXQ1 on EMT in human GC. FOXQ1 protein was detected by immunohistochemistry in human GC specimens and their clinical significance evaluated. We examined the cell biology and molecular biology changes after overexpression and knockdown of FOXQ1 in gastric cancer cells in vitro. To further understand the underlying mechanisms of EMT promoted by FOXQ1, we examined the changes of target genes of FOXQ1 after overexpression and knockdown of FOXQ1 in gastric cancer cells. In the present study, we demonstrate that FOXQ1 is overexpressed in GC tissues and its expression level is closely correlated with histologic differentiation, pTNM stage, and lymphatic metastasis of GC. Kaplan-Meier survival analysis showed that a high expression level of FOXQ1 resulted in a significantly poor prognosis of GC patients. FOXQ1 modulated GC cell invasion in vitro, and induced E-cadherin repression. FOXQ1 also upregulated the expression of vimentin in vitro. The Snail signaling pathway was likely involved in the induction of EMT by FOXQ1 in GC. Our results demonstrate that FOXQ1 is a prognostic marker for patients with GC, FOXQ1 over-expression is involved in acquisition of the mesenchymal phenotype of gastric cancer cells, and that subsequent Snail expression is essential for induction of EMT. The results suggest that FOXQ1 is a potential therapeutic target for the development of therapies for GC.

  16. An Easy Phylogenetically Informative Method to Trace the Globally Invasive Potamopyrgus Mud Snail from River’s eDNA

    PubMed Central

    Clusa, Laura; Ardura, Alba; Gower, Fiona; Miralles, Laura; Tsartsianidou, Valentina; Zaiko, Anastasija; Garcia-Vazquez, Eva

    2016-01-01

    Potamopyrgus antipodarum (New Zealand mud snail) is a prosobranch mollusk native to New Zealand with a wide invasive distribution range. Its non-indigenous populations are reported from Australia, Asia, Europe and North America. Being an extremely tolerant species, Potamopyrgus is capable to survive in a great range of salinity and temperature conditions, which explains its high invasiveness and successful spread outside the native range. Here we report the first finding of Potamopyrgus antipodarum in a basin of the Cantabrian corridor in North Iberia (Bay of Biscay, Spain). Two haplotypes already described in Europe were found in different sectors of River Nora (Nalon basin), suggesting the secondary introductions from earlier established invasive populations. To enhance the surveillance of the species and tracking its further spread in the region, we developed a specific set of primers for the genus Potamopyrgus that amplify a fragment of 16S rDNA. The sequences obtained from PCR on DNA extracted from tissue and water samples (environmental DNA, eDNA) were identical in each location, suggesting clonal reproduction of the introduced individuals. Multiple introduction events from different source populations were inferred from our sequence data. The eDNA tool developed here can serve for tracing New Zealand mud snail populations outside its native range, and for inventorying mud snail population assemblages in the native settings if high throughput sequencing methodologies are employed. PMID:27706172

  17. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer

    PubMed Central

    Baritaki, Stavroula; Huerta-Yepez, Sara; Sahakyan, Anna; Karagiannides, Iordanis; Bakirtzi, Kyriaki; Jazirehi, Ali R

    2010-01-01

    The role of nitric oxide (NO) in cancer has been controversial and is based on the levels of NO and the responsiveness of the tumor type. It remains unclear whether NO can inhibit the epithelial to mesenchymal transition (EMT) in cancer cells. EMT induction is mediated, in part, by the constitutive activation of the metastasis-inducer transcription factor, Snail and EMT can be inhibited by the metastasis-suppressors Raf-1 kinase inhibitor protein (RKIP) and E-cadherin. Snail is transcriptionally regulated by NFκB and in turn, Snail represses RKIP transcription. Hence, we hypothesized that high levels of NO, that inhibit NFκB activity, may also inhibit Snail, induce RKIP and leading to inhibition of EMT. We show that treatment of human prostate metastatic cell lines with the NO donor, DETANONOate, inhibits EMT and reverses both the mesenchymal phenotype and the cell invasive properties. Further, treatment with DETANONOate inhibits Snail expression and DNA-binding activity in parallel with the upregulation of RKIP and E-cadherin protein levels. The pivotal roles of Snail inhibition and RKIP induction in DETANONOate-mediated inhibition of EMT were corroborated by both Snail silencing by siRNA and by ectopic expression of RKIP. The in vitro findings were validated in vivo in mice bearing PC-3 xenografts treated with DETANONOate. The present findings show, for the first time, the novel role of high, yet, subtoxic concentrations of NO in the inhibition of EMT. Thus, NO donors may exert therapeutic activities in the reversal of EMT and metastasis. PMID:21150329

  18. Nitric Oxide Increases Arterial Endotheial Permeability through Mediating VE-Cadherin Expression during Arteriogenesis.

    PubMed

    Yang, Baolin; Cai, Baizhen; Deng, Panyue; Wu, Xiaoqiong; Guan, Yinglu; Zhang, Bin; Cai, Weijun; Schaper, Jutta; Schaper, Wolfgang

    2015-01-01

    Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism

  19. Nitric Oxide Increases Arterial Endotheial Permeability through Mediating VE-Cadherin Expression during Arteriogenesis

    PubMed Central

    Wu, Xiaoqiong; Guan, Yinglu; Zhang, Bin; Cai, Weijun; Schaper, Jutta; Schaper, Wolfgang

    2015-01-01

    Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism

  20. Interactions of Plakoglobin and [beta]-Catenin with Desmosomal Cadherins BASIS OF SELECTIVE EXCLUSION OF [alpha]- AND [beta]-CATENIN FROM DESMOSOMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hee-Jung; Gross, Julia C.; Pokutta, Sabine

    2009-11-18

    Plakoglobin and {beta}-catenin are homologous armadillo repeat proteins found in adherens junctions, where they interact with the cytoplasmic domain of classical cadherins and with {alpha}-catenin. Plakoglobin, but normally not {beta}-catenin, is also a structural constituent of desmosomes, where it binds to the cytoplasmic domains of the desmosomal cadherins, desmogleins and desmocollins. Here, we report structural, biophysical, and biochemical studies aimed at understanding the molecular basis of selective exclusion of {beta}-catenin and {alpha}-catenin from desmosomes. The crystal structure of the plakoglobin armadillo domain bound to phosphorylated E-cadherin shows virtually identical interactions to those observed between {beta}-catenin and E-cadherin. Trypsin sensitivity experimentsmore » indicate that the plakoglobin arm domain by itself is more flexible than that of {beta}-catenin. Binding of plakoglobin and {beta}-catenin to the intracellular regions of E-cadherin, desmoglein1, and desmocollin1 was measured by isothermal titration calorimetry. Plakoglobin and {beta}-catenin bind strongly and with similar thermodynamic parameters to E-cadherin. In contrast, {beta}-catenin binds to desmoglein-1 more weakly than does plakoglobin. {beta}-Catenin and plakoglobin bind with similar weak affinities to desmocollin-1. Full affinity binding of desmoglein-1 requires sequences C-terminal to the region homologous to the catenin-binding domain of classical cadherins. Although pulldown assays suggest that the presence of N- and C-terminal {beta}-catenin 'tails' that flank the armadillo repeat region reduces the affinity for desmosomal cadherins, calorimetric measurements show no significant effects of the tails on binding to the cadherins. Using purified proteins, we show that desmosomal cadherins and {alpha}-catenin compete directly for binding to plakoglobin, consistent with the absence of {alpha}-catenin in desmosomes.« less

  1. Repressing a Repressor

    PubMed Central

    Silverstone, Aron L.; Jung, Hou-Sung; Dill, Alyssa; Kawaide, Hiroshi; Kamiya, Yuji; Sun, Tai-ping

    2001-01-01

    RGA (for repressor of ga1-3) and SPINDLY (SPY) are likely repressors of gibberellin (GA) signaling in Arabidopsis because the recessive rga and spy mutations partially suppressed the phenotype of the GA-deficient mutant ga1-3. We found that neither rga nor spy altered the GA levels in the wild-type or the ga1-3 background. However, expression of the GA biosynthetic gene GA4 was reduced 26% by the rga mutation, suggesting that partial derepression of the GA response pathway by rga resulted in the feedback inhibition of GA4 expression. The green fluorescent protein (GFP)–RGA fusion protein was localized to nuclei in transgenic Arabidopsis. This result supports the predicted function of RGA as a transcriptional regulator based on sequence analysis. Confocal microscopy and immunoblot analyses demonstrated that the levels of both the GFP-RGA fusion protein and endogenous RGA were reduced rapidly by GA treatment. Therefore, the GA signal appears to derepress the GA signaling pathway by degrading the repressor protein RGA. The effect of rga on GA4 gene expression and the effect of GA on RGA protein level allow us to identify part of the mechanism by which GA homeostasis is achieved. PMID:11449051

  2. The effects of wetland habitat structure on Florida apple snail density

    USGS Publications Warehouse

    Karunaratne, L.B.; Darby, P.C.; Bennetts, R.E.

    2006-01-01

    Wetlands often support a variety of juxtaposed habitat patches (e.g., grass-, shrub- or tree-dominated) differentially suited to support the inhabiting fauna. The proportion of available habitat types has been affected by human activity and consequently has contributed to degrading habitat quality for some species. The Florida apple snail (Pomacea paludosa) has drawn attention as a critical prey item for wetlands wildlife and as an indicator of wetlands restoration success in peninsular Florida, USA. An apparent contradiction has evolved wherein this species appears intolerant of drying events, but these disturbances may be necessary to maintain suitable habitat structure for apple snails. We recently reported that assertions regarding intolerance to dry downs in this species were inaccurate. Here, we compared snail density in habitats with (wet prairie) and without (slough) emergent macrophytes, as well as evaluating the effects of structural attributes within the broad wet prairie habitat type. Snail densities were greater in prairies relative to sloughs (??2= 12.90, df=1, P=0.0003), often by a factor of two to three. Within wet prairie habitats, we found greater snail densities in Panicum hemitomon as compared to Eleocharis cellulosa (??2=31.45, df=1, P=0.0001). Significantly fewer snails were found in dense E. cellulosa as compared to habitats with lower stem density (??2= 10.73, df=1, P=0.011). Our results indicate that wet prairie habitat supports greater snail densities than nymphaea-dominatd slough. Our results have implications for wetlands water management in that continuous inundation has been shown to convert wet prairie to slough habitat, and we suggest this should be avoided in support of apple snails and their predators. ?? 2006, The Society of Wetland Scientists.

  3. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines

    PubMed Central

    Sandquist, Elizabeth J.; Somji, Seema; Dunlevy, Jane R.; Garrett, Scott H.; Zhou, Xu Dong; Slusser-Nore, Andrea

    2016-01-01

    Background Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Methods Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. Results This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. Conclusions The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth

  4. P21, COX-2, and E-cadherin are potential prognostic factors for esophageal squamous cell carcinoma.

    PubMed

    Lin, Yao; Shen, Lu-Yan; Fu, Hao; Dong, Bin; Yang, He-Li; Yan, Wan-Pu; Kang, Xiao-Zheng; Dai, Liang; Zhou, Hai-Tao; Yang, Yong-Bo; Liang, Zhen; Chen, Ke-Neng

    2017-02-01

    Much research effort has been devoted to identifying prognostic factors for esophageal squamous cell carcinoma (ESCC) by immunohistochemistry; however, no conclusive findings have been reached thus far. We hypothesized that certain molecules identified in previous studies might serve as useful prognostic markers for ESCC. Therefore, the aim of the current study was to validate the most relevant markers showing potential for ESCC prognosis in our prospective esophageal cancer database. A literature search was performed using the PubMed database for papers published between 1980 and 2015 using the following key words: 'esophageal cancer,' 'prognosis,' and 'immunohistochemistry.' Literature selection criteria were established to identify the most widely studied markers, and we further validated the selected markers in a cohort from our single-surgeon team, including 153 esophageal cancer patients treated from 2000 to 2010. A total of 1799 articles were identified, 82 of which met the selection criteria. Twelve markers were found to be the most widely studied, and the validation results indicated that only P21, COX-2, and E-cadherin were independent prognostic factors for ESCC patients in this series. The systemic review and cohort validation suggest that P21, COX-2, and E-cadherin are potential prognostic factors for ESCC, paving the way for more targeted prospective validation in the future. © 2016 International Society for Diseases of the Esophagus.

  5. [HIF-2α/Notch3 pathway mediates CoCl2-induced migration and invasion in human breast cancer MCF-7 cells].

    PubMed

    Wang, Jian-Guo; Yuan, Lei

    2016-12-25

    The aim of this study is to investigate the effects of hypoxia inducible factor-2α (HIF-2α) and Notch3 on CoCl 2 -induced migration and invasion of human breast cancer cell line MCF-7. MCF-7 cells were exposed to normoxia (21% O 2 ) or chemical hypoxia (21% O 2 plus CoCl 2 ). Short hairpin RNA (shRNA) was used to knock down HIF-2α and Notch3 in MCF-7 cells. The mRNA expression levels of HIF-2α, Notch3 and Hey1 were measured by RT-PCR. Western blot was performed to determine the protein expression levels of HIF-2α, Notch3, Hey1, Snail and E-cadherin. CoCl 2 treatment resulted in higher protein expression levels of HIF-2α, Notch3, Hey1, Snail (P < 0.05) and lower levels of E-cadherin (P < 0.05), and promoted migration and invasion of MCF-7 cells (P < 0.05). shRNA-HIF-2α suppressed CoCl 2 -induced mRNA expression of Notch3 and Hey1. Notch3 knockdown down-regulated Snail and up-regulated E-cadherin at protein level under simulated hypoxia (P < 0.05), and inhibited CoCl 2 -induced migration and invasion of MCF-7 cells (P < 0.05). In conclusion, our data provide evidence that HIF-2α may promote the migration and invasion of MCF-7 cells under chemical hypoxic conditions by potentiating Notch3 pathway.

  6. Hyaluronan and Layilin Mediate Loss of Airway Epithelial Barrier Function Induced by Cigarette Smoke by Decreasing E-cadherin*

    PubMed Central

    Forteza, Rosanna Malbran; Casalino-Matsuda, S. Marina; Falcon, Nieves S.; Valencia Gattas, Monica; Monzon, Maria E.

    2012-01-01

    Cigarette smoke (CigS) exposure is associated with increased bronchial epithelial permeability and impaired barrier function. Primary cultures of normal human bronchial epithelial cells exposed to CigS exhibit decreased E-cadherin expression and reduced transepithelial electrical resistance. These effects were mediated by hyaluronan (HA) because inhibition of its synthesis with 4-methylumbelliferone prevented these effects, and exposure to HA fragments of <70 kDa mimicked these effects. We show that the HA receptor layilin is expressed apically in human airway epithelium and that cells infected with lentivirus expressing layilin siRNAs were protected against increased permeability triggered by both CigS and HA. We identified RhoA/Rho-associated protein kinase (ROCK) as the signaling effectors downstream layilin. We conclude that HA fragments generated by CigS bind to layilin and signal through Rho/ROCK to inhibit the E-cadherin gene and protein expression, leading to a loss of epithelial cell-cell contact. These studies suggest that HA functions as a master switch protecting or disrupting the epithelial barrier in its high versus low molecular weight form and that its depolymerization is a first and necessary step triggering the inflammatory response to CigS. PMID:23048036

  7. Immunohistochemical expression of E-cadherin does not distinguish canine cutaneous histiocytoma from other canine round cell tumors.

    PubMed

    Ramos-Vara, J A; Miller, M A

    2011-05-01

    Immunohistochemistry for E-cadherin (ECAD) has been used to distinguish canine cutaneous histiocytoma from other leukocytic neoplasms ("round cell tumors"). To determine the specificity of this test, 5 types of canine cutaneous round cell tumors were evaluated for immunohistochemical expression of ECAD. Tumors of all 5 types had variable cytoplasmic, plasma membrane, and/or paranuclear ECAD expression: All 13 cutaneous histiocytomas were ECAD+; all but 1 of 14 mast cell tumors expressed ECAD; 10 of 12 epitheliotropic lymphomas reacted with E-cadherin antibody; of 72 plasmacytomas, 54 were ECAD+; and 5 of 5 histiocytic sarcomas were positive. Conclusions based on these results include the following: First, immunoreactivity for ECAD is not limited to leukocytes of cutaneous histiocytoma; second, antibody to ECAD also labels neoplastic cells in most mast cell tumors, plasmacytomas, cutaneous histiocytic sarcomas, and epitheliotropic lymphomas; third, although most histiocytomas have membranous ECAD expression, the immunoreactivity varies among round cell tumors and is frequently concurrent in different cellular compartments; fourth, the distinctively paranuclear ECAD expression pattern in epitheliotropic lymphomas might distinguish them from other round cell tumors; and, fifth, ECAD should be used with other markers (eg, MUM1 for plasmacytomas, KIT for mast cell tumors, CD3 and CD79a for lymphomas) to distinguish among canine round cell tumors.

  8. Systematic Investigation of Key Survival and Growth Pathways in Breast Cancer

    DTIC Science & Technology

    2011-09-01

    Bachelder, R.E., Yoon, S.O., Franci, C., de Herreros, A.G., and Mercurio , A.M. (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of Snail...directly, we showed that knockdown of IRS1 or Snail1 in MCF10A-MEMO1 cells de -repressed E-cadherin synthesis (Figure 3E and 3F). Collectively, these... extract (Figure 5B). Moreover, AMOTL2 binds to both inactive AKT1 (K179M) and constitutively activated AKT1 (Myr tag fused AKT1) in the cell (Figure

  9. Increased epithelial cadherin expression among Japanese intestinal-type gastric cancers compared with specimens from American patients of European descent.

    PubMed

    Theuer, Charles P; Al-Kuran, Rasha; Akiyama, Yoshiyuki; Okumura, Minoru; Ziogas, Al; Carpenter, Philip M

    2006-04-01

    The different patterns of gastric cancer in the Far East and West have evolved to the extent that it has been suggested that the disease in Japan is biologically less aggressive than in the West. We studied paraffin-embedded, formalin-fixed tissue blocks from Japanese patients and American patients of European descent who had undergone gastrectomy for gastric cancer not involving the gastroesophageal junction. Specimens were staged (T stage), graded (Lauren classification), and biomarker expression (epithelial cadherin [E-cadherin], c-erbB2, Ki67, and p53) was quantified using immunohistochemistry without knowledge of the country of origin. E-cadherin was expressed in 49 per cent of malignant cells from Japanese specimens compared with 27 per cent of malignant cells from American specimens (P = 0.04). The expression of E-cadherin on diffuse cancers from the two countries was similar (34.4 in Japanese vs 41.5 in American, P = 0.92). E-cadherin expression, however, was significantly higher among intestinal cancers from the two countries: 56.3 per cent of cells from intestinal or mixed cancers from Japan (n = 32) expressed E-cadherin compared with 22.2 per cent of American specimens (n = 12; P = 0.008).-c-erbB2 was expressed on a higher proportion of malignant cells from American specimens (30% vs 22%; P = 0.20). E-cadherin expression, a favorable prognostic factor, is more common in Japanese intestinal-type gastric cancer not involving the gastroesophageal junction. If the biology of gastric cancer in the Far East is less aggressive than that in the United States, it is likely that treatments need to be individualized.

  10. Myosin II promotes the anisotropic loss of the apical domain during Drosophila neuroblast ingression

    PubMed Central

    Simões, Sérgio; Oh, Youjin; Wang, Michael F.Z.; Fernandez-Gonzalez, Rodrigo

    2017-01-01

    Epithelial–mesenchymal transitions play key roles in development and cancer and entail the loss of epithelial polarity and cell adhesion. In this study, we use quantitative live imaging of ingressing neuroblasts (NBs) in Drosophila melanogaster embryos to assess apical domain loss and junctional disassembly. Ingression is independent of the Snail family of transcriptional repressors and down-regulation of Drosophila E-cadherin (DEcad) transcription. Instead, the posttranscriptionally regulated decrease in DEcad coincides with the reduction of cell contact length and depends on tension anisotropy between NBs and their neighbors. A major driver of apical constriction and junctional disassembly are periodic pulses of junctional and medial myosin II that result in progressively stronger cortical contractions during ingression. Effective contractions require the molecular coupling between myosin and junctions and apical relaxation of neighboring cells. Moreover, planar polarization of myosin leads to the loss of anterior–posterior junctions before the loss of dorsal–ventral junctions. We conclude that planar-polarized dynamic actomyosin networks drive apical constriction and the anisotropic loss of cell contacts during NB ingression. PMID:28363972

  11. Mortality and histopathological effects in harbour-transplanted snails with different exposure histories.

    PubMed

    Bighiu, Maria Alexandra; Watermann, Burkard; Guo, Xueli; Almroth, Bethanie Carney; Eriksson-Wiklund, Ann-Kristin

    2017-09-01

    Contaminants are important stressors in the aquatic environment and may exert selective pressures on organisms. We hypothesized that snails originating from a metal-contaminated habitat (B) would have increased tolerance to harbour contaminants (e.g. metals from antifouling paints), compared to snails originating from a relatively clean habitat (A). We assessed tolerance to metals in terms of survival and histopathological alterations after 2, 4 and 8 weeks of in situ exposure in three Baltic Sea boat harbours and three reference sites. We also hypothesized that any potential tolerance to contaminants would be associated with differences in genetic diversity between the two snail populations (evaluated as mitochondrial cytochrome c oxidase subunit I, COI). The results show that snails from population A survived to a higher extent compared to population B, possibly indicating either a lack of adaptation to metals in snails B or impaired health condition due to contaminant pre-exposure or a higher resilience of snails A. Moreover, the genetic diversity of COI was low within each population and did not differ between populations. In general, 83% of all the types of histopathological alterations (e.g. lysis and necrosis of gonads and digestive gland or granulocytoma and phagocytosis in the storage tissue, among others) had a higher probability of occurrence among harbour-exposed snails compared to reference-exposed snails, regardless of snail population origin. The only significant difference in histological effects between the two populations was in the frequency of parasite infestations and shell fouling, both being larger for population A than B. Interestingly, the rate of parasite infestations was higher for males than females from population A, whereas no sexual dichotomy was observed for population B. Our results show that exposure to harbour contaminants causes both lethal and sublethal toxicity to snails, and the association between many of the toxic responses

  12. Zonula occludens-1, occludin and E-cadherin expression and organization in salivary glands with Sjögren's syndrome.

    PubMed

    Mellas, Rachel E; Leigh, Noel J; Nelson, Joel W; McCall, Andrew D; Baker, Olga J

    2015-01-01

    Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disorder that causes secretory dysfunction of the salivary glands leading to dry mouth. Previous studies reported that tight junction (TJ) proteins are down-regulated and lose polarity in human minor salivary glands with SS, suggesting that TJ structure is compromised in SS patients. In this paper, we utilized the NOD/ShiLtJ mouse with the main goal of evaluating this model for future TJ research. We found that the organization of apical proteins in areas proximal and distal to lymphocytic infiltration remained intact in mouse and human salivary glands with SS. These areas looked comparable to control glands (i.e., with no lymphocytic infiltration). TJ staining was absent in areas of lymphocytic infiltration coinciding with the loss of salivary epithelium. Gene expression studies show that most TJs are not significantly altered in 20-week-old NOD/ShiLtJ mice as compared with age-matched C57BL/6 controls. Protein expression studies revealed that the TJ proteins, zonula occludens-1 (ZO-1), occludin, claudin-12, as well as E-cadherin, do not significantly change in NOD/ShiLtJ mice. Our results suggest that ZO-1, occludin and E-cadherin are not altered in areas without lymphocytic infiltration. However, future studies will be necessary to test the functional aspect of these results. © The Author(s) 2014.

  13. N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO

    PubMed Central

    Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.

    2009-01-01

    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  14. Thermo-chemotherapy Induced miR-218 upregulation inhibits the invasion of gastric cancer via targeting Gli2 and E-cadherin.

    PubMed

    Ruan, Qiang; Fang, Zhi-Yuan; Cui, Shu-Zhong; Zhang, Xiang-Liang; Wu, Yin-Bing; Tang, Hong-Sheng; Tu, Yi-Nuo; Ding, Yan

    2015-08-01

    Thermo-chemotherapy has been proven to reduce the invasion capability of cancer cells. However, the molecular mechanism underlying this anti-invasion effect is still unclear. In this study, the role of thermo-chemotherapy in the inhibition of tumor invasion was studied. The results demonstrated that expression of miR-218 was downregulated in gastric cancer tissues, which had a positive correlation with tumor invasion and metastasis. In vitro thermo-chemotherapy increased miR-218 expression in SGC7901 cells and inhibited both proliferation and invasion of cancer cells. Gli2 was identified as a downstream target of miR-218, and its expression was negatively regulated by miR-218. The thermo-chemotherapy induced miR-218 upregulation was also accompanied by increasing of E-cadherin expression. In conclusion, the present study indicates that thermo-chemotherapy can effectively decrease the invasion capability of cancer cells and increase cell-cell adhesion. miR-218 and its downstream target Gli2, as well as E-cadherin, participate in the anti-invasion process.

  15. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  16. Serum soluble E-cadherin is a potential prognostic marker in esophageal squamous cell carcinoma.

    PubMed

    Chung, Y; Law, S; Kwong, D L W; Luk, J M

    2011-01-01

    E-cadherin is a well-documented tumor suppressor with downregulated expression in many cancer types. Upon proteolytic cleavage, a soluble form of 80-kDa degradation fragment, known as soluble E-cadherin (s-Ecad), is present in circulation; its level in sera of cancer patients is significantly associated with metastasis, recurrence, and prognosis in some malignancies. The present study investigated the association of s-Ecad with clinicopathological characteristics of patients with esophageal squamous cell carcinoma (ESCC) and its prognostic significance. A cohort of 97 patients who underwent surgery alone (n= 56) or neoadjuvant chemoradiation therapy and surgery (CRT) (n= 41) was recruited for this study. Serum samples were collected at operation (surgery group) and pre- and post-CRT treatment (CRT group) for measurement of s-Ecad protein by enzyme linked immunosorbent assay. Serum s-Ecad levels were correlated with clinicopathological parameters as well as survival. Univariate analysis showed no significant relationship between serum s-Ecad level and clinicopathological parameters for all sets of samples. Survival analysis showed that in patients who had surgical resection only, those with s-Ecad levels equal to or below the median value survived significantly longer than those with levels above the median (median survival 25.6 vs. 14.1 months, P= 0.012). Multivariate analysis showed that pathological N stage, M stage, R category, and serum s-Ecad level were significant independent prognostic factors for ESCC patients who underwent surgery only. The hazard ratio for s-Ecad was 1.104 (95% CI: 1.026-1.187) and P= 0.008. Serum s-Ecad was detected in ESCC patients and its potential as an independent prognostic marker requires further investigation. © 2010 Copyright the Authors. Journal compilation © 2010, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  17. Mitosis-associated repression in development.

    PubMed

    Esposito, Emilia; Lim, Bomyi; Guessous, Ghita; Falahati, Hanieh; Levine, Michael

    2016-07-01

    Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail. © 2016 Esposito et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling

    PubMed Central

    Nanes, Benjamin A.; Kowalczyk, Andrew P.

    2014-01-01

    Adherens junctions are important mediators of intercellular adhesion, but they are not static structures. They are regularly formed, broken, and rearranged in a variety of situations, requiring changes in the amount of cadherins, the main adhesion molecule in adherens junctions, present at the cell surface. Thus, endocytosis, degradation, and recycling of cadherins are crucial for dynamic regulation of adherens junctions and control of intercellular adhesion. In this chapter, we review the involvement of cadherin endocytosis in development and disease. We discuss the various endocytic pathways available to cadherins, the adaptors involved, and the sorting of internalized cadherin for recycling or lysosomal degradation. In addition, we review the regulatory pathways controlling cadherin endocytosis and degradation, including regulation of cadherin endocytosis by catenins, cadherin ubiquitination, and growth factor receptor signaling pathways. Lastly, we discuss the proteolytic cleavage of cadherins at the plasma membrane. PMID:22674073

  19. M-cadherin and its sisters in development of striated muscle.

    PubMed

    Kaufmann, U; Martin, B; Link, D; Witt, K; Zeitler, R; Reinhard, S; Starzinski-Powitz, A

    1999-04-01

    Cadherins are calcium-dependent, transmembrane intercellular adhesion proteins with morphoregulatory functions in the development and maintenance of tissues. In the development of striated muscle, the expression and function of mainly M-, N-, and R-cadherin has been studied so far. While these three cadherins are expressed in skeletal muscle cells, of these only N-cadherin is expressed in cardiac muscle. In this review, M-, N-, and R-cadherin are discussed as important players in the terminal differentiation and possibly also in the commitment of skeletal muscle cells. Furthermore, reports are described which evaluate the essential role of N-cadherin in the formation of heart tissue.

  20. Movements of florida apple snails in relation to water levels and drying events

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

    2002-01-01

    Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society

  1. To reduce the global burden of human schistosomiasis, use ‘old fashioned’ snail control

    USGS Publications Warehouse

    Sokolow, Susanne H.; Wood, Chelsea L.; Jones, Isabel J.; Lafferty, Kevin D.; Kuris, Armand; Hsieh, Michael H.; De Leo, Giulio A.

    2018-01-01

    Control strategies to reduce human schistosomiasis have evolved from ‘snail picking’ campaigns, a century ago, to modern wide-scale human treatment campaigns, or preventive chemotherapy. Unfortunately, despite the rise in preventive chemotherapy campaigns, just as many people suffer from schistosomiasis today as they did 50 years ago. Snail control can complement preventive chemotherapy by reducing the risk of transmission from snails to humans. Here, we present ideas for modernizing and scaling up snail control, including spatiotemporal targeting, environmental diagnostics, better molluscicides, new technologies (e.g., gene drive), and ‘outside the box’ strategies such as natural enemies, traps, and repellants. We conclude that, to achieve the World Health Assembly’s stated goal to eliminate schistosomiasis, it is time to give snail control another look.

  2. Infection rate of Ehrlichia risticii, the agent of Potomac horse fever, in freshwater stream snails (Juga yrekaensis) from northern California.

    PubMed

    Pusterla, N; Johnson, E; Chae, J; Pusterla, J B; DeRock, E; Madigan, J E

    2000-09-20

    Juga yrekaensis freshwater snails were tested for trematode stages and for Ehrlichia risticii DNA using a nested PCR assay. Snails were collected monthly from two Potomac horse fever (PHF) endemic locations in northern California (Montague and Weed). The trematode infection rate varied between 40 and 93.3% in large snails (shell size >15mm) and between 0 and 13.3% in small snails (<15mm). The highest trematode infection rate for large and small snails was recorded in September and the lowest infection rate for large snails was recorded in June (Weed) and October (Montague). The E. risticii PCR infection rate among small snails from both sites was similar and varied monthly between 0 and 3.3%. The PCR infection rate for large snails from Weed was high in May (20.0%) and decreased progressively until November (10.0%). The PCR infection rate for large snails from Montague was 5.0% in May, 26.3% in August and 16. 7% in October. PCR-positive snails were always related to the microscopic detection of trematode stages (virgulate cercariae). This study provides evidence that J. yrekaensis are infected with trematode cercariae that harbor E. risticii. The number of snails harboring trematode stages and the number of PCR positive snails varied with the size of the snails, the month of collection, and the geographic origin.

  3. Zonula Occludens-1, Occludin and E-cadherin Expression and Organization in Salivary Glands with Sjögren’s Syndrome

    PubMed Central

    Mellas, Rachel E.; Leigh, Noel J.; Nelson, Joel W.; McCall, Andrew D.

    2015-01-01

    Sjögren’s syndrome (SS) is a chronic inflammatory autoimmune disorder that causes secretory dysfunction of the salivary glands leading to dry mouth. Previous studies reported that tight junction (TJ) proteins are down-regulated and lose polarity in human minor salivary glands with SS, suggesting that TJ structure is compromised in SS patients. In this paper, we utilized the NOD/ShiLtJ mouse with the main goal of evaluating this model for future TJ research. We found that the organization of apical proteins in areas proximal and distal to lymphocytic infiltration remained intact in mouse and human salivary glands with SS. These areas looked comparable to control glands (i.e., with no lymphocytic infiltration). TJ staining was absent in areas of lymphocytic infiltration coinciding with the loss of salivary epithelium. Gene expression studies show that most TJs are not significantly altered in 20-week-old NOD/ShiLtJ mice as compared with age-matched C57BL/6 controls. Protein expression studies revealed that the TJ proteins, zonula occludens-1 (ZO-1), occludin, claudin-12, as well as E-cadherin, do not significantly change in NOD/ShiLtJ mice. Our results suggest that ZO-1, occludin and E-cadherin are not altered in areas without lymphocytic infiltration. However, future studies will be necessary to test the functional aspect of these results. PMID:25248927

  4. The Classroom Animal: Snails.

    ERIC Educational Resources Information Center

    Kramer, David S.

    1985-01-01

    Points out that snails are interesting and easily-managed classroom animals. One advantage of this animal is that it requires no special attention over weekends or holidays. Background information, anatomy, reproduction, and feeding are discussed, along with suggestions for housing aquatic and/or land snails. (DH)

  5. Echinostoma revolutum: freshwater snails as the second intermediate hosts in Chiang Mai, Thailand.

    PubMed

    Chantima, Kittichai; Chai, Jong-Yil; Wongsawad, Chalobol

    2013-04-01

    The occurrence of 37-collar spined echinostome metacercariae in freshwater snails was investigated in 6 districts of Chiang Mai Province, Thailand, from October 2011 to April 2012. A total of 2,914 snails that belong to 12 species were examined, and 7 snail species (Clea helena, Eyriesia eyriesi, Bithynia funiculata, Bithynia siamensis siamensis, Filopaludina doliaris, Filopaludina sumatrensis polygramma, and Filopaludina martensi martensi) were found infected with echinostome metacercariae. The prevalence of metacercariae was the highest in Filopaludina spp. (38.5-58.7%) followed by B. funiculata (44.0%), E. eyriesi (12.5%), B. siamensis siamensis (8.2%), and C. helena (5.1%). Metacercariae were experimentally fed to hamsters and domestic chicks, and adult flukes were recovered from both hosts at days 15 and 20 post-infection. The adult flukes were identified based on morphological features, morphometrics, host-parasite relationships, and geographical distribution. They were compatible to Echinostoma revolutum or Echinostoma jurini, with only minor differences. As the adults were recovered from both hamsters and chicks, our specimens were more compatible to E. revolutum rather than E. jurini (reported only from mammals). This is the first report for metacercariae of E. revolutum in the snail host, C. helena, and also confirmed that Filopaludina spp., E. eryresi, and Bithynia spp. act as the second intermediate hosts of E. revolutum under natural conditions, which are indigenously distributed in Chiang Mai province.

  6. Echinostoma revolutum: Freshwater Snails as the Second Intermediate Hosts in Chiang Mai, Thailand

    PubMed Central

    Chantima, Kittichai; Chai, Jong-Yil

    2013-01-01

    The occurrence of 37-collar spined echinostome metacercariae in freshwater snails was investigated in 6 districts of Chiang Mai Province, Thailand, from October 2011 to April 2012. A total of 2,914 snails that belong to 12 species were examined, and 7 snail species (Clea helena, Eyriesia eyriesi, Bithynia funiculata, Bithynia siamensis siamensis, Filopaludina doliaris, Filopaludina sumatrensis polygramma, and Filopaludina martensi martensi) were found infected with echinostome metacercariae. The prevalence of metacercariae was the highest in Filopaludina spp. (38.5-58.7%) followed by B. funiculata (44.0%), E. eyriesi (12.5%), B. siamensis siamensis (8.2%), and C. helena (5.1%). Metacercariae were experimentally fed to hamsters and domestic chicks, and adult flukes were recovered from both hosts at days 15 and 20 post-infection. The adult flukes were identified based on morphological features, morphometrics, host-parasite relationships, and geographical distribution. They were compatible to Echinostoma revolutum or Echinostoma jurini, with only minor differences. As the adults were recovered from both hamsters and chicks, our specimens were more compatible to E. revolutum rather than E. jurini (reported only from mammals). This is the first report for metacercariae of E. revolutum in the snail host, C. helena, and also confirmed that Filopaludina spp., E. eryresi, and Bithynia spp. act as the second intermediate hosts of E. revolutum under natural conditions, which are indigenously distributed in Chiang Mai province. PMID:23710085

  7. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2006-09-01

    WNT and FGF signaling pathways cross-talk during a variety of cellular processes, such as human colorectal carcinogenesis, mouse mammary tumor virus (MMTV)-induced carcinogenesis, E2A-Pbx-induced leukemogenesis, early embryogenesis, body-axis formation, limb-bud formation, and neurogenesis. Canonical WNT signals are transduced through Frizzled receptor and LRP5/6 coreceptor to downregulate GSK3beta (GSK3B) activity not depending on Ser 9 phosphorylation. FGF signals are transduced through FGF receptor to the FRS2-GRB2-GAB1-PI3K-AKT signaling cascade to downregulate GSK3beta activity depending on Ser 9 phosphorylation. Because GSK3beta-dependent phosphorylation of beta-catenin and SNAIL leads to FBXW1 (betaTRCP)-mediated ubiquitination and degradation, GSK3beta downregulation results in the stabilization and the nuclear accumulation of beta-catenin and SNAIL. Nuclear beta-catenin is complexed with TCF/LEF, Legless (BCL9 or BCL9L) and PYGO (PYGO1 or PYGO2) to activate transcription of CCND1, MYC, FGF18 and FGF20 genes for the cell-fate determination. Nuclear SNAIL represses transcription of CDH1 gene, encoding E-cadherin, to induce the epithelial-mesenchymal transition (EMT). Mammary carcinogenesis in MMTV-Wnt1 transgenic mice is accelerated by MMTV infection due to MMTV integration around Fgf3-Fgf4 or Fgf8 loci, and mammary carcinogenesis in MMTV-Fgf3 transgenic mice due to MMTV integration around Wnt1-Wnt10b locus. Coactivation of WNT and FGF signaling pathways in tumors leads to more malignant phenotypes. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of WNT and FGF signaling molecules could be utilized as screening method of cancer predisposition. cDNA-PCR, microarray or ELISA reflecting aberrant activation of WNT and FGF signaling pathways could be developed as novel cancer-related biomarkers for diagnosis, prognosis, and therapy. Cocktail therapy using WNT and FGF inhibitors, such as small-molecule compounds and human neutralizing

  8. Influence of intra-tumoral heterogeneity on the evaluation of BCL2, E-cadherin, EGFR, EMMPRIN, and Ki-67 expression in tissue microarrays from breast cancer.

    PubMed

    Tramm, Trine; Kyndi, Marianne; Sørensen, Flemming B; Overgaard, Jens; Alsner, Jan

    2018-01-01

    The influence of intra-tumoral heterogeneity on the evaluation of immunohistochemical (IHC) biomarker expression may affect the analytical validity of new biomarkers substantially and hence compromise the clinical utility. The aim of this study was to examine the influence of intra-tumoral heterogeneity as well as inter-observer variability on the evaluation of various IHC markers with potential prognostic impact in breast cancer (BCL2, E-cadherin, EGFR, EMMPRIN and Ki-67). From each of 27 breast cancer patients, two tumor-containing paraffin blocks were chosen. Intra-tumoral heterogeneity was evaluated (1) within a single tumor-containing paraffin block ('intra-block agreement') by comparing information from a central, a peripheral tissue microarray (TMA) core and a whole slide section (WS), (2) between two different tumor-containing blocks from the same primary tumor ('inter-block agreement') by comparing information from TMA cores (central/peripheral) and WS. IHC markers on WS and TMA cores were evaluated by two observers independently, and agreements were estimated by Kappa statistics. For BCL2, E-cadherin and EGFR, an almost perfect intra- and inter-block agreement was found. EMMPRIN and Ki-67 showed a more heterogeneous expression with moderate to substantial intra-block agreements. For both stainings, there was a moderate inter-block agreement that improved slightly for EMMPRIN, when using WS instead of TMA cores. Inter-observer agreements were found to be almost perfect for BCL2, E-cadherin and EGFR (WS: κ > 0.82, TMAs: κ > 0.90), substantial for EMMPRIN (κ > 0.63), but only fair to moderate for Ki-67 (WS: κ = 0.54, TMAs: κ = 0.33). BCL2, E-cadherin and EGFR were found to be homogeneously expressed, whereas EMMPRIN and Ki-67 showed a more pronounced degree of intra-tumoral heterogeneity. The results emphasize the importance of securing the analytical validity of new biomarkers by examining the intra-tumoral heterogeneity of

  9. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity

    PubMed Central

    Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus

    2014-01-01

    P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor. PMID:25337260

  10. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity.

    PubMed

    Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus

    2014-01-01

    P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor.

  11. The Snail-Induced Sulfonation Pathway in Breast Cancer Metastasis

    DTIC Science & Technology

    2014-09-01

    of the SNAIL protein with DNA The model of SNAIL, containing 4 Zn fingers bound to DNA, was created using PDB structures 1tf3 (TFIIIA protein, for...AutoDOCK (17) analysis of fragmented LIMD2 structure against that of the pdb struc- ture 3kmw (ILK/a-Parvin), rethreading the LIMD2 structure through the top...Fig. 5E). We assessed the structural similarity between LIMD2 and other reported LIM structures present in the PDB . The superposition of LIMD2 onto the

  12. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma.

    PubMed Central

    Gamallo, C.; Palacios, J.; Suarez, A.; Pizarro, A.; Navarro, P.; Quintanilla, M.; Cano, A.

    1993-01-01

    Recently, a correlation has been suggested between a loss of E-cadherin (E-CD) and increased invasiveness of neoplastic cells. In this study, E-CD expression in breast cancer was investigated using an affinity-purified antibody (ECCD-2) in an immunoenzymatic (avidin-biotin-alkaline phosphatase) test. Intensity and extension of E-CD immunoreactivity were evaluated in 61 breast carcinomas and correlated with their histological type and grade, nodal involvement, and hormonal receptor status. Histological types were infiltrating ductal carcinoma of no special type (n = 54) and infiltrating lobular carcinoma (n = 7). All infiltrating ductal carcinomas of no special type except two grade 3 carcinomas showed positive immunoreactivity that was variable among different cases. Grade 1 breast carcinomas (n = 10) showed greater immunoreactivity than grade 2 (n = 25) and grade 3 (n = 19) carcinomas. E-CD immunoreactivity correlated positively with the degree of tubular formation and inversely with the mitoses number. None of the infiltrating lobular carcinomas expressed E-CD in their infiltrating cells, whereas they showed only weak immunostains in areas of atypical lobular hyperplasia and lobular carcinoma in situ. These results indicate that E-CD expression correlates with histological type and grade in breast carcinomas. Images Figure 1 Figure 2 Figure 3 PMID:7682767

  13. E-cadherin interactions regulate beta-cell proliferation in islet-like structures.

    PubMed

    Carvell, Melanie J; Marsh, Phil J; Persaud, Shanta J; Jones, Peter M

    2007-01-01

    Islet function is dependent on cells within the islet interacting with each other. E-cadherin (ECAD) mediates Ca(2+)-dependent homophilic cell adhesion between b-cells within islets and has been identified as a tumour suppressor. We generated clones of the MIN6 beta-cell line that stably over- (S) and under-express (alphaS) ECAD. Modified expression of ECAD was confirmed by quantitative RT-PCR, immunoblotting and immunocytochemistry. Preproinsulin mRNA, insulin content and basal rates of insulin secretion were higher in S cells compared to aS and control (V) cells. However, stimulated insulin secretory responses were unaffected by ECAD expression levels. ECAD expression did affect proliferation, with enhanced ECAD expression being associated with reduced proliferation and vice versa. Formation of islet-like structures was associated with a significant reduction in proliferation of V and S cells but not alphaS cells. These data suggest that ECAD expression levels do not modulate insulin secretory function but are consistent with a role for ECAD in the regulation of beta-cell proliferation. Copyright (c) 2007 S. Karger AG, Basel.

  14. Seasonal feeding specialization on snails by river darters (Percina shumardi) with a review of snail feeding by other darter species

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    2006-01-01

    We report food habits of River Darters (Percina shumardi) in Brushy Creek and the Sipsey Fork Black Warrior River, Alabama. River Darters preyed heavily on pleurocerid snails in both streams. Snail feeding varied widely among sample dates and was highest in October when snails represented nearly 100% of darter food items. Snail feeding declined...

  15. Adherens Junctions Revisualized: Organizing Cadherins as Nanoassemblies.

    PubMed

    Yap, Alpha S; Gomez, Guillermo A; Parton, Robert G

    2015-10-12

    This Perspective considers how classical cadherin cell-cell adhesion receptors are organized at the nanoscale to generate lateral clusters. Recent advances in optical microscopy reveal that clustering constitutes a general feature of cadherin organization, but one that takes diverse forms. Here we consider the molecular mechanisms responsible for cadherin clustering and their functional implications. We frame our discussion in light of what is known about how nanoscale organization is conferred upon the plasma membrane, through protein-protein interactions, regulation of the cortical actin cytoskeleton, and the lipid environment of the membrane. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells.

    PubMed

    Wang, Yun-Liang; Dong, Feng-Lin; Yang, Jian; Li, Zhi; Zhi, Qiao-Ming; Zhao, Xin; Yang, Yong; Li, De-Chun; Shen, Xiao-Chun; Zhou, Jin

    2015-01-01

    Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NC- PANC-1, and si-PANC-1 cells, respectively. After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.

  17. Nonagonal cadherins: A new protein family found within the Stramenopiles.

    PubMed

    Fletcher, Kyle I G; van West, Pieter; Gachon, Claire M M

    2016-11-15

    Cadherins, a group of molecules typically associated with planar cell polarity and Wnt signalling, have been little reported outside of the animal kingdom. Here, we identify a new family of cadherins in the Stramenopiles, termed Nonagonal after their 9 transmembrane passes, which contrast to the one or seven passes found in other known cadherin families. Manual curation and experimental validation reveal two subclasses of nonagonal cadherins, depending on the number of uninterrupted extracellular cadherin (EC) modules presented. Firstly, shorter mono-exonic, unimodular, protein models, with 3 to 12 EC domains occur as duplicate paralogs in the saprotrophic Labyrinthulomycetes Aurantiochytrium limanicum and Schizochytrium aggregatum, the gastrointestinal Blastocystis hominis (Blastocystae) and as a single copy gene in the autotrophic Pelagophyte Aureococcus anophagefferens. Larger, single copy, multi-exonal, tri-modular protein models, with up to 72 EC domain in total, are found in the Oomycete genera Albugo, Phytophthora, Pythium and Eurychasma. No homolog was found in the closely related autotrophic Phaeophyceae (brown algae) or Bacillariophyceae (diatoms), nor in several genera of plant and animal pathogenic oomycetes (Aphanomyces, Saprolegnia and Hyaloperonospora). This potential absence was further investigated by synteny analysis of the genome regions flanking the cadherin gene models, which are found to be highly variable. Novel to this new cadherin family is the presence of intercalated laminin and putative carbohydrate binding in tri-modular oomycete cadherins and at the N-terminus of thraustochytrid proteins. As we were unable to detect any homologs of proteins involved in signalling pathways where other cadherin families are involved, we present a conceptual hypothesis on the function of nonagonal cadherin based around the presence of putative carbohydrate binding domains. Copyright © 2016. Published by Elsevier B.V.

  18. DWARF 53 acts as a repressor of strigolactone signalling in rice

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; Liu, Xue; Xiong, Guosheng; Liu, Huihui; Chen, Fulu; Wang, Lei; Meng, Xiangbing; Liu, Guifu; Yu, Hong; Yuan, Yundong; Yi, Wei; Zhao, Lihua; Ma, Honglei; He, Yuanzheng; Wu, Zhongshan; Melcher, Karsten; Qian, Qian; Xu, H. Eric; Wang, Yonghong; Li, Jiayang

    2013-12-01

    Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCFD3 ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.

  19. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    PubMed

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  20. Reggies/flotillins interact with Rab11a and SNX4 at the tubulovesicular recycling compartment and function in transferrin receptor and E-cadherin trafficking

    PubMed Central

    Solis, Gonzalo P.; Hülsbusch, Nikola; Radon, Yvonne; Katanaev, Vladimir L.; Plattner, Helmut; Stuermer, Claudia A. O.

    2013-01-01

    The lipid raft proteins reggie-1 and -2 (flotillins) are implicated in membrane protein trafficking but exactly how has been elusive. We find that reggie-1 and -2 associate with the Rab11a, SNX4, and EHD1–decorated tubulovesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. Short hairpin RNA–mediated down-regulation of reggie-1 (and -2) in HeLa cells reduces association of Rab11a with tubular structures and impairs recycling of the transferrin–transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutively active Rab11a rescues TfR recycling in reggie-deficient HeLa cells. Similarly, in a Ca2+ switch assay in reggie-depleted A431 cells, internalized E-cadherin is not efficiently recycled to the plasma membrane upon Ca2+ repletion. E-cadherin recycling is rescued, however, by overexpression of constitutively active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Of interest, impaired recycling in reggie-deficient cells leads to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway, which is, like reggies, evolutionarily conserved. PMID:23825023

  1. Modeling snail breeding in Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..

    It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally

  2. Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly

    PubMed Central

    Weng, Mo

    2016-01-01

    Although Snail is essential for disassembly of adherens junctions during epithelial–mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin–rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell–cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT. PMID:26754645

  3. EGFR and ADAMs Cooperate to Regulate Shedding and Endocytic Trafficking of the Desmosomal Cadherin Desmoglein 2

    PubMed Central

    Klessner, Jodi L.; Desai, Bhushan V.; Amargo, Evangeline V.; Getsios, Spiro

    2009-01-01

    Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell–cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically. PMID:18987342

  4. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    PubMed

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  5. Digenetic larvae in Schistosome snails from El Fayoum, Egypt with detection of Schistosoma mansoni in the snail by PCR.

    PubMed

    Aboelhadid, Shawky M; Thabet, Marwa; El-Basel, Dayhoum; Taha, Ragaa

    2016-09-01

    The present study aims to detect the digenetic larvae infections in Bulinus truncatus and Biomphalaria alexandrina snails and also PCR detection of Schistosoma mansoni infection. The snails were collected from different branches of Yousef canal and their derivatives in El Fayoum Governorate. The snails were investigated for infection through induction of cercarial shedding by exposure to light and crushing of the snails. The shed cercariae were S. mansoni, Pharyngeate longifurcate type I and Pharyngeate longifurcate type II from B. alexandrina, while that found in B. truncatus were Schitosoma haematobium and Xiphidiocercaria species cercariae. The seasonal prevalence of infection was discussed. Polymerase chain reaction was used for the detection of S. mansoni in the DNA from field collected infected and non infected snails. The results of PCR showed that the pool of B. alexandrina snails which shed S. mansoni cercariae in the laboratory, gave positive reaction in the samples. Pooled samples of field collected B. alexandrina that showed negative microscopic shedding of cercariae gave negative and positive PCR in a consecutive manner. Accordingly, a latent infection in the snail (negative microscopic) could be detected by using PCR.

  6. Solution structure of dimeric Mnt repressor (1-76).

    PubMed

    Burgering, M J; Boelens, R; Gilbert, D E; Breg, J N; Knight, K L; Sauer, R T; Kaptein, R

    1994-12-20

    Wild-type Mnt repressor of Salmonella bacteriophage P22 is a tetrameric protein of 82 residues per monomer. A C-terminal deletion mutant of the repressor denoted Mnt (1-76) is a dimer in solution. The structure of this dimer has been determined using NMR. The NMR assignments of the majority of the 1H, 15N, and 13C resonances were obtained using 2D and triple-resonance 3D techniques. Elements of secondary structure were identified on the basis of characteristic sequential and medium range NOEs. For the structure determination more than 1000 NOEs per monomer were obtained, and structures were generated using distance geometry and restrained simulated annealing calculations. The discrimination of intra- vs intermonomer NOEs was based upon the observation of intersubunit NOEs in [15N,13C] double half-filtered NOESY experiments. The N-terminal part of Mnt (residues 1-44), which shows a 40% sequence homology with the Arc repressor, has a similar secondary and tertiary structure. Mnt (1-76) continues with a loop region of irregular structure, a third alpha-helix, and a random coil C-terminal peptide. Analysis of the secondary structure NOEs, the exchange rates, and the backbone chemical shifts suggests that the carboxy-terminal third helix is less stable than the remainder of the protein, but the observation of intersubunit NOEs for this part of the protein enables the positioning of this helix. The rsmd's between the backbone atoms of the N-terminal part of the Mnt repressor (residues 5-43, 5'-43') and the Arc repressor is 1.58 A, and between this region and the corresponding part of the MetJ repressor 1.43 A.

  7. The tip link protein Cadherin-23: From Hearing Loss to Cancer.

    PubMed

    Vanniya S, Paridhy; Srisailapathy, C R Srikumari; Kunka Mohanram, Ramkumar

    2018-04-01

    Cadherin-23 is an atypical member of the cadherin superfamily, with a distinctly long extracellular domain. It has been known to be a part of the tip links of the inner ear mechanosensory hair cells. Several studies have been carried out to understand the role of Cadherin-23 in the hearing mechanism and defects in the CDH23 have been associated with hearing impairment resulting from defective or absence of tip links. Recent studies have highlighted the role of Cadherin-23 in several pathological conditions, including cancer, suggesting the presence of several unknown functions. Initially, it was proposed that Cadherin-23 represents a yet unspecified subtype of Cadherins; however, no other proteins with similar characteristics have been identified, till date. It has a unique cytoplasmic domain that does not bear a β-catenin binding region, but has been demonstrated to mediate cell-cell adhesions. Several protein interacting partners have been identified for Cadherin-23 and the roles of their interactions in various cellular mechanisms are yet to be explored. This review summarizes the characteristics of Cadherin-23 and its roles in several pathologies including cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. North American Paleozoic land snails with a summary of other Paleozoic nonmarine snails

    USGS Publications Warehouse

    Solem, Alan; Yochelson, Ellis Leon

    1979-01-01

    Land snails from the Paleozoic of North America are known from the coal fields of eastern Canada, from the Dunkard basin west of the Allegheny Mountains, and from the western margin of the Illinois basin. The earliest finds were made about 125 years ago; essentially no new information has been recorded for a century. Large collections of Anthracopupa from the Dunkard basin sparked inquiry into the land snails from the other two areas. Studies using the SEM (scanning electron microscope) have provided considerable insight into microdetails of shell structure, which allow systematic assignment of these gastropods. All may be assigned to extant families, except one, for which insufficient material allows only superfamily assignment. The prosobranch Dawsonella is confirmed as being a terrestrial neritacean gastropod. To date, it is known only from the upper Middle Pennsylvanian of Illinois and Indiana. All the other Paleozoic land snails are stylommatophoran pulmonates; their current classification as nonmarine cyclophoraceans is not correct. Restudy of material from the Joggins section of Nova Scotia indicates that representatives of two ordinal groups of pulmonates appeared simultaneously in upper Lower Pennsylvanian strata; the oldest land prosobranch is found in only very slightly younger rocks. Zonites (Conulus) priscus is reassigned to the new genus Protodiscus in the extant family Discidae. Dendropupa is placed within the family Enidae, Anthraaopupa is placed in the family Tornatellinidae, and 'Pupa' bigsbii is assigned to the superfamily Pupillacea. All four of these family-level taxa are diverse and belong to two orders within the superorder Stylommatophora, heretofore considered a derived rather than an ancestral stock. Anthracopupa ohioensis Whitfield is a highly variable species, and two other species Naticopsis (?) diminuta and A.(?) dunkardona, both named by Stauffer and Schroyer, are placed in synonymy with it. To obtain taxonomic data to support the

  9. The retinamide VNLG-152 inhibits f-AR/AR-V7 and MNK-eIF4E signaling pathways to suppress EMT and castration-resistant prostate cancer xenograft growth.

    PubMed

    Ramamurthy, Vidya P; Ramalingam, Senthilmurugan; Gediya, Lalji K; Njar, Vincent C O

    2018-03-01

    VNLG-152 is a novel retinamide (NR) shown to suppress growth and progression of genetically diverse prostate cancer cells via inhibition of androgen receptor signaling and eukaryotic initiation factor 4E (eIF4E) translational machinery. Herein, we report therapeutic effects of VNLG-152 on castration-resistant prostate cancer (CRPC) growth and metastatic phenotype in a CRPC tumor xenograft model. Administration of VNLG-152 significantly and dose-dependently suppressed the growth of aggressive CWR22Rv1 tumors by 63.4% and 76.3% at 10 and 20 mg·kg -1 bw, respectively (P < 0.0001), vs. vehicle with no host toxicity. Strikingly, the expression of full-length androgen receptor (f-AR)/androgen receptor splice variant-7 (AR-V7), mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2), phosphorylated eIF4E and their associated target proteins, including prostate-specific antigen, cyclin D1 and Bcl-2, were strongly decreased in VNLG-152-treated tumors signifying inhibition of f-AR/AR-V7 and MNK-eIF4E signaling in VNLG-152-treated CWR22Rv1 tumors as observed in vitro. VNLG-152 also suppressed the epithelial to mesenchymal transition in CWR22Rv1 tumors as evidenced by repression of N-cadherin, β-catenin, claudin, Slug, Snail, Twist, vimentin and matrix metalloproteinases (MMP-2 and MMP-9) with upsurge in E-cadherin. These results highlight the promising use of VNLG-152 in CRPC therapy and justify its further development towards clinical trials. © 2018 Federation of European Biochemical Societies.

  10. EXPRESSION OF E-CADHERIN AND WNT PATHWAY PROTEINS BETACATENIN, APC, TCF-4 AND SURVIVIN IN GASTRIC ADENOCARCINOMA: CLINICAL AND PATHOLOGICAL IMPLICATION.

    PubMed

    Lins, Rodrigo Rego; Oshima, Celina Tizuko Fujiyama; Oliveira, Levindo Alves de; Silva, Marcelo Souza; Mader, Ana Maria Amaral Antonio; Waisberg, Jaques

    2016-01-01

    Gastric cancer is the fifth most frequent cancer and the third most common cause of cancer-related deaths worldwide.It has been reported that Wnt/ betacatenin pathway is activated in 30-50% of these tumors. However,the deregulation of this pathway has not been fully elucidated. To determine the expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins in gastric adenocarcinoma tissues and correlate with clinical and pathological parameters. Seventy-one patients with gastric adenocarcinoma undergoing gastrectomy were enrolled. The expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins was detected by immunohistochemistryand related to the clinical and pathological parameters. The expression rates of E-cadherin in the membrane was 3%; betacatenin in the cytoplasm and nucleus were 23,4% and 3,1% respectively; APC in the cytoplasm was 94,6%; TCF-4 in the nucleus was 19,4%; and survivin in the nucleus 93,9%. The expression rate of E-cadherin was correlated with older patients (p=0,007), while betacatenin with tumors <5 cm (p=0,041) and APC with proximal tumors (p=0,047). Moreover, the expression of TCF-4 was significantly higher in the diffuse type (p=0,017) and T4 tumors (p=0,002). The Wnt/betacatenin is not involved in gastric carcinogenesis. However, the high frequency of survivin allows to suggest that other signaling pathways must be involved in the transformation of gastric tissue. O câncer gástrico encontra-se entre as principais neoplasias malignas do mundo sendo o quinto mais incidente e o terceiro em relação ao índice de mortalidade. Acredita-se que a via Wnt/betacatenina esteja ativada em 30-50% desses tumores, porém a desregulação dela ainda não está completamente esclarecida. Avaliar a imunoexpressão das proteínas E-caderina, betacatenina, APC, TCF-4 e survivina em tecidos de adenocarcinoma gástrico e correlacioná-las com as variáveis clínicas dos doentes e anatomopatológicas do tumor. Foram coletados os dados

  11. Reversing the Resistance Phenotype of the Biomphalaria glabrata Snail Host Schistosoma mansoni Infection by Temperature Modulation

    PubMed Central

    Ittiprasert, Wannaporn; Knight, Matty

    2012-01-01

    Biomphalaria glabrata snails that display either resistant or susceptible phenotypes to the parasitic trematode, Schistosoma mansoni provide an invaluable resource towards elucidating the molecular basis of the snail-host/schistosome relationship. Previously, we showed that induction of stress genes either after heat-shock or parasite infection was a major feature distinguishing juvenile susceptible snails from their resistant counterparts. In order to examine this apparent association between heat stress and snail susceptibility, we investigated the effect of temperature modulation in the resistant snail stock, BS-90. Here, we show that, incubated for up to 4 hrs at 32°C prior to infection, these resistant snails became susceptible to infection, i.e. shedding cercariae at 5 weeks post exposure (PE) while unstressed resistant snails, as expected, remained resistant. This suggests that susceptibility to infection by this resistant snail phenotype is temperature-sensitive (ts). Additionally, resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin (GA) after heat stress, were no longer susceptible to infection, retaining their resistant phenotype. Consistently, susceptible snail phenotypes treated with 100 mM GA before parasite exposure also remained uninfected. These results provide direct evidence for the induction of stress genes (heat shock proteins; Hsp 70, Hsp 90 and the reverse transcriptase [RT] domain of the nimbus non-LTR retrotransposon) in B. glabrata susceptibility to S. mansoni infection and characterize the resistant BS-90 snails as a temperature-sensitive phenotype. This study of reversing snail susceptibility phenotypes to S. mansoni provides an opportunity to directly track molecular pathway(s) that underlie the B. glabrata snail's ability to either sustain or destroy the S. mansoni parasite. PMID:22577362

  12. Reversing the resistance phenotype of the Biomphalaria glabrata snail host Schistosoma mansoni infection by temperature modulation.

    PubMed

    Ittiprasert, Wannaporn; Knight, Matty

    2012-01-01

    Biomphalaria glabrata snails that display either resistant or susceptible phenotypes to the parasitic trematode, Schistosoma mansoni provide an invaluable resource towards elucidating the molecular basis of the snail-host/schistosome relationship. Previously, we showed that induction of stress genes either after heat-shock or parasite infection was a major feature distinguishing juvenile susceptible snails from their resistant counterparts. In order to examine this apparent association between heat stress and snail susceptibility, we investigated the effect of temperature modulation in the resistant snail stock, BS-90. Here, we show that, incubated for up to 4 hrs at 32°C prior to infection, these resistant snails became susceptible to infection, i.e. shedding cercariae at 5 weeks post exposure (PE) while unstressed resistant snails, as expected, remained resistant. This suggests that susceptibility to infection by this resistant snail phenotype is temperature-sensitive (ts). Additionally, resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin (GA) after heat stress, were no longer susceptible to infection, retaining their resistant phenotype. Consistently, susceptible snail phenotypes treated with 100 mM GA before parasite exposure also remained uninfected. These results provide direct evidence for the induction of stress genes (heat shock proteins; Hsp 70, Hsp 90 and the reverse transcriptase [RT] domain of the nimbus non-LTR retrotransposon) in B. glabrata susceptibility to S. mansoni infection and characterize the resistant BS-90 snails as a temperature-sensitive phenotype. This study of reversing snail susceptibility phenotypes to S. mansoni provides an opportunity to directly track molecular pathway(s) that underlie the B. glabrata snail's ability to either sustain or destroy the S. mansoni parasite.

  13. Modeling snail breeding in a bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.; Kolmakova, A. A.

    2015-07-01

    The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007.

  14. Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2

    PubMed Central

    Larsen, Ida Signe Bohse; Narimatsu, Yoshiki; Joshi, Hiren Jitendra; Yang, Zhang; Harrison, Oliver J.; Brasch, Julia; Shapiro, Lawrence; Honig, Barry; Vakhrushev, Sergey Y.; Clausen, Henrik; Halim, Adnan

    2017-01-01

    Protein O-mannosylation is found in yeast and metazoans, and a family of conserved orthologous protein O-mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries O-linked mannose (O-Man) glycans at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the O-Man glycans. Deficiencies in enzymes catalyzing O-Man biosynthesis, including the two human protein O-mannosyltransferases, POMT1 and POMT2, underlie a subgroup of congenital muscular dystrophies designated α-dystroglycanopathies, because deficient O-Man glycosylation of α-dystroglycan disrupts laminin interaction with α-dystroglycan and the extracellular matrix. To explore the functions of O-Man glycans on cadherins and protocadherins, we used a combinatorial gene-editing strategy in multiple cell lines to evaluate the role of the two POMTs initiating O-Man glycosylation and the major enzyme elongating O-Man glycans, the protein O-mannose β-1,2-N-acetylglucosaminyltransferase, POMGnT1. Surprisingly, O-mannosylation of cadherins and protocadherins does not require POMT1 and/or POMT2 in contrast to α-dystroglycan, and moreover, the O-Man glycans on cadherins are not elongated. Thus, the classical and evolutionarily conserved POMT O-mannosylation pathway is essentially dedicated to α-dystroglycan and a few other proteins, whereas a novel O-mannosylation process in mammalian cells is predicted to serve the large cadherin superfamily and other proteins. PMID:28512129

  15. WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl.

    PubMed

    Bryce, Nicole S; Reynolds, Albert B; Koleske, Anthony J; Weaver, Alissa M

    2013-01-01

    Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.

  16. Cadherin juxtamembrane region derived peptides inhibit TGFβ1 induced gene expression

    PubMed Central

    Stavropoulos, Ilias; Golla, Kalyan; Moran, Niamh; Martin, Finian; Shields, Denis C

    2014-01-01

    Bioactive peptides in the juxtamembrane regions of proteins are involved in many signaling events. The juxtamembrane regions of cadherins were examined for the identification of bioactive regions. Several peptides spanning the cytoplasmic juxtamembrane regions of E- and N-cadherin were synthesized and assessed for the ability to influence TGFβ responses in epithelial cells at the gene expression and protein levels. Peptides from regions closer to the membrane appeared more potent inhibitors of TGFβ signaling, blocking Smad3 phosphorylation. Thus inhibiting nuclear translocation of phosphorylated Smad complexes and subsequent transcriptional activation of TGFβ signal propagating genes. The peptides demonstrated a peptide-specific potential to inhibit other TGFβ superfamily members, such as BMP4. PMID:25108297

  17. The invasive phenotype of placenta accreta extravillous trophoblasts associates with loss of E-cadherin.

    PubMed

    Duzyj, C M; Buhimschi, I A; Motawea, H; Laky, C A; Cozzini, G; Zhao, G; Funai, E F; Buhimschi, C S

    2015-06-01

    Epithelial-to-mesenchymal transition (EMT) is a process of molecular and phenotypic epithelial cell alteration promoting invasiveness. Loss of E-cadherin (E-CAD), a transmembrane protein involved in cell adhesion, is a marker of EMT. Proteolysis into N- and C-terminus fragments by ADAM10 and presenilin-1 (PSEN-1) generates soluble (sE-CAD) and transcriptionally active forms. We studied the protein expression patterns of E-CAD in the serum and placenta of women with histologically-confirmed over-invasive placentation. The patterns of expression and levels of sE-CAD were analyzed by Western blot, immunoassay, and immunoprecipitation. Tissue immunostaining for E-CAD, cytokeratin-7 (epithelial marker), vimentin (mesenchymal marker), ADAM10, PSEN-1 and β-catenin expression were investigated in parallel. N-terminus cleaved 80 kDa sE-CAD fragments were present in serum of pregnant women with gestational age regulation of the circulatory levels. Women with advanced trophoblast invasion did not display circulatory levels of sE-CAD different from those of women with normal placentation. Histologically, extravillous trophoblasts (EVT) closer to the placental-myometrial interface demonstrated less E-CAD staining than those found deeper in the myometrium. These cells expressed both vimentin and cytokeratin, an additional feature of EMT. EVT of placentas with advanced invasion displayed intracellular E-CAD C-terminus immunoreactivity predominating over that of the extracellular N-terminus, a pattern consistent with preferential PSEN-1 processing. Local processing of E-CAD may be an important molecular mechanism controlling the invasive phenotype of accreta EVT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    PubMed

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  19. Characterization of the intronic portion of cadherin superfamily members, common cancer orchestrators

    PubMed Central

    Oliveira, Patrícia; Sanges, Remo; Huntsman, David; Stupka, Elia; Oliveira, Carla

    2012-01-01

    Cadherins are cell–cell adhesion proteins essential for the maintenance of tissue architecture and integrity, and their impairment is often associated with human cancer. Knowledge regarding regulatory mechanisms associated with cadherin misexpression in cancer is scarce. Specific features of the intronic-structure and intronic-based regulatory mechanisms in the cadherin superfamily are unidentified. This study aims at systematically characterizing the intronic portion of cadherin superfamily members and the identification of intronic regions constituting putative targets/triggers of regulation, using a bioinformatic approach and biological data mining. Our study demonstrates that the cadherin superfamily genes harbour specific characteristics in comparison to all non-cadherin genes, both from the genomic and transcriptional standpoints. Cadherin superfamily genes display higher average total intron number and significantly longer introns than other genes and across the entire vertebrate lineage. Moreover, in the human genome, we observed an uncommon high frequency of MIR (mammalian-wide interspersed repeats) and MaLR (mammalian-wide interspersed repeats, a subtype of LTR) regulatory-associated repetitive elements at 5′-located introns, concomitantly with increased de novo intronic transcription. Using this approach, we identified cadherin intronic-specific sites that may constitute novel targets/triggers of cadherin superfamily expression regulation. These findings pinpoint the need to identify mechanisms affecting particularly MIR and MaLR elements located in introns 2 and 3 of human cadherin genes, possibly important in the expression modulation of this superfamily in homeostasis and cancer. PMID:22317972

  20. Identification of the gene transcription repressor domain of Gli3.

    PubMed

    Tsanev, Robert; Tiigimägi, Piret; Michelson, Piret; Metsis, Madis; Østerlund, Torben; Kogerman, Priit

    2009-01-05

    Gli transcription factors are downstream targets of the Hedgehog signaling pathway. Two of the three Gli proteins harbor gene transcription repressor function in the N-terminal half. We have analyzed the sequences and identified a potential repressor domain in Gli2 and Gli3 and have tested this experimentally. Overexpression studies confirm that the N-terminal parts harbor gene repression activity and we mapped the minimal repressor to residues 106 till 236 in Gli3. Unlike other mechanisms that inhibit Gli induced gene transcription, the repressor domain identified here does not utilize Histone deacetylases (HDACs) to achieve repression, as confirmed by HDAC inhibition studies and pull-down assays. This distinguishes the identified domain from other regulatory parts with negative influence on transcription.

  1. Inheritance of Schistosoma mansoni infection incompatibility in Biomphalaria alexandrina snails.

    PubMed

    El Naga, Iman F Abou; Eissa, Maha M; Mossallam, Shereen F; El-Halim, Safaa I Abd

    2010-03-01

    In this study, we looked at the inheritance of susceptibility and resistance to Schistosoma mansoni infection in the first generation of crossbred Biomphalaria alexandrina snails. Our ultimate goal is to use such information to develop a biological method of controlling schistosomiasis. We infected laboratory-bred snails with S. mansoni miracidia and examined cercarial shedding to determine susceptibility and resistance. Five parental groups were used: Group I contained 30 susceptible snails, Group II contained 30 resistant snails, Group III contained 15 susceptible and 15 resistant snails, Group IV contained 27 susceptible and three resistant snails and Group V contained three susceptible and 27 resistant snails. The percentage of resistant snails in the resulting progeny varied according to the ratio of susceptible and resistant parents per group; they are 7%, 100%, 68%, 45% and 97% from Groups I, II, III, IV and V, respectively. On increasing the percentage of resistant parent snails, the percentage of resistant progeny increased, while cercarial production in their susceptible progeny decreased.

  2. Predator-induced morphological plasticity across local populations of a freshwater snail.

    PubMed

    Brönmark, Christer; Lakowitz, Thomas; Hollander, Johan

    2011-01-01

    The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca), a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free), suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds.

  3. Modeling apple snail population dynamics on the Everglades landscape

    USGS Publications Warehouse

    Darby, Phil; DeAngelis, Donald L.; Romañach, Stephanie; Suir, Kevin J.; Bridevaux, Joshua L.

    2015-01-01

    Comparisons of model output to empirical data indicate the need for more data to better understand, and eventually parameterize, several aspects of snail ecology in support of EverSnail. A primary value of EverSnail is its capacity to describe the relative response of snail abundance to alternative hydrologic scenarios considered for Everglades water management and restoration.

  4. N-cadherin prodomain processing regulates synaptogenesis.

    PubMed

    Reinés, Analía; Bernier, Louis-Philippe; McAdam, Robyn; Belkaid, Wiam; Shan, Weisong; Koch, Alexander W; Séguéla, Philippe; Colman, David R; Dhaunchak, Ajit S

    2012-05-02

    Classical cadherins, which are adhesion molecules functioning at the CNS synapse, are synthesized as adhesively inactive precursor proteins in the endoplasmic reticulum (ER). Signal sequence and prodomain cleavage in the ER and Golgi apparatus, respectively, activates their adhesive properties. Here, we provide the first evidence for sorting of nonadhesive precursor N-cadherin (ProN) to the neuronal surface, where it coexists with adhesively competent mature N-cadherin (N-cad), generating a spectrum of adhesive strengths. In cultured hippocampal neurons, a high ProN/N-cad ratio downregulates synapse formation. Neurons expressing genetically engineered uncleavable ProN make markedly fewer synapses. The synapse number can be rescued to normality by depleting surface ProN levels through prodomain cleavage by an exogenous protease. Finally, prodomain processing is developmentally regulated in the rat hippocampus. We conclude that it is the ProN/N-cad ratio and not mature N-cad alone that is critical for regulation of adhesion during synaptogenesis.

  5. The effects of artificial E-cadherin matrix-induced embryonic stem cell scattering on paxillin and RhoA activation via α-catenin.

    PubMed

    Mattias, Leino; Haque, Amranul; Adnan, Nihad; Akaike, Toshihiro

    2014-02-01

    Mechanical forces have been shown to affect stem cell behavior in a large array of ways. However, our understanding of how these mechanical cues may regulate the behavior of embryonic stem cells (ESCs) remains in its infancy. Here, we aim to clarify the effect of cell scattering on the regulation of Rho family GTPases Rac1 and RhoA as well as paxillin. Allowing ESCs to spread and scatter on a synthetically designed E-cadherin substratum causes phosphorylation of paxillin on consensus phosphorylation sites leading to activation of Rac1 and inactivation of RhoA. By culturing cells in presence of RhoA activator or growing cells to a highly confluent state reverses the effect of cell scattering phenotype. Knockdown of E-cadherin-adapter protein α-catenin revealed that it negatively affects paxillin phosphorylation and up-regulates RhoA activity in compact cellular aggregates. Collectively these results indicate that cell scattering might cause a conformational change of α-catenin limiting its capacity to inhibit paxillin phosphorylation that causes an increase in Rac1 activation and RhoA deactivation. Understanding how synthetically designed extracellular matrix affect ESC signaling through mechanical cues brings a new aspect for stem cell engineers to develop technologies for controlling cell function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Sympatric and allopatric experimental infections of the planorbid snail Gyraulus chinensis with miracidia of Euparyphium albuferensis (Trematoda: Echinostomatidae).

    PubMed

    Muñoz-Antoli, C; Marín, A; Trelis, M; Toledo, R; Esteban, J-G

    2010-12-01

    An experimental infection with echinostomatid miracidia in sympatric or 'local' vs. allopatric or 'away' snail combinations, as a model to examine parasite compatibility, was carried out. We employed Euparyphium albuferensis miracidia to infect Gyraulus chinensis snails, from three different natural parks: Albufera (Valencia, Spain); the Ebro Delta (Tarragona, Spain) and Coto de Doñana (Huelva, Spain). Insignificant differences between the three snail strains were noted for the infection rate and the rhythm of daily cercarial production. However, a significantly higher total cercarial production per snail, patent period and life span were observed in local snails. The different infection characteristics in the three G. chinensis strains considered reveal that E. albuferensis miracidia demonstrate local adaptation.

  7. Correlation between E-cadherin interactions, survivin expression, and apoptosis in MDCK and ts-Src MDCK cell culture models.

    PubMed

    Capra, Janne; Eskelinen, Sinikka

    2017-12-01

    Survivin, a member of inhibitor of apoptosis (IAP) protein family, is a multifunctional protein expressed in most cancers. In addition to inhibition of apoptosis, it regulates proliferation and promotes migration. Its presence and function in cells is strongly regulated via transcription factors, intracellular localization, and degradation. We analyzed the presence of survivin at protein level in various culture environments and under activation of Src tyrosine kinase in epithelial canine kidney MDCK cells in order to elucidate factors controlling survivin 'lifespan'. We used untransformed and temperature sensitive ts-Src MDCK cells as a model and forced them to grow in suspension (1D), in 2D on hard and soft surfaces and in soft 3D Matrigel environment with or without EGTA. In addition, we tested the effect of stressful conditions by cultivating the cells in the presence of an anti-cancer drug and a generator of reactive oxygen species (ROS), piperlongumine (PL) with or without an antioxidant, N-acetylcysteine (NAC). We could confirm that inhibition of apoptosis and simultaneous downregulation of survivin in MDCK cells required both intact cell-cell junctions, trans-interactions of E-cadherin and soft 3D matrix environment. In ts-Src-transformed MDCK cells, survivin was upregulated as soon as the cell-cell junctions were disintegrated. ROS generation with PL-induced cell death of ts-Src MDCK cells concomitantly with survivin downregulation. NAC rescued the ts-Src MDCK cells from ROS-induced apoptosis without upregulation of survivin resulting in a situation resembling untransformed MDCK cells in 3D environment and E-cadherin delineating the lateral cell walls.

  8. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella.

    PubMed

    Park, Y; Herrero, S; Kim, Y

    2015-12-01

    Cadherins have been described as one the main functional receptors for the toxins of the entomopathogenic bacterium, Bacillus thuringiensis (Bt). With the availability of the whole genome of Plutella xylostella, different types of cadherins have been annotated. In this study we focused on determining those members of the cadherin-related proteins that potentially play a role in the mode of action of Bt toxins. For this, we mined the genome of P. xylostella to identify these putative cadherins. The genome screening revealed 52 genes that were annotated as cadherin or cadherin-like genes. Further analysis revealed that six of these putative cadherins had three motifs common to all Bt-related cadherins: a signal peptide, cadherin repeats and a transmembrane domain. From the six selected cadherins, only P. xylostella cadherin 1 (PxCad1) was expressed in the larval midgut and only the silencing of this gene by RNA interference (double-stranded RNA feeding) reduce toxicity and binding to the midgut of the Cry1Ac type toxin from Bt. These results indicate that from the whole set of cadherin-related genes identified in P. xylostella, only PxCad1 is associated with the Cry1Ac mode of action. © 2015 The Royal Entomological Society.

  9. Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism.

    PubMed

    Kudo, Shota; Caaveiro, Jose M M; Tsumoto, Kouhei

    2016-09-06

    Orderly assembly of classical cadherins governs cell adhesion and tissue maintenance. A key event is the strand-swap dimerization of the extracellular ectodomains of two cadherin molecules from apposing cells. Here we have determined crystal structures of P-cadherin in six different conformational states to elaborate a motion picture of its adhesive dimerization at the atomic level. The snapshots revealed that cell-adhesive dimerization is facilitated by several intermediate states collectively termed X-dimer in analogy to other classical cadherins. Based on previous studies and on the combined structural, kinetic, thermodynamic, biochemical, and cellular data reported herein, we propose that the adhesive dimerization of human P-cadherin is achieved by a stepwise mechanism analogous to that of assembly chaperones. This mechanism, applicable to type I classical cadherins, confers high specificity and fast association rates. We expect these findings to guide innovative therapeutic approaches targeting P-cadherin in cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. WAVE2 Regulates Epithelial Morphology and Cadherin Isoform Switching through Regulation of Twist and Abl

    PubMed Central

    Bryce, Nicole S.; Reynolds, Albert B.; Koleske, Anthony J.; Weaver, Alissa M.

    2013-01-01

    Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis. PMID:23691243

  11. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    PubMed

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  12. Cadherin Composition and Multicellular Aggregate Invasion In Organotypic Models of Epithelial Ovarian Cancer Intraperitoneal Metastasis

    PubMed Central

    Klymenko, Yuliya; Kim, Oleg; Loughran, Elizabeth; Yang, Jing; Lombard, Rachel; Alber, Mark; Stack, M. Sharon

    2017-01-01

    During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multi-cellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich sub-mesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior, however the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the sub-mesothelial collagen matrix. Acquisition of Ncad by E-cadherin expressing cells (Ecad+) increased mesothelial clearance activity, but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a “leader-follower” mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not

  13. Molecular cloning of a human Ca2+-dependent cell-cell adhesion molecule homologous to mouse placental cadherin: its low expression in human placental tissues

    PubMed Central

    1989-01-01

    P-cadherin is a subclass of Ca2+-dependent cell-cell adhesion molecules present in mouse placenta, where its localization suggests a function of connecting the embryo to the uterus (Nose, A., and M. Takeichi. 1986. J. Cell Biol. 103:2649-2658). We recently identified a human cadherin detected by an mAb capable of disrupting cell-cell adhesion of A-431 cells, and found that it was closely related immunochemically to mouse P-cadherin. Curiously, this cadherin was undetectable in human placenta by immunohistochemical examination (Shimoyama, Y., S. Hirohashi, S. Hirano, M. Noguchi, Y. Shimosato, M. Takeichi, and O. Abe. 1989. Cancer Res. 49:2128-2133). We here report the cloning and sequencing of cDNA clone encoding the human homologue of mouse P- cadherin. The deduced amino acid sequence of the human P-cadherin consists of 829 amino acid and shows striking homology with mouse P- cadherin. On Northern blot analysis, human P-cadherin was scarcely expressed in human placenta in contrast to mouse P-cadherin, which was abundantly expressed in mouse placenta throughout pregnancy, and it was shown that E-cadherin, but not P-cadherin, was the major cadherin molecule in human placenta. Moreover, NIH3T3 cells transfected with human P-cadherin cDNA expressed the functional cadherin molecule, which was identical to the cadherin we had previously identified using the mAb, showing that this molecule really does mediate cell-cell adhesion and that the cadherin we detected immunochemically is undoubtedly human P-cadherin. The results obtained in this study support the idea that P- cadherin plays little role, if any, in Ca2+-dependent cell-cell binding in human placental tissue at least after several weeks of pregnancy. PMID:2793940

  14. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    PubMed

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  15. Differential cadherin expression in the developing postnatal telencephalon of a New World monkey.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Oka, Mariko; Iriki, Atsushi

    2013-12-01

    Cadherins are cell adhesion molecules widely expressed in the nervous system, where they play various roles in neural patterning, nuclei formation, axon guidance, and synapse formation and function. Although many published articles have reported on cadherin expression in rodents and ferrets, there are limited data on their expression in primate brains. In this study, in situ hybridization analysis was performed for 10 cadherins [nine classic cadherins (Cdh4, -6, -7, -8, -9, -10, -11, -12, and -20) and T-cadherin (Cdh13)] in the developing postnatal telencephalon of the common marmoset (Callithrix jacchus). Each cadherin showed broad expression in the cerebral cortex, basal ganglia, amygdala, and hippocampus, as previously shown in the rodent brain. However, detailed expression patterns differed between rodents and marmosets. In contrast to rodents, cadherin expression was reduced overall and localized to restricted areas of the brain during the developmental process, suggesting that cadherins are more crucially involved in developmental or maturation processes rather than in neural functioning. These results also highlight the possibility that restricted/less redundant cadherin expression allows primate brains to generate functional diversity among neurons, allowing morphological and functional differences between rodents and primates. Copyright © 2013 Wiley Periodicals, Inc.

  16. Cadherins and Their Partners in the Nematode Worm Caenorhabditis elegans

    PubMed Central

    Hardin, Jeff; Lynch, Allison; Loveless, Timothy; Pettitt, Jonathan

    2018-01-01

    The extreme simplicity of Caenorhabditis elegans makes it an ideal system to study the basic principles of cadherin function at the level of single cells within the physiologically relevant context of a developing animal. The genetic tractability of C. elegans also means that components of cadherin complexes can be identified through genetic modifier screens, allowing a comprehensive in vivo characterization of the macromolecular assemblies involved in cadherin function during tissue formation and maintenance in C. elegans. This work shows that a single cadherin system, the classical cadherin–catenin complex, is essential for diverse morphogenetic events during embryogenesis through its interactions with a range of mostly conserved proteins that act to modulate its function. The role of other members of the cadherin family in C. elegans, including members of the Fat-like, Flamingo/CELSR and calsyntenin families is less well characterized, but they have clear roles in neuronal development and function. PMID:23481198

  17. Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion.

    PubMed

    Morris, Eduardo A Rios; Bodin, Stéphane; Delaval, Bénédicte; Comunale, Franck; Georget, Virginie; Costa, Manoel L; Lutfalla, Georges; Gauthier-Rouvière, Cécile

    2017-05-01

    Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  18. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  19. Effects of dietary exposure to forest pesticides on the brown garden snail Helix aspersa mueller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuytema, G.S.; Nebeker, A.V.; Griffis, W.L.

    1994-01-01

    Brown garden snails, Helix aspersa, were fed prepared diets with 12 pesticides used in forest spraying practices where endangered arboreal and terrestrial snails may be at risk. Acephate, atrazine, glyphosate, hexazinone, and picloram were not lethal at concentrations of 5,000 mg/kg in 14-day screening tests. The remaining seven pesticides, lethal to 13-100% of the tested snails at 5,000 mg/kg, were evaluated in 10-day definitive feeding tests. Azinphosmethyl (Guthion) and aminocarb were the most toxic, with 10-day LC50s of 188 and 313 mg/kg, respectively. Paraquat, trichlorfon and fenitrothion had 10-day LC50s of 659, 664, and 7,058 mg/kg respectively. Avoidance of pesticide-containingmore » foods occurred, e.g., 10-day LC50s of >10,000 mg/kg for carbaryl and ethyl parathion. Significant descreases (p<0.05) in snail weight (total, shell-only, body-only) or shell diameter were accompanied by a significant decrease in the amount of food consumed/snail/day. Concentrations of pesticide in tissues were measured in snails exposed to atrazine and azinphosmethyl; there was no bioaccumulation. (Copyright (c) 1994 Springer-Verlag New York Inc.)« less

  20. Are sick individuals weak competitors? Competitive ability of snails parasitized by a gigantism-inducing trematode.

    PubMed

    Seppälä, Otto; Karvonen, Anssi; Kuosa, Marja; Haataja, Maarit; Jokela, Jukka

    2013-01-01

    Parasitized individuals are often expected to be poor competitors because they are weakened by infections. Many trematode species, however, although extensively exploiting their mollusc hosts, also induce gigantism (increased host size) by diverting host resources towards growth instead of reproduction. In such systems, alternatively to reduced competitive ability due to negative effects of parasitism on host performance, larger size could allow more efficient resource acquisition and thus increase the relative competitive ability of host individuals. We addressed this hypothesis by testing the effect of a trematode parasite Diplostomum pseudospathaceum on the competitive ability of its snail host Lymnaea stagnalis. We experimentally examined the growth of snails kept in pairs in relation to their infection status and intensity of resource competition (i.e. food availability). We found that parasitized snails grew faster and their reproduction was reduced compared to unparasitized individuals indicating parasite-induced gigantism. However, growth of the snails was faster when competing with parasitized individuals compared to unparasitized snails indicating reduced competitive ability due to parasitism. The latter effect, however, was relatively weak suggesting that the effects of the parasite on snail physiology may partly override each other in determining competitive ability.

  1. Are Sick Individuals Weak Competitors? Competitive Ability of Snails Parasitized by a Gigantism-Inducing Trematode

    PubMed Central

    Seppälä, Otto; Karvonen, Anssi; Kuosa, Marja; Haataja, Maarit; Jokela, Jukka

    2013-01-01

    Parasitized individuals are often expected to be poor competitors because they are weakened by infections. Many trematode species, however, although extensively exploiting their mollusc hosts, also induce gigantism (increased host size) by diverting host resources towards growth instead of reproduction. In such systems, alternatively to reduced competitive ability due to negative effects of parasitism on host performance, larger size could allow more efficient resource acquisition and thus increase the relative competitive ability of host individuals. We addressed this hypothesis by testing the effect of a trematode parasite Diplostomum pseudospathaceum on the competitive ability of its snail host Lymnaea stagnalis. We experimentally examined the growth of snails kept in pairs in relation to their infection status and intensity of resource competition (i.e. food availability). We found that parasitized snails grew faster and their reproduction was reduced compared to unparasitized individuals indicating parasite-induced gigantism. However, growth of the snails was faster when competing with parasitized individuals compared to unparasitized snails indicating reduced competitive ability due to parasitism. The latter effect, however, was relatively weak suggesting that the effects of the parasite on snail physiology may partly override each other in determining competitive ability. PMID:24205383

  2. Calcareous forest seepages acting as biodiversity hotspots and refugia for woodland snail faunas

    NASA Astrophysics Data System (ADS)

    Horsák, Michal; Tajovská, Eva; Horsáková, Veronika

    2017-07-01

    Land-snail species richness has repeatedly been found to increase with the increasing site calcium content and humidity. These two factors, reported as the main drivers of land-snail assemblage diversity, are also among the main habitat characteristics of calcareous seepages. Here we explore local species richness and compositional variation of forest spring-fed patches (i.e. seepages), to test the hypothesis that these habitats might act as biodiversity hotspots and refugia of regional snail faunas. In contrast to treeless spring fens, only little is known about land snail faunas inhabiting forest seepages. Studying 25 isolated calcareous forest seepages, evenly distributed across the White Carpathians Protected Landscape Area (SE Czech Republic), we found that these sites, albeit spatially very limited, can harbour up to 66% of the shelled land-snail species known to occur in this well-explored protected area (in total 83 species). By comparing land snail assemblages of the studied seepages with those occurring in the woodland surroundings of each site as well as those previously sampled in 28 preserved forest sites within the study area, we found the seepages to be among the most species rich sites. Although the numbers of species did not statistically differ among these three systems, we found highly significant differences in species composition. Seepage faunas were composed of many species significantly associated with spring sites, in contrast to the assemblages of both surrounding and preserved forest sites. Our results highly support the hypothesis that calcareous forest seepages might serve as refugia and biodiversity hotspots of regional land snail faunas. Protection of these unique habitats challenges both conservation plans and forest management guidelines as they might act as sources for the recolonization and restoration of forest snail assemblages particularly in areas impoverished by harvesting and clearcutting.

  3. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M., E-mail: spotheim@cnrs-orleans.fr

    2009-08-21

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucinemore » residues of the tetramerization domain.« less

  4. Deep analysis of N-cadherin/ADH-1 interaction: a computational survey.

    PubMed

    Eslami, Mahboobeh; Nezafat, Navid; Khajeh, Sahar; Mostafavi-Pour, Zohreh; Bagheri Novir, Samaneh; Negahdaripour, Manica; Ghasemi, Younes; Razban, Vahid

    2018-01-19

    Due to the considerable role of N-cadherin in cancer metastasis, tumor growth, and progression, inhibition of this protein has been highly regarded in recent years. Although ADH-1 has been known as an appropriate inhibitor of N-cadherin in clinical trials, its chemical nature and binding mode with N-cadherin have not been precisely specified yet. Accordingly, in this study, quantum mechanics calculations were used to investigate the chemical nature of ADH-1. These calculations clarify the molecular properties of ADH-1 and determine its reactive sites. Based on the results, the oxygen atoms are suitable for electrophilic reactivity, while the hydrogen atoms that are connected to nitrogen atoms are the favorite sites for nucleophilic reactivity. The higher electronegativity of the oxygen atoms makes them the most reactive portions in this molecule. Molecular docking and molecular dynamics (MD) simulation have also been applied to specify the binding mode of ADH-1 with N-cadherin and determine the important residues of N-cadherin involving in the interaction with ADH-1. Moreover, the verified model by MD simulation has been studied to extract the free energy value and find driving forces. These calculations and molecular electrostatic potential map of ADH-1 indicated that hydrophobic and electrostatic interactions are almost equally involved in the implantation of ADH-1 in the N-cadherin binding site. The presented results not only enable a closer examination of N-cadherin in complex with ADH-1 molecule, but also are very beneficial in designing new inhibitors for N-cadherin and can help to save time and cost in this field.

  5. ZEB1 promotes the progression and metastasis of cervical squamous cell carcinoma via the promotion of epithelial-mesenchymal transition

    PubMed Central

    Ma, Yihui; Zheng, Xiangyu; Zhou, Jun; Zhang, Ying; Chen, Kuisheng

    2015-01-01

    Objective: The process of epithelial-mesenchymal transition (EMT) clearly contributes to cancer metastasis. The aim of this study was to investigate the expression of the EMT-related transcription repressor ZEB1 and the expression of EMT-associated markers (E-cadherin, β-catenin and N-cadherin) in cervical squamous cell carcinoma. In addition, the role of ZEB1 and these EMT-associated markers in the progression and metastasis of cervical squamous cell carcinoma was explored. Methods: The expression of ZEB1, E-cadherin, β-catenin and N-cadherin was evaluated in 81 specimens of cervical squamous cell carcinoma by immunohistochemistry; the clinicopathological significance of these markers was then analyzed. Results: 1) Of the 81 samples, 37 cases (45.7%) were positive for ZEB1, and nuclear expression of ZEB1 in tumor cells was positively associated with the differentiation status of the tumor tissue (P < 0.05), vascular invasion (P < 0.05) and lymph node metastasis (P < 0.05). 2) The loss of E-cadherin and β-catenin expression in tumor cells and the acquisition of N-cadherin expression were positively associated with the differentiation status of the tumor tissue (P < 0.05) and with the occurrence of vascular invasion (P < 0.05). 3) A significant negative correlation was observed between ZEB1 and E-cadherin expression (Spearman = -0.636, P < 0.05) and between ZEB1 and β-catenin expression (Spearman = -0.417, P < 0.05). Moreover, a significant positive correlation was observed between ZEB1 and N-cadherin expression (Spearman = 0.557, P < 0.05). Conclusions: These results emphasize the role of EMT in cervical squamous cell carcinoma. The upregulation of ZEB1 is associated with the abnormal expression of E-cadherin, β-catenin and N-cadherin, which might promote the progression and metastasis of cervical squamous cell carcinoma. PMID:26617850

  6. DHEA increases epithelial markers and decreases mesenchymal proteins in breast cancer cells and reduces xenograft growth.

    PubMed

    Colín-Val, Zaira; González-Puertos, Viridiana Yazmín; Mendoza-Milla, Criselda; Gómez, Erika Olivia; Huesca-Gómez, Claudia; López-Marure, Rebeca

    2017-10-15

    Breast cancer is one of the most common neoplasias and the leading cause of cancer death in women worldwide. Its high mortality rate is linked to a great metastatic capacity associated with the epithelial-mesenchymal transition (EMT). During this process, a decrease in epithelial proteins expression and an increase of mesenchymal proteins are observed. On the other hand, it has been shown that dehydroepiandrosterone (DHEA), the most abundant steroid in human plasma, inhibits migration of breast cancer cells; however, the underlying mechanisms have not been elucidated. In this study, the in vitro effect of DHEA on the expression pattern of some EMT-related proteins, such as E-cadherin (epithelial), N-cadherin, vimentin and Snail (mesenchymal) was measured by Western blot and immunofluorescence in MDA-MB-231 breast cancer cells with invasive, metastatic and mesenchymal phenotype. Also, the in vivo effect of DHEA on xenograft tumor growth in nude mice (nu - /nu - ) and on expression of the same epithelial and mesenchymal proteins in generated tumors was evaluated. We found that DHEA increased expression of E-cadherin and decreased N-cadherin, vimentin and Snail expression both in MD-MB-231 cells and in the formed tumors, possibly by DHEA-induced reversion of mesenchymal phenotype. These results were correlated with a tumor size reduction in mouse xenografts following DHEA administration either a week earlier or concurrent with breast cancer cells inoculation. In conclusion, DHEA could be useful in the treatment of breast cancer with mesenchymal phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Short-chain chlorinated paraffins in soil, paddy seeds (Oryza sativa) and snails (Ampullariidae) in an e-waste dismantling area in China: Homologue group pattern, spatial distribution and risk assessment.

    PubMed

    Yuan, Bo; Fu, Jianjie; Wang, Yawei; Jiang, Guibin

    2017-01-01

    Short-chain chlorinated paraffins (SCCPs) in multi-environmental matrices are studied in Taizhou, Zhejiang Province, China, which is a notorious e-waste dismantling area. The investigated matrices consist of paddy field soil, paddy seeds (Oryza sativa, separated into hulls and rice unpolished) and apple snails (Ampullariidae, inhabiting the paddy fields). The sampling area covered a 65-km radius around the contamination center. C 10 and C 11 are the two predominant homologue groups in the area, accounting for about 35.7% and 33.0% of total SCCPs, respectively. SCCPs in snails and hulls are generally higher than in soil samples (30.4-530 ng/g dw), and SCCPs in hulls are approximate five times higher than in corresponding rice samples (4.90-55.1 ng/g dw). Homologue pattern analysis indicates that paddy seeds (both hull and rice) tend to accumulate relatively high volatile SCCP homologues, especially the ones with shorter carbon chain length, while snails tend to accumulate relatively high lipophilic homologues, especially the ones with more substituted chlorines. SCCPs in both paddy seeds and snails are linearly related to those in the soil. The e-waste dismantling area, which covers a radius of approximate 20 km, shows higher pollution levels for SCCPs according to their spatial distribution in four matrices. The preliminary assessment indicates that SCCP levels in local soils pose no significant ecological risk for soil dwelling organisms, but higher risks from dietary exposure of SCCPs are suspected for people living in e-waste dismantling area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  9. N-cadherin Regulation of Bone Growth and Homeostasis is Osteolineage Stage-Specific

    PubMed Central

    Fontana, Francesca; Hickman-Brecks, Cynthia L.; Salazar, Valerie S.; Revollo, Leila; Abou-Ezzi, Grazia; Grimston, Susan K.; Jeong, Sung Yeop; Watkins, Marcus; Fortunato, Manuela; Alippe, Yael; Link, Daniel C.; Mbalaviele, Gabriel; Civitelli, Roberto

    2017-01-01

    N-cadherin inhibits osteogenic cell differentiation and canonical Wnt/β-catenin signaling in vitro. However, in vivo both conditional Cdh2 ablation and overexpression in osteoblasts lead to low bone mass. We tested the hypothesis that N-cadherin has different effects on osteolineage cells depending upon their differentiation stage. Embryonic conditional osteolineage Cdh2 deletion in mice results in defective growth, low bone mass and reduced osteoprogenitor number. These abnormalities are prevented by delaying Cdh2 ablation until 1 month of age, thus targeting only committed and mature osteoblasts, suggesting they are the consequence of N-cadherin deficiency in osteoprogenitors. Indeed, diaphyseal trabecularization actually increases when Cdh2 is ablated postnatally. The sclerostin-insensitive Lrp5A214V mutant, associated with high bone mass, does not rescue the growth defect, but it overrides the low bone mass of embryonically Cdh2 deleted mice, suggesting N-cadherin interacts with Wnt signaling to control bone mass. Finally, bone accrual and β-catenin accumulation after administration of an anti-Dkk1 antibody are enhanced in N-cadherin deficient mice. Thus, while lack of N-cadherin in embryonic and perinatal age is detrimental to bone growth and bone accrual, in adult mice loss of N-cadherin in osteolineage cells favors bone formation. Hence, N-cadherin inhibition may widen the therapeutic window of osteoanabolic agents. PMID:28240364

  10. Characterizations of cholinesterases in golden apple snail (Pomacea canaliculata).

    PubMed

    Zou, Xiang-Hui; Xie, Heidi Qun-Hui; Zha, Guang-Cai; Chen, Vicky Ping; Sun, Yan-Jie; Zheng, Yu-Zhong; Tsim, Karl Wah-Keung; Dong, Tina Ting-Xia; Choi, Roy Chi-Yan; Luk, Wilson Kin-Wai

    2014-07-01

    Cholinesterases (ChEs) have been identified in vertebrates and invertebrates. Inhibition of ChE activity in invertebrates, such as bivalve molluscs, has been used to evaluate the exposure of organophosphates, carbamate pesticides, and heavy metals in the marine system. The golden apple snail (Pomacea canaliculata) is considered as one of the worst invasive alien species harmful to rice and other crops. The ChE(s) in this animal, which has been found recently, but poorly characterized thus far, could serve as biomarker(s) for environmental surveillance as well as a potential target for the pest control. In this study, the tissue distribution, substrate preference, sensitivity to ChE inhibitors, and molecular species of ChEs in P. canaliculata were investigated. It was found that the activities of both AChE and BChE were present in all test tissues. The intestine had the most abundant ChE activities. Both enzymes had fair activities in the head, kidney, and gills. The BChE activity was more sensitive to tetra-isopropylpyrophosphoramide (iso-OMPA) than the AChE. Only one BChE molecular species, 5.8S, was found in the intestine and head, whereas two AChE species, 5.8S and 11.6S, were found there. We propose that intestine ChEs of this snail may be potential biomarkers for manipulating pollutions.

  11. Whole genome analysis of a schistosomiasis-transmitting freshwater snail

    PubMed Central

    Adema, Coen M.; Hillier, LaDeana W.; Jones, Catherine S.; Loker, Eric S.; Knight, Matty; Minx, Patrick; Oliveira, Guilherme; Raghavan, Nithya; Shedlock, Andrew; do Amaral, Laurence Rodrigues; Arican-Goktas, Halime D.; Assis, Juliana G.; Baba, Elio Hideo; Baron, Olga L.; Bayne, Christopher J.; Bickham-Wright, Utibe; Biggar, Kyle K.; Blouin, Michael; Bonning, Bryony C.; Botka, Chris; Bridger, Joanna M.; Buckley, Katherine M.; Buddenborg, Sarah K.; Lima Caldeira, Roberta; Carleton, Julia; Carvalho, Omar S.; Castillo, Maria G.; Chalmers, Iain W.; Christensens, Mikkel; Clifton, Sandra; Cosseau, Celine; Coustau, Christine; Cripps, Richard M.; Cuesta-Astroz, Yesid; Cummins, Scott F.; di Stefano, Leon; Dinguirard, Nathalie; Duval, David; Emrich, Scott; Feschotte, Cédric; Feyereisen, Rene; FitzGerald, Peter; Fronick, Catrina; Fulton, Lucinda; Galinier, Richard; Gava, Sandra G.; Geusz, Michael; Geyer, Kathrin K.; Giraldo-Calderón, Gloria I.; de Souza Gomes, Matheus; Gordy, Michelle A.; Gourbal, Benjamin; Grunau, Christoph; Hanington, Patrick C.; Hoffmann, Karl F.; Hughes, Daniel; Humphries, Judith; Jackson, Daniel J.; Jannotti-Passos, Liana K.; de Jesus Jeremias, Wander; Jobling, Susan; Kamel, Bishoy; Kapusta, Aurélie; Kaur, Satwant; Koene, Joris M.; Kohn, Andrea B.; Lawson, Dan; Lawton, Scott P; Liang, Di; Limpanont, Yanin; Liu, Sijun; Lockyer, Anne E.; Lovato, TyAnna L.; Ludolf, Fernanda; Magrini, Vince; McManus, Donald P.; Medina, Monica; Misra, Milind; Mitta, Guillaume; Mkoji, Gerald M.; Montague, Michael J.; Montelongo, Cesar; Moroz, Leonid L.; Munoz-Torres, Monica C.; Niazi, Umar; Noble, Leslie R.; Oliveira, Francislon S.; Pais, Fabiano S.; Papenfuss, Anthony T.; Peace, Rob; Pena, Janeth J.; Pila, Emmanuel A.; Quelais, Titouan; Raney, Brian J.; Rast, Jonathan P.; Rollinson, David; Rosse, Izinara C.; Rotgans, Bronwyn; Routledge, Edwin J.; Ryan, Kathryn M.; Scholte, Larissa L. S.; Storey, Kenneth B.; Swain, Martin; Tennessen, Jacob A.; Tomlinson, Chad; Trujillo, Damian L.; Volpi, Emanuela V.; Walker, Anthony J.; Wang, Tianfang; Wannaporn, Ittiprasert; Warren, Wesley C.; Wu, Xiao-Jun; Yoshino, Timothy P.; Yusuf, Mohammed; Zhang, Si-Ming; Zhao, Min; Wilson, Richard K.

    2017-01-01

    Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis. PMID:28508897

  12. Normal Fibroblasts Induce E-Cadherin Loss and Increase Lymph Node Metastasis in Gastric Cancer

    PubMed Central

    Xu, Wen; Hu, Xinlei; Chen, Zhongting; Zheng, Xiaoping; Zhang, Chenjing; Wang, Gang; Chen, Yu; Zhou, Xinglu; Tang, Xiaoxiao; Luo, Laisheng; Xu, Xiang; Pan, Wensheng

    2014-01-01

    Background A tumor is considered a heterogeneous complex in a three-dimensional environment that is flush with pathophysiological and biomechanical signals. Cell-stroma interactions guide the development and generation of tumors. Here, we evaluate the contributions of normal fibroblasts to gastric cancer. Methodology/Principal Findings By coculturing normal fibroblasts in monolayers of BGC-823 gastric cancer cells, tumor cells sporadically developed short, spindle-like morphological characteristics and demonstrated enhanced proliferation and invasive potential. Furthermore, the transformed tumor cells demonstrated decreased tumor formation and increased lymphomatic and intestinal metastatic potential. Non-transformed BGC-823 cells, in contrast, demonstrated primary tumor formation and delayed intestinal and lymph node invasion. We also observed E-cadherin loss and the upregulation of vimentin expression in the transformed tumor cells, which suggested that the increase in metastasis was induced by epithelial-to-mesenchymal transition. Conclusion Collectively, our data indicated that normal fibroblasts sufficiently induce epithelial-to-mesenchymal transition in cancer cells, thereby leading to metastasis. PMID:24845259

  13. Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail

    PubMed Central

    Bai, Shaochun; Wang, Hongwei; Shen, Jikun; Zhou, Randal; Bushinsky, David A; Favus, Murray J

    2010-01-01

    Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)2D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H3. These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H3. © 2010 American Society for Bone and Mineral Research. PMID:19929616

  14. Dietary breadth is positively correlated with venom complexity in cone snails.

    PubMed

    Phuong, Mark A; Mahardika, Gusti N; Alfaro, Michael E

    2016-05-26

    Although diet is believed to be a major factor underlying the evolution of venom, few comparative studies examine both venom composition and diet across a radiation of venomous species. Cone snails within the family, Conidae, comprise more than 700 species of carnivorous marine snails that capture their prey by using a cocktail of venomous neurotoxins (conotoxins or conopeptides). Venom composition across species has been previously hypothesized to be shaped by (a) prey taxonomic class (i.e., worms, molluscs, or fish) and (b) dietary breadth. We tested these hypotheses under a comparative phylogenetic framework using ecological data from past studies in conjunction with venom duct transcriptomes sequenced from 12 phylogenetically disparate cone snail species, including 10 vermivores (worm-eating), one molluscivore, and one generalist. We discovered 2223 unique conotoxin precursor peptides that encoded 1864 unique mature toxins across all species, >90 % of which are new to this study. In addition, we identified two novel gene superfamilies and 16 novel cysteine frameworks. Each species exhibited unique venom profiles, with venom composition and expression patterns among species dominated by a restricted set of gene superfamilies and mature toxins. In contrast with the dominant paradigm for interpreting Conidae venom evolution, prey taxonomic class did not predict venom composition patterns among species. We also found a significant positive relationship between dietary breadth and measures of conotoxin complexity. The poor performance of prey taxonomic class in predicting venom components suggests that cone snails have either evolved species-specific expression patterns likely as a consequence of the rapid evolution of conotoxin genes, or that traditional means of categorizing prey type (i.e., worms, mollusc, or fish) and conotoxins (i.e., by gene superfamily) do not accurately encapsulate evolutionary dynamics between diet and venom composition. We also show that

  15. Snail1 transcription factor controls telomere transcription and integrity

    PubMed Central

    Mazzolini, Rocco; Gonzàlez, Núria; Garcia-Garijo, Andrea; Millanes-Romero, Alba; Peiró, Sandra; Smith, Susan

    2018-01-01

    Abstract Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes. PMID:29059385

  16. An Elmo–Dock complex locally controls Rho GTPases and actin remodeling during cadherin-mediated adhesion

    PubMed Central

    Collins, Caitlin

    2014-01-01

    Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion. PMID:25452388

  17. Do ice nucleating agents limit the supercooling ability of the land snail Cornu aspersum?

    PubMed

    Ansart, A; Nicolai, A; Vernon, P; Madec, L

    2010-01-01

    The supercooling ability of adults and eggs of the partially freezing tolerant land snail Cornu aspersum remains limited to high subzero temperatures (ca. -5 degree C) whatever the conditions, suggesting the presence of ice nucleating agents (INAs). In this study, we investigated the nucleation activity of the digestive tract of adult snails, eggs and their direct environment: food, faeces and soil. The mucous ribbon always present in the distal intestine of adults exhibited a heat-sensitive (i.e. organic) nucleation activity, close to that of the entire snails during dormant states (aestivation and hibernation). However, a microbial nature of these INAs could not be established in inactive snails. The food provided to active snails contained ice nucleating bacteria, which followed the digestive tract to be found in the intestine and in the faeces, but with a decreasing concentration along the transit. Eggshells also presented a heat-sensitive nucleation activity, which could be related to its structure. Moreover, eggs are laid directly in the soil which contained both organic and mineral INAs. This study is the first to demonstrate the implication of organic INAs in the cold hardiness of a terrestrial gastropod.

  18. Inquiry, Land Snails, and Environmental Factors

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2005-01-01

    Land snails are common invertebrates that fascinate children. Unfortunately, they are seldom used for activities in the science classroom. Snails are inexpensive, take up little space in the classroom, and require only low maintenance, and their learning dividends can be enormous. For example, students can use them in inquiry-based activities that…

  19. [Establishment of Oncomelania hupensis snail database based on smartphone and Google Earth].

    PubMed

    Wang, Wei-chun; Zhan, Ti; Zhu, Ying-fu

    2015-02-01

    To establish an Oncomelania hupensis snail database based on smartphone and Google Earth. The HEAD GPS software was loaded in the smartphone first. The GPS data of the snails were collected by the smartphone. The original data were exported to the computer with the format of KMIUKMZ. Then the data were converted into Excel file format by using some software. Finally, the results based on laboratory were filled, and the digital snail data were established. The data were converted into KML, and then were showed by Google Earth visually. The snail data of a 5 hm2-beach along the Yangtze River were collected and the distribution of the snails based on Google Earth was obtained. The database of the snails was built. The query function was implemented about the number of the total snails, the living snails and the schistosome infected snails of each survey frame. The digital management of the snail data is realized by using the smartphone and Google Earth.

  20. Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction.

    PubMed

    Sotomayor, Marcos; Weihofen, Wilhelm A; Gaudet, Rachelle; Corey, David P

    2012-12-06

    Hearing and balance use hair cells in the inner ear to transform mechanical stimuli into electrical signals. Mechanical force from sound waves or head movements is conveyed to hair-cell transduction channels by tip links, fine filaments formed by two atypical cadherins known as protocadherin 15 and cadherin 23 (refs 4, 5). These two proteins are involved in inherited deafness and feature long extracellular domains that interact tip-to-tip in a Ca(2+)-dependent manner. However, the molecular architecture of this complex is unknown. Here we combine crystallography, molecular dynamics simulations and binding experiments to characterize the protocadherin 15-cadherin 23 bond. We find a unique cadherin interaction mechanism, in which the two most amino-terminal cadherin repeats (extracellular cadherin repeats 1 and 2) of each protein interact to form an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond is mechanically strong enough to resist forces in hair cells. In addition, the complex is shown to become unstable in response to Ca(2+) removal owing to increased flexure of Ca(2+)-free cadherin repeats. Finally, we use structures and biochemical measurements to study the molecular mechanisms by which deafness mutations disrupt tip-link function. Overall, our results shed light on the molecular mechanics of hair-cell sensory transduction and on new interaction mechanisms for cadherins, a large protein family implicated in tissue and organ morphogenesis, neural connectivity and cancer.

  1. Connections between cadherin-catenin proteins, spindle misorientation, and cancer

    PubMed Central

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2015-01-01

    Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance. PMID:26451345

  2. Degree of Acetylization Chitosan Gonggong Snail Shells

    NASA Astrophysics Data System (ADS)

    Horiza, H.; Iskandar, I.; Aldo, N.

    2018-04-01

    Chitosan is a polysaccharide obtained from the deacetylation of chitin, which is generally derived from crustacean animal waste and animal skins other sea. One marine animals that have compounds that can be processed chitin chitosan is derived from the snail Gonggong marine waters of Riau Islands province. The purpose of this study was to determine the degree of chitosan from the shells of snails asetilisasi Gonggong. This research is an experimental research laboratory. The results of this study indicate that the degree of chitosan shell snail deasetilisasi Gonggong is 70.27%.

  3. Effect of Echinostoma friedi (Trematoda: Echinostomatidae) experimental infection on longevity, growth and fecundity of juvenile Radix peregra (Gastropoda: Lymnaeidae) and Biomphalaria glabrata (Gastropoda: Planorbidae) snails.

    PubMed

    Muñoz-Antoli, Carla; Marín, Antoni; Toledo, Rafael; Esteban, José-Guillermo

    2007-11-01

    The effect of Echinostoma friedi experimental infection on longevity, growth and fecundity of two susceptible first intermediate host snails, Radix peregra and Biomphalaria glabrata, was studied to contrast the level of compatibility. 120 R. peregra and 150 B. glabrata snails were used exposed to one, three or five miracidia and divided in three categories: INF (snails exposed and infected); ENI (exposed but not infected) and C (control or not miracidial-exposed snails). R. peregra INF snails' death process starts sooner, but in a prolonged extension, while B. glabrata INF snails have a much shorter life span. The infection and the miracidial exposure are able to reduce R. peregra normal development (stunting). B. glabrata INF snails' growth exceeds that of C snails (gigantism). E. friedi produces a total parasitic castration of R. peregra and B. glabrata INF snails. R. peregra would be considered as the required snail host, while B. glabrata only as an adequate snail host.

  4. Snail1 transcription factor controls telomere transcription and integrity.

    PubMed

    Mazzolini, Rocco; Gonzàlez, Núria; Garcia-Garijo, Andrea; Millanes-Romero, Alba; Peiró, Sandra; Smith, Susan; García de Herreros, Antonio; Canudas, Sílvia

    2018-01-09

    Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Habitat preference of freshwater snails in relation to environmental factors and the presence of the competitor snail Melanoides tuberculatus (Müller, 1774).

    PubMed

    Giovanelli, Alexandre; da Silva, Cesar Luiz Pinto Ayres Coelho; Leal, Geórgia Borges Eccard; Baptista, Darcílio Fernandes

    2005-04-01

    Our objective is to evaluate the habitat preference of freshwater snails in relation to environmental factors and the presence of the competitor snail Melanoides tuberculatus. In the first phase, snails was collected at 12 sites. This sampling sites presented a degree of organic input. In the second phase 33 sampling sites were chosen, covering a variety of lotic and lentic environments. The snail species found at Guapimirim, state of Rio de Janeiro, displayed a marked habitat preference, specially in relation to the physical characteristics of each environment. Other limiting factors for snail distribution at the studied lotic environments were the water current velocity and the amount of organic matter, mainly to Physa marmorata, M. tuberculatus, and Biomphalaria tenagophila. The absence of interactions between M. tuberculatus and another snails could be associated to the distinct spatial distribution of those species and the instability of habitats. This later factor may favor the coexistence of M. tuberculatus with B. glabrata by reduction of population density. In areas of schistosomiasis transmission some habitat modification may add to the instability of the environment, which would make room for the coexistence of M. tuberculatus and Biomphalaria spp. In this way, some of the usual measures for the control of snail hosts would prevent the extinction of populations of Biomphalaria spp. by M. tuberculatus in particular habitats.

  6. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces.

    PubMed

    Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto

    2015-08-24

    Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces

    PubMed Central

    Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto

    2015-01-01

    Summary Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. PMID:26235046

  8. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer.

    PubMed

    Tran, Hung D; Luitel, Krishna; Kim, Michael; Zhang, Kun; Longmore, Gregory D; Tran, David D

    2014-11-01

    SNAIL1 has been suggested to regulate breast cancer metastasis based on analyses of human breast tumor transcriptomes and experiments using cancer cell lines and xenografts. However, in vivo genetic experimental support for a role for SNAIL1 in breast cancer metastasis that develops in an immunocompetent tumor microenvironment has not been determined. To address this question, we created a genetic SNAIL1 model by coupling an endogenous SNAIL1 reporter with an inducible SNAIL1 transgene. Using multiple genetic models of breast cancer, we demonstrated that endogenous SNAIL1 expression was restricted to primary tumors that ultimately disseminate. SNAIL1 gene deletion either during the premalignant phase or after primary tumors have reached a palpable size blunted metastasis, indicating that late metastasis was the main driver of metastasis and that this was dependent on SNAIL1. Importantly, SNAIL1 expression during breast cancer metastasis was transient and forced transient, but not continuous. SNAIL1 expression in breast tumors was sufficient to increase metastasis. ©2014 American Association for Cancer Research.

  9. Thioredoxin 1 mediates TGF-β-induced epithelial-mesenchymal transition in salivary adenoid cystic carcinoma.

    PubMed

    Jiang, Yang; Feng, Xin; Zheng, Lei; Li, Sheng-Lin; Ge, Xi-Yuan; Zhang, Jian-Guo

    2015-09-22

    Epithelial-mesenchymal transition (EMT) plays an important role in the invasion and metastasis of salivary adenoid cystic carcinoma (SACC) which is characterized by wide local infiltration, perineural spread, a propensity to local recurrence and late distant metastasis. Our recent studies have disclosed that TGF-β is a crucial factor for EMT in metastatic SACC. In this study, we further uncovered small redox protein thioredoxin 1 (TXN) as a critical mediator of TGF-β induced EMT. Immunohistochemistry analysis revealed significantly higher expressions of TXN, thioredoxin reductase 1 (TXNRD1) and N-cadherin, and lower expression of E-cadherin in human metastatic SACC compared to non-metastatic SACC tissues. Consistently, cultured SACC cells with stable TXN overexpression had decreased E-cadherin and increased N-cadherin as well as Snail and Slug expressions. The enhanced migration and invasion potential of these cells was abrogated by Akt or TXNRD1 inhibitors. Expression of N-cadherin and Akt p-Akt decreased, whereas E-cadherin expression increased in a BBSKE (TXNRD1 inhibitor)-dose-dependent manner. In a xenograft mouse model, TXN overexpression facilitated the metastatic potential of SACC-83 cells to the lung. Our results indicate that TXN plays a key role in SACC invasion and metastasis through the modulation of TGF-β-Akt/GSK-3β on EMT. TXN could be a potential therapeutic target for SACC.

  10. Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastogi, Ichwaku; Rajanna, Supriya; Webb, Andrew

    According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) inmore » the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. - Highlights: • Resistance to TKIs in NSCLC cells is mediated via modulation in EMT related proteins. • EMT may induce c-Met mediated TKI resistance, similar to EGFR TKI resistance. • Role of β-catenin and cadherins in TKI resistance was validated by FACS and qPCR. • Knockdown of β-catenin or Zeb-1 can increase TKI sensitivity in TKI-resistant cells. • Targeting key EMT related proteins may overcome TKI resistance in NSCLC.« less

  11. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    PubMed

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  12. Global Assessment of Schistosomiasis Control Over the Past Century Shows Targeting the Snail Intermediate Host Works Best

    PubMed Central

    Sokolow, Susanne H.; Wood, Chelsea L.; Jones, Isabel J.; Lopez, Melina; Lafferty, Kevin D.; Kuris, Armand M.; Rickards, Chloe; De Leo, Giulio A.

    2016-01-01

    Background Despite control efforts, human schistosomiasis remains prevalent throughout Africa, Asia, and South America. The global schistosomiasis burden has changed little since the new anthelmintic drug, praziquantel, promised widespread control. Methodology We evaluated large-scale schistosomiasis control attempts over the past century and across the globe by identifying factors that predict control program success: snail control (e.g., molluscicides or biological control), mass drug administrations (MDA) with praziquantel, or a combined strategy using both. For data, we compiled historical information on control tactics and their quantitative outcomes for all 83 countries and territories in which: (i) schistosomiasis was allegedly endemic during the 20th century, and (ii) schistosomiasis remains endemic, or (iii) schistosomiasis has been "eliminated," or is "no longer endemic," or transmission has been interrupted. Principal Findings Widespread snail control reduced prevalence by 92 ± 5% (N = 19) vs. 37 ± 7% (N = 29) for programs using little or no snail control. In addition, ecological, economic, and political factors contributed to schistosomiasis elimination. For instance, snail control was most common and widespread in wealthier countries and when control began earlier in the 20th century. Conclusions/Significance Snail control has been the most effective way to reduce schistosomiasis prevalence. Despite evidence that snail control leads to long-term disease reduction and elimination, most current schistosomiasis control efforts emphasize MDA using praziquantel over snail control. Combining drug-based control programs with affordable snail control seems the best strategy for eliminating schistosomiasis. PMID:27441556

  13. Global Assessment of Schistosomiasis Control Over the Past Century Shows Targeting the Snail Intermediate Host Works Best.

    PubMed

    Sokolow, Susanne H; Wood, Chelsea L; Jones, Isabel J; Swartz, Scott J; Lopez, Melina; Hsieh, Michael H; Lafferty, Kevin D; Kuris, Armand M; Rickards, Chloe; De Leo, Giulio A

    2016-07-01

    Despite control efforts, human schistosomiasis remains prevalent throughout Africa, Asia, and South America. The global schistosomiasis burden has changed little since the new anthelmintic drug, praziquantel, promised widespread control. We evaluated large-scale schistosomiasis control attempts over the past century and across the globe by identifying factors that predict control program success: snail control (e.g., molluscicides or biological control), mass drug administrations (MDA) with praziquantel, or a combined strategy using both. For data, we compiled historical information on control tactics and their quantitative outcomes for all 83 countries and territories in which: (i) schistosomiasis was allegedly endemic during the 20th century, and (ii) schistosomiasis remains endemic, or (iii) schistosomiasis has been "eliminated," or is "no longer endemic," or transmission has been interrupted. Widespread snail control reduced prevalence by 92 ± 5% (N = 19) vs. 37 ± 7% (N = 29) for programs using little or no snail control. In addition, ecological, economic, and political factors contributed to schistosomiasis elimination. For instance, snail control was most common and widespread in wealthier countries and when control began earlier in the 20th century. Snail control has been the most effective way to reduce schistosomiasis prevalence. Despite evidence that snail control leads to long-term disease reduction and elimination, most current schistosomiasis control efforts emphasize MDA using praziquantel over snail control. Combining drug-based control programs with affordable snail control seems the best strategy for eliminating schistosomiasis.

  14. Stability studies of extracellular domain two of neural-cadherin.

    PubMed

    Vunnam, Nagamani; McCool, John K; Williamson, Michael; Pedigo, Susan

    2011-12-01

    Neural- (NCAD) and epithelial- (ECAD) cadherin are calcium-dependent cell-adhesive molecules, and are localized at excitatory and inhibitory synapses respectively. They play an important role in synaptogenesis, synapse maintenance and plasticity. The extracellular region plays a critical role in cadherin-mediated cell adhesion, and has five tandemly repeated ectodomains (EC1-EC5). Calcium binding is required for dimer formation between first two N-terminal domains (EC1-EC2). Despite similarity in the primary structure, the extracellular domains of NCAD and ECAD have different intrinsic stability, dimerization affinity and kinetics of disassembly. To investigate the origin of these differences, we are characterizing the modular domains individually. Here, we report studies of NCAD2, EC2 of NCAD. This domain is important for calcium binding and is the physical linkage between the dimerization interface in EC1 and the membrane proximal modular domains. Thermal-denaturation studies show that NCAD2 is less stable than ECAD2 and less influenced by the adjoining 7-residue, N- and C-terminal linker segments. In addition the NCAD2 constructs are less influenced by added salt. This difference is likely due to variation in the overall number and distribution of charges on these anionic proteins. Our studies indicate that despite their sequence similarity and apparently passive role in adhesive dimer formation, EC2 of E- and N-cadherins are distinctly different and may contribute to the differences in energetics and kinetics of dimerization. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Phenolic Secoiridoids in Extra Virgin Olive Oil Impede Fibrogenic and Oncogenic Epithelial-to-Mesenchymal Transition: Extra Virgin Olive Oil As a Source of Novel Antiaging Phytochemicals

    PubMed Central

    Vazquez-Martin, Alejandro; Fernández-Arroyo, Salvador; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Lozano-Sánchez, Jesús; Vellón, Luciano; Micol, Vicente; Joven, Jorge

    2012-01-01

    Abstract The epithelial-to-mesenchymal transition (EMT) genetic program is a molecular convergence point in the life-threatening progression of organ fibrosis and cancer toward organ failure and metastasis, respectively. Here, we employed the EMT process as a functional screen for testing crude natural extracts for accelerated drug development in fibrosis and cancer. Because extra virgin olive oil (EVOO) (i.e., the juice derived from the first cold pressing of the olives without any further refining process) naturally contains high levels of phenolic compounds associated with the health benefits derived from consuming an EVOO-rich Mediterranean diet, we have tested the ability of an EVOO-derived crude phenolic extract to regulate fibrogenic and oncogenic EMT in vitro. High-performance liquid chromatography (HPLC) coupled to time-of-flight (TOF) mass spectrometry assays revealed that the EVOO phenolic extract was mainly composed (∼70%) of two members of the secoiridoid family of complex polyphenols, namely oleuropein aglycone—the bitter principle of olives—and its derivative decarboxymethyl oleuropein aglycone. EVOO secoiridoids efficiently prevented loss of proteins associated with polarized epithelial phenotype (i.e., E-cadherin) as well as de novo synthesis of proteins associated with mesenchymal migratory morphology of transitioning cells (i.e., vimentin). The ability of EVOO to impede transforming growth factor-β (TGF-β)–induced disintegration of E-cadherin-mediated cell–cell contacts apparently occurred as a consequence of the ability of EVOO phenolics to prevent the upregulation of SMAD4—a critical mediator of TGF-β signaling—and of the SMAD transcriptional cofactor SNAIL2 (Slug)—a well-recognized epithelial repressor. Indeed, EVOO phenolics efficiently prevented crucial TGF-β–induced EMT transcriptional events, including upregulation of SNAI2, TCF4, VIM (Vimentin), FN (fibronectin), and SERPINE1 genes. While awaiting a better

  16. Relevance of MET activation and genetic alterations of KRAS and E-cadherin for cetuximab sensitivity of gastric cancer cell lines.

    PubMed

    Heindl, Stefan; Eggenstein, Evelyn; Keller, Simone; Kneissl, Julia; Keller, Gisela; Mutze, Kathrin; Rauser, Sandra; Gasteiger, Georg; Drexler, Ingo; Hapfelmeier, Alexander; Höfler, Heinz; Luber, Birgit

    2012-05-01

    The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated. Reliable biomarkers for the identification of patients who are likely to benefit from the treatment are not available. The aim of the study was to examine the drug sensitivity of five gastric cancer cell lines towards cetuximab as a single agent and to establish predictive markers for chemosensitivity in this cell culture model. The effect of a combination of cetuximab with chemotherapy was compared between a sensitive and a nonsensitive cell line. EGFR expression, activation and localisation, the presence and subcellular localisation of the cell adhesion molecule E-cadherin as well as MET activation were examined by Western blot analysis, flow cytometry and immunofluorescence staining. Cells were treated with varying concentrations of cetuximab and cisplatin and 5-fluorouracil in tumour-relevant concentrations. The biological endpoint was cell viability, which was measured by XTT cell proliferation assay. Response to treatment was evaluated using statistical methods. We assessed the activity of cetuximab in five gastric cancer cell lines (AGS, KATOIII, MKN1, MKN28 and MKN45). The viability of two cell lines, MKN1 and MKN28, was significantly reduced by cetuximab treatment. High EGFR expression and low levels of receptor activation were associated with cetuximab responsiveness. MET activation as well as mutations of KRAS and CDH1 (gene encoding E-cadherin) was associated with cetuximab resistance. These data indicate that our examinations may be clinically relevant, and the candidate markers should therefore be tested in clinical studies.

  17. Prognostic Potential of N-Cadherin in Oral Squamous Cell Carcinoma via Immunohistochemical Methods.

    PubMed

    Chandolia, Betina; Rajliwal, Jai Parkash; Bajpai, Manas; Arora, Manika

    2017-08-01

    To assess the prognostic potential for N-cadherin in oral squamous cell carcinoma and oral epithelial dysplasia. Across-sectional study, analytical study. Maharishi Markandeshwar College of Dental Science Research (MMCDSR), Ambala, India, from 2011 to 2014. Immunohistochemistry was used to observe the N-cadherin expression in 100 cases having epithelium with normal oral mucosa, oral epithelial dysplastic lesions and oral squamous cell carcinoma (OSCC). For statistical significance, SPSS 13.0 was used to calculate the data by Mann-Whitney and Kruskal-Wallis tests. In OSCC, N-cadherin expression was more evident than in oral epithelial dysplasia followed by the normal oral epithelium that did not show any dysplastic changes (p=0.001). Conversely, N-cadherin expression was not significant among the histological grade of OSCC. N-cadherin can be used as a potential biomarker for early diagnosis of OSCC. However, the N-cadherin expression did not show any correlation with the histological grade of OSCC.

  18. Mate desertion in the snail kite

    USGS Publications Warehouse

    Beissinger, S.R.; Snyder, N.F.R.

    1988-01-01

    Mate desertion during the breeding cycle was documented at 28 of 36 (78%) snail kite, Rostrhamus sociabilis nests in Florida between 1979 and 1983. Offspring mortality occurred at only one deserted nest, however. Parents that were deserted by their mates continued to care for their young until independence (3?5 additional weeks) and provided snails at a rate similar to that of both parents combined before desertion. Males and females deserted with nearly equal frequency, except in 1982 when more females deserted. No desertion occurred during drought years, whereas desertion occurred at nearly every nest during favourable conditions. The occurrence of mate desertion was generally related to indirect measures of snail abundance: foraging range, snail delivery rates to the young and growth rates. Small broods were deserted more frequently by females than by males and tended to be deserted earlier than large ones. After desertion, deserters had the opportunity to re-mate and nest again since breeding seasons were commonly lengthy, but whether they did so was impossible to determine conclusively in most cases. The deserted bird sometimes incurred increased energetic costs and lost breeding opportunities during periods of monoparental care.

  19. N-cadherin expression in palisade nerve endings of rat vellus hairs.

    PubMed

    Kaidoh, Toshiyuki; Inoué, Takao

    2008-02-01

    Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes. (c) 2007 Wiley-Liss, Inc.

  20. Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin.

    PubMed

    Dumstrei, Karin; Wang, Fay; Nassif, Claude; Hartenstein, Volker

    2003-01-20

    The Drosophila E-cadherin homolog, DE-cadherin, is expressed postembryonically by brain neuroblasts and their lineages of neurons ("secondary lineages"). DE-cadherin appears in neuroblasts as soon as they can be identified by their increase in size and then remains expressed uninterruptedly throughout larval life. DE-cadherin remains transiently expressed in the cell bodies and axons of neurons produced by neuroblast proliferation. In general, axons of neurons belonging to one lineage form tight bundles. The trajectories of these bundles are correlated with the location of the neuronal lineages to which they belong. Thus, axon bundles of lineages that are neighbors in the cortex travel parallel to each other and reach the neuropile at similar positions. It is, therefore, possible to assign coherent groups of neuroblasts and their lineages to the individual neuropile compartments and long axon tracts introduced in the accompanying articles (Nassif et al. [2003] J Comp Neurol 455:417-434; Younossi-Hartenstein et al. [2003] J Comp Neurol 455:435-450). In this study, we have reconstructed the pattern of secondary lineages and their projection in relationship to the compartments and Fasciclin II-positive long axon tracts. Based on topology and axonal trajectory, the lineages of the central brain can be subdivided into 11 groups that can be followed throughout successive larval stages. The map of larval lineages and their axonal projection will be important for future studies on postembryonic neurogenesis in Drosophila. It also lays a groundwork for investigating the role of DE-cadherin in larval brain development. Copyright 2002 Wiley-Liss, Inc.

  1. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.

    PubMed

    Wagner, Roselyne Y; Luciani, Flavie; Cario-André, Muriel; Rubod, Alain; Petit, Valérie; Benzekri, Laila; Ezzedine, Khaled; Lepreux, Sébastien; Steingrimsson, Eirikur; Taieb, A; Gauthier, Yvon; Larue, Lionel; Delmas, Véronique

    2015-07-01

    Vitiligo is the most common depigmenting disorder resulting from the loss of melanocytes from the basal epidermal layer. The pathogenesis of the disease is likely multifactorial and involves autoimmune causes, as well as oxidative and mechanical stress. It is important to identify early events in vitiligo to clarify pathogenesis, improve diagnosis, and inform therapy. Here, we show that E-cadherin (Ecad), which mediates the adhesion between melanocytes and keratinocytes in the epidermis, is absent from or discontinuously distributed across melanocyte membranes of vitiligo patients long before clinical lesions appear. This abnormality is associated with the detachment of the melanocytes from the basal to the suprabasal layers in the epidermis. Using human epidermal reconstructed skin and mouse models with normal or defective Ecad expression in melanocytes, we demonstrated that Ecad is required for melanocyte adhesiveness to the basal layer under oxidative and mechanical stress, establishing a link between silent/preclinical, cell-autonomous defects in vitiligo melanocytes and known environmental stressors accelerating disease expression. Our results implicate a primary predisposing skin defect affecting melanocyte adhesiveness that, under stress conditions, leads to disappearance of melanocytes and clinical vitiligo. Melanocyte adhesiveness is thus a potential target for therapy aiming at disease stabilization.

  2. miR-885-5p upregulation promotes colorectal cancer cell proliferation and migration by targeting suppressor of cytokine signaling.

    PubMed

    Su, Meng; Qin, Baoli; Liu, Fang; Chen, Yuze; Zhang, Rui

    2018-07-01

    The aim of the present study was to investigate the role of microRNA (miR)-885-5p in colorectal cancer cell proliferation and migration, and to determine the possible underlying molecular mechanisms. The expression of miR-885-5p in colorectal cancer tissue and cells was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of three suppressor of cytokine signaling (SOCS) factors were detected by RT-qPCR and western blotting. The effects of miR-885-5p on tumor cell proliferation and migration were studied using MTT and Transwell assays, respectively. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related proteins (N-cadherin, E-cadherin, vimentin and Snail) were detected by RT-qPCR and western blot analysis. Furthermore, the target of miR-885-5p was predicted and confirmed using a luciferase reporter assay. miR-885-5p was demonstrated to be upregulated and SOCS was downregulated in colorectal cancer tissue, and cells. miR-885-5p suppression significantly inhibited tumor cell proliferation and migration, promoted E-cadherin expression, and inhibited the expression levels of N-cadherin, vimentin and Snail. Further studies showed that SOCS5, SOCS6 and SOCS7 were direct targets of miR-885-5p. The results suggest that miR-885-5p suppression inhibited cell proliferation and migration, and the EMT process by targeting SOCS5, SOCS6 and SOCS7 genes in colorectal cancer. miR-885-5p and SOCS may be used for the diagnosis and treatment of colorectal cancer.

  3. [Relationship between changes of herbaceous plants and Oncomelania hupensis snail distribution under walnut forest of inhibition of snails in mountainous regions of Yunnan Province].

    PubMed

    Zhang, Chun-Hua; Liu, Fang-Yan; Liu, Guang-Fu; Sun, Yong-Yu; Tang, Guo-Yong; Li, Kun

    2013-12-01

    To explore the relationship between the changes of herbaceous plants and Oncomelania hupensis snail distribution under the walnut forest of inhibition of snails in mountainous regions of Yunnan Province. The experimental field was established at Sanying Village of Eryuan County, Yunnan Province, where the "Flourishing Forest and Controlling Snails Project" was implemented. The different stand ages (2, 4, 6, 8, 10 years)of walnut forest in experimental groups were selected based on the method of space replacing time, and the non-stocked land was served as a control group. The growth of forest, change of snails, number, biomass, overcast, height of the herbaceous plant and the soil moisture were investigated. The crown closure of 6-year-old walnut forest of inhibition of snails was 0.65. There were 11 species of herbaceous plant belonging to 11 genera, 6 families in 10-year-old forest and its crown closure was 0.77. Compared with the control group, the numbers of families, genera, and species of the 10-year-old forest were decreased by 64.71%, 69.44%, and 77.08%, and the biomass, overcast, and height of it decreased by 12.63%, 19%, and 22.18%, respectively. The soil moisture content (0-20 cm) monthly changes were increased obviously with the increase of stand age. There were no snails besides the control group and 2-year-old walnut forest. Compare with the control group, the occurrence rate of frames with living snails in the 2-year-old walnut forest was decreased by 50%, which was 1.25%. The density of living snails was decreased by 60.16%. The construction of walnut forest of inhibition of snails in mountainous regions of Yunnan Province are suitable for controlling the growth of herbaceous plants and altering the environment of snails. If the coalescence intercropped with crops is carried out, it is not only beneficial to the construction of good ecological environment, but also improves the utilization efficiencies of land, light, and thermal resource, and the

  4. μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth.

    PubMed

    Chen, Yi-Ting; Tai, Chin-Yin

    2017-05-01

    Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N-cadherin, a calcium-dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N-cadherin internalizes through clathrin-mediated endocytosis (CME). Two tyrosine-based motifs in the cytoplasmic domain of N-cadherin recognized by the μ2 subunit of the AP-2 adaptor complex are responsible for CME of N-cadherin. Moreover, β-catenin, a core component of the N-cadherin adhesion complex, inhibits N-cadherin endocytosis by masking the 2 tyrosine-based motifs. Removal of β-catenin facilitates μ2 binding to N-cadherin, thereby increasing clathrin-mediated N-cadherin endocytosis and neurite outgrowth without affecting the steady-state level of surface N-cadherin. These results identify and characterize the mechanism controlling N-cadherin endocytosis through β-catenin-regulated μ2 binding to modulate neurite outgrowth. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Tre1 GPCR initiates germ cell transepithelial migration by regulating Drosophila melanogaster E-cadherin

    PubMed Central

    Kunwar, Prabhat S.; Sano, Hiroko; Renault, Andrew D.; Barbosa, Vitor; Fuse, Naoyuki; Lehmann, Ruth

    2008-01-01

    Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion. PMID:18824569

  6. The metastasis-associated gene MTA3, a component of the Mi-2/NuRD transcriptional repression complex, predicts prognosis of gastroesophageal junction adenocarcinoma.

    PubMed

    Dong, Hongmei; Guo, Hong; Xie, Liangxi; Wang, Geng; Zhong, Xueyun; Khoury, Thaer; Tan, Dongfeng; Zhang, Hao

    2013-01-01

    Gastroesophageal junction (GEJ) adenocarcinoma carries a poor prognosis that is largely attributable to early and frequent metastasis. The acquisition of metastatic potential in cancer involves epithelial-to-mesenchymal transition (EMT). The metastasis-associated gene MTA3, a novel component of the Mi-2/NuRD transcriptional repression complex, was identified as master regulator of EMT through inhibition of Snail to increase E-cadherin expression in breast cancer. Here, we evaluated the expression pattern of the components of MTA3 pathway and the corresponding prognostic significance in GEJ adenocarcinoma. MTA3 expression was decreased at both protein and mRNA levels in tumor tissues compared to the non-tumorous and lowed MTA3 levels were noted in tumor cell lines with stronger metastatic potential. Immunohistochemical analysis of a cohort of 128 cases exhibited that patients with lower expression of MTA3 had poorer outcomes. Combined misexpression of MTA3, Snail and E-cadherin had stronger correlation with malignant properties. Collectively, results suggest that the MTA3-regulated EMT pathway is altered to favor EMT and, therefore, disease progression and that MTA3 expression was an independent prognostic factor in patients with GEJ adenocarcinoma.

  7. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherbakov, Alexander M., E-mail: alex.scherbakov@gmail.com; Stefanova, Lidia B.; Sorokin, Danila V.

    2013-12-10

    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ frommore » estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as

  8. Maintenance and induction of murine embryonic stem cell differentiation using E-cadherin-Fc substrata without colony formation

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Yuan; Akaike, Toshihiro

    2013-03-01

    Induced embryonic stem (ES) cells are expected to be promising cell resources for the observation of the cell behaviors in developmental biology as well as the implantation in cell treatments in human diseases. A recombinant E-cadherin substratum was developed as a cell recognizable substratum to maintain the ES cells' self-renewal and pluripotency at single cell level. Furthermore, the generation of various cell lineages in different germ layers, including hepatic or neural cells, was achieved on the chimeric protein layer precisely and effectively. The induction and isolation of specific cell population was carried out with the enhancing effect of other artificial extracellular matrices (ECMs) in enzyme-free process. The murine ES cell-derived cells showed highly morphological similarities and functional expressions to matured hepatocytes or neural progenitor cells.

  9. Reproductive Ecology of the Giant African Snail in South Florida: Implications for Eradication Programs.

    PubMed

    Roda, Amy; Nachman, Gösta; Weihman, Scott; Yong Cong, Mary; Zimmerman, Fredrick

    2016-01-01

    Giant African snail (Achatina fulica (Bowdich, 1822)), an important invasive snail, was recently found in South Florida, USA. An extensive eradication effort was initiated consisting of pesticide applications, debris removal and hand collections. We studied the reproduction capacity and population dynamics of snails collected from 22 populations for two years to help evaluate the likely success of the eradication program. A total of 23,890 snails, ranging from 25-131 mm, were measured, dissected and the number of eggs in each snail counted. Gravid snails ranged from 48-128 mm. Only 5% of snails had eggs, which were found year round. As the snails increased in size, they were more likely to include reproducing individuals. However, the percentage of gravid snails peaked when snails were approximately 90 mm. Although more prevalent, small (<65 mm) adults contributed fewer eggs to the population than the larger snails. We evaluated the effect of control measures on six populations having >1000 adult snails and used data from the two largest populations to investigate how environmental factors (temperature, humidity, and rainfall) interacted with population dynamics and control measures. More snails were collected in weeks with high humidity and more gravid snails were collected when the temperature was higher. The addition of metaldehyde pesticides had the greatest impact on population dynamics by reducing snail numbers. In populations with fewer snails, their numbers were already declining before the use of metaldehyde, although the new treatment accelerated the process. As a consequence of the eradication program, egg-producing snails were no longer collected from most populations by the end of the study. The aggressive and persistent control efforts apparently lead to reduced populations of egg producing snails, eventually resulting in local extinctions of this important pest.

  10. Reproductive Ecology of the Giant African Snail in South Florida: Implications for Eradication Programs

    PubMed Central

    2016-01-01

    Giant African snail (Achatina fulica (Bowdich, 1822)), an important invasive snail, was recently found in South Florida, USA. An extensive eradication effort was initiated consisting of pesticide applications, debris removal and hand collections. We studied the reproduction capacity and population dynamics of snails collected from 22 populations for two years to help evaluate the likely success of the eradication program. A total of 23,890 snails, ranging from 25–131 mm, were measured, dissected and the number of eggs in each snail counted. Gravid snails ranged from 48–128 mm. Only 5% of snails had eggs, which were found year round. As the snails increased in size, they were more likely to include reproducing individuals. However, the percentage of gravid snails peaked when snails were approximately 90 mm. Although more prevalent, small (<65 mm) adults contributed fewer eggs to the population than the larger snails. We evaluated the effect of control measures on six populations having >1000 adult snails and used data from the two largest populations to investigate how environmental factors (temperature, humidity, and rainfall) interacted with population dynamics and control measures. More snails were collected in weeks with high humidity and more gravid snails were collected when the temperature was higher. The addition of metaldehyde pesticides had the greatest impact on population dynamics by reducing snail numbers. In populations with fewer snails, their numbers were already declining before the use of metaldehyde, although the new treatment accelerated the process. As a consequence of the eradication program, egg-producing snails were no longer collected from most populations by the end of the study. The aggressive and persistent control efforts apparently lead to reduced populations of egg producing snails, eventually resulting in local extinctions of this important pest. PMID:27861504

  11. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com; Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536; Yang, Yu-Xiu

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology.more » Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT

  12. Establishment of cell-cell junctions depends on the oligomeric states of VE-cadherin

    PubMed Central

    Bibert, Stéphanie; Ayari, Hélène; Riveline, Daniel; Concord, Evelyne; Hermant, Bastien; Vernet, Thierry; Gulino-Debrac, Danièle

    2008-01-01

    Specifically expressed at intercellular adherens junctions of endothelial cells, VE-cadherin is a receptor that exhibits particular self-association properties. Indeed, in vitro studies demonstrated that the extracellular part of VE-cadherin elaborates Ca++-dependent hexameric structures. We hypothesized that this assembly could be at the basis of a new cadherin-mediated cell-cell adhesion mechanism. To verify this assumption, we first demonstrated that VE-cadherin can elaborate hexamers at the cell surface of confluent endothelial cells. Second, mutations were introduced within the extracellular part of VE-cadherin to destabilize the hexamer. Following an in vitro screening, three mutants were selected, among which, one is able to elaborate only dimers. The selected mutations were expressed as C-terminal Green Fluorescent Protein fusions in CHO cells. Despite their capacity to elaborate nascent cell-cell contacts, the mutants seem to be rapidly degraded and or internalized. Altogether, our results suggest that the formation of VE-cadherin hexamers protects this receptor and might allow the elaboration of mature endothelial cell-cell junctions. PMID:18343874

  13. Snail1 is required for the maintenance of the pancreatic acinar phenotype

    PubMed Central

    Loubat-Casanovas, Jordina; Peña, Raúl; Gonzàlez, Núria; Alba-Castellón, Lorena; Rosell, Santi; Francí, Clara; Navarro, Pilar; de Herreros, Antonio García

    2016-01-01

    The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions. PMID:26735179

  14. The Snail Family in Normal and Malignant Haematopoiesis.

    PubMed

    Carmichael, Catherine L; Haigh, Jody J

    2017-01-01

    Snail family proteins are key inducers of the epithelial-mesenchymal transition (EMT), a critical process required for normal embryonic development. They have also been strongly implicated in regulating the EMT-like processes required for tumour cell invasion, migration, and metastasis. Whether these proteins also contribute to normal blood cell development, however, remains to be clearly defined. Increasing evidence supports a role for the Snail family in regulating cell survival, migration, and differentiation within the haematopoietic system, as well as potentially an oncogenic role in the malignant transformation of haematopoietic stem cells. This review will provide a broad overview of the Snail family, including key aspects of their involvement in the regulation and development of solid organ cancer, as well as a discussion on our current understanding of Snail family function during normal and malignant haematopoiesis. © 2017 S. Karger AG, Basel.

  15. VE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers.

    PubMed

    Bartolomé, Rubén A; Torres, Sofía; Isern de Val, Soledad; Escudero-Paniagua, Beatriz; Calviño, Eva; Teixidó, Joaquín; Casal, J Ignacio

    2017-01-03

    We have investigated the role of vascular-endothelial (VE)-cadherin in melanoma and breast cancer metastasis. We found that VE-cadherin is expressed in highly aggressive melanoma and breast cancer cell lines. Remarkably, inactivation of VE-cadherin triggered a significant loss of malignant traits (proliferation, adhesion, invasion and transendothelial migration) in melanoma and breast cancer cells. These effects, except transendothelial migration, were induced by the VE-cadherin RGD motifs. Co-immunoprecipitation experiments demonstrated an interaction between VE-cadherin and α2β1 integrin, with the RGD motifs found to directly affect β1 integrin activation. VE-cadherin-mediated integrin signaling occurred through specific activation of SRC, ERK and JNK, including AKT in melanoma. Knocking down VE-cadherin suppressed lung colonization capacity of melanoma or breast cancer cells inoculated in mice, while pre-incubation with VE-cadherin RGD peptides promoted lung metastasis for both cancer types. Finally, an in silico study revealed the association of high VE-cadherin expression with poor survival in a subset of melanoma patients and breast cancer patients showing low CD34 expression. These findings support a general role for VE-cadherin and other RGD cadherins as critical regulators of lung and liver metastasis in multiple solid tumours. These results pave the way for cadherin-specific RGD targeted therapies to control disseminated metastasis in multiple cancers.

  16. Protective effects of hydrogen-rich medium on lipopolysaccharide-induced monocytic adhesion and vascular endothelial permeability through regulation of vascular endothelial cadherin.

    PubMed

    Yu, Y; Wang, W N; Han, H Z; Xie, K L; Wang, G L; Yu, Y H

    2015-06-11

    We observed the effect of hydrogen-rich medium on lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs), hyaline leukocyte conglutination, and permeability of the endothelium. Endotheliocytes were inoculated on 6-well plates and randomly divided into 4 groups: control, H2, LPS, LPS+H2, H2, and LPS+H2 in saturated hydrogen-rich medium. We applied Wright's stain-ing to observe conglutination of hyaline leukocytes and HUVECs, flow cytometry to determine the content of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), enzyme-linked immunosorbent assay to measure the E-selectin concentration in the cell liquor, the transendothelial electrical resistance (TEER) to test the permeability of endothelial cells, and Western blot and immunofluorescence to test the expression and distribution of vascular endothelial (VE)-cadherin. Compared with control cells, there was an increase in endothelium-hyaline leukocyte conglutination, a reduction in VCAM-1, ICAM-1, and E-selectin, and the TEER value increased obviously. Compared with LPS, there was an obvious reduction in the conglutination of LPS+H2 cells, a reduction in VCAM-1, ICAM-1, and E-selectin levels, and a reduction in the TEER-resistance value, while the expression of VE-cadherin increased. Fluorescence results showed that, compared with control cells, the VE-cadherin in LPS cells was in-complete at the cell joints. Compared with LPS cells, the VE-cadherin in LPS+H2 cells was even and complete at the cell joints. Liquid rich in hydrogen could reduce LPS-induced production of adhesion molecules and endothelium-hyaline leukocyte conglutination, and influence the expression and distribution of VE-cadherin to regulate the permeability of the endothelium.

  17. Snail species diversity impacts the infection patterns of Echinostoma spp.: Examples from field collected data.

    PubMed

    Zimmermann, Michael R; Luth, Kyle E; Esch, Gerald W

    2017-09-26

    Rapid losses of biodiversity due to the changing landscape have spurred increased interest in the role of species diversity and disease risk. A leading hypothesis for the importance of biodiversity in disease reduction is the dilution effect, which suggests that increasing species diversity within a system decreases the risk of disease among the organisms inhabiting it. The role of species diversity in trematode infection was investigated using field studies from sites across the U.S. to examine the impact of snail diversity in the infection dynamics of both first and second intermediate larval stages of Echinostoma spp. parasites. The prevalence of Echinostoma spp. sporocysts/rediae infection was not affected by increases in snail diversity, but significant negative correlations in metacercariae prevalence and intensity with snail diversity were observed. Additionally, varying effectiveness of the diluting hosts was found, i.e., snail species that were incompatible first intermediate hosts for Echinostoma spp. were more successful at diluting the echinostome parasites in the focal species, while H. trivolvis, a snail species that can harbor the first intermediate larval stages, amplified infection. These findings have important implications not only on the role of species diversity in reducing disease risk, but the success of the parasites in completing their life cycles and maintaining their abundance within an aquatic system.

  18. Recruitment of β-Catenin to N-Cadherin Is Necessary for Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Wang, Ruping; Cleary, Rachel A.; Gannon, Olivia J.; Tang, Dale D.

    2015-01-01

    β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation. PMID:25713069

  19. Cadherin-23 Mediates Heterotypic Cell-Cell Adhesion between Breast Cancer Epithelial Cells and Fibroblasts

    PubMed Central

    Apostolopoulou, Maria; Ligon, Lee

    2012-01-01

    In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis. PMID:22413011

  20. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma

    PubMed Central

    Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-01-01

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion. PMID:28212546

  1. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma.

    PubMed

    Xiong, Ye; Liu, Liyun; Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-04-11

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion.

  2. E-Cadherin Antagonizes Transforming Growth Factor β1 Gene Induction in Hepatic Stellate Cells by Inhibiting RhoA–Dependent Smad3 Phosphorylation

    PubMed Central

    Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A.; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon

    2011-01-01

    Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD’s potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Conclusion Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. PMID:20890948

  3. Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates

    PubMed Central

    Stanton, Brynne C.; Nielsen, Alec A.K.; Tamsir, Alvin; Clancy, Kevin; Peterson, Todd; Voigt, Christopher A.

    2014-01-01

    Genetic circuits perform computational operations based on interactions between freely diffusing molecules within a cell. When transcription factors are combined to build a circuit, unintended interactions can disrupt its function. Here, we apply “part mining” to build a library of 73 TetR-family repressors gleaned from prokaryotic genomes. The operators of a subset were determined using an in vitro method and this information was used to build synthetic promoters. The promoters and repressors were screened for cross-reactions. Of these, 16 were identified that both strongly repress their cognate promoter (5- to 207-fold) and do not interact with other promoters. Each repressor:promoter pair was converted to a NOT gate and characterized. Used as a set of 16 NOR gates, there are >1054 circuits that could be built by changing the pattern of input and output promoters. This represents a large set of compatible gates that can be used to construct user-defined circuits. PMID:24316737

  4. Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity

    USDA-ARS?s Scientific Manuscript database

    Diverse midgut cadherin mutations confer resistance to Cry1A toxins in at least three lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Most of these cadherin mutations are inherited as recessive alleles and result in changes within the cadherin repeat (CR) regions of the extr...

  5. Population estimate of Chinese mystery snail (Bellamya chinensis) in a Nebraska reservoir

    USGS Publications Warehouse

    Chaine, Noelle M.; Allen, Craig R.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.

    2012-01-01

    The Chinese mystery snail (Bellamya chinensis) is an aquatic invasive species in North America. Little is known regarding this species' impacts on freshwater ecosystems. It is be lieved that population densities can be high, yet no population estimates have been reported. We utilized a mark-recapture approach to generate a population estimate for Chinese mystery snail in Wild Plum Lake, a 6.47-ha reservoir in southeast Nebraska. We calculated, using bias-adjusted Lincoln-Petersen estimation, that there were approximately 664 adult snails within a 127 m2 transect (5.2 snails/m2). If this density was consistent throughout the littoral zone (<3 m in depth) of the reservoir, then the total adult population in this impoundment is estimated to be 253,570 snails, and the total Chinese mystery snail wet biomass is estimated to be 3,119 kg (643 kg/ha). If this density is confined to the depth sampled in this study (1.46 m), then the adult population is estimated to be 169,400 snails, and wet biomass is estimated to be 2,084 kg (643 kg/ha). Additional research is warranted to further test the utility of mark-recapture methods for aquatic snails and to better understand Chinese mystery snail distributions within reservoirs.

  6. Fecundity of the Chinese mystery snail in a Nebraska reservoir

    USGS Publications Warehouse

    Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; Wong, Alec

    2013-01-01

    The Chinese mystery snail (Bellamya chinensis) is a non-indigenous, invasive species in freshwater ecosystems of North America. We provide fecundity estimates for a population of these snails in a Nebraska reservoir. We dissected 70 snails, of which 29 were females. Nearly all female snails contained developing young, with an average of 25 young per female. Annual fecundity was estimated at between 27.2 and 33.3 young per female per year. Based on an estimated adult population and the calculated fecundity, the annual production for this reservoir was between 2.2 and 3.7 million young.

  7. Role of E-cadherin in membrane-cortex interaction probed by nanotube extrusion.

    PubMed

    Tabdanov, Erdem; Borghi, Nicolas; Brochard-Wyart, Françoise; Dufour, Sylvie; Thiery, Jean-Paul

    2009-03-18

    This study aims to define the role of E-cadherin (Ecad) engagement in cell-cell contact during membrane-cortex interaction. As a tool, we used a hydrodynamic membrane tube extrusion technique to characterize the mechanical interaction between the plasma membrane and the underlying cortical cytoskeleton. Cells were anchored on 4.5 microm beads coated with polylysine (PL) to obtain nonspecific cell adhesion or with an antibody against Ecad to mimic specific Ecad-mediated cell adhesion. We investigated tube length dynamics L(t) over time and through successive extrusions applied to the cell at regular time intervals. A constant slow velocity was observed for the first extrusion, for PL-attached cells. Subsequent extrusions had two phases: an initial high-velocity regime followed by a low-velocity regime. Successive extrusions gradually weakened the binding of the membrane around the tube neck to the underlying cortical cytoskeleton. Cells specifically attached via Ecad first exhibited a very low extrusion velocity regime followed by a faster extrusion regime similar to nonspecific extrusion. This indicates that Ecad strengthens the membrane-cortical cytoskeleton interaction, but only in a restricted area corresponding to the site of contact between the cell and the bead. Occasional giant "cortex" tubes were extruded with specifically anchored cells, demonstrating that the cortex remained tightly bound to the membrane through Ecad-mediated adhesion at the contact site.

  8. Role of E-Cadherin in Membrane-Cortex Interaction Probed by Nanotube Extrusion

    PubMed Central

    Tabdanov, Erdem; Borghi, Nicolas; Brochard-Wyart, Françoise; Dufour, Sylvie; Thiery, Jean-Paul

    2009-01-01

    This study aims to define the role of E-cadherin (Ecad) engagement in cell-cell contact during membrane-cortex interaction. As a tool, we used a hydrodynamic membrane tube extrusion technique to characterize the mechanical interaction between the plasma membrane and the underlying cortical cytoskeleton. Cells were anchored on 4.5 μm beads coated with polylysine (PL) to obtain nonspecific cell adhesion or with an antibody against Ecad to mimic specific Ecad-mediated cell adhesion. We investigated tube length dynamics L(t) over time and through successive extrusions applied to the cell at regular time intervals. A constant slow velocity was observed for the first extrusion, for PL-attached cells. Subsequent extrusions had two phases: an initial high-velocity regime followed by a low-velocity regime. Successive extrusions gradually weakened the binding of the membrane around the tube neck to the underlying cortical cytoskeleton. Cells specifically attached via Ecad first exhibited a very low extrusion velocity regime followed by a faster extrusion regime similar to nonspecific extrusion. This indicates that Ecad strengthens the membrane-cortical cytoskeleton interaction, but only in a restricted area corresponding to the site of contact between the cell and the bead. Occasional giant “cortex” tubes were extruded with specifically anchored cells, demonstrating that the cortex remained tightly bound to the membrane through Ecad-mediated adhesion at the contact site. PMID:19289070

  9. Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility.

    PubMed

    Lindsay, Andrew J; McCaffrey, Mary W

    2017-12-01

    Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.

  10. Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin.

    PubMed

    Simcha, I; Geiger, B; Yehuda-Levenberg, S; Salomon, D; Ben-Ze'ev, A

    1996-04-01

    Plakoglobin is a major component of the submembranal plaque of adherens junctions and desmosomes in mammalian cells. It is closely related to the Drosophila segment polarity gene armadillo which has a role in the transduction of transmembrane signals that regulate cell fate. Like its close homologue beta-catenin, plakoglobin can associate with the product of the tumor suppressor gene APC that is linked to human colon cancer. We have studied the effect of plakoglobin overexpression, and the cooperation between plakoglobin and N-cadherin, on the morphology and tumorigenic ability of cells either lacking, or expressing cadherin and alpha- and beta-catenin. Overexpression of plakoglobin in SV40-transformed 3T3 (SVT2) cells suppressed the tumorigenicity of the cells in syngeneic mice. Transfection with N-cadherin conferred an epithelial phenotype on the cell culture, but had no significant effect on the tumorigenicity of the cells. Cotransfection of plakoglobin and N-cadherin into SVT2 cells, however, was considerably more effective in tumor suppression than plakoglobin overexpression alone. Finally, transfection of plakoglobin into a human renal carcinoma cell line that expresses neither cadherins nor plakoglobin, or alpha-and beta-catenin, resulted in a dose-dependent suppression of tumor formation by these cells in nude mice. Plakoglobin, in these cells, did not exhibit junctional localization and was diffusely distributed in the cytoplasm, with a significant amount of the protein also localized in the nucleus. The results suggest that plakoglobin can efficiently suppress the tumorigenicity of cells in the presence of, or independently of the cadherin-catenin complex.

  11. [Spatial analysis of Oncomelania snail information based on grid data-driven].

    PubMed

    Liu, Gang; Huang, Qiong-Yao; Liu, Yun-Ziang; Wang, Jiang-Tao; Peng, Fei; Liu, Nian-Meng

    2011-06-01

    To explore the relationship between the Oncomelania snail situation and the distance to the water source, soil humidity, vegetation and water level in flood seasons in the islets of Changsha Section of the Xiang River. Combined with the NDVI and soil humidity of islets, the GIS spatial analysis based on grid data-driven was used to analyze the snail situation in Changsha Section of the Xiang River from 2005 to 2009. The relationship between the snail density and the water level in blood seasons was analyzed. In 2005, the snails in Zengpi Islet were mainly distributed at the range of 40-240 m far away from the nearest water source, and the number at the spots with a distance of 60 m was the largest. There was an obvious positive correlation between the snail density and water level in flood seasons. The ranges of the Normalized Difference Vegetation Index and soil humidity of Zengpi Islet in 2005 were 0-0.982 and 0-0.298, respectively and the main vegetation in Changsha Section of the Xiang River were weed and sedge. The map of snail situation by year was drawn according to the standard water level, which reflected the snail situation intuitionistically. By using spatial analysis based on grid data-driven, the situation of vegetation, soil humidity and snail accurately can be reflected, which can help us to understand the endemic situation timely. Even under the circumstance of human intervention, the water level in flood seasons is still an important factor influencing the change of snail situation.

  12. Dynamics between actin and the VE-cadherin/catenin complex

    PubMed Central

    Abu Taha, Abdallah; Schnittler, Hans-J

    2014-01-01

    Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through α-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, α-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis. PMID:24621569

  13. Colorectal laterally spreading tumors show characteristic expression of cell polarity factors, including atypical protein kinase C λ/ι, E-cadherin, β-catenin and basement membrane component.

    PubMed

    Ichikawa, Yasushi; Nagashima, Yoji; Morioka, Kaori; Akimoto, Kazunori; Kojima, Yasuyuki; Ishikawa, Takashi; Goto, Ayumu; Kobayashi, Noritoshi; Watanabe, Kazuteru; Ota, Mitsuyoshi; Fujii, Shoichi; Kawamata, Mayumi; Takagawa, Ryo; Kunizaki, Chikara; Takahashi, Hirokazu; Nakajima, Atsushi; Maeda, Shin; Shimada, Hiroshi; Inayama, Yoshiaki; Ohno, Shigeo; Endo, Itaru

    2014-09-01

    Colorectal flat-type tumors include laterally spreading tumors (LSTs) and flat depressed-type tumors. The former of which shows a predominant lateral spreading growth rather than an invasive growth. The present study examined the morphological characteristics of LSTs, in comparison with polypoid- or flat depressed-type tumors, along with the expression of atypical protein kinase C (aPKC) λ/ι, a pivotal cell polarity regulator, and the hallmarks of cell polarity, as well as with type IV collagen, β-catenin and E-cadherin. In total, 37 flat-type (24 LSTs and 13 flat depressed-type tumors) and 20 polypoid-type colorectal tumors were examined. The LSTs were classified as 15 LST adenoma (LST-A) and nine LST cancer in adenoma (LST-CA). An immunohistochemical examination was performed on aPKC λ/ι, type IV collagen, β-catenin and E-cadherin. The LST-A and -CA showed a superficial replacing growth pattern, with expression of β-catenin and E-cadherin in the basolateral membrane and type IV collagen along the basement membrane. In addition, 86.6% of LST-A and 55.6% of LST-CA showed aPKC λ/ι expression of 1+ (weak to normal intensity staining in the cytoplasm compared with the normal epithelium). Furthermore, ~45% of the polypoid-type adenomas showed 2+ (moderate intensity staining in the cytoplasm and/or nucleus) and 66.7% of the polypoid-type cancer in adenoma were 3+ (strong intensity staining in the cytoplasm and nucleus). A statistically significant positive correlation was observed between the expression of aPKC λ/ι and β-catenin (r=0.842; P<0.001), or type IV collagen (r=0.823; P<0.001). The LSTs showed a unique growth pattern, different from the expanding growth pattern presented by a polypoid tumor and invasive cancer. The growth characteristics of LST appear to be caused by adequate coexpression of β-catenin, type IV collagen and aPKC λ/ι.

  14. The armadillo repeat region targets ARVCF to cadherin-based cellular junctions.

    PubMed

    Kaufmann, U; Zuppinger, C; Waibler, Z; Rudiger, M; Urbich, C; Martin, B; Jockusch, B M; Eppenberger, H; Starzinski-Powitz, A

    2000-11-01

    The cytoplasmic domain of the transmembrane protein M-cadherin is involved in anchoring cytoskeletal elements to the plasma membrane at cell-cell contact sites. Several members of the armadillo repeat protein family mediate this linkage. We show here that ARVCF, a member of the p120 (ctn) subfamily, is a ligand for the cytoplasmic domain of M-cadherin, and characterize the regions involved in this interaction in detail. Complex formation in an in vivo environment was demonstrated in (1) yeast two-hybrid screens, using a cDNA library from differentiating skeletal muscle and part of the cytoplasmic M-cadherin tail as a bait, and (2) mammalian cells, using a novel experimental system, the MOM recruitment assay. Immunoprecipitation and in vitro binding assays confirmed this interaction. Ectopically expressed EGFP-ARVCF-C11, an N-terminal truncated fragment, targets to junctional structures in epithelial MCF7 cells and cardiomyocytes, where it colocalizes with the respective cadherins, beta-catenin and p120 (ctn). Hence, the N terminus of ARVCF is not required for junctional localization. In contrast, deletion of the four N-terminal armadillo repeats abolishes this ability in cardiomyocytes. Detailed mutational analysis revealed the armadillo repeat region of ARVCF as sufficient and necessary for interaction with the 55 membrane-proximal amino acids of the M-cadherin tail.

  15. Male characteristics on female mud snails caused by antifouling bottom paints.

    PubMed

    Smith, B S

    1981-02-01

    This study continues an investigation of an anatomical abnormality, named 'imposex', which consists of a superimposition of male characteristics on to a functionally normal female reproductive anatomy of the dioecious snail Nassarius obsoletus Say. Imposex is prevalent in natural populations living near yacht basins and rarely found distant from them. In the current study caged snails were transferred between a yacht basin and a distant 'clean' locality where the natural population of snails was normal. Imposex was induced in some normal snails kept at the marina and suppressed, but not lost in abnormal snails kept at the clean locality. A similar positive result was obtained in the laboratory by exposing normal snails to organotin-containing antifouling paints and abnormal snails to clean sea water. Results were negative in parallel tests of various marina-associated materials which did not contain organotin. The laboratory studies have thus identified a causative factor for the anatomical abnormalities common near yacht basins in the natural environment. They also provide a rare, if not unique, example of a chemical agent which causes the appearance of superfluous anatomical features in an animal.

  16. Modulation of defensive reflex conditioning in snails by serotonin

    PubMed Central

    Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  17. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  18. The biotin repressor: modulation of allostery by corepressor analogs.

    PubMed

    Brown, Patrick H; Cronan, John E; Grøtli, Morten; Beckett, Dorothy

    2004-04-02

    The Escherichia coli biotin repressor functions in biotin retention and regulation of biotin biosynthesis. Biotin retention is accomplished via the two-step biotinylation of the biotin-dependent enzyme, acetyl-CoA carboxylase. In the first step of this reaction the substrates biotin and ATP are utilized in synthesis of the activated biotin, biotinyl-5'-AMP, while in the second step this activated biotin is transferred to a unique lysine residue of the biotin carboxyl carrier protein subunit of the carboxylase. Regulation of biotin biosynthesis is accomplished through binding of the repressor to the transcription control region of the biotin biosynthetic operon. The adenylated or activated biotin functions as the corepressor in this DNA binding process. The activated biotin is a mixed anhydride and thus labile. In efforts to develop tools for structural and thermodynamic studies of the biotin regulatory interactions, two analogs of the adenylate, a sulfamoyl derivative and an ester derivative, have been synthesized and functionally characterized. Results of fluorescence measurements indicate that both analogs bind with high affinity to the repressor and that both are inactive in biotin transfer to the acceptor protein. Functional studies of their corepressor properties indicate that while the sulfamoyl is a weak allosteric activator, the ester closely mimics the physiological corepressor in activation of assembly of the transcription repression complex. Results of these studies also provide further insight into the allosteric mechanism of the biotin repressor.

  19. Production and characterization of Ehrlichia risticii, the agent of Potomac horse fever, from snails (Pleuroceridae: Juga spp.) in aquarium culture and genetic comparison to equine strains.

    PubMed

    Reubel, G H; Barlough, J E; Madigan, J E

    1998-06-01

    We report on the production and characterization of Ehrlichia risticii, the agent of Potomac horse fever (PHF), from snails (Pleuroceridae: Juga spp.) maintained in aquarium culture and compare it genetically to equine strains. Snails were collected from stream waters on a pasture in Siskiyou County, Calif., where PHF is enzootic and were maintained for several weeks in freshwater aquaria in the laboratory. Upon exposure to temperatures above 22 degrees C the snails released trematode cercariae tentatively identified as virgulate cercariae. Fragments of three different genes (genes for 16S rRNA, the groESL heat shock operon, and the 51-kDa major antigen) were amplified from cercaria lysates by PCR and sequenced. Genetic information was also obtained from E. risticii strains from horses with PHF. The PCR positivity of snail secretions was associated with the presence of trematode cercariae. Sequence analysis of the three genes indicated that the source organism closely resembled E. risticii, and the sequences of all three genes were virtually identical to those of the genes of an equine E. risticii strain from a property near the snail collection site. Phylogenetic analyses of the three genes indicated the presence of geographical E. risticii strain clusters.

  20. Some aspects of snail ecology in South Africa

    PubMed Central

    de Meillon, B.; Frank, G. H.; Allanson, B. R.

    1958-01-01

    In this paper, the authors present the preliminary results of a recent ecological survey of some rivers in the Transvaal, Union of South Africa. Representative samples of the molluscan fauna of the rivers were collected and chemical analyses of the river waters were carried out. In addition, such characteristics as current speed, temperature, turbidity, biochemical oxygen demand, and amount of oxygen absorbed from potassium permanganate were determined. No evidence was obtained to show that the chemical composition of natural, unpolluted waters plays any part in determining vector snail habitats. Current speed was found to have some effect, bilharzia vector snails not being found in fast-flowing waters. Of the other factors, turbidity was shown to be of some importance, probably because it affects the growth of the algae on which certain snails seem to depend for their proper development, and severe pollution with sewage and industrial wastes also appeared to have an adverse affect on the snail population. PMID:13573112

  1. [Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].

    PubMed

    Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang

    2017-07-27

    To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.

  2. The faucet snail (Bithynia tentaculata) invades the St. Louis River Estuary

    EPA Science Inventory

    The European-origin faucet snail (Bithynia tentaculata) now numbers among the aquatic invasive species present in the St. Louis River Estuary. This snail has been in the lower Great Lakes since the early 20th century but is new to the Lake Superior basin. We found faucet snails...

  3. Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells.

    PubMed

    Gillard, Ghislain; Shafaq-Zadah, Massiullah; Nicolle, Ophélie; Damaj, Raghida; Pécréaux, Jacques; Michaux, Grégoire

    2015-05-01

    E-cadherin (E-cad) is the main component of epithelial junctions in multicellular organisms, where it is essential for cell-cell adhesion. The localisation of E-cad is often strongly polarised in the apico-basal axis. However, the mechanisms required for its polarised distribution are still largely unknown. We performed a systematic RNAi screen in vivo to identify genes required for the strict E-cad apical localisation in C. elegans epithelial epidermal cells. We found that the loss of clathrin, its adaptor AP-1 and the AP-1 interactor SOAP-1 induced a basolateral localisation of E-cad without affecting the apico-basal diffusion barrier. We further found that SOAP-1 controls AP-1 localisation, and that AP-1 is required for clathrin recruitment. Finally, we also show that AP-1 controls E-cad apical delivery and actin organisation during embryonic elongation, the final morphogenetic step of embryogenesis. We therefore propose that a molecular pathway, containing SOAP-1, AP-1 and clathrin, controls the apical delivery of E-cad and morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  4. Seven-pass transmembrane cadherins: roles and emerging mechanisms in axonal and dendritic patterning.

    PubMed

    Berger-Müller, Sandra; Suzuki, Takashi

    2011-12-01

    The Flamingo/Celsr seven-transmembrane cadherins represent a conserved subgroup of the cadherin superfamily involved in multiple aspects of development. In the developing nervous system, Fmi/Celsr control axonal blueprint and dendritic morphogenesis from invertebrates to mammals. As expected from their molecular structure, seven-transmembrane cadherins can induce cell-cell homophilic interactions but also intracellular signaling. Fmi/Celsr is known to regulate planar cell polarity (PCP) through interactions with PCP proteins. In the nervous system, Fmi/Celsr can function in collaboration with or independently of other PCP genes. Here, we focus on recent studies which show that seven-transmembrane cadherins use distinct molecular mechanisms to achieve diverse functions in the development of the nervous system.

  5. Resolving the molecular mechanism of cadherin catch bond formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that theymore » form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated« less

  6. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis.

    PubMed

    Klymenko, Y; Kim, O; Loughran, E; Yang, J; Lombard, R; Alber, M; Stack, M S

    2017-10-19

    During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multicellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich submesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior; however, the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin-expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin-expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad-spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the submesothelial collagen matrix. Acquisition of Ncad by Ecad+ cells increased mesothelial clearance activity but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a 'leader-follower' mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of

  7. [Effect of forced E-cadherin expression on adhesion and proliferation of human breast carcinoma cells].

    PubMed

    Yang, Li-Juan; Liu, Yu-Qin; Gu, Bei; Bian, Xiao-Cui; Feng, Hai-Liang; Yang, Zhen-Li; Liu, Yan-Yan

    2010-12-01

    To investigate the role that E-cadherin (E-cad) plays on cell adhesion and proliferation of human breast carcinoma. E-cad expression vector was transfected into an E-cad-negative human breast carcinoma MDA-MB-231 cells. G418 was used to screen positive clones. E-cad, β-catenin (β-cat) and cyclin D1 expressions of these clones were confirmed by Western blot. Their cell-cell and cell-matrix adhesion abilities were detected. E-cad/β-catenin interaction was confirmed by immunoprecipitation. Cell proliferation was evaluated by MTT. Cell apoptosis was analyzed by flow cytometry. Direct two-step immunocytochemistry was used to detect the localization of β-cat. E-cad(+) cell strains Ecad-231-7 and Ecad-231-9 were established. When cultured in ultra-low-binding dishes Ecad-231 cells grow in suspension while Ecad-231-7 and Ecad-231-9 cells grow in large clamps. When co-cultured with HCT116 cells, the average adhesion rates at 30 min are 39.0%, 60.0% and 59.5% for MDA-MB-231, Ecad-231-7 and Ecad-231-9 respectively. The average detachment rates by EDTA for 5 min are 37.4%, 4.2% and 7.4% respectively. So E-cad expression enhanced hemotypic and heterotypic cell-cell adhesion and cell-matrix adhesion. Forced exogenously expressed E-cad could combine with endogenous β-cat, whereas down stream cyclin D1 expression was significantly decreased, as evidenced by Western blot. The rates of cell apoptosis of MDA-MB-231, Ecad-231-7 and Ecad-231-9 were 1.8%, 2.0% and 2.1%. Expression of E-cad had no obvious effect on the apoptosis of tumor cells with regular culture. β-cat increased in the cytoplasma. Two monoclonal tumor cell strains (Ecad-231-7 and Ecad-231-9) stably expressing E-cad were successfully established. E-cad could enhance adhesion and inhibit proliferation of human breast carcinoma cells through a pathway involving β-cat and cyclin D1.

  8. Estrogen-related receptor α participates transforming growth factor-β (TGF-β) induced epithelial-mesenchymal transition of osteosarcoma cells

    PubMed Central

    Chen, Yantao; Zhang, Kunshui; Li, Yang; He, Qing

    2017-01-01

    ABSTRACT Osteosarcoma patients often exhibit pulmonary metastasis, which results in high patient mortality. Understanding the mechanisms of advanced metastasis in osteosarcoma cell is important for the targeted treatment and drug development. Our present study revealed that transforming growth factor-β (TGF-β) treatment can significantly promote the in vitro migration and invasion of human osteosarcoma MG-63 and HOS cells. The loss of epithelial characteristics E-cadherin (E-Cad) and up regulation of mesenchymal markers Vimentin (Vim) suggested TGF-β induced epithelial-mesenchymal transition (EMT) of osteosarcoma cells. TGF-β treatment obviously increased the expression of Snail, a key EMT-related transcription factor, in both MG-63 and HOS cells. Silencing of Snail markedly attenuated TGF-β induced down regulation of E-cad and up regulation of Vim. TGF-β treatment also significantly increased the expression and nuclear translocation of estrogen-related receptors α (ERRα), while had no obvious effect on the expression of ERα, ERβ, or ERRγ. Knock down of ERRα or its inhibitor XCT-790 significantly attenuated TFG-β induced EMT and transcription of Snail in osteosarcoma cells. Collectively, our present study revealed that TGF-β treatment can trigger the EMT of osteosarcoma cells via ERRα/Snail pathways. Our data suggested that ERRα/Snail pathways might be potential therapeutic targets of metastasis of osteosarcoma cells. PMID:27532429

  9. Supercharged Snails for Stream Ecology & Water-Quality Studies

    ERIC Educational Resources Information Center

    Stewart, Arthur J.; Ryon, Michael G.

    2003-01-01

    Gill-breathing freshwater snails (Family "Pleuroceridae") are ecologically important, abundant in many streams in the United States, and easy to collect and maintain under classroom conditions. These snails can be used in classroom tests to demonstrate effects of pollutants on aquatic organisms. In more advanced classes, students can cage the…

  10. Impact of pH on the structure and function of neural cadherin.

    PubMed

    Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan

    2014-12-02

    Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.

  11. [Simulation experiment of survival and reproduction of artificially imported Oncomelania snails in Qingpu District, Shanghai].

    PubMed

    Tian, Jian-Guo; Li, Gui-Fu; Li, Jun; Zhang, Xiao-Ping; Jin, Yan-Jun; Cai, Li; Peng, Li-Xia; Xu, Hai-Yan; Xu, Rui-Fang

    2013-06-01

    To understand the survival of imported Oncomelania snails in new environments with different densities in waterway net region, Qingpu District, Shanghai. The snails collected from Guichi, Anhui Province were put into the ponds of 4 square meters and each had 25, 50, 100, 200, 400 and 800 pairs of snails, respectively. During the next 2 years, the temperature, humidity, the activities of snails and their second birth snails were investigated each day. All the data were analyzed statistically. The highest number of snails appeared from May to June on the surface of soils in different densities. The average numbers of snails were 2.0%-12.7% of whole put in snails, and the numbers of offspring were less than 2% of the whole put in snails. The survival and reproduction of artificially imported Oncomelania snails from Guichi, Anhui Province is not good in Qingpu District, Shanghai.

  12. [Analysis of trend of Oncomelania snail status in Yangtze River valley of Anhui Province, 1998-2009].

    PubMed

    He, Jia-Chang; Wang, Jia-Sheng; Lu, Jin-You; Li, Ting-Ting; Gao, Feng-Hu; Zhou, Ping; Zhu, Chuan-Ming; He, Long-Zhu; Yu, Bei-Bei; Zhang, Shi-Qing

    2011-04-01

    To understand the trend of Oncomelania hupensis snail distribution in Yangtze River valley of Anhui Province so as to provide an evidence for making out schistosomiasis prevention and control strategies in the future. The snail data from 1998 to 2009 of the Yangtze River valley in Anhui Province were collected including the snail area, newly occurred and re-occurred snail areas, densities of snails and infected snails, etc., and the trend and influence factors were analyzed. With several fluctuations, the snail area showed a trend of declining in general after the devastating summer flooding in 1998. From 1998 to 2009, 3 peaks of newly occurred snail areas appeared in 1998, 2004 and 2006 and 2 peaks of reoccurred snail areas appeared in 1998 and 2004. The densities of living snails and infected snails were more severe in banks of the Yangtze River than in islets of the Yangtze River. During 12 years, 1 peak of living snail density appeared in 2003, and 3 peaks of infected snail density appeared in 1999, 2003-2004 and 2006 in the islets of the Yangtze River. The densities of living snails and infected snails in banks of the Yangtze both appeared 1 peak in 1998. The distribution of snails in the Yangtze River valley is related to nature, society and financial circumstances, and it is hard to completely perform the snail control in a short-term. Therefore, at the same time of strengthening snail control, we should also strengthen infectious source control.

  13. Celss nutrition system utilizing snails

    NASA Astrophysics Data System (ADS)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  14. Road facilitation of trematode infections in snails of northern Alaska.

    PubMed

    Urban, Mark C

    2006-08-01

    Road disturbances can influence wildlife health by spreading disease agents and hosts or by generating environmental conditions that sustain these agent and host populations. I evaluated field patterns of trematode infections in snails inhabiting ponds at varying distances from the Dalton Highway, a wilderness road that intersects northern Alaska. I also assessed the relationships between trematode infections and snail densities and six environmental variables: calcium concentration, aquatic vegetative cover canopy cover temperature, pond size, and community structure. Presence of trematode infections and snail density were negatively correlated with distance from the highway. Of the pond characteristics measured, only calcium concentration and vegetation density declined with distance from road. However neither variable was positively associated with snail density or trematode presence. One potential explanation for observed patterns is that vehicles, road maintenance, or vertebrate vectors attracted to the highway facilitate colonization of snails or trematodes. Emerging disease threats to biological diversity in northern ecosystems highlight the importance of understanding how roads affect disease transmission.

  15. Effects of an invasive ant on land snails in the Ogasawara Islands.

    PubMed

    Uchida, Shota; Mori, Hideaki; Kojima, Tsubasa; Hayama, Kayo; Sakairi, Yuko; Chiba, Satoshi

    2016-12-01

    We investigated how Pheidole megacephala has affected endemic achatinellid snails because these snails are excellent indicators of the impact of ants and they have high conservation value in Ogasawara. In 2015 we surveyed the Minamizaki area of Hahajima Island of Ogasawara, designated a core zone of the World Heritage Site, for P. megacephala. In Minamizaki, we determined the distribution and density of achatinellid snails in 2015 and compared these data with their distribution and density in 2005. Land cover in the survey area was entirely forest. We also tested whether P. megacephala preyed on achatinellid snails in the laboratory. P. megacephala was present in the forested areas of Minamizaki. Achatinellid snails were absent in 19 of 39 sites where P. megacephala was present, whereas in other areas densities of the snails ranged from 2 to 228 individuals/site. In the laboratory, P. megacephala carried 6 of 7 achatinellid snails and a broken shell was found. Snail distribution and density comparisons and results of the feeding experiments suggest that the presence of P. megacephala has contributed to the decline of achatinellid snails in forests in the survey area. Yet, P. megacephala is not on the official list of invasive non-native species. Stakeholders using the list of invasive species to develop conservation programs should recognize that invasiveness of non-native species differs depending on the ecosystem and that official lists may not be complete. © 2016 Society for Conservation Biology.

  16. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    PubMed

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  17. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis

    PubMed Central

    Strippoli, Raffaele; Loureiro, Jesús; Moreno, Vanessa; Benedicto, Ignacio; Pérez Lozano, María Luisa; Barreiro, Olga; Pellinen, Teijo; Minguet, Susana; Foronda, Miguel; Osteso, Maria Teresa; Calvo, Enrique; Vázquez, Jesús; López Cabrera, Manuel; del Pozo, Miguel Angel

    2015-01-01

    Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial–mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1−/− mice showed increased EMT, thickness, and fibrosis. Exposure of Cav1−/− mice to PD fluids further increased peritoneal membrane thickness, altered permeability, and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN, and laminin, as well as proteins related to TGF-β activity in matrices derived from Cav1−/− cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis, and restored peritoneal function in Cav1−/− mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced re-acquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD. PMID:25550395

  18. Measurement of Selected Enzymatic Activities in Solanum nigrum-Treated Biomphalaria arabica Snails

    NASA Astrophysics Data System (ADS)

    Al-Daihan, Sooad

    In the present study, glucose, acid and alkaline phosphatases (ACP and ALP), α-amylase and lipase were measured for the first time in tissue homogenates of Biomphalaria arabica snails, molluscan intermediate host for Schistosoma mansoni in Saudi Arabia. Also, the effect of sublethal concentrations (LC25) of dry powdered Solanum nigrum leaf was tested as plant molluscicide against this snail species. The tested enzymes were altered in molluscicide-treated snails compared to control. While ALP and amylase were slightly affected, ACP and lipase were significantly altered. Glucose as an important energy source for a successful schistosome-snail relationship was significantly reduced in molluscicide-treated snails. In conclusion, sublethal concentration of the molluscicide showed potent effect in disturbing snail biochemistry which may render them physiologically unsuitable for the developing of schistosome parasite. This could be considered as a promising strategy to control the disease.

  19. Loss of T-cadherin (CDH-13) regulates AKT signaling and desensitizes cells to apoptosis in melanoma.

    PubMed

    Bosserhoff, Anja K; Ellmann, Lisa; Quast, Annika S; Eberle, Juergen; Boyle, Glen M; Kuphal, Silke

    2014-08-01

    An understanding of signaling pathways is a basic requirement for the treatment of melanoma. Currently, kinases are at the center of melanoma therapies. According to our research, additional alternative molecules are equally important for development of melanoma. In this regard, cancer progression is, among other factors, driven by an altered adhesion via cadherins. For instance, the de-regulated expression of the adhesion molecule T-cadherin is found in various cancer types, including melanoma, and influences migration and invasion. T-cadherin is thought to affect cellular function largely through its signaling and not its adhesion properties because the molecule is anchored into the cell membrane by a glycosylphosphatidylinositol (GPI) moiety. However, detailed knowledge about the consequences of the loss of T-cadherin in melanoma is currently lacking. For this reason, we were interested in assessing which signaling pathways are initiated by T-cadherin. The tumor growth of subcutaneously injected T-cadherin-positive melanoma cells was diminished compared with T-cadherin-negative cells in nude mice. The difference in tumor volume was not due to decreased proliferation but rather due to increased apoptosis. After the expression of T-cadherin was induced, we detected V-AKT murine thymoma viral oncogene homolog (AKT) and FoxO3a hypophosphorylation accompanied by the downregulation of the antiapoptotic molecules BCL-2, BCL-x and Clusterin. Furthermore, we detected a diminished transcriptional activity of CREB and AP-1. We demonstrated that T-cadherin functions as a pro-apoptotic tumor suppressor that antagonizes AKT/CREB/AP-1/FoxO3a signaling, whereas NFκB, TCF/LEF and mTOR are not part of the T-cadherin signaling pathway. Notably, we found that the restoration of T-cadherin in melanoma cells causes sensitization to apoptosis induced by CD95/Fas antibody CH-11. © 2013 Wiley Periodicals, Inc.

  20. [Evaluation on cost-effectiveness of snail control project by environmental modification in hilly regions].

    PubMed

    Li, Shui-Ming; Chen, Shi-Jun; Wu, Xiao-Jun; Chen, Xi-Qing; Zhang, Rong-Ping; Zhang, Jian-Rong

    2011-02-01

    To evaluate the cost-effectiveness of the snail control project by environmental modification in order to provide the evidence for quickly interrupting the transmission of schistosomiasis in hilly regions. Field investigations were carried out. The changes of the snail habitat areas were compared before and after the snail control project. The direct costs of the snail control were calculated. The reduction rates of snail area and snail density were regarded as the evaluation indexes of the effectiveness. The costs for reduction of 1% of snail area and 1% of snail density were used as the unit for cost-effectiveness analysis. After the 15 projects were implemented, there were no snails in 12 areas. The reduction rates of snail areas were 72.22% to 100%. The reduction rates of the snail area and density were both 100% in the areas with digging new ditches to fill up the old ones and building reservoirs. The total cost of 15 projects was 1 450 800 Yuan. The average cost per unit was 0.56 Yuan/m2. After the snail control project by digging new ditches to fill up the old ones was implemented, the costs of snail area and density decreased by one unit were 300 -700 Yuan, by building reservoirs, the costs were 600 -2 600 Yuan, by building fishpond, the costs were 1 200 - 1 500 Yuan, by watershed comprehensive measures, the costs were 900 - 2 700 Yuan. The cost of digging new ditches to fill up the old ones was significantly lower than that of building reservoirs or watershed comprehensive measures, but there was no significant difference between building reservoirs and watershed comprehensive measures. In hilly regions, the implementation of snail control project by environmental modification combined with construction of water conservancy is effective, and the cost-effectiveness of the snail control with digging new ditches to fill up the old ones is excellent.

  1. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition

    PubMed Central

    Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta

    2016-01-01

    Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process. PMID:26938103

  2. N-cadherin{sup +} HSCs in fetal liver exhibit higher long-term bone marrow reconstitution activity than N-cadherin{sup -} HSCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyama, Hirofumi; Arai, Fumio; Hosokawa, Kentaro

    Highlights: Black-Right-Pointing-Pointer High N-cad expression was detected in E12.5 mouse FL LT-HSCs (EPCR{sup +} LSK cells). Black-Right-Pointing-Pointer Immunohistochemically, N-cad{sup +} HSCs co-localized with sinusoidal ECs (Lyve-1{sup +} cells) in E12.5 FL, but these gradually detached in E15.5 and E18.5 FL. Black-Right-Pointing-Pointer N-cad{sup +} LSK cells in E12.5 FL exhibited higher LTR activity versus N-cad{sup -} LSK cells, which decreased in E15.5 and E18.5. Black-Right-Pointing-Pointer N-cad expression may confer high LTR activity to HSCs by facilitating interactions with the perisinusoidal niche in FL. -- Abstract: Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment known as the stem cell niche.more » The regulation of HSCs in fetal liver (FL) and their niche, however, remains to be elucidated. In this study, we investigated the role of N-cadherin (N-cad) in the maintenance of HSCs during FL hematopoiesis. By using anti-N-cad antibodies (Abs) produced by our laboratory, we detected high N-cad expression in embryonic day 12.5 (E12.5) mouse FL HSCs, but not in E15.5 and E18.5 FL. Immunofluorescence staining revealed that N-cad{sup +}c-Kit{sup +} and N-cad{sup +} endothelial protein C receptor (EPCR){sup +} HSCs co-localized with Lyve-1{sup +} sinusoidal endothelial cells (ECs) in E12.5 FL and that some of these cells also expressed N-cad. However, N-cad{sup +} HSCs were also observed to detach from the perisinusoidal niche at E15.5 and E18.5, concomitant with a down-regulation of N-cad and an up-regulation of E-cadherin (E-cad) in hepatic cells. Moreover, EPCR{sup +} long-term (LT)-HSCs were enriched in the N-cad{sup +}Lin{sup -}Sca-1{sup +}c-Kit{sup +} (LSK) fraction in E12.5 FL, but not in E15.5 or E18.5 FL. In a long-term reconstitution (LTR) activity assay, higher engraftment associated with N-cad{sup +} LSK cells versus N-cad{sup -} LSK cells in E12.5 FL when transplanted into lethally irradiated recipient mice. However

  3. Detection of Ehrlichia risticii, the agent of Potomac horse fever, in freshwater stream snails (Pleuroceridae: Juga spp.) from northern California.

    PubMed

    Barlough, J E; Reubel, G H; Madigan, J E; Vredevoe, L K; Miller, P E; Rikihisa, Y

    1998-08-01

    Ehrlichia DNA was identified by nested PCR in operculate snails (Pleuroceridae: Juga spp.) collected from stream water in a northern California pasture in which Potomac horse fever (PHF) is enzootic. Sequencing of PCR-amplified DNA from a suite of genes (the 16S rRNA, groESL heat shock operon, 51-kDa major antigen genes) indicated that the source organism closely resembled Ehrlichia risticii, the causative agent of PHF. The minimum percentage of Juga spp. harboring the organism in the population studied was 3.5% (2 of 57 snails). No ehrlichia DNA was found in tissues of 123 lymnaeid, physid, and planorbid snails collected at the same site. These data suggest that pleurocerid stream snails may play a role in the life cycle of E. risticii in northern California.

  4. Detection of Ehrlichia risticii, the Agent of Potomac Horse Fever, in Freshwater Stream Snails (Pleuroceridae: Juga spp.) from Northern California

    PubMed Central

    Barlough, Jeffrey E.; Reubel, Gerhard H.; Madigan, John E.; Vredevoe, Larisa K.; Miller, Paul E.; Rikihisa, Yasuko

    1998-01-01

    Ehrlichia DNA was identified by nested PCR in operculate snails (Pleuroceridae: Juga spp.) collected from stream water in a northern California pasture in which Potomac horse fever (PHF) is enzootic. Sequencing of PCR-amplified DNA from a suite of genes (the 16S rRNA, groESL heat shock operon, 51-kDa major antigen genes) indicated that the source organism closely resembled Ehrlichia risticii, the causative agent of PHF. The minimum percentage of Juga spp. harboring the organism in the population studied was 3.5% (2 of 57 snails). No ehrlichia DNA was found in tissues of 123 lymnaeid, physid, and planorbid snails collected at the same site. These data suggest that pleurocerid stream snails may play a role in the life cycle of E. risticii in northern California. PMID:9687446

  5. Anterior segment dysgenesis correlation with epithelial-mesenchymal transition in Smad4 knockout mice.

    PubMed

    Li, Jing; Qin, Yu; Zhao, Fang-Kun; Wu, Di; He, Xue-Fei; Liu, Jia; Zhao, Jiang-Yue; Zhang, Jin-Song

    2016-01-01

    To explore the molecular mechanisms in lens development and the pathogenesis of Peters anomaly in Smad4 defective mice. Le-Cre transgenic mouse line was employed to inactivate Smad4 in the surface ectoderm selectively. Pathological techniques were used to reveal the morphological changes of the anterior segment in Smad4 defective eye. Immunohistochemical staining was employed to observe the expression of E-cadherin, N-cadherin and α-SMA in anterior segment of Smad4 defective mice and control mice at embryonic (E) day 16.5. Real-time quantitative polymerase chain reaction (qPCR) was performed to detect the expression of Snail, Zeb1, Zeb2 and Twist2 in lens of Smad4 defective mice and control mice at E16.5. Statistical evaluations were performed using the unpaired Student's t-test (two-tailed) by SPSS 11.0 software. Conditional deletion of Smad4 on eye surface ectoderm resulted in corneal dysplasia, iridocorneal angle closure, corneolenticular adhesions and cataract resembling Peters anomaly. Loss of Smad4 function inhibited E-cadherin expression in the lens epithelium cells and corneal epithelium cells in Smad4 defective eye. Expression of N-cadherin was up-regulated in corneal epithelium and corneal stroma. Both E-cadherin and N-cadherin were down-regulated at the future trabecular meshwork region in mutant eye. The qPCR results showed that the expression of Twist2 was increased significantly in the mutant lens (P<0.01). Smad4 is essential to eye development and likely a candidate pathogenic gene to Peters anomaly by regulating epithelial-mesenchymal transition. Twist2 can be regulated by Smad4 and plays an essential role in lens development.

  6. MTA3 regulates CGB5 and Snail genes in trophoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Miyazaki, Jun; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed inmore » the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA

  7. A snail-eating snake recognizes prey handedness.

    PubMed

    Danaisawadi, Patchara; Asami, Takahiro; Ota, Hidetoshi; Sutcharit, Chirasak; Panha, Somsak

    2016-04-05

    Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the snakes' dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled (sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological speciation by left-right reversal.

  8. Production and Characterization of Ehrlichia risticii, the Agent of Potomac Horse Fever, from Snails (Pleuroceridae: Juga spp.) in Aquarium Culture and Genetic Comparison to Equine Strains

    PubMed Central

    Reubel, Gerhard H.; Barlough, Jeffrey E.; Madigan, John E.

    1998-01-01

    We report on the production and characterization of Ehrlichia risticii, the agent of Potomac horse fever (PHF), from snails (Pleuroceridae: Juga spp.) maintained in aquarium culture and compare it genetically to equine strains. Snails were collected from stream waters on a pasture in Siskiyou County, Calif., where PHF is enzootic and were maintained for several weeks in freshwater aquaria in the laboratory. Upon exposure to temperatures above 22°C the snails released trematode cercariae tentatively identified as virgulate cercariae. Fragments of three different genes (genes for 16S rRNA, the groESL heat shock operon, and the 51-kDa major antigen) were amplified from cercaria lysates by PCR and sequenced. Genetic information was also obtained from E. risticii strains from horses with PHF. The PCR positivity of snail secretions was associated with the presence of trematode cercariae. Sequence analysis of the three genes indicated that the source organism closely resembled E. risticii, and the sequences of all three genes were virtually identical to those of the genes of an equine E. risticii strain from a property near the snail collection site. Phylogenetic analyses of the three genes indicated the presence of geographical E. risticii strain clusters. PMID:9620368

  9. Stenotrophomonas-Like Bacteria Are Widespread Symbionts in Cone Snail Venom Ducts.

    PubMed

    Torres, Joshua P; Tianero, Maria Diarey; Robes, Jose Miguel D; Kwan, Jason C; Biggs, Jason S; Concepcion, Gisela P; Olivera, Baldomero M; Haygood, Margo G; Schmidt, Eric W

    2017-12-01

    Cone snails are biomedically important sources of peptide drugs, but it is not known whether snail-associated bacteria affect venom chemistry. To begin to answer this question, we performed 16S rRNA gene amplicon sequencing of eight cone snail species, comparing their microbiomes with each other and with those from a variety of other marine invertebrates. We show that the cone snail microbiome is distinct from those in other marine invertebrates and conserved in specimens from around the world, including the Philippines, Guam, California, and Florida. We found that all venom ducts examined contain diverse 16S rRNA gene sequences bearing closest similarity to Stenotrophomonas bacteria. These sequences represent specific symbionts that live in the lumen of the venom duct, where bioactive venom peptides are synthesized. IMPORTANCE In animals, symbiotic bacteria contribute critically to metabolism. Cone snails are renowned for the production of venoms that are used as medicines and as probes for biological study. In principle, symbiotic bacterial metabolism could either degrade or synthesize active venom components, and previous publications show that bacteria do indeed contribute small molecules to some venoms. Therefore, understanding symbiosis in cone snails will contribute to further drug discovery efforts. Here, we describe an unexpected, specific symbiosis between bacteria and cone snails from around the world. Copyright © 2017 American Society for Microbiology.

  10. Should I stay or should I go? Cadherin function and regulation in the neural crest

    PubMed Central

    Taneyhill, Lisa A.; Schiffmacher, Andrew T.

    2017-01-01

    Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal-transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest. PMID:28253541

  11. [An activity of nonspecific esterases in homogenates of Lymnaea stagnalis and Lymnaea tumida snails (Gastropoda: Pulmonata) infected by trematode cercariae Echinoparyphium aconiatum and Moliniella anceps (Echinostomatidae)].

    PubMed

    Vorontsova, Ia L; Iurlova, N I; Vodianitskaia, S N; Glupov, V V

    2008-01-01

    The comparative analysis of esterase changes in homogenates of the snails Lymnaea stagnalis and L. tumida bodies was carried out. Juvenile snails with shell size 2 mm, 3-4 mm, 5-6 mm and 7-8 mm were exposed to cercariae of the trematodes Echinoparyphium aconiatum and/or Moliniella anceps. The esterase activity was detected spectrofotometrically. The highest level of esterase activity in noninfected L. stagnalis was registered in snails with shell size 3-4 mm. The invasion of snails by trematode cercariae results in a change of esterase activity in the tissues of infected snails. The activity of easterases was increased in the infected L. stagnalis snails with shell size 5-8 mm at 2 days post invasion in comparison with control. The decrease of esterase activity in tissues of infected snails L. stagnalis (3-4 mm) and L. tumida (4 mm) was observed at 26 days post invasion by E. aconiatum only. The host size and parasite species was influenced on esterase activity in the snails.

  12. Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells

    PubMed Central

    De, Alok; Powers, Benjamin; De, Archana; Zhou, Jianping; Sharma, Siddarth; Van Veldhuizen, Peter; Bansal, Ajay; Sharma, Ramratan; Sharma, Mukut

    2016-01-01

    Ovarian cancer (OC) is highly resistant to current treatment strategies based on a combination of surgery, chemotherapy and radiation therapy. We have recently demonstrated the anti-neoplastic effect of Amla extract (Emblica officinalis, AE) on OC cells in vitro and in vivo. We hypothesized that AE attenuates growth of OC through microRNA (miR)-regulated mechanism(s). The inhibitory effect of AE on proliferation, migration and invasiveness (P≤0.001) of SKOV3 cells and >90% attenuation of tumor growth in a xenograft mouse model suggested multiple targets. RT-qPCR analysis of microRNAs associated with OC showed a >2,000-fold increase in the expression of miR-375 in AE-treated SKOV3 cells that was blocked by an exogenous miR-375 inhibitor (P≤0.001). AE also decreased the gene and protein expression of IGF1R, a target of miR-375 (P≤0.001), and SNAIL1 (P≤0.002), an EMT-associated transcription factor that represses E-cadherin expression (P≤0.003). AE increased E-cadherin expression (P≤0.001). Treatment of SKOV3 cells with AE resulted in increased miR-375 in exosomes in the medium (P≤0.01). Finally, AE significantly decreased the expression of IGF1R and SNAIL1 proteins during attenuation of SKOV3-derived xenograft tumor. Together, these results show that AE modulates cancer cells and the tumor microenvironment via activation of miR-375 and by targeting IGF1R and SNAIL1 in OC cells. PMID:27129171

  13. Long non-coding RNA NRON is downregulated in HCC and suppresses tumour cell proliferation and metastasis.

    PubMed

    Yao, Zhicheng; Xiong, Zhiyong; Li, Ruixi; Liang, Hao; Jia, Changchang; Deng, Meihai

    2018-05-14

    Dysregulation of long non-coding RNAs is a newly identified mechanism for tumour progression. Previous studies have suggested that the nuclear factor of activated T cells (NFAT) gene plays a very important role in cancer growth and metastasis. However, lncNRON is a newly identified repressor of NFAT, and its function is largely unknown, especially in hepatocellular carcinoma (HCC). Therefore, the expression levels of lncNRON in 215 pairs of HCC tissue were evaluated by qRT-PCR, and its relationship to clinicopathological parameters, recurrence, and survival was analysed. Furthermore, stably overexpressing lncNRON cell lines were constructed and evaluated for cell phenotype. Finally, we detected epithelial-to-mesenchymal transition (EMT) proteins to determine the underlying mechanism involved in lncNRON function. We observed that lncNRON was downregulated in HCC tumour tissues; low lncNRON expression was associated with poor tumour differentiation and the presence of vascular tumour thrombus, which tended to result in poor clinical outcomes, as demonstrated by the recurrence rate and survival curves. Functional analysis showed that lncNRON overexpression impaired colony formation and cell viability and inhibited cell migration and invasion. A study using tumour-bearing mice showed that lncNRON markedly limited tumour growth and lung metastasis in vivo. Importantly, western blot analysis revealed that the expression of the EMT-related epithelial marker, E-cadherin, increased, whereas the expression of mesenchymal markers N-cadherin, snail, and vimentin was attenuated by lncNRON overexpression in HCC cells. Therefore, lower lncNRON expression indicates a poorer clinical outcome in HCC. LncNRON overexpression can suppress HCC growth and metastasis via inhibiting the EMT, and lncNRON may function as a new HCC prognostic marker. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Le(x) glycan mediates homotypic adhesion of embryonal cells independently from E-cadherin: a preliminary note.

    PubMed

    Handa, Kazuko; Takatani-Nakase, Tomoka; Larue, Lionel; Stemmler, Marc P; Kemler, Rolf; Hakomori, Sen-itiroh

    2007-06-22

    Le(x) glycan and E-cadherin (Ecad) are co-expressed at embryonal stem (ES) cells and embryonal carcinoma (EC) cells. While the structure and function of Ecad mediating homotypic adhesion of these cells have been well established, evidence that Le(x) glycan also mediates such adhesion is weak, despite the fact that Le(x) oligosaccharide inhibits the compaction process. To provide stronger evidence, we knocked out Ecad gene in EC and ES cells to establish F9 Ecad (-/-) and D3M Ecad (-/-) cells, which highly express Le(x) glycan but do not express Ecad at all. Both F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong autoaggregation in the presence of Ca(2+), while PYS-2 cells, which express trace amount of Ecad and undetectable level of Le(x) glycan, did not display autoaggregation. In addition, F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong adhesion to plates coated with Le(x) glycosphingolipid (III(3)FucnLc4Cer), in dose-dependent manner, in the presence of Ca(2+). Thus, ES or EC cells display autoaggregation and strong adhesion to Le(x)-coated plates in the absence of Ecad, further supporting the notion of Le(x) self-recognition (i.e., Le(x)-to-Le(x) interaction) in cell adhesion.

  15. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    PubMed

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails

    USGS Publications Warehouse

    Lorda, J.; Hechinger, R.F.; Cooper, S. D.; Kuris, A. M.; Lafferty, Kevin D.

    2016-01-01

    The California horn snail, Cerithideopsis californica, and the shore crabs, Pachygrapsus crassipesand Hemigrapsus oregonensis, compete for epibenthic microalgae, but the crabs also eat snails. Such intraguild predation is common in nature, despite models predicting instability. Using a series of manipulations and field surveys, we examined intraguild predation from several angles, including the effects of stage-dependent predation along with direct consumptive and nonconsumptive predator effects on intraguild prey. In the laboratory, we found that crabs fed on macroalgae, snail eggs, and snails, and the size of consumed snails increased with predator crab size. In field experiments, snails grew less in the presence of crabs partially because snails behaved differently and were buried in the sediment (nonconsumptive effects). Consistent with these results, crab and snail abundances were negatively correlated in three field surveys conducted at three different spatial scales in estuaries of California, Baja California, and Baja California Sur: (1) among 61 sites spanning multiple habitat types in three estuaries, (2) among the habitats of 13 estuaries, and (3) among 34 tidal creek sites in one estuary. These results indicate that shore crabs are intraguild predators on California horn snails that affect snail populations via predation and by influencing snail behavior and performance.

  17. Tuberin-deficiency downregulates N-cadherin and upregulates vimentin in kidney tumor of TSC patients

    PubMed Central

    Liang, Sitai; Salas, Tiffanie; Gencaslan, Emre; Li, Baojie; Habib, Samy L.

    2014-01-01

    Angiomyolipomas (AMLs) are associated with cell fibrosis in kidney of Tuberous Sclerosis Complex patients. The mechanism by which the fibrotic proteins accumulated in AMLs has not been explored. In the present study, we investigated the role of Akt/tuberin/mTOR pathway in the regulation cell fibrosis proteins. AML cells that expressed low levels of tuberin showed less expression of N-cadherin and higher of vimentin proteins compared to HEK293 cells. AML cells infected with Ad-tuberin showed a significant decrease in vimentin and an increase in N-cadherin protein expression. In addition, cells treated with rapamycin showed a significant increase in p-Akt and a decrease in p-p70S6K that was associated with a decrease expression of vimentin and a slight increase expression in N-cadherin. On the other hand, cells treated with Akt inhibitor revealed a significant decrease in p-Akt and p-p70S6K that was associated with a significant decrease in vimentin and an increase in N-cadherin expression. In addition, cells transfected with DN-Akt or DN-S6K show significant increase expression in N-cadherin and a decrease in vimentin. Moreover, cells transfected with siRNA against rictor or siRNA against raptor resulted in a decrease in vimentin and an increase N-cadherin expression. Kidney tumors from TSC patients showed significant decrease in N-cadherin and significant increased in vimentin protein expression compared to control kidney tissues. These data comprise the first report to provide the role of Akt/tuberin/mTORC1/2 in the regulation of N-cadherin and vimentin that are involved in the progression of fibrosis in kidney tumor of TSC patients. PMID:25149531

  18. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    PubMed

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  19. Snail-borne parasitic diseases: an update on global epidemiological distribution, transmission interruption and control methods.

    PubMed

    Lu, Xiao-Ting; Gu, Qiu-Yun; Limpanont, Yanin; Song, Lan-Gui; Wu, Zhong-Dao; Okanurak, Kamolnetr; Lv, Zhi-Yue

    2018-04-09

    Snail-borne parasitic diseases, such as angiostrongyliasis, clonorchiasis, fascioliasis, fasciolopsiasis, opisthorchiasis, paragonimiasis and schistosomiasis, pose risks to human health and cause major socioeconomic problems in many tropical and sub-tropical countries. In this review we summarize the core roles of snails in the life cycles of the parasites they host, their clinical manifestations and disease distributions, as well as snail control methods. Snails have four roles in the life cycles of the parasites they host: as an intermediate host infected by the first-stage larvae, as the only intermediate host infected by miracidia, as the first intermediate host that ingests the parasite eggs are ingested, and as the first intermediate host penetrated by miracidia with or without the second intermediate host being an aquatic animal. Snail-borne parasitic diseases target many organs, such as the lungs, liver, biliary tract, intestines, brain and kidneys, leading to overactive immune responses, cancers, organ failure, infertility and even death. Developing countries in Africa, Asia and Latin America have the highest incidences of these diseases, while some endemic parasites have developed into worldwide epidemics through the global spread of snails. Physical, chemical and biological methods have been introduced to control the host snail populations to prevent disease. In this review, we summarize the roles of snails in the life cycles of the parasites they host, the worldwide distribution of parasite-transmitting snails, the epidemiology and pathogenesis of snail-transmitted parasitic diseases, and the existing snail control measures, which will contribute to further understanding the snail-parasite relationship and new strategies for controlling snail-borne parasitic diseases.

  20. Herbivorous snails can increase water clarity by stimulating growth of benthic algae.

    PubMed

    Zhang, Xiufeng; Taylor, William D; Rudstam, Lars G

    2017-11-01

    Eutrophication in shallow lakes is characterized by a switch from benthic to pelagic dominance of primary productivity that leads to turbid water, while benthification is characterized by a shift in primary production from the pelagic zone to the benthos associated with clear water. A 12-week mesocosm experiment tested the hypothesis that the herbivorous snail Bellamya aeruginosa stimulates the growth of pelagic algae through grazing on benthic algae and through accelerating nutrient release from sediment. A tube-microcosm experiment using 32 P-PO 4 as a tracer tested the effects of the snails on the release of sediment phosphorus (P). The mesocosm experiment recorded greater total nitrogen (TN) concentrations and a higher ratio of TN:TP in the overlying water, and a higher light intensity and biomass of benthic algae as measured by chlorophyll a (Chl a) in the snail treatment than in the control. Concentrations of total phosphorus (TP), total suspended solids (TSSs), and inorganic suspended solids (ISSs) in the overlying water were lower in the snail treatment than in the control, though no significant difference in Chl a of pelagic algae between the snail treatment and control was observed. In the microcosm experiment, 32 P activity in the overlying water was higher in the snail treatment than in the control, indicating that snails accelerated P release from the sediment. Our interpretation of these results is that snails enhanced growth of benthic algae and thereby improved water clarity despite grazing on the benthic algae and enhancing P release from the sediment. The rehabilitation of native snail populations may therefore enhance the recovery of eutrophic shallow lakes to a clear water state by stimulating growth of benthic algae.

  1. E-cadherin antagonizes transforming growth factor β1 gene induction in hepatic stellate cells by inhibiting RhoA-dependent Smad3 phosphorylation.

    PubMed

    Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon

    2010-12-01

    Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD's potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. Copyright © 2010 American Association for the Study of Liver

  2. Tahitian tree snail mitochondrial clades survived recent mass extirpation.

    PubMed

    Lee, Taehwan; Burch, John B; Jung, Younghun; Coote, Trevor; Pearce-Kelly, Paul; O Foighil, Diarmaid

    2007-07-03

    Oceanic islands frequently support endemic faunal radiations that are highly vulnerable to introduced predators [1]. This vulnerability is epitomized by the rapid extinction in the wild of all but five of 61 described Society Islands partulid tree snails [2], following the deliberate introduction of an alien biological control agent: the carnivorous snail Euglandina rosea[3]. Tahiti's tree snail populations have been almost completely extirpated and three of the island's eight endemic Partula species are officially extinct, a fourth persisting only in captivity [2]. We report a molecular phylogenetic estimate of Tahitian Partula mitochondrial lineage survival calibrated with a 1970 reference museum collection that pre-dates the predator's 1974 introduction to the island [4]. Although severe winnowing of lineage diversity has occurred, none of the five primary Tahitian Partula clades present in the museum samples is extinct. Targeted conservation measures, especially of montane refuge populations, may yet preserve a representative sub-sample of Tahiti's endemic tree snail genetic diversity in the wild.

  3. Gastropod-Borne Helminths: A Look at the Snail-Parasite Interplay.

    PubMed

    Giannelli, Alessio; Cantacessi, Cinzia; Colella, Vito; Dantas-Torres, Filipe; Otranto, Domenico

    2016-03-01

    More than 300 million people suffer from a range of diseases caused by gastropod-borne helminths, predominantly flatworms and roundworms, whose life cycles are characterized by a diversified ecology and epidemiology. Despite the plethora of data on these parasites, very little is known of the fundamental biology of their gastropod intermediate hosts, or of the interactions occurring at the snail-helminth interface. In this article, we focus on schistosomes and metastrongylids of human and animal significance, and review current knowledge of snail-parasite interplay. Future efforts aimed at elucidating key elements of the biology and ecology of the snail intermediate hosts, together with an improved understanding of snail-parasite interactions, will aid to identify, plan, and develop new strategies for disease control focused on gastropod intermediate hosts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Tropical sea snail shells: Possible exotic sources for ceramic biomaterial synthesis

    NASA Astrophysics Data System (ADS)

    Oktar, F. N.; Kiyici, I. A.; Gökçe, H.; Aǧaogulları, D.; Kayali, E. S.

    2013-12-01

    In this study, chemical and structural properties of sea snail shell based bioceramic materials (i.e. hydroxyapatite, whitlockite and other phases) are produced by using mechano-chemical (ultrasonic) conversion method. For this purpose, differential thermal and gravimetric analysis (DTA/TG), X-ray diffraction, infra-red (IR) and scanning electron microscope (SEM) studies are performed.

  5. Discovery and Characterization of Cadherin Domains in Saccharophagus degradans 2-40▿ †

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Weiner, Ronald M.; Lamed, Raphael

    2010-01-01

    Saccharophagus degradans strain 2-40 is a prominent member of newly discovered group of marine and estuarine bacteria that recycle complex polysaccharides. The S. degradans 2-40 genome codes for 15 extraordinary long polypeptides, ranging from 274 to 1,600 kDa. Five of these contain at least 52 cadherin (CA) and cadherin-like (CADG) domains, the types of which were reported to bind calcium ions and mediate protein/protein interactions in metazoan systems. In order to evaluate adhesive features of these domains, recombinant CA doublet domains (two neighboring domains) from CabC (Sde_3323) and recombinant CADG doublet domains from CabD (Sde_0798) were examined qualitatively and quantitatively for homophilic and heterophilic interactions. In addition, CA and CADG doublet domains were tested for adhesion to the surface of S. degradans 2-40. Results showed obvious homophilic and heterophilic, calcium ion-dependent interactions between CA and CADG doublet domains. Likewise, CA and CADG doublet domains adhered to the S. degradans 2-40 surface of cells that were grown on xylan from birch wood or pectin, respectively, as a sole carbon source. This research shows for the first time that bacterial cadherin homophilic and heterophilic interactions may be similar in their nature to cadherin domains from metazoan lineages. We hypothesize that S. degradans 2-40 cadherin and cadherin-like multiple domains contribute to protein-protein interactions that may mediate cell-cell contact in the marine environment. PMID:20023015

  6. Direct measurements of multiple adhesive alignments and unbinding trajectories between cadherin extracellular domains.

    PubMed Central

    Sivasankar, S; Gumbiner, B; Leckband, D

    2001-01-01

    Direct measurements of the interactions between antiparallel, oriented monolayers of the complete extracellular region of C-cadherin demonstrate that, rather than binding in a single unique orientation, the cadherins adhere in three distinct alignments. The strongest adhesion is observed when the opposing extracellular fragments are completely interdigitated. A second adhesive alignment forms when the interdigitated proteins separate by 70 +/- 10 A. A third complex forms at a bilayer separation commensurate with the approximate overlap of cadherin extracellular domains 1 and 2 (CEC1-2). The locations of the energy minima are independent of both the surface density of bound cadherin and the stiffness of the force transducer. Using surface element integration, we show that two flat surfaces that interact through an oscillatory potential will exhibit discrete minima at the same locations in the force profile measured between hemicylinders covered with identical materials. The measured interaction profiles, therefore, reflect the relative separations at which the antiparallel proteins adhere, and are unaffected by the curvature of the underlying substrate. The successive formation and rupture of multiple protein contacts during detachment can explain the observed sluggish unbinding of cadherin monolayers. Velocity-distance profiles, obtained by quantitative video analysis of the unbinding trajectory, exhibit three velocity regimes, the transitions between which coincide with the positions of the adhesive minima. These findings suggest that cadherins undergo multiple stage unbinding, which may function to impede adhesive failure under force. PMID:11259289

  7. Host density increases parasite recruitment but decreases host risk in a snail-trematode system

    USGS Publications Warehouse

    Buck, Julia C; Hechinger, R.F.; Wood, A.C.; Stewart, T.E.; Kuris, A.M.; Lafferty, Kevin D.

    2017-01-01

    Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally-transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail density-trematode prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (CA, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail-biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail-biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective-stage input, but this was

  8. Structural and functional diversity of cadherin at the adherens junction

    PubMed Central

    2011-01-01

    Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell–cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals. PMID:21708975

  9. Diesel Exhaust Particle Exposure Causes Redistribution of Endothelial Tube VE-Cadherin

    PubMed Central

    Chao, Ming-Wei; Kozlosky, John; Po, Iris P.; Strickland, Pamela Ohman; Svoboda, Kathy K. H.; Cooper, Keith; Laumbach, Robert; Gordon, Marion K.

    2010-01-01

    Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24 hr. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions. PMID:20887764

  10. The feeding habits of the snail kite in Florida, USA

    USGS Publications Warehouse

    Sykes, P.W.

    1987-01-01

    The feeding habits of the Snail Kite (Rostrhamus sociabilis) were observed intermittently from 1967-1980 in Florida, USA. Approximately 97% of all observed foraging bouts were over marshes having sparse emergent vegetation. The visually-hunting kite was unable to forage over floating mats of exotic water hyacinth (Eichhornia crassipes). Male kites had shorter hunting bouts than females. For still-hunting, the birds' perches ranged from 0.15-4.6 m high and captures occurred an average of 5.8 m from perches. Females were significantly more successful (70%) for course-hunting than males (48%), but I found no difference for still-hunting. Birds tended to forage throughout the day, except for occasional inactive periods by some individuals during midday. On cooler days, foraging commenced slightly later in the morning than on warmer days. Kites probably capture freshwater apple snails (Pomacea paludosa) as deep as 16 cm. Capture rates for adults generally ranged from 1.7-3.4 snails per hour. Kites usually foraged over a common hunting area, and defense of foraging sites was rare. Handling of snails, from the kite's arrival at the feeding perch unit consumption, averaged 2.7 min, with no significant difference between sexes. However, adult females were more efficient at the extraction portion of this process than were adult males. Snails were usually extracted before being brought to the nest, except in the latter part of the nestling period when some snails were extracted at or near the nest and some were brought intact. Adults feed small chicks bill to bill, and both parents generally shared equally in care of the young, except at two nests where the females did 67% or more of the feeding. Mean length of snails taken by kites was 42.8 mm (range 25.2-71.3 n=697) and mean diameter was 45.8 mm (range 27.4-82.4, n=697). The most common size classes tkaen were 30-60 mm in length and diameter. Nutritional and gross energy values were determined for apple snails. Female

  11. Parallel evolution of passive and active defence in land snails.

    PubMed

    Morii, Yuta; Prozorova, Larisa; Chiba, Satoshi

    2016-11-11

    Predator-prey interactions are major processes promoting phenotypic evolution. However, it remains unclear how predation causes morphological and behavioural diversity in prey species and how it might lead to speciation. Here, we show that substantial divergence in the phenotypic traits of prey species has occurred among closely related land snails as a result of adaptation to predator attacks. This caused the divergence of defensive strategies into two alternatives: passive defence and active defence. Phenotypic traits of the subarctic Karaftohelix land snail have undergone radiation in northeast Asia, and distinctive morphotypes generally coexist in the same regions. In these land snails, we documented two alternative defence behaviours against predation by malacophagous beetles. Furthermore, the behaviours are potentially associated with differences in shell morphology. In addition, molecular phylogenetic analyses indicated that these alternative strategies against predation arose independently on the islands and on the continent suggesting that anti-predator adaptation is a major cause of phenotypic diversity in these snails. Finally, we suggest the potential speciation of Karaftohelix snails as a result of the divergence of defensive strategies into passive and active behaviours and the possibility of species radiation due to anti-predatory adaptations.

  12. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  13. Detection and Genetic Analysis of Noroviruses and Sapoviruses in Sea Snail.

    PubMed

    Ozawa, Hiroki; Kumazaki, Makoto; Ueki, Satoshi; Morita, Masahiro; Usuku, Shuzo

    2015-12-01

    An outbreak of acute gastroenteritis occurred at a restaurant in Yokohama in December 2011. Because many of the customers had consumed raw sea snail, sea snail was suspected to be the source of this outbreak. To determine whether sea snail contains Norovirus (NoV) or Sapovirus (SaV), we analyzed 27 sea snail samples collected over 5 months (May, June, August, October, and December 2012) and 59.3% were positive for NoV and/or SaV. The levels of NoV ranged from 1.5 × 10(3) to 1.5 × 10(5) copies/g tissue, and those of SaV from 1.5 × 10(2) to 1.3 × 10(3) copies/g tissue. The highest levels were observed in sea snails collected in December. A phylogenetic analysis of the NoVs showed that the viral strains were NoV genotypes GI.4, GI.6, GII.4, GII.12, GII.13, and GII.14, and the SaV strains were genotypes GI.2 and GI.3. The NoV GII.4 Sydney 2012 variants were only detected in December. This variant was a major source of gastroenteritis in Japan in the winter of 2012/2013. In contrast, the NoV GII.4 strains detected in May and June 2012 were not the Sydney 2012 variant. This study demonstrates that sea snail contains multiple genogroups and genotypes of NoV and SaV strains. We conclude that the sea snail presents a risk of gastroenteritis when consumed raw.

  14. Physiological response to low temperature in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae).

    PubMed

    Matsukura, Keiichiro; Tsumuki, Hisaaki; Izumi, Yohei; Wada, Takashi

    2009-08-01

    Cold hardiness of the freshwater apple snail, Pomacea canaliculata, varies seasonally. We investigated lethal factors and physiological changes arising from exposure of P. canaliculata to low temperatures. Snails did not survive freezing. The supercooling point of cold-acclimated (cold tolerant) snails (-6.6+/-0.8 degrees C) did not differ significantly from that of non-acclimated ones (-7.1+/-1.5 degrees C) under laboratory conditions. Furthermore, snails died even under more moderately low temperatures approaching 0 degrees C. These results indicate that indirect chilling injury is a factor in the death of P. canaliculata at low temperatures. Regardless of whether the snails were acclimated to low temperatures, all of the dead, and even some of the snails still alive at 0 degrees C, had injured mantles, indicating that the mantle may be the organ most susceptible to the effects of low temperatures. The concentration of glucose in the posterior chamber of the kidney and concentration of glycerol in the digestive gland were significantly higher in cold-acclimated snails than in non-acclimated ones, suggesting carbohydrate metabolic pathways are altered in snails during cold acclimation.

  15. Variants in members of the cadherin-catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome.

    PubMed

    Kievit, Anneke; Tessadori, Federico; Douben, Hannie; Jordens, Ingrid; Maurice, Madelon; Hoogeboom, Jeannette; Hennekam, Raoul; Nampoothiri, Sheela; Kayserili, Hülya; Castori, Marco; Whiteford, Margo; Motter, Connie; Melver, Catherine; Cunningham, Michael; Hing, Anne; Kokitsu-Nakata, Nancy M; Vendramini-Pittoli, Siulan; Richieri-Costa, Antonio; Baas, Annette F; Breugem, Corstiaan C; Duran, Karen; Massink, Maarten; Derksen, Patrick W B; van IJcken, Wilfred F J; van Unen, Leontine; Santos-Simarro, Fernando; Lapunzina, Pablo; Gil-da Silva Lopes, Vera L; Lustosa-Mendes, Elaine; Krall, Max; Slavotinek, Anne; Martinez-Glez, Victor; Bakkers, Jeroen; van Gassen, Koen L I; de Klein, Annelies; van den Boogaard, Marie-José H; van Haaften, Gijs

    2018-02-01

    Blepharocheilodontic syndrome (BCDS) consists of lagophthalmia, ectropion of the lower eyelids, distichiasis, euryblepharon, cleft lip/palate and dental anomalies and has autosomal dominant inheritance with variable expression. We identified heterozygous variants in two genes of the cadherin-catenin complex, CDH1, encoding E-cadherin, and CTNND1, encoding p120 catenin delta1 in 15 of 17 BCDS index patients, as was recently described in a different publication. CDH1 plays an essential role in epithelial cell adherence; CTNND1 binds to CDH1 and controls the stability of the complex. Functional experiments in zebrafish and human cells showed that the CDH1 variants impair the cell adhesion function of the cadherin-catenin complex in a dominant-negative manner. Variants in CDH1 have been linked to familial hereditary diffuse gastric cancer and invasive lobular breast cancer; however, no cases of gastric or breast cancer have been reported in our BCDS cases. Functional experiments reported here indicated the BCDS variants comprise a distinct class of CDH1 variants. Altogether, we identified the genetic cause of BCDS enabling DNA diagnostics and counseling, in addition we describe a novel class of dominant negative CDH1 variants.

  16. Removal of corallivorous snails as a proactive tool for the conservation of acroporid corals

    PubMed Central

    Miller, Margaret W.; Bright, Allan J.; Cameron, Caitlin M.

    2014-01-01

    Corallivorous snail feeding is a common source of tissue loss for the threatened coral, Acropora palmata, accounting for roughly one-quarter of tissue loss in monitored study plots over seven years. In contrast with larger threats such as bleaching, disease, or storms, corallivory by Coralliophila abbreviata is one of the few direct sources of partial mortality that may be locally managed. We conducted a field experiment to explore the effectiveness and feasibility of snail removal. Long-term monitoring plots on six reefs in the upper Florida Keys were assigned to one of three removal treatments: (1) removal from A. palmata only, (2) removal from all host coral species, or (3) no-removal controls. During the initial removal in June 2011, 436 snails were removed from twelve 150 m2 plots. Snails were removed three additional times during a seven month “removal phase”, then counted at five surveys over the next 19 months to track recolonization. At the conclusion, snails were collected, measured and sexed. Before-After-Control-Impact analysis revealed that both snail abundance and feeding scar prevalence were reduced in removal treatments compared to the control, but there was no difference between removal treatments. Recolonization by snails to baseline abundance is estimated to be 3.7 years and did not differ between removal treatments. Recolonization rate was significantly correlated with baseline snail abundance. Maximum snail size decreased from 47.0 mm to 34.6 mm in the removal treatments. The effort required to remove snails from A. palmata was 30 diver minutes per 150 m2 plot, compared with 51 min to remove snails from all host corals. Since there was no additional benefit observed with removing snails from all host species, removals can be more efficiently focused on only A. palmata colonies and in areas where C. abbreviata abundance is high, to effectively conserve A. palmata in targeted areas. PMID:25469321

  17. Host density increases parasite recruitment but decreases host risk in a snail-trematode system.

    PubMed

    Buck, J C; Hechinger, R F; Wood, A C; Stewart, T E; Kuris, A M; Lafferty, K D

    2017-08-01

    Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk at local scales. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail-density-trematode-prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (California, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective

  18. Adaptation of Lymnaea fuscus and Radix balthica to Fasciola hepatica through the experimental infection of several successive snail generations

    PubMed Central

    2014-01-01

    Background High prevalence of Fasciola hepatica infection (>70%) was noted during several outbreaks before the 2000s in several French farms where Galba truncatula is lacking. Other lymnaeids such as Lymnaea fuscus, L. glabra and/or Radix balthica are living in meadows around these farms but only juvenile snails can sustain complete larval development of F. hepatica while older snails were resistant. The low prevalence of infection (<20%) and limited cercarial production (<50 cercariae per infected snail) noted with these juveniles could not explain the high values noted in these cattle herds. As paramphistomosis due to Calicophoron daubneyi was not still noted in these farms, the existence of another mode of infection was hypothesized. Experimental infection of several successive generations of L. glabra, originating from eggs laid by their parents already infected with this parasite resulted in a progressive increase in prevalence of snail infection and the number of shed cercariae. The aim of this paper was to determine if this mode of snail infection was specific to L. glabra, or it might occur in other lymnaeid species such as L. fuscus and R. balthica. Methods Five successive generations of L. fuscus and R. balthica were subjected to individual bimiracidial infections in the laboratory. Resulting rediae and cercariae in the first four generations were counted after snail dissection at day 50 p.e. (20°C), while the dynamics of cercarial shedding was followed in the F5 generation. Results In the first experiment, prevalence and intensity of F. hepatica infection in snails progressively increased from the F1 (R. balthica) or F2 (L. fuscus) generation. In the second experiment, the prevalence of F. hepatica infection and the number of shed cercariae were significantly lower in L. fuscus and R. balthica (without significant differences between both lymnaeids) than in G. truncatula. Conclusion The F. hepatica infection of several successive snail generations

  19. Apple Snail: a Bio Cleaner of the Water Free Surface.

    NASA Astrophysics Data System (ADS)

    Bassiri, Golnaz

    2005-11-01

    Oil spills from tankers represent a threat for shorelines and marine life. Despite continuing research, there has been little change in the fundamental technology for dealing with oil spills. An experimental investigation of the feeding strategy of Apple snails from the water free surface, called surface film feeding, is being studied motivated by the need to develop new techniques to recover oil spills. To feed on floating food (usually a thin layer of microorganisms), the apple snail forms a funnel with its foot and pulls the free surface toward the funnel. High speed imaging and particle image velocimetry were used in the present investigation to measure the free surface motion and to investigate the mechanism used by the apple snails to pull the free surface. The results suggest that the snail pulls the free surface via the wavy motion of the muscles in its funnel.

  20. Knockdown of Mediator Complex Subunit 19 Suppresses the Growth and Invasion of Prostate Cancer Cells

    PubMed Central

    Zhao, Hongwei; Lv, Wei; Chen, Jian; Wan, Fengchun; Liu, Dongfu; Gao, Zhenli; Wu, Jitao

    2017-01-01

    Prostate cancer (PCa) is one of the most common cancers in elderly men. Mediator Complex Subunit 19 (Med19) is overexpressed and plays promotional roles in many cancers. However, the roles of Med19 in PCa are still obscure. In this study, by using immunohistochemical staining, we found higher expression level of Med19 in PCa tissues than in adjacent benign prostate tissues. We then knocked down the Med19 expression in PCa cell lines LNCaP and PC3 by using lentivirus siRNA. Cell proliferation, anchor-independent growth, migration, and invasion were suppressed in Med19 knockdown PCa cells. In nude mice xenograft model, we found that Med19 knockdown PCa cells formed smaller tumors with lower proliferation index than did control cells. In the mechanism study, we found that Med19 could regulate genes involved in cell proliferation, cell cycle, and epithelial-mesenchymal transition, including P27, pAKT, pPI3K, IGF1R, E-Cadherin, N-Cadherin, Vimentin, ZEB2, Snail-1 and Snail-2. Targeting Med19 in PCa cells could inhibit the PCa growth and metastasis, and might be a therapeutic option for PCa in the future. PMID:28125713

  1. Control of developmentally primed erythroid genes by combinatorial co-repressor actions

    PubMed Central

    Stadhouders, Ralph; Cico, Alba; Stephen, Tharshana; Thongjuea, Supat; Kolovos, Petros; Baymaz, H. Irem; Yu, Xiao; Demmers, Jeroen; Bezstarosti, Karel; Maas, Alex; Barroca, Vilma; Kockx, Christel; Ozgur, Zeliha; van Ijcken, Wilfred; Arcangeli, Marie-Laure; Andrieu-Soler, Charlotte; Lenhard, Boris; Grosveld, Frank; Soler, Eric

    2015-01-01

    How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. PMID:26593974

  2. Shading decreases the abundance of the herbivorous California horn snail, Cerithidea californica

    USGS Publications Warehouse

    Lorda, Julio; Lafferty, Kevin D.

    2012-01-01

    Most of the intertidal zone in estuaries of California, USA and Baja California, Mexico is covered with vascular vegetation. Shading by these vascular plants influences abiotic and biotic processes that shape benthic community assemblages. We present data on the effects of shading on the California horn snail, Cerithidea californica. This species is important because it is the most common benthic macrofaunal species in these systems and acts as an obligate intermediate host of several species of rematode parasites that infect several other species. Using observational and experimental studies, we found a negative effect of shade on the distribution and abundance of the California horn snail. We hypothesized that shading reduces the abundance of the epipelic diatoms that the snails feeds on, causing snails to leave haded areas. We observed a negative relationship between vascular plant cover, sub-canopy light levels, and snail density in Mugu Lagoon. Then we experimentally manipulated light regimes, by clipping vegetation and adding shade structures, and found higher snail densities at higher light levels. In Goleta Slough, we isolated the effect of shade from vegetation by documenting a negative relationship between the shade created by two bridges and diatom and snail densities. We also found that snails moved the greatest distances over shaded channel banks compared to unshaded channel banks. Further, we documented the effect of water depth and channel bank orientation on shading in this system. An additional effect of shading is the reduction of temperature, providing an alternative explanation for some of our results. These results broaden our knowledge of how variation in the light environment influences the ecology of estuarine ecosystems.

  3. The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma.

    PubMed

    Ignatius, Myron S; Hayes, Madeline N; Lobbardi, Riadh; Chen, Eleanor Y; McCarthy, Karin M; Sreenivas, Prethish; Motala, Zainab; Durbin, Adam D; Molodtsov, Aleksey; Reeder, Sophia; Jin, Alexander; Sindiri, Sivasish; Beleyea, Brian C; Bhere, Deepak; Alexander, Matthew S; Shah, Khalid; Keller, Charles; Linardic, Corinne M; Nielsen, Petur G; Malkin, David; Khan, Javed; Langenau, David M

    2017-06-13

    Tumor-propagating cells (TPCs) share self-renewal properties with normal stem cells and drive continued tumor growth. However, mechanisms regulating TPC self-renewal are largely unknown, especially in embryonal rhabdomyosarcoma (ERMS)-a common pediatric cancer of muscle. Here, we used a zebrafish transgenic model of ERMS to identify a role for intracellular NOTCH1 (ICN1) in increasing TPCs by 23-fold. ICN1 expanded TPCs by enabling the de-differentiation of zebrafish ERMS cells into self-renewing myf5+ TPCs, breaking the rigid differentiation hierarchies reported in normal muscle. ICN1 also had conserved roles in regulating human ERMS self-renewal and growth. Mechanistically, ICN1 upregulated expression of SNAIL1, a transcriptional repressor, to increase TPC number in human ERMS and to block muscle differentiation through suppressing MEF2C, a myogenic differentiation transcription factor. Our data implicate the NOTCH1/SNAI1/MEF2C signaling axis as a major determinant of TPC self-renewal and differentiation in ERMS, raising hope of therapeutically targeting this pathway in the future. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Acetaldehyde dissociates the PTP1B–E-cadherin–β-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism

    PubMed Central

    Sheth, Parimal; Seth, Ankur; Atkinson, Katherine J.; Gheyi, Tarun; Kale, Gautam; Giorgianni, Francesco; Desiderio, Dominic M.; Li, Chunying; Naren, Anjaparavanda; Rao, Radhakrishna

    2006-01-01

    Interactions between E-cadherin, β-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell–cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, β-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and β-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and β-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and β-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of β-catenin on tyrosine residues, and abolished the interaction of β-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of β-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and β-catenin was reduced by tyrosine phosphorylation of β-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)–PTP1B. The pairwise binding study showed that GST–E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of β-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, β-catenin and PTP1B by a phosphorylation-dependent mechanism. PMID:17087658

  5. Differentiating snail intermediate hosts of Schistosoma spp. using molecular approaches: fundamental to successful integrated control mechanism in Africa.

    PubMed

    Abe, Eniola Michael; Guan, Wei; Guo, Yun-Hai; Kassegne, Kokouvi; Qin, Zhi-Qiang; Xu, Jing; Chen, Jun-Hu; Ekpo, Uwem Friday; Li, Shi-Zhu; Zhou, Xiao-Nong

    2018-03-26

    Snail intermediate hosts play active roles in the transmission of snail-borne trematode infections in Africa. A good knowledge of snail-borne diseases epidemiology particularly snail intermediate host populations would provide the necessary impetus to complementing existing control strategy. This review highlights the importance of molecular approaches in differentiating snail hosts population structure and the need to provide adequate information on snail host populations by updating snail hosts genome database for Africa, in order to equip different stakeholders with adequate information on the ecology of snail intermediate hosts and their roles in the transmission of different diseases. Also, we identify the gaps and areas where there is need for urgent intervention to facilitate effective integrated control of schistosomiasis and other snail-borne trematode infections. Prioritizing snail studies, especially snail differentiation using molecular tools will boost disease surveillance and also enhance efficient schistosomaisis control programme in Africa.

  6. Transplantation of schistosome sporocysts between host snails: A video guide

    PubMed Central

    Mouahid, Gabriel; Rognon, Anne; de Carvalho Augusto, Ronaldo; Driguez, Patrick; Geyer, Kathy; Karinshak, Shannon; Luviano, Nelia; Mann, Victoria; Quack, Thomas; Rawlinson, Kate; Wendt, George; Grunau, Christoph; Moné, Hélène

    2018-01-01

    Schistosomiasis is an important parasitic disease, touching roughly 200 million people worldwide. The causative agents are different Schistosoma species. Schistosomes have a complex life cycle, with a freshwater snail as intermediate host. After infection, sporocysts develop inside the snail host and give rise to human dwelling larvae. We present here a detailed step-by-step video instruction in English, French, Spanish and Portuguese that shows how these sporocysts can be manipulated and transferred from one snail to another. This procedure provides a technical basis for different types of ex vivo modifications, such as those used in functional genomics studies. PMID:29487916

  7. Population genetics of the Schistosoma snail host Bulinus truncatus in Egypt.

    PubMed

    Zein-Eddine, Rima; Djuikwo-Teukeng, Félicité F; Dar, Yasser; Dreyfuss, Gilles; Van den Broeck, Frederik

    2017-08-01

    The tropical freshwater snail Bulinus truncatus serves as an important intermediate host of several human and cattle Schistosoma species in many African regions. Despite some ecological and malacological studies, there is no information on the genetic diversity of B. truncatus in Egypt. Here, we sampled 70-100 snails in ten localities in Upper Egypt and the Nile Delta. Per locality, we sequenced 10 snails at a partial fragment of the cytochrome c oxidase subunit 1 gene (cox1) and we genotyped 25-30 snails at six microsatellite markers. A total of nine mitochondrial haplotypes were detected, of which five were unique to the Nile Delta and three were unique to Upper Egypt, indicating that snail populations may have evolved independently in both regions. Bayesian clustering and hierarchical F-statistics using microsatellite markers further revealed strong population genetic structure at the level of locality. Observed heterozygosity was much lower compared to what is expected under random mating, which could be explained by high selfing rates, population size reductions and to a lesser extent by the Wahlund effect. Despite these observations, we found signatures of gene flow and cross-fertilization, even between snails from the Nile Delta and Upper Egypt, indicating that B. truncatus can travel across large distances in Egypt. These observations could have serious consequences for disease epidemiology, as it means that infected snails from one region could rapidly and unexpectedly spark a new epidemic in another distant region. This could be one of the factors explaining the rebound of human Schistosoma infections in the Nile Delta, despite decades of sustained schistosomiasis control. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining

    PubMed Central

    Wang, Manna; Ning, Xiangkai; He, Meifang; Hu, Yazhuo; Yuan, Long; Li, Shichong; Wang, Qiwei; Liu, Hong; Chen, Zhaolie; Ren, Jun; Sun, Qiang

    2015-01-01

    Although Cell-in-cell structures (CICs) had been documented in human tumors for decades, it is unclear what types of CICs were formed largely due to low resolution of traditional way such as H&E staining. In this work, we employed immunofluorescent method to stain a panel of human tumor samples simultaneously with antibodies against E-cadherin for Epithelium, CD68 for Macrophage and CD45 for Leukocytes, which we termed as “EML method” based on the cells detected. Detail analysis revealed four types of CICs, with tumor cells or macrophage engulfing tumor cells or leukocytes respectively. Interestingly, tumor cells seem to be dominant over macrophage (93% vs 7%) as the engulfer cells in all CICs detected, whereas the overall amount of internalized tumor cells is comparable to that of internalized CD45+ leukocytes (57% vs 43%). The CICs profiles vary from tumor to tumor, which may indicate different malignant stages and/or inflammatory conditions. Given the potential impacts different types of CICs might have on tumor growth, we therefore recommend EML analysis of tumor samples to clarify the correlation of CICs subtypes with clinical prognosis in future researches. PMID:26109430

  9. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining.

    PubMed

    Huang, Hongyan; Chen, Ang; Wang, Ting; Wang, Manna; Ning, Xiangkai; He, Meifang; Hu, Yazhuo; Yuan, Long; Li, Shichong; Wang, Qiwei; Liu, Hong; Chen, Zhaolie; Ren, Jun; Sun, Qiang

    2015-08-21

    Although Cell-in-cell structures (CICs) had been documented in human tumors for decades, it is unclear what types of CICs were formed largely due to low resolution of traditional way such as H&E staining. In this work, we employed immunofluorescent method to stain a panel of human tumor samples simultaneously with antibodies against E-cadherin for Epithelium, CD68 for Macrophage and CD45 for Leukocytes, which we termed as "EML method" based on the cells detected. Detail analysis revealed four types of CICs, with tumor cells or macrophage engulfing tumor cells or leukocytes respectively. Interestingly, tumor cells seem to be dominant over macrophage (93% vs 7%) as the engulfer cells in all CICs detected, whereas the overall amount of internalized tumor cells is comparable to that of internalized CD45+ leukocytes (57% vs 43%). The CICs profiles vary from tumor to tumor, which may indicate different malignant stages and/or inflammatory conditions. Given the potential impacts different types of CICs might have on tumor growth, we therefore recommend EML analysis of tumor samples to clarify the correlation of CICs subtypes with clinical prognosis in future researches.

  10. Larval stages of digenetic trematodes in Melanopsis praemorsa snails from freshwater bodies in Palestine.

    PubMed

    Bdir, Sami; Adwan, Ghaleb

    2011-06-01

    To detect the species of larval trematodes (cercariae) in Melanopsis praemorsa snails from 5 different fresh water bodies in Palestine. A total of 1 880 Melanopsis praemorsa snails were collected from different fresh water bodies in Palestine from October, 2008 to November, 2010. Cercariae in Melanopsis praemorsa snails were obtained by lighting and crushing methods. The behavior of cercariae was observed using a dissecting microscope. Three different species of larval trematodes were identified from Melanopsis praemorsa snails collected only from Al-Bathan fresh water body, while snails from other water bodies were not infected. These species were microcercous cercaria, xiphidiocercaria and brevifurcate lophocercous cercaria. These cercariae called Cercaria melanopsi palestinia I, Cercaria melanopsi palestinia II and Cercaria melanopsi palestinia III have not been described before from this snail in Palestine. The infection rate of Melanopsis praemorsa collected from Al-Bathan fresh water body was 5.7%, while the overall infection rate of snails collected from all fresh water bodies was 4.3%. Details are presented on the morphology and behavior of the cercariae as well as their development within the snail. These results have been recorded for the first time and these cercariae may be of medical and veterinary importance.

  11. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Aquino,J.; Tetenbaum-Novatt, J.; White, A.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with amore » binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.« less

  12. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  13. Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation.

    PubMed

    Chung, Heesung; Jung, Hyejung; Jho, Eek-Hoon; Multhaupt, Hinke A B; Couchman, John R; Oh, Eok-Soo

    2018-06-14

    In human skin, melanocytes and their neighboring keratinocytes have a close functional interrelationship. Keratinocytes, which represent the prevalent cell type of human skin, regulate melanocytes through various mechanisms. Here, we use a keratinocyte and melanoma co-culture system to show for the first time that keratinocytes regulate the cell surface expression of N-cadherin through cell-cell contact. Compared to mono-cultured human melanoma A375 cells, which expressed high levels of N-cadherin, those co-cultured with the HaCaT human keratinocyte cell line showed reduced levels of N-cadherin. This reduction was most evident in areas of A375 cells that underwent cell-cell contact with the HaCaT cells, whereas HaCaT cell-derived extracellular matrix and conditioned medium both failed to reduce N-cadherin levels. The intracellular level of calcium in co-cultured A375 cells was lower than that in mono-cultured A375 cells, and treatment with a cell-permeant calcium chelator (BAPTA) reduced the N-cadherin level of mono-cultured A375 cells. Furthermore, co-culture with HaCaT cells reduced the expression levels of transient receptor potential cation channel (TRPC) 1, -3 and -6 in A375 cells, and siRNA-mediated multi-depletion of TRPC1, -3 and -6 reduced the N-cadherin level in these cells. Taken together, these data suggest that keratinocytes negatively regulate the N-cadherin levels of melanoma cells via cell-to-cell contact-mediated calcium regulation. Copyright © 2018. Published by Elsevier Inc.

  14. Estrogen alters the profile of the transcriptome in river snail Bellamya aeruginosa.

    PubMed

    Lei, Kun; Liu, Ruizhi; An, Li-Hui; Luo, Ying-Feng; LeBlanc, Gerald A

    2015-03-01

    We evaluated the transcriptome dynamics of the freshwater river snail Bellamya aeruginosa exposed to 17β-estradiol (E2) using the Roche/454 GS-FLX platform. In total, 41,869 unigenes, with an average length of 586 bp, representing 36,181 contigs and 5,688 singlets were obtained. Among them, 18.08, 36.85, and 25.47 % matched sequences in the GenBank non-redundant nucleic acid database, non-redundant protein database, and Swiss protein database, respectively. Annotation of the unigenes with gene ontology, and then mapping them to biological pathways, revealed large groups of genes related to growth, development, reproduction, signal transduction, and defense mechanisms. Significant differences were found in gene expression in both liver and testicular tissues between control and E2-exposed organisms. These changes in gene expression will help in understanding the molecular mechanisms of the response to physiological stress in the river snail exposed to estrogen, and will facilitate research into biological processes and underlying physiological adaptations to xenoestrogen exposure in gastropods.

  15. Dioxin Receptor Expression Inhibits Basal and Transforming Growth Factor β-induced Epithelial-to-mesenchymal Transition*

    PubMed Central

    Rico-Leo, Eva M.; Alvarez-Barrientos, Alberto; Fernandez-Salguero, Pedro M.

    2013-01-01

    Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR+/+ and AhR−/− keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR−/− keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR+/+ and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells. PMID:23382382

  16. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon

    USGS Publications Warehouse

    Aguirre-Macedo, Maria Leopoldina; Vidal-Martinez, Victor M.; Lafferty, Kevin D.

    2011-01-01

    In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.

  17. Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control.

    PubMed

    Swartz, Scott J; De Leo, Giulio A; Wood, Chelsea L; Sokolow, Susanne H

    2015-12-01

    Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots. © 2015. Published by The Company of Biologists Ltd.

  18. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma

    PubMed Central

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-01-01

    Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. PMID:28854563

  19. Small interfering RNA targeting ILK inhibits metastasis in human tongue cancer cells through repression of epithelial-to-mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yu; Laboratory of Forensic Medicine and Biomedical Information, Chongqing Medical University, Chongqing; Qi, Jin

    2013-08-01

    Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase. Accumulating evidences suggest that ILK are involved in cell–matrix interactions, cell proliferation, invasion, migration, angiogenesis and Epithelial–mesenchymal transition (EMT). However, the underlying mechanisms remain largely unknown. EMT has been postulated as a prerequisite for metastasis. The reports have demonstrated that EMT was implicated in metastasis of oral squamous cell carcinomas. Therefore, here we further postulate that ILK might participate in EMT of tongue cancer. We showed that ILK siRNA inhibited EMT with low N-cadherin, Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and in vitro. We foundmore » that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β as well as reduced expression of MMP2 and MMP9. Furthermore, we found that the tongue tumor with high metastasis capability showed higher ILK, Vimentin, Snail, Slug and Twist as well as lower E-cadherin expression in clinical specimens. Finally, ILK siRNA led to the suppression for tumorigenesis and metastasis in vivo. Our findings suggest that ILK could be a novel diagnostic and therapeutic target for tongue cancer. Highlights: • ILK siRNA influences cell morphology, cell cycle, migration and invasion. • ILK siRNA affects the expression of proteins associated with EMT. • ILK expression is related to EMT in clinical human tongue tumors. • ILK siRNA inhibits metastasis of the tongue cancer cells through suppressing EMT.« less

  20. Pax-5 is a potent regulator of E-cadherin and breast cancer malignant processes

    PubMed Central

    Benzina, Sami; Beauregard, Annie-Pier; Guerrette, Roxann; Jean, Stéphanie; Faye, Mame Daro; Laflamme, Mark; Maïcas, Emmanuel; Crapoulet, Nicolas; Ouellette, Rodney J.; Robichaud, Gilles A.

    2017-01-01

    Pax-5, an essential transcription factor for B lymphocyte development, has been linked with the development and progression of lymphoid cancers and carcinoma. In contrast to B-cell cancer lesions, the specific expression signatures and roles of Pax-5 in breast cancer progression are relatively unknown. In the present study, we set out to profile Pax-5 expression in mammary tissues and elucidate the cellular and molecular roles of Pax-5 in breast cancer processes. Using immunohistology on mammary tissue arrays, Pax-5 was detected in a total of 298/306 (97.6%) samples tested. Interestingly, our studies reveal that Pax-5 inhibits aggressive features and confers anti-proliferative effects in breast carcinoma cells in contrast to its oncogenic properties in B cell cancers. More precisely, Pax-5 suppressed breast cancer cell migration, invasion and tumor spheroid formation while concomitantly promoting cell adhesion properties. We also observed that Pax-5 inhibited and reversed breast cancer epithelial to mesenchymal phenotypic transitioning. Mechanistically, we found that the Pax-5 transcription factor binds and induces gene expression of E-cadherin, a pivotal regulator of epithelialisation. Globally, we demonstrate that Pax-5 is predominant expressed factor in mammary epithelial cells. We also present an important role for Pax-5 in the phenotypic transitioning processes and aggressive features associated with breast cancer malignancy and disease progression. PMID:28076843