Sample records for e-deficient mice reduces

  1. Plasmalogen modulation attenuates atherosclerosis in ApoE- and ApoE/GPx1-deficient mice.

    PubMed

    Rasmiena, Aliki A; Barlow, Christopher K; Stefanovic, Nada; Huynh, Kevin; Tan, Ricardo; Sharma, Arpeeta; Tull, Dedreia; de Haan, Judy B; Meikle, Peter J

    2015-12-01

    We previously reported a negative association of circulating plasmalogens (phospholipids with proposed atheroprotective properties) with coronary artery disease. Plasmalogen modulation was previously demonstrated in animals but its effect on atherosclerosis was unknown. We assessed the effect of plasmalogen enrichment on atherosclerosis of murine models with differing levels of oxidative stress. Six-week old ApoE- and ApoE/glutathione peroxidase-1 (GPx1)-deficient mice were fed a high-fat diet with/without 2% batyl alcohol (precursor to plasmalogen synthesis) for 12 weeks. Mass spectrometry analysis of lipids showed that batyl alcohol supplementation to ApoE- and ApoE/GPx1-deficient mice increased the total plasmalogen levels in both plasma and heart. Oxidation of plasmalogen in the treated mice was evident from increased level of plasmalogen oxidative by-product, sn-2 lysophospholipids. Atherosclerotic plaque in the aorta was reduced by 70% (P = 5.69E-07) and 69% (P = 2.00E-04) in treated ApoE- and ApoE/GPx1-deficient mice, respectively. A 40% reduction in plaque (P = 7.74E-03) was also seen in the aortic sinus of only the treated ApoE/GPx1-deficient mice. Only the treated ApoE/GPx1-deficient mice showed a decrease in VCAM-1 staining (-28%, P = 2.43E-02) in the aortic sinus and nitrotyrosine staining (-78%, P = 5.11E-06) in the aorta. Plasmalogen enrichment via batyl alcohol supplementation attenuated atherosclerosis in ApoE- and ApoE/GPx1-deficient mice, with a greater effect in the latter group. Plasmalogen enrichment may represent a viable therapeutic strategy to prevent atherosclerosis and reduce cardiovascular disease risk, particularly under conditions of elevated oxidative stress and inflammation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. FAD286, an aldosterone synthase inhibitor, reduced atherosclerosis and inflammation in apolipoprotein E-deficient mice.

    PubMed

    Gamliel-Lazarovich, Aviva; Gantman, Anna; Coleman, Raymond; Jeng, Arco Y; Kaplan, Marielle; Keidar, Shlomo

    2010-09-01

    Aldosterone is known to be involved in atherosclerosis and cardiovascular disease and blockade of its receptor was shown to improve cardiovascular function. It was, therefore, hypothesized that inhibition of aldosterone synthesis would also reduce atherosclerosis development. To test this hypothesis, we examined the effect of FAD286 (FAD), an aldosterone synthase inhibitor, on the development of atherosclerosis in spontaneous atherosclerotic apolipoprotein E-deficient mice. Mice were divided into three treatment groups: normal diet, low-salt diet (LSD) and LSD treated with FAD at 30 mg/kg per day (LSD + FAD) for 10 weeks. Histomorphometry of the aortas obtained from these mice showed that atherosclerotic lesion area increased by three-fold under LSD compared with normal diet and FAD significantly reduced lesion area to values similar to normal diet. Changes in atherosclerosis were paralleled by changes in the expression of the inflammation markers (C-reactive protein, monocyte chemotactic protein-1, interleukin-6, nuclear factor kappa B and intercellular adhesion molecule-1) in peritoneal macrophages obtained from these mice. Surprisingly, whereas LSD increased serum or urine aldosterone levels, FAD did not alter these levels when evaluated at the end of the study. In J774A.1 macrophage-like cell line stimulated with lipopolysaccharide, FAD was shown to have a direct dose-dependent anti-inflammatory effect. In apolipoprotein E-deficient mice, FAD reduces atherosclerosis and inflammation. However, these actions appeared to be dissociated from its effect on inhibition of aldosterone synthesis.

  3. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  4. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    PubMed

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  6. Tofacitinib ameliorates atherosclerosis and reduces foam cell formation in apoE deficient mice.

    PubMed

    Wang, Zaicun; Wang, Shumei; Wang, Zunzhe; Yun, Tiantian; Wang, Chenchen; Wang, Huating

    2017-08-19

    Atherosclerosis is a chronic inflammatory cardiovascular disease with high mortality worldwide. Tofacitinib (CP-690,550), an oral small-molecule Janus kinase inhibitor, has been shown to be effective in the treatment of rheumatoid arthritis, autoimmune encephalomyelitis and ulcerative colitis. However, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of Tofacitinib on atherogenic diet (ATD)-induced atherosclerosis using apolipoprotein E deficient (apoE-/-) mice. Atherosclerosis-prone apoE-/- mice were fed with ATD and treated with or without Tofacitinib through intragastrical administration (10 mg kg -1 day -1 ) for 8 weeks. Our results showed that Tofacitinib did not change plasma lipids, while significantly reduced the levels of plasma pro-inflammatory cytokines IL-6 and TNF-α. It also significantly attenuated atherosclerotic plaque lesion in the aortic root and macrophages contained in plaque as shown with Mac2 immuno-staining. Peritoneal macrophages (PMC) were separated from apoE-/- mice fed with 8-week ATD, and then subjected to inflammation tests. Flow cytometry analysis of F4/80 and CD206 and mRNA levels of M1 and M2 macrophages markers showed that M1 macrophages decreased while M2 macrophages increased in Tofacitinib treated group. Expressions of other inflammatory genes also indicated an anti-inflammatory status in mice treated with Tofacitinib. Ox-LDL was used to induce foam cell formation from PMC in wild type mice, and the results displayed a reduced formation of foam cells and decreased inflammation in mice with Tofacitinib administration (1 μM). The mRNA and protein levels of ATP binding cassette subfamily A member 1 (ABCA1), a key gene involved in cholesterol efflux, remarkably increased, while it was absence of alterations in scavenger receptors expression. Therefore, we demonstrated that Tofacitinib could attenuate atherosclerosis and foam cells formation by

  7. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    PubMed

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  8. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque. PMID:28959204

  9. Dietary blueberries sttenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzymes expression

    USDA-ARS?s Scientific Manuscript database

    Blueberries (BB) contain high levels of polyphenols and exhibit high antioxidant capacity. In this study, protective effects of BB against atherosclerosis and possible underlying mechanisms in reducing oxidative stress were examined in ApoE deficient (apoE-/-) mice. ApoE-/- mice were fed AIN-93G die...

  10. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice with phenylhydrazine-induced anemia.

    PubMed

    Paul, A; Calleja, L; Vilella, E; Martínez, R; Osada, J; Joven, J

    1999-11-01

    Epidemiological and experimental studies suggest that circulating erythrocytes play a role in the incidence of coronary heart disease. We investigated the influence of phenylhydrazine (PHZ)-induced anemia on the formation of atherosclerotic lesions in apo E-deficient mice on regular chow and on a high-fat, high-cholesterol diet during 10 weeks. The repeated doses of PHZ caused sustained anemia throughout the study, changes in the physical characteristics of erythrocytes and increased reticulocyte count. The lesions of the anemic animals were smaller than in the controls and this was even more evident in mice fed with the atherogenic diet. A positive correlation was found between circulating red blood cells at the end of the experiment and the area of aortic lesion. There was also a negative association between the lesion and the reticulocyte count. This reduced progression of atherosclerotic lesions is independent of nutritional status or the lipoprotein cholesterol distribution. The results suggest that mechanisms related to the number of circulating red blood cells may have a significant influence on the development of atherosclerosis.

  11. Overexpression of TGF-ß1 in Macrophages Reduces and Stabilizes Atherosclerotic Plaques in ApoE-Deficient Mice

    PubMed Central

    Orning, Carolin; Crain, Jeanine; Küpper, Ines; Wiese, Elena; Protschka, Martina; Blessing, Manfred; Lackner, Karl J.; Torzewski, Michael

    2012-01-01

    Although macrophages represent the hallmark of both human and murine atherosclerotic lesions and have been shown to express TGF-ß1 (transforming growth factor β1) and its receptors, it has so far not been experimentally addressed whether the pleiotropic cytokine TGF-ß1 may influence atherogenesis by a macrophage specific mechanism. We developed transgenic mice with macrophage specific TGF-ß1 overexpression, crossed the transgenics to the atherosclerotic ApoE (apolipoprotein E) knock-out strain and quantitatively analyzed both atherosclerotic lesion development and composition of the resulting double mutants. Compared with control ApoE−/− mice, animals with macrophage specific TGF-ß1 overexpression developed significantly less atherosclerosis after 24 weeks on the WTD (Western type diet) as indicated by aortic plaque area en face (p<0.05). Reduced atherosclerotic lesion development was associated with significantly less macrophages (p<0.05 after both 8 and 24 weeks on the WTD), significantly more smooth muscle cells (SMCs; p<0.01 after 24 weeks on the WTD), significantly more collagen (p<0.01 and p<0.05 after 16 and 24 weeks on the WTD, respectively) without significant differences of inner aortic arch intima thickness or the number of total macrophages in the mice pointing to a plaque stabilizing effect of macrophage-specific TGF-ß1 overexpression. Our data shows that macrophage specific TGF-ß1 overexpression reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PMID:22829904

  12. Haploinsufficiency of E-selectin ligand-1 is Associated with Reduced Atherosclerotic Plaque Macrophage Content while Complete Deficiency Leads to Early Embryonic Lethality in Mice

    PubMed Central

    Luo, Wei; Wang, Hui; Guo, Chiao; Wang, Jintao; Kwak, Jeffrey; Bahrou, Kristina L; Eitzman, Daniel T.

    2012-01-01

    E-selectin-1 (ESL-1), also known as golgi complex-localized glycoprotein-1 (GLG1), homocysteine-rich fibroblast growth factor receptor (CGR-1), and latent transforming growth factor-β complex protein 1 (LTCP-1), is a multifunctional protein with widespread tissue distribution. To determine the functional consequences of ESL-1 deficiency, mice were generated carrying an ESL-1 gene trap. After backcrossing to C57BL6/J for 6 generations, mice heterozygous for the gene trap (ESL-1+/-) were intercrossed to produce ESL-1-/- mice, however ESL-1-/- mice were not viable, even at embryonic day E10.5. To determine the effect of heterozygous ESL-1 deficiency on atherosclerosis, apolipoprotein E deficient (ApoE-/-), ESL-1+/- mice were generated and fed western diet. Compared to ApoE-/-, ESL-1++ mice, atherosclerotic lesions from ApoE-/-, ESL-1+/- contained more collagen and fewer macrophages, suggesting increased plaque stability. In conclusion, heterozygous deficiency of ESL-1 is associated with features of increased atherosclerotic plaque stability while complete deficiency of ESL-1 leads to embryonic lethality. PMID:22939356

  13. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    PubMed Central

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  14. Host defense against systemic infection with Streptococcus pneumoniae is impaired in E-, P-, and E-/P-selectin-deficient mice.

    PubMed Central

    Munoz, F M; Hawkins, E P; Bullard, D C; Beaudet, A L; Kaplan, S L

    1997-01-01

    Endothelial selectins mediate rolling of leukocytes on endothelium, a crucial step for leukocyte firm adhesion and emigration into sites of tissue injury and infection. To characterize the role of the endothelial selectins during bacterial sepsis in vivo, Streptococcus pneumoniae (1-10 x 10(6) colony-forming units) was inoculated intraperitoneally into wild-type mice and mice with E-, P-, or E-/P-selectin deficiencies. Mice were followed 10 d for morbidity, survival, clearance of bacteremia, and leukocyte migration to the peritoneal cavity and organs 48 h after infection. All selectin-deficient mice showed a more pronounced morbidity, a significantly higher mortality associated with persistent bacteremia, and a higher bacterial load when compared with wild-type mice. These differences were most remarkable in the E-selectin-deficient mice, which showed the highest rate of mortality and bacteremia (P E- and P-selectin-deficient mice. Although the absence of endothelial selectins did not substantially impair leukocyte emigration to sites of infection 48 h after pneumococcal sepsis, it resulted in increased mortality and a higher bacterial load in the bloodstream of selectin-deficient mice. These results demonstrate a definitive phenotypic abnormality in E-selectin-deficient mice, and suggest that E- and P-selectin are important in the host defense against S. pneumoniae infection. PMID:9329976

  15. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice.

    PubMed

    London, Lis E E; Kumar, Arun H S; Wall, Rebecca; Casey, Pat G; O'Sullivan, Orla; Shanahan, Fergus; Hill, Colin; Cotter, Paul D; Fitzgerald, Gerald F; Ross, R Paul; Caplice, Noel M; Stanton, Catherine

    2014-12-01

    Probiotic bacteria have been associated with a reduction in cardiovascular disease risk, a leading cause of death and disability. The aim of this study was to assess the impact of dietary administration of exopolysaccharide-producing probiotic Lactobacillus cultures on lipid metabolism and gut microbiota in apolipoprotein E (apoE)-deficient mice. First, we examined lipid metabolism in response to dietary supplementation with recombinant β-glucan-producing Lactobacillus paracasei National Food Biotechnology Centre (NFBC) 338 expressing the glycosyltransferase (Gtf) gene from Pediococcus parvulus 2.6 (GTF), and naturally exopolysaccharide-producing Lactobacillus mucosae Dairy Product Culture Collection (DPC) 6426 (DPC 6426) compared with the non-β-glucan-producing isogenic control strain Lactobacillus paracasei NFBC 338 (PNZ) and placebo (15% wt:vol trehalose). Second, we examined the effects on the gut microbiota of dietary administration of DPC 6426 compared with placebo. Probiotic Lactobacillus strains at 1 × 10(9) colony-forming units/d per animal were administered to apoE(-/-) mice fed a high-fat (60% fat)/high-cholesterol (2% wt:wt) diet for 12 wk. At the end of the study, aortic plaque development and serum, liver, and fecal variables involved in lipid metabolism were analyzed, and culture-independent microbial analyses of cecal content were performed. Total cholesterol was reduced in serum (P < 0.001; ∼33-50%) and liver (P < 0.05; ∼30%) and serum triglyceride concentrations were reduced (P < 0.05; ∼15-25%) in mice supplemented with GTF or DPC 6426 compared with the PNZ or placebo group, respectively. In addition, dietary intervention with GTF led to increased amounts of fecal cholesterol excretion (P < 0.05) compared with all other groups. Compositional sequencing of the gut microbiota revealed a greater prevalence of Porphyromonadaceae (P = 0.001) and Prevotellaceae (P = 0.001) in the DPC 6426 group and lower proportions of Clostridiaceae (P < 0

  17. Vitamin E Inhibits Abdominal Aortic Aneurysm Formation in Angiotensin II–Infused Apolipoprotein E–Deficient Mice

    PubMed Central

    Gavrila, Dan; Li, Wei Gen; McCormick, Michael L.; Thomas, Manesh; Daugherty, Alan; Cassis, Lisa A.; Miller, Francis J.; Oberley, Larry W.; Dellsperger, Kevin C.; Weintraub, Neal L.

    2014-01-01

    Background Abdominal aortic aneurysms (AAAs) in humans are associated with locally increased oxidative stress and activity of NADPH oxidase. We investigated the hypothesis that vitamin E, an antioxidant with documented efficacy in mice, can attenuate AAA formation during angiotensin II (Ang II) infusion in apolipoprotein E–deficient mice. Methods and Results Six-month-old male apolipoprotein E–deficient mice were infused with Ang II at 1000 ng/kg per minute for 4 weeks via osmotic minipumps while consuming either a regular diet or a diet enriched with vitamin E (2 IU/g of diet). After 4 weeks, abdominal aortic weight and maximal diameter were determined, and aortic tissues were sectioned and examined using biochemical and histological techniques. Vitamin E attenuated formation of AAA, decreasing maximal aortic diameter by 24% and abdominal aortic weight by 34% (P<0.05, respectively). Importantly, animals treated with vitamin E showed a 44% reduction in the combined end point of fatal+nonfatal aortic rupture (P<0.05). Vitamin E also decreased aortic 8-isoprostane content (a marker of oxidative stress) and reduced both aortic macrophage infiltration and osteopontin expression (P<0.05, respectively). Vitamin E treatment had no significant effect on the extent of aortic root atherosclerosis, activation of matrix metalloproteinases 2 or 9, serum lipid profile, or systolic blood pressure. Conclusions Vitamin E ameliorates AAAs and reduces the combined end point of fatal+nonfatal aortic rupture in this animal model. These findings are consistent with the concept that oxidative stress plays a pivotal role in Ang II–driven AAA formation in hyperlipidemic mice. PMID:15933246

  18. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  19. Cerebral protein kinase C and its mRNA level in apolipoprotein E-deficient mice.

    PubMed

    Hung, M C; Hayase, K; Yoshida, R; Sato, M; Imaizumi, K

    2001-08-10

    It is known that protein kinase C (PKC) activity may be one of the fundamental cellular changes associated with memory function. Apolipoprotein E (apoE) deficiency causes cholinergic deficits and memory impairment. ApoE-deficient mouse has been employed as a serviceable model for studying the relation between apoE and the memory deficit induced by cholinergic impairment. Brain-fatty acid binding protein (b-FABP) might be functional during development of the nervous system. Peroxisome proliferator-activated receptor (PPAR) is involved in the early change in lipid metabolism. We investigated the alterations not only in cerebral PKC activity, but also in the gene expressions of PKC-beta, brain-FABP and PPAR-alpha in apoE-deficient mice. The results showed that there was a lower cerebral membrane-bound PKC activity in the apoE-deficient mice than in its wild type strain (C57BL/6). But there were no significant differences in cytosolic PKC activity. PKC-beta, b-FABP and PPAR-alpha mRNA expressions in cerebrum were lowered in apoE-deficient mice. These findings may be involved in the dysfunction of the brain neurotransmission system in apoE-deficient mouse. Alternatively, these results also suggest that cerebral apoE plays an important role in brain PKC activation by maintaining an appropriate expression of b-FABP and PPAR-alpha mRNAs.

  20. Enhanced XOR activity in eNOS-deficient mice: Effects on the nitrate-nitrite-NO pathway and ROS homeostasis.

    PubMed

    Peleli, Maria; Zollbrecht, Christa; Montenegro, Marcelo F; Hezel, Michael; Zhong, Jianghong; Persson, Erik G; Holmdahl, Rikard; Weitzberg, Eddie; Lundberg, Jon O; Carlström, Mattias

    2016-10-01

    Xanthine oxidoreductase (XOR) is generally known as the final enzyme in purine metabolism and as a source of reactive oxygen species (ROS). In addition, this enzyme has been suggested to mediate nitric oxide (NO) formation via reduction of inorganic nitrate and nitrite. This NO synthase (NOS)-independent pathway for NO generation is of particular importance during certain conditions when NO bioavailability is diminished due to reduced activity of endothelial NOS (eNOS) or increased oxidative stress, including aging and cardiovascular disease. The exact interplay between NOS- and XOR-derived NO generation is not fully elucidated yet. The aim of the present study was to investigate if eNOS deficiency is associated with changes in XOR expression and activity and the possible impact on nitrite, NO and ROS homeostasis. Plasma levels of nitrate and nitrite were similar between eNOS deficient (eNOS -/- ) and wildtype (wt) mice. XOR activity was upregulated in eNOS -/- compared with wt, but not in nNOS -/- , iNOS -/- or wt mice treated with the non-selective NOS inhibitor L-NAME. Following an acute dose of nitrate, plasma nitrite increased more in eNOS -/- compared with wt, and this augmented response was abolished by the selective XOR inhibitor febuxostat. Livers from eNOS -/- displayed higher nitrite reducing capacity compared with wt, and this effect was attenuated by febuxostat. Dietary supplementation with nitrate increased XOR expression and activity, but concomitantly reduced superoxide generation. The latter effect was also seen in vitro after nitrite administration. Treatment with febuxostat elevated blood pressure in eNOS -/- , but not in wt mice. A high dose of dietary nitrate reduced blood pressure in naïve eNOS -/- mice, and again this effect was abolished by febuxostat. In conclusion, eNOS deficiency is associated with an upregulation of XOR facilitating the nitrate-nitrite-NO pathway and decreasing the generation of ROS. This interplay between XOR and e

  1. Genetic Restoration of Plasma ApoE Improves Cognition and Partially Restores Synaptic Defects in ApoE-Deficient Mice

    PubMed Central

    Wong, Wen Mai; Durakoglugil, Murat S.; Wasser, Catherine R.; Jiang, Shan; Xian, Xunde

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in individuals over the age of 65 years. The most prevalent genetic risk factor for AD is the ε4 allele of apolipoprotein E (ApoE4), and novel AD treatments that target ApoE are being considered. One unresolved question in ApoE biology is whether ApoE is necessary for healthy brain function. ApoE knock-out (KO) mice have synaptic loss and cognitive dysfunction; however, these findings are complicated by the fact that ApoE knock-out mice have highly elevated plasma lipid levels, which may independently affect brain function. To bypass the effect of ApoE loss on plasma lipids, we generated a novel mouse model that expresses ApoE normally in peripheral tissues, but has severely reduced ApoE in the brain, allowing us to study brain ApoE loss in the context of a normal plasma lipid profile. We found that these brain ApoE knock-out (bEKO) mice had synaptic loss and dysfunction similar to that of ApoE KO mice; however, the bEKO mice did not have the learning and memory impairment observed in ApoE KO mice. Moreover, we found that the memory deficit in the ApoE KO mice was specific to female mice and was fully rescued in female bEKO mice. Furthermore, while the AMPA/NMDA ratio was reduced in ApoE KO mice, it was unchanged in bEKO mice compared with controls. These findings suggest that plasma lipid levels can influence cognition and synaptic function independent of ApoE expression in the brain. SIGNIFICANCE STATEMENT One proposed treatment strategy for Alzheimer's disease (AD) is the reduction of ApoE, whose ε4 isoform is the most common genetic risk factor for the disease. A major concern of this strategy is that an animal model of ApoE deficiency, the ApoE knock-out (KO) mouse, has reduced synapses and cognitive impairment; however, these mice also develop dyslipidemia and severe atherosclerosis. Here, we have shown that genetic restoration of plasma ApoE to wild-type levels normalizes plasma lipids in ApoE KO

  2. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  3. Vulnerable atherosclerotic plaque morphology in apolipoprotein E-deficient mice unable to make ascorbic Acid.

    PubMed

    Nakata, Yukiko; Maeda, Nobuyo

    2002-03-26

    Oxidative stress is thought to play an important role in atherogenesis, suggesting that antioxidants could prevent coronary artery disease. However, the efficacy of vitamin C in reducing atherosclerosis is debatable in humans and has not been tested rigorously in animals. Gulo(-/-)Apoe(-/-) mice were used to test a hypothesis that chronic vitamin C deficiency enhances the initiation and development of atherosclerosis. These mice are dependent on dietary vitamin C because of the lack of L-gulonolactone-gamma-oxidase and are prone to develop atherosclerosis because of lacking apolipoprotein E. Beginning at 6 weeks of age, the Gulo(-/-)Apoe(-/-) mice were fed regular chow or Western-type diets containing high fat and supplemented with either 0.033 g or 3.3 g/L of vitamin C in their drinking water. This regimen produced mice with chronically low vitamin C (average 1.5 microg/mL in plasma) or high vitamin C (average 10 to 30 microg/mL in plasma). Morphometric analysis showed that within each sex, age, and diet group, the sizes of the atherosclerotic plaques were not different between low vitamin C mice and high vitamin C mice. However, advanced plaques in the low vitamin C mice had significantly reduced amounts of Sirius red-staining collagen (36.4+/-2.2% versus 54.8+/-2.3%, P<0.0001), larger necrotic cores within the plaques, and reduced fibroproliferation and neovascularization in the aortic adventitia. Chronic vitamin C deficiency does not influence the initiation or progression of atherosclerotic plaques but severely compromises collagen deposition and induces a type of plaque morphology that is potentially vulnerable to rupture.

  4. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p < 0.05). Pathological observations showed that accumulation of cholesterol crystals in the plaque area was greater in the control group compared with the 0.40 % cacao polyphenol group (p < 0.05). Immunochemical staining in the 0.25 and 0.40 % groups showed that expression of the cell adhesion molecules (VCAM-1 and ICAM-1) and production of oxidative stress markers (4-hydroxynonenal, hexanoyl-lysine, and dityrosine) were reduced in cross-sections of the brachiocephalic trunk. These results suggest that cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  5. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  6. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice.

    PubMed

    Chen, Yuanli; Duan, Yajun; Yang, Xiaoxiao; Sun, Lei; Liu, Mengyang; Wang, Qixue; Ma, Xingzhe; Zhang, Wenwen; Li, Xiaoju; Hu, Wenquan; Miao, Robert Q; Xiang, Rong; Hajjar, David P; Han, Jihong

    2015-04-01

    Activation of liver X receptor (LXR) inhibits atherosclerosis but induces hypertriglyceridemia. In vitro, it has been shown that mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor synergizes LXR ligand-induced macrophage ABCA1 expression and cholesterol efflux. In this study, we determined whether MEK1/2 (U0126) and LXR ligand (T0901317) can have a synergistic effect on the reduction of atherosclerosis while eliminating LXR ligand-induced fatty livers and hypertriglyceridemia. We also set out to identify the cellular mechanisms of the actions. Wild-type mice were used to determine the effect of U0126 on a high-fat diet or high-fat diet plus T0901317-induced transient dyslipidemia and liver injury. ApoE deficient (apoE(-/-)) mice or mice with advanced lesions were used to determine the effect of the combination of T0901317 and U0126 on atherosclerosis and hypertriglyceridemia. We found that U0126 protected animals against T0901317-induced transient or long-term hepatic lipid accumulation, liver injury, and hypertriglyceridemia. Meanwhile, the combination of T0901317 and U0126 inhibited the development of atherosclerosis in a synergistic manner and reduced advanced lesions. Mechanistically, in addition to synergistic induction of macrophage ABCA1 expression, the combination of U0126 and T0901317 maintained arterial wall integrity, inhibited macrophage accumulation in aortas and formation of macrophages/foam cells, and activated reverse cholesterol transport. The inhibition of T0901317-induced lipid accumulation by the combined U0126 might be attributed to inactivation of lipogenesis and activation of lipolysis/fatty acid oxidation pathways. Our study suggests that the combination of mitogen-activated protein kinase kinase 1/2 inhibitor and LXR ligand can function as a novel therapy to synergistically reduce atherosclerosis while eliminating LXR-induced deleterious effects. © 2015 American Heart Association, Inc.

  7. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    PubMed Central

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-01-01

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223

  8. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet.

    PubMed

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-07-28

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.

  9. Vitamin E-deficiency did not exacerbate partial skin reactions in mice locally irradiated with X-rays.

    PubMed

    Chi, Cuiping; Hayashi, Daisuke; Nemoto, Masato; Nyui, Minako; Urano, Shiro; Anzai, Kazunori

    2011-01-01

    We previously showed that free radicals and oxidative stress are involved in radiation-induced skin reactions. Since vitamin E (VE) is a particularly important lipophilic antioxidant, VE-deficient mice were used to examine its effects on radiation-induced skin damage. The VE content of the skin was reduced to one fourth of levels of normal mice. Neither the time of onset nor the extent of the reactions quantified with a scoring system differed between normal and VE-deficient mice after local X-irradiation (50 Gy). Similarly, there was no difference in the levels of the ascorbyl radical between the groups, although they were higher in irradiated skin than non-irradiated skin. X-irradiation increased the amount of Bax protein in the skin of normal mice both in the latent and acute inflammatory stages, time- and dose-dependently. The increase was associated with an increase in cytochrome c in the cytosolic fraction, indicating that apoptosis was also promoted by the irradiation. The increase in Bax protein correlated well with the thickness of the skin. Although a deficiency in VE should lower resistance to free radicals in the mitochondrial membrane and thus enhance radiation-induced Bax expression and apoptosis, it actually attenuated the increase in Bax protein caused by irradiation.

  10. Lowbush blueberries inhibit scavenger receptors CD36 and SR-A expression and attenuate foam cell formation in ApoE-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Blueberries have recently been reported to reduce atherosclerotic lesion progression in apoE deficient (apoE-/-) mice. However, the underlying mechanisms are not fully understood. The objective of this study was to determine whether blueberries altered scavenger receptors expression and foam cell fo...

  11. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice.

    PubMed

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-05-16

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.

  12. Deficiency of endothelial CXCR4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice.

    PubMed

    Noels, Heidi; Zhou, Baixue; Tilstam, Pathricia V; Theelen, Wendy; Li, Xiaofeng; Pawig, Lukas; Schmitz, Corinna; Akhtar, Shamima; Simsekyilmaz, Sakine; Shagdarsuren, Erdenechimeg; Schober, Andreas; Adams, Ralf H; Bernhagen, Jürgen; Liehn, Elisa A; Döring, Yvonne; Weber, Christian

    2014-06-01

    The Cxcl12/Cxcr4 chemokine ligand/receptor axis mediates the mobilization of smooth muscle cell progenitors, driving injury-induced neointimal hyperplasia. This study aimed to investigate the role of endothelial Cxcr4 in neointima formation. β-Galactosidase staining using bone marrow x kinase (Bmx)-CreER(T2) reporter mice and double immunofluorescence revealed an efficient and endothelial-specific deletion of Cxcr4 in Bmx-CreER(T2+) compared with Bmx-CreER(T2-) Cxcr4-floxed apolipoprotein E-deficient (Apoe(-/-)) mice (referred to as Cxcr4(EC-KO)ApoE(-/-) and Cxcr4(EC-WT) ApoE(-/-), respectively). Endothelial Cxcr4 deficiency significantly increased wire injury-induced neointima formation in carotid arteries from Cxcr4(EC-KO)ApoE(-/-) mice. The lesions displayed a higher number of macrophages, whereas the smooth muscle cell and collagen content were reduced. This was associated with a significant reduction in reendothelialization and endothelial cell proliferation in injured Cxcr4(EC-KO)ApoE(-/-) carotids compared with Cxcr4(EC-WT)ApoE(-/-) controls. Furthermore, stimulation of human aortic endothelial cells with chemokine (C-X-C motif) ligand 12 (CXCL12) significantly enhanced their wound-healing capacity in an in vitro scratch assay, an effect that could be reversed with the CXCR4 antagonist AMD3100. Also, flow cytometric analysis showed a reduced mobilization of Sca1(+)Flk1(+)Cd31(+) and of Lin(-)Sca1(+) progenitors in Cxcr4(EC-KO) ApoE(-/-) mice after vascular injury, although Cxcr4 surface expression was unaltered. No differences could be detected in plasma concentrations of Cxcl12, vascular endothelial growth factor, sphingosine 1-phosphate, or Flt3 (fms-related tyrosine kinase 3) ligand, all cytokines with an established role in progenitor cell mobilization. Nonetheless, double immunofluorescence revealed a significant reduction in local endothelial Cxcl12 staining in injured carotids from Cxcr4(EC-KO)ApoE(-/-) mice. Endothelial Cxcr4 is crucial for

  13. STAT4 deficiency reduces the development of atherosclerosis in mice.

    PubMed

    Taghavie-Moghadam, Parésa L; Gjurich, Breanne N; Jabeen, Rukhsana; Krishnamurthy, Purna; Kaplan, Mark H; Dobrian, Anca D; Nadler, Jerry L; Galkina, Elena V

    2015-11-01

    Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p < 0.001) in plaque burden in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice fed chow diet and significantly attenuated atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Deficiency of Endogenous Acute Phase Serum Amyloid A Does Not Impact Atherosclerotic Lesions in ApoE-/- Mice

    PubMed Central

    De Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Rateri, Debra L; Howatt, Deborah A; Balakrishnan, Anju; Ji, Ailing; Shridas, Preetha; Thompson, Joel C; van der Westhuyzen, Deneys R; Tannock, Lisa R; Daugherty, Alan; Webb, Nancy R; De Beer, Frederick C

    2014-01-01

    Objective Although elevated plasma concentrations of serum amyloid A (SAA) are strongly associated with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. Approach and Results ApoE-/- mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1 (SAAWT and SAAKO, respectively), were fed a normal rodent diet for 50 weeks. Female, but not male SAAKO mice had a modest increase (22%; p ≤ 0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared to SAAWT mice that did not impact the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not impact lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between SAAKO and SAAWT mice in either gender. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had no effect on diet-induced alterations in plasma cholesterol, triglyceride or cytokine concentrationsn or on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. Conclusions The absence of endogenous SAA1.1 and 2.1 does not impact atherosclerotic lipid deposition in apoE-/- mice fed either normal or Western diets. PMID:24265416

  15. Short-term treatment with a 2-carba analog of cyclic phosphatidic acid induces lowering of plasma cholesterol levels in ApoE-deficient mice.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu; Murakmi-Murofushi, Kimiko

    2016-04-22

    Plasma cholesterol levels are associated with an increased risk of developing atherosclerosis. An elevated low-density lipoprotein cholesterol (LDL-C) level is a hallmark of hypercholesterolemia in metabolic syndrome. Our previous study suggested that when acetylated LDL (AC-LDL) was co-applied with a PPARγ agonist, rosiglitazone (ROSI), many oil red O-positive macrophages could be observed. However, addition of cyclic phosphatidic acid (cPA) to ROSI-stimulated macrophages completely abolished oil red O-stained cells, indicating that cPA inhibits PPARγ-regulated AC-LDL uptake. This study aimed to determine whether metabolically stabilized cPA, in the form of a carba-derivative of cPA (2ccPA), could reduce plasma cholesterol levels and affect the expression of genes related to atherosclerosis in apolipoprotein E-knockout (apoE(-/-)) mice. 2ccPA reduced LDL-C levels in these mice (n = 3) from 460 to 330 mg/ml, from 420 to 350 mg/ml, and 420 to 281 mg/ml under a western-type diet. 2ccPA also reduced expression of lipid metabolism-related genes, cytokines, and chemokines in ApoE-deficient mice on a high-fat diet. Taken together, these results suggest that 2ccPA governs anti-atherogenic activities in the carotid arteries of apoE-deficient mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    PubMed

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  17. Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice

    PubMed Central

    Yamamoto, Suguru; Zuo, Yiqin; Ma, Ji; Yancey, Patricia G.; Hunley, Tracy E.; Motojima, Masaru; Fogo, Agnes B.; Linton, MacRae F.; Fazio, Sergio; Ichikawa, Iekuni

    2011-01-01

    Background. Accelerated atherosclerosis and increased cardiovascular events are not only more common in chronic kidney disease (CKD) but are more resistant to therapeutic interventions effective in the general population. The oral charcoal adsorbent, AST-120, currently used to delay start of dialysis, reduces circulating and tissue uremic toxins, which may contribute to vasculopathy, including atherosclerosis. We, therefore, investigated whether AST-120 affects CKD-induced atherosclerosis. Methods. Apolipoprotein E-deficient mice, a model of atherosclerosis, underwent uninephrectomy, subtotal nephrectomy or sham operation at 8 weeks of age and were treated with AST-120 after renal ablation. Atherosclerosis and its characteristics were assessed at 25 weeks of age. Results. Uninephrectomy and subtotal nephrectomised mice had significantly increased acceleration of atherosclerosis. AST-120 treatment dramatically reduced the atherosclerotic burden in mice with kidney damage, while there was no beneficial effect in sham-operated mice. The benefit was independent of blood pressure, serum total cholesterol or creatinine clearance. AST-120 significantly decreased necrotic areas and lessened aortic deposition of the uremic toxin indoxyl sulfate without affecting lesional macrophage or collagen content. Furthermore, AST-120 lessened aortic expression of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-1β messenger RNA. Conclusions. AST-120 lessens the extent of atherosclerosis induced by kidney injury and alters lesion characteristics in apolipoprotein E-deficient mice, resulting in plaques with a more stable phenotype with less necrosis and reduced inflammation. PMID:21245127

  18. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice

    PubMed Central

    Guns, Pieter-Jan DF; Hendrickx, Jan; Van Assche, Tim; Fransen, Paul; Bult, Hidde

    2010-01-01

    Background and purpose: P2Y nucleotide receptors are involved in the regulation of vascular tone, smooth muscle cell (SMC) proliferation and inflammatory responses. The present study investigated whether they are involved in atherosclerosis. Experimental approach: mRNA of P2Y receptors was quantified (RT-PCR) in atherosclerotic and plaque-free aorta segments of apolipoprotein E-deficient (apoE–/–) mice. Macrophage activation was assessed in J774 macrophages, and effects of non-selective purinoceptor antagonists on atherosclerosis were evaluated in cholesterol-fed apoE–/– mice. Key results: P2Y6 receptor mRNA was consistently elevated in segments with atherosclerosis, whereas P2Y2 receptor expression remained unchanged. Expression of P2Y1 or P2Y4 receptor mRNA was low or undetectable, and not influenced by atherosclerosis. P2Y6 mRNA expression was higher in cultured J774 macrophages than in cultured aortic SMCs. Furthermore, immunohistochemical staining of plaques demonstrated P2Y6-positive macrophages, but few SMCs, suggesting that macrophage recruitment accounted for the increase in P2Y6 receptor mRNA during atherosclerosis. In contrast to ATP, the P2Y6-selective agonist UDP increased mRNA expression and activity of inducible nitric oxide synthase and interleukin-6 in J774 macrophages; this effect was blocked by suramin (100–300 µM) or pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS, 10–30 µM). Finally, 4-week treatment of cholesterol-fed apoE–/– mice with suramin or PPADS (50 and 25 mg·kg−1·day−1 respectively) reduced plaque size, without changing plaque composition (relative SMC and macrophage content) or cell replication. Conclusions and implications: These results suggest involvement of nucleotide receptors, particularly P2Y6 receptors, during atherosclerosis, and warrant further research with selective purinoceptor antagonists or P2Y6 receptor-deficient mice. PMID:20050854

  19. Effect of chronic treatment with acetylsalicylic acid and clopidogrel on atheroprogression and atherothrombosis in ApoE-deficient mice in vivo.

    PubMed

    Schulz, Christian; Konrad, Ildiko; Sauer, Susanne; Orschiedt, Lena; Koellnberger, Maria; Lorenz, Reinhard; Walter, Ulrich; Massberg, Steffen

    2008-01-01

    Acetylsalicylic acid (ASA) and the thienopyridine clopidogrel are established anti-platelet drugs that significantly reduce secondary cardiovascular events in patients with manifest atherosclerosis. However, their impact on atherosclerotic lesion development remains controversial. Four-week-old ApoE-deficient mice were randomly assigned to four groups receiving a cholesterol diet together with either ASA (5 mg/kg), or clopidogrel (25 mg/kg), or a combination of both ASA and clopidogrel, or vehicle for 8-12 weeks. Using intravital microscopy we found that daily administration of ASA in combination with clopidogrel reduces platelet thrombus formation following rupture of atherosclerotic plaque in vivo by approximately 50%. However, therapy with ASA or clopidogrel alone, or in combination for a period of 8-12 weeks had no significant effect on adhesion of platelets to dysfunctional endothelial cells or on atherosclerotic lesion formation in the aortic root or the carotid artery. In conclusion, anti-platelet therapy is effective in reducing platelet adhesion and subsequent thrombus formation following rupture of atherosclerotic plaque in vivo. However, our data do not support a role of either drug in the primary prevention of atherosclerosis in ApoE-deficient mice.

  20. Energy homeostasis in leptin deficient Lepob/ob mice.

    PubMed

    Skowronski, Alicja A; Ravussin, Yann; Leibel, Rudolph L; LeDuc, Charles A

    2017-01-01

    Maintenance of reduced body weight is associated both with reduced energy expenditure per unit metabolic mass and increased hunger in mice and humans. Lowered circulating leptin concentration, due to decreased fat mass, provides a primary signal for this response. However, leptin deficient (Lepob/ob) mice (and leptin receptor deficient Zucker rats) reduce energy expenditure following weight reduction by a necessarily non-leptin dependent mechanisms. To identify these mechanisms, Lepob/ob mice were fed ad libitum (AL group; n = 21) or restricted to 3 kilocalories of chow per day (CR group, n = 21). After losing 20% of initial weight (in approximately 2 weeks), the CR mice were stabilized at 80% of initial body weight for two weeks by titrated refeeding, and then released from food restriction. CR mice conserved energy (-17% below predicted based on body mass and composition during the day; -52% at night); and, when released to ad libitum feeding, CR mice regained fat and lean mass (to AL levels) within 5 weeks. CR mice did so while their ad libitum caloric intake was equal to that of the AL animals. While calorically restricted, the CR mice had a significantly lower respiratory exchange ratio (RER = 0.89) compared to AL (0.94); after release to ad libitum feeding, RER was significantly higher (1.03) than in the AL group (0.93), consistent with their anabolic state. These results confirm that, in congenitally leptin deficient animals, leptin is not required for compensatory reduction in energy expenditure accompanying weight loss, but suggest that the hyperphagia of the weight-reduced state is leptin-dependent.

  1. Leptin Deficiency and Diet-Induced Obesity Reduce Hypothalamic Kisspeptin Expression in Mice

    PubMed Central

    Howell, Christopher S.; Roa, Juan; Augustine, Rachael A.; Grattan, David R.; Anderson, Greg M.

    2011-01-01

    The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect. PMID:21325051

  2. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice.

    PubMed

    Quennell, Janette H; Howell, Christopher S; Roa, Juan; Augustine, Rachael A; Grattan, David R; Anderson, Greg M

    2011-04-01

    The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect.

  3. α-Lipoic Acid Protects Diabetic Apolipoprotien E-deficient Mice from Nephropathy

    PubMed Central

    Yi, Xianwen; Nickeleit, Volker; James, Leighton R; Maeda, Nobuyo

    2010-01-01

    Aim Both hyperglycemia and hyperlipidemia increase oxidative stress, and contribute to the development of diabetic nephropathy (DN). We investigated effects of α-lipoic acid, a natural antioxidant and a cofactor in the multienzyme complexes, on the development of DN in diabetic apolipoprotein E-deficient mice. Methods Twelve-weeks-old male apoE−/− mice on C57BL/6J genetic background were made diabetic with injections of streptozotocin (STZ). STZ-treated diabetic apoE−/− mice and non-diabetic control were fed with a synthetic high fat (HF) diet with or without LA supplementation. Multiple parameters including plasma glucose, cholesterol, oxidative stress markers, cytokines, and kidney cortex gene expression, and glomerular morphology were evaluated. Results LA supplementation markedly protected the beta cells and reduced cholesterol levels, attenuated albuminuria and glomerular mesangial expansion in the diabetic mice. Reno-protection by LA was equally effective regardless of whether the dietary supplementation was started 4 weeks before, simultaneously with, or 4 weeks after the induction of diabetes by STZ. LA supplementation significantly improved DN and oxidative stress in the diabetic mice. Severity of albuminuria was positively correlated with level of thiobarbituric acid reactive substances (TBARs) in the kidney (r2=0.62, P<0.05). Diabetes significantly changed the kidney expression of Rage, Sod2, Tgfb1 and Ctgf, Pdp2, nephrin and Lias. LA supplementation corrected these changes except that it further suppressed the expression of the Lias gene coding for lipoic acid synthase. Conclusions Our data indicate that LA supplementation effectively attenuates the development and progression of DN through its antioxidant effect as well as enhancing glucose oxidation. PMID:20801062

  4. Deficiency of cyclin-dependent kinase inhibitors p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apolipoprotein E-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyuerek, Levent M.; Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goeteborg, SE-405 30; Boehm, Manfred

    2010-05-28

    Cyclin-dependent kinase inhibitors, p21{sup Cip1} and p27{sup Kip1}, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21{sup Cip1} or p27{sup Kip1} in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE{sup -/-} aortae, both apoE{sup -/-}/p21{sup -/-} and apoE{sup -/-}/p27{sup -/-} aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27{sup Kip1} accelerated plaque formation significantly more than p21{sup -/-} in apoE{sup -/-} mice. This increased plaque formation was in parallel with increased intima/mediamore » area ratios. Deficiency of p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apoE{sup -/-} mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.« less

  5. Aquaporin-1 Deficiency Protects Against Myocardial Infarction by Reducing Both Edema and Apoptosis in Mice

    PubMed Central

    Li, Lihua; Weng, Zhiyong; Yao, Chenjuan; Song, Yuanlin; Ma, Tonghui

    2015-01-01

    Many studies have determined that AQP1 plays an important role in edema formation and resolution in various tissues via water transport across the cell membrane. The aim of this research was to determine both if and how AQP1 is associated with cardiac ischemic injury, particularly the development of edema following myocardial infarction (MI). AQP1+/+ and AQP1−/− mice were used to create the MI model. Under physiological conditions, AQP1−/− mice develop normally; however, in the setting of MI, they exhibit cardioprotective properties, as shown by reduced cardiac infarct size determined via NBT staining, improved cardiac function determined via left ventricular catheter measurements, decreased AQP1-dependent myocardial edema determined via water content assays, and decreased apoptosis determined via TUNEL analysis. Cardiac ischemia caused by hypoxia secondary to AQP1 deficiency stabilized the expression of HIF-1α in endothelial cells and subsequently decreased microvascular permeability, resulting in the development of edema. The AQP1-dependent myocardial edema and apoptosis contributed to the development of MI. AQP1 deficiency protected cardiac function from ischemic injury following MI. Furthermore, AQP1 deficiency reduced microvascular permeability via the stabilization of HIF-1α levels in endothelial cells and decreased cellular apoptosis following MI. PMID:26348407

  6. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    PubMed

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  7. Hawthorn fruit attenuates atherosclerosis by improving the hypolipidemic and antioxidant activities in apolipoprotein e-deficient mice.

    PubMed

    Zhang, Yuying; Zhang, Liang; Geng, Yue; Geng, Yunhong

    2014-01-01

    The protective effects of hawthorn fruit against atherosclerosis and the potential underlying mechanisms of this fruit in improving the hypolipidemic and antioxidant activities were investigated in apolipoprotein E-deficient(apoE(-/-)) mice. ApoE(-/-) mice were divided into a control group(n=10) and hawthorn fruit group(n=10). The mean size of the lesions in the aortic root was assessed, and the serum glucose levels, insulin levels, lipid profiles, total antioxidant capacity(T-AOC) and superoxide dismutase(SOD) and glutathione peroxidase(GSH-PX) activities were measured. The mRNA levels of hepatic genes related to lipid metabolism and antioxidant enzymes were examined. The hawthorn fruit group mice developed significantly decreased(p<0.05) atherosclerotic lesions. The levels of serum lipids decreased significantly(p<0.05) and the levels of cholesterol/triglycerides, including very-low-density lipoprotein(VLDL) and low-density lipoprotein(LDL), decreased in the hawthorn fruit group. The hawthorn fruit mice exhibited significantly increased T-AOC values and SOD and GSH-PX activities(p<0.05). The hepatic fatty acid synthase(FAS) and sterol regulatory element binding protein-1c(SREBP-1c) mRNA levels were reduced by 42%(p<0.05) and 23% p<0.05) in the mice fed the hawthorn fruit diet compared with that observed in the mice fed a standard diet. However, the hepatic hydroxymethylglutaryl CoA reductase(HMG-CoAR) mRNA levels showed no significant differences between the two groups. The mRNA expression levels of the antioxidant enzymes(SOD1, SOD2, Gpx3) were higher(p<0.05) in the livers of the hawthorn fruit diet mice compared with those observed in the control mice. Hawthorn fruit exerts a protective effect against atherosclerosis in apoE(-/-) mice by improving the hypolipidemic and antioxidant activities.

  8. Omapatrilat, a dual angiotensin-converting enzyme and neutral endopeptidase inhibitor, prevents fatty streak deposit in apolipoprotein E-deficient mice.

    PubMed

    Arnal, J F; Castano, C; Maupas, E; Mugniot, A; Darblade, B; Gourdy, P; Michel, J B; Bayard, F

    2001-04-01

    Angiotensin-converting enzyme (ACE) is mainly responsible for converting angiotensin I (AI) to angiotensin II (AII), and ACE inhibitors prevent atherosclerosis in animal models. Neutral endopeptidase 24.11 (NEP) degrades substance P, kinins and atrial natriuretic peptide (ANP), and aortic wall NEP activity was found to be increased in atherosclerosis. In the present study, we have evaluated the effect of candoxatril, a NEP inhibitor, and of omapatrilat, a dual ACE and NEP inhibitor, on the development of fatty streak in apolipoprotein E (apoE)-deficient mice. Groups of ten male apoE-deficient mice were given either placebo, candoxatril 50 mg/kg per day, or omapatrilat 10, or 100 mg/kg per day for 4 months. None of the treatments influenced body weight, serum total or HDL-cholesterol. Compared with the placebo, candoxatril did not protect the mice from fatty streak deposit. In contrast, omapatrilat dose dependently inhibited the constitution of fatty streak in apoE-deficient mice. The precise advantages of the dual ACE and NEP inhibition versus the inhibition of only ACE should now be considered in the prevention of atherosclerosis as well as in the occurrence of its complications.

  9. Atherosclerosis and leukocyte-endothelial adhesive interactions are increased following acute myocardial infarction in apolipoprotein E deficient mice.

    PubMed

    Wright, Andrew P; Öhman, Miina K; Hayasaki, Takanori; Luo, Wei; Russo, Hana M; Guo, Chiao; Eitzman, Daniel T

    2010-10-01

    To determine the effect of myocardial infarction (MI) on progression of atherosclerosis in apolipoprotein E deficient (ApoE-/-) mice. MI was induced following left anterior descending coronary artery (LAD) ligation in wild-type (WT) (n=9) and ApoE-/- (n=25) mice. Compared to sham-operated animals, MI mice demonstrated increased intravascular leukocyte rolling and firm adhesion by intravital microscopy, reflecting enhanced systemic leukocyte-endothelial interactions. To determine if MI was associated with accelerated atherogenesis, LAD ligation was performed in ApoE-/- mice. Six weeks following surgery, atherosclerosis was quantitated throughout the arterial tree by microdissection and Oil-Red-O staining. There was 1.6-fold greater atherosclerotic burden present in ApoE-/- MI mice compared to sham-operated mice. Acute MI accelerates atherogenesis in mice. These results may be related to the increased risk of recurrent ischemic coronary events following MI in humans. Published by Elsevier Ireland Ltd.

  10. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice.

    PubMed

    Xu, Jialin; Donepudi, Ajay C; More, Vijay R; Kulkarni, Supriya R; Li, Liya; Guo, Liangran; Yan, Bingfang; Chatterjee, Tapan; Weintraub, Neal; Slitt, Angela L

    2015-02-01

    To evaluate whether Nrf2 deficiency impacts insulin resistance and lipid accumulation in liver and white adipose tissue. Lep(ob/ob) mice (OB) with targeted Nrf2 deletion (OB-Nrf2KO) were generated. Pathogenesis of obesity and type 2 diabetes was measured in C57BL/6J, Nrf2KO, OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance, and very low-density lipoprotein (VLDL) secretion were determined between OB and OB-Nrf2KO mice. OB-Nrf2KO mice exhibited decreased white adipose tissue mass and decreased adipogenic and lipogenic gene expression compared with OB mice. Nrf2 deficiency prolonged hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-stimulated Akt phosphorylation. In OB mice, Nrf2 deficiency decreased hepatic lipid accumulation, decreased peroxisome proliferator-activated receptor γ expression and nicotinamide adenine dinucleotide phosphate (NADPH) content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-cholesterol content, and enhanced apolipoprotein B expression, suggesting Nrf2 deficiency caused dyslipidemia in these mice. Nrf2 deficiency in Lep(ob/ob) mice reduced white adipose tissue mass and prevented hepatic lipid accumulation but induced insulin resistance and dyslipidemia. This study indicates a dual role of Nrf2 during metabolic dysregulation-increasing lipid accumulation in liver and white adipose tissue but preventing lipid accumulation in obese mice. © 2014 The Obesity Society.

  11. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    PubMed

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  12. SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation

    PubMed Central

    Mohanty, Joy G.; Nagababu, Enika; Friedman, Jeffrey S.; Rifkind, Joseph M.

    2013-01-01

    Among the three types of super oxide dismutases (SODs) known, SOD2 deficiency is lethal in neonatal mice owing to cardiomyopathy caused by severe oxidative damage. SOD2 is found in red blood cell (RBC) precursors, but not in mature RBCs. To investigate the potential damage to mature RBCs resulting from SOD2 deficiency in precursor cells, we studied RBCs from mice in which fetal liver stem cells deficient in SOD2 were capable of efficiently rescuing lethally irradiated host animals. These transplanted animals lack SOD2 only in hematopoietically generated cells and live longer than SOD2 knockouts. In these mice, approximately 2.8% of their total RBCs in circulation are iron-laden reticulocytes, with numerous siderocytic granules and increased protein oxidation similar to that seen in sideroblastic anemia. We have studied the RBC deformability and oxidative stress in these animals and the control group by measuring them with a microfluidic ektacytometer and assaying fluorescent heme degradation products with a fluorimeter, respectively. In addition, the rate of hemoglobin oxidation in RBCs from these mice and the control group were measured spectrophotometrically. The results show that RBCs from these SOD2-deficient mice have reduced deformability, increased heme degradation products, and an increased rate of hemoglobin oxidation compared with control animals, indicative of increased RBC oxidative stress. PMID:23142655

  13. Reduced recruitment of inflammatory cells in a contact hypersensitivity response in P-selectin-deficient mice

    PubMed Central

    1995-01-01

    The inflammatory response at sites of contact hypersensitivity induced by oxazolone was examined in the ears of P-selectin-deficient and wild- type mice. Accumulation of CD4+ T lymphocytes, monocytes, and neutrophils was reduced significantly in the mutant mice, as well as mast cell degranulation. In contrast, there was no significant difference in vascular permeability or edema between the two genotypes. The results demonstrate a role for P-selectin in recruitment of CD4+ T lymphocytes and show that P-selectin plays a role in long-term inflammation as well as in acute responses. PMID:7539046

  14. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice

    PubMed Central

    Prasher, Joanna M; Lalai, Astrid S; Heijmans-Antonissen, Claudia; Ploemacher, Robert E; Hoeijmakers, Jan H J; Touw, Ivo P; Niedernhofer, Laura J

    2005-01-01

    The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1−/− mice was compared to that in young and old wild-type mice. Ercc1−/− mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1−/− mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa−/− mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging. PMID:15692571

  15. Neuroprotective effect against axonal damage-induced retinal ganglion cell death in apolipoprotein E-deficient mice through the suppression of kainate receptor signaling.

    PubMed

    Omodaka, Kazuko; Nishiguchi, Koji M; Yasuda, Masayuki; Tanaka, Yuji; Sato, Kota; Nakamura, Orie; Maruyama, Kazuichi; Nakazawa, Toru

    2014-10-24

    Apolipoprotein E (ApoE) plays important roles in the body, including a carrier of cholesterols, an anti-oxidant, and a ligand for the low-density lipoprotein receptors. In the nervous system, the presence of ApoE4 isoforms is associated with Alzheimer's disease. ApoE gene polymorphisms are also associated with glaucoma, but the function of ApoE in the retina remains unclear. In this study, we investigated the role of ApoE in axonal damage-induced RGC death. ApoE was detected in the astrocytes and Müller cells in the wild-type (WT) retina. RGC damage was induced in adult ApoE-deficient mice (male, 10-12 weeks old) through ocular hypertension (OH), optic nerve crush (NC), or by administering kainic acid (KA) intravitreally. The WT mice were treated with a glutamate receptor antagonist (MK801 or CNQX) 30 min before performing NC or left untreated. Seven days later, the retinas were flat mounted and Fluorogold-labeled RGCs were counted. We found that the RGCs in the ApoE-deficient mice were resistant to OH-induced RGC death and optic nerve degeneration 4 weeks after induction. In WT mice, NC effectively induced RGC death (control: 4085±331 cells/mm(2), NC: 1728±170 cells/mm(2)). CNQX, an inhibitor of KA receptors, suppressed this RGC death (3031±246 cells/mm(2)), but MK801, an inhibitor of NMDA receptors, did not (1769±212 cells/mm(2)). This indicated the involvement of KA receptor signaling in NC-induced RGC death. We found that NC- or KA-induced RGC death was significantly less in the ApoE-deficient mice than in the WT mice. These data suggest that the ApoE deficiency had a neuroprotective effect against axonal damage-induced RGC death by suppressing the KA receptor signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Exogenous supplement of N-acetylneuraminic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Guo, Shoudong; Tian, Hua; Dong, Rongrong; Yang, Nana; Zhang, Ying; Yao, Shutong; Li, Yongjun; Zhou, Yawei; Si, Yanhong; Qin, Shucun

    2016-08-01

    Previous studies investigating the correlation between plasma sialic acid and the severity of atherosclerosis present conflicting results. In atherosclerosis patients, plasma levels of N-acetylneuraminic acid (NANA) are increased; however, the underlying mechanisms have not yet been clarified. We assume the increased NANA level may be a compensatory mechanism due to oxidative stress and/or inflammation. The aim of this study is to investigate whether supplementation of NANA could attenuate the progression of atherosclerosis. Exogenous NANA was used to determine its effect on apolipoprotein E-deficient (apoE(-/-)) mice taking natural quercetin as a positive control. The effect of NANA on lipid lowering, antioxidant activity and anti-inflammation was investigated by methods of molecular biology. 1) NANA administration decreased 18.9% of the atherosclerotic plaque formation in the aorta and 26.7% of the lipid deposition in the liver of high-fat diet apoE(-/-) mice; 2) notably, NANA treatment reduced 62.6% of the triglyceride by improving lipoprotein lipase activity; 3) NANA lowered 17.5% of the plasma total cholesterol by up-regulating reverse cholesterol transport (RCT)-related protein expression such as ATP-binding cassette transporter (ABC) G1 and ABCG5 in liver or small intestine; 4) NANA administration notably decreased oxidative stress by increasing antioxidant enzymes activity and protein expression of paraoxonase 1 and 2; 5) NANA markedly reduced tumour necrosis factor-α and intercellular adhesion molecule-1 expression in aorta and liver. NANA exhibited triglyceride lowering, anti-oxidation, and RCT promoting activities, and therefore NANA supplementation may be a new strategy for prevention and treatment of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    PubMed

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C; Lambert, Paul F

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  18. Increased bone formation in mice lacking apolipoprotein E.

    PubMed

    Schilling, Arndt F; Schinke, Thorsten; Münch, Christian; Gebauer, Matthias; Niemeier, Andreas; Priemel, Matthias; Streichert, Thomas; Rueger, Johannes M; Amling, Michael

    2005-02-01

    ApoE is a plasma protein that plays a major role in lipoprotein metabolism. Here we describe that ApoE expression is strongly induced on mineralization of primary osteoblast cultures. ApoE-deficient mice display an increased bone formation rate compared with wildtype controls, thereby showing that ApoE has a physiologic function in bone remodeling. Apolipoprotein E (ApoE) is a protein component of lipoproteins and facilitates their clearance from the circulation. This is confirmed by the phenotype of ApoE-deficient mice that have high plasma cholesterol levels and spontaneously develop atherosclerotic lesions. The bone phenotype of these mice has not been analyzed to date, although an association between certain ApoE alleles and BMD has been reported. Primary osteoblasts were isolated from newborn mouse calvariae and mineralized ex vivo. A genome-wide expression analysis was performed during the course of differentiation using the Affymetrix gene chip system. Bones from ApoE-deficient mice and wildtype controls were analyzed using radiography, micro CT imaging, and undecalcified histology. Cellular activities were assessed using dynamic histomorphometry and by measuring urinary collagen degradation products. Lipoprotein uptake assays were performed with (125)I-labeled triglyceride-rich lipoprotein-remnants (TRL-R) using primary osteoblasts from wildtype and ApoE-deficient mice. Serum concentrations of osteocalcin were determined by radioimmunoassay after hydroxyapatite chromatography. ApoE expression is strongly induced on mineralization of primary osteoblast cultures ex vivo. Mice lacking ApoE display a high bone mass phenotype that is caused by an increased bone formation rate, whereas bone resorption is not affected. This phenotype may be explained by a decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin in the serum of ApoE-deficient mice. The specific induction of ApoE gene expression

  19. The Effects of GATA-1 and NF-E2 Deficiency on Bone Biomechanical, Biochemical, and Mineral Properties

    PubMed Central

    Kacena, Melissa A.; Gundberg, Caren M.; Kacena, William J.; Landis, William J.; Boskey, Adele L.; Bouxsein, Mary L.; Horowitz, Mark C.

    2014-01-01

    Mice deficient in GATA-1 or NF-E2, transcription factors required for normal megakaryocyte (MK) development, have increased numbers of MKs, reduced numbers of platelets, and a striking high bone mass phenotype. Here, we show the bone geometry, microarchitecture, biomechanical, biochemical, and mineral properties from these mutant mice. We found that the outer geometry of the mutant bones was similar to controls, but that both mutants had a striking increase in total bone area (up to a 35% increase) and trabecular bone area (up to a 19% increase). Interestingly, only the NF-E2 deficient mice had a significant increase in cortical bone area (21%) and cortical thickness (27%), which is consistent with the increase in bone mineral density (BMD) seen only in the NF-E2 deficient femurs. Both mutant femurs exhibited significant increases in several biomechanical properties including peak load (up to a 32% increase) and stiffness (up to a 13% increase). Importantly, the data also demonstrate differences between the two mutant mice. GATA-1 deficient femurs break in a ductile manner, whereas NF-E2 deficient femurs are brittle in nature. To better understand these differences, we examined the mineral properties of these bones. Although none of the parameters measured were different between the NF-E2 deficient and control mice, an increase in calcium (21%) and an increase in the mineral/matrix ratio (32%) was observed in GATA-1 deficient mice. These findings appear to contradict biomechanical findings, suggesting the need for further research into the mechanisms by which GATA-1 and NF-E2 deficiency alter the material properties of bone. PMID:23359245

  20. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice.

    PubMed

    d'Uscio, Livius V; Smith, Leslie A; Katusic, Zvonimir S

    2011-12-01

    In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.

  1. High Incidence of HPV-Associated Head and Neck Cancers in FA Deficient Mice Is Associated with E7’s Induction of DNA Damage through Its Inactivation of Pocket Proteins

    PubMed Central

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C.; Lambert, Paul F.

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with ‘high-risk’ HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6’s oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7’s induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs. PMID:24086435

  2. B-vitamin deficiency is protective against DSS-induced colitis in mice

    PubMed Central

    Benight, Nancy M.; Stoll, Barbara; Chacko, Shaji; da Silva, Vanessa R.; Marini, Juan C.; Gregory, Jesse F.; Stabler, Sally P.

    2011-01-01

    Vitamin deficiencies are common in patients with inflammatory bowel disease (IBD). Homocysteine (Hcys) is a thrombogenic amino acid produced from methionine (Met), and its increase in patients with IBD indicates a disruption of Met metabolism; however, the role of Hcys and Met metabolism in IBD is not well understood. We hypothesized that disrupted Met metabolism from a B-vitamin-deficient diet would exacerbate experimental colitis. Mice were fed a B6-B12-deficient or control diet for 2 wk and then treated with dextran sodium sulfate (DSS) to induce colitis. We monitored disease activity during DSS treatment and collected plasma and tissue for analysis of inflammatory tissue injury and Met metabolites. We also quantified Met cycle activity by measurements of in vivo Met kinetics using [1-13C-methyl-2H3]methionine infusion in similarly treated mice. Unexpectedly, we found that mice given the B-vitamin-deficient diet had improved clinical outcomes, including increased survival, weight maintenance, and reduced disease scores. We also found lower histological disease activity and proinflammatory gene expression (TNF-α and inducible nitric oxide synthase) in the colon in deficient-diet mice. Metabolomic analysis showed evidence that these effects were associated with deficient B6, as markers of B12 function were only mildly altered. In vivo methionine kinetics corroborated these results, showing that the deficient diet suppressed transsulfuration but increased remethylation. Our findings suggest that disrupted Met metabolism attributable to B6 deficiency reduces the inflammatory response and disease activity in DSS-challenged mice. These results warrant further human clinical studies to determine whether B6 deficiency and elevated Hcys in patients with IBD contribute to disease pathobiology. PMID:21596995

  3. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvedova, Anna A.; Kisin, Elena R.; Murray, Ashley R.

    2007-06-15

    Exposure of mice to single-walled carbon nanotubes (SWCNTs) induces an unusually robust pulmonary inflammatory response with an early onset of fibrosis, which is accompanied by oxidative stress and antioxidant depletion. The role of specific components of the antioxidant protective system, specifically vitamin E, the major lipid-soluble antioxidant, in the SWCNT-induced reactions has not been characterized. We used C57BL/6 mice, maintained on vitamin E-sufficient or vitamin E-deficient diets, to explore and compare the pulmonary inflammatory reactions to aspired SWCNTs. The vitamin E-deficient diet caused a 90-fold depletion of {alpha}-tocopherol in the lung tissue and resulted in a significant decline of othermore » antioxidants (GSH, ascorbate) as well as accumulation of lipid peroxidation products. A greater decrease of pulmonary antioxidants was detected in SWCNT-treated vitamin E-deficient mice as compared to controls. Lowered levels of antioxidants in vitamin E-deficient mice were associated with a higher sensitivity to SWCNT-induced acute inflammation (total number of inflammatory cells, number of polymorphonuclear leukocytes, released LDH, total protein content and levels of pro-inflammatory cytokines, TNF-{alpha} and IL-6) and enhanced profibrotic responses (elevation of TGF-{beta} and collagen deposition). Exposure to SWCNTs markedly shifted the ratio of cleaved to full-length extracellular superoxide dismutase (EC-SOD). Given that pulmonary levels of vitamin E can be manipulated through diet, its effects on SWCNT-induced inflammation may be of practical importance in optimizing protective strategies.« less

  4. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    PubMed

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  6. The cis-9,trans-11 isomer of conjugated linoleic acid (CLA) lowers plasma triglyceride and raises HDL cholesterol concentrations but does not suppress aortic atherosclerosis in diabetic apoE-deficient mice.

    PubMed

    Nestel, Paul; Fujii, Akihiko; Allen, Terri

    2006-12-01

    Reduction in atherosclerosis has been reported in experimental animals fed mixtures of conjugated linoleic acid (CLA). In this study, the major naturally occurring CLA isomer (cis-9,trans-11) was tested in an atherosclerosis-prone mouse model. In a model of insulin deficient apoE deficient mice, 16 animals were fed for 20 weeks with supplemental CLA (09.%, w/w) and compared with a similar number of mice of this phenotype. A control comparison was made of metabolic changes in non-diabetic apoE deficient mice that develop little atherosclerosis over 20 weeks. At 20 weeks, plasma lipids were measured and aortic atherosclerosis quantified by Sudan staining in the arch, thoracic and abdominal segments. The diabetic apoE deficient mice developed marked dyslipidemia, primarily as cholesterol-enriched chylomicron and VLDL-sized lipoproteins and atherosclerosis in the aortic arch. However, there were no significant differences between CLA fed and non-CLA fed mice in either phenotype in plasma cholesterol concentration (in diabetic: 29.4+/-7.7 and 29.5+/-5.9 mmol/L, respectively) or in the area of aortic arch atherosclerosis (in diabetic: 24.8+/-10.3 and 27.6+/-7.7%, respectively). However, among diabetic mice the triglyceride concentration in triglyceride-rich lipoproteins was significantly lower in those fed CLA (for plasma 2.2+/-0.8 to 1.1+/-0.3 mmol/L; P<0.001), a significant difference that was seen also in the non-diabetic mice in which HDL cholesterol increased significantly with CLA (0.35+/-0.12-0.56+/-0.15 mmol/L). In this atherosclerosis-prone model, the diabetic apoE deficient mouse, supplemental 0.9% CLA (cis-9,trans-11) failed to reduce the severity of aortic atherosclerosis, although plasma triglyceride concentration was substantially lowered and HDL cholesterol raised.

  7. Deficiency of prolyl oligopeptidase in mice disturbs synaptic plasticity and reduces anxiety-like behaviour, body weight, and brain volume.

    PubMed

    Höfling, Corinna; Kulesskaya, Natalia; Jaako, Külli; Peltonen, Iida; Männistö, Pekka T; Nurmi, Antti; Vartiainen, Nina; Morawski, Markus; Zharkovsky, Alexander; Võikar, Vootele; Roßner, Steffen; García-Horsman, J Arturo

    2016-06-01

    Prolyl oligopeptidase (PREP) has been implicated in neurodegeneration and neuroinflammation and has been considered a drug target to enhance memory in dementia. However, the true physiological role of PREP is not yet understood. In this paper, we report the phenotyping of a mouse line where the PREP gene has been knocked out. This work indicates that the lack of PREP in mice causes reduced anxiety but also hyperactivity. The cortical volumes of PREP knockout mice were smaller than those of wild type littermates. Additionally, we found increased expression of diazepam binding inhibitor protein in the cortex and of the somatostatin receptor-2 in the hippocampus of PREP knockout mice. Furthermore, immunohistochemistry and tail suspension test revealed lack of response of PREP knockout mice to lipopolysaccharide insult. Further analysis revealed significantly increased levels of polysialylated-neural cell adhesion molecule in PREP deficient mice. These findings might be explained as possible alteration in brain plasticity caused by PREP deficiency, which in turn affect behaviour and brain development. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  8. Imbalanced gp130 signalling in ApoE-deficient mice protects against atherosclerosis.

    PubMed

    Jones, Gareth W; McLeod, Louise; Kennedy, Catherine L; Bozinovski, Steven; Najdovska, Meri; Jenkins, Brendan J

    2015-02-01

    Interleukin (IL)-6 is a key modulator of the acute phase response (APR), and while both are implicated in atherosclerosis, the pathological role of specific IL-6 signalling cascades is ill-defined. Since IL-6 employs the cytokine receptor gp130 to primarily activate the STAT3 pathway, here we evaluate whether gp130-dependent STAT3 activation modulates atherosclerosis. High-fat diet-induced atherosclerosis was established in ApoE(-/-) mice crossed with gp130(F/F) knock-in mice displaying elevated gp130-dependent STAT3 activation and production of the APR protein, serum amyloid A (SAA). Also generated were gp130(F/F):Stat3(-/+):ApoE(-/-) mice displaying genetically-normalised STAT3 activation and SAA levels, and bone marrow chimeras involving ApoE(-/-) and gp130(F/F):ApoE(-/-) mice. At 10 weeks post high-fat diet, aortic atherosclerotic lesions, including the presence of CD68(+) macrophages, and plasma lipid and SAA profiles, were assessed. Aortic plaque development and plasma triglyceride levels in gp130(F/F):ApoE(-/-) mice were significantly reduced (3-fold, P < 0.001) compared to ApoE(-/-) littermates. By contrast, in gp130(F/F):ApoE(-/-) mice, atherosclerotic plaques contained augmented CD68(+) macrophage infiltrates, and plasma SAA levels were elevated, compared to ApoE(-/-) mice. Atherosclerotic lesion development and plasma triglyceride levels in gp130(F/F):ApoE(-/-) and gp130(F/F):Stat3(-/+):ApoE(-/-) mice were comparable, despite a significant (P < 0.05) reduction in macrophage numbers in lesions, and also plasma SAA levels, in gp130(F/F):Stat3(-/+):ApoE(-/-) mice. Aortic plaque development and plasma triglyceride levels were comparable in ApoE(-/-) mice reconstituted with gp130(F/F):ApoE(-/-) (ApoE(F/F:ApoE)) or ApoE(-/-) (ApoE(ApoE)) bone marrow cells. Deregulation of gp130/STAT3 signalling augments the APR and macrophage infiltration during atherosclerosis without impacting on the development of aortic plaques. Copyright © 2014 Elsevier Ireland Ltd

  9. Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis.

    PubMed

    Harja, Evis; Chang, Jong Sun; Lu, Yan; Leitges, Michael; Zou, Yu Shan; Schmidt, Ann Marie; Yan, Shi-Fang

    2009-04-01

    Endothelial activation is a central initiating event in atheroma formation. Evidence from our laboratory and others has demonstrated links between activation of early growth response-1 (Egr-1) and atherosclerosis and also has demonstrated that activated protein kinase C (PKC) betaII is a critical upstream regulator of Egr-1 in response to vascular stress. We tested the role of PKCbeta in regulating key events linked to atherosclerosis and show that the aortas of apoE(-/-) mice display an age-dependent increase in PKCbetaII antigen in membranous fractions vs. C57BL/6 animals with a approximately 2-fold increase at age 6 wk and a approximately 4.5-fold increase at age 24 wk. Consistent with important roles for PKCbeta in atherosclerosis, a significant decrease in atherosclerotic lesion area was evident in PKCbeta(-/-)/apoE(-/-) vs. apoE(-/-) mice by approximately 5-fold, in parallel with significantly reduced vascular transcripts for Egr-1 and matrix metalloproteinase (MMP)-2 antigen and activity vs. apoE(-/-) mice. Significant reduction in atherosclerosis of approximately 2-fold was observed in apoE(-/-) mice fed ruboxistaurin chow (PKCbeta inhibitor) vs. vehicle. In primary murine and human aortic endothelial cells, the PKCbeta-JNK mitogen-activated protein kinase pathway importantly contributes to oxLDL-mediated induction of MMP2 expression. Blockade of PKCbeta may be beneficial in mitigating endothelial perturbation and atherosclerosis.

  10. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com; Lu, Xiang-Yang; Sun, Zhi-Liang

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effectivemore » concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.« less

  12. Esculeogenin A, a new tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in ApoE-deficient mice by inhibiting ACAT.

    PubMed

    Fujiwara, Yukio; Kiyota, Naoko; Hori, Masaharu; Matsushita, Sayaka; Iijima, Yoko; Aoki, Koh; Shibata, Daisuke; Takeya, Motohiro; Ikeda, Tsuyoshi; Nohara, Toshihiro; Nagai, Ryoji

    2007-11-01

    We recently identified esculeoside A, a new spirosolane-type glycoside, with a content in tomatoes that is 4-fold higher than that of lycopene. In the present study, we examined the effects of esculeoside A and esculeogenin A, a new aglycon of esculeoside A, on foam cell formation in vitro and atherogenesis in apoE-deficient mice. Esculeogenin A significantly inhibited the accumulation of cholesterol ester (CE) induced by acetylated low density lipoprotein (acetyl-LDL) in human monocyte-derived macrophages (HMDM) in a dose-dependent manner without inhibiting triglyceride accumulation, however, it did not inhibit the association of acetyl-LDL to the cells. Esculeogenin A also inhibited CE formation in Chinese hamster ovary cells overexpressing acyl-coenzymeA (CoA): cholesterol acyl-transferase (ACAT)-1 or ACAT-2, suggesting that esculeogenin A suppresses the activity of both ACAT-1 and ACAT-2. Furthermore, esculeogenin A prevented the expression of ACAT-1 protein, whereas that of SR-A and SR-BI was not suppressed. Oral administration of esculeoside A to apoE-deficient mice significantly reduced the levels of serum cholesterol, triglycerides, LDL-cholesterol, and the areas of atherosclerotic lesions without any detectable side effects. Our study provides the first evidence that purified esculeogenin A significantly suppresses the activity of ACAT protein and leads to reduction of atherogenesis.

  13. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  14. Effects of high-fat, low-cholesterol diets on hepatic lipid peroxidation and antioxidants in apolipoprotein E-deficient mice.

    PubMed

    Ferré, N; Camps, J; Paul, A; Cabré, M; Calleja, L; Osada, J; Joven, J

    2001-02-01

    The present study describes the effects of several high-fat low-cholesterol antiatherogenic diets on the hepatic lipid peroxidation and hepatic antioxidant systems in apolipoprotein E-deficient mice. Eighty mice were distributed into five groups and fed with regular mouse chow or chow supplemented with coconut, palm, olive and sunflower seed oils. After ten weeks, they were sacrificed and the livers were removed so that lipid peroxidation and alpha-tocopherol concentrations, and superoxide dismutase, glutathione peroxidase and glutathione reductase activities could be measured. The size of the atherosclerotic lesions in the aortas was also measured. Results showed that the diets supplemented with olive oil, palm oil or sunflower seed oil significantly decreased the size of the lesion. However, there was an association between those mice that were on diets supplemented with palm or coconut oils and a significant increase in hepatic lipid peroxidation. This association was not found in animals fed with olive or sunflower seed oils, the diets with the highest content of vitamin E. The dietary content of vitamin E was significantly correlated (r = 0.98; p < 0.05) with the hepatic concentration of this compound. Our study suggests that the high content of vitamin E in olive oil or sunflower seed oil may protect from the undesirable hepatotoxic effects of high-fat diets in apo E-deficient mice and that this should be taken into account when these diets are used to prevent atherosclerosis.

  15. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    PubMed

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD. Copyright © 2015. Published by Elsevier Inc.

  16. Turpentine-induced inflammation reduces the hepatic expression of the multiple drug resistance gene, the plasma cholesterol concentration and the development of atherosclerosis in apolipoprotein E deficient mice.

    PubMed

    Tous, Mònica; Ribas, Vicent; Ferré, Natàlia; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco; Alonso-Villaverde, Carlos; Coll, Blai; Camps, Jordi; Joven, Jorge

    2005-04-15

    We aimed to investigate the effect of turpentine-induced inflammation in an atherosclerosis-prone murine model. We have induced a chronic aseptic inflammation in apolipoprotein E-deficient mice, with or without a dietary supplement of aspirin (n = 10, each), by the injection of a mixture (1:1) of turpentine and olive oil in the hind limb twice weekly for a period of 12 weeks. Control animals were injected with olive oil alone (n = 10). The control mice did show any alteration neither in plasma nor at the site of injection. Turpentine-treated mice showed a significant increase in plasma TNF-alpha and SAA concentrations which indicated a systemic inflammatory response that was not substantially affected by aspirin. Also, turpentine injections significantly reduced the plasma cholesterol concentration, probably decreasing intestinal cholesterol re-absorption, and attenuated the size of atherosclerotic lesion. Both effects were minimally influenced by aspirin. The burden of atherosclerosis correlated with plasma lipid levels but not with plasma inflammatory markers. Finally, there was a concomitant decrease in the expression of the hepatic mdr1b gene that correlated with the decrease in plasma cholesterol concentration. Therefore, we conclude that mdr1 is an additional factor to consider in the complexity of alterations in cholesterol metabolism that occur in this model.

  17. Pharmacological correction of a defect in PPAR-gamma signaling ameliorates disease severity in Cftr-deficient mice.

    PubMed

    Harmon, Gregory S; Dumlao, Darren S; Ng, Damian T; Barrett, Kim E; Dennis, Edward A; Dong, Hui; Glass, Christopher K

    2010-03-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.

  18. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    PubMed Central

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  19. Toll-Like Receptor 4 Deficiency Causes Reduced Exploratory Behavior in Mice Under Approach-Avoidance Conflict.

    PubMed

    Li, Chunlu; Yan, Yixiu; Cheng, Jingjing; Xiao, Gang; Gu, Jueqing; Zhang, Luqi; Yuan, Siyu; Wang, Junlu; Shen, Yi; Zhou, Yu-Dong

    2016-04-01

    Abnormal approach-avoidance behavior has been linked to deficits in the mesolimbic dopamine (DA) system of the brain. Recently, increasing evidence has indicated that toll-like receptor 4 (TLR4), an important pattern-recognition receptor in the innate immune system, can be directly activated by substances of abuse, resulting in an increase of the extracellular DA level in the nucleus accumbens. We thus hypothesized that TLR4-dependent signaling might regulate approach-avoidance behavior. To test this hypothesis, we compared the novelty-seeking and social interaction behaviors of TLR4-deficient (TLR4(-/-)) and wild-type (WT) mice in an approach-avoidance conflict situation in which the positive motivation to explore a novel object or interact with an unfamiliar mouse was counteracted by the negative motivation to hide in exposed, large spaces. We found that TLR4(-/-) mice exhibited reduced novelty-seeking and social interaction in the large open spaces. In less stressful test apparatuses similar in size to the mouse cage, however, TLR4(-/-) mice performed normally in both novelty-seeking and social interaction tests. The reduced exploratory behaviors under approach-avoidance conflict were not due to a high anxiety level or an enhanced fear response in the TLR4(-/-) mice, as these mice showed normal anxiety and fear responses in the open field and passive avoidance tests, respectively. Importantly, the novelty-seeking behavior in the large open field induced a higher level of c-Fos activation in the nucleus accumbens shell (NAcSh) in TLR4(-/-) mice than in WT mice. Partially inactivating the NAcSh via infusion of GABA receptor agonists restored the novelty-seeking behavior of TLR4(-/-) mice. These data suggested that TLR4 is crucial for positive motivational behavior under approach-avoidance conflict. TLR4-dependent activation of neurons in the NAcSh may contribute to this phenomenon.

  20. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    PubMed

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  1. P-selectin expressed by a human SELP transgene is atherogenic in apolipoprotein E-deficient mice

    PubMed Central

    Zhang, Nan; Liu, Zhenghui; Yao, Longbiao; Mehta-D’souza, Padmaja; McEver, Rodger P.

    2016-01-01

    Objective During inflammation, P-selectin expressed on activated endothelial cells and platelets mediates rolling adhesion of leukocytes. Atherosclerosis-prone mice crossed with P-selectin-deficient (Selp−/−) mice develop smaller lesions. Cytokines such as tumor necrosis factor-α increase Selp transcripts and augment atherosclerosis in mice. However, they decrease SELP transcripts in humans, challenging assumptions that human P-selectin is atherogenic. We used mice expressing a human SELP transgene to examine the atherogenic role of P-selectin. Approach and results We crossed apolipoprotein E-deficient (Apoe−/−) mice with Selp−/− mice and/or transgenic mice expressing the entire human SELP gene (TgSELP+/−). Aortas developed larger, macrophage-rich atheromas in Apoe−/−Selp−/−TgSELP+/− mice than in Apoe−/−Selp−/− mice after 8 or 16 weeks on a Western diet. Confocal microscopy of Apoe−/−Selp−/−TgSELP+/− aortas revealed staining for human P-selectin in endothelial cells overlying atheromas, but not in lesional macrophages. We also observed staining for human P-selectin in aortic endothelial cells of 3–4-week-old Apoe−/−Selp−/−TgSELP+/− weanlings before atheromas developed. Furthermore, human SELP transcripts were ~3-fold higher in aortas of Apoe−/−Selp+/−TgSELP+/− weanlings than in Selp+/−TgSELP+/− weanlings, whereas murine Selp and Sele transcripts were equivalent in weanlings of both genotypes. Human SELP transcripts in aortas of Apoe−/−Selp+/−TgSELP+/− mice remained nearly constant during 16 weeks on a Western diet, whereas murine Selp and Sele transcripts progressively increased. Bone marrow transplantation in Apoe−/−Selp−/− and Apoe−/−Selp−/−TgSELP+/− mice demonstrated that both platelets and endothelial cells must express human P-selectin to promote atherogenesis. Conclusions P-selectin expressed by human SELP is atherogenic in Apoe−/− mice, suggesting that P

  2. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice.

    PubMed

    Martin, Nellie A; Molnar, Viktor; Szilagyi, Gabor T; Elkjaer, Maria L; Nawrocki, Arkadiusz; Okarmus, Justyna; Wlodarczyk, Agnieszka; Thygesen, Eva K; Palkovits, Miklos; Gallyas, Ferenc; Larsen, Martin R; Lassmann, Hans; Benedikz, Eirikur; Owens, Trevor; Svenningsen, Asa F; Illes, Zsolt

    2018-01-01

    The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination. MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis. miR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP + oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2 + OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3 + and Iba1 + macrophages/microglia was

  3. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment.

    PubMed

    Tan, Xing-Lin; Xue, Yue-Qiang; Ma, Tao; Wang, Xiaofang; Li, Jing Jing; Lan, Lubin; Malik, Kafait U; McDonald, Michael P; Dopico, Alejandro M; Liao, Francesca-Fang

    2015-06-24

    Cerebral infarction due to thrombosis leads to the most common type of stroke and a likely cause of age-related cognitive decline and dementia. Endothelial nitric oxide synthase (eNOS) generates NO, which plays a crucial role in maintaining vascular function and exerting an antithrombotic action. Reduced eNOS expression and eNOS polymorphisms have been associated with stroke and Alzheimer's disease (AD), the most common type of dementia associated with neurovascular dysfunction. However, direct proof of such association is lacking. Since there are no reports of complete eNOS deficiency in humans, we used heterozygous eNOS(+/-) mice to mimic partial deficiency of eNOS, and determine its impact on cerebrovascular pathology and perfusion of cerebral vessels. Combining cerebral angiography with immunohistochemistry, we found thrombotic cerebral infarctions in eNOS(+/-) mice as early as 3-6 months of age but not in eNOS(+/+) mice at any age. Remarkably, vascular occlusions in eNOS(+/-) mice were found almost exclusively in three areas: temporoparietal and retrosplenial granular cortexes, and hippocampus this distribution precisely matching the hypoperfused areas identified in preclinical AD patients. Moreover, progressive cerebral amyloid angiopaphy (CAA), blood brain barrier (BBB) breakdown, and cognitive impairment were also detected in aged eNOS(+/-) mice. These data provide for the first time the evidence that partial eNOS deficiency results in spontaneous thrombotic cerebral infarctions that increase with age, leading to progressive CAA and cognitive impairments. We thus conclude that eNOS(+/-) mouse may represent an ideal model of ischemic stroke to address early and progressive damage in spontaneously-evolving chronic cerebral ischemia and thus, study vascular mechanisms contributing to vascular dementia and AD.

  4. Heat Shock Protein B1-Deficient Mice Display Impaired Wound Healing

    PubMed Central

    McNamee, Kay; Przybycien, Paulina M.; Lu, Xin; Williams, Richard O.; Bou-Gharios, George; Saklatvala, Jeremy; Dean, Jonathan L. E.

    2013-01-01

    There is large literature describing in vitro experiments on heat shock protein (hsp)B1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27kip1 and p21waf1. The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif) ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation. PMID:24143227

  5. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma.

    PubMed

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James G; Xu, Yan; Shen, Xiling; Kalady, Mathew F; Markowitz, Sanford; Maillard, Ivan; Lowe, John B; Xin, Wei; Zhou, Lan

    2017-01-01

    altered the composition of the fecal microbiota, reduced mucosal barrier function, and altered epithelial proliferation marked by Ki67. Fx-/- mice receiving control bone marrow cells had intestinal inflammation and dysplasia, and reduced expression of cytokines produced by cytotoxic T cells. Human sessile serrated adenomas and right-sided colorectal tumors with epigenetic loss of MutL homolog 1 (MLH1) had lost or had lower levels of HES1 than other colorectal tumor types or nontumor tissues. In mice, fucosylation deficiency leads to colitis and adenocarcinoma, loss of Notch activation, and down-regulation of Hes1. HES1 loss correlates with the development of human right-sided colorectal tumors with epigenetic loss of MLH1. These findings indicate that carcinogenesis in a subset of colon cancer is consequent to a molecular mechanism driven by fucosylation deficiency and/or HES1-loss. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Influence of depleted uranium on hepatic cholesterol metabolism in apolipoprotein E-deficient mice.

    PubMed

    Souidi, M; Racine, R; Grandcolas, L; Grison, S; Stefani, J; Gourmelon, P; Lestaevel, P

    2012-04-01

    Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear

  7. Porphyromonas gingivalis Accelerates Inflammatory Atherosclerosis in the Innominate Artery of ApoE Deficient Mice

    PubMed Central

    Hayashi, Chie; Viereck, Jason; Hua, Ning; Phinikaridou, Alkystis; Madrigal, Andres G.; Gibson, Frank C.; Hamilton, James A.; Genco, Caroline A.

    2011-01-01

    Objective Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. Methods and Results Apolipoprotein E-deficient (ApoE−/−) mice were orally infected with P. gingivalis, and Magnetic Resonance Imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. Conclusions These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in-vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization. PMID:21251656

  8. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    PubMed Central

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C.

    2016-01-01

    ABSTRACT   Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. Importance   Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an

  9. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice.

    PubMed

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C; Lambert, Paul F

    2016-05-17

    Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE  : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA

  10. Flower-deficient mice have reduced susceptibility to skin papilloma formation

    PubMed Central

    Petrova, Evgeniya; López-Gay, Jesús M.; Rhiner, Christa; Moreno, Eduardo

    2012-01-01

    SUMMARY Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion. PMID:22362363

  11. Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice

    PubMed Central

    Zhao, Dong; Tong, Lufang; Zhang, Lixin; Li, Hong; Wan, Yingxin; Zhang, Tiezhong

    2016-01-01

    Tanshinone II A (TSIIA) is a diterpene quinone extracted from the roots of Salvia miltiorrhiza with anti-inflammatory and anti-oxidant properties that is used to treat atherosclerosis. In the current study, morphological analyses were conducted to evaluate the effects of TSIIA on atherosclerotic vulnerable plaque stability. Additionally, receptor of advanced glycation end products (RAGE), adhesion molecule, and matrix-metalloproteinases (MMPs) expression, and nuclear factor-κB (NF-κB) activation were examined in apolipoprotein E (apoE)-deficient mice treated with TSIIA. Eight-week-old apoE−/− mice were administered TSIIA and fed an atherogenic diet for 8 weeks. TSIIA exhibited no effects on plaque size. Analysis of the vulnerable plaque composition demonstrated decreased numbers of macrophages and smooth muscle cells, and increased collagen content in apoE-deficient mice treated with TSIIA compared with untreated mice. Western blotting revealed that TSIIA downregulated the expression levels of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and MMP-2, −3, and −9, suppressed RAGE, and inhibited NF-κB, JNK and p38 activation. The present study demonstrated that the underlying mechanism of TSIIA stabilization of vulnerable plaques involves interfering with RAGE and NF-κB activation, and downregulation of downstream inflammatory factors, including ICAM-1, VCAM-1, and MMP-2, −3 and −9 in apoE−/− mice. PMID:27840935

  12. Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice.

    PubMed

    Yiannikouris, Frederique; Wang, Yu; Shoemaker, Robin; Larian, Nika; Thompson, Joel; English, Victoria L; Charnigo, Richard; Su, Wen; Gong, Ming; Cassis, Lisa A

    2015-10-01

    We recently demonstrated that adipocyte deficiency of angiotensinogen (AGT) ablated high-fat diet-induced elevations in plasma angiotensin II (Ang II) concentrations and obesity-hypertension in male mice. Hepatocytes are the predominant source of systemic AGT. Therefore, in this study, we defined the contribution of hepatocyte-derived AGT to obesity-induced elevations in plasma AGT concentrations and hypertension. Male Agt(fl/fl) mice expressing albumin-driven Cre recombinase were bred to female Agt(fl/fl) mice to generate Agt(fl/fl) or hepatocyte AGT-deficient male mice (Agt(Alb)). Mice were fed a low-fat or high-fat diet for 16 weeks. Hepatocyte AGT deficiency had no significant effect on body weight. Plasma AGT concentrations were increased in obese Agt(fl/fl) mice. Hepatocyte AGT deficiency markedly reduced plasma AGT and Ang II concentrations in lean and obese mice. Moreover, hepatocyte AGT deficiency reduced the content and release of AGT from adipose explants. Systolic blood pressure was markedly decreased in lean (by 18 mm Hg) and obese Agt(Alb) mice (by 54 mm Hg) compared with Agt(fl/fl) controls. To define mechanisms, we quantified effects of Ang II on mRNA abundance of megalin, an AGT uptake transporter, in 3T3-L1 adipocytes. Ang II stimulated adipocyte megalin mRNA abundance and decreased media AGT concentrations. These results demonstrate that hepatocytes are the predominant source of systemic AGT in both lean and obese mice. Moreover, reductions in plasma angiotensin concentrations in obese hepatocyte AGT-deficient mice may have limited megalin-dependent uptake of AGT into adipocytes for the production of Ang II in the development of obesity-hypertension. © 2015 American Heart Association, Inc.

  13. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice.

    PubMed

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-08-10

    The dorsomedial hypothalamic nucleus (DMH) has been proposed as a candidate for the neural substrate of a food-entrainable oscillator. The existence of a food-entrainable oscillator in the mammalian nervous system was inferred previously from restricted feeding-induced behavioral rhythmicity in rodents with suprachiasmatic nucleus lesions. In the present study, we have characterized the circadian rhythmicity of behavior in Wfs1-deficient mice during ad libitum and restricted feeding. Based on the expression of Wfs1 protein in the DMH it was hypothesized that Wfs1-deficient mice will display reduced or otherwise altered food anticipatory activity. Wfs1 immunoreactivity in DMH was found almost exclusively in the compact part. Restricted feeding induced c-Fos immunoreactivity primarily in the ventral and lateral aspects of DMH and it was similar in both genotypes. Wfs1-deficiency resulted in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding was not significantly different between the genotypes. Present results indicate that the effects of Wfs1-deficiency on behavioral rhythmicity are subtle suggesting that Wfs1 is not a major player in the neural networks responsible for circadian rhythmicity of behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Sick sinus syndrome in HCN1-deficient mice.

    PubMed

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    2013-12-17

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  15. Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice.

    PubMed

    Bortolato, Marco; Godar, Sean C; Davarian, Shieva; Chen, Kevin; Shih, Jean C

    2009-12-01

    Monoamine oxidase (MAO) B catalyzes the degradation of beta-phenylethylamine (PEA), a trace amine neurotransmitter implicated in mood regulation. Although several studies have shown an association between low MAO B activity in platelets and behavioral disinhibition in humans, the nature of this relation remains undefined. To investigate the impact of MAO B deficiency on the emotional responses elicited by environmental cues, we tested MAO B knockout (KO) mice in a set of behavioral assays capturing different aspects of anxiety-related manifestations, such as the elevated plus maze, defensive withdrawal, marble burying, and hole board. Furthermore, MAO B KO mice were evaluated for their exploratory patterns in response to unfamiliar objects and risk-taking behaviors. In comparison with their wild-type (WT) littermates, MAO B KO mice exhibited significantly lower anxiety-like responses and shorter latency to engage in risk-taking behaviors and exploration of unfamiliar objects. To determine the neurobiological bases of the behavioral differences between WT and MAO B KO mice, we measured the brain-regional levels of PEA in both genotypes. Although PEA levels were significantly higher in all brain regions of MAO B KO in comparison with WT mice, the most remarkable increments were observed in the striatum and prefrontal cortex, two key regions for the regulation of behavioral disinhibition. However, no significant differences in transcript levels of PEA's selective receptor, trace amine-associated receptor 1 (TAAR1), were detected in either region. Taken together, these results suggest that MAO B deficiency may lead to behavioral disinhibition and decreased anxiety-like responses partially through regional increases of PEA levels.

  16. Failure of antioxidants to protect against angiotensin II-induced aortic rupture in aged apolipoprotein(E)-deficient mice.

    PubMed

    Jiang, F; Jones, G T; Dusting, G J

    2007-11-01

    Oxidative stress may be involved in the development of abdominal aortic aneurysms (AAAs). Previous studies indicate that antioxidants protect against AAA formation during chronic angiotensin (Ang) II infusion in apolipoprotein E-deficient (ApoE(0)) mice. We here examine if these protective effects also occurred in aged ApoE(0) mice. Male ApoE(0) mice (50-60 weeks) were randomly divided into 4 groups: saline, Ang II (1000 ng kg(-1) min(-1) for 4 weeks), Ang II plus antioxidants (0.1% vitamin E in food plus 0.1% vitamin C in drinking water), and Ang II plus losartan (30 mg kg(-1) day(-1)). Exogenous Ang II increased systolic blood pressure by 40 mmHg and resulted in the formation of pseudoaneurysms (rupture and extramural haematoma) in the abdominal aorta in 50% of animals. True aneurysmal dilatation was rarely observed. Antioxidants decreased systemic oxidative stress (plasma malondialdehyde), but had only minor effects on aortic rupture, relative to the complete prevention by losartan. Immunohistochemistry revealed strong matrix metalloproteinase-9 (MMP-9) expression in atherosclerotic plaques and at the sites of rupture. Antioxidants did not affect tumour necrosis factor-alpha-stimulated MMP-9 release from U937 cells. In addition, antioxidants had little effects on Ang II-induced renal dysfunction. In contrast to previous findings in younger mice, antioxidants had only minor effects on Ang II-induced aortic rupture in aged mice. Our results demonstrate that the pathological features of the aneurysmal remodelling induced by Ang II in old ApoE(0) mice are distinct from those of human AAA.

  17. Effects of zinc deficiency and supplementation on leptin and leptin receptor expression in pregnant mice.

    PubMed

    Ueda, Hidenori; Nakai, Taketo; Konishi, Tatsuya; Tanaka, Keiichi; Sakazaki, Fumitoshi; Min, Kyong-Son

    2014-01-01

    Leptin is an adipose-derived hormone that primarily regulates energy balance in response to nutrition. Human placental cells produce leptin, whereas murine placental cells produce soluble leptin receptors (Ob-R). However, the roles of these proteins during pregnancy have not been elucidated completely. As an essential metal, zinc (Zn) is central to insulin biosynthesis and energy metabolism. In the present study, the effects of Zn deficiency and supplementation on maternal plasma leptin and soluble Ob-R regulation in pregnant mice placentas were examined using enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blotting. Nutritional Zn deficiency significantly reduced plasma insulin concentrations and fetal and placental weights in pregnant mice. Plasma leptin concentrations in pregnant mice also increased 20- to 40-fold compared with those in non-pregnant mice. Although dietary Zn deficiency and supplementation did not affect plasma leptin concentrations in non-pregnant mice, Zn-deficient pregnant mice had significantly reduced plasma leptin concentrations and adipose leptin mRNA expression. In contrast, Zn-supplemented pregnant mice had increased plasma leptin concentrations without increased adipose leptin mRNA expression. Placental soluble Ob-R mRNA expression also decreased in Zn-deficient mice and tended to increase in Zn-supplemented mice. These results indicate that Zn influences plasma leptin concentrations by modulating mRNA expression of soluble Ob-R in the placenta, and leptin in visceral fat during pregnancy. These data suggest that both adipose and placenta-derived leptin system are involved in the regulation of energy metabolism during fetal growth.

  18. Lipoprotein lipase gene-deficient mice with hypertriglyceridaemia associated with acute pancreatitis.

    PubMed

    Tang, Maochun; Zong, Pengfei; Zhang, Ting; Wang, Dongyan; Wang, Yuhui; Zhao, Yan

    2016-10-01

    To investigate the severity of pancreatitis in lipoprotein lipase (LPL)-deficient hypertriglyceridaemic (HTG) heterozygous mice and to establish an experimental animal model for HTG pancreatitis study. LPL-deficient HTG heterozygous mice were rescued by somatic gene transfer and mated with wild-type mice. The plasma amylase, triglyceride, and pathologic changes in the pancreas of the LPL-deficient HTG heterozygous mice were compared with those of wild-type mice to assess the severity of pancreatitis. In addition, acute pancreatitis (AP) was induced by caerulein (50 µg/kg) for further assessment. The levels of plasma amylase and triglyceride were significantly higher in the LPL-deficient HTG heterozygous mice. According to the pancreatic histopathologic scores, the LPL-deficient HTG heterozygous mice showed more severe pathologic damage than the wild-type mice. Lipoprotein lipase deficient heterozygous mice developed severe caerulein-induced pancreatitis. In addition, their high triglyceride levels were stable. Therefore, LPL-deficient HTG heterozygous mice are a useful experimental model for studying HTG pancreatitis.

  19. Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization

    PubMed Central

    Draves, Kevin E.; Young, Lucy B.; Bryan, Marianne A.; Dresch, Christiane; Diamond, Michael S.; Gale, Michael

    2017-01-01

    B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals. PMID:29176765

  20. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression.

    PubMed

    Dietel, Barbara; Muench, Rabea; Kuehn, Constanze; Kerek, Franz; Steinkasserer, Alexander; Achenbach, Stephan; Garlichs, Christoph D; Zinser, Elisabeth

    2014-08-01

    Inflammation accelerates both plaque progression and instability in the pathogenesis of atherosclerosis. The inhibition of dendritic cell (DC) maturation is a promising approach to suppress excessive inflammatory immune responses and has been shown to be protective in several autoimmune models. The aim of this study was to investigate the immune modulatory effects of the natural substance MCS-18, an inhibitor of DC maturation, regarding the progression of atherosclerosis in ApoE-deficient mice. ApoE-deficient mice were fed for twelve weeks with a Western-type diet (n = 32) or normal chow (control group; n = 16). Animals receiving high-fat diet were treated with MCS-18 (500 μg/kg body weight, n = 16) or saline (n = 16) twice a week. After 12 weeks, animals were transcardially perfused and sacrificed. The percentage of mature DCs (CD3(-)/CD19(-)/CD14(-)/NK1.1(-)/CD11c(+)/MHCII(+)/CD83(+)/CD86(+)) and T cell subpopulations (CD4(+)/CD25(+)/Foxp3(+), CD3/CD4/CD8) was analyzed in peripheral blood and in the spleen using flow cytometry. Plaque size was determined in the aortic root and the thoracoabdominal aorta using en-face staining. Immunohistochemical stainings served to detect inflammatory cells in the aortic root. Several cytokines and chemokines were determined in serum using multiplex assays. In splenic cells derived from saline-treated atherosclerotic mice an increased DC maturation, reflected by the upregulation of CD83 and CD86 expression, was observed. The enhanced expression of both maturation markers was absent in MCS-18 treated atherosclerotic mice. While the percentage of splenic Foxp3 expressing Treg was increased in animals receiving MCS-18 compared to saline-treated atherosclerotic mice, cytotoxic T cells were reduced in the spleen and in atherosclerotic lesions of the aortic root. Furthermore, proatherogenic cytokines (e.g. IL-6 and IFN-γ) and chemokines (e.g. MIP-1β) were decreased in serum of MCS-18-treated animals when compared to saline

  1. Cigarette smoke exposure promotes arterial thrombosis and vessel remodeling after vascular injury in apolipoprotein E-deficient mice.

    PubMed

    Schroeter, Marco R; Sawalich, Matthias; Humboldt, Tim; Leifheit, Maren; Meurrens, Kris; Berges, An; Xu, Haiyan; Lebrun, Stefan; Wallerath, Thomas; Konstantinides, Stavros; Schleef, Raymond; Schaefer, Katrin

    2008-01-01

    Cigarette smoking is a major risk factor for the development of cardiovascular disease. However, in terms of the vessel wall, the underlying pathomechanisms of cigarette smoking are incompletely understood, partly due to a lack of adequate in vivo models. Apolipoprotein E-deficient mice were exposed to filtered air (sham) or to cigarette mainstream smoke at a total particulate matter (TPM) concentration of 600 microg/l for 1, 2, 3, or 4 h, for 5 days/week. After exposure for 10 +/- 1 weeks, arterial thrombosis and neointima formation at the carotid artery were induced using 10% ferric chloride. Mice exposed to mainstream smoke exhibited shortened time to thrombotic occlusion (p < 0.01) and lower vascular patency rates (p < 0.001). Morphometric and immunohistochemical analysis of neointimal lesions demonstrated that mainstream smoke exposure increased the amount of alpha-actin-positive smooth muscle cells (p < 0.05) and dose-dependently increased the intima-to-media ratio (p < 0.05). Additional analysis of smooth muscle cells in vitro suggested that 10 microg TPM/ml increased cell proliferation without affecting viability or apoptosis, whereas higher concentrations (100 and 500 microg TPM/ml) appeared to be cytotoxic. Taken together, these findings suggest that cigarette smoking promotes arterial thrombosis and modulates the size and composition of neointimal lesions after arterial injury in apolipoprotein E-deficient mice. Copyright 2008 S. Karger AG, Basel.

  2. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice

    PubMed Central

    Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle

    2003-01-01

    We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695

  3. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    PubMed Central

    Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji

    2017-01-01

    Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders. PMID:28744205

  4. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    PubMed

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  5. Neurturin-deficient mice develop dry eye and keratoconjunctivitis sicca.

    PubMed

    Song, Xiu Jun; Li, De-Quan; Farley, William; Luo, Li Hui; Heuckeroth, Robert O; Milbrandt, Jeffrey; Pflugfelder, Stephen C

    2003-10-01

    Neurturin has been identified as a neurotrophic factor for parasympathetic neurons. Neurturin-deficient (NRTN(-/-)) mice have defective parasympathetic innervation of their lacrimal glands. This study was conducted to evaluate tear function and ocular surface phenotype in NRTN(-/-) mice. Determined by tail genomic DNA PCR, 25 NRTN(-/-) mice and 17 neurturin-normal (NRTN(+/+)) mice aged 6 weeks to 4 months were evaluated. Aqueous tear production, tear fluorescein clearance and corneal sensation were serially measured. Corneal permeability to AlexaFluor dextran (AFD; Molecular Probes, Eugene, OR) was measured by a fluorometric assay at 485 nm excitation and 530 nm emission. Histology was evaluated in PAS-stained sections. Mucin and HLA class II (IA) antigen were assessed by immunofluorescent staining. Tear IL-1beta was measured by ELISA, and tear matrix metalloproteinase (MMP)-9 by zymography. Gene expression in the corneal epithelia was analyzed by semiquantitative RT-PCR. In comparison to that in age-matched NRTN(+/+) mice, aqueous tear production, tear fluorescein clearance, and corneal sensation were significantly reduced in NRTN(-/-) mice, whereas corneal permeability to AFD was significantly increased. Immunoreactive MUC-4 and -5AC mucin and goblet cell density (P < 0.001) in the conjunctiva of NRTN(-/-) mice were lower than in NRTN(+/+) mice. The expression of MUC-1 and -4 mRNA by the corneal epithelium was reduced in NRTN(-/-) mice. There were a significantly greater number of IA antigen-positive conjunctival epithelial cells in NRTN(-/-) mice than NRTN(+/+) mice. Tear fluid IL-1beta and MMP-9 concentrations and the expression of IL-1beta, TNF-alpha, macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant (KC), and MMP-9 mRNA by the corneal epithelia were significantly increased in NRTN(-/-) mice, compared with NRTN(+/+) mice. Neurturin-deficient mice show phenotypic changes and ocular surface inflammation that mimic human

  6. Acai juice attenuates atherosclerosis in apoe deficient mice through antioxidant and anti-inflammatory activities

    USDA-ARS?s Scientific Manuscript database

    Objective - Acai fruit pulp has received much attention because of its high antioxidant capacity and potential anti-inflammatory effects. In this study, athero-protective effects of açaí juice were investigated in apolipoprotein E deficient (apoE -/-) mice. Methods and Results - ApoE-/- mice were f...

  7. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma

    PubMed Central

    Engel, Tobias; Murphy, Brona M.; Hatazaki, Seiji; Jimenez-Mateos, Eva M.; Concannon, Caoimhin G.; Woods, Ina; Prehn, Jochen H. M.; Henshall, David C.

    2010-01-01

    The functional significance of neuronal death for pathogenesis of epilepsy and the underlying molecular mechanisms thereof remain incompletely understood. The p53 transcription factor has been implicated in seizure damage, but its target genes and the influence of cell death under its control on epilepsy development are unknown. In the present study, we report that status epilepticus (SE) triggered by intra-amygdala kainic acid in mice causes rapid p53 accumulation and subsequent hippocampal damage. Expression of p53-up-regulated mediator of apoptosis (Puma), a proapoptotic Bcl-2 homology domain 3-only protein under p53 control, was increased within a few hours of SE. Induction of Puma was blocked by pharmacologic inhibition of p53, and hippocampal damage was also reduced. Puma induction was also blocked in p53-deficient mice subject to SE. Compared to Puma-expressing mice, Puma-deficient mice had significantly smaller hippocampal lesions after SE. Long-term, continuous telemetric EEG monitoring revealed a ∼60% reduction in the frequency of epileptic seizures in the Puma-deficient mice compared to Puma-expressing mice. These are the first data showing genetic deletion of a proapoptotic protein acting acutely to influence neuronal death subsequently alters the phenotype of epilepsy in the long-term, supporting the concept that apoptotic pathway activation is a trigger of epileptogenesis.—Engel, T., Murphy, B. M., Hatazaki, S., Jimenez-Mateos, E. M., Concannon, C. G., Woods, I., Prehn, J. H. M., Henshall, D. C. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. PMID:19890018

  8. eNOS Deficiency Predisposes Podocytes to Injury in Diabetes

    PubMed Central

    Yuen, Darren A.; Stead, Bailey E.; Zhang, Yanling; White, Kathryn E.; Kabir, M. Golam; Thai, Kerri; Advani, Suzanne L.; Connelly, Kim A.; Takano, Tomoko; Zhu, Lei; Cox, Alison J.; Kelly, Darren J.; Gibson, Ian W.; Takahashi, Takamune; Harris, Raymond C.

    2012-01-01

    Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS−/− mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS−/− mice, even though it inhibited glomerular capillary enlargement in both. In eNOS−/− mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS−/− mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS−/− glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes. PMID:22997257

  9. Estrogen receptor alpha deficiency modulates TLR ligand mediated PDC-TREM expression in plasmacytoid dendritic cells in lupus prone mice

    PubMed Central

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; EuDaly, Jackie G; Gilkeson, Gary S

    2016-01-01

    Female lupus prone NZM2410 estrogen receptor alpha (ERα) deficient mice are protected from renal disease and have prolonged survival compared to wild type (WT) littermates, however the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I interferon (IFN) drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in pre-disease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHCII+ pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of toll-like receptor (TLR) mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in pre-disease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupus like disease. PMID:26553076

  10. Green tea polyphenol epigallocatechin-3-gallate increases atherosclerotic plaque stability in apolipoprotein E-deficient mice fed a high-fat diet.

    PubMed

    Wang, Qiming; Zhang, Jian; Li, Yafei; Shi, Haojie; Wang, Hao; Chen, Bingrui; Wang, Fang; Wang, Zemu; Yang, Zhijian; Wang, Liansheng

    2018-06-04

    Epigallocatechin-3-gallate (EGCG), which is the principal component of green tea, has been shown to prevent the formation of atherosclerosis. However, the effect of EGCG on atherosclerotic plaque stability remains unknown. This study aimed to assess whether EGCG can enhance atherosclerotic plaque stability and to investigate the underlying mechanisms. Apolipoprotein E-deficient mice fed a high-fat diet were injected intraperitoneally with EGCG (10 mg/kg ) for 16 weeks. Cross sections of the brachiocephalic arteries were stained with hematoxylin and eosin (HE) for morphometric analyses or Masson's trichrome for collagen content analyses. Immunohistochemistry was performed to evaluate the percentage of macrophages and smooth muscle cells (SMCs). Protein expression and matrix metalloproteinase (MMP) activity were assayed by Western blot and gelatin zymography, respectively. Serum inflammatory cytokine levels were quantified by enzyme-linked immunosorbent assay. After 16 weeks of feeding the high-fat diet, there was clear atherosclerosis formation in the proximal brachiocephalic artery segments according to HE staining. EGCG treatment significantly increased the thickness of the fibrous cap. In the atherosclerotic plaques of the EGCG group, the relative macrophage content was decreased, whereas the relative SMC and collagen contents were increased. The expression levels of MMP-2, MMP-9 and extracellular matrix metalloproteinase inducer (EMMPRIN) were significantly decreased by EGCG treatment. In addition, EGCG treatment decreased the circulating TNF-a, IL-6, MCP-1 and IFN-γ levels in apolipoprotein E-deficient mice. EGCG promotes atherosclerotic lesion stability in apolipoprotein E-deficient mice. Potentially, these effects are mediated through the inhibition of inflammatory cytokine, MMPs and EMMPRIN expression.

  11. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    PubMed

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  12. Gender Affects Skin Wound Healing in Plasminogen Deficient Mice

    PubMed Central

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge; Hald, Andreas

    2013-01-01

    The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin thickness and

  13. Differential effect of walnut oil and safflower oil on the serum cholesterol level and lesion area in the aortic root of apolipoprotein E-deficient mice.

    PubMed

    Iwamoto, Masako; Kono, Misaki; Kawamoto, Daisuke; Tomoyori, Hiroko; Sato, Masao; Imaizumi, Katsumi

    2002-01-01

    Walnut oil (WO) is a good source of alpha-linolenic acid. We compared the effects of WO and high-linoleic safflower oil (HLSO) on the serum lipid level and atherosclerosis development in male and female apolipoprotein (apo) E-deficient mice. The WO diet resulted in a higher level of serum cholesterol than with HLSO. Female mice fed on the WO diet had a greater lesion area in the aortic root than did those on the HLSO diet. There was no diet-dependent difference in the level of cholesterol and its oxidation products in the abdominal and thoracic aorta. These results suggest that the unpleasant effects of the WO diet on apo E-deficient mice may be attributable to alpha-linolenic acid.

  14. Reducing endoplasmic reticulum stress does not improve steatohepatitis in mice fed a methionine- and choline-deficient diet.

    PubMed

    Henkel, Anne S; Dewey, Amanda M; Anderson, Kristy A; Olivares, Shantel; Green, Richard M

    2012-07-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.

  15. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    PubMed

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  16. Arthritis is developed in Borrelia-primed and -infected mice deficient of interleukin-17.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Munson, Erik L; Nardelli, Dean T; Schell, Ronald F

    2016-10-01

    Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice.

    PubMed

    Figeac, Florence; Andersen, Ditte C; Nipper Nielsen, Casper A; Ditzel, Nicholas; Sheikh, Søren P; Skjødt, Karsten; Kassem, Moustapha; Jensen, Charlotte H; Abdallah, Basem M

    2018-05-01

    Soluble delta-like 1 homolog (DLK1) is a circulating protein that belongs to the Notch/Serrate/delta family, which regulates many differentiation processes including osteogenesis and adipogenesis. We have previously demonstrated an inhibitory effect of DLK1 on bone mass via stimulation of bone resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV/TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Amelioration of Behavioral Abnormalities in BH4-deficient Mice by Dietary Supplementation of Tyrosine

    PubMed Central

    Kwak, Sang Su; Jeong, Mikyoung; Choi, Ji Hye; Kim, Daesoo; Min, Hyesun; Yoon, Yoosik; Hwang, Onyou; Meadows, Gary G.; Joe, Cheol O.

    2013-01-01

    This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency. PMID:23577163

  19. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Hiroyuki; Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp; Ishii, Norio

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progressionmore » of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.« less

  20. Estrogen Receptor α Deficiency Modulates TLR Ligand-Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice.

    PubMed

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; Eudaly, Jackie G; Gilkeson, Gary S

    2015-12-15

    Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway

    PubMed Central

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M.

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases. PMID:28598969

  2. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway.

    PubMed

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M; Waraich, Rizwana Sanaullah

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases.

  3. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  4. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  5. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  6. Autophagy-deficient mice develop multiple liver tumors

    PubMed Central

    Takamura, Akito; Komatsu, Masaaki; Hara, Taichi; Sakamoto, Ayako; Kishi, Chieko; Waguri, Satoshi; Eishi, Yoshinobu; Hino, Okio; Tanaka, Keiji; Mizushima, Noboru

    2011-01-01

    Autophagy is a major pathway for degradation of cytoplasmic proteins and organelles, and has been implicated in tumor suppression. Here, we report that mice with systemic mosaic deletion of Atg5 and liver-specific Atg7−/− mice develop benign liver adenomas. These tumor cells originate autophagy-deficient hepatocytes and show mitochondrial swelling, p62 accumulation, and oxidative stress and genomic damage responses. The size of the Atg7−/− liver tumors is reduced by simultaneous deletion of p62. These results suggest that autophagy is important for the suppression of spontaneous tumorigenesis through a cell-intrinsic mechanism, particularly in the liver, and that p62 accumulation contributes to tumor progression. PMID:21498569

  7. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses

    PubMed Central

    Singh, Udai P; Murphy, Angela E; Enos, Reilly T; Shamran, Haidar A; Singh, Narendra P; Guan, Honbing; Hegde, Venkatesh L; Fan, Daping; Price, Robert L; Taub, Dennis D; Mishra, Manoj K; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    Inflammatory bowel disease (IBD), a chronic intestinal inflammatory condition that affects millions of people worldwide, results in high morbidity and exorbitant health-care costs. The critical features of both innate and adaptive immunity are to control inflammation and dysfunction in this equilibrium is believed to be the reason for the development of IBD. miR-155, a microRNA, is up-regulated in various inflammatory disease states, including IBD, and is a positive regulator of T-cell responses. To date, no reports have defined a function for miR-155 with regard to cellular responses in IBD. Using an acute experimental colitis model, we found that miR-155−/− mice, as compared to wild-type control mice, have decreased clinical scores, a reversal of colitis-associated pathogenesis, and reduced systemic and mucosal inflammatory cytokines. The increased frequency of CD4+ lymphocytes in the spleen and lamina propria with dextran sodium sulphate induction was decreased in miR-155−/− mice. Similarly, miR-155 deficiency abrogated the increased numbers of interferon-γ expressing CD4+ T cells typically observed in wild-type mice in this model. The frequency of systemic and mucosal T helper type 17-, CCR9-expressing CD4+ T cells was also reduced in miR-155−/− mice compared with control mice. These findings strongly support a role for miR-155 in facilitating pro-inflammatory cellular responses in this model of IBD. Loss of miR-155 also results in decreases in T helper type 1/type 17, CD11b+, and CD11c+ cells, which correlated with reduced clinical scores and severity of disease. miR-155 may serve as a potential therapeutic target for the treatment of IBD. PMID:24891206

  8. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice

    PubMed Central

    Merkel, Martin; Velez-Carrasco, Wanda; Hudgins, Lisa C.; Breslow, Jan L.

    2001-01-01

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787

  9. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  10. Resistance of chemokine receptor 6-deficient mice to Yersinia enterocolitica infection: evidence of defective M-cell formation in vivo.

    PubMed

    Westphal, Sabine; Lügering, Andreas; von Wedel, Julia; von Eiff, Christof; Maaser, Christian; Spahn, Thomas; Heusipp, Gerhard; Schmidt, M Alexander; Herbst, Hermann; Williams, Ifor R; Domschke, Wolfram; Kucharzik, Torsten

    2008-03-01

    M cells, specialized cells within Peyer's patches (PPs), are reduced in number in chemokine receptor 6 (CCR6)-deficient mice. The pathogenic microorganism Yersinia enterocolitica exploits M cells for the purpose of mucosal tissue invasion exclusively through PPs. The aim of this study was to evaluate the course of yersiniosis in CCR6-deficient mice and to investigate whether these mice might be used as an in vivo model to determine M-cell function. After oral challenge with Y. enterocolitica, control mice suffered from lethal septic infection whereas CCR6-deficient mice showed very limited symptoms of infection. Immunohistochemical analysis demonstrated PP invasion by Y. enterocolitica in control mice whereas no bacteria could be found in CCR6-deficient mice. In addition, a significant induction of proinflammatory cytokines could be found in control mice whereas proinflammatory cytokine levels in CCR6-deficient mice remained unchanged. In contrast, intraperitoneal infection resulted in severe systemic yersiniosis in both mouse groups. Abrogated oral Y. enterocolitica infection in CCR6-deficient mice demonstrates the importance of CCR6 expression in the physiological and pathological immune responses generated within PPs by influencing M-cell differentiation, underscoring the important role of M cells in the process of microbial uptake. CCR6-deficient mice may therefore represent a suitable model for the study of M-cell function in vivo.

  11. Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis.

    PubMed

    Li, Zhiping; Oben, Jude A; Yang, Shiqi; Lin, Huizhi; Stafford, Elizabeth A; Soloski, Mark J; Thomas, Steven A; Diehl, Anna Mae

    2004-08-01

    It is not known why natural killer T (NKT) cells, which modulate liver injury by regulating local cytokine production, are reduced in leptin-deficient ob/ob mice. NKT cells express adrenoceptors. Thus, we hypothesize that the low norepinephrine (NE) activity of ob/ob mice promotes depletion of liver NKT cells, thereby sensitizing ob/ob livers to lipopolysaccharide (LPS) toxicity. To evaluate this hypothesis, hepatic NKT cells were quantified in wild-type mice before and after treatment with NE inhibitors, and in dopamine beta-hydroxylase knockout mice (which cannot synthesize NE) and ob/ob mice before and after 4 weeks of NE supplementation. Decreasing NE activity consistently reduces liver NKT cells, while increasing NE has the opposite effect. Analysis of hepatic and thymic NKT cells in mice of different ages demonstrate an age-related accumulation of hepatic NKT cells in normal mice, while liver NKT cells become depleted after birth in ob/ob mice, which have increased apoptosis of hepatic NKT cells. NE treatment inhibits apoptosis and restores hepatic NKT cells. In ob/ob mice with reduced hepatic NKT cells, hepatic T and NKT cells produce excessive T helper (Th)-1 proinflammatory cytokines and the liver is sensitized to LPS toxicity. NE treatment decreases Th-1 cytokines, increases production of Th-2 cytokines, and reduces hepatotoxicity. Studies of CD1d-deficient mice, which lack the receptor required for NKT cell development, demonstrate that they are also unusually sensitive to LPS hepatotoxicity. In conclusion, low NE activity increases hepatic NKT cell apoptosis and depletes liver NKT cells, promoting proinflammatory polarization of hepatic cytokine production that sensitizes the liver to LPS toxicity. Copyright 2004 American Association for the Study of Liver Diseases

  12. Production of large numbers of hybridomas producing monoclonal antibodies against rat IgE using mast cell-deficient w/wv and sl/sld strains of mice.

    PubMed

    Rup, B J

    1989-08-15

    A number of different mouse strains and immunization protocols were used to attempt to make monoclonal antibodies against rat IgE for use in studies of the structure, biological activities and regulation of this class of antibody. Successful production of large numbers of monoclonal antibodies was achieved when mast cell deficient (w/wv and sl/sld) but not conventional (BALB/c, CAF1 or SJL) mice were used. These results suggest that the poor response of conventional strains of mice to rat IgE may be due to the presence of mast cells bearing high affinity receptors for IgE in these mice.

  13. Deficiency of Gpr1 improves steroid hormone abnormality in hyperandrogenized mice.

    PubMed

    Yang, Ya-Li; Sun, Li-Feng; Yu, Yan; Xiao, Tian-Xia; Wang, Bao-Bei; Ren, Pei-Gen; Tang, Hui-Ru; Zhang, Jian V

    2018-05-24

    Polycystic ovary syndrome (PCOS) is a complex genetic disease with multifarious phenotypes. Many researches use dehydroepiandrosterone (DHEA) to induce PCOS in pubertal mouse models. The aim of this study was to investigate the role of GPR1 in dehydroepiandrosterone (DHEA)-induced hyperandrogenized mice. Prepubertal C57BL/6 mice (25 days of age) and Gpr1-deficient mice were each divided into two groups and injected daily with sesame oil with or without DHEA (6 mg/100 g) for 21 consecutive days. Hematoxylin and eosin (H&E) staining was performed to determine the characteristics of the DHEA-treated ovaries. Real-time PCR was used to examine steroid synthesis enzymes gene expression. Granulosa cell was cultured to explore the mechanism of DHEA-induced, GPR1-mediated estradiol secretion. DHEA treatment induced some aspects of PCOS in wild-type mice, such as increased body weight, elevated serum testosterone, increased number of small, cystic, atretic follicles, and absence of corpus luteum in ovaries. However, Gpr1 deficiency significantly attenuated the DHEA-induced weight gain and ovarian phenotype, improving steroidogenesis in ovaries and estradiol synthesis in cultured granulosa cells, partially through mTOR signaling. In conclusion, Gpr1 deficiency leads to the improvement of steroid synthesis in mice hyperandrogenized with DHEA, indicating that GPR1 may be a therapeutic target for DHEA-induced hyperandrogenism.

  14. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ) radiation.

    PubMed

    Kumarathasan, Prem; Vincent, Renaud; Blais, Erica; Saravanamuthu, Anu; Gupta, Pallavi; Wyatt, Heather; Mitchel, Ronald; Hannan, Mohammed; Trivedi, Akilesh; Whitman, Stewart

    2013-01-01

    There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body) to Co60 (γ) (single dose 0, 0.5, and 2 Gy) at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy) at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3-6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05) in a dose-dependent manner 3-6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05) after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008) relative to controls. Percent lesion area increased (p = 0.005) with age of animal, but not with radiation treatment. Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE-/- mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.

  15. Antiatherosclerotic Effects of 1-Methylnicotinamide in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice: A Comparison with Nicotinic Acid.

    PubMed

    Mateuszuk, Lukasz; Jasztal, Agnieszka; Maslak, Edyta; Gasior-Glogowska, Marlena; Baranska, Malgorzata; Sitek, Barbara; Kostogrys, Renata; Zakrzewska, Agnieszka; Kij, Agnieszka; Walczak, Maria; Chlopicki, Stefan

    2016-02-01

    1-Methylnicotinamide (MNA), the major endogenous metabolite of nicotinic acid (NicA), may partially contribute to the vasoprotective properties of NicA. Here we compared the antiatherosclerotic effects of MNA and NicA in apolipoprotein E (ApoE)/low-density lipoprotein receptor (LDLR)-deficient mice. ApoE/LDLR(-/-) mice were treated with MNA or NicA (100 mg/kg). Plaque size, macrophages, and cholesterol content in the brachiocephalic artery, endothelial function in the aorta, systemic inflammation, platelet activation, as well as the concentration of MNA and its metabolites in plasma and urine were measured. MNA and NicA reduced atherosclerotic plaque area, plaque inflammation, and cholesterol content in the brachiocephalic artery. The antiatherosclerotic actions of MNA and NicA were associated with improved endothelial function, as evidenced by a higher concentration of 6-keto-prostaglandin F1 α and nitrite/nitrate in the aortic ring effluent, inhibition of platelets (blunted thromboxane B2 generation), and inhibition of systemic inflammation (lower plasma concentration of serum amyloid P, haptoglobin). NicA treatment resulted in an approximately 2-fold higher concentration of MNA and its metabolites in urine and a 4-fold higher nicotinamide/MNA ratio in plasma, compared with MNA treatment. In summary; MNA displays pronounced antiatherosclerotic action in ApoE/LDLR(-/-) mice, an effect associated with an improvement in prostacyclin- and nitric oxide-dependent endothelial function, inhibition of platelet activation, inhibition of inflammatory burden in plaques, and diminished systemic inflammation. Despite substantially higher MNA availability after NicA treatment, compared with an equivalent dose of MNA, the antiatherosclerotic effect of NicA was not stronger. We suggest that detrimental effects of NicA or its metabolites other than MNA may limit beneficial effects of NicA-derived MNA. Copyright © 2016 by The American Society for Pharmacology and Experimental

  16. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism.

    PubMed

    Blanchet, Emilie; Annicotte, Jean-Sébastien; Pradelli, Ludivine A; Hugon, Gérald; Matecki, Stéfan; Mornet, Dominique; Rivier, François; Fajas, Lluis

    2012-09-01

    E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1-/- mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1-/-;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.

  17. Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-deficient mice by inhibiting macrophage activation.

    PubMed

    Takashima, Akira; Fukuda, Daiju; Tanaka, Kimie; Higashikuni, Yasutomi; Hirata, Yoichiro; Nishimoto, Sachiko; Yagi, Shusuke; Yamada, Hirotsugu; Soeki, Takeshi; Wakatsuki, Tetsuzo; Taketani, Yutaka; Shimabukuro, Michio; Sata, Masataka

    2016-11-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are major components of n-3 polyunsaturated fatty acids (n-3 PUFAs) which inhibit atherogenesis, although few studies have examined the effects of the combination of EPA and DHA on atherogenesis. The aim of this study was to investigate whether DHA has additional anti-atherosclerotic effects when combined with EPA. Male 8-week-old apolipoprotein E-deficient (Apoe -/- ) mice were fed a western-type diet supplemented with different amounts of EPA and DHA; EPA (2.5%, w/w), low-dose EPA + DHA (2.5%, w/w), or high-dose EPA + DHA (5%, w/w) for 20 weeks. The control group was fed a western-type diet containing no n-3 PUFA. Histological and gene expression analysis were performed in atherosclerotic lesions in the aorta. To address the mechanisms, RAW264.7 cells were used. All n-3 PUFA treatments significantly attenuated the development and destabilization of atherosclerotic plaques compared with the control. The anti-atherosclerotic effects were enhanced in the high-dose EPA + DHA group (p < 0.001), whereas the pure EPA group and low-dose EPA + DHA group showed similar results. EPA and DHA additively attenuated the expression of inflammatory molecules in RAW264.7 cells stimulated with LPS. DHA or EPA + DHA suppressed LPS-induced toll-like receptor 4 (TLR4) expression in lipid rafts on RAW264.7 cells (p < 0.05). Lipid raft disruption by methyl-β-cyclodextrin suppressed mRNA expression of inflammatory molecules in LPS-stimulated macrophages. n-3 PUFAs suppressed atherogenesis. DHA combined with EPA had additional anti-inflammatory effects and inhibited atherogenesis in Apoe -/- mice. The reduction of TLR4 expression in lipid rafts in macrophages by DHA might be involved in this mechanism, at least partially. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE−/− mice

    PubMed Central

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O.; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-01-01

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (−/−) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)−/− mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system. PMID:28380440

  19. Circadian Behaviour in Neuroglobin Deficient Mice

    PubMed Central

    Hundahl, Christian A.; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night. PMID:22496809

  20. Circadian behaviour in neuroglobin deficient mice.

    PubMed

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  1. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival.

    PubMed

    Zheng, Qiao; Dunlap, Sarah M; Zhu, Jinling; Downs-Kelly, Erinn; Rich, Jeremy; Hursting, Stephen D; Berger, Nathan A; Reizes, Ofer

    2011-08-01

    Obesity increases both the risk and mortality associated with many types of cancer including that of the breast. In mice, obesity increases both incidence of spontaneous tumors and burden of transplanted tumors. Our findings identify leptin, an adipose secreted cytokine, in promoting increased mammary tumor burden in obese mice and provide a link between this adipokine and cancer. Using a transplantable tumor that develops spontaneously in the murine mammary tumor virus-Wnt-1 transgenic mice, we show that tumors transplanted into obese leptin receptor (LepRb)-deficient (db/db) mice grow to eight times the volume of tumors transplanted into lean wild-type (WT) mice. However, tumor outgrowth and overall tumor burden is reduced in obese, leptin-deficient (ob/ob) mice. The residual tumors in ob/ob mice contain fewer undifferentiated tumor cells (keratin 6 immunopositive) compared with WT or db/db mice. Furthermore, tumors in ob/ob mice contain fewer cells expressing phosphorylated Akt, a growth promoting kinase activated by the LepRb, compared with WT and db/db mice. In vivo limiting dilution analysis of residual tumors from ob/ob mice indicated reduced tumor initiating activity suggesting fewer cancer stem cells (CSCs). The tumor cell populations reduced by leptin deficiency were identified by fluorescence-activated cell sorting and found to express LepRb. Finally, LepRb expressing tumor cells exhibit stem cell characteristics based on the ability to form tumorspheres in vitro and leptin promotes their survival. These studies provide critical new insight on the role of leptin in tumor growth and implicate LepRb as a CSC target.

  2. Leptin treatment inhibits the progression of atherosclerosis by attenuating hypercholesterolemia in type 1 diabetic Ins2(+/Akita):apoE(-/-) mice.

    PubMed

    Jun, John Y; Ma, Zhexi; Pyla, Rajkumar; Segar, Lakshman

    2012-12-01

    The impact of leptin deficiency and its replacement in T1D remain unclear in the context of dyslipidemia and atherosclerosis. The current study has investigated the physiologic role of leptin in lipid metabolism and atherosclerosis in T1D. The present study has employed Ins2(+/Akita):apoE(-/-) mouse model that spontaneously develops T1D, hypercholesterolemia, and atherosclerosis. At age 13 weeks, diabetic Ins2(+/Akita):apoE(-/-) mice showed leptin deficiency by ~92% compared with nondiabetic Ins2(+/+):apoE(-/-) mice. From 13 weeks to 25 weeks of age, diabetic Ins2(+/Akita):apoE(-/-) mice were treated with low-dose leptin (at 0.4 μg/g body weight daily). Leptin treatment diminished food intake by 22-27% in diabetic mice without affecting body weight and lean mass throughout the experiment. Importantly, leptin therapy substantially reduced plasma cholesterol concentrations by ~41%, especially in LDL fractions, in diabetic Ins2(+/Akita):apoE(-/-) mice. Moreover, leptin therapy decreased atherosclerotic lesion in diabetic mice by ~62% comparable to that seen in nondiabetic mice. In addition, leptin restored repressed expression of hepatic sortilin-1, a receptor for LDL clearance, and reversed altered expression of several hepatic genes involved in lipogenesis and cholesterol synthesis characteristic of diabetic mice. These findings were accompanied by normalization of reduced hepatic expression of Irs1 and Irs2 mRNA as well as their protein levels, and improved hepatic insulin-receptor signaling. The present findings suggest that leptin administration may be useful to improve dyslipidemia and reduce atherosclerosis-related cardiovascular disease in human subjects with T1D. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice

    PubMed Central

    Yang, Hao; Wang, Shu Pei; Mitchell, Grant A.

    2017-01-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency. PMID:29232702

  4. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    PubMed

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  5. Simvastatin reduces neointimal thickening in low-density lipoprotein receptor-deficient mice after experimental angioplasty without changing plasma lipids.

    PubMed

    Chen, Zhiping; Fukutomi, Tatsuya; Zago, Alexandre C; Ehlers, Raila; Detmers, Patricia A; Wright, Samuel D; Rogers, Campbell; Simon, Daniel I

    2002-07-02

    Statins exert antiinflammatory and antiproliferative actions independent of cholesterol lowering. To determine whether these actions might affect neointimal formation, we investigated the effect of simvastatin on the response to experimental angioplasty in LDL receptor-deficient (LDLR-/-) mice, a model of hypercholesterolemia in which changes in plasma lipids are not observed in response to simvastatin. Carotid artery dilation (2.5 atm) and complete endothelial denudation were performed in male C57BL/6J LDLR-/- mice treated with low-dose (2 mg/kg) or high-dose (20 mg/kg) simvastatin or vehicle subcutaneously 72 hours before and then daily after injury. After 7 and 28 days, intimal and medial sizes were measured and the intima to media area ratio (I:M) was calculated. Total plasma cholesterol and triglyceride levels were similar in simvastatin- and vehicle-treated mice. Intimal thickening and I:M were reduced significantly by low- and high-dose simvastatin compared with vehicle alone. Simvastatin treatment was associated with reduced cellular proliferation (BrdU), leukocyte accumulation (CD45), and platelet-derived growth factor-induced phosphorylation of the survival factor Akt and increased apoptosis after injury. Simvastatin modulates vascular repair after injury in the absence of lipid-lowering effects. Although the mechanisms are not yet established, additional research may lead to new understanding of the actions of statins and novel therapeutic interventions for preventing restenosis.

  6. Mitochondrial Glycerol-3-Phosphate Acyltransferase-Deficient Mice Have Reduced Weight and Liver Triacylglycerol Content and Altered Glycerolipid Fatty Acid Composition

    PubMed Central

    Hammond, Linda E.; Gallagher, Patricia A.; Wang, Shuli; Hiller, Sylvia; Kluckman, Kimberly D.; Posey-Marcos, Eugenia L.; Maeda, Nobuyo; Coleman, Rosalind A.

    2002-01-01

    Microsomal and mitochondrial isoforms of glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyze the committed step in glycerolipid synthesis. The mitochondrial isoform, mtGPAT, was believed to control the positioning of saturated fatty acids at the sn-1 position of phospholipids, and nutritional, hormonal, and overexpression studies suggested that mtGPAT activity is important for the synthesis of triacylglycerol. To determine whether these purported functions were true, we constructed mice deficient in mtGPAT. mtGPAT−/− mice weighed less than controls and had reduced gonadal fat pad weights and lower hepatic triacylglycerol content, plasma triacylglycerol, and very low density lipoprotein triacylglycerol secretion. As predicted, in mtGPAT−/− liver, the palmitate content was lower in triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine. Positional analysis revealed that mtGPAT−/− liver phosphatidylethanolamine and phosphatidylcholine had about 21% less palmitate in the sn-1 position and 36 and 40%, respectively, more arachidonate in the sn-2 position. These data confirm the important role of mtGPAT in the synthesis of triacylglycerol, in the fatty acid content of triacylglycerol and cholesterol esters, and in the positioning of specific fatty acids, particularly palmitate and arachidonate, in phospholipids. The increase in arachidonate may be functionally significant in terms of eicosanoid production. PMID:12417724

  7. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  8. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators.

    PubMed

    Duffney, Lara J; Zhong, Ping; Wei, Jing; Matas, Emmanuel; Cheng, Jia; Qin, Luye; Ma, Kaijie; Dietz, David M; Kajiwara, Yuji; Buxbaum, Joseph D; Yan, Zhen

    2015-06-09

    Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR) synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Simvastatin inhibited cardiac hypertrophy and fibrosis in apolipoprotein E-deficient mice fed a “Western-style diet” by increasing PPAR α and γ expression and reducing TC, MMP-9, and Cat S levels

    PubMed Central

    Qin, Yan-wen; Ye, Ping; He, Ji-qiang; Sheng, Li; Wang, Lu-ya; Du, Jie

    2010-01-01

    Aim: The examine the cardiac hypertrophy and fibrosis in apolipoprotein E-deficient mice (ApoE−/− mice) fed a “Western-style diet” and the effect of simvastatin intervention. Methods: Male ApoE−/− mice (n=36) were fed a “Western-style diet” from the age of 8 weeks. After 16 weeks, they were randomly given either simvastatin (25 mg·kg−1·d−1) or normal saline (control group) by gavage for 8, 16, or 24 weeks. The left ventricular (LV) wall thickness and diameter of the myocardial cells were determined with Hematoxylin-Eosin stain, and the level of fibrosis of the myocardial matrix was assessed with Masson stain. Real-time quantitative polymerase chain reaction and Western blotting analysis were used to determine the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9), Cathepsin S (Cat S), and the peroxisome proliferator-activated receptors (PPARs) in the myocardium of ApoE−/− mice. Results: ApoE−/− mice fed a “Western-style diet” showed an significant age-dependent increase in total cholesterol (TC), LV wall thickness, myocardial cell diameter and LV collagen content (P<0.05). The simvastatin treatment group showed significantly reduced LV wall thickness, myocardial cell diameters and LV collagen content at 40 weeks when compared with the control group (P<0.05). Furthermore, treatment with simvastatin also significantly inhibited the mRNA and protein expressions of MMP-9 and Cat S as well as increased the mRNA and protein expressions of PPAR alpha and PPAR gamma at 32 and 40 weeks compared with the control group (P<0.05). Conclusion: ApoE−/− mice fed a “Western-style diet” had cardiac hypertrophy and fibrosis, which worsened with age. Simvastatin treatment inhibits the development of cardiac hypertrophy and fibrosis, and this effect may be mediated through increased levels of PPAR alpha and PPAR gamma and reduced levels of TC, MMP-9, and Cat S. PMID:20835264

  10. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity.

    PubMed

    Jellusova, Julia; Wellmann, Ute; Amann, Kerstin; Winkler, Thomas H; Nitschke, Lars

    2010-04-01

    CD22 and Siglec-G are inhibitory coreceptors for BCR-mediated signaling. Although CD22-deficient mice show increased calcium signaling in their conventional B2 cells and a quite normal B cell maturation, Siglec-G-deficient mice have increased calcium mobilization just in B1 cells and show a large expansion of the B1 cell population. Neither CD22-deficient, nor Siglec-G-deficient mice on a pure C57BL/6 or BALB/c background, respectively, develop autoimmunity. Using Siglec-G x CD22 double-deficient mice, we addressed whether Siglec-G and CD22 have redundant functions. Siglec-G x CD22 double-deficient mice show elevated calcium responses in both B1 cells and B2 cells, increased serum IgM levels and an enlarged population of B1 cells. The enlargement of B1 cell numbers is even higher than in Siglecg(-/-) mice. This expansion seems to happen at the expense of B2 cells, which are reduced in absolute cell numbers, but show an activated phenotype. Furthermore, Siglec-G x CD22 double-deficient mice show a diminished immune response to both thymus-dependent and thymus-independent type II Ags. In contrast, B cells from Siglec-G x CD22 double-deficient mice exhibit a hyperproliferative response to stimulation with several TLR ligands. Aged Siglec-G x CD22 double-deficient mice spontaneously develop anti-DNA and antinuclear autoantibodies. These resulted in a moderate form of immune complex glomerulonephritis. These results show that Siglec-G and CD22 have partly compensatory functions and together are crucial in maintaining the B cell tolerance.

  11. Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet.

    PubMed

    Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong

    2016-09-01

    We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Aerobic exercise and not a diet supplemented with jussara açaí (Euterpe edulis Martius) alters hepatic oxidative and inflammatory biomarkers in ApoE-deficient mice.

    PubMed

    de Castro, Cynthia Aparecida; Natali, Antonio José; Cardoso, Luciana Marques; Ferreira-Machado, Alessandra Barbosa; Novello, Alexandre Azevedo; da Silva, Karina Ana; Tafuri, Natalia Filard; da Matta, Sergio Luis Pinto; Pedrosa, Maria Lucia; Peluzio, Maria do Carmo Gouveia

    2014-08-14

    The pulp of jussara açaí (Euterpe edulis Martius) fruit is rich in anthocyanins that exert antioxidant and anti-inflammatory effects similar to those exerted by aerobic exercise. In the present study, we investigated the effects of jussara açaí fruit pulp consumption, either alone or in combination with aerobic exercise, on the hepatic oxidative and inflammatory status of ApoE-deficient (ApoE - / - ) mice. Male mice were divided into four groups (control (C), control plus açaí, exercise plus açaí (EXA) and exercise (EX)) and fed the AIN-93M diet or the AIN-93M diet formulated to contain 2 % freeze-dried açaí pulp. Mice in the EX and EXA groups were subjected to a progressive running programme (5 d/week, 60 min/d, 16 m/min) for 12 weeks. Mice that were made to exercise exhibited reduced (40·85 %; P< 0·05) hepatic superoxide dismutase activity when compared with the C mice, independent of the açaí diet. Mice in the EX group exhibited a lower (42 %; P< 0·05) mRNA expression of monocyte chemotactic protein-1 in the liver compared with the C mice. Mice in the EXA and EX groups had lower percentages of hepatic lipid droplets (70 % and 56 %, respectively; P< 0·05) when compared with the C mice. Mice in the EX group had smaller (58 %; P< 0·05) area of lesions in the aorta when compared with the C mice. Serum lipid profile was not affected (P>0·05). In conclusion, aerobic exercise training rather than açaí fruit pulp consumption or a combination of both enhances the hepatic oxidative and inflammatory status of ApoE - / - mice.

  13. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    PubMed Central

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  14. Inhibition of Activin Receptor Type IIB Increases Strength and Lifespan in Myotubularin-Deficient Mice

    PubMed Central

    Lawlor, Michael W.; Read, Benjamin P.; Edelstein, Rachel; Yang, Nicole; Pierson, Christopher R.; Stein, Matthew J.; Wermer-Colan, Ariana; Buj-Bello, Anna; Lachey, Jennifer L.; Seehra, Jasbir S.; Beggs, Alan H.

    2011-01-01

    X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency. PMID:21281811

  15. Immunity to Trichinella spiralis infection in vitamin A-deficient mice

    PubMed Central

    1992-01-01

    Vitamin A-deficient (A-) mice make strikingly poor IgG responses when they are immunized with purified protein antigens. Previously, we showed that A- T cells overproduce interferon gamma (IFN-gamma), which then could inhibit interleukin 4 (IL-4)-stimulated B cell IgG responses. To determine if the altered IFN-gamma regulation pattern and its immunological consequences would extend to a natural infection, we studied mice infected with the parasitic helminth Trichinella spiralis. The course of the infection was similar in A- and A-sufficient (A+) mice. These mice did not differ with respect to newborn larvae/female/hour produced in the intestine, or muscle larvae burden 5 wk postinfection. They also did not differ in the intestinal worm expulsion rate until day 15, when A- mice still harbored parasites, whereas A+ mice had cleared intestinal worms. Vitamin A deficiency reduced both the frequency of B lymphocytes secreting IgG1 antibodies to parasite antigens, and the bone marrow eosinophilia associated with helminth infection. The cytokine secretion patterns in infected mice were consistent with these observations and with previous studies. Mesenteric lymph node cells from infected A- mice secreted significantly more IFN-gamma, and significantly less IL-2, IL-4, and IL- 5 than infected A+ controls. A- splenocytes secreted significantly more IFN-gamma, and equivalent amounts of IL-2, IL-4, and IL-5 compared with A+ controls. Interestingly, CD4-CD8- cells secreted the majority of the IL-4 produced in the spleen. The IL-2, IL-4, and IL-5 steady-state transcript levels correlated with secreted protein levels, but IFN- gamma transcripts did not. Although they secreted more protein, A- cells contained fewer IFN-gamma transcripts than A+ cells. These results suggest two vitamin A-mediated regulation steps in IFN-gamma gene expression: positive regulation of IFN-gamma transcript levels, and negative regulation posttranscriptionally. The essentially unaltered outcome of T

  16. Losartan Decreases Cardiac Muscle Fibrosis and Improves Cardiac Function in Dystrophin-Deficient Mdx Mice

    PubMed Central

    Spurney, Christopher F.; Sali, Arpana; Guerron, Alfredo D.; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057

  17. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin

    PubMed Central

    Zheng, Chunlei; Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Baines, Andrea; Kim, Jinoh; Schekman, Randy; Kaufman, Randal J.; Ginsburg, David

    2011-01-01

    The type 1-transmembrane protein LMAN1 (ERGIC-53) forms a complex with the soluble protein MCFD2 and cycles between the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Mutations in either LMAN1 or MCFD2 cause the combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D), suggesting an ER-to-Golgi cargo receptor function for the LMAN1-MCFD2 complex. Here we report the analysis of LMAN1-deficient mice. Levels of plasma FV and FVIII, and platelet FV, are all reduced to ∼ 50% of wild-type in Lman1−/− mice, compared with the 5%-30% levels typically observed in human F5F8D patients. Despite previous reports identifying cathepsin C, cathepsin Z, and α1-antitrypsin as additional potential cargoes for LMAN1, no differences were observed between wild-type and Lman1−/− mice in the levels of cathepsin C and cathepsin Z in liver lysates or α1-antitrypsin levels in plasma. LMAN1 deficiency had no apparent effect on COPII-coated vesicle formation in an in vitro assay. However, the ER in Lman1−/− hepatocytes is slightly distended, with significant accumulation of α1-antitrypsin and GRP78. An unexpected, partially penetrant, perinatal lethality was observed for Lman1−/− mice, dependent on the specific inbred strain genetic background, suggesting a potential role for other, as yet unidentified LMAN1-dependent cargo proteins. PMID:21795745

  18. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    PubMed

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  19. Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome.

    PubMed

    Cariboni, Anna; André, Valentina; Chauvet, Sophie; Cassatella, Daniele; Davidson, Kathryn; Caramello, Alessia; Fantin, Alessandro; Bouloux, Pierre; Mann, Fanny; Ruhrberg, Christiana

    2015-06-01

    Individuals with an inherited deficiency in gonadotropin-releasing hormone (GnRH) have impaired sexual reproduction. Previous genetic linkage studies and sequencing of plausible gene candidates have identified mutations associated with inherited GnRH deficiency, but the small number of affected families and limited success in validating candidates have impeded genetic diagnoses for most patients. Using a combination of exome sequencing and computational modeling, we have identified a shared point mutation in semaphorin 3E (SEMA3E) in 2 brothers with Kallmann syndrome (KS), which causes inherited GnRH deficiency. Recombinant wild-type SEMA3E protected maturing GnRH neurons from cell death by triggering a plexin D1-dependent (PLXND1-dependent) activation of PI3K-mediated survival signaling. In contrast, recombinant SEMA3E carrying the KS-associated mutation did not protect GnRH neurons from death. In murine models, lack of either SEMA3E or PLXND1 increased apoptosis of GnRH neurons in the developing brain, reducing innervation of the adult median eminence by GnRH-positive neurites. GnRH neuron deficiency in male mice was accompanied by impaired testes growth, a characteristic feature of KS. Together, these results identify SEMA3E as an essential gene for GnRH neuron development, uncover a neurotrophic function for SEMA3E in the developing brain, and elucidate SEMA3E/PLXND1/PI3K signaling as a mechanism that prevents GnRH neuron deficiency.

  20. Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice

    PubMed Central

    Xue, Yansong; Zhang, Hanying; Sun, Xiaofei; Zhu, Mei-Jun

    2016-01-01

    Background and aims The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Methods Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Results Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Conclusions Metformin supplementation promotes

  1. Crybb2 deficiency impairs fertility in female mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qian; Sun, Li-Li; Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2more » deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.« less

  2. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice.

    PubMed

    Sala, Federica; Aranda, Juan F; Rotllan, Noemi; Ramírez, Cristina M; Aryal, Binod; Elia, Leonardo; Condorelli, Gianluigi; Catapano, Alberico Luigi; Fernández-Hernando, Carlos; Norata, Giuseppe Danilo

    2014-10-01

    The miR-143/145 cluster regulates VSMC specific gene expression, thus controlling differentiation, plasticity and contractile function, and promoting the VSMC phenotypic switch from a contractile/non-proliferative to a migrating/proliferative state. More recently increased miR-145 expression was observed in human carotid atherosclerotic plaques from symptomatic patients. The goal of this study was to investigate the contribution of miR-143/145 during atherogenesis by generating mice lacking miR-143/145 on an Ldlr-deficient background. Ldlr-/- and Ldlr-/--miR-143/145-/- (DKO) were fed a Western diet (WD) for 16 weeks. At the end of the treatment, the lipid profile and the atherosclerotic lesions were assessed in both groups of mice. Absence of miR-143/145 significantly reduced atherosclerotic plaque size and macrophage infiltration. Plasma total cholesterol levels were lower in DKO and FLPC analysis showed decreased cholesterol content in VLDL and LDL fractions. Interestingly miR-143/145 deficiency per se resulted in increased hepatic and vascular ABCA1 expression. We further confirmed the direct regulation of miR-145 on ABCA1 expression by qRT-PCR, Western blotting and 3'UTR-luciferase reporter assays. In summary, miR-143/145 deficiency significantly reduces atherosclerosis in mice. Therapeutic inhibition of miR-145 might be useful for treating atherosclerotic vascular disease.

  3. Characterization of Dysferlin Deficient SJL/J Mice to Assess Preclinical Drug Efficacy: Fasudil Exacerbates Muscle Disease Phenotype

    PubMed Central

    Rayavarapu, Sree; Van der meulen, Jack H.; Gordish-Dressman, Heather; Hoffman, Eric P.; Nagaraju, Kanneboyina; Knoblach, Susan M.

    2010-01-01

    The dysferlin deficient SJL/J mouse strain is commonly used to study dysferlin deficient myopathies. Therefore, we systematically evaluated behavior in relatively young (9–25 weeks) SJL/J mice and compared them to C57BL6 mice to determine which functional end points may be the most effective to use for preclinical studies in the SJL/J strain. SJL/J mice had reduced body weight, lower open field scores, higher creatine kinase levels, and less muscle force than did C57BL6 mice. Power calculations for expected effect sizes indicated that grip strength normalized to body weight and open field activity were the most sensitive indicators of functional status in SJL/J mice. Weight and open field scores of SJL/J mice deteriorated over the course of the study, indicating that progressive myopathy was ongoing even in relatively young (<6 months old) SJL/J mice. To further characterize SJL/J mice within the context of treatment, we assessed the effect of fasudil, a rho-kinase inhibitor, on disease phenotype. Fasudil was evaluated based on previous observations that Rho signaling may be overly activated as part of the inflammatory cascade in SJL/J mice. Fasudil treated SJL/J mice showed increased body weight, but decreased grip strength, horizontal activity, and soleus muscle force, compared to untreated SJL/J controls. Fasudil either improved or had no effect on these outcomes in C57BL6 mice. Fasudil also reduced the number of infiltrating macrophages/monocytes in SJL/J muscle tissue, but had no effect on muscle fiber degeneration/regeneration. These studies provide a basis for standardization of preclinical drug testing trials in the dysferlin deficient SJL/J mice, and identify measures of functional status that are potentially translatable to clinical trial outcomes. In addition, the data provide pharmacological evidence suggesting that activation of rho-kinase, at least in part, may represent a beneficial compensatory response in dysferlin deficient myopathies. PMID

  4. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype.

    PubMed

    Samsa, William E; Vasanji, Amit; Midura, Ronald J; Kondratov, Roman V

    2016-03-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1(-/-) mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1(-/-) mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1(-/-) mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Deficiency of Circadian Clock Protein BMAL1 in Mice Results in a Low Bone Mass Phenotype

    PubMed Central

    Samsa, William E.; Vasanji, Amit; Midura, Ronald J.; Kondratov, Roman V.

    2016-01-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1−/− mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1−/− mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1−/− mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. PMID:26789548

  6. Suppression of proatherogenic leukocyte interactions by MCS-18--Impact on advanced atherosclerosis in ApoE-deficient mice.

    PubMed

    Kuehn, Constanze; Tauchi, Miyuki; Stumpf, Christian; Daniel, Christoph; Bäuerle, Tobias; Schwarz, Marc; Kerek, Franz; Steinkasserer, Alexander; Zinser, Elisabeth; Achenbach, Stephan; Dietel, Barbara

    2016-02-01

    Atherosclerosis is associated with chronic inflammatory responses of the arterial blood vessels. The previously observed protective effect of the MCS-18 substance against the initiation of atherosclerosis in a murine model was explained by its pronounced anti-inflammatory activity. Here, we investigated its impact on murine plaque progression in advanced atherosclerosis and on proatherogenic processes. ApoE-deficient mice were fed a high-fat diet for 12 weeks to induce atherosclerosis, followed by normal chow and intraperitoneal injections of either MCS-18 (500 μg, n = 10) or saline (n = 10) twice a week for another 12 weeks. Plaque size was reduced in MCS-18 treated mice compared to controls (p = 0.001), which was associated with a reduced size of the lipid core (p = 0.01). There was a decrease in apoptotic cells (p = 0.02), endothelial ICAM-1 expression (p < 0.001), and macrophage density (p = 0.01) in the MCS-18 group. In addition, human and murine dendritic cells (DCs) and human umbilical vein endothelial cells (HUVECs) were treated with MCS-18 (50-200 μg/ml) to analyze cell migration and adhesion under flow conditions. MCS-18 reduced human (p = 0.01) and murine (p = 0.006) DC migration. Furthermore, adhesion of MCS-18-treated DCs to a HUVEC monolayer was decreased (p < 0.001). Compared to controls, CD209 (p < 0.001) and CCR7 (p = 0.003) expression was decreased in MCS-18-treated DCs, while in HUVECs lower levels of ICAM-1 (p < 0.001) and of phosphorylated NF-κB-p65 (p = 0.002) were observed. Blocking of ICAM-1 reduced DC adhesion (p < 0.001). MCS-18 exhibits interesting therapeutic effects when applied in advanced murine atherosclerosis. Its antiatherogenic impact might be associated with a suppressed adhesion to the endothelium due to down-regulation of endothelial ICAM-1 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Rescue of the mature B cell compartment in BAFF-deficient mice by treatment with recombinant Fc-BAFF.

    PubMed

    Swee, Lee Kim; Tardivel, Aubry; Schneider, Pascal; Rolink, Antonius

    2010-06-15

    BAFF deficiency in mice impairs B cell development beyond the transitional stage 1 in the spleen and thus severely reduces the size of follicular and marginal zone B cell compartments. Moreover, humoral immune responses in these mice are dramatically impaired. We now addressed the question whether the decrease in mature B cell numbers and the reduced humoral immune responses in BAFF-deficient mice could be overcome by the injection of recombinant BAFF. We therefore engineered a recombinant protein containing the human IgG1 Fc moiety fused to receptor-binding domain of human BAFF (Fc-BAFF). At 1 week after the second injection of this fusion protein a complete rescue of the marginal zone B cell compartment and a 50% rescue of the follicular B cell compartment was observed. Moreover these mice mounted a T cell-dependent humoral immune response indistinguishable from wild-type mice. By day 14 upon arrest of Fc-BAFF treatment mature B cell numbers in the blood dropped by 50%, indicating that the life span of mature B cells in the absence of BAFF is 14 days or less. Collectively these findings demonstrate that injection of Fc-BAFF in BAFF-deficient mice results in a temporary rescue of a functional mature B cell compartment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    PubMed

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P < 0.05) before ablation, perhaps accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  9. Photic Resetting and Entrainment in CLOCK-Deficient Mice

    PubMed Central

    Dallmann, Robert; DeBruyne, Jason P.; Weaver, David R.

    2012-01-01

    Mice lacking CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hr light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle (DeBruyne et al., Neuron 50:465–477, 2006). The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock−/− mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock−/− mice exhibit very large phase advances after 4 hrs light pulses in the late subjective night, but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12 hrs light: 12 hrs dark lighting schedule. To assess this relationship further, Clock−/− and wild-type control mice were entrained to skeleton lighting cycles (1L:23D, and 1L:10D:1L:12D). Comparing entrainment under the two types of skeleton photoperiods revealed that exposure to 1 hr light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock−/− mice, but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock−/− mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light. PMID:21921293

  10. Reduced COX-2 expression in aged mice is associated with impaired fracture healing.

    PubMed

    Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J

    2009-02-01

    The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.

  11. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor–Deficient Mice

    PubMed Central

    McGee-Lawrence, Meghan E.; Wenger, Karl H.; Misra, Sudipta; Davis, Catherine L.; Pollock, Norman K.; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M.; Hamrick, Mark W.; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P.; Cutler, Roy G.; Yu, Jack C.

    2017-01-01

    Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor–deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes. PMID:28323991

  12. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    PubMed Central

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  13. Vitamin E reduces hepatic fibrosis in mice with Schistosoma japonicum infection.

    PubMed

    Wang, Xuefeng; Zhang, Rongbo; Du, Jiuwei; Hu, Youying; Xu, Lifa; Lu, Jun; Ye, Song

    2012-02-01

    To investigate whether vitamin E protects against hepatic fibrosis in mice with Schistosoma japonicum infection, 24 pathogen-free Kunming mice were selected and randomly divided into four groups: control (uninfected, untreated), model (infected, untreated), low-dose intervention (infected, vitamin E-treated, 30 mg/g bodyweight/day) and high-dose intervention (infected, vitamin E-treated, 60 mg/g bodyweight/day). Mice were infected with Schistosoma japonicum by inoculating abdominal skin with snail hosts. The activities of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were detected in hepatic tissue by colorimetry. The expression levels of laminin (LN), hyaluronic acid (HA), procollagen type Ⅲ (PC-III) and type Ⅳ collagen (IV-C) were detected in the serum by radioimmunoassay. Finally, areas and numbers of granulomas were assessed through histopathology 42 days following treatment. The results revealed that mean areas of granulomas were smaller in the low- and high-dose intervention groups compared to those in the model group. Furthermore, the higher dose of vitamin E resulted in smaller granulomas than the low dose. The levels of LN, HA, PC-III and IV-C in the serum were lower following vitamin E treatment than in the model group. By contrast, activity of SOD, GPx and CAT in hepatic tissue was higher following vitamin E treatment compared to the model group. The activity of MDA was lower in hepatic tissue following vitamin E treatment compared to the model group, but was higher compared to controls. In general, the higher dose of vitamin E affected measurements to a greater extent than the lower dose. In conclusion, vitamin E treatment may reduce the growth of granulomas, slowing the process of hepatic fibrosis, and this effect may be the result of the altered activity of the oxidation-reduction enzyme system.

  14. FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury

    PubMed Central

    Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.

    2008-01-01

    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525

  15. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  17. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    PubMed

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  18. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  19. ERK5/KLF2 activation is involved in the reducing effects of puerarin on monocyte adhesion to endothelial cells and atherosclerotic lesion in apolipoprotein E-deficient mice.

    PubMed

    Deng, Yan; Lei, Tingwen; Li, Hongmei; Mo, Xiaochuan; Wang, Zhuting; Ou, Hailong

    2018-04-30

    Puerarin has properties of anti-oxidation and anti-inflammation, which has been demonstrated protective effects in atherosclerosis and other cardiovascular diseases. However, the detail molecular mechanism still remains unclear. Here, we determined whether the atheroprotective effect of puerarin was by reducing monocyte adhesion and explored the underlying mechanism. The results showed that puerarin dose- and time-dependently reduced oxLDL-induced monocyte THP-1 adhesion to HUVECs and the expression of adhesion-related genes such as VCAM-1, ICAM-1, MCP-1 and IL-8 in HUVECs. Puerarin activated ERK5 phosphorylation and up-regulated expressions of downstream KLF2 and its targeted genes endothelial nitric oxide synthase and thrombomodulin. However, the protective effects were reversed by ERK5/KLF2 pathway inhibitor XDM8-92, BIX02189 or KLF2 siRNA suggesting the pathway involved in the function. The ex vivo assay, in which THP-1 adhesion to endothelium isolated from apoE-/- mice received various treatment further confirmed the results from HUVECs. Finally, we found that the atherosclerotic lesions in both cross sections at aortic root and whole aorta were significantly reduced in high fat-diet (HFD) mice with puerarin treatment compared with the HFD-only mice, but were increased respectively by 76% and 71% in XMD8-92 group, and 82% and 73% in BIX02189 group. Altogether, the data revealed that puerarin inhibited the monocyte adhesion in vitro and in vivo and thus reduced atherosclerotic lesions in apoE-/- mice; the protective effects were mediated by activation of ERK5/KLF2 signaling pathway. Our findings advance the understanding of puerarin function in atherosclerosis and point out a way to prevent the disease. Copyright © 2018. Published by Elsevier B.V.

  20. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin.

    PubMed

    Hoh, Brian L; Rojas, Kelley; Lin, Li; Fazal, Hanain Z; Hourani, Siham; Nowicki, Kamil W; Schneider, Matheus B; Hosaka, Koji

    2018-04-13

    Estrogen deficiency is associated with the development of cerebral aneurysms; however, the mechanism remains unknown. We explored the pathway of cerebral aneurysm development by investigating the potential link between estrogen deficiency and inflammatory factors. First, we established the role of interleukin-17 (IL-17)A. We performed a cytokine screen demonstrating that IL-17A is significantly expressed in mouse and human aneurysms ( P =0.03). Likewise, IL-17A inhibition was shown to prevent aneurysm formation by 42% ( P =0.02) and rupture by 34% ( P <0.05). Second, we found that estrogen deficiency upregulates T helper 17 cells and IL-17A and promotes aneurysm rupture. Estrogen-deficient mice had more ruptures than control mice (47% versus 7%; P =0.04). Estradiol supplementation or IL-17A inhibition decreased the number of ruptures in estrogen-deficient mice (estradiol 6% versus 37%; P =0.04; IL-17A inhibition 18% versus 47%; P =0.018). Third, we found that IL-17A-blockade protects against aneurysm formation and rupture by increased E-cadherin expression. IL-17-inhibited mice had increased E-cadherin expression ( P =0.003). E-cadherin inhibition reversed the protective effect of IL-17A inhibition and increased the rate of aneurysm formation (65% versus 28%; P =0.04) and rupture (12% versus 0%; P =0.22). However, E-cadherin inhibition alone does not significantly increase aneurysm formation in normal mice or in estrogen-deficient mice. In cell migration assays, E-cadherin inhibition promoted macrophage infiltration across endothelial cells ( P <0.05), which may be the mechanism for the estrogen deficiency/IL-17/E-cadherin aneurysm pathway. Our data suggest that estrogen deficiency promotes cerebral aneurysm rupture by upregulating IL-17A, which downregulates E-cadherin, encouraging macrophage infiltration in the aneurysm vessel wall. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease.

    PubMed

    Osorio, Fernando G; Varela, Ignacio; Lara, Ester; Puente, Xose S; Espada, Jesús; Santoro, Raffaella; Freije, José M P; Fraga, Mario F; López-Otín, Carlos

    2010-12-01

    Mutations in the nuclear envelope protein lamin A or in its processing protease ZMPSTE24 cause human accelerated aging syndromes, including Hutchinson-Gilford progeria syndrome. Similarly, Zmpste24-deficient mice accumulate unprocessed prelamin A and develop multiple progeroid symptoms, thus representing a valuable animal model for the study of these syndromes. Zmpste24-deficient mice also show marked transcriptional alterations associated with chromatin disorganization, but the molecular links between both processes are unknown. We report herein that Zmpste24-deficient mice show a hypermethylation of rDNA that reduces the transcription of ribosomal genes, being this reduction reversible upon treatment with DNA methyltransferase inhibitors. This alteration has been previously described during physiological aging in rodents, suggesting its potential role in the development of the progeroid phenotypes. We also show that Zmpste24-deficient mice present global hypoacetylation of histones H2B and H4. By using a combination of RNA sequencing and chromatin immunoprecipitation assays, we demonstrate that these histone modifications are associated with changes in the expression of several genes involved in the control of cell proliferation and metabolic processes, which may contribute to the plethora of progeroid symptoms exhibited by Zmpste24-deficient mice. The identification of these altered genes may help to clarify the molecular mechanisms underlying aging and progeroid syndromes as well as to define new targets for the treatment of these dramatic diseases. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  2. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  3. Endothelial NOS-deficient mice reveal dual roles for nitric oxide during experimental autoimmune encephalomyelitis.

    PubMed

    Wu, Muzhou; Tsirka, Stella E

    2009-08-15

    Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.

  4. Borrelia-primed and -infected mice deficient of interleukin-17 develop arthritis after neutralization of gamma-interferon.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-03-01

    The immune mechanisms responsible for development of Lyme arthritis are partially understood with interleukin-17 (IL-17) and gamma-interferon (IFN-γ) playing a generally accepted role. Elevated levels of IL-17 and/or IFN-γ have been reported in samples from human Lyme arthritis patients and experimental mice. In addition, IL-17 and IFN-γ have been implicated in the onset of arthritis in Borrelia-primed and -infected C57BL/6 mice. Recently, we showed that IL-17-deficient mice developed swelling and histopathological changes consistent with arthritis in the presence of high levels of IFN-γ. We hypothesized that neutralization of IFN-γ in IL-17-deficient mice would inhibit Borrelia-induced arthritis. Our results, however, showed that swelling of the hind paws and histopathological changes of arthritis did not differ between Borrelia-primed and -infected IL-17-deficient and wild-type mice with or without neutralization of IFN-γ. We also found higher levels of tumor necrosis factor alpha (TNF-α) and IL-6 in the popliteal lymph node cells of Borrelia-primed and -infected IL-17-deficient mice after neutralization of IFN-γ. These results suggest that multiple cytokines interact in the development of Borrelia-induced arthritis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Glucocorticoids exacerbate obesity and insulin resistance in neuron-specific proopiomelanocortin-deficient mice

    PubMed Central

    Smart, James L.; Tolle, Virginie; Low, Malcolm J.

    2006-01-01

    Null mutations of the proopiomelanocortin gene (Pomc–/–) cause obesity in humans and rodents, but the contributions of central versus pituitary POMC deficiency are not fully established. To elucidate these roles, we introduced a POMC transgene (Tg) that selectively restored peripheral melanocortin and corticosterone secretion in Pomc–/– mice. Rather than improving energy balance, the genetic replacement of pituitary POMC in Pomc–/–Tg+ mice aggravated their metabolic syndrome with increased caloric intake and feed efficiency, reduced oxygen consumption, increased subcutaneous, visceral, and hepatic fat, and severe insulin resistance. Pair-feeding of Pomc–/–Tg+ mice to the daily intake of lean controls normalized their rate of weight gain but did not abolish obesity, indicating that hyperphagia is a major but not sole determinant of the phenotype. Replacement of corticosterone in the drinking water of Pomc–/– mice recapitulated the hyperphagia, excess weight gain and fat accumulation, and hyperleptinemia characteristic of genetically rescued Pomc–/–Tg+ mice. These data demonstrate that CNS POMC peptides play a critical role in energy homeostasis that is not substituted by peripheral POMC. Restoration of pituitary POMC expression to create a de facto neuronal POMC deficiency exacerbated the development of obesity, largely via glucocorticoid modulation of appetite, metabolism, and energy partitioning. PMID:16440060

  6. Milk composition and lactation of beta-casein-deficient mice.

    PubMed Central

    Kumar, S; Clarke, A R; Hooper, M L; Horne, D S; Law, A J; Leaver, J; Springbett, A; Stevenson, E; Simons, J P

    1994-01-01

    beta-Casein is a major protein component of milk and, in conjunction with the other caseins, it is assembled into micelles. The casein micelles determine many of the physical characteristics of milk, which are important for stability during storage and for milk-processing properties. There is evidence that suggests that beta-casein may also possess other, nonnutritional functions. To address the function of beta-casein, the mouse beta-casein gene was disrupted by gene targeting in embryonic stem cells. Homozygous beta-casein mutant mice are viable and fertile; females can lactate and successfully rear young. beta-Casein was expressed at a reduced level in heterozygotes and was completely absent from the milk of homozygous mutant mice. Despite the deficiency of beta-casein, casein micelles were assembled in heterozygous and homozygous mutants, albeit with reduced diameters. The absence of beta-casein expression was reflected in a reduced total protein concentration in milk, although this was partially compensated for by an increased concentration of other proteins. The growth of pups feeding on the milk of homozygous mutants was reduced relative to those feeding on the milk of wild-type mice. Various genetic manipulations of caseins have been proposed for the qualitative improvement of cow's milk composition. The results presented here demonstrate that beta-casein has no essential function and that the casein micelle is remarkably tolerant of changes in composition. Images PMID:8016126

  7. Mice Producing Reduced Levels of Insulin-Like Growth Factor Type 1 Display an Increase in Maximum, but not Mean, Life Span

    PubMed Central

    2014-01-01

    Reduced signaling through the IGF type 1 (IGF-1) receptor increases life span in multiple invertebrate organisms. Studies on mammalian longevity suggest that reducing levels of IGF-1 may also increase life span. However, the data are conflicting and complicated by the physiology of the mammalian neuroendocrine system. We have performed life-span analysis on mice homozygous for an insertion in the Igf1 gene. These mice produce reduced levels of IGF-1 and display a phenotype consistent with a significant decrease in IGF-1. Life-span analysis was carried out at three independent locations. Although the life-span data varied between sites, the maximum life span of the IGF-1-deficient mice was significantly increased and age-specific mortality rates were reduced in the IGF-1-deficient mice; however, mean life span did not differ except at one site, where mean life span was increased in female IGF-1-deficient animals. Early life mortality was noted in one cohort of IGF-1-deficient mice. The results are consistent with a significant role for IGF-1 in the modulation of life span but contrast with the published life-span data for the hypopituitary Ames and Snell dwarf mice and growth hormone receptor null mice, indicating that a reduction in IGF-1 alone is insufficient to increase both mean and maximal life span in mice. PMID:23873963

  8. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure

    PubMed Central

    Mathias, Clinton B.; Schramm, Craig M.; Guernsey, Linda A.; Wu, Carol A.; Polukort, Stephanie H.; Rovatti, Jeffrey; Ser-Dolansky, Jennifer; Secor, Eric; Schneider, Sallie S.; Thrall, Roger S.; Aguila, Hector L.

    2017-01-01

    Background Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple hematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+T cells. We therefore hypothesized that IL-15−/− mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). Objective To determine whether IL-15−/− mice have attenuated allergic responses in a mouse model of AAD. Methods C57BL/6 wild-type (WT) and IL-15−/− mice were sensitized and challenged with ovalbumin (OVA) and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. Results Here we report that IL-15−/− mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+T and B cells in the spleens and broncholaveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα−/− animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15−/− animals to levels observed in WT mice, but had no further effects. Conclusion and Clinical Relevance These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or

  9. Severe Vitamin E deficiency modulates airway allergic inflammatory responses in the murine asthma model

    PubMed Central

    LIM, YUNSOOK; VASU, VIHAS T.; VALACCHI, GIUSEPPE; LEONARD, SCOTT; AUNG, HNIN HNIN; SCHOCK, BETTINA C.; KENYON, NICHOLAS J.; LI, CHIN-SHANG; TRABER, MARET G.; CROSS, CARROLL E.

    2009-01-01

    Allergic asthma is a complex immunologically mediated disease associated with increased oxidative stress and altered antioxidant defenses. It was hypothesized that α-tocopherol (α-T) decreases oxidative stress and therefore its absence may influence allergic inflammatory process, a pathobiology known to be accompanied by oxidative stress. Therefore, selected parameters of allergic asthma sensitization and inflammation were evaluated following ovalbumin sensitization and re-challenge of α-T transfer protein (TTP) knock-out mice (TTP–/–) that have greatly reduced lung α-T levels (e.g. < 5%) compared to their litter mate controls (TTP+/+). Results showed that severe α-T deficiency result in a blunted lung expression of IL-5 mRNA and IL-5 protein and plasma IgE levels compared with TTP+/+ mice following immune sensitization and rechallenge, although lung lavage eosinophil levels were comparable in both genomic strains. It is concluded that the initial stimulation of immune responses by the TTP–/– mice were generally blunted compared to the TTP+/+ mice, thus diminishing some aspects of subsequent allergic inflammatory processes. PMID:18404538

  10. A Dietary Mixture Containing Fish Oil, Resveratrol, Lycopene, Catechins, and Vitamins E and C Reduces Atherosclerosis in Transgenic Mice123

    PubMed Central

    Verschuren, Lars; Wielinga, Peter Y.; van Duyvenvoorde, Wim; Tijani, Samira; Toet, Karin; van Ommen, Ben; Kooistra, Teake; Kleemann, Robert

    2011-01-01

    Chronic inflammation and proatherogenic lipids are important risk factors of cardiovascular disease (CVD). Specific dietary constituents such as polyphenols and fish oils may improve cardiovascular risk factors and may have a beneficial effect on disease outcomes. We hypothesized that the intake of an antiinflammatory dietary mixture (AIDM) containing resveratrol, lycopene, catechin, vitamins E and C, and fish oil would reduce inflammatory risk factors, proatherogenic lipids, and endpoint atherosclerosis. AIDM was evaluated in an inflammation model, male human C-reactive protein (CRP) transgenic mice, and an atherosclerosis model, female ApoE*3Leiden transgenic mice. Two groups of male human-CRP transgenic mice were fed AIDM [0.567% (wt:wt) powder and 0.933% (wt:wt oil)] or placebo for 6 wk. The effects of AIDM on basal and IL-1β–stimulated CRP expression were investigated. AIDM reduced cytokine-induced human CRP and fibrinogen expression in human-CRP transgenic mice. In the atherosclerosis study, 2 groups of female ApoE*3Leiden transgenic mice were fed an atherogenic diet supplemented with AIDM [0.567% (wt:wt) powder and 0.933% (wt:wt oil)] or placebo for 16 wk. AIDM strongly reduced plasma cholesterol, TG, and serum amyloid A concentrations compared with placebo. Importantly, long-term treatment of ApoE*3Leiden mice with AIDM markedly reduced the development of atherosclerosis by 96% compared with placebo. The effect on atherosclerosis was paralleled by a reduced expression of the vascular inflammation markers and adhesion molecules inter-cellular adhesion molecule-1 and E-selectin. Dietary supplementation of AIDM improves lipid and inflammatory risk factors of CVD and strongly reduces atherosclerotic lesion development in female transgenic mice. PMID:21411607

  11. Impaired social recognition memory in Recombination Activating Gene 1-deficient mice

    PubMed Central

    McGowan, Patrick O.; Hope, Thomas A.; Meck, Warren H.; Kelsoe, Garnett; Williams, Christina L.

    2012-01-01

    The Recombination Activating Genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation. PMID:21354115

  12. Intact follicular maturation and defective luteal function in mice deficient for cyclin- dependent kinase-4.

    PubMed

    Moons, David S; Jirawatnotai, Siwanon; Tsutsui, Tateki; Franks, Roberta; Parlow, A F; Hales, Dale B; Gibori, Geula; Fazleabas, Asgerally T; Kiyokawa, Hiroaki

    2002-02-01

    Cell cycle progression of granulosa cells is critical for ovarian function, especially follicular maturation. During follicular maturation, FSH induces cyclin D2, which promotes G1 progression by activating cyclin-dependent kinase-4 (Cdk4). Because cyclin D2-deficient mice exhibit a block in follicular growth, cyclin D2/Cdk4 has been hypothesized to be required for FSH-dependent proliferation of granulosa cells. Here we investigate ovarian function in Cdk4-knockout mice we recently generated. Cdk4(-/-) females were sterile, but the morphology of their ovaries appeared normal before sexual maturation. The number of preovulatory follicles and the ovulation efficiency were modestly reduced in gonadotropin-treated Cdk4(-/-) mice. However, unlike cyclin D2-deficient mice, Cdk4(-/-) mice showed no obvious defect in FSH-induced proliferation of granulosa cells. Cdk4(-/-) ovaries displayed normal preovulatory expression of aromatase, PR, and cyclooxygenase-2. Postovulatory progesterone secretion was markedly impaired in Cdk4(-/-) mice, although granulosa cells initiated luteinization with induction of p450 side-chain cleavage cytochrome and p27(Kip1). Progesterone treatment rescued implantation and restored fertility in Cdk4(-/-) mice. Serum PRL levels after mating were significantly reduced in Cdk4(-/-) mice, suggesting the involvement of perturbed PRL regulation in luteal failure. Thus, Cdk4 is critical for luteal function, and some redundant protein(s) can compensate for the absence of Cdk4 in proliferation of granulosa cells.

  13. Inner ear dysfunction in caspase-3 deficient mice

    PubMed Central

    2011-01-01

    Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/-) mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P < 0.05) compared to Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P < 0.05) in Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule. PMID:21988729

  14. Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice

    PubMed Central

    Kim, Hye Y.; Mathews, Joel A.; Verbout, Norah G.; Williams, Alison S.; Wurmbrand, Allison P.; Ninin, Fernanda M. C.; Neto, Felippe L.; Benedito, Leandro A. P.; Hug, Christopher; Umetsu, Dale T.; Shore, Stephanie A.

    2013-01-01

    Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24–72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo−/−) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo−/− mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo−/−/IL-6−/−) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo−/− vs. wild-type mice, but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. IL-17A+ F4/80+ cells and IL-17A+ γδ T cells were also reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice exposed to ozone. Only BAL neutrophils were reduced in IL-6−/− vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1+F4/80−CD11c− cells, whereas in Adipo−/− mice F4/80+CD11c+ cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo−/− vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo−/− vs. wild-type mice but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo−/− mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF. PMID:24381131

  15. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice.

    PubMed

    Tsou, Ryan C; Zimmer, Derek J; De Jonghe, Bart C; Bence, Kendra K

    2012-09-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1B's role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.

  16. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice.

    PubMed

    Quinzii, Catarina M; Garone, Caterina; Emmanuele, Valentina; Tadesse, Saba; Krishna, Sindu; Dorado, Beatriz; Hirano, Michio

    2013-02-01

    Primary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins. We hypothesized that absence of oxidative stress markers and cell death in PDSS2 mutant fibroblasts were due to the extreme severity of CoQ(10) deficiency. Here, we have investigated in vivo effects of Pdss2 deficiency in affected and unaffected organs of CBA/Pdss2(kd/kd) mice at presymptomatic, phenotypic-onset, and end-stages of the disease. Although Pdss2 mutant mice manifest widespread CoQ(9) deficiency and mitochondrial respiratory chain abnormalities, only affected organs show increased ROS production, oxidative stress, mitochondrial DNA depletion, and reduced citrate synthase activity, an index of mitochondrial mass. Our data indicate that kidney-specific loss of mitochondria triggered by oxidative stress may be the cause of renal failure in Pdss2(kd/kd) mice.

  17. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lep{sup ob/ob} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, Motohiro; Yahagi, Naoya, E-mail: nyahagi-tky@umin.ac.jp; Laboratory of Molecular Physiology on Energy Metabolism, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655

    2009-09-25

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic {beta}-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep{sup ob/ob}/HSL{sup -/-}) and explored the role of HSL in pancreatic {beta}-cells in the setting of obesity. Lep{sup ob/ob}/HSL{sup -/-} developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep{sup ob/ob}/HSL{sup +/+} in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep{sup +/+} background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep{sup ob/ob} islets,more » leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep{sup ob/ob} mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.« less

  18. Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin.

    PubMed

    Liu, Zhonglin; Larsen, Brandon T; Lerman, Lilach O; Gray, Brian D; Barber, Christy; Hedayat, Ahmad F; Zhao, Ming; Furenlid, Lars R; Pak, Koon Y; Woolfenden, James M

    2016-08-01

    Apoptosis of macrophages and smooth muscle cells is linked to atherosclerotic plaque destabilization. The apoptotic cascade leads to exposure of phosphatidylethanolamine (PE) on the outer leaflet of the cell membrane, thereby making apoptosis detectable using probes targeting PE. The objective of this study was to exploit capabilities of a PE-specific imaging probe, (99m)Tc-duramycin, in localizing atherosclerotic plaque and assessing plaque evolution in apolipoprotein-E knockout (ApoE(-/-)) mice. Atherosclerosis was induced in ApoE(-/-) mice by feeding an atherogenic diet. (99m)Tc-duramycin images were acquired using a small-animal SPECT imager. Six ApoE(-/-) mice at 20weeks of age (Group I) were imaged and then sacrificed for ex vivo analyses. Six additional ApoE(-/-) mice (Group II) were imaged at 20 and 40weeks of age before sacrifice. Six ApoE wild-type (ApoE(+/+)) mice (Group III) were imaged at 40weeks as controls. Five additional ApoE(-/-) mice (40weeks of age) (Group IV) were imaged with a (99m)Tc-labeled inactive peptide, (99m)Tc-LinDUR, to assess (99m)Tc-duramycin targeting specificity. Focal (99m)Tc-duramycin uptake in the ascending aorta and aortic arch was detected at 20 and 40weeks in the ApoE(-/-) mice but not in ApoE(+/+) mice. (99m)Tc-duramycin uptake in the aortic lesions increased 2.2-fold on quantitative imaging in the ApoE(-/-) mice between 20 and 40weeks. Autoradiographic and histological data indicated significantly increased (99m)Tc-duramycin uptake in the ascending aorta and aortic arch associated with advanced plaques. Quantitative autoradiography showed that the ratio of activity in the aortic arch to descending thoracic aorta, which had no plaques or radioactive uptake, was 2.1 times higher at 40weeks than at 20weeks (6.62±0.89 vs. 3.18±0.29, P<0.01). There was barely detectable focal uptake of (99m)Tc-duramycin in the aortic arch of ApoE(+/+) mice. No detectable (99m)Tc-LinDUR uptake was observed in the aortas of ApoE(-/-) mice. PE

  19. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice

    PubMed Central

    Haque, Jamil A; McMahan, Ryan S; Campbell, Jean S; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K; Beyer, Richard P; Montine, Thomas J; Yeh, Matthew M; Kavanagh, Terrance J; Fausto, Nelson

    2011-01-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifier subunit of glutamate cysteine ligase (Gclm null mice), the rate-limiting enzyme for de novo synthesis of GSH, were fed the MCD diet, a methionine/choline-sufficient diet, or standard chow for 21 days. We assessed NASH-associated hepatic pathology, including steatosis, fibrosis, inflammation, and hepatocyte ballooning, and used the NAFLD Scoring System to evaluate the extent of changes. We measured triglyceride levels, determined the level of lipid peroxidation products, and measured by qPCR the expression of mRNAs for several proteins associated with lipid metabolism, oxidative stress, and fibrosis. MCD-fed GSH-deficient Gclm null mice were to a large extent protected from MCD diet-induced excessive fat accumulation, hepatocyte injury, inflammation, and fibrosis. Compared with wt animals, MCD-fed Gclm null mice had much lower levels of F2-isoprostanes, lower expression of acyl-CoA oxidase, carnitine palmitoyltransferase 1a, uncoupling protein-2, stearoyl-coenzyme A desaturase-1, transforming growth factor-β, and plas-minogen activator inhibitor-1 mRNAs, and higher activity of catalase, indicative of low oxidative stress, inhibition of triglyceride synthesis, and lower expression of profibrotic proteins. Global gene analysis of hepatic RNA showed that compared with wt mice, the livers of Gclm null mice have a high capacity to metabolize endogenous and exogenous compounds, have lower levels of lipogenic proteins, and increased antioxidant activity. Thus, metabolic adaptations

  20. Functional Substitution by TAT-Utrophin in Dystrophin-Deficient Mice

    PubMed Central

    Sonnemann, Kevin J.; Heun-Johnson, Hanke; Turner, Amy J.; Baltgalvis, Kristen A.; Lowe, Dawn A.; Ervasti, James M.

    2009-01-01

    Background The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or ΔR4-21 “micro” utrophin (μUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice. Methods and Findings Recombinant TAT-Utr and TAT-μUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-μUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290±920 U versus 5,950±1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%±5% versus 37%±4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%±5% versus 40%±8% drop; PBS versus TAT), and increased specific force production (9.7±1.1 N/cm2 versus 12.8±0.9 N/cm2; PBS versus TAT). Conclusions These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin. PMID:19478831

  1. Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice.

    PubMed

    Martorell, Sara; Hueso, Luisa; Gonzalez-Navarro, Herminia; Collado, Aida; Sanz, Maria-Jesus; Piqueras, Laura

    2016-08-01

    Abdominal aortic aneurysm (AAA) is a vascular disorder characterized by chronic inflammation of the aortic wall. Low concentrations of vitamin D3 are associated with AAA development; however, the potential direct effect of vitamin D3 on AAA remains unknown. This study evaluates the effect of oral treatment with the vitamin D3 receptor (VDR) ligand, calcitriol, on dissecting AAA induced by angiotensin-II (Ang-II) infusion in apoE(-/-) mice. Oral treatment with calcitriol reduced Ang-II-induced dissecting AAA formation in apoE(-/-) mice, which was unrelated to systolic blood pressure or plasma cholesterol concentrations. Immunohistochemistry and reverse-transcription polymerase chain reaction analysis demonstrated a significant increase in macrophage infiltration, neovessel formation, matrix metalloproteinase-2 and matrix metalloproteinase-9, chemokine (CCL2 [(C-C motif) ligand 2], CCL5 [(C-C motif) ligand 5], and CXCL1 [(C-X-C motif) ligand 1]) and vascular endothelial growth factor expression in suprarenal aortic walls of apoE(-/-) mice infused with Ang-II, and all were significantly reduced by cotreatment with calcitriol. Phosphorylation of extracellular signal-regulated kinases 1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB was also decreased in the suprarenal aortas of apoE(-/-) mice cotreated with calcitriol. These effects were accompanied by a marked increase in VDR-retinoid X receptor (RXR) interaction in the aortas of calcitriol-treated mice. In vitro, VDR activation by calcitriol in human endothelial cells inhibited Ang-II-induced leukocyte-endothelial cell interactions, morphogenesis, and production of endothelial proinflammatory and angiogenic chemokines through VDR-RXR interactions, and knockdown of VDR or RXR abolished the inhibitory effects of calcitriol. VDR activation reduces dissecting AAA formation induced by Ang-II in apoE(-/-) mice and may constitute a novel therapeutic strategy to prevent AAA progression. © 2016 American

  2. Increased ethanol preference and serotonin 1A receptor-dependent attenuation of ethanol-induced hypothermia in PACAP-deficient mice.

    PubMed

    Tanaka, Kazuhiro; Kunishige-Yamamoto, Akiko; Hashimoto, Hitoshi; Shintani, Norihito; Hayata, Atsuko; Baba, Akemichi

    2010-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice display remarkable behavioral changes including increased novelty-seeking behavior and reduced hypothermia induced by either serotonin (5-HT)(1A) receptor agonists or ethanol. Because 5-HT(1A) receptors have been implicated in the development of alcohol dependence, we have examined ethanol preference in PACAP-deficient mice using a two-bottle choice and a conditioned place preference test, as well as additive effects of ethanol and 5-HT(1A) receptor agents on hypothermia. PACAP-deficient mice showed an increased preference towards ethanol compared with wild-type mice. However, they showed no preference for the ethanol compartment after conditioning and neither preference nor aversion to sucrose or quinine. The 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) restored the attenuated hypothermic response to ethanol in the mutants to similar levels in wild-type mice, with no effect in wild-types. In contrast, the 5-HT(1A) receptor antagonist WAY-100635 attenuated the ethanol-induced hypothermia in wild-type mice, with no effect in the mutants. These results demonstrate increased ethanol preference in PACAP-deficient mice that may be mediated by 5-HT(1A) receptor-dependent attenuation of ethanol-induced central inhibition. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    PubMed Central

    Choi, Jae Won; Sutor, Shari L.; Lindquist, Lonn; Evans, Glenda L.; Madden, Benjamin J.; Bergen, H. Robert; Hefferan, Theresa E.; Yaszemski, Michael J.; Bram, Richard J.

    2009-01-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone. PMID:19997487

  4. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    PubMed

    Choi, Jae Won; Sutor, Shari L; Lindquist, Lonn; Evans, Glenda L; Madden, Benjamin J; Bergen, H Robert; Hefferan, Theresa E; Yaszemski, Michael J; Bram, Richard J

    2009-12-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  5. Abnormalities in Osteoclastogenesis and Decreased Tumorigenesis in Mice Deficient for Ovarian Cancer G Protein-Coupled Receptor 1

    PubMed Central

    Li, Hui; Wang, Dongmei; Singh, Lisam Shanjukumar; Berk, Michael; Tan, Haiyan; Zhao, Zhenwen; Steinmetz, Rosemary; Kirmani, Kashif; Wei, Gang; Xu, Yan

    2009-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases. PMID:19479052

  6. Vitamin A-Deficient Diet Accelerated Atherogenesis in Apolipoprotein E−/− Mice and Dietary β-Carotene Prevents This Consequence

    PubMed Central

    Relevy, Noa Zolberg; Harats, Dror; Harari, Ayelet; Ben-Amotz, Ami; Bitzur, Rafael; Rühl, Ralph; Shaish, Aviv

    2015-01-01

    Vitamin A is involved in regulation of glucose concentrations, lipid metabolism, and inflammation, which are major risk factors for atherogenesis. However, the effect of vitamin A deficiency on atherogenesis has not been investigated. Therefore, the objective of the current study was to examine whether vitamin A deficiency accelerates atherogenesis in apolipoprotein E-deficient mice (apoE−/−). ApoE−/− mice were allocated into the following groups: control, fed vitamin A-containing chow diet; BC, fed chow diet fortified with Dunaliella powder containing βc isomers; VAD, fed vitamin A-deficient diet; and VAD-BC group, fed vitamin A-deficient diet fortified with a Dunaliella powder. Following 15 weeks of treatment, liver retinol concentration had decreased significantly in the VAD group to about 30% that of control group. Vitamin A-deficient diet significantly increased both plasma cholesterol concentrations and the atherosclerotic lesion area at the aortic sinus (+61%) compared to the control group. Dietary βc fortification inhibited the elevation in plasma cholesterol and retarded atherogenesis in mice fed the vitamin A-deficient diet. The results imply that dietary vitamin A deficiency should be examined as a risk factor for atherosclerosis and that dietary βc, as a sole source of retinoids, can compensate for vitamin A deficiency. PMID:25802864

  7. [Effect of extracts from Dendrobii ifficinalis flos on hyperthyroidism Yin deficiency mice].

    PubMed

    Lei, Shan-shan; Lv, Gui-yuan; Jin, Ze-wu; Li, Bo; Yang, Zheng-biao; Chen, Su-hong

    2015-05-01

    Some unhealthy life habits, such as long-term smoking, heavy drinking, sexual overstrain and frequent stay-up could induce the Yin deficiency symptoms of zygomatic red and dysphoria. Stems of Dendrobii officinalis flos (DOF) showed the efficacy of nourishing Yin. In this study, the hyperthyroidism Yin deficiency model was set up to study the yin nourishing effect and action mechanism of DOF, in order to provide the pharmacological basis for developing DOF resources and decreasing resource wastes. ICR mice were divided into five groups: the normal control group, the model control group, the positive control group and DOF extract groups (6.4 g · kg(-1)). Except for the normal group, the other groups were administrated with thyroxine for 30 d to set up the hyperthyroidism yin deficiency model. At the same time, the other groups were administrated with the corresponding drugs for 30 d. After administration for 4 weeks, the signs (facial temperature, pain domain, heart rate and autonomic activity) in mice were measured, and the facial and ear micro-circulation blood flow were detected by laser Doppler technology. After the last administration, all mice were fasted for 12 hours, blood were collected from their orbits, and serum were separated to detect AST, ALT, TG and TP by the automatic biochemistry analyzer and test T3, T4 and TSH levels by ELISA. (1) Compared with the normal control group, the model control group showed significant increases in facial and ear micro-circulation blood flow, facial temperature and heart rate (P < 0.05, P < 0.01), serum AST, ALT (P < 0.01), T3 level (P < 0.05), TSH level (P < 0.05) and notable deceases in pain domain (P < 0.01), TG level (P < 0.01). (2) Compared with the model control group, extracts from DOF (6 g · kg(-1)) could notably reduce facial and ear micro-circulation blood flow, facial temperature and heart rate (P < 0.05, P < 0.01) and AST (P < 0.05) and enhance pain domain (P < 0.01) and TG (P < 0.01). Extracts from DOF (4

  8. Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice

    PubMed Central

    Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David

    2016-01-01

    In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878

  9. PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice.

    PubMed

    Jones, Shannon M; Mann, Adrien; Conrad, Kelsey; Saum, Keith; Hall, David E; McKinney, Lisa M; Robbins, Nathan; Thompson, Joel; Peairs, Abigail D; Camerer, Eric; Rayner, Katey J; Tranter, Michael; Mackman, Nigel; Owens, A Phillip

    2018-06-01

    PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice (8-12 weeks old) that were Par2 +/+ or Par2 -/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2 - and Cxcl1 -induced monocyte infiltration. © 2018 American Heart Association, Inc.

  10. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    PubMed

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  11. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  12. Lipid Absorption Defects in Intestine-specific Microsomal Triglyceride Transfer Protein and ATP-binding Cassette Transporter A1-deficient Mice*

    PubMed Central

    Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood

    2013-01-01

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513

  13. Maternal heparin-binding-EGF deficiency limits pregnancy success in mice

    PubMed Central

    Xie, Huirong; Wang, Haibin; Tranguch, Susanne; Iwamoto, Ryo; Mekada, Eisuke; DeMayo, Francesco J.; Lydon, John P.; Das, Sanjoy K.; Dey, Sudhansu K.

    2007-01-01

    An intimate discourse between the blastocyst and uterus is essential for successful implantation. However, the molecular basis of this interaction is not clearly understood. Exploiting genomic Hbegf mutant mice, we show here that maternal deficiency of heparin-binding EGF-like growth factor (HB-EGF) defers on-time implantation, leading to compromised pregnancy outcome. We also demonstrate that amphiregulin, but not epiregulin, partially compensates for the loss of HB-EGF during implantation. In search of the mechanism of this compensation, we found that reduced preimplantation estrogen secretion from ovarian HB-EGF deficiency is a cause of sustained expression of uterine amphiregulin before the initiation of implantation. To explore the significance specifically of uterine HB-EGF in implantation, we examined this event in mice with conditional deletion of uterine HB-EGF and found that this specific loss of HB-EGF in the uterus still defers on-time implantation without altering preimplantation ovarian estrogen secretion. The observation of normal induction of uterine amphiregulin surrounding the blastocyst at the time of attachment in these conditional mutant mice suggests a compensatory role of amphiregulin for uterine loss of HB-EGF, preventing complete failure of pregnancy. Our study provides genetic evidence that HB-EGF is critical for normal implantation. This finding has high clinical relevance, because HB-EGF signaling is known to be important for human implantation. PMID:17986609

  14. Maternal heparin-binding-EGF deficiency limits pregnancy success in mice.

    PubMed

    Xie, Huirong; Wang, Haibin; Tranguch, Susanne; Iwamoto, Ryo; Mekada, Eisuke; Demayo, Francesco J; Lydon, John P; Das, Sanjoy K; Dey, Sudhansu K

    2007-11-13

    An intimate discourse between the blastocyst and uterus is essential for successful implantation. However, the molecular basis of this interaction is not clearly understood. Exploiting genomic Hbegf mutant mice, we show here that maternal deficiency of heparin-binding EGF-like growth factor (HB-EGF) defers on-time implantation, leading to compromised pregnancy outcome. We also demonstrate that amphiregulin, but not epiregulin, partially compensates for the loss of HB-EGF during implantation. In search of the mechanism of this compensation, we found that reduced preimplantation estrogen secretion from ovarian HB-EGF deficiency is a cause of sustained expression of uterine amphiregulin before the initiation of implantation. To explore the significance specifically of uterine HB-EGF in implantation, we examined this event in mice with conditional deletion of uterine HB-EGF and found that this specific loss of HB-EGF in the uterus still defers on-time implantation without altering preimplantation ovarian estrogen secretion. The observation of normal induction of uterine amphiregulin surrounding the blastocyst at the time of attachment in these conditional mutant mice suggests a compensatory role of amphiregulin for uterine loss of HB-EGF, preventing complete failure of pregnancy. Our study provides genetic evidence that HB-EGF is critical for normal implantation. This finding has high clinical relevance, because HB-EGF signaling is known to be important for human implantation.

  15. Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice

    PubMed Central

    Fraga-Silva, Rodrigo A.; Montecucco, Fabrizio; Costa-Fraga, Fabiana P.; Nencioni, Alessio; Caffa, Irene; Bragina, Maiia E.; Mach, François; Raizada, Mohan K.; Santos, Robson A.S.; da Silva, Rafaela F.; Stergiopulos, Nikolaos

    2017-01-01

    Angiotensin (Ang) II contributes to the development of atherosclerosis, while Ang-(1–7) has atheroprotective actions. Accordingly, angiotensin-converting enzyme 2 (ACE2), which breaks-down Ang II and forms Ang-(1–7), has been suggested as a target against atherosclerosis. Here we investigated the actions of diminazene, a recently developed ACE2 activator compound, in a model of vulnerable atherosclerotic plaque. Atherosclerotic plaque formation was induced in the carotid artery of ApoE-deficient mice by a shear stress (SS) modiffer device. The animals were treated with diminazene (15 mg/kg/day) or vehicle. ACE2 was strongly expressed in the aortic root and low SS-induced carotid plaques, but poorly expressed in the oscillatory SS-induced carotid plaques. Diminazene treatment did not change the lesion size, but ameliorated the composition of aortic root and low SS-induced carotid plaques by increasing collagen content and decreasing both MMP-9 expression and macrophage infiltration. Interestingly, these beneficial effects were not observed in the oscillatory SS-induced plaque. Additionally, diminazene treatment decreased intraplaque ICAM-1 and VCAM-1 expression, circulating cytokine and chemokine levels and serum triglycerides. In summary, ACE2 was distinctively expressed in atherosclerotic plaques, which depends on the local pattern of shear stress. Moreover, diminazene treatment enhances the stability of atherosclerotic plaques. PMID:26304699

  16. The orphan nuclear receptor small heterodimer partner is required for thiazolidinedione effects in leptin-deficient mice.

    PubMed

    Tseng, Hsiu-Ting; Park, Young Joo; Lee, Yoon Kwang; Moore, David D

    2015-05-08

    Small heterodimer partner (SHP, NR0B2) is involved in diverse metabolic pathways, including hepatic bile acid, lipid and glucose homeostasis, and has been implicated in effects on the peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and the receptor for antidiabetic drugs thiazolidinediones (TZDs). In this study, we aim to investigate the role of SHP in TZD response by comparing TZD-treated leptin-deficient (ob/ob) and leptin-, SHP-deficient (ob/ob;Shp(-/-)) double mutant mice. Both ob/ob and double mutant ob/ob;Shp(-/-) mice developed hyperglycemia, insulin resistance, and hyperlipidemia, but hepatic fat accumulation was decreased in the double mutant ob/ob;Shp(-/-) mice. PPARγ2 mRNA levels were markedly lower in ob/ob;Shp(-/-) liver and decreased to a lesser extent in adipose tissue. The TZD troglitazone did not reduce glucose or circulating triglyceride levels in ob/ob;Shp(-/-) mice. Expression of the adipocytokines, such as adiponectin and resistin, was not stimulated by troglitazone treatment. Expression of hepatic lipogenic genes was also reduced in ob/ob;Shp(-/-) mice. Moreover, overexpression of SHP by adenovirus infection increased PPARγ2 mRNA levels in mouse primary hepatocytes. Our results suggest that SHP is required for both antidiabetic and hypolipidemic effects of TZDs in ob/ob mice through regulation of PPARγ expression.

  17. Effects of Postchallenge Administration of ST-246 on Dissemination of IHD-J-Luc Vaccinia Virus in Normal Mice and in Immune-Deficient Mice Reconstituted with T Cells

    PubMed Central

    Shotwell, Elisabeth; Scott, John; Cruz, Stephanie; King, Lisa R.; Manischewitz, Jody; Diaz, Claudia G.; Jordan, Robert A.; Grosenbach, Douglas W.; Golding, Hana

    2013-01-01

    Whole-body bioimaging was used to study dissemination of vaccinia virus (VACV) in normal and in immune deficient (nu−/nu−) mice protected from lethality by postchallenge administration of ST-246. Total fluxes were recorded in the liver, spleen, lungs, and nasal cavities of live mice after intranasal infection with a recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve were calculated for individual mice to assess viral loads. Treatment for 2 to 5 days of normal BALB/c mice with ST-246 at 100 mg/kg starting 24 h postchallenge conferred 100% protection and reduced viral loads in four organs compared to control mice. Mice also survived after 5 days of treatment with ST-246 at 30 mg/kg, and yet the viral loads and poxes were higher in these mice compared to 100-mg/kg treatment group. Nude mice were not protected by ST-246 alone or by 10 million adoptively transferred T cells. In contrast, nude mice that received T cells and 7-day treatment with ST-246 survived infection and exhibited reduced viral loads compared to nonreconstituted and ST-246-treated mice after ST-246 was stopped. Similar protection of nude mice was achieved using adoptively transferred 1.0 and 0.1 million, but not 0.01 million, purified T cells or CD4+ or CD8+ T cells in conjunction with ST-246 treatment. These data suggest that ST-246 protects immunocompetent mice from lethality and reduces viral dissemination in internal organs and poxvirus lesions. Furthermore, immune-deficient animals with partial T cell reconstitution can control virus replication after a course of ST-246 and survive lethal vaccinia virus challenge. PMID:23468500

  18. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.

    PubMed

    Clinkenbeard, Erica L; Farrow, Emily G; Summers, Lelia J; Cass, Taryn A; Roberts, Jessica L; Bayt, Christine A; Lahm, Tim; Albrecht, Marjorie; Allen, Matthew R; Peacock, Munro; White, Kenneth E

    2014-02-01

    Fibroblast growth factor 23 (FGF23) gain of function mutations can lead to autosomal dominant hypophosphatemic rickets (ADHR) disease onset at birth, or delayed onset following puberty or pregnancy. We previously demonstrated that the combination of iron deficiency and a knock-in R176Q FGF23 mutation in mature mice induced FGF23 expression and hypophosphatemia that paralleled the late-onset ADHR phenotype. Because anemia in pregnancy and in premature infants is common, the goal of this study was to test whether iron deficiency alters phosphate handling in neonatal life. Wild-type (WT) and ADHR female breeder mice were provided control or iron-deficient diets during pregnancy and nursing. Iron-deficient breeders were also made iron replete. Iron-deficient WT and ADHR pups were hypophosphatemic, with ADHR pups having significantly lower serum phosphate (p < 0.01) and widened growth plates. Both genotypes increased bone FGF23 mRNA (>50 fold; p < 0.01). WT and ADHR pups receiving low iron had elevated intact serum FGF23; ADHR mice were affected to a greater degree (p < 0.01). Iron-deficient mice also showed increased Cyp24a1 and reduced Cyp27b1, and low serum 1,25-dihydroxyvitamin D (1,25D). Iron repletion normalized most abnormalities. Because iron deficiency can induce tissue hypoxia, oxygen deprivation was tested as a regulator of FGF23, and was shown to stimulate FGF23 mRNA in vitro and serum C-terminal FGF23 in normal rats in vivo. These studies demonstrate that FGF23 is modulated by iron status in young WT and ADHR mice and that hypoxia independently controls FGF23 expression in situations of normal iron. Therefore, disturbed iron and oxygen metabolism in neonatal life may have important effects on skeletal function and structure through FGF23 activity on phosphate regulation. © 2014 American Society for Bone and Mineral Research.

  19. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice

    PubMed Central

    Schriever, Sonja C.; Müller, Timo D.; Tschöp, Matthias H.

    2017-01-01

    Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK), for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD) fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD) or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT), compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic glucose tolerance

  20. Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner

    PubMed Central

    Hocher, Berthold; Haumann, Hannah; Rahnenführer, Jan; Reichetzeder, Christoph; Kalk, Philipp; Pfab, Thiemo; Tsuprykov, Oleg; Winter, Stefan; Hofmann, Ute; Li, Jian; Püschel, Gerhard P.; Lang, Florian; Schuppan, Detlef; Schwab, Matthias; Schaeffeler, Elke

    2016-01-01

    ABSTRACT Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood. PMID:27175980

  1. Vitamin D-binding protein deficiency in mice decreases systemic and select tissue levels of inflammatory cytokines in a murine model of acute muscle injury.

    PubMed

    Kew, Richard R; Tabrizian, Tahmineh; Vosswinkel, James A; Davis, James E; Jawa, Randeep S

    2018-06-01

    Severe acute muscle injury results in massive cell damage, causing the release of actin into extracellular fluids where it complexes with the vitamin D-binding protein (DBP). We hypothesized that a systemic DBP deficiency would result in a less proinflammatory phenotype. C57BL/6 wild-type (WT) and DBP-deficient (DBP-/-) mice received intramuscular injections of either 50% glycerol or phosphate-buffered saline into thigh muscles. Muscle injury was assessed by histology. Cytokine levels were measured in plasma, muscle, kidney, and lung. All animals survived the procedure, but glycerol injection in both strains of mice showed lysis of skeletal myocytes and inflammatory cell infiltrate. The muscle inflammatory cell infiltrate in DBP-deficient mice had remarkably few neutrophils as compared with WT mice. The neutrophil chemoattractant CXCL1 was significantly reduced in muscle tissue from DBP-/- mice. However, there were no other significant differences in muscle cytokine levels. In contrast, plasma obtained 48 hours after glycerol injection revealed that DBP-deficient mice had significantly lower levels of systemic cytokines interleukin 6, CCL2, CXCL1, and granulocyte colony-stimulating factor. Lung tissue from DBP-/- mice showed significantly decreased amounts of CCL2 and CXCL1 as compared with glycerol-treated WT mice. Several chemokines in kidney homogenates following glycerol-induced injury were significantly reduced in DBP-/- mice: CCL2, CCL5, CXCL1, and CXCL2. Acute muscle injury triggered a systemic proinflammatory response as noted by elevated plasma cytokine levels. However, mice with a systemic DBP deficiency demonstrated a change in their cytokine profile 48 hours after muscle injury to a less proinflammatory phenotype.

  2. Map3k8 Modulates Monocyte State and Atherogenesis in ApoE-/- Mice.

    PubMed

    Sanz-Garcia, Carlos; Sánchez, Ángela; Contreras-Jurado, Constanza; Cales, Carmela; Barranquero, Cristina; Muñoz, Marta; Merino, Ramón; Escudero, Paula; Sanz, Maria-Jesús; Osada, Jesús; Aranda, Ana; Alemany, Susana

    2017-02-01

    Map3k8 (Cot/Tpl2) activates the MKK1/2-ERK1/2, MAPK pathway downstream from interleukin-1R, tumor necrosis factor-αR, NOD-2R (nucleotide-binding oligomerization domain-like 2R), adiponectinR, and Toll-like receptors. Map3k8 plays a key role in innate and adaptive immunity and influences inflammatory processes by modulating the functions of different cell types. However, its role in atherogenesis remains unknown. In this study, we analyzed the role of this kinase in this pathology. We show here that Map3k8 deficiency results in smaller numbers of Ly6C high CD11c low and Ly6C low CD11c high monocytes in ApoE - /- mice fed a high-fat diet (HFD). Map3k8 -/- ApoE -/- monocytes displayed high rates of apoptosis and reduced amounts of Nr4a1, a transcription factor known to modulate apoptosis in Ly6C low CD11c high monocytes. Map3k8 -/- ApoE -/- splenocytes and macrophages showed irregular patterns of cytokine and chemokine expression. Map3k8 deficiency altered cell adhesion and migration in vivo and decreased CCR2 expression, a determinant chemokine receptor for monocyte mobilization, on circulating Ly6C high CD11c low monocytes. Map3k8 -/- ApoE -/- mice fed an HFD showed decreased cellular infiltration in the atherosclerotic plaque, with low lipid content. Lesions had similar size after Map3k8 +/+ ApoE -/- bone marrow transplant into Map3k8 -/- ApoE -/- and Map3k8 +/+ ApoE -/- mice fed an HFD, whereas smaller plaques were observed after the transplantation of bone marrow lacking both ApoE and Map3k8. Map3k8 decreases apoptosis of monocytes and enhances CCR2 expression on Ly6C high CD11c low monocytes of ApoE -/- mice fed an HFD. These findings explain the smaller aortic lesions in ApoE -/- mice with Map3k8 -/- ApoE -/- bone marrow cells fed an HFD, supporting further studies of Map3k8 as an antiatherosclerotic target. © 2016 American Heart Association, Inc.

  3. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice

    PubMed Central

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M.; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B.; Li, Peng

    2015-01-01

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, ‘browning’ of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated. PMID:25565658

  4. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  5. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.

    PubMed

    Yasuda, Satoshi; Ikuta, Kenjiro; Uwatoku, Toyokazu; Oi, Keiji; Abe, Kohtaro; Hyodo, Fuminori; Yoshimitsu, Kengo; Sugimura, Kohtaro; Utsumi, Hideo; Katayama, Yoshiki; Shimokawa, Hiroaki

    2008-01-01

    Magnetic resonance imaging (MRI) contrast agents that specifically detect atherosclerotic plaque may be useful for the noninvasive detection of the plaque. We have recently developed a new contrast agent, Evans blue-DTPA-gadolinium (EB-DTPA-Gd), which selectively accumulates vascular lesions with endothelial removal. In this study, we examined whether EB-DTPA-Gd is also useful for in vivo imaging of atherosclerotic plaques. We used male apolipoprotein-E-deficient (ApoE-/-) mice of different ages (3, 6 and 12 months old) and age-matched male wild-type mice. After a single intravenous administration of EB-DTPA-Gd (160 microM/kg body weight), MRI T(1) signal was obtained in vivo. Increased signal intensity in the aortic wall was noted within 10-20 min after intravenous injection of EB-DTPA-Gd and was maintained for 30 min. The MRI enhancement in the aorta of ApoE-/- mice was increased in accordance with age, whereas no such enhancement was noted in wild-type mice. Histological examination demonstrated that there was a topological correlation between the site of MRI enhancement and that of atherosclerotic plaque. These results indicate that EB-DTPA-Gd is a useful MRI contrast medium for the in vivo detection of atherosclerotic plaques. Copyright (c) 2007 S. Karger AG, Basel.

  6. Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency.

    PubMed

    Kurosawa, Yuko; Degrauw, Ton J; Lindquist, Diana M; Blanco, Victor M; Pyne-Geithman, Gail J; Daikoku, Takiko; Chambers, James B; Benoit, Stephen C; Clark, Joseph F

    2012-08-01

    The second-largest cause of X-linked mental retardation is a deficiency in creatine transporter (CRT; encoded by SLC6A8), which leads to speech and language disorders with severe cognitive impairment. This syndrome, caused by the absence of creatine in the brain, is currently untreatable because CRT is required for creatine entry into brain cells. Here, we developed a brain-specific Slc6a8 knockout mouse (Slc6a8-/y) as an animal model of human CRT deficiency in order to explore potential therapies for this syndrome. The phenotype of the Slc6a8-/y mouse was comparable to that of human patients. We successfully treated the Slc6a8-/y mice with the creatine analog cyclocreatine. Brain cyclocreatine and cyclocreatine phosphate were detected after 9 weeks of cyclocreatine treatment in Slc6a8-/y mice, in contrast to the same mice treated with creatine or placebo. Cyclocreatine-treated Slc6a8-/y mice also exhibited a profound improvement in cognitive abilities, as seen with novel object recognition as well as spatial learning and memory tests. Thus, cyclocreatine appears promising as a potential therapy for CRT deficiency.

  7. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain.

    PubMed

    Hardt, Stefanie; Heidler, Juliana; Albuquerque, Boris; Valek, Lucie; Altmann, Christine; Wilken-Schmitz, Annett; Schäfer, Michael K E; Wittig, Ilka; Tegeder, Irmgard

    2017-11-01

    Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease. Copyright © 2017. Published by Elsevier B.V.

  8. Alpha-syntrophin deficient mice are protected from adipocyte hypertrophy and ectopic triglyceride deposition in obesity.

    PubMed

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Neumeier, Markus; Schmidhofer, Sandra; Pohl, Rebekka; Haberl, Elisabeth M; Liebisch, Gerhard; Kopp, Andrea; Schmid, Andreas; Krautbauer, Sabrina; Buechler, Christa

    2018-06-01

    Alpha-syntrophin (SNTA) is a molecular adapter protein which is expressed in adipocytes. Knock-down of SNTA in 3T3-L1 preadipocytes increases cell proliferation, and differentiated adipocytes display small lipid droplets. These effects are both characteristics of healthy adipose tissue growth which is associated with metabolic improvements in obesity. To evaluate a role of SNTA in adipose tissue morphology and obesity associated metabolic dysfunction, SNTA deficient mice were fed a standard chow or a high fat diet. Mice deficient of SNTA had less fat mass and smaller adipocytes in obesity when compared to control animals. Accordingly, these animals did not develop liver steatosis and did not store excess triglycerides in skeletal muscle upon high fat diet feeding. SNTA-/- animals were protected from hyperinsulinemia and hepatic insulin resistance. Of note, body-weight, food uptake, and serum lipids were normal in the SNTA null mice. SNTA was induced in adipose tissues but not in the liver of diet induced obese and ob/ob mice. In human subcutaneous and visceral fat of seven patients SNTA was similarly expressed and was not associated with body mass index. Current data demonstrate beneficial effects of SNTA deficiency in obesity which is partly attributed to smaller adipocytes and reduced white adipose tissue mass. Higher SNTA protein in fat depots of obese mice may contribute to adipose tissue hypertrophy and ectopic lipid deposition which has to be confirmed in humans. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages

    PubMed Central

    Zhou, Yi; Yu, Xueqing; Chen, Huimei; Sjöberg, Sara; Roux, Joséphine; Zhang, Lijun; Ivoulsou, Al-Habib; Bensaid, Farid; Liu, Conglin; Liu, Jian; Tordjman, Joan; Clement, Karine; Lee, Chih-Hao; Hotamisligil, Gokhan S.; Libby, Peter; Shi, Guo-Ping

    2015-01-01

    SUMMARY Mast cells (MCs) contribute to the pathogenesis of obesity and diabetes. This study demonstrates that leptin deficiency slants MCs toward anti-inflammatory functions. MCs in the white adipose tissues (WAT) of lean humans and mice express negligible leptin. Adoptive transfer of leptin-deficient MCs expanded ex vivo mitigates diet-induced and pre-established obesity and diabetes in mice. Mechanistic studies show that leptin-deficient MCs polarize macrophages from M1 to M2 functions because of impaired cell signaling and an altered balance between pro- and anti-inflammatory cytokines, but do not affect T-cell differentiation. Rampant body weight gain in ob/ob mice, a strain that lacks leptin, associates with reduced MC content in WAT. In ob/ob mice, genetic depletion of MCs exacerbates obesity and diabetes, and repopulation of ex vivo expanded ob/ob MCs ameliorates these diseases. PMID:26481668

  10. Mice heterozygous for cathepsin D deficiency exhibit mania-related behavior and stress-induced depression.

    PubMed

    Zhou, Rui; Lu, Yi; Han, Yong; Li, Xia; Lou, Huifang; Zhu, Liya; Zhen, Xuechu; Duan, Shumin

    2015-12-03

    Mutations in cathepsin D (CTSD), an aspartic protease in the endosomal-lysosomal system, underlie congenital neuronal ceroid-lipofuscinosis (cNCL, also known as CLN10), a devastating neurodegenerative disease. CLN10 patients die within the first few days of life, and in the few patients who live into adulthood psychopathological symptoms have not been reported. Extensive neuropathology and altered neurotransmission have been reported in CTSD-deficient mice; however signs of neuropsychiatric behavior in these mice are not well characterized due to the severe movement disorder and premature death of the animal. In the present study, we show that heterozygous CTSD-deficient (CTSD HET) mice display an overall behavioral profile that is similar to human mania, including hyperlocomotion, d-amphetamine-induced hyperactivity, sleep-disturbance, and reduced anxiety-like behavior. However, under stressful conditions CTSD HET mice manifest depressive-like behavior, including anhedonia, behavioral despair, and enhanced learned helplessness. Chronic administration of lithium chloride or valproic acid, two clinically effective mood stabilizers, reverses the majority of these behavioral abnormalities. In addition, CTSD HET mice display stress-induced hypersecretion of corticosterone. These findings suggest an important role for CTSD in the regulation of mood stabilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Adipose Deficiency of Nrf2 in ob/ob Mice Results in Severe Metabolic Syndrome

    PubMed Central

    Xue, Peng; Hou, Yongyong; Chen, Yanyan; Yang, Bei; Fu, Jingqi; Zheng, Hongzhi; Yarborough, Kathy; Woods, Courtney G.; Liu, Dianxin; Yamamoto, Masayuki; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Nuclear factor E2–related factor 2 (Nrf2) is a transcription factor that functions as a master regulator of the cellular adaptive response to oxidative stress. Our previous studies showed that Nrf2 plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β and peroxisome proliferator–activated receptor γ. To determine the role of Nrf2 in the development of obesity and associated metabolic disorders, the incidence of metabolic syndrome was assessed in whole-body or adipocyte-specific Nrf2-knockout mice on a leptin-deficient ob/ob background, a model with an extremely positive energy balance. On the ob/ob background, ablation of Nrf2, globally or specifically in adipocytes, led to reduced white adipose tissue (WAT) mass, but resulted in an even more severe metabolic syndrome with aggravated insulin resistance, hyperglycemia, and hypertriglyceridemia. Compared with wild-type mice, WAT of ob/ob mice expressed substantially higher levels of many genes related to antioxidant response, inflammation, adipogenesis, lipogenesis, glucose uptake, and lipid transport. Absence of Nrf2 in WAT resulted in reduced expression of most of these factors at mRNA or protein levels. Our findings support a novel role for Nrf2 in regulating adipose development and function, by which Nrf2 controls the capacity of WAT expansion and insulin sensitivity and maintains glucose and lipid homeostasis. PMID:23238296

  12. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice.

    PubMed

    Karshovska, Ela; Zhao, Zhen; Blanchet, Xavier; Schmitt, Martin M N; Bidzhekov, Kiril; Soehnlein, Oliver; von Hundelshausen, Philipp; Mattheij, Nadine J; Cosemans, Judith M E M; Megens, Remco T A; Koeppel, Thomas A; Schober, Andreas; Hackeng, Tilman M; Weber, Christian; Koenen, Rory R

    2015-02-13

    Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease. © 2014 American Heart Association, Inc.

  13. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined.more » CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.« less

  14. Postchallenge Administration of Brincidofovir Protects Healthy and Immune-Deficient Mice Reconstituted with Limited Numbers of T Cells from Lethal Challenge with IHD-J-Luc Vaccinia Virus

    PubMed Central

    McCullough, Kevin Tyler; Cruz, Stephanie; Thomas, Antonia; Diaz, Claudia G.; Keilholz, Laurie; Grossi, Irma M.; Trost, Lawrence C.; Golding, Hana

    2015-01-01

    ABSTRACT Protection from lethality by postchallenge administration of brincidofovir (BCV, CMX001) was studied in normal and immune-deficient (nude, nu/nu) BALB/c mice infected with vaccinia virus (VACV). Whole-body bioluminescence imaging was used to record total fluxes in the nasal cavity, lungs, spleen, and liver and to enumerate pox lesions on tails of mice infected via the intranasal route with 105 PFU of recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve (AUCs) were calculated for individual mice to assess viral loads. A three-dose regimen of 20 mg/kg BCV administered every 48 h starting either on day 1 or day 2 postchallenge protected 100% of mice. Initiating BCV treatment earlier was more efficient in reducing viral loads and in providing protection from pox lesion development. All BCV-treated mice that survived challenge were also protected from rechallenge with IHD-J-Luc or WRvFire VACV without additional treatment. In immune-deficient mice, BCV protected animals from lethality and reduced viral loads while animals were on the drug. Viral recrudescence occurred within 4 to 9 days, and mice succumbed ∼10 to 20 days after treatment termination. Nude mice reconstituted with 105 T cells prior to challenge with 104 PFU of IHD-J-Luc and treated with BCV postchallenge survived the infection, cleared the virus from all organs, and survived rechallenge with 105 PFU of IHD-J-Luc VACV without additional BCV treatment. Together, these data suggest that BCV protects immunocompetent and partially T cell-reconstituted immune-deficient mice from lethality, reduces viral dissemination in organs, prevents pox lesion development, and permits generation of VACV-specific memory. IMPORTANCE Mass vaccination is the primary element of the public health response to a smallpox outbreak. In addition to vaccination, however, antiviral drugs are required for individuals with uncertain exposure status to smallpox or for whom vaccination is contraindicated

  15. Characterization and functional analysis of cellular immunity in mice with biotinidase deficiency.

    PubMed

    Pindolia, Kirit; Li, Hong; Cardwell, Cisley; Wolf, Barry

    2014-05-01

    Biotinidase deficiency is an autosomal recessively inherited metabolic disorder that can be easily and effectively treated with pharmacological doses of the vitamin, biotin. Untreated children with profound biotinidase deficiency may exhibit neurological, cutaneous and cellular immunological abnormalities, specifically candida infections. To better understand the immunological dysfunction in some symptomatic individuals with biotinidase deficiency, we studied various aspects of immunological function in a genetically engineered knock-out mouse with biotinidase deficiency. The mouse has no detectable biotinidase activity and develops neurological and cutaneous symptoms similar to those seen in symptomatic children with the disorder. Mice with profound biotinidase deficiency on a biotin-restricted diet had smaller thymuses and spleens than identical mice fed a biotin-replete diet or wildtype mice on either diet; however, the organ to body weight ratios were not significantly different. Thymus histology was normal. Splenocyte subpopulation study showed a significant increase in CD4 positive cells. In addition, in vitro lymphocyte proliferation assays consistently showed diminished proliferation in response to various immunological stimuli. Not all symptomatic individuals with profound biotinidase deficiency develop immunological dysfunction; however, our results do show significant alterations in cellular immunological function that may contribute and/or provide a mechanism(s) for the cellular immunity abnormalities in individuals with biotinidase deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    PubMed Central

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  17. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  18. Immunoglobulin class switch recombination is impaired in Atm-deficient mice.

    PubMed

    Lumsden, Joanne M; McCarty, Thomas; Petiniot, Lisa K; Shen, Rhuna; Barlow, Carrolee; Wynn, Thomas A; Morse, Herbert C; Gearhart, Patricia J; Wynshaw-Boris, Anthony; Max, Edward E; Hodes, Richard J

    2004-11-01

    Immunoglobulin class switch recombination (Ig CSR) involves DNA double strand breaks (DSBs) at recombining switch regions and repair of these breaks by nonhomologous end-joining. Because the protein kinase ataxia telengiectasia (AT) mutated (ATM) plays a critical role in DSB repair and AT patients show abnormalities of Ig isotype expression, we assessed the role of ATM in CSR by examining ATM-deficient mice. In response to T cell-dependent antigen (Ag), Atm-/- mice secreted substantially less Ag-specific IgA, IgG1, IgG2b, and IgG3, and less total IgE than Atm+/+ controls. To determine whether Atm-/- B cells have an intrinsic defect in their ability to undergo CSR, we analyzed in vitro responses of purified B cells. Atm-/- cells secreted substantially less IgA, IgG1, IgG2a, IgG3, and IgE than wild-type (WT) controls in response to stimulation with lipopolysaccharide, CD40 ligand, or anti-IgD plus appropriate cytokines. Molecular analysis of in vitro responses indicated that WT and Atm-/- B cells produced equivalent amounts of germline IgG1 and IgE transcripts, whereas Atm-/- B cells produced markedly reduced productive IgG1 and IgE transcripts. The reduction in isotype switching by Atm-/- B cells occurs at the level of genomic DNA recombination as measured by digestion-circularization PCR. Analysis of sequences at CSR sites indicated that there is greater microhomology at the mu-gamma1 switch junctions in ATM B cells than in wild-type B cells, suggesting that ATM function affects the need or preference for sequence homology in the CSR process. These findings suggest a role of ATM in DNA DSB recognition and/or repair during CSR.

  19. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    PubMed

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot

  20. Cyclosporin A reduces matrix metalloproteinases and collagen expression in dermal fibroblasts from regenerative FOXN1 deficient (nude) mice

    PubMed Central

    2013-01-01

    Background Cyclosporin A (CsA), an immunosuppressive agent modifies the wound healing process through an influence on extracellular matrix metabolism. We have compared the effects of CsA on dermal fibroblasts from nude (FOXN1 deficient) mice, a genetic model of skin scarless healing, and from control (C57BL/6 J (B6) mice to evaluate metabolic pathways that appear to have important roles in the process of scarless healing/regeneration. Results High levels of matrix metalloproteinases (MMPs) and collagen III expression in dermal fibroblasts from nude (regenerative) mice were down-regulated by CsA treatment to the levels observed in dermal fibroblasts from B6 (non-regenerative) mice. In contrast, dermal fibroblasts from control mice respond to CsA treatment with a minor reduction of Mmps mRNA and 2.5-fold increase expression of collagen I mRNA. An in vitro migratory assay revealed that CsA treatment profoundly delayed the migratory behavior of dermal fibroblasts from both nude and control mice. Conclusion The data suggest that by alternation of the accumulation of extracellular matrix components CsA treatment stimulates the transition from a scarless to a scar healing. PMID:23547542

  1. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency

    PubMed Central

    Burrage, Lindsay C.; Sun, Qin; Elsea, Sarah H.; Jiang, Ming-Ming; Nagamani, Sandesh C.S.; Frankel, Arthur E.; Stone, Everett; Alters, Susan E.; Johnson, Dale E.; Rowlinson, Scott W.; Georgiou, George; Lee, Brendan H.

    2015-01-01

    Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency. PMID:26358771

  2. Low-cholesterol and high-fat diets reduce atherosclerotic lesion development in ApoE-knockout mice.

    PubMed

    Calleja, L; París, M A; Paul, A; Vilella, E; Joven, J; Jiménez, A; Beltrán, G; Uceda, M; Maeda, N; Osada, J

    1999-10-01

    We have investigated the effect of most common oils used in human nutrition on the development of atherosclerosis in apoE-knockout mice. Seven groups of animals, separated according to sex, were fed for 10 weeks either chow diet or the chow diet 10% (wt/wt) enriched with different oils (palm, coconut, 2 types of olive oil, and 2 types of sunflower oil) without addition of cholesterol. At the end of this period, plasma lipid parameters were measured and vascular lesions scored. None of the diets induced changes in plasma cholesterol concentrations, whereas plasma triglycerides were uniformly reduced in all diet groups. Some diets caused significant reductions in the size of atherosclerotic lesions in males and others in females; males responded most to sunflower oils and females to palm oil and one olive oil (II). The lesion reduction in males consuming sunflower oils was associated with the decrease of triglycerides in triglyceride-rich lipoproteins, whereas the decrease in females consuming olive oil II or palm oil was accompanied by an increase in plasma apoA-I. The increase in plasma apoA-I in the latter condition, is mainly due to overexpression of hepatic message elicited by a mechanism independent of apoE ligand. The data suggest that the different diets modulate lesion development in a gender specific manner and by different mechanisms and that the development of atherosclerosis, due to genetic deficiencies, may be modulated by nutritional maneuvers that may be implemented in human nutrition.

  3. Dimethylethanolamine does not prevent liver failure in phosphatidylethanolamine N-methyltransferase-deficient mice fed a choline-deficient diet.

    PubMed

    Waite, Kristin A; Vance, Dennis E

    2004-03-22

    Mice that lack phosphatidylethanolamine-N-methyltransferase (PEMT) and are fed a choline-deficient (CD) diet suffer severe liver damage and do not survive. Since phosphatidyldimethylethanolamine (PDME) has physical properties similar to those of phosphatidylcholine (PC), we hypothesized that dimethylethanolamine (DME) would be converted into PDME that might substitute for PC, and therefore abrogate the liver damage in the Pemt -/- mice fed a CD diet. We fed Pemt -/- mice either a CD diet, a CD diet supplemented with choline, or a CD diet supplemented with DME (CD + DME). Pemt -/- mice fed the CD diet developed severe liver failure by 4 days while CD + DME-fed mice developed severe liver failure by 5 days. The hepatic PC level in choline-supplemented (CS) mice was 67 +/- 4 nmol/mg protein, whereas the PC content was reduced in CD- and CD + DME-fed mice (49 +/- 3 and 30 +/- 3 nmol/mg protein, respectively). Upon supplementation of the CD diet with DME the amount of hepatic PDME was 81 +/- 9 nmol/mg protein so that the hepatic content of PC + PDME combined was 111 nmol/mg protein. Moreover, plasma apolipoprotein B100 and Al levels were markedly lower in mice fed the CD + DME diet compared to mice fed the CS diet, as was the plasma content of PC. Thus, despite replacement of the deficit in hepatic PC with PDME in Pemt -/- mice fed a CD diet, normal liver function was not restored. We conclude that although PC and PDME exhibit similar physical properties, the three methyl groups of choline are required for hepatic function in mice.

  4. VDR deficiency affects alveolar bone and cementum apposition in mice.

    PubMed

    Zhang, Xueming; Rahemtulla, Firoz; Zhang, Ping; Thomas, Huw F

    2011-07-01

    To compare the mineralisation density (MD), morphology and histology of alveolar bone and cementum amongst VDR +/+, VDR -/-, and VDR -/- groups supplemented with a diet TD 96348, containing 20% lactose, 2.0% calcium and 1.25% phosphorous. Four groups of mice (6 mice/group) were identified by genotyping: VDR +/+ mice (VDR wild type), VDR -/- mice (VDR deficient), VDR -/- offsprings derived from VDR -/- parents receiving a supplemental diet (early rescued), and VDR -/- mice fed with a supplemental diet beginning at age one month (late rescued). All mice were sacrificed at age 70.5 days. Micro-CT was used to compare MD and morphology of alveolar bone and cementum. H-E and Toluidine blue staining was used to examine the ultrastructure of the alveolar bone and cementum at matched locations. In VDR -/- group, alveolar bone and cementum failed to mineralise normally. Early rescue increased MD of alveolar bone in VDR -/- mice with excessive alveolar bone formation, but which not observed in late rescue group. MD and morphology of cementum-dentine complex in both early and late rescue groups were comparable with VDR +/+ group when feeding with high-calcium rescue diet. VDR affects alveolar bone mineralisation and formation systemically and locally. However, cementum apposition and mineralisation is mainly regulated by calcium concentrations in serum. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Apple Peel Supplemented Diet Reduces Parameters of Metabolic Syndrome and Atherogenic Progression in ApoE-/- Mice.

    PubMed

    Gonzalez, Jaime; Donoso, Wendy; Sandoval, Nathalie; Reyes, María; Gonzalez, Priscila; Gajardo, Monica; Morales, Erik; Neira, Amalia; Razmilic, Iván; Yuri, José A; Moore-Carrasco, Rodrigo

    2015-01-01

    Cardiovascular Diseases (CVD) represent about 30% of all causes of death worldwide. The development of CVD is related in many cases with the previous existence of metabolic syndrome (MS). It is known that apple consumption has a cardiovascular protecting effect, containing phenolic compounds with antioxidant effect, which are concentrated in the fruit peel. The objective of this study was to test the effect of apple peel consumption in a murine model of MS and apoE-/- mice. Apple supplemented diets reduced the biochemical parameters (glycaemia, total cholesterol, HDL-cholesterol, LDL-cholesterol, ureic nitrogen, triglycerides, insulin, and asymmetric dimethylarginine (ADMA)) of MS model in CF1 mice significantly. The model apoE-/- mouse was used to evaluate the capacity of the apple peel to revert the progression of the atherogenesis. FD with HAP reverts cholesterol significantly and slows down the progression of the plate diminishing the cholesterol accumulation area. With these results, it can be concluded that the consumption of apple peel reduces several MS parameters and the atherogenic progression in mice.

  6. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    PubMed

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  7. Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency

    PubMed Central

    Kurosawa, Yuko; DeGrauw, Ton J.; Lindquist, Diana M.; Blanco, Victor M.; Pyne-Geithman, Gail J.; Daikoku, Takiko; Chambers, James B.; Benoit, Stephen C.; Clark, Joseph F.

    2012-01-01

    The second-largest cause of X-linked mental retardation is a deficiency in creatine transporter (CRT; encoded by SLC6A8), which leads to speech and language disorders with severe cognitive impairment. This syndrome, caused by the absence of creatine in the brain, is currently untreatable because CRT is required for creatine entry into brain cells. Here, we developed a brain-specific Slc6a8 knockout mouse (Slc6a8–/y) as an animal model of human CRT deficiency in order to explore potential therapies for this syndrome. The phenotype of the Slc6a8–/y mouse was comparable to that of human patients. We successfully treated the Slc6a8–/y mice with the creatine analog cyclocreatine. Brain cyclocreatine and cyclocreatine phosphate were detected after 9 weeks of cyclocreatine treatment in Slc6a8–/y mice, in contrast to the same mice treated with creatine or placebo. Cyclocreatine-treated Slc6a8–/y mice also exhibited a profound improvement in cognitive abilities, as seen with novel object recognition as well as spatial learning and memory tests. Thus, cyclocreatine appears promising as a potential therapy for CRT deficiency. PMID:22751104

  8. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.

    PubMed

    Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth

    2017-02-24

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.

  9. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    PubMed Central

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  10. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXRalpha-null mice.

    PubMed

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He, Lin; Klaassen, Curtis D; Wan, Yu-Jui Yvonne

    2009-01-15

    Retinoid X receptor-alpha (RXRalpha) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRalpha deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRalpha-null (H-RXRalpha-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid beta-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRalpha-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRalpha-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRalpha-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRalpha-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRalpha-null mice. In conclusion, these data suggest a critical role for RXRalpha in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  11. Colitis and Colon Cancer in WASP-Deficient Mice Require Helicobacter Spp.

    PubMed Central

    Nguyen, Deanna D.; Muthupalani, Suresh; Goettel, Jeremy A.; Eston, Michelle A.; Mobley, Melissa; Taylor, Nancy S.; McCabe, Amanda; Marin, Romela; Snapper, Scott B.; Fox, James G.

    2014-01-01

    Background Wiskott-Aldrich Syndrome protein (WASP)-deficient patients and mice are immunodeficient and can develop inflammatory bowel disease. The intestinal microbiome is critical to the development of colitis in most animal models, in which, Helicobacter spp. have been implicated in disease pathogenesis. We sought to determine the role of Helicobacter spp. in colitis development in WASP-deficient (WKO) mice. Methods Feces from WKO mice raised under specific pathogen free conditions were evaluated for the presence of Helicobacter spp., after which, a subset of mice were rederived in Helicobacter spp.-free conditions. Helicobacter spp.-free WKO animals were subsequently infected with Helicobacter bilis. Results Helicobacter spp. were detected in feces from WKO mice. After re-derivation in Helicobacter spp.-free conditions, WKO mice did not develop spontaneous colitis but were susceptible to radiation-induced colitis. Moreover, a T-cell transfer model of colitis dependent on WASP-deficient innate immune cells also required Helicobacter spp. colonization. Helicobacter bilis infection of rederived WKO mice led to typhlitis and colitis. Most notably, several H. bilis-infected animals developed dysplasia with 10% demonstrating colon carcinoma, which was not observed in uninfected controls. Conclusions Spontaneous and T-cell transfer, but not radiation-induced, colitis in WKO mice is dependent on the presence of Helicobacter spp. Furthermore, H. bilis infection is sufficient to induce typhlocolitis and colon cancer in Helicobacter spp.-free WKO mice. This animal model of a human immunodeficiency with chronic colitis and increased risk of colon cancer parallels what is seen in human colitis and implicates specific microbial constituents in promoting immune dysregulation in the intestinal mucosa. PMID:23820270

  12. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice

    PubMed Central

    Zhao, Yang; Dai, Xiao-yan; Zhou, Zhou; Zhao, Ge-xin; Wang, Xian; Xu, Ming-jiang

    2016-01-01

    Aim: Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. Methods: ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. Results: Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. Conclusion: Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation. PMID:26687933

  13. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    PubMed

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  14. Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice

    PubMed Central

    Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.

    2010-01-01

    Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone. PMID:20033775

  15. Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein.

    PubMed

    Vu, Trang T; Zhou, Ji; Leslie, Beverly A; Stafford, Alan R; Fredenburgh, James C; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P; Gross, Peter L; Weitz, Jeffrey I

    2015-04-23

    Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid-driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation. © 2015 by The American Society of Hematology.

  16. Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein

    PubMed Central

    Vu, Trang T.; Zhou, Ji; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P.; Gross, Peter L.; Weitz, Jeffrey I.

    2015-01-01

    Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid–driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation. PMID:25691157

  17. Altered small intestinal absorptive enzyme activities in leptin-deficient obese mice: influence of bowel resection.

    PubMed

    Kiely, James M; Noh, Jae H; Svatek, Carol L; Pitt, Henry A; Swartz-Basile, Deborah A

    2006-07-01

    Residual bowel increases absorption after massive small bowel resection. Leptin affects intestinal adaptation, carbohydrate, peptide, and lipid handling. Sucrase, peptidase, and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) are involved in carbohydrate, protein, and lipid absorption. We hypothesized that leptin-deficient obese mice would have altered absorptive enzymes compared with controls before and after small bowel resection. Sucrase, peptidase (aminopeptidase N [ApN], dipeptidyl peptidase IV [DPPIV]), and MGAT activities were determined from lean control (C57BL/6J, n = 16) and leptin-deficient (Lep(ob), n = 16) mice small bowel before and after 50% resection. Ileal sucrase activity was greater in obese mice before and after resection. Jejunal ApN and DPPIV activities were lower for obese mice before resection; ileal ApN activity was unaltered after resection for both strains. Resection increased DPPIV activity in both strains. Jejunal MGAT in obese mice decreased postresection. In both strains, ileal MGAT activity decreased after resection, and obese mice had greater activity in remnant ileum. After small bowel resection, leptin-deficient mice have increased sucrase activity and diminished ileal ApN, DPPIV, and MGAT activity compared with controls. Therefore, we conclude that leptin deficiency alters intestinal enzyme activity in unresected animals and after small bowel resection. Altered handling of carbohydrate, protein, and lipid may contribute to obesity and diabetes in leptin-deficient mice.

  18. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice

    PubMed Central

    Stein, Sokrates; Schäfer, Nicola; Breitenstein, Alexander; Besler, Christian; Winnik, Stephan; Lohmann, Christine; Heinrich, Kathrin; Brokopp, Chad E.; Handschin, Christoph; Landmesser, Ulf; Tanner, Felix C.; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-κB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-κB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation. PMID:20606253

  19. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency.

    PubMed

    Rayes, Roni F; Milette, Simon; Fernandez, Maria Celia; Ham, Boram; Wang, Ni; Bourdeau, France; Perrino, Stephanie; Yakar, Shoshana; Brodt, Pnina

    2018-03-20

    The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

  20. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent.

    PubMed

    Seiffert, Martina; Custodio, Joseph M; Wolf, Ingrid; Harkey, Michael; Liu, Yan; Blattman, Joseph N; Greenberg, Philip D; Rohrschneider, Larry R

    2003-04-01

    Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.

  1. Fasting energy homeostasis in mice with adipose deficiency of desnutrin/adipose triglyceride lipase.

    PubMed

    Wu, Jiang Wei; Wang, Shu Pei; Casavant, Stéphanie; Moreau, Alain; Yang, Gong She; Mitchell, Grant A

    2012-05-01

    Adipose triglyceride lipase (ATGL) catalyzes the first step of lipolysis of cytoplasmic triacylglycerols in white adipose tissue (WAT) and several other organs. We created adipose-specific ATGL-deficient (ATGLAKO) mice. In these mice, in vivo lipolysis, measured as the increase of plasma nonesterified fatty acid and glycerol levels after injection of a β3-adrenergic agonist, was undetectable. In isolated ATGLAKO adipocytes, β3-adrenergic-stimulated glycerol release was 10-fold less than in controls. Under fed conditions, ATGLAKO mice had normal viability, mild obesity, low plasma nonesterified fatty acid levels, increased insulin sensitivity, and increased daytime food intake. After 5 h of fasting, ATGLAKO WAT showed phosphorylation of the major protein kinase A-mediated targets hormone-sensitive lipase and perilipin A and ATGLAKO liver showed low glycogen and triacylglycerol contents. During a 48-h fast, ATGLAKO mice developed striking and complex differences from controls: progressive reduction of oxygen consumption, high respiratory exchange ratio, consistent with reduced fatty acid availability for energy production, lethargy, hypothermia, and undiminished fat mass, but greater loss of lean mass than controls. Plasma of 48 h-fasted ATGLAKO mice had a unique pattern: low 3-hydroxybutyrate, insulin, adiponectin, and fibroblast growth factor 21 with elevated leptin and corticosterone. ATGLAKO WAT, liver, skeletal muscle, and heart showed increased levels of mRNA related to autophagy and proteolysis. In murine ATGL deficiency, adipose lipolysis is critical for fasting energy homeostasis, and fasting imposes proteolytic stress on many organs, including heart and skeletal muscle.

  2. Glucagon Receptor Knockout Prevents Insulin-Deficient Type 1 Diabetes in Mice

    PubMed Central

    Lee, Young; Wang, May-Yun; Du, Xiu Quan; Charron, Maureen J.; Unger, Roger H.

    2011-01-01

    OBJECTIVE To determine the role of glucagon action in the metabolic phenotype of untreated insulin deficiency. RESEARCH DESIGN AND METHODS We compared pertinent clinical and metabolic parameters in glucagon receptor-null (Gcgr−/−) mice and wild-type (Gcgr+/+) controls after equivalent destruction of β-cells. We used a double dose of streptozotocin to maximize β-cell destruction. RESULTS Gcgr+/+ mice became hyperglycemic (>500 mg/dL), hyperketonemic, polyuric, and cachectic and had to be killed after 6 weeks. Despite comparable β-cell destruction in Gcgr−/− mice, none of the foregoing clinical or laboratory manifestations of diabetes appeared. There was marked α-cell hyperplasia and hyperglucagonemia (∼1,200 pg/mL), but hepatic phosphorylated cAMP response element binding protein and phosphoenolpyruvate carboxykinase mRNA were profoundly reduced compared with Gcgr+/+ mice with diabetes—evidence that glucagon action had been effectively blocked. Fasting glucose levels and oral and intraperitoneal glucose tolerance tests were normal. Both fasting and nonfasting free fatty acid levels and nonfasting β-hydroxy butyrate levels were lower. CONCLUSIONS We conclude that blocking glucagon action prevents the deadly metabolic and clinical derangements of type 1 diabetic mice. PMID:21270251

  3. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  4. Betaine supplement alleviates hepatic triglyceride accumulation of apolipoprotein E deficient mice via reducing methylation of peroxisomal proliferator-activated receptor alpha promoter

    PubMed Central

    2013-01-01

    Background Betaine is a methyl donor and has been considered as a lipotropic effect substance. But its mechanism remains unclear. Hepatic steatosis is associated with abnormal expression of genes involved in hepatic lipid metabolism. DNA methylation contributes to the disregulation of gene expression. Here we hypothesized that betaine supplement and subsequent DNA methylation modifications alter the expression of genes that are involved in hepatic lipid metabolism and hence alleviate hepatic triglyceride accumulation. Methods Male wild-type (WT) C57BL/6 mice (n = 6) were fed with the AIN-93 G diet. ApoE−/− mice (n = 12), weight-matched with the WT mice, were divided into two groups (n = 6 per group), and fed with the AIN-93 G diet and AIN-93 G supplemented with 2% betaine/100 g diet. Seven weeks after the intervention, mice were sacrificed. Liver betaine, choline, homocysteine concentration were measured by HPLC. Liver oxidants activity and triglyceride level were assessed by ultraviolet spectrophotometry. Finally, hepatic PPAR alpha gene and its target genes expression levels and the methylation status of the PPAR alpha gene were determined. Results ApoE−/− mice had higher hepatic triglyceride and lower GSH-Px activity when compared with the WT mice. Betaine intervention reversed triglyceride deposit, enhanced SOD and GSH-Px activity in the liver. Interestingly, mice fed on betaine-supplemented diet showed a dramatic increase of hepatic choline concentration and a decrease of betaine and homocysteine concentration relative to the WT mice and the ApoE−/− mice absent with betaine intervention. Expression of PPAR alpha and CPT1 were decreased and expression of FAS was markedly increased in ApoE−/− mice. In parallel, PPAR alpha promoter methylation level were slightly increased in ApoE−/− mice though without significance. Betaine supplement upregulated expression of PPAR alpha and its target genes (CPT1, CYP2E1) and reversed

  5. Circadian clock-deficient mice as a tool for exploring disease etiology.

    PubMed

    Doi, Masao

    2012-01-01

    One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.

  6. A Long-term Estrogen Deficiency in Ovariectomized Mice is Associated with Disturbances in Fatty Acid Oxidation and Oxidative Stress.

    PubMed

    Oliveira, Monique Cristine de; Campos-Shimada, Lilian Brites; Marçal-Natali, Maria Raquel; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2018-05-01

     The aim of this work was to evaluate the changes caused by estrogen deficiency in lipid metabolism.  This study encompassed direct measurements of plasma biochemical analyses, liver lipid contents, and assessments of the mitochondrial β-oxidation capacity as well as an evaluation of the liver redox status in an animal model of estrogen deficiency.  When compared with control mice, the livers of ovariectomized (OVX) mice presented considerable accretions in their lipid contents, which were accompanied by increased levels of lipid peroxidation in liver homogenates and mitochondria from OVX groups and decreased reduced glutathione (GSH) contents. In isolated mitochondria, estrogen deficiency inhibited mitochondrial β-oxidation of fatty acids irrespective of their chain length. The liver mitochondrial and peroxisomal H 2 O 2 generations in OVX mice were increased. Additionally, the activities of all antioxidant enzymes assessed were decreased.  These data provide one potential explanation for the increased susceptibility to metabolic diseases observed after menopause. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  7. Glutamate carboxypeptidase II and folate deficiencies result in reciprocal protection against cognitive and social deficits in mice: implications for neurodevelopmental disorders.

    PubMed

    Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine; Kolodny, Nancy H; Shane, Barry; Berger-Sweeney, Joanne E; Coyle, Joseph T

    2012-06-01

    Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect. Copyright © 2011 Wiley Periodicals, Inc.

  8. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345

    PubMed Central

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas DE

    2015-01-01

    Background: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Objective: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Design: Folic acid–supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr+/+ and Mthfr+/− mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Results: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr+/− mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr+/− livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr+/− mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. Conclusions: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2

  9. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    PubMed

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  10. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    PubMed Central

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A; Ploug, Michael; Almholt, Kasper; Lilla, Jennifer; Nielsen, Boye S; Christensen, Ib J; Craik, Charles S; Werb, Zena; Danø, Keld; Rømer, John

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased speed in the absence of uPA, tPA and galardin-sensitive MMPs and suggest that pKal plays a role in plasmin generation. PMID:16763560

  11. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice[S

    PubMed Central

    Mullick, Adam E.; Fu, Wuxia; Graham, Mark J.; Lee, Richard G.; Witchell, Donna; Bell, Thomas A.; Whipple, Charles P.; Crooke, Rosanne M.

    2011-01-01

    Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr−/−) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr−/− mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr−/− mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects. PMID:21343632

  12. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE-/- mice.

    PubMed

    Perez-Ternero, Cristina; Claro, Carmen; Parrado, Juan; Herrera, Maria Dolores; Alvarez de Sotomayor, Maria

    2017-05-01

    Rice bran is a by-product of rice milling and is rich in bioactive molecules such as γ-oryzanol, phytosterols, and tocotrienols. The rice bran enzymatic extract (RBEE) previously showed vessel remodeling prevention and lipid-lowering, antioxidant, anti-inflammatory, and antiapoptotic activities. The aim of this study was to identify RBEE hypolipidemic mechanisms and to study the effects of RBEE on the progression of atherosclerosis disease and linked vascular dysfunction and liver steatosis in apolipoprotein E-knockout (ApoE-/-) mice fed low- or high-fat (LFD, HFD, respectively) and cholesterol diets. ApoE-/- mice were fed LFD (13% kcal) or HFD (42% kcal) supplemented or not supplemented with 1 or 5% RBEE (w/w) for 23 wk. Then, serum, aorta, liver, and feces were collected and flash frozen for further analysis. RBEE supplementation of HFD improved serum values by augmenting high-density lipoprotein cholesterol and preventing total cholesterol and aspartate aminotransferase increase. 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity was attenuated (1 and 5% RBEE) and cholesterol excretion increased (5% RBEE). Diet supplementation with 5% RBEE reduced plaque development regardless of the diet. In HFD-fed mice, both doses of RBEE reduced lipid deposition and macrophage infiltration in the aortic sinus and downregulated intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. None of these effects was observed in mice fed LFD. Liver steatosis was reduced by RBEE supplementation of LFD (1% RBEE) and HFD (1 and 5% RBEE) and nuclear peroxisome proliferator-activated receptor-α expression upregulated in the HDF 5% RBEE group. Regular consumption of RBEE-supplemented HFD reduced plaque development and liver steatosis by decreasing inflammation and hyperlipidemia through an HMG-CoA reductase activity and lipid excretion-related mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. MCPIP1 Deficiency in Mice Results in Severe Anemia Related to Autoimmune Mechanisms

    PubMed Central

    Zhou, Zhou; Miao, Ruidong; Huang, Shengping; Elder, Brandon; Quinn, Tim; Papasian, Christopher J.; Zhang, Jifeng; Fan, Daping; Chen, Y. Eugene; Fu, Mingui

    2013-01-01

    Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12) deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease. PMID:24324805

  14. Inhibition of microsomal prostaglandin E synthase-1 facilitates liver repair after hepatic injury in mice.

    PubMed

    Nishizawa, Nobuyuki; Ito, Yoshiya; Eshima, Koji; Ohkubo, Hirotoki; Kojo, Ken; Inoue, Tomoyoshi; Raouf, Joan; Jakobsson, Per-Johan; Uematsu, Satoshi; Akira, Shizuo; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2018-07-01

    Liver repair following hepatic ischemia/reperfusion (I/R) injury is crucial to survival. This study aims to examine the role of endogenous prostaglandin E 2 (PGE 2 ) produced by inducible microsomal PGE synthase-1 (mPGES-1), a terminal enzyme of PGE 2 generation, in liver injury and repair following hepatic I/R. mPGES-1 deficient (Ptges -/- ) mice or their wild-type (WT) counterparts were subjected to partial hepatic ischemia followed by reperfusion. The role of E prostanoid receptor 4 (EP4) was then studied using a genetic knockout model and a selective antagonist. Compared with WT mice, Ptges -/- mice exhibited reductions in alanine aminotransferase (ALT), necrotic area, neutrophil infiltration, chemokines, and proinflammatory cytokine levels. Ptges -/- mice also showed promoted liver repair and increased Ly6C low macrophages (Ly6C low /CD11b high /F4/80 high -cells) with expression of anti-inflammatory and reparative genes, while WT mice exhibited delayed liver repair and increased Ly6C high macrophages (Ly6C high /CD11b high /F4/80 low -cells) with expression of proinflammatory genes. Bone marrow (BM)-derived mPGES-1-deficient macrophages facilitated liver repair with increases in Ly6C low macrophages. In vitro, mPGES-1 was expressed in macrophages polarized toward the proinflammatory profile. Mice treated with the mPGES-1 inhibitor Compound III displayed increased liver protection and repair. Hepatic I/R enhanced the hepatic expression of PGE receptor subtype, EP4, in WT mice, which was reduced in Ptges -/- mice. A selective EP4 antagonist and genetic deletion of Ptger4, which codes for EP4, accelerated liver repair. The proinflammatory gene expression was upregulated by stimulation of EP4 agonist in WT macrophages but not in EP4-deficient macrophages. These results indicate that mPGES-1 regulates macrophage polarization as well as liver protection and repair through EP4 signaling during hepatic I/R. Inhibition of mPGES-1 could have therapeutic potential by

  15. Cognitive Deficits in Calsyntenin-2-deficient Mice Associated with Reduced GABAergic Transmission

    PubMed Central

    Lipina, Tatiana V; Prasad, Tuhina; Yokomaku, Daisaku; Luo, Lin; Connor, Steven A; Kawabe, Hiroshi; Wang, Yu Tian; Brose, Nils; Roder, John C; Craig, Ann Marie

    2016-01-01

    Calsyntenin-2 has an evolutionarily conserved role in cognition. In a human genome-wide screen, the CLSTN2 locus was associated with verbal episodic memory, and expression of human calsyntenin-2 rescues the associative learning defect in orthologous Caenorhabditis elegans mutants. Other calsyntenins promote synapse development, calsyntenin-1 selectively of excitatory synapses and calsyntenin-3 of excitatory and inhibitory synapses. We found that targeted deletion of calsyntenin-2 in mice results in a selective reduction in functional inhibitory synapses. Reduced inhibitory transmission was associated with a selective reduction of parvalbumin interneurons in hippocampus and cortex. Clstn2−/− mice showed normal behavior in elevated plus maze, forced swim test, and novel object recognition assays. However, Clstn2−/− mice were hyperactive in the open field and showed deficits in spatial learning and memory in the Morris water maze and Barnes maze. These results confirm a function for calsyntenin-2 in cognitive performance and indicate an underlying mechanism that involves parvalbumin interneurons and aberrant inhibitory transmission. PMID:26171716

  16. Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide.

    PubMed

    Poljakovic, Mirjana; Persson, Katarina

    2003-01-01

    Inducible nitric oxide synthase (iNOS)-deficient mice were used to examine the role of iNOS in Escherichia coli-induced urinary tract infection (UTI). The toxicity of nitric oxide (NO)/peroxynitrite to bacteria and host was also investigated. The nitrite levels in urine of iNOS+/+ but not iNOS/ mice increased after infection. No differences in bacterial clearance or persistence were noted between the genotypes. In vitro, the uropathogenic E. coli 1177 was sensitive to 3-morpholinosydnonimine, whereas the avirulent E. coli HB101 was sensitive to both NO and 3-morpholinosydnonimine. E. coli HB101 was statistically (P < 0.05) more sensitive to peroxynitrite than E. coli 1177. Nitrotyrosine immunoreactivity was observed in infected bladders of both genotypes and in infected kidneys of iNOS+/+ mice. Myeloperoxidase, neuronal (n)NOS, and endothelial (e)NOS immunoreactivity was observed in inflammatory cells of both genotypes. Our results indicate that iNOS/ and iNOS+/+ mice are equally susceptible to E. coli-induced UTI and that the toxicity of NO to E. coli depends on bacterial virulence. Furthermore, myeloperoxidase and nNOS/eNOS may contribute to nitrotyrosine formation in the absence of iNOS.

  17. Enhanced Venous Thrombus Resolution in Plasminogen Activator Inhibitor Type-2 Deficient Mice

    PubMed Central

    Siefert, Suzanne A; Chabasse, Christine; Mukhopadhyay, Subhradip; Hoofnagle, Mark H; Strickland, Dudley K; Sarkar, Rajabrata; Antalis, Toni M

    2014-01-01

    Background The resolution of deep vein thrombosis (DVT) requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. PAI-2 is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. Objective To investigate the role of PAI-2 in venous thrombus formation and resolution. Methods Venous thrombus resolution was compared in wild type C57BL/6, PAI-2 -/- and PAI-1 -/- mice using the stasis model of DVT. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA, and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. Results We found that absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2 -/- mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2 deficient thrombi had increased levels of the neutrophil chemoattractant, CXCL2, which was associated with early enhanced neutrophil recruitment. Conclusions These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. PMID:25041188

  18. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    PubMed

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  19. Endogenous Siderophore 2,5-Dihydroxybenzoic Acid Deficiency Promotes Anemia and Splenic Iron Overload in Mice

    PubMed Central

    Liu, Zhuoming; Ciocea, Alieta

    2014-01-01

    Eukaryotes produce a siderophore-like molecule via a remarkably conserved biosynthetic pathway. 3-OH butyrate dehydrogenase (BDH2), a member of the short-chain dehydrogenase (SDR) family of reductases, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA). Depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of intracellular iron and mitochondrial iron deficiency in cultured mammalian cells, as well as in yeast cells and zebrafish embryos We disrupted murine bdh2 by homologous recombination to analyze the effect of bdh2 deletion on erythropoiesis and iron metabolism. bdh2 null mice developed microcytic anemia and tissue iron overload, especially in the spleen. Exogenous supplementation with 2,5-DHBA alleviates splenic iron overload in bdh2 null mice. Additionally, bdh2 null mice exhibit reduced serum iron. Although BDH2 has been proposed to oxidize ketone bodies, we found that BDH2 deficiency did not alter ketone body metabolism in vivo. In sum, our findings demonstrate a key role for BDH2 in erythropoiesis. PMID:24777603

  20. Arthritis is inhibited in Borrelia-primed and infected interleukin-17A-deficient mice after administration of anti-gamma-interferon, anti-tumor necrosis factor alpha and anti-interleukin-6 antibodies.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-08-31

    The role that cytokines play in the induction of Lyme arthritis is gradually being delineated. We showed previously that severe arthritis developed in a T-cell-driven murine model, even in mice lacking interleukin-17A (IL-17A) and administered anti-gamma-interferon (IFN-γ) antibody. Increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two pro-inflammatory cytokines, were detected in cultures of popliteal lymph node cells obtained from these mice. We hypothesized that concomitantly administered anti-IL-6, anti-TNF-α and anti-IFN-γ antibodies would inhibit the development of arthritis in IL-17A-deficient mice. Our results showed that swelling of the hind paws and histopathological changes consistent with arthritis were significantly reduced in IL-17A-deficient mice that administered the three anti-cytokine antibodies. These results suggest that treatment with multiple anti-cytokine antibodies can abrogate the induction of Lyme arthritis in mice. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis

    PubMed Central

    Lippai, Dora; Kodys, Karen; Catalano, Donna; Iracheta-Vellve, Arvin; Szabo, Gyongyi

    2015-01-01

    Background & Aim MicroRNAs (miRs) regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis. Methods Wild type (WT) and miR-155-deficient (KO) mice were fed methionine-choline-deficient (MCD) or -supplemented (MCS) control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed. Results MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB) activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα) and monocyte chemoattractant protein-1 (MCP1) in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3) and reduction in collagen and α smooth muscle actin (αSMA) levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF), a pro-fibrotic cytokine; SMAD family member 3 (Smad3), a protein involved in transforming growth factor-β (TGFβ) signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT) in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ) a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice. Conclusions Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis. PMID:26042593

  2. Deficiency of eNOS exacerbates early-stage NAFLD pathogenesis by changing the fat distribution.

    PubMed

    Nozaki, Yuichi; Fujita, Koji; Wada, Koichiro; Yoneda, Masato; Shinohara, Yoshiyasu; Imajo, Kento; Ogawa, Yuji; Kessoku, Takaomi; Nakamuta, Makoto; Saito, Satoru; Masaki, Naohiko; Nagashima, Yoji; Terauchi, Yasuo; Nakajima, Atsushi

    2015-12-17

    Although many factors and molecules that are closely associated with non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) have been reported, the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in the pathogenesis of NAFLD/NASH remains unclear. We therefore investigated the role of eNOS-derived NO in NAFLD pathogenesis using systemic eNOS-knockout mice fed a high-fat diet. eNOS-knockout and wild-type mice were fed a basal diet or a high-fat diet for 12 weeks. Lipid accumulation and inflammation were evaluated in the liver, and various factors that are closely associated with NAFLD/NASH and hepatic tissue blood flow were analyzed. Lipid accumulation and inflammation were more extensive in the liver and lipid accumulation was less extensive in the visceral fat tissue in eNOS-knockout mice, compared with wild-type mice, after 12 weeks of being fed a high-fat diet. While systemic insulin resistance was comparable between the eNOS-knockout and wild-type mice fed a high-fat diet, hepatic tissue blood flow was significantly suppressed in the eNOS-knockout mice, compared with the wild-type mice, in mice fed a high-fat diet. The microsomal triglyceride transfer protein activity was down-regulated in eNOS-knockout mice, compared with wild-type mice, in mice fed a high-fat diet. A deficiency of eNOS-derived NO may exacerbate the early-stage of NASH pathogenesis by changing the fat distribution in a mouse model via the regulation of hepatic tissue blood flow.

  3. Myeloid mineralocorticoid receptor deficiency inhibits aortic constriction-induced cardiac hypertrophy in mice.

    PubMed

    Li, Chao; Zhang, Yu Yao; Frieler, Ryan A; Zheng, Xiao Jun; Zhang, Wu Chang; Sun, Xue Nan; Yang, Qing Zhen; Ma, Shu Min; Huang, Baozhuan; Berger, Stefan; Wang, Wang; Wu, Yong; Yu, Ying; Duan, Sheng Zhong; Mortensen, Richard M

    2014-01-01

    Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.

  4. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXR{alpha}-null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He Lin

    Retinoid X receptor-{alpha} (RXR{alpha}) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXR{alpha} deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXR{alpha}-null (H-RXR{alpha}-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid {beta}-oxidation were not alteredmore » in WT mice, but were decreased in the MCD diet-fed H-RXR{alpha}-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXR{alpha}-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXR{alpha}-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXR{alpha}-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXR{alpha}-null mice. In conclusion, these data suggest a critical role for RXR{alpha} in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.« less

  5. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    PubMed Central

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  6. Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoE-/- mice.

    PubMed

    Ganguly, Rituparna; Sahu, Soumyadip; Ohanyan, Vahagn; Haney, Rebecca; Chavez, Ronaldo J; Shah, Shivani; Yalamanchili, Siri; Raman, Priya

    2017-03-27

    Increasing evidence suggests thrombospondin-1 (TSP-1), a potent proatherogenic matricellular protein, as a putative link between hyperglycemia and atherosclerotic complications in diabetes. We previously reported that the micronutrient chromium picolinate (CrP), with long-standing cardiovascular benefits, inhibits TSP-1 expression in glucose-stimulated human aortic smooth muscle cells in vitro. Here, we investigated the atheroprotective action of orally administered CrP in type 1 diabetic apolipoprotein E-deficient (ApoE -/- ) mice and elucidated the role of TSP-1 in this process. CrP decreased lipid burden and neointimal thickness in aortic root lesions of hyperglycemic ApoE -/- mice; also, smooth muscle cell (SMC), macrophage and leukocyte abundance was prevented coupled with reduced cell proliferation. Attenuated lesion progression was accompanied with inhibition of hyperglycemia-induced TSP-1 expression and reduced protein O-glycosylation following CrP treatment; also, PCNA and vimentin (SMC synthetic marker) expression were reduced while SM-MHC (SMC contractile marker) levels were increased. To confirm a direct role of TSP-1 in diabetic atherosclerosis, hyperglycemic TSP-1 -/- /ApoE -/- double knockout mice were compared with age-matched hyperglycemic ApoE -/- littermates. Lack of TSP-1 prevented lesion formation in hyperglycemic ApoE -/- mice, mimicking the atheroprotective phenotype of CrP-treated mice. These results suggest that therapeutic TSP-1 inhibition may have important atheroprotective potential in diabetic vascular disease.

  7. Identification of Aortic Arch-Specific Quantitative Trait Loci for Atherosclerosis by an Intercross of DBA/2J and 129S6 Apolipoprotein E-Deficient Mice

    PubMed Central

    Kayashima, Yukako; Makhanova, Natalia A.; Matsuki, Kota; Tomita, Hirofumi; Bennett, Brian J.; Maeda, Nobuyo

    2015-01-01

    The genetic background of apolipoprotein E (apoE) deficient mice influences atherosclerotic plaque development. We previously reported three quantitative trait loci (QTL), Aath1–Aath3, that affect aortic arch atherosclerosis independently of those in the aortic root in a cross between C57BL6 apoEKO mice (B6-apoE) and 129S6 apoEKO mice (129-apoE). To gain further insight into genetic factors that influence atherosclerosis at different vascular locations, we analyzed 335 F2 mice from an intercross between 129-apoE and apoEKO mice on a DBA/2J genetic background (DBA-apoE). The extent of atherosclerosis in the aortic arch was very similar in the two parental strains. Nevertheless, a genome-wide scan identified two significant QTL for plaque size in the aortic arch: Aath4 on Chromosome (Chr) 2 at 137 Mb and Aath5 on Chr 10 at 51 Mb. The DBA alleles of Aath4 and Aath5 respectively confer susceptibility and resistance to aortic arch atherosclerosis over 129 alleles. Both QTL are also independent of those affecting plaque size at the aortic root. Genome analysis suggests that athero-susceptibility of Aath4 in DBA may be contributed by multiple genes, including Mertk and Cd93, that play roles in phagocytosis of apoptotic cells and modulate inflammation. A candidate gene for Aath5 is Stab2, the DBA allele of which is associated with 10 times higher plasma hyaluronan than the 129 allele. Overall, our identification of two new QTL that affect atherosclerosis in an aortic arch-specific manner further supports the involvement of distinct pathological processes at different vascular locations. PMID:25689165

  8. Postnatally elevated levels of insulin-like growth factor (IGF)-II fail to rescue the dwarfism of IGF-I-deficient mice except kidney weight.

    PubMed

    Moerth, Corinna; Schneider, Marlon R; Renner-Mueller, Ingrid; Blutke, Andreas; Elmlinger, Martin W; Erben, Reinhold G; Camacho-Hübner, Cecilia; Hoeflich, Andreas; Wolf, Eckhard

    2007-01-01

    This study tested whether elevated levels of IGF-II in the postnatal period can rescue the dwarfism in IGF-I-deficient mice. Heterozygous Igf1 mutant mice [I(+/-) II(wt)] were crossed with heterozygous Igf1 mutant, phosphoenolpyruvate carboxykinase promoter IGF-II transgenic mice [I(+/-) II(tg)], and [I(+/+) II(wt)], [I(+/+) II(tg)], [I(-/-) II(wt)], and [I(-/-) II(tg)] offspring were investigated. IGF-II levels were 11- and 6-fold higher in male and female [I(-/-) II(tg)] vs. [I(-/-) II(wt)] animals. Western ligand blot analysis revealed markedly reduced activities of 30- and 32-kDa IGF binding proteins (IGFBPs) (most likely IGFBP-1 and IGFBP-2) and the 39- to 43-kDa IGFBP-3 double band in serum from IGF-I-deficient mice. These binding proteins were partially restored by overexpression of IGF-II. Analysis of weight data from the early postnatal period until d 60 showed that, in the absence of IGF-I, elevated levels of IGF-II have no effect on body weight gain. A detailed analysis of body proportions, bone parameters, and organ weights of 60-d-old mice also failed to show effects of IGF-II with one important exception: in Igf1 mutant and also Igf1 intact male mice, IGF-II overexpression significantly increased absolute (+32.4 and +28.6%; P < 0.01) and relative kidney weights (+29.0 and +22.4%; P < 0.001). These changes in kidney weight were associated with reduced phosphorylation of p38 MAPK. In summary, our genetic model shows that substantial amounts of IGF-II in the circulation do not rescue the postnatal growth deficit of IGF-I-deficient mice but increase absolute and relative kidney weights of normal and IGF-I-deficient male mice, suggesting a gender-specific role of IGF-II for kidney growth.

  9. Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice

    PubMed Central

    Liedert, Astrid; Röntgen, Viktoria; Schinke, Thorsten; Benisch, Peggy; Ebert, Regina; Jakob, Franz; Klein-Hitpass, Ludger; Lennerz, Jochen K.; Amling, Michael; Ignatius, Anita

    2014-01-01

    The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5−/−) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5−/− mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5−/− mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis. PMID:25061805

  10. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    PubMed

    Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  11. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice

    PubMed Central

    Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H.; Li, Ailian; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Henderson, Janet E.; Martineau, Paul A.

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair. PMID:28350850

  12. Group 1B phospholipase A₂ inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice.

    PubMed

    Hollie, Norris I; Konaniah, Eddy S; Goodin, Colleen; Hui, David Y

    2014-06-01

    Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. IL-10 Enhances IgE-Mediated Mast Cell Responses and Is Essential for the Development of Experimental Food Allergy in IL-10-Deficient Mice.

    PubMed

    Polukort, Stephanie H; Rovatti, Jeffrey; Carlson, Logan; Thompson, Chelsea; Ser-Dolansky, Jennifer; Kinney, Shannon R M; Schneider, Sallie S; Mathias, Clinton B

    2016-06-15

    IL-10 is a key pleiotropic cytokine that can both promote and curb Th2-dependent allergic responses. In this study, we demonstrate a novel role for IL-10 in promoting mast cell expansion and the development of IgE-mediated food allergy. Oral OVA challenge in sensitized BALB/c mice resulted in a robust intestinal mast cell response accompanied by allergic diarrhea, mast cell activation, and a predominance of Th2 cytokines, including enhanced IL-10 expression. In contrast, the development of intestinal anaphylaxis, including diarrhea, mast cell activation, and Th2 cytokine production, was significantly attenuated in IL-10(-/-) mice compared with wild-type (WT) controls. IL-10 also directly promoted the expansion, survival, and activation of mast cells; increased FcεRI expression on mast cells; and enhanced the production of mast cell cytokines. IL-10(-/-) mast cells had reduced functional capacity, which could be restored by exogenous IL-10. Similarly, attenuated passive anaphylaxis in IL-10(-/-) mice could be restored by IL-10 administration. The adoptive transfer of WT mast cells restored allergic symptoms in IL-10(-/-) mice, suggesting that the attenuated phenotype observed in these animals is due to a deficiency in IL-10-responding mast cells. Lastly, transfer of WT CD4 T cells also restored allergic diarrhea and intestinal mast cell numbers in IL-10(-/-) mice, suggesting that the regulation of IL-10-mediated intestinal mast cell expansion is T cell dependent. Our observations demonstrate a critical role for IL-10 in driving mucosal mast cell expansion and activation, suggesting that, in its absence, mast cell function is impaired, leading to attenuated food allergy symptoms. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    PubMed

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  15. Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors

    PubMed Central

    Cryan, John F.; O'Leary, Olivia F.; Jin, Sung-Ha; Friedland, Julie C.; Ouyang, Ming; Hirsch, Bradford R.; Page, Michelle E.; Dalvi, Ashutosh; Thomas, Steven A.; Lucki, Irwin

    2004-01-01

    Mice unable to synthesize norepinephrine (NE) and epinephrine due to targeted disruption of the dopamine β-hydroxylase gene, Dbh, were used to critically test roles for NE in mediating acute behavioral changes elicited by different classes of antidepressants. To this end, we used the tail suspension test, one of the most widely used paradigms for assessing antidepressant activity and depression-related behaviors in normal and genetically modified mice. Dbh–/– mice failed to respond to the behavioral effects of various antidepressants, including the NE reuptake inhibitors desipramine and reboxetine, the monoamine oxidase inhibitor pargyline, and the atypical antidepressant bupropion, even though they did not differ in baseline immobility from Dbh+/– mice, which have normal levels of NE. Surprisingly, the effects of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine, sertraline, and paroxetine were also absent or severely attenuated in the Dbh–/– mice. In contrast, citalopram (the most selective SSRI) was equally effective at reducing immobility in mice with and without NE. Restoration of NE by using l-threo-3,4-dihydroxyphenylserine reinstated the behavioral effects of both desipramine and paroxetine in Dbh–/– mice, thus demonstrating that the reduced sensitivity to antidepressants is related to NE function, as opposed to developmental abnormalities resulting from chronic NE deficiency. Microdialysis studies demonstrated that the ability of fluoxetine to increase hippocampal serotonin was blocked in Dbh–/– mice, whereas citalopram's effect was only partially attenuated. These data show that NE plays an important role in mediating acute behavioral and neurochemical actions of many antidepressants, including most SSRIs. PMID:15148402

  16. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  17. Maladaptive defensive behaviours in monoamine oxidase A-deficient mice.

    PubMed

    Godar, Sean C; Bortolato, Marco; Frau, Roberto; Dousti, Mona; Chen, Kevin; Shih, Jean C

    2011-10-01

    Rich evidence indicates that monoamine oxidase (MAO) A, the major enzyme catalysing the degradation of monoamine neurotransmitters, plays a key role in emotional regulation. Although MAOA deficiency is associated with reactive aggression in humans and mice, the involvement of this enzyme in defensive behaviour remains controversial and poorly understood. To address this issue, we tested MAOA knockout (KO) mice in a spectrum of paradigms and settings associated with variable degrees of threat. The presentation of novel inanimate objects induced a significant reduction in exploratory approaches and increase in defensive behaviours, such as tail-rattling, biting and digging. These neophobic responses were context-dependent and particularly marked in the home cage. In the elevated plus- and T-mazes, MAOA KO mice and wild-type (WT) littermates displayed equivalent locomotor activity and time in closed and open arms; however, MAOA KO mice featured significant reductions in risk assessment, as well as unconditioned avoidance and escape. No differences between genotypes were observed in the defensive withdrawal and emergence test. Conversely, MAOA KO mice exhibited a dramatic reduction of defensive and fear-related behaviours in the presence of predator-related cues, such as predator urine or an anaesthetized rat, in comparison with those observed in their WT littermates. The behavioural abnormalities in MAOA KO mice were not paralleled by overt alterations in sensory and microvibrissal functions. Collectively, these results suggest that MAOA deficiency leads to a general inability to appropriately assess contextual risk and attune defensive and emotional responses to environmental cues.

  18. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    PubMed

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-03-16

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients.

  19. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking

    PubMed Central

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N.; Grossfeld, Paul D.; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  20. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling.

    PubMed

    Li, Quanxin; Wang, Ziying; Zhang, Yan; Zhu, Jiaqing; Li, Liang; Wang, Xiaojie; Cui, Xiaoyang; Sun, Yu; Tang, Wei; Gao, Chengjiang; Ma, Chunhong; Yi, Fan

    2018-06-12

    There is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown. NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury. NLRC5 deficient mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury. Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses were, at least in part, associated with the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during ischemia/reperfusion injury, we generated bone marrow chimeric mice. NLRC5 deficient mice engrafted with wild type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild type mice reconstituted with NLRC5 deficient bone marrow. This suggests that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Thus, modulation of the NLRC5-mediated pathway may have important therapeutic implications for patients with acute kidney injury. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Daily Rhythmic Behaviors and Thermoregulatory Patterns Are Disrupted in Adult Female MeCP2-Deficient Mice

    PubMed Central

    Wu, Chiping; Bardakjian, Berj L.; Zhang, Liang; Eubanks, James H.

    2012-01-01

    Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities. PMID:22523589

  2. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.

  3. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    PubMed Central

    Knudsen, Lars; Ochs, Matthias; MacKay, Rosemarie; Townsend, Paul; Deb, Roona; Mühlfeld, Christian; Richter, Joachim; Gilbert, Fabian; Hawgood, Samuel; Reid, Kenneth; Clark, Howard

    2007-01-01

    Background Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are characterized by decreased SP

  4. The anti-inflammatory vasostatin-2 attenuates atherosclerosis in ApoE-/- mice and inhibits monocyte/macrophage recruitment.

    PubMed

    Xiong, Weixin; Wang, Xiaoqun; Dai, Daopeng; Zhang, Bao; Lu, Lin; Tao, Rong

    2017-01-26

    We showed previously that reduced level of vasostatin-2 (VS-2) correlates to the presence and severity of coronary artery disease. In this study, we aimed to figure out the role of chromogranin A (CGA) derived VS-2 in the development of atherosclerosis and monocyte/macrophage recruitment. Apolipoprotein E-deficient (ApoE -/- ) mice fed a high-fat diet exhibited attenuated lesion size by 65 % and 41 % in En face and aortic root Oil red O staining, MOMA-2 positive area by 64 %, respectively, in VS-2 treatment group compared with PBS group. Proinflammatory cytokines tumour necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) were all remarkably reduced in aortic tissues after VS-2 treatment. Mechanistically, in adhesion assay using intravital microscopy in vivo, VS-2 suppressed the number of leukocytes adhering to the wall of apoE -/- mice mesenteric arteries. In chemotactic assay, flow cytometry analysis of peritoneal lavage exudate from C57BL/6 mice showed VS-2 significantly decreased the recruiment number of inflammatory monocytes/macrophages in a thioglycollate-induced peritonitis model. Furthermore, fewer fluorescent latex beads labelled Ly-6C hi monocytes accumulated in aortic sinus lesions of apoE -/- mice after VS-2 treatment. In addition, according to the microarray of human monocyte/macrophage, we found VS-2 stimulation caused a dose-dependent decrease of Rac1 expression and inactivation of Pak1 in mice primary monocytes as well as THP-1 cells and inhibited MCP-1/CCL-5 induced transmigration in vitro. In conclusion, the Chromogranin A-derived VS-2 attenuates atherosclerosis in apoE -/- mice and, in addition to its anti-inflammatory property, also acts as an inhibitor in monocyte/macrophage recruitment.

  5. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  6. Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice.

    PubMed

    Xu, Kui; Sun, Xiaoyan; Benderro, Girriso F; Tsipis, Constantinos P; LaManna, Joseph C

    2017-02-01

    The aim of this study was to determine the effect of cyclooxygenase-2 (COX-2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild-type (WT) and COX-2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia-inducible factor -1 α (HIF-1 α ), angiopoietin 2 (Ang-2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX-2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF-1 α , and attenuated upregulation of VEGF, EPO, and Ang-2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX-2-deficient mice. The COX-2 signaling pathway appears to be required for acclimatization in oxygen-limiting environments only in males, whereas female COX-2-deficient mice may be able to access COX-2-independent mechanisms to achieve hypoxic acclimatization. © 2017 Case Western Reserve University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

    PubMed

    Herrema, Hilde; Derks, Terry G J; van Dijk, Theo H; Bloks, Vincent W; Gerding, Albert; Havinga, Rick; Tietge, Uwe J F; Müller, Michael; Smit, G Peter A; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2008-06-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the

  8. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  9. Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation.

    PubMed

    Hamaguchi, Masahide; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Kadoya, Masatoshi; Ishino, Hidetaka; Ashihara, Eishi; Kimura, Shinya; Tsubakimoto, Yoshinori; Takata, Hiroki; Yoshikawa, Toshikazu; Maekawa, Taira; Kawahito, Yutaka

    2010-09-01

    Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE(-/-) mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE(-/-) mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E(2), F(1α), and thromboxane B(2), and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect.

  10. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice. [X Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-04-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F/sub 1/ (BLCF/sub 1/) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF/sub 1/ mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (..mu..-suppressed) BLCF/sub 1/ mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the ..mu..-suppressed mice that resisted a sporozoite challenge suggests amore » minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF/sub 1/ mice against a P. berghei sporozoite infection.« less

  11. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet.

    PubMed

    Gorustovich, Alejandro A; Steimetz, Tammy; Nielsen, Forrest H; Guglielmotti, María B

    2008-07-01

    Emerging evidence indicates that boron (B) plays a role in bone formation and maintenance. Thus, a study was performed to determine whether dietary B-deficiency affects periodontal alveolar bone modelling and remodelling. Weanling Swiss mice (n=30) were divided into three groups: control diet (GI, 3mg B/kg); B-deficient diet (GII, 0.07 mg B/kg); and pair-fed with GII (GIII). The animals were maintained on their respective diets for 9 weeks and then sacrificed. The guidelines of the NIH for the care and use of laboratory animals were observed. The mandibles were resected, fixed, decalcified in 10% EDTA and embedded in paraffin. Buccolingually oriented sections were obtained at the level of the mesial root of the first lower molar and stained with H-E. Histomorphometric studies were performed separately on the buccal and lingual sides of the periodontal alveolar bone. Percentages of osteoblast surfaces (ObSs), eroded surfaces (ESs), and quiescent surfaces (QSs) were determined. No statistically significant differences in food intake and body weight were observed between the groups. When compared with GI and GIII mice, GII mice (B-deficient) had 63% and 48% reductions in ObS and 58% and 73% increases in QS in buccal and lingual plates, respectively. ES were not affected by B nutriture. The results are evidence that dietary boron deprivation in mice alters periodontal alveolar bone modelling and remodelling by inhibiting bone formation.

  12. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  13. Wound Healing in Mac-1 Deficient Mice

    DTIC Science & Technology

    2017-05-01

    36. Rosenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS, Galli SJ, Mayadas TN. Impaired mast cell development and innate immunity in Mac...genetically deficient mice. 3 INTRODUCTION Wound healing is a complex yet well-regulated process in which multiple resident cells ...recruited inflammatory cells , and stem cells interact to create an environment that supports the healing process. An optimal inflammatory response is a

  14. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2Rmore » binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.« less

  15. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons

    PubMed Central

    Hong, J; Sha, S; Zhou, L; Wang, C; Yin, J; Chen, L

    2015-01-01

    Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson's disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/− or σ1R−/− mice (MPTP-σ1R+/− or MPTP-σ1R−/− mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/− mice treated with the σ1R agonist PRE084 or MPTP-σ1R−/− mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/− mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/− mice or σ1R−/− mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R−/− mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R−/− mice. The number of activated astrocytes in MPTP-σ1R−/− mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of

  16. Bruton's Tyrosine Kinase Deficiency Inhibits Autoimmune Arthritis in Mice but Fails to Block Immune Complex-Mediated Inflammatory Arthritis.

    PubMed

    Nyhoff, Lindsay E; Barron, Bridgette L; Johnson, Elizabeth M; Bonami, Rachel H; Maseda, Damian; Fensterheim, Benjamin A; Han, Wei; Blackwell, Timothy S; Crofford, Leslie J; Kendall, Peggy L

    2016-08-01

    Bruton's tyrosine kinase (BTK) is a B cell signaling protein that also contributes to innate immunity. BTK inhibitors prevent autoimmune arthritis but have off-target effects, and the mechanisms of protection remain unknown. We undertook these studies using genetic deletion to investigate the role of BTK in adaptive and innate immune responses that drive inflammatory arthritis. BTK-deficient K/BxN mice were generated to study the role of BTK in a spontaneous model that requires both adaptive and innate immunity. The K/BxN serum-transfer model was used to bypass the adaptive system and elucidate the role of BTK in innate immune contributions to arthritis. BTK deficiency conferred disease protection to K/BxN mice, confirming outcomes of BTK inhibitors. B lymphocytes were profoundly reduced, more than in other models of BTK deficiency. Subset analysis revealed loss of B cells at all developmental stages. Germinal center B cells were also decreased, with downstream effects on numbers of follicular helper T cells and greatly reduced autoantibodies. In contrast, total IgG was only mildly decreased. Strikingly, and in contrast to small molecule inhibitors, BTK deficiency had no effect in the serum-transfer model of arthritis. BTK contributes to autoimmune arthritis primarily through its role in B cell signaling and not through innate immune components. © 2016, American College of Rheumatology.

  17. Increased anxiety but normal fear and safety learning in orexin-deficient mice.

    PubMed

    Khalil, Radwa; Fendt, Markus

    2017-03-01

    The loss of orexin neurons in humans leads to the disease narcolepsy, characterized by daytime sleepiness and cataplexy. Recent data suggest that orexin is also involved in emotional processing. The goal of the present study was to evaluate fear and safety learning as well as unconditioned fear (anxiety) in orexin-deficient animals. Orexin-deficient mice are an established animal model used to investigate the neuropathology and potential treatments for narcolepsy. Here, we present novel data showing that orexin-deficient mice express increased anxiety in the open field, light-dark box test and carnivore odor-induced avoidance, but are normal in fear and safety learning. These findings suggest an important role of orexin in brain areas involved in anxiety. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Impaired natural killer cell self-education and "missing-self" responses in Ly49-deficient mice.

    PubMed

    Bélanger, Simon; Tu, Megan M; Rahim, Mir Munir Ahmed; Mahmoud, Ahmad B; Patel, Rajen; Tai, Lee-Hwa; Troke, Angela D; Wilhelm, Brian T; Landry, Josette-Renée; Zhu, Qinzhang; Tung, Kenneth S; Raulet, David H; Makrigiannis, Andrew P

    2012-07-19

    Ly49-mediated recognition of MHC-I molecules on host cells is considered vital for natural killer (NK)-cell regulation and education; however, gene-deficient animal models are lacking because of the difficulty in deleting this large multigene family. Here, we describe NK gene complex knockdown (NKC(KD)) mice that lack expression of Ly49 and related MHC-I receptors on most NK cells. NKC(KD) NK cells exhibit defective killing of MHC-I-deficient, but otherwise normal, target cells, resulting in defective rejection by NKC(KD) mice of transplants from various types of MHC-I-deficient mice. Self-MHC-I immunosurveillance by NK cells in NKC(KD) mice can be rescued by self-MHC-I-specific Ly49 transgenes. Although NKC(KD) mice display defective recognition of MHC-I-deficient tumor cells, resulting in decreased in vivo tumor cell clearance, NKG2D- or antibody-dependent cell-mediated cytotoxicity-induced tumor cell cytotoxicity and cytokine production induced by activation receptors was efficient in Ly49-deficient NK cells, suggesting MHC-I education of NK cells is a single facet regulating their total potential. These results provide direct genetic evidence that Ly49 expression is necessary for NK-cell education to self-MHC-I molecules and that the absence of these receptors leads to loss of MHC-I-dependent "missing-self" immunosurveillance by NK cells.

  19. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    PubMed

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  20. Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice.

    PubMed

    Antoniak, S; Tatsumi, K; Hisada, Y; Milner, J J; Neidich, S D; Shaver, C M; Pawlinski, R; Beck, M A; Bastarache, J A; Mackman, N

    2016-06-01

    Essentials H1N1 Influenza A virus (IAV) infection is a hemostatic challenge for the lung. Tissue factor (TF) on lung epithelial cells maintains lung hemostasis after IAV infection. Reduced TF-dependent activation of coagulation leads to alveolar hemorrhage. Anticoagulation might increase the risk for hemorrhages into the lung during severe IAV infection. Background Influenza A virus (IAV) infection is a common respiratory tract infection that causes considerable morbidity and mortality worldwide. Objective To investigate the effect of genetic deficiency of tissue factor (TF) in a mouse model of IAV infection. Methods Wild-type mice, low-TF (LTF) mice and mice with the TF gene deleted in different cell types were infected with a mouse-adapted A/Puerto Rico/8/34 H1N1 strain of IAV. TF expression was measured in the lungs, and bronchoalveolar lavage fluid (BALF) was collected to measure extracellular vesicle TF, activation of coagulation, alveolar hemorrhage, and inflammation. Results IAV infection of wild-type mice increased lung TF expression, activation of coagulation and inflammation in BALF, but also led to alveolar hemorrhage. LTF mice and mice with selective deficiency of TF in lung epithelial cells had low basal levels of TF and failed to increase TF expression after infection; these two strains of mice had more alveolar hemorrhage and death than controls. In contrast, deletion of TF in either myeloid cells or endothelial cells and hematopoietic cells did not increase alveolar hemorrhage or death after IAV infection. These results indicate that TF expression in the lung, particularly in epithelial cells, is required to maintain alveolar hemostasis after IAV infection. Conclusion Our study indicates that TF-dependent activation of coagulation is required to limit alveolar hemorrhage and death after IAV infection. © 2016 International Society on Thrombosis and Haemostasis.

  1. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    PubMed

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  2. Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice.

    PubMed

    Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Nguyen, Amanda; Schaack, Jerome; Hay, William W; Shao, Jianhua

    2017-05-01

    Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout ( Adipoq -/- ) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector-mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq -/- dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq -/- dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq -/- dams. Hepatic glucose and triglyceride production rates of Adipoq -/- dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq -/- dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq -/- and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq -/- dams. Furthermore, β-cell mass, but not glucose-stimulated insulin release, in Adipoq -/- dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy. © 2017 by the American Diabetes Association.

  3. Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice

    PubMed Central

    Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Nguyen, Amanda; Schaack, Jerome; Hay, William W.

    2017-01-01

    Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout (Adipoq−/−) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector–mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq−/− dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq−/− dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq−/− dams. Hepatic glucose and triglyceride production rates of Adipoq−/− dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq−/− dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq−/− and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq−/− dams. Furthermore, β-cell mass, but not glucose-stimulated insulin release, in Adipoq−/− dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy. PMID:28073830

  4. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    PubMed

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The skeletal structure of insulin-like growth factor I-deficient mice

    NASA Technical Reports Server (NTRS)

    Bikle, D.; Majumdar, S.; Laib, A.; Powell-Braxton, L.; Rosen, C.; Beamer, W.; Nauman, E.; Leary, C.; Halloran, B.

    2001-01-01

    The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (muCT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact.

  6. Renal injury in Seipin-deficient lipodystrophic mice and its reversal by adipose tissue transplantation or leptin administration alone: adipose tissue-kidney crosstalk.

    PubMed

    Liu, Xue-Jing; Wu, Xiao-Yue; Wang, Huan; Wang, Su-Xia; Kong, Wei; Zhang, Ling; Liu, George; Huang, Wei

    2018-05-08

    Seipin deficiency is responsible for type 2 congenital generalized lipodystrophy with severe loss of adipose tissue (AT) and could lead to renal failure in humans. However, the effect of Seipin on renal function is poorly understood. Here we report that Seipin knockout (SKO) mice exhibited impaired renal function, enlarged glomerular and mesangial surface areas, renal depositions of lipid, and advanced glycation end products. Elevated glycosuria and increased electrolyte excretion were also detected. Relative renal gene expression in fatty acid oxidation and reabsorption pathways were impaired in SKO mice. Elevated glycosuria might be associated with reduced renal glucose transporter 2 levels. To improve renal function, AT transplantation or leptin administration alone was performed. Both treatments effectively ameliorated renal injury by improving all of the parameters that were measured in the kidney. The treatments also rescued insulin resistance and low plasma leptin levels in SKO mice. Our findings demonstrate for the first time that Seipin deficiency induces renal injury, which is closely related to glucolipotoxicity and impaired renal reabsorption in SKO mice, and is primarily caused by the loss of AT and especially the lack of leptin. AT transplantation and leptin administration are two effective treatments for renal injury in Seipin-deficient mice.-Liu, X.-J., Wu, X.-Y., Wang, H., Wang, S.-X., Kong, W., Zhang, L., Liu, G., Huang, W. Renal injury in Seipin-deficient lipodystrophic mice and its reversal by adipose tissue transplantation or leptin administration alone: adipose tissue-kidney crosstalk.

  7. Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect

    PubMed Central

    Krishnan, Devishree; Pan, Wanling; Beggs, Megan R.; Trepiccione, Francesco; Chambrey, Régine; Eladari, Dominique; Cordat, Emmanuelle; Dimke, Henrik; Alexander, R. Todd

    2018-01-01

    Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice. PMID:29354070

  8. Comprehensive Plasma Metabolomic Analyses of Atherosclerotic Progression Reveal Alterations in Glycerophospholipid and Sphingolipid Metabolism in Apolipoprotein E-deficient Mice

    PubMed Central

    Dang, Vi T.; Huang, Aric; Zhong, Lexy H.; Shi, Yuanyuan; Werstuck, Geoff H.

    2016-01-01

    Atherosclerosis is the major underlying cause of most cardiovascular diseases. Despite recent advances, the molecular mechanisms underlying the pathophysiology of atherogenesis are not clear. In this study, comprehensive plasma metabolomics were used to investigate early-stage atherosclerotic development and progression in chow-fed apolipoprotein E-deficient mice at 5, 10 and 15 weeks of age. Comprehensive plasma metabolomic profiles, based on 4365 detected metabolite features, differentiate atherosclerosis-prone from atherosclerosis-resistant models. Metabolites in the sphingomyelin pathway were significantly altered prior to detectable lesion formation and at all subsequent time-points. The cytidine diphosphate-diacylglycerol pathway was up-regulated during stage I of atherosclerosis, while metabolites in the phosphatidylethanolamine and glycosphingolipid pathways were augmented in mice with stage II lesions. These pathways, involving glycerophospholipid and sphingolipid metabolism, were also significantly affected during the course of atherosclerotic progression. Our findings suggest that distinct plasma metabolomic profiles can differentiate the different stages of atherosclerotic progression. This study reveals that alteration of specific, previously unreported pathways of glycerophospholipid and sphingolipid metabolism are associated with atherosclerosis. The clear difference in the level of several metabolites supports the use of plasma lipid profiling as a diagnostic tool of atherogenesis. PMID:27721472

  9. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  10. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet

    PubMed Central

    Hikone, Kumiko; Hasegawa, Tomoka; Tsuchiya, Erika; Hongo, Hiromi; Sasaki, Muneteru; Yamamoto, Tomomaya; Kudo, Ai; Oda, Kimimitsu; Haraguchi, Mai; de Freitas, Paulo Henrique Luiz; Li, Minqi; Iida, Junichiro; Amizuka, Norio

    2017-01-01

    To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho−/− mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho−/−norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase–positive osteoblasts and tartrate-resistant acid phosphatase–reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho−/− lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling. PMID:28122194

  11. Reduced Synchronization Persistence in Neural Networks Derived from Atm-Deficient Mice

    PubMed Central

    Levine-Small, Noah; Yekutieli, Ziv; Aljadeff, Jonathan; Boccaletti, Stefano; Ben-Jacob, Eshel; Barzilai, Ari

    2011-01-01

    Many neurodegenerative diseases are characterized by malfunction of the DNA damage response. Therefore, it is important to understand the connection between system level neural network behavior and DNA. Neural networks drawn from genetically engineered animals, interfaced with micro-electrode arrays allowed us to unveil connections between networks’ system level activity properties and such genome instability. We discovered that Atm protein deficiency, which in humans leads to progressive motor impairment, leads to a reduced synchronization persistence compared to wild type synchronization, after chemically imposed DNA damage. Not only do these results suggest a role for DNA stability in neural network activity, they also establish an experimental paradigm for empirically determining the role a gene plays on the behavior of a neural network. PMID:21519382

  12. BDNF-Deficient Mice Show Reduced Psychosis-Related Behaviors Following Chronic Methamphetamine.

    PubMed

    Manning, Elizabeth E; Halberstadt, Adam L; van den Buuse, Maarten

    2016-04-01

    One of the most devastating consequences of methamphetamine abuse is increased risk of psychosis. Brain-derived neurotrophic factor has been implicated in both psychosis and neuronal responses to methamphetamine. We therefore examined persistent psychosis-like behavioral effects of methamphetamine in brain-derived neurotrophic factor heterozygous mice. Mice were chronically treated with methamphetamine from 6 to 9 weeks of age, and locomotor hyperactivity to an acute D-amphetamine challenge was tested in photocell cages after a 2-week withdrawal period. Methamphetamine-treated wild-type mice, but not brain-derived neurotrophic factor heterozygous mice, showed locomotor sensitization to acute 3mg/kg D-amphetamine. Qualitative analysis of exploration revealed tolerance to D-amphetamine effects on entropy in methamphetamine-treated brain-derived neurotrophic factor heterozygous mice, but not wild-type mice. Chronic methamphetamine exposure induces contrasting profiles of behavioral changes in wild-type and brain-derived neurotrophic factor heterozygous mice, with attenuation of behaviors relevant to psychosis in methamphetamine-treated brain-derived neurotrophic factor heterozygous mice. This suggests that brain-derived neurotrophic factor signalling changes may contribute to development of psychosis in methamphetamine users. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  13. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−})more » mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.« less

  14. Tenascin-x deficiency mimics ehlers-danlos syndrome in mice through alteration of collagen deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, J.R.; Taylor, G.; Dean, W.B.

    2002-03-01

    Tenascin-X is a large extracellular matrix protein of unknown function1-3. Tenascin-X deficiency in humans is associated with Ehlers-Danlos syndrome4,5, a generalized connective tissue disorder resulting from altered metabolism of the fibrillar collagens6. Because TNXB is the first Ehlers-Danlos syndrome gene that does not encode a fibrillar collagen or collagen-modifying enzyme7-14, we suggested that tenascin-X might regulate collagen synthesis or deposition15. To test this hypothesis, we inactivated Tnxb in mice. Tnxb-/- mice showed progressive skin hyperextensibility, similar to individuals with Ehlers-Danlos syndrome. Biomechanical testing confirmed increased deformability and reduced tensile strength of their skin. The skin of Tnxb-/- mice was histologicallymore » normal, but its collagen content was significantly reduced. At the ultrastructural level, collagen fibrils of Tnxb-/- mice were of normal size and shape, but the density of fibrils in their skin was reduced, commensurate with the reduction in collagen content. Studies of cultured dermal fibroblasts showed that although synthesis of collagen I by Tnxb-/- and wildtype cells was similar, Tnxb-/- fibroblasts failed to deposit collagen I into cell-associated matrix. This study confirms a causative role for TNXB in human Ehlers-Danlos syndrome and suggests that tenascin-X is an essential regulator of collagen deposition by dermal fibroblasts.« less

  15. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT

  16. Olive oils modulate fatty acid content and signaling protein expression in apolipoprotein E knockout mice brain.

    PubMed

    Alemany, Regina; Navarro, María A; Vögler, Oliver; Perona, Javier S; Osada, Jesús; Ruiz-Gutiérrez, Valentina

    2010-01-01

    Atherosclerosis contributes to disruption of neuronal signaling pathways by producing lipid-dependent modifications of brain plasma membranes, neuroinflammation and oxidative stress. We investigated whether long-term (11 weeks) consumption of refined- (ROO) and pomace- (POO) olive oil modulated the fatty acid composition and the levels of membrane signaling proteins in the brain of apolipoprotein E (apoE) knockout (KO) mice, an animal model of atherosclerosis. Both of these oils are rich in bioactive molecules with anti-inflammatory and antioxidant effects. ROO and POO long-term consumption increased the proportion of monounsaturated fatty acids (MUFAs), particularly of oleic acid, while reducing the level of the saturated fatty acids (SFAs) palmitic and stearic acid. As a result, the MUFA:SFA ratio was higher in apoE KO mice brain fed with ROO and POO. Furthermore, both oils reduced the level of arachidonic and eicosapentaenoic acid, suggesting a decrease in the generation of pro- and anti-inflammatory eicosanoids. Finally, ROO and POO induced an increase in the density of membrane proteins implicated in both the Galphas/PKA and Galphaq/PLCbeta1/PKCalpha signaling pathways. The combined effects of long-term ROO and POO consumption on fatty acid composition and the level of signaling proteins involved in PKA and PKC activation, suggest positive effects on neuroinflammation and brain function in apoE KO mice brain, and convert these oils into promising functional foods in diseases involving apoE deficiency.

  17. T cell-independent and T cell-dependent immunoglobulin G responses to polyomavirus infection are impaired in complement receptor 2-deficient mice.

    PubMed

    Szomolanyi-Tsuda, Eva; Seedhom, Mina O; Carroll, Michael C; Garcea, Robert L

    2006-08-15

    Polyomavirus (PyV) infection induces protective T cell-independent (TI) IgM and IgG antibody responses in T cell-deficient mice, but these responses are not generated by immunization with viral proteins or virus like particles. We hypothesized that innate signals contribute to the generation of isotype-switched antiviral antibody responses. We studied the role of complement receptor (CR2) engagement in TI and T cell-dependent (TD) antibody responses to PyV using CR2-deficient mice. Antiviral IgG responses were reduced by 80-40% in CR2-/- mice compared to wild type. Adoptive transfer experiments demonstrated the need for CR2 not only in TD, but also in TI IgG responses to PyV. Transfer of CR2-/- B lymphocytes to SCID mice resulted in TI antiviral IgG responses that corresponded to 10% of that seen in wild-type B cell-reconstituted mice. Thus, our studies revealed a profound dependence of TI and TD antiviral antibody responses on CR2-mediated signals in PyV-infected mice, where the viral antigen is abundant and persistent.

  18. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  19. Biochemical Characterization of Porphobilinogen Deaminase–Deficient Mice During Phenobarbital Induction of Heme Synthesis and the Effect of Enzyme Replacement

    PubMed Central

    Johansson, Annika; Möller, Christer; Fogh, Jens; Harper, Pauline

    2003-01-01

    Acute intermittent porphyria (AIP) is a genetic disorder caused by a deficiency of porphobilinogen deaminase (PBGD), the 3rd enzyme in heme synthesis. It is clinically characterized by acute attacks of neuropsychiatric symptoms and biochemically by increased urinary excretion of the porphyrin precursors porphobilinogen (PBG) and 5-aminolevulinic acid (ALA). A mouse model that is partially deficient in PBGD and biochemically mimics AIP after induction of the hepatic ALA synthase by phenobarbital was used in this study to identify the site of formation of the presumably toxic porphyrin precursors and study the effect of enzyme-replacement therapy by using recombinant human PBGD (rhPBGD). After 4 d of phenobarbital administration, high levels of PBG and ALA were found in liver, kidney, plasma, and urine of the PBGD-deficient mice. The administration of rhPBGD intravenously or subcutaneously after a 4-d phenobarbital induction was shown to lower the PBG level in plasma in a dose-dependent manner with maximal effect seen after 30 min and 2 h, respectively. Injection of rhPBGD subcutaneously twice daily during a 4-d phenobarbital induction reduced urinary PBG excretion to 25% of the levels found in PBGD-deficient mice administered with only phenobarbital. This study points to the liver as the main producer of PBG and ALA in the phenobarbital-induced PBGD-deficient mice and demonstrates efficient removal of accumulated PBG in plasma and urine by enzyme-replacement therapy. PMID:15208740

  20. Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice.

    PubMed

    Matsumoto, Kengo; Imasato, Mitsunobu; Yamazaki, Yuji; Tanaka, Hiroo; Watanabe, Mitsuhiro; Eguchi, Hidetoshi; Nagano, Hiroaki; Hikita, Hayato; Tatsumi, Tomohide; Takehara, Tetsuo; Tamura, Atsushi; Tsukita, Sachiko

    2014-11-01

    Bile formation and secretion are essential functions of the hepatobiliary system. Bile flow is generated by transepithelial transport of water and ionic/nonionic solutes via transcellular and paracellular pathways that is mainly driven by osmotic pressure. We examined the role of tight junction-based paracellular transport in bile secretion. Claudins are cell-cell adhesion molecules in tight junctions that create the paracellular barrier. The claudin family has 27 reported members, some of which have paracellular ion- and/or water-channel-like functions. Claudin 2 is a paracellular channel-forming protein that is highly expressed in hepatocytes and cholangiocytes; we examined the hepatobiliary system of claudin 2 knockout (Cldn2(-/-)) mice. We collected liver and biliary tissues from Cldn2(-/-) and Cldn2(+/+) mice and performed histologic, biochemical, and electrophysiologic analyses. We measured osmotic movement of water and/or ions in Cldn2(-/-) and Cldn2(+/+) hepatocytes and bile ducts. Mice were placed on lithogenic diets for 4 weeks and development of gallstone disease was assessed. The rate of bile flow in Cldn2(-/-) mice was half that of Cldn2(+/+) mice, resulting in significantly more concentrated bile in livers of Cldn2(-/-) mice. Consistent with these findings, osmotic gradient-driven water flow was significantly reduced in hepatocyte bile canaliculi and bile ducts isolated from Cldn2(-/-) mice, compared with Cldn2(+/+) mice. After 4 weeks on lithogenic diets, all Cldn2(-/-) mice developed macroscopically visible gallstones; the main component of the gallstones was cholesterol (>98%). In contrast, none of the Cldn2(+/+) mice placed on lithogenic diets developed gallstones. Based on studies of Cldn2(-/-) mice, claudin 2 regulates paracellular ion and water flow required for proper regulation of bile composition and flow. Dysregulation of this process increases susceptibility to cholesterol gallstone disease in mice. Copyright © 2014 AGA Institute

  1. Enhanced susceptibility to acute pneumococcal otitis media in mice deficient in complement C1qa, factor B, and factor B/C2.

    PubMed

    Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M

    2010-03-01

    To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.

  2. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    PubMed

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Mice harboring pathobiont-free microbiota do not develop intestinal inflammation that normally results from an innate immune deficiency

    PubMed Central

    Gewirtz, Andrew T.

    2018-01-01

    Background Inability to maintain a stable and beneficial microbiota is associated with chronic gut inflammation, which classically manifests as colitis but may more commonly exist as low-grade inflammation that promotes metabolic syndrome. Alterations in microbiota, and associated inflammation, can originate from dysfunction in host proteins that manage the microbiota, such as the flagellin receptor TLR5. That the complete absence of a microbiota (i.e. germfree conditions) eliminates all evidence of inflammation in TLR5-deficient mice demonstrates that this model of gut inflammation is microbiota-dependent. We hypothesize that such microbiota dependency reflects an inability to manage pathobionts, such as Adherent-Invasive E. coli (AIEC). Herein, we examined the extent to which microbiota mismanagement and associated inflammation in TLR5-deficient mice would manifest in a limited and pathobiont-free microbiota. For this purpose, WT and TLR5-deficient mice were generated and maintained with the 8-member consortium of bacteria referred to as “Altered Schaedler Flora” (ASF). Such ASF animals were subsequently inoculated with AIEC reference strain LF82. Feces were assayed for bacterial loads, fecal lipopolysaccharide and flagellin loads, fecal inflammatory marker lipocalin-2 and microbiota composition. Results Relative to similarly maintained WT mice, mice lacking TLR5 (T5KO) did not display low-grade intestinal inflammation nor metabolic syndrome under ASF conditions. Concomitantly, the ASF microbial community was similar between WT and T5KO mice, while inoculation with AIEC strain LF82 resulted in alteration of the ASF community in T5KO mice compared to WT control animals. AIEC LF82 inoculation in ASF T5KO mice resulted in microbiota components having elevated levels of bioactive lipopolysaccharide and flagellin, a modest level of low-grade inflammation and increased adiposity. Conclusions In a limited-complexity pathobiont-free microbiota, loss of the flagellin

  4. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice

    PubMed Central

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Martinez, Ana; Faghihi, Mohammad A.; Jope, Richard S.; Beurel, Eleonore

    2017-01-01

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA– or HDAC4 siRNA–induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1–/– mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets. PMID:28352664

  5. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice.

    PubMed

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-03-23

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.

  6. ApoE−/− PGC-1α−/− Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis

    PubMed Central

    Stein, Sokrates; Lohmann, Christine; Handschin, Christoph; Stenfeldt, Elin; Borén, Jan; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Background Atherosclerosis is a chronic inflammatory disease that evolves from the interaction of activated endothelial cells, macrophages, lymphocytes and modified lipoproteins (LDLs). In the last years many molecules with crucial metabolic functions have been shown to prevent important steps in the progression of atherogenesis, including peroxisome proliferator activated receptors (PPARs) and the class III histone deacetylase (HDAC) SIRT1. The PPARγ coactivator 1 alpha (Ppargc1a or PGC-1α) was identified as an important transcriptional cofactor of PPARγ and is activated by SIRT1. The aim of this study was to analyze total PGC-1α deficiency in an atherosclerotic mouse model. Methodology/Principal Findings To investigate if total PGC-1α deficiency affects atherosclerosis, we compared ApoE−/− PGC-1α−/− and ApoE−/− PGC-1α+/+ mice kept on a high cholesterol diet. Despite having more macrophages and a higher ICAM-1 expression in plaques, ApoE−/− PGC-1α−/− did not display more or larger atherosclerotic plaques than their ApoE−/− PGC-1α+/+ littermates. In line with the previously published phenotype of PGC-1α−/− mice, ApoE−/− PGC-1α−/− mice had marked reduced body, liver and epididymal white adipose tissue (WAT) weight. VLDL/LDL-cholesterol and triglyceride contents were also reduced. Aortic expression of PPARα and PPARγ, two crucial regulators for adipocyte differentitation and glucose and lipid metabolism, as well as the expression of some PPAR target genes was significantly reduced in ApoE−/− PGC-1α−/− mice. Importantly, the epididymal WAT and aortic expression of IL-18 and IL-18 plasma levels, a pro-atherosclerotic cytokine, was markedly reduced in ApoE−/− PGC-1α−/− mice. Conclusions/Significance ApoE−/− PGC-1α−/− mice, similar as PGC-1α−/− mice exhibit markedly reduced total body and visceral fat weight. Since inflammation of visceral fat is a crucial trigger of atherogenesis, decreased

  7. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice.

    PubMed

    Zhao, Qun; Yu, XianJun; Zhang, HaiWei; Liu, YongBo; Zhang, XiXi; Wu, XiaoXia; Xie, Qun; Li, Ming; Ying, Hao; Zhang, Haibing

    2017-04-25

    RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3 Δ/Δ mice), thus abolishing its kinase activity. Ripk3 Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3 Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3 Δ/Δ mutation rescued embryonic lethality in Fadd -/- embryos, Fadd -/- Ripk3 Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd -/- mice. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Isoflurane anesthesia exacerbates learning and memory impairment in zinc-deficient APP/PS1 transgenic mice.

    PubMed

    Feng, Chunsheng; Liu, Ya; Yuan, Ye; Cui, Weiwei; Zheng, Feng; Ma, Yuan; Piao, Meihua

    2016-12-01

    Zinc (Zn) is known to play crucial roles in numerous brain functions including learning and memory. Zn deficiency is believed to be widespread throughout the world, particularly in patients with Alzheimer's disease (AD). A number of studies have shown that volatile anesthetics, such as isoflurane, might be potential risk factors for the development of AD. However, whether isoflurane exposure accelerates the process of AD and cognitive impairment in AD patients with Zn deficiency is yet to be documented. The aim of the present study was to explore the effects of 1.4% isoflurane exposure for 2 h on learning and memory function, and neuropathogenesis in 10-month-old Zn-adequate, Zn-deficient, and Zn-treated APP/PS1 mice with the following parameters: behavioral tests, neuronal apoptosis, Aβ, and tau pathology. The results demonstrated that isoflurane exposure showed no impact on learning and memory function, but induced transient elevation of neuroapoptosis in Zn-adequate APP/PS1 mice. Exposure of isoflurane exhibited significant neuroapoptosis, Aβ generation, tau phosphorylation, and learning and memory impairment in APP/PS1 mice in the presence of Zn deficiency. Appropriate Zn treatment improved learning and memory function, and prevented isoflurane-induced neuroapoptosis in APP/PS1 mice. Isoflurane exposure may cause potential neurotoxicity, which is tolerated to some extent in Zn-adequate APP/PS1 mice. When this tolerance is limited, like in AD with Zn deficiency, isoflurane exposure markedly exacerbated learning and memory impairment, and neuropathology, indicating that AD patients with certain conditions such as Zn deficiency may be vulnerable to volatile anesthetic isoflurane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dietary Cocoa Powder Improves Hyperlipidemia and Reduces Atherosclerosis in apoE Deficient Mice through the Inhibition of Hepatic Endoplasmic Reticulum Stress.

    PubMed

    Guan, Hua; Lin, Yan; Bai, Liang; An, Yingfeng; Shang, Jianan; Wang, Zhao; Zhao, Sihai; Fan, Jianglin; Liu, Enqi

    2016-01-01

    Cocoa powder is rich in flavonoids, which have many beneficial effects on human health, including antioxidative and anti-inflammatory effects. The aim of our study was to investigate whether the intake of cocoa powder has any influence on hyperlipidemia and atherosclerosis and examine the underlying molecular mechanisms. We fed apoE knockout mice a Western diet supplemented with either 0.2% (low group) or 2% (high group) cocoa powder for 12 weeks. The groups fed dietary cocoa powder showed a significant reduction in both plasma cholesterol levels and aortic atherosclerosis compared to the control group. Analysis of mRNA profiling of aortic atherosclerotic lesions revealed that the expression of several genes related to apoptosis, lipid metabolism, and inflammation was significantly reduced, while the antiapoptotic gene Bcl2 was significantly increased in the cocoa powder group compared to the control. RT-PCR analysis along with Western blotting revealed that a diet containing cocoa powder inhibited the expression of hepatic endoplasmic reticulum stress. These data suggest that cocoa powder intake improves hyperlipidemia and atherosclerosis, and such beneficial effects are possibly mediated through the suppression of hepatic endoplasmic reticulum stress.

  10. Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis.

    PubMed

    Gómez-Hurtado, Isabel; Moratalla, Alba; Moya-Pérez, Ángela; Peiró, Gloria; Zapater, Pedro; González-Navajas, José M; Giménez, Paula; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-10-01

    Bacterial endotoxin is present in patients with advanced cirrhosis and can induce an immunogenic response without an overt infection. Norfloxacin is a gram-negative bactericidal drug able to maintain low endotoxin levels and stimulate IL-10 production. We aimed at investigating the role of IL-10 in decreasing endotoxin absorption in cirrhotic mice treated with norfloxacin. Cirrhosis was induced by carbon tetrachloride or bile duct ligation in wild type and IL10-deficient mice with or without norfloxacin prior to an intragastrical administration of E. coli, K. pneumonia or E. faecalis. Spontaneous and induced bacterial translocation, free endotoxin and cytokine levels were evaluated in mesenteric lymph nodes. Intestinal permeability was followed by fluorimetry and barrier integrity markers were measured in disrupted intestinal samples. The inflammatory-modulating mechanism was characterized in purified intestinal mononuclear cells. Norfloxacin reduced spontaneous and induced MLN positive-cultures in wild type and IL-10-deficient animals. However, reduction of free endotoxin levels was associated with norfloxacin in wild type but not in IL-10-deficient mice. Wild type but not IL-10-deficient mice treated with norfloxacin significantly normalized intestinal permeability and improved gut barrier integrity markers. The toll-like receptor 4-mediated pro-inflammatory milieu was modulated by norfloxacin in a concentration-dependent manner in cultured intestinal mononuclear cells of wild type mice but not of IL-10-deficient mice. The restoration of IL-10 levels in IL-10-deficient animals reactivated the norfloxacin effect on inflammatory-modulation, gut barrier permeability, and luminal endotoxin absorption. Norfloxacin not only reduces gram-negative intestinal flora but also participates in an IL-10-driven modulation of gut barrier permeability, thus reducing luminal free endotoxin absorption in experimental cirrhosis. Copyright © 2014 European Association for the Study

  11. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    PubMed

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  12. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice.

    PubMed

    Graham, Mark J; Lemonidis, Kristina M; Whipple, Charles P; Subramaniam, Amuthakannan; Monia, Brett P; Crooke, Stanley T; Crooke, Rosanne M

    2007-04-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of a family of proteases that is thought to promote the degradation of the low density lipoprotein receptor (LDLR) through an as yet undefined mechanism. We developed second generation antisense oligonucleotide (ASO) inhibitors targeting murine PCSK9 to determine their potential as lipid-lowering agents. Administration of a PCSK9 ASO to high fat-fed mice for 6 weeks reduced total cholesterol and LDL by 53% and 38%, respectively. Moreover, inhibition of PCSK9 expression resulted in a 2-fold increase in hepatic LDLR protein levels. This phenotype closely resembles that reported previously in Pcsk9-deficient mice. The absence of cholesterol lowering in Ldlr-deficient mice effectively demonstrated a critical role for this receptor in mediating the lipid-lowering effects of PCSK9 inhibition. Antisense inhibition of PCSK9 is an attractive and novel therapeutic approach for treating hypercholesterolemia in human.

  13. P66SHC deletion improves fertility and progeric phenotype of late-generation TERC-deficient mice but not their short lifespan.

    PubMed

    Giorgio, Marco; Stendardo, Massimo; Migliaccio, Enrica; Pelicci, Pier Giuseppe

    2016-06-01

    Oxidative stress and telomere attrition are considered the driving factors of aging. As oxidative damage to telomeric DNA favors the erosion of chromosome ends and, in turn, telomere shortening increases the sensitivity to pro-oxidants, these two factors may trigger a detrimental vicious cycle. To check whether limiting oxidative stress slows down telomere shortening and related progeria, we have investigated the effect of p66SHC deletion, which has been shown to reduce oxidative stress and mitochondrial apoptosis, on late-generation TERC (telomerase RNA component)-deficient mice having short telomeres and reduced lifespan. Double mutant (TERC(-/-) p66SHC(-/-) ) mice were generated, and their telomere length, fertility, and lifespan investigated in different generations. Results revealed that p66SHC deletion partially rescues sterility and weight loss, as well as organ atrophy, of TERC-deficient mice, but not their short lifespan and telomere erosion. Therefore, our data suggest that p66SHC-mediated oxidative stress and telomere shortening synergize in some tissues (including testes) to accelerate aging; however, early mortality of late-generation mice seems to be independent of any link between p66SHC-mediated oxidative stress and telomere attrition. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Vitamin D-deficient mice have more invasive urinary tract infection.

    PubMed

    Hertting, Olof; Lüthje, Petra; Sullivan, Devin; Aspenström, Pontus; Brauner, Annelie

    2017-01-01

    Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.

  15. Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy

    PubMed Central

    Gant, John C.; Thibault, Oliver; Blalock, Eric M.; Yang, Jun; Bachstetter, Adam; Kotick, James; Schauwecker, Paula E.; Hauser, Kurt F.; Smith, George M.; Mervis, Ron; Li, YanFang; Barnes, Gregory N.

    2010-01-01

    Summary Purpose Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice. Methods In NPN2 deficient mice, we measured seizure susceptibility after kainic acid or pentylenetetrazol, neuronal excitability and synaptic throughput in slice preparations, principal and interneuron cell counts with immunocytochemical protocols, synaptosomal protein levels with immunoblots, and dendritic morphology with Golgi-staining. Results NPN2 deficient mice had shorter seizure latencies, increased vulnerability to seizure-related death, were more likely to develop spontaneous recurrent seizure activity after chemical challenge, and had an increased slope on input/output curves. Principal cell counts were unchanged, but GABA, parvalbumin, and neuropeptide Y interneuron cell counts were significantly reduced. Synaptosomal NPN2 protein levels and total number of GABAergic synapses were decreased in a gene dose-dependent fashion. CA1 pyramidal cells showed reduced dendritic length and complexity, as well as an increased number of dendritic spines. Discussion These data suggest the novel hypothesis that the Sema 3F signaling system's role in appropriate placement of subsets of hippocampal interneurons has critical downstream consequences for hippocampal function, resulting in a more seizure susceptible phenotype. PMID:18657176

  16. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice.

    PubMed

    Gross, Adi; Benninger, Felix; Madar, Ravit; Illouz, Tomer; Griffioen, Kathleen; Steiner, Israel; Offen, Daniel; Okun, Eitan

    2017-04-01

    Epilepsy affects 60 million people worldwide. Despite the development of antiepileptic drugs, up to 35% of patients are drug refractory with uncontrollable seizures. Toll-like receptors (TLRs) are central components of the nonspecific innate inflammatory response. Because TLR3 was recently implicated in neuronal plasticity, we hypothesized that it may contribute to the development of epilepsy after status epilepticus (SE). To test the involvement of TLR3 in epileptogenesis, we used the pilocarpine model for SE in TLR3-deficient mice and their respective wild-type controls. In this model, a single SE event leads to spontaneous recurrent seizures (SRS). Two weeks after SE, mice were implanted with wireless electroencephalography (EEG) transmitters for up to 1 month. The impact of TLR3 deficiency on SE was assessed using separate cohorts of mice regarding EEG activity, seizure progression, hippocampal microglial distribution, and expression of the proinflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)β. Our data indicate that TLR3 deficiency reduced SRS, microglial activation, and the levels of the proinflammatory cytokines TNFα and IFNβ, and increased survival following SE. This study reveals novel insights into the pathophysiology of epilepsy and the contribution of TLR3 to disease progression. Our results identify the TLR3 pathway as a potential future therapeutic target in SE. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  17. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    PubMed

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation

  18. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malur, Anagha; Huizar, Isham; Wells, Greg

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO)more » mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as

  19. AMPK activation enhances the anti-atherogenic effects of high density lipoproteins in apoE-/- mice.

    PubMed

    Ma, Ang; Wang, Jing; Yang, Liu; An, Yuanyuan; Zhu, Haibo

    2017-08-01

    HDL plays crucial roles at multiple stages of the pathogenesis of atherosclerosis. AMP-activated protein kinase (AMPK) is a therapeutic candidate for the treatment of cardiovascular disease. However, the effect of AMPK activation on HDL functionality has not been established in vivo. We assessed the effects of pharmacological AMPK activation using A-769662, AICAR, metformin, and IMM-H007 on the atheroprotective functions of HDL in apoE-deficient (apoE -/- ) mice fed with a high-fat diet. After administration, there were no changes in serum lipid levels among the groups. However, mice treated with AMPK activators showed significantly enhanced reverse cholesterol transport in vivo and in vitro. AMPK activation also increased the expression of ABCA1 and ABCG1 in macrophages and scavenger receptor class B type I and LCAT in the liver. HDL from AMPK activation mice exhibited lower HDL inflammatory index and myeloperoxidase activity and higher paraoxonase 1 activity than HDL from untreated mice, implying superior antioxidant and anti-inflammatory capacities. Pharmacological AMPK activation also induced polarization of macrophages to the M2 state and reduced plasma lipid peroxidation, inflammatory cytokine production, and atherosclerotic plaque formation in apoE -/- mice. These observations suggest that pharmacological AMPK activation enhances the anti-atherogenic properties of HDL in vivo. This likely represents a key mechanism by which AMPK activation attenuates atherosclerosis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Monoacylglycerol lipase inhibitor JZL184 reduces neuroinflammatory response in APdE9 mice and in adult mouse glial cells.

    PubMed

    Pihlaja, Rea; Takkinen, Jatta; Eskola, Olli; Vasara, Jenni; López-Picón, Francisco R; Haaparanta-Solin, Merja; Rinne, Juha O

    2015-04-28

    Recently, the role of monoacylglycerol lipase (MAGL) as the principal regulator of simultaneous prostaglandin synthesis and endocannabinoid receptor activation in the CNS was demonstrated. To expand upon previously published research in the field, we observed the effect of the MAGL inhibitor JZL184 during the early-stage proinflammatory response and formation of beta-amyloid (Aβ) in the Alzheimer's disease mouse model APdE9. We also investigated its effects in proinflammatory agent - induced astrocytes and microglia isolated from adult mice. Transgenic APdE9 mice (5 months old) were treated with JZL184 (40 mg/kg) or vehicle every day for 1 month. In vivo binding of the neuroinflammation-related, microglia-specific translocator protein (TSPO) targeting radioligand [(18) F]GE-180 decreased slightly but statistically non-significantly in multiple brain areas compared to vehicle-treated mice. JZL184 treatment induced a significant decrease in expression levels of inflammation-induced, Iba1-immunoreactive microglia in the hippocampus (P < 0.01) and temporal and parietal (P < 0.05) cortices. JZL184 also induced a marked decrease in total Aβ burden in the temporal (P < 0.001) and parietal (P < 0.01) cortices and, to some extent, in the hippocampus. Adult microglial and astrocyte cultures pre-treated with JZL184 and then exposed to the neuroinflammation-inducing agents lipopolysaccharide (LPS), interferon-gamma (IFN-γ), and Aβ42 had significantly reduced proinflammatory responses compared to cells without JZL184 treatment. JZL184 decreased the proinflammatory reactions of microglia and reduced the total Aβ burden and its precursors in the APdE9 mouse model. It also reduced the proinflammatory responses of microglia and astrocytes isolated from adult mice.

  1. Increased superoxide production and altered nitric oxide-mediated relaxation in the aorta of young but not old male relaxin-deficient mice.

    PubMed

    Ng, Hooi H; Jelinic, Maria; Parry, Laura J; Leo, Chen-Huei

    2015-07-15

    The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging. Copyright © 2015 the American Physiological Society.

  2. Heightened aggressive behavior in mice deficient in aldo-keto reductase 1a (Akr1a).

    PubMed

    Homma, Takujiro; Akihara, Ryusuke; Okano, Satoshi; Shichiri, Mototada; Yoshida, Yasukazu; Yamada, Ken-Ichi; Miyata, Satoshi; Nakajima, Osamu; Fujii, Junichi

    2017-02-15

    Aldehyde reductase (Akr1a) is involved in the synthesis of ascorbic acid (AsA) which may play a role in social behavior. In the current study, we performed analyses on Akr1a-deficient (Akr1a -/- ) mice that synthesize about 10% as much AsA as wild-type mice from the viewpoint of intermale aggression. The use of the resident-intruder test revealed that the Akr1a -/- mice exhibited more aggressive phenotypes than wild-type control mice. Unexpectedly, however, the oral administration of additional AsA failed to reduce the aggressive behavior of Akr1a -/- mice, suggesting that the heightened aggression was independent of AsA biosynthesis. The findings also show that the plasma levels of corticosterone, but not serotonin and testosterone, were increased in the absence of Akr1a in mice, suggesting that the mice were highly stressed. These results suggest that Akr1a might be involved in the metabolism of steroids and other carbonyl-containing compounds and, hence, the absence of Akr1a results in heightened aggression via a malfunction in a metabolic pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Renal Denervation Attenuates Progression of Atherosclerosis in Apolipoprotein E–Deficient Mice Independent of Blood Pressure Lowering

    PubMed Central

    Wang, Hui; Wang, Jintao; Guo, Chiao; Luo, Wei; Kleiman, Kyle; Eitzman, Daniel T.

    2016-01-01

    The renal autonomic nervous system may contribute to hypertension and vascular disease. Although the effects of renal artery denervation on blood pressure lowering are controversial, there may be other beneficial vascular effects independent of blood pressure lowering. Bilateral renal denervation (RDN) or sham operation (SO) was performed in 14-week-old male apolipoprotein E–deficient mice on a Western diet starting at 10 weeks of age. Efficacy of RDN was confirmed by reduction of renal norepinephrine levels (SO: 3.8±0.1 versus RDN: 1.7±0.3 ng/mL; P<0.01) at 6 weeks after procedure. Compared with SO, RDN had no effect on blood pressure (SO: 101.0±2.4 versus RDN: 97.5±1.6 mm Hg; P=0.25), total cholesterol (SO: 536.7±28.5 versus RDN: 535.7±62.9 mg/dL; P=0.99), or triglycerides (SO: 83.7±3.5 versus RDN: 86.9±10.2 mg/dL; P=0.78). Quantification of atherosclerosis at 20 weeks of age demonstrated reduced atherosclerosis in mice receiving RDN compared with SO (arterial tree oil-red-O surface staining RDN: 4.2±0.5% versus SO: 6.3±0.7%; P<0.05). Reduced atherosclerosis was associated with increased smooth muscle cell content in atherosclerotic plaques (RDN: 13.3±2.1 versus SO: 8.1±0.6%; P<0.05). Serum levels of aldosterone, monocyte chemoattractant protein-1, and 8-isoprostane were lower in mice that received RDN compared with sham-operated mice (aldosterone; RDN: 206.8±33.2 versus SO: 405.5±59.4 pg/mL, P<0.05; monocyte chemoattractant protein-1; RDN: 51.7±7.9 versus SO: 91.71±4.6 pg/mL, P<0.05; 8-isoprostane; RDN: 331.9±38.2 versus SO: 468.5±42.0 pg/mL, P<0.05). RDN reduces progression of atherosclerosis in apolipoprotein E–deficient mice. These changes are associated with reduced aldosterone levels, monocyte chemoattractant protein-1, and markers of oxidative stress. PMID:25646301

  4. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice.

    PubMed

    Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros

    2009-07-01

    Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.

  5. Comprehensive phenotypic analysis of knockout mice deficient in cyclin G1 and cyclin G2

    PubMed Central

    Ohno, Shouichi; Ikeda, Jun-ichiro; Naito, Yoko; Okuzaki, Daisuke; Sasakura, Towa; Fukushima, Kohshiro; Nishikawa, Yukihiro; Ota, Kaori; Kato, Yorika; Wang, Mian; Torigata, Kosuke; Kasama, Takashi; Uchihashi, Toshihiro; Miura, Daisaku; Yabuta, Norikazu; Morii, Eiichi; Nojima, Hiroshi

    2016-01-01

    Cyclin G1 (CycG1) and Cyclin G2 (CycG2) play similar roles during the DNA damage response (DDR), but their detailed roles remain elusive. To investigate their distinct roles, we generated knockout mice deficient in CycG1 (G1KO) or CycG2 (G2KO), as well as double knockout mice (DKO) deficient in both proteins. All knockouts developed normally and were fertile. Generation of mouse embryonic fibroblasts (MEFs) from these mice revealed that G2KO MEFs, but not G1KO or DKO MEFs, were resistant to DNA damage insults caused by camptothecin and ionizing radiation (IR) and underwent cell cycle arrest. CycG2, but not CycG1, co-localized with γH2AX foci in the nucleus after γ-IR, and γH2AX-mediated DNA repair and dephosphorylation of CHK2 were delayed in G2KO MEFs. H2AX associated with CycG1, CycG2, and protein phosphatase 2A (PP2A), suggesting that γH2AX affects the function of PP2A via direct interaction with its B’γ subunit. Furthermore, expression of CycG2, but not CycG1, was abnormal in various cancer cell lines. Kaplan–Meier curves based on TCGA data disclosed that head and neck cancer patients with reduced CycG2 expression have poorer clinical prognoses. Taken together, our data suggest that reduced CycG2 expression could be useful as a novel prognostic marker of cancer. PMID:27982046

  6. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice

    PubMed Central

    Takamatsu, Shinji; Antonopoulos, Aristotelis; Ohtsubo, Kazuaki; Ditto, David; Chiba, Yasunori; Le, Dzung T.; Morris, Howard R.; Haslam, Stuart M.; Dell, Anne; Marth, Jamey D.; Taniguchi, Naoyuki

    2010-01-01

    N-Acetylglucosaminyltransferase-IV (GnT-IV) has two isoenzymes, GnT-IVa and GnT-IVb, which initiate the GlcNAcβ1-4 branch synthesis on the Manα1-3 arm of the N-glycan core thereby increasing N-glycan branch complexity and conferring endogenous lectin binding epitopes. To elucidate the physiological significance of GnT-IV, we engineered and characterized GnT-IVb-deficient mice and further generated GnT-IVa/-IVb double deficient mice. In wild-type mice, GnT-IVa expression is restricted to gastrointestinal tissues, whereas GnT-IVb is broadly expressed among organs. GnT-IVb deficiency induced aberrant GnT-IVa expression corresponding to the GnT-IVb distribution pattern that might be attributed to increased Ets-1, which conceivably activates the Mgat4a promoter, and thereafter preserved apparent GnT-IV activity. The compensative GnT-IVa expression might contribute to amelioration of the GnT-IVb-deficient phenotype. GnT-IVb deficiency showed mild phenotypic alterations in hematopoietic cell populations and hemostasis. GnT-IVa/-IVb double deficiency completely abolished GnT-IV activity that resulted in the disappearance of the GlcNAcβ1-4 branch on the Manα1-3 arm that was confirmed by MALDI-TOF MS and GC-MS linkage analyses. Comprehensive glycomic analyses revealed that the abundance of terminal moieties was preserved in GnT-IVa/-IVb double deficiency that was due to the elevated expression of glycosyltransferases regarding synthesis of terminal moieties. Thereby, this may maintain the expression of glycan ligands for endogenous lectins and prevent cellular dysfunctions. The fact that the phenotype of GnT-IVa/-IVb double deficiency largely overlapped that of GnT-IVa single deficiency can be attributed to the induced glycomic compensation. This is the first report that mammalian organs have highly organized glycomic compensation systems to preserve N-glycan branch complexity. PMID:20015870

  7. Iron Overload and Heart Fibrosis in Mice Deficient for Both β2-Microglobulin and Rag1

    PubMed Central

    Santos, Manuela M.; de Sousa, Maria; Rademakers, Luke H. P. M.; Clevers, Hans; Marx, J. J. M.; Schilham, Marco W.

    2000-01-01

    Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, a β2-microglobulin (β2m)-associated major histocompatibility complex class I-like protein. Accordingly, mutant β2m−/− mice have increased intestinal iron absorption and develop parenchymal iron overload in the liver. In humans, other genetic and environmental factors have been suggested to influence the pathology and severity of HH. Previously, an association has been reported between low numbers of lymphocytes and the severity of clinical expression of the iron overload in HH. In the present study, the effect of a total absence of lymphocytes on iron overload was investigated by crossing β2m−/− mice (which develop iron overload resembling human disease) with mice deficient in recombinase activator gene 1 (Rag1), which is required for normal B and T lymphocyte development. Iron overload was more severe in β2mRag1 double-deficient mice than in each of the single deficient mice, with iron accumulation in parenchymal cells of the liver, in acinar cells of the pancreas, and in heart myocytes. With increasing age β2mRag1−/− mice develop extensive heart fibrosis, which could be prevented by reconstitution with normal hematopoietic cells. Thus, the development of iron-mediated cellular damage is substantially enhanced when a Rag1 mutation, which causes a lack of mature lymphocytes, is introduced into β2m−/− mice. Mice deficient in β2m and Rag1 thus offer a new experimental model of iron-related cardiomyopathy. PMID:11106561

  8. Impaired protection against Trichinella spiralis in mice with high levels of IgE.

    PubMed

    Watanabe, Naohiro

    2014-04-01

    Helminth infection induces production of a large amount of immunoglobulin E (IgE) to nonhelminth antigens. Although such "irrelevant" IgE is a major proportion of total IgE in the host, its biological significance remains unclear. Therefore, I examined protective activity against Trichinella spiralis in mice with high levels of IgE by repeated injections of anti-dansyl IgE monoclonal antibody or Nippostrongylus brasiliensis infection. Injected anti-dansyl IgE occupied IgE receptors on mast cells in naive mice. Protective activity against T. spiralis, determined with number of muscle larvae 5weeks after infection, was impaired in mice treated with anti-dansyl IgE. The impaired protection was found in mice treated with anti-dansy IgE 7 and 14days after infection, but not 21 and 28days after infection, indicating that IgE-dependent protection operates at an early stage after infection. In the next experiments, mice were infected with N. brasiliensis 4weeks before T. spiralis infection to obtain high levels of IgE. The protective activity against T. spiralis was decreased by N. brasiliensis infection. On the other hand, protection against T. spiralis was comparable in IgE-deficient SJA/9 mice and in anti-IgE-treated BALB/c mice with or without N. brasiliensis infection, suggesting that impairment of protection is dependent on IgE. These results indicate that the high levels of irrelevant IgE are beneficial for helminths and, alternatively, that anti-helminth IgE antibodies are protective for hosts. In addition, the impaired protection was found in IgE high-responder mice but not in low-responder mice, suggesting that protection against T. spiralis is controlled by IgE responsiveness in the host. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase.

    PubMed

    Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H

    2001-02-01

    Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.

  10. Reduced 4-Aminobiphenyl-Induced Liver Tumorigenicity but not DNA Damage in Arylamine N-Acetyltransferase Null Mice

    PubMed Central

    Sugamori, Kim S.; Brenneman, Debbie; Sanchez, Otto; Doll, Mark A.; Hein, David W.; Pierce, William M.; Grant, Denis M.

    2012-01-01

    The aromatic amine 4-aminobiphenyl (ABP) is a liver procarcinogen in mice, requiring enzymatic bioactivation to exert its tumorigenic effect. To assess the role of arylamine N-acetyltransferase (NAT)-dependent acetylation capacity in the risk for ABP-induced liver tumors, we compared 1-year liver tumor incidence following the postnatal exposure of wild-type and NAT-deficient Nat1/2(−/−) mice to ABP. At an ABP exposure of 1200 nmoles, male Nat1/2(−/−) mice had a liver tumor incidence of 36% compared to 69% in wild-type males, and at 600 nmoles there was a complete absence of tumors compared to 60% in wild-type mice. Only one female wild-type mouse had a tumor using this exposure protocol. However, levels of N-deoxyguanosin-8-yl-ABP-DNA adducts did not correlate with either the strain or sex differences in tumor incidence. These results suggest that female sex and NAT deficiency reduce risk for ABP-induced liver tumors, but by mechanisms unrelated to differences in DNA-damaging events. PMID:22193722

  11. Lipid peroxidation in mice fed a choline-deficient diet as evaluated by total hydroxyoctadecadienoic acid.

    PubMed

    Yoshida, Yasukazu; Itoh, Nanako; Hayakawa, Mieko; Habuchi, Yoko; Inoue, Ruriko; Chen, Zhi-Hua; Cao, Jiaofei; Cynshi, Osamu; Niki, Etsuo

    2006-03-01

    The relevance of oxidative stress in mice fed a choline-deficient diet (CDD) was investigated in relation to the oxidative stress marker, hydroxyoctadecadienoic acid (HODE) in comparison with F2-isoprostanes. Further, the protective effects of antioxidants against oxidative damage were assessed by using HODE. We recently proposed total HODE as a biomarker for oxidative stress in vivo. Biological samples such as plasma, urine, and tissues were first reduced and then saponified to convert various oxidation products of linoleates to HODE. In the present study, this method was applied to measure oxidative damage in mice induced by CDD for 1 mo. CDD, when compared with choline-controlled diet (CCD), increased liver weight and fatty acid accumulation but the increase in body weight was less significant. Remarkable increases in HODE and 8-iso-prostaglandin F(2alpha) in liver and plasma were observed when mice were fed with the CDD for 1 mo compared with the CCD. The HODE level was about two to three orders higher than the F2-isoprostane level. This increase was decreased to the level of the CCD when alpha-tocopherol or 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran, a potent synthetic antioxidant, was mixed with the CDD. The stereoisomer ratio of HODE (9-and-13 (Z,E)-HODE/9-and-13 (E,E)-HODE) was decreased by CDD compared with CCD, which was spared by the addition of alpha-tocopherol and 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran. However, the increase in plasma glutamic-pyruvic transaminase and fatty acids in liver induced by the CDD was not recovered by any antioxidant. This study clearly demonstrated that oxidative stress was involved in fatty liver formation induced by the CDD and that HODE was a good biomarker for an oxidative stress in vivo.

  12. Relative adrenal insufficiency in mice deficient in 5α-reductase 1

    PubMed Central

    Livingstone, Dawn E W; Di Rollo, Emma M; Yang, Chenjing; Codrington, Lucy E; Mathews, John A; Kara, Madina; Hughes, Katherine A; Kenyon, Christopher J; Walker, Brian R; Andrew, Ruth

    2014-01-01

    Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as ‘relative adrenal insufficiency’. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic–pituitary–adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause ‘relative adrenal insufficiency’ in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease. PMID:24872577

  13. Late-onset Parkinsonism in NFκB/c-Rel-deficient mice

    PubMed Central

    Baiguera, Cristina; Alghisi, Manuela; Pinna, Annalisa; Bellucci, Arianna; De Luca, Maria Antonietta; Frau, Lucia; Morelli, Micaela; Ingrassia, Rosaria; Benarese, Marina; Porrini, Vanessa; Pellitteri, Michele; Bertini, Giuseppe; Fabene, Paolo Francesco; Sigala, Sandra; Spillantini, Maria Grazia; Liou, Hsiou-Chi; Spano, Pier Franco

    2012-01-01

    Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel−/−) mice developed a Parkinson’s disease-like neuropathology with ageing. At 18 months of age, c-rel−/− mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel−/− mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel−/− mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel−/− mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel−/− mice may be a suitable model of Parkinson’s disease. PMID:22915735

  14. RECOVERY OF ROD PHOTORESPONSES IN ABCR-DEFICIENT MICE

    PubMed Central

    Pawar, Ambarish S.; Qtaishat, Nasser M.; Little, Deborah M.; Pepperberg, David R.

    2010-01-01

    Purpose ABCR protein in the rod outer segment is thought to facilitate movement of the all-trans retinal photoproduct of rhodopsin bleaching out of the disk lumen. We investigated the extent to which ABCR deficiency affects post-bleach recovery of the rod photoresponse in ABCR-deficient (abcr−/−) mice. Methods Electroretinographic (ERG) a-wave responses were recorded from abcr−/− mice and two control strains. Using a bright probe flash, we examined the course of rod recovery following fractional rhodopsin bleaches of ~10−6, ~3×10−5, ~0.03 and ~0.30–0.40. Results Dark-adapted abcr−/− mice and controls exhibited similar normalized near-peak amplitudes of the paired-flash-ERG-derived, weak-flash response. Response recovery following ~10−6 bleaching exhibited an average exponential time constant of 319, 171 and 213 ms, respectively, in the abcr−/− and the two control strains. Recovery time constants determined for ~3×10−5 bleaching did not differ significantly among strains. However, those determined for the ~0.03 bleach indicated significantly faster recovery in abcr−/− (2.34 ± 0.74 min) than in the controls (5.36 ± 2.20 min, and 5.92 ± 2.44 min). Following ~0.30–0.40 bleaching, the initial recovery in the abcr−/− was on average faster than in controls. Conclusions By comparison with controls, abcr−/− mice exhibit faster rod recovery following a bleach of ~0.03. The data suggest that ABCR in normal rods may directly or indirectly prolong all-trans retinal clearance from the disk lumen over a significant bleaching range, and that the essential function of ABCR may be to promote the clearance of residual amounts of all-trans retinal that remain in the disks long after bleaching. PMID:18263807

  15. Depression of the Lecithin-Cholesterol Acyltransferase Reaction in Vitamin E-Deficient Monkeys,

    DTIC Science & Technology

    Vitamin E deficiency in two species of monkeys reduced the esterification of cholesterol by the plasma lecithin -cholesterol acyltransferase reaction...depression in the concentration of circulating polyunsaturated fatty acid cholesteryl esters. Since the plasma lecithin -cholesterol acyltransferase...cholesterol by plasma from vitamin E-deficient monkeys is due to alteration of these sulfhydryl sites. A similar reduction in the plasma lecithin -cholesterol

  16. Allelic Variation of Ets1 Does Not Contribute to NK and NKT Cell Deficiencies in Type 1 Diabetes Susceptible NOD Mice

    PubMed Central

    Jordan, Margaret A.; Poulton, Lynn D.; Fletcher, Julie M.; Baxter, Alan G.

    2009-01-01

    The NOD mouse is a well characterized model of type 1 diabetes that shares several of the characteristics of Ets1-deficient targeted mutant mice, viz: defects in TCR allelic exclusion, susceptibility to a lupus like disease characterized by IgM and IgG autoantibodies and immune complex-mediated glomerulonephritis, and deficiencies of NK and NKT cells. Here, we sought evidence for allelic variation of Ets1 in mice contributing to the NK and NKT cell phenotypes of the NOD strain. ETS1 expression in NK and NKT cells was reduced in NOD mice, compared to C57BL/6 mice. Although NKT cells numbers were significantly correlated with ETS1 expression in both strains, NKT cell numbers were not linked to the Ets1 gene in a first backcross from NOD to C57BL/6 mice. These results indicate that allelic variation of Ets1 did not contribute to variation in NKT cell numbers in these mice. It remains possible that a third factor not linked to the Ets1 locus controls both ETS1 expression and subsequently NK and NKT cell phenotypes. PMID:19806240

  17. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    PubMed Central

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  18. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice.

    PubMed

    Yang, Yue; Aloi, Macarena S; Cudaback, Eiron; Josephsen, Samuel R; Rice, Samantha J; Jorstad, Nikolas L; Keene, C Dirk; Montine, Thomas J

    2014-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.

  19. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1(-/-)) mice.

    PubMed

    Berger, A; Tran, A H; Dida, J; Minkin, S; Gerard, N P; Yeomans, J; Paige, C J

    2012-07-01

    Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  20. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer.

    PubMed

    Kober, Olivia I; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R; Juge, Nathalie

    2014-04-01

    Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ(-/-)) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ(-/-) mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ(-/-) mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ(-/-) mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ(-/-) and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine.

  1. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency.

    PubMed

    Kamiya, Yosuke; Chen, Jing; Xu, Manshan; Utreja, Achint; Choi, Thomas; Drissi, Hicham; Wadhwa, Sunil

    2013-05-01

    Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ-deficient mice will have increased mandibular condylar growth compared to wild-type (WT) female mice. This study examined female 7-day-old, 49-day-old, and 120-day-old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49-day-old and 120-day-old female ERβ KO compared with WT controls. Analysis in 49-day-old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone-related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49-day-old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. Copyright © 2013 American Society for Bone and Mineral Research.

  2. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex,more » resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.« less

  3. Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice.

    PubMed

    Brandewiede, Joerg; Jakovcevski, Mira; Stork, Oliver; Schachner, Melitta

    2013-11-01

    The neural cell adhesion molecule (NCAM) plays a crucial role in stress-related brain function, emotional behavior and memory formation. In this study, we investigated the functions of the glucocorticoid and serotonergic systems in mice constitutively deficient for NCAM (NCAM-/- mice). Our data provide evidence for a hyperfunction of the hypothalamic-pituitary-adrenal axis, with enlarged adrenal glands and increased stress-induced corticosterone release, but reduced hippocampal glucocorticoid receptor expression in NCAM-/- mice when compared to NCAM+/+ mice. We also obtained evidence for a hypofunction of 5-HT1A autoreceptors as indicated by increased 8-0H-DPAT-induced hypothermia. These findings suggest a disturbance of both humoral and neural stress systems in NCAM-/- mice. Accordingly, we not only confirmed previously observed hyperarousal of NCAM-/- mice in various anxiety tests, but also observed an increased response to novelty exposure in these animals. Spatial learning deficits of the NCAM-/- mice in a Morris Water maze persisted, even when mice were pretrained to prevent effects of novelty or stress. We suggest that NCAM-mediated processes are involved in both novelty/stress-related emotional behavior and in cognitive function during spatial learning.

  4. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulatingmore » glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in

  5. Impaired human responses to tetanus toxoid in vitamin A-deficient SCID mice reconstituted with human peripheral blood lymphocytes.

    PubMed Central

    Molrine, D C; Polk, D B; Ciamarra, A; Phillips, N; Ambrosino, D M

    1995-01-01

    Vitamin A deficiency is associated with increased childhood morbidity and mortality from respiratory and diarrheal diseases. In order to evaluate the effect of vitamin A on human antibody responses, we developed a vitamin A-deficient severe combined immunodeficient (SCID) mouse model. Vitamin A-deficient mice were produced by depriving them of vitamin A at day 7 of gestation. Mice were reconstituted with human peripheral blood lymphocytes (huPBL) from tetanus toxoid immune donors at 6 weeks of age and immunized with tetanus toxoid at 6 and 8 weeks of age. Secondary human antibody responses were determined 10 days later. The geometric mean human anti-tetanus toxoid immunoglobulin G concentrations were 3.75 micrograms/ml for the deficient mice and 148 micrograms/ml for controls (P = 0.0005). Vitamin A-deficient mice had only a 2.9-fold increase in human anti-tetanus toxoid antibody compared with a 74-fold increase in controls (P < 0.01). Supplementation with vitamin A prior to reconstitution restored human antibody responses to normal. These data suggest that vitamin A deficiency impairs human antibody responses. We speculate that impaired responses could increase susceptibility to certain infections. Furthermore, we propose that effects of other nutritional deficiencies on the human immune system could be evaluated in the SCID-huPBL model. PMID:7622207

  6. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing.

    PubMed

    Kur-Piotrowska, Anna; Kopcewicz, Marta; Kozak, Leslie P; Sachadyn, Pawel; Grabowska, Anna; Gawronska-Kozak, Barbara

    2017-01-09

    Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny

  7. Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    PubMed Central

    Bavers, David L.; Beuschlein, Felix; Mortensen, Amanda H.; Keegan, Catherine E.; Hammer, Gary D.; Camper, Sally A.

    2011-01-01

    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism. PMID:22145038

  8. Reduced MLH3 Expression in the Syndrome of Gan-Shen Yin Deficiency in Patients with Different Diseases.

    PubMed

    Du, Juan; Zhong, Maofeng; Liu, Dong; Liang, Shufang; Liu, Xiaolin; Cheng, Binbin; Zhang, Yani; Yin, Zifei; Wang, Yuan; Ling, Changquan

    2017-01-01

    Traditional Chinese medicine formulates treatment according to body constitution (BC) differentiation. Different constitutions have specific metabolic characteristics and different susceptibility to certain diseases. This study aimed to assess the characteristic genes of gan-shen Yin deficiency constitution in different diseases. Fifty primary liver cancer (PLC) patients, 94 hypertension (HBP) patients, and 100 diabetes mellitus (DM) patients were enrolled and classified into gan-shen Yin deficiency group and non-gan-shen Yin deficiency group according to the body constitution questionnaire to assess the clinical manifestation of patients. The mRNA expressions of 17 genes in PLC patients with gan-shen Yin deficiency were different from those without gan-shen Yin deficiency. However, considering all patients with PLC, HBP, and DM, only MLH3 was significantly lower in gan-shen Yin deficiency group than that in non-gen-shen Yin deficiency. By ROC analysis, the relationship between MLH3 and gan-shen Yin deficiency constitution was confirmed. Treatment of MLH3 (-/- and -/+) mice with Liuweidihuang wan, classical prescriptions for Yin deficiency, partly ameliorates the body constitution of Yin deficiency in MLH3 (-/+) mice, but not in MLH3 (-/-) mice. MLH3 might be one of material bases of gan-shen Yin deficiency constitution.

  9. The distinct spectra of tumor-associated Apc mutations in mismatch repair-deficient Apc1638N mice define the roles of MSH3 and MSH6 in DNA repair and intestinal tumorigenesis.

    PubMed

    Kuraguchi, M; Yang, K; Wong, E; Avdievich, E; Fan, K; Kolodner, R D; Lipkin, M; Brown, A M; Kucherlapati, R; Edelmann, W

    2001-11-01

    In mammalian cells, mismatch recognition has been attributed to two partially redundant heterodimeric protein complexes of MutS homologues, MSH2-MSH3 and MSH2-MSH6. We have conducted a comparative analysis of Msh3 and Msh6 deficiency in mouse intestinal tumorigenesis by generating Apc1638N mice deficient in Msh3, Msh6 or both. We have found that Apc1638N mice defective in Msh6 show reduced survival and a 6-7-fold increase in intestinal tumor multiplicity. In contrast, Msh3-deficient Apc1638N mice showed no difference in survival and intestinal tumor multiplicity as compared with Apc1638N mice. However, when Msh3 deficiency is combined with Msh6 deficiency (Msh3(-/-)Msh6(-/-)Apc1638N), the survival rate of the mice was further reduced compared to Msh6(-/-)Apc(1638N) mice because of a high multiplicity of intestinal tumors at a younger age. Almost 90% of the intestinal tumors from both Msh6(-/-)Apc1638N and Msh3(-/-)Msh6(-/-)Apc1638N mice contained truncation mutations in the wild-type Apc allele. Apc mutations in Msh6(-/-)Apc1638N mice consisted predominantly of base substitutions (93%) creating stop codons, consistent with a major role for Msh6 in the repair of base-base mismatches. However, in Msh3(-/-)Msh6(-/-)Apc1638N tumors, we observed a mixture of base substitutions (46%) and frameshifts (54%), indicating that in Msh6(-/-)Apc1638N mice frameshift mutations in the Apc gene were suppressed by Msh3. Interestingly, all except one of the Apc mutations detected in mismatch repair-deficient intestinal tumors were located upstream of the third 20-amino acid beta-catenin binding repeat and before all of the Ser-Ala-Met-Pro repeats, suggesting that there is selection for loss of multiple domains involved in beta-catenin regulation. Our analysis therefore has revealed distinct mutational spectra and clarified the roles of Msh3 and Msh6 in DNA repair and intestinal tumorigenesis.

  10. Peripubertal Vitamin D3 Deficiency Delays Puberty and Disrupts the Estrous Cycle in Adult Female Mice1

    PubMed Central

    Dicken, Cary L.; Israel, Davelene D.; Davis, Joe B.; Sun, Yan; Shu, Jun; Hardin, John; Neal-Perry, Genevieve

    2012-01-01

    ABSTRACT The mechanism(s) by which vitamin D3 regulates female reproduction is minimally understood. We tested the hypothesis that peripubertal vitamin D3 deficiency disrupts hypothalamic-pituitary-ovarian physiology. To test this hypothesis, we used wild-type mice and Cyp27b1 (the rate-limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D3) null mice to study the effect of vitamin D3 deficiency on puberty and reproductive physiology. At the time of weaning, mice were randomized to a vitamin D3-replete or -deficient diet supplemented with calcium. We assessed the age of vaginal opening and first estrus (puberty markers), gonadotropin levels, ovarian histology, ovarian responsiveness to exogenous gonadotropins, and estrous cyclicity. Peripubertal vitamin D3 deficiency significantly delayed vaginal opening without affecting the number of GnRH-immunopositive neurons or estradiol-negative feedback on gonadotropin levels during diestrus. Young adult females maintained on a vitamin D3-deficient diet after puberty had arrested follicular development and prolonged estrous cycles characterized by extended periods of diestrus. Ovaries of vitamin D3-deficient Cyp27b1 null mice responded to exogenous gonadotropins and deposited significantly more oocytes into the oviducts than mice maintained on a vitamin D3-replete diet. Estrous cycles were restored when vitamin D3-deficient Cyp27b1 null young adult females were transferred to a vitamin D3-replete diet. This study is the first to demonstrate that peripubertal vitamin D3 sufficiency is important for an appropriately timed pubertal transition and maintenance of normal female reproductive physiology. These data suggest vitamin D3 is a key regulator of neuroendocrine and ovarian physiology. PMID:22572998

  11. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    PubMed

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  12. Female Nur77-Deficient Mice Show Increased Susceptibility to Diet-Induced Obesity

    PubMed Central

    Perez-Sieira, Sonia; Martinez, Gloria; Porteiro, Begoña; Lopez, Miguel; Vidal, Anxo; Nogueiras, Ruben; Dieguez, Carlos

    2013-01-01

    Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat) for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77. PMID:23342015

  13. A Salmon Protein Hydrolysate Exerts Lipid-Independent Anti-Atherosclerotic Activity in ApoE-Deficient Mice

    PubMed Central

    Busnelli, Marco; Bjørndal, Bodil; Holm, Sverre; Brattelid, Trond; Manzini, Stefano; Ganzetti, Giulia S.; Dellera, Federica; Halvorsen, Bente; Aukrust, Pål; Sirtori, Cesare R.; Nordrehaug, Jan E.; Skorve, Jon; Berge, Rolf K.; Chiesa, Giulia

    2014-01-01

    Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E−/− mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE−/− mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20∶4n-6) and oleic acid (C18∶1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity. These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE−/− mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids. PMID:24840793

  14. Tocotrienol (unsaturated vitamin E) suppresses degranulation of mast cells and reduces allergic dermatitis in mice.

    PubMed

    Tsuduki, Tsuyoshi; Kuriyama, Keiko; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2013-01-01

    In this study, we examined whether tocotrienol (T3) reduces allergic dermatitis in mice and suppresses degranulation of mast cells. First, allergic dermatitis was examined in the atopic dermatitis model NC/Nga mouse. Allergic dermatitis was induced using picryl chloride in mice with and without administration of T3 (1 mg/day/mouse). Increases in scratching behavior, dermal thickening, and the serum histamine level were greatly reduced in mice treated with T3, indicating that T3 reduces allergic dermatitis in vivo. Next, the effect of T3 on degranulation of mast cells was examined, since these cells release bioactive substances such as histamine. T3 significantly suppressed degranulation of mast cells and significantly reduced histamine release. The effect of T3 on protein kinase C (PKC) activity was also measured, since suppression of this activity may be associated with the mechanism underlying the antidegranulation effect of T3. T3 significantly suppressed PKC activity. Therefore, we conclude that T3 suppresses degranulation of mast cells and reduces allergic dermatitis in mice through reduction of PKC activity.

  15. Heterozygous Ambra1 Deficiency in Mice: A Genetic Trait with Autism-Like Behavior Restricted to the Female Gender

    PubMed Central

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1+/− females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1+/− mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1+/− females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation. PMID:24904333

  16. Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender.

    PubMed

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1 (+/-) females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1 (+/-) mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1 (+/-) females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.

  17. Reduced PU.1 expression underlies aberrant neutrophil maturation and function in β-thalassemia mice and patients.

    PubMed

    Siwaponanan, Panjaree; Siegers, Jurre Ynze; Ghazali, Razi; Ng, Thian; McColl, Bradley; Ng, Garrett Zhen-Wei; Sutton, Philip; Wang, Nancy; Ooi, Isabelle; Thiengtavor, Chayada; Fucharoen, Suthat; Chaichompoo, Pornthip; Svasti, Saovaros; Wijburg, Odilia; Vadolas, Jim

    2017-06-08

    β-Thalassemia is associated with several abnormalities of the innate immune system. Neutrophils in particular are defective, predisposing patients to life-threatening bacterial infections. The molecular and cellular mechanisms involved in impaired neutrophil function remain incompletely defined. We used the Hbb th3/+ β-thalassemia mouse and hemoglobin E (HbE)/β-thalassemia patients to investigate dysregulated neutrophil activity. Mature neutrophils from Hbb th3/+ mice displayed a significant reduction in chemotaxis, opsonophagocytosis, and production of reactive oxygen species, closely mimicking the defective immune functions observed in β-thalassemia patients. In Hbb th3/+ mice, the expression of neutrophil CXCR2, CD11b, and reduced NAD phosphate oxidase components (p22phox, p67phox, and gp91phox) were significantly reduced. Morphological analysis of Hbb th3/+ neutrophils showed that a large percentage of mature phenotype neutrophils (Ly6G hi Ly6C low ) appeared as band form cells, and a striking expansion of immature (Ly6G low Ly6C low ) hyposegmented neutrophils, consisting mainly of myelocytes and metamyelocytes, was noted. Intriguingly, expression of an essential mediator of neutrophil terminal differentiation, the ets transcription factor PU.1, was significantly decreased in Hbb th3/+ neutrophils. In addition, in vivo infection with Streptococcus pneumoniae failed to induce PU.1 expression or upregulate neutrophil effector functions in Hbb th3/+ mice. Similar changes to neutrophil morphology and PU.1 expression were observed in splenectomized and nonsplenectomized HbE/β-thalassemia patients. This study provides a mechanistic insight into defective neutrophil maturation in β-thalassemia patients, which contributes to deficiencies in neutrophil effector functions. © 2017 by The American Society of Hematology.

  18. Impaired steroidogenesis in the testis of leptin-deficient mice (ob/ob -/-).

    PubMed

    Martins, Fabiane Ferreira; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-06-01

    The obesity and its comorbidities, including resistance to leptin, impacts the reproductive function. Testes express leptin receptors in the germ cells and Leydig cells. Then, leptin-deficient animals are obese and infertile. We aimed to evaluate the structure and steroidogenic pathway of the testis of deficient leptin mice. Three months old male C57BL/6 mice (wild-type, WT) and deficient leptin (ob/ob) mice had their testes dissected and prepared for analyses. Compared to the WT group, the ob/ob group showed a greater body mass with smaller testes, and alterations in the germinative epithelium: fewer spermatogonia, spermatocytes, and spermatids. The Sertoli cells and the germ cells showed condensed nuclei and nuclear fragmentation indicating cell death, in agreement with a low expression of the proliferating cell nuclear antigen and a high expression of Caspase3. In the ob/ob group, the sperm was absent in the seminiferous tubules, and the steroidogenic pathway was compromised (low 3Beta hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein). Further, all hormone receptors involved in the testicular function were down expressed (androgen, estrogen, follicle-stimulating, luteinizing, aromatase, and nicotinamide adenine dinucleotide phosphate). In conclusion, the findings indicate significant morphological, hormonal and enzymatic changes in the testis of the ob/ob mice. The shifts in the enzymatic steroidogenic pathway and the enzymes related to spermatic activity support the insights about the failures in the fertility of these animals. The study provides new evidence and contributes to the understanding of how the lack of leptin and obesity might negatively modulate the testicular function leading to infertility. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Living Without Creatine: Unchanged Exercise Capacity and Response to Chronic Myocardial Infarction in Creatine-Deficient Mice

    PubMed Central

    Lygate, Craig A.; Aksentijevic, Dunja; Dawson, Dana; Hove, Michiel ten; Phillips, Darci; de Bono, Joseph P.; Medway, Debra J.; Sebag-Montefiore, Liam; Hunyor, Imre; Channon, Keith M.; Clarke, Kieran; Zervou, Sevasti; Watkins, Hugh; Balaban, Robert S.; Neubauer, Stefan

    2014-01-01

    Rationale Creatine is thought to be involved in the spatial and temporal buffering of ATP in energetic organs such as heart and skeletal muscle. Creatine depletion affects force generation during maximal stimulation, while reduced levels of myocardial creatine are a hallmark of the failing heart, leading to the widely held view that creatine is important at high workloads and under conditions of pathological stress. Objective We therefore hypothesised that the consequences of creatine-deficiency in mice would be impaired running capacity, and exacerbation of heart failure following myocardial infarction. Methods and Results Surprisingly, mice with whole-body creatine deficiency due to knockout of the biosynthetic enzyme (guanidinoacetate N-methyltransferase – GAMT) voluntarily ran just as fast and as far as controls (>10km/night) and performed the same level of work when tested to exhaustion on a treadmill. Furthermore, survival following myocardial infarction was not altered, nor was subsequent LV remodelling and development of chronic heart failure exacerbated, as measured by 3D-echocardiography and invasive hemodynamics. These findings could not be accounted for by compensatory adaptations, with no differences detected between WT and GAMT−/− proteomes. Alternative phosphotransfer mechanisms were explored; adenylate kinase activity was unaltered, and although GAMT−/− hearts accumulated the creatine pre-cursor guanidinoacetate, this had negligible energy-transfer activity, while mitochondria retained near normal function. Conclusions Creatine-deficient mice show unaltered maximal exercise capacity and response to chronic myocardial infarction, and no obvious metabolic adaptations. Our results question the paradigm that creatine is essential for high workload and chronic stress responses in heart and skeletal muscle. PMID:23325497

  20. IL-6 deficiency alters spatial memory in 4- and 24-month-old mice.

    PubMed

    Bialuk, Izabela; Taranta, Andrzej; Winnicka, Maria Małgorzata

    2018-06-19

    Significance of interleukin 6 (IL-6) deficiency in cognitive processes was evaluated in 4- and 24-month-old C57BL/6J IL-6-deficient (IL-6 KO) and control (WT) mice in Morris water maze (MWM), holeboard test (HB) and elevated plus maze (EPM). During 3-day learning escape latency time (ELT) was longer in IL-6 KO than in WT mice, however their swimming was slower, floating longer, and path length did not differ. The comparison of ELT and the distance traveled between the first and the third learning day within each group revealed significant decrease of ELT in all groups with the highest difference in 4-month-old WT mice, and significant decrease of distance traveled only in both groups of WT mice. In a single probe trial, performed 24 h after the last learning session, there were no major differences in the absolute values of ELT, but ELT turned out to be significantly shorter in both IL-6 KO groups, when it was compared to the ELT on the last learning day, indicating on better memory retrieval. In HB test only significant increase in number of rearings in aged WT mice, and in EPM significant prolongation of open arm time and higher number of open arm entries in 4-month-old IL-6 KO mice were observed. Results of HB and EPM tests showed that alterations of learning and reference memory observed in MWM were specific to cognition. Attenuation of learning ability in young adult IL-6-deficient mice assessed in MWM suggests that physiological level of IL-6 is involved in mechanisms engaged in proper memory formation, and it may also indicate on the importance of IL-6 signaling in brain development. Maintained on similar level in both 4- and 24-month-old IL-6 KO mice learning ability and its attenuation in 24-month-old vs 4-month-old WT mice indicates on slower age-related memory decline in mice not expressing IL-6. Better performance of IL-6 KO mice in the probe trial points to their reference memory improvement and may also indicate that IL-6 plays a role in mechanism

  1. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    PubMed

    Wang, Hao; Shun, Ming-Chieh; Dickson, Amy K; Engelman, Alan N

    2015-01-01

    Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1

  2. E4bp4 regulates carboxylesterase 2 enzymes through repression of the nuclear receptor Rev-erbα in mice.

    PubMed

    Zhao, Mengjing; Zhang, Tianpeng; Yu, Fangjun; Guo, Lianxia; Wu, Baojian

    2018-06-01

    Carboxylesterases (CES) are a family of phase I enzymes that play an important role in xenobiotic clearance and lipid metabolism. Here, we investigate a potential role of E4 promoter-binding protein 4 (E4bp4) in regulation of Ces and CPT-11 (irinotecan, a first-line drug for treating colorectal cancer) pharmacokinetics in mice. Mouse hepatoma Hepa-1c1c7 cells were transfected with Rev-erbα expression plasmid or siRNA targeting E4bp4. The relative mRNA and protein levels of Ces enzymes in the cells or the livers of wild-type and E4bp4-deficient (E4bp4 -/- ) mice were determined by qPCR and Western blotting, respectively. Transcriptional regulation of Ces by E4bp4/Rev-erbα were investigated using luciferase reporter, mobility shift, and co-immunoprecipitation (Co-IP) assays. Pharmacokinetic studies were performed with wild-type and E4bp4 -/- mice after intraperitoneal injection of CPT-11. E4bp4 ablation down-regulated an array of hepatic Ces genes in mice. E4bp4 -/- mice also showed reduced Ces-mediated metabolism and elevated systemic exposure of CPT-11, a well-known Ces substrate. Consistently, E4bp4 knockdown reduced the expression of Ces genes (Ces2b, Ces2e and Ces2f) in Hepa-1c1c7 cells. Furthermore, Rev-erbα repressed the transcription of Ces2b, whereas E4bp4 antagonized this repressive action. Co-IP experiment confirmed a direct interaction between E4bp4 and Rev-erbα. Through a combination of promoter analysis and mobility shift assays, we demonstrated that Rev-erbα trans-repressed Ces (Ces2b) through its specific binding to the -767 to-754 bp promoter region. In conclusion, E4bp4 regulates Ces enzymes through inhibition of the transrepression activity of Rev-erbα, thereby impacting the metabolism and pharmacokinetics of Ces substrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Light/dark phase-dependent spontaneous activity is maintained in dopamine-deficient mice.

    PubMed

    Fujita, Masayo; Hagino, Yoko; Takeda, Taishi; Kasai, Shinya; Tanaka, Miho; Takamatsu, Yukio; Kobayashi, Kazuto; Ikeda, Kazutaka

    2017-10-16

    Dopamine is important for motor control and involved in the regulation of circadian rhythm. We previously found that dopamine-deficient (DD) mice became hyperactive in a novel environment 72 h after the last injection of L-3,4-dihydroxyphenylalanine (L-DOPA) when dopamine was almost completely depleted. DD mice did not initially exhibit hyperactivity in their home cages, but the animals exhibited hyperactivity several hours after the last L-DOPA injection. The regulation of motor activity in a novel environment and in home cages may be different. A previous study reported that DD mice became active again approximately 24 h after the last L-DOPA injection. One speculation was that light/dark phase-dependent spontaneous activity might be maintained despite dopamine deficiency. The present study investigated whether spontaneous home cage activity is maintained in DD mice 24-43 h and 72-91 h after the last L-DOPA injection. Spontaneous activity was almost completely suppressed during the light phase of the light/dark cycle in DD mice 24 and 72 h after the last L-DOPA injection. After the dark phase began, DD mice became active 24 and 72 h after the last L-DOPA injection. DD mice exhibited a similar amount of locomotor activity as wildtype mice 24 h after the last L-DOPA injection. Although DD mice presented a decrease in activity 72 h after the last L-DOPA injection, they maintained dark phase-stimulated locomotor activation. Despite low levels of dopamine in DD mice, they exhibited feeding behavior that was similar to wildtype mice. Although grooming and rearing behavior significantly decreased, DD mice retained their ability to perform these activities. Haloperidol treatment significantly suppressed all of these behaviors in wildtype mice but not in DD mice. These results indicate that DD mice maintain some aspects of light/dark phase-dependent spontaneous activity despite dopamine depletion, suggesting that compensatory dopamine-independent mechanisms might

  4. Radial pressure waves mediate apoptosis and functional angiogenesis during wound repair in ApoE deficient mice.

    PubMed

    Contaldo, Claudio; Högger, Dominik C; Khorrami Borozadi, Meisam; Stotz, Michael; Platz, Uwe; Forster, Natasha; Lindenblatt, Nicole; Giovanoli, Pietro

    2012-07-01

    This study aims to quantify by intravital microscopy and histological wound scoring the effect of radial pressure wave treatment (RPWT) on murine incisional wound healing. The dorsal skinfold chamber in mice was used for intravital microscopy, whereby an incisional wound was created within the chamber. RPWT to the wound was carried out using a ballistic pressure wave source (EMS Swiss DolorClast). Animals received a dose of 500 pulses at an energy flux rate of 0.1mJ/mm(2) and a frequency of 3Hz at day 1, 3, 5, 7, 9, and 11 post wounding. RPW treated and untreated ApoE depleted mice (ApoE(-/-)) were compared to normal healing wild type animals (WT). The microcirculation of the wound was analyzed quantitatively in vivo using epi-illumination intravital fluorescence microscopy. Tissue samples were examined ex vivo for wound scoring and immunohistochemistry. Upon RPWT total wound score in ApoE(-/-) mice was increased by 13% (not significant) on day 3, by 37% on day 7 (P<0.05), and by 39% on day 13 (P<0.05) when compared to untreated ApoE(-/-) mice. Improved wound healing was associated with an increase of functional angiogenetic density by 23% (not significant) on day 5, by 36% on day 7 (P<0.05), and by 41% on day 9 (P<0.05). Following RPWT, on day three we observed enhanced expression of capase-3 (2-fold), proliferating cell nuclear antibody (PCNA, 1,6-fold), and endothelial nitric oxide synthase (eNOS, 2.6-fold), all P<0.05. In conclusion repetitive RPWT accelerated wound healing in ApoE(-/-) mice by increasing functional neovascular density. In addition our findings strongly suggest that RPW may facilitate the linear progression of wound healing phases by fostering apoptosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    PubMed Central

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  6. Interferon-gamma receptor-deficiency renders mice highly susceptible to toxoplasmosis by decreased macrophage activation.

    PubMed

    Deckert-Schlüter, M; Rang, A; Weiner, D; Huang, S; Wiestler, O D; Hof, H; Schlüter, D

    1996-12-01

    Toxoplasma gondii may cause severe infections in immunocompromised patients including fetuses and those with AIDS. Among the factors mediating protection against T. gondii, IFN-gamma has gained special attention. To analyze the role of IFN-gamma in the early phase of toxoplasmosis, IFN-gamma receptor-deficient (IFN-gamma R0/0) mice were orally infected with low-virulent toxoplasms. IFN-gamma R0/0 mice died of the disease up to day 10 postinfection, whereas immunocompetent wild-type (WT) mice developed a chronic toxoplasmosis. Histopathology revealed that in IFN-gamma R0/0 mice, the parasite multiplied unrestrictedly in the small intestine, the intestinal lymphatic tissue, the liver, and the spleen. Ultimately, animals died of a necrotizing hepatitis. In WT mice, the same organs were effected, but multiplication of the parasite was effectively limited. Compared with WT mice, immunohistochemistry and flow cytometry demonstrated that in IFN-gamma R0/0 mice, macrophages were only marginally activated in response to the infection, as evidenced by a reduced expression of major histocompatability complex class II antigens. In addition, immunohistochemistry and RT-PCR showed a reduced production of the macrophage-derived cytokines tumor necrosis factor-alpha, inducible nitric oxide synthase, and IL-1 beta in the liver of IFN-gamma R0/0 mice. In contrast, activation of T cells, recruitment of immune cells to inflammatory foci, and anti-T. gondii IgM antibody production were unaffected by the mutation of the IFN-gamma R. Moreover, induction of IL-2, IL-4, and IL-10 mRNA transcripts in the liver was normal in IFN-gamma R0/0 mice. Adoptive transfer experiments revealed that the immune T cells of WT animals did not protect IFN-gamma R0/0 mice from lethal infection with highly virulent toxoplasms, whereas WT mice were significantly protected by the adoptive transfer. Based on these studies, we conclude that IFN-gamma is absolutely required for an efficient activation of

  7. Gender Dependent Evaluation of Autism like Behavior in Mice Exposed to Prenatal Zinc Deficiency

    PubMed Central

    Grabrucker, Stefanie; Boeckers, Tobias M.; Grabrucker, Andreas M.

    2016-01-01

    Zinc deficiency has recently been linked to the etiology of autism spectrum disorders (ASD) as environmental risk factor. With an estimated 17% of the world population being at risk of zinc deficiency, especially zinc deficiency during pregnancy might be a common occurrence, also in industrialized nations. On molecular level, zinc deficiency has been shown to affect a signaling pathway at glutamatergic synapses that has previously been identified through genetic mutations in ASD patients, the Neurexin-Neuroligin-Shank pathway, via altering zinc binding Shank family members. In particular, prenatal zinc deficient but not acute zinc deficient animals have been reported to display autism like behavior in some behavioral tests. However, a full behavioral analysis of a possible autism like behavior has been lacking so far. Here, we performed an extensive behavioral phenotyping of mice born from mothers with mild zinc deficiency during all trimesters of pregnancy. Prenatal zinc deficient animals were investigated as adults and gender differences were assessed. Our results show that prenatal zinc deficient mice display increased anxiety, deficits in nest building and various social interaction paradigm, as well as mild alterations in ultrasonic vocalizations. A gender specific analysis revealed only few sex specific differences. Taken together, given that similar behavioral abnormalities as reported here are frequently observed in ASD mouse models, we conclude that prenatal zinc deficient animals even without specific genetic susceptibility for ASD, already show some features of ASD like behavior. PMID:26973485

  8. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity.

    PubMed

    Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H

    2017-08-01

    In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Altered pupillary light reflex in PACAP receptor 1-deficient mice.

    PubMed

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Luuk, Hendrik; Hannibal, Jens

    2012-05-09

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice.

    PubMed

    Byon, Chang Hyun; Han, Tieyan; Wu, Judy; Hui, Simon T

    2015-08-01

    Inflammation of vascular smooth muscle cells (VSMC) is intimately linked to atherosclerosis and other vascular inflammatory disease. Thioredoxin interacting protein (Txnip) is a key regulator of cellular sulfhydryl redox and a mediator of inflammasome activation. The goals of the present study were to examine the impact of Txnip ablation on inflammatory response to oxidative stress in VSMC and to determine the effect of Txnip ablation on atherosclerosis in vivo. Using cultured VSMC, we showed that ablation of Txnip reduced cellular oxidative stress and increased protection from oxidative stress when challenged with oxidized phospholipids and hydrogen peroxide. Correspondingly, expression of inflammatory markers and adhesion molecules were diminished in both VSMC and macrophages from Txnip knockout mice. The blunted inflammatory response was associated with a decrease in NF-ĸB nuclear translocation. Loss of Txnip in VSMC also led to a dramatic reduction in macrophage adhesion to VSMC. In vivo data from Txnip-ApoE double knockout mice showed that Txnip ablation led to 49% reduction in atherosclerotic lesion in the aortic root and 71% reduction in the abdominal aorta, compared to control ApoE knockout mice. Our data show that Txnip plays an important role in oxidative inflammatory response and atherosclerotic lesion development in mice. The atheroprotective effect of Txnip ablation implicates that modulation of Txnip expression may serve as a potential target for intervention of atherosclerosis and inflammatory vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis.

    PubMed

    Partanen, Sanna; Haapanen, Aleksi; Kielar, Catherine; Pontikis, Charles; Alexander, Noreen; Inkinen, Teija; Saftig, Paul; Gillingwater, Thomas H; Cooper, Jonathan D; Tyynelä, Jaana

    2008-01-01

    Cathepsin D (CTSD; EC 3.4.23.5) is a lysosomal aspartic protease, the deficiency of which causes early-onset and particularly aggressive forms of neuronal ceroid-lipofuscinosis in infants, sheep, and mice. Cathepsin D deficiencies are characterized by severe neurodegeneration, but the molecular mechanisms behind the neuronal death remain poorly understood. In this study, we have systematically mapped the distribution of neuropathologic changes in CTSD-deficient mouse brains by stereologic, immunologic, and electron microscopic methods. We report highly accentuated neuropathologic changes within the ventral posterior nucleus (ventral posteromedial [VPM]/ventral posterolateral [VPL]) of thalamus and in neuronal laminae IV and VI of the somatosensory cortex (S1BF), which receive and send information to the thalamic VPM/VPL. These changes included pronounced astrocytosis and microglial activation that begin in the VPM/VPL thalamic nucleus of CTSD-deficient mice and are associated with reduced neuronal number and redistribution of presynaptic markers. In addition, loss of synapses, axonal pathology, and aggregation of synaptophysin and synaptobrevin were observed in the VPM/VPL. These synaptic alterations are accompanied by changes in the amount of synaptophysin/synaptobrevin heterodimer, which regulates formation of the SNARE complex at the synapse. Taken together, these data reveal the somatosensory thalamocortical circuitry as a particular focus of pathologic changes and provide the first evidence for synaptic alterations at the molecular and ultrastructural levels in CTSD deficiency.

  12. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes.

    PubMed

    Yin, Jiani; Chen, Wu; Yang, Hongxing; Xue, Mingshan; Schaaf, Christian P

    2017-01-03

    The alpha7 nicotinic acetylcholine receptor, encoded by the CHRNA7 gene, has been implicated in various psychiatric and behavioral disorders, including schizophrenia, bipolar disorder, epilepsy, autism, Alzheimer's disease, and Parkinson's disease, and is considered a potential target for therapeutic intervention. 15q13.3 microdeletion syndrome is a rare genetic disorder, caused by submicroscopic deletions on chromosome 15q. CHRNA7 is the only gene in this locus that has been deleted entirely in cases involving the smallest microdeletions. Affected individuals manifest variable neurological and behavioral phenotypes, which commonly include developmental delay/intellectual disability, epilepsy, and autism spectrum disorder. Subsets of patients have short attention spans, aggressive behaviors, mood disorders, or schizophrenia. Previous behavioral studies suggested that Chrna7 deficient mice had attention deficits, but were normal in baseline behavioral responses, learning, memory, and sensorimotor gating. Given a growing interest in CHRNA7-related diseases and a better appreciation of its associated human phenotypes, an in-depth behavioral characterization of the Chrna7 deficient mouse model appeared prudent. This study was designed to investigate whether Chrna7 deficient mice manifest phenotypes related to those seen in human individuals, using an array of 12 behavioral assessments and electroencephalogram (EEG) recordings on freely-moving mice. Examined phenotypes included social interaction, compulsive behaviors, aggression, hyperactivity, anxiety, depression, and somatosensory gating. Our data suggests that mouse behavior and EEG recordings are not sensitive to decreased Chrna7 copy number.

  13. Attenuated EAN in TNF-α Deficient Mice Is Associated with an Altered Balance of M1/M2 Macrophages

    PubMed Central

    Zhang, Hong-Liang; Hassan, Mohammed Y.; Zheng, Xiang-Yu; Azimullah, Sheikh; Quezada, Hernan Concha; Amir, Naheed; Elwasila, Mohamed; Mix, Eilhard; Adem, Abdu; Zhu, Jie

    2012-01-01

    The role of tumor necrosis factor (TNF)-α and its receptors in neuroautoimmune and neuroinflammatory diseases has been controversial. On the basis of our previous studies, we hereby aimed to further clarify TNF-α’s mechanism of action and to explore the potential role of TNF-α receptor (TNFR)1 as a therapeutic target in experimental autoimmune neuritis (EAN). EAN was induced by immunization with P0 peptide 180–199 in TNF-α knockout (KO) mice and anti-TNFR1 antibodies were used to treat EAN. Particularly, the effects of TNF-α deficiency and TNFR1 blockade on macrophage functions were investigated. The onset of EAN in TNF-α KO mice was markedly later than that in wild type (WT) mice. From day 14 post immunization, the clinical signs of TNF-α KO mice were significantly milder than those of their WT counterparts. Further, we showed that the clinical severity of WT mice treated with anti-TNFR1 antibodies was less severe than that of the control WT mice receiving PBS. Nevertheless, no difference with regard to the clinical signs of EAN or inflammatory infiltration in cauda equina was seen between TNF-α KO and WT mice with EAN after blockade of TNFR1. Although TNF-α deficiency did not alter the proliferation of lymphocytes in response to either antigenic or mitogenic stimuli, it down-regulated the production of interleukin (IL)-12 and nitric oxide (NO), and enhanced the production of IL-10 in macrophages. Increased ratio of regulatory T cells (Tregs) and reduced production of interferon (IFN)-γ in cauda equina infiltrating cells, and elevated levels of IgG2b antibodies against P0 peptide 180–199 in sera were found in TNF-α KO mice with EAN. In conclusion, TNF-α deficiency attenuates EAN via altering the M1/M2 balance of macrophages. PMID:22666471

  14. Ovariectomy modify local renin-angiotensin-aldosterone system gene expressions in the heart of ApoE (-/-) mice.

    PubMed

    Borges, Celina Carvalho; Penna-de-Carvalho, Aline; Medeiros Junior, Jorge L; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos A

    2017-12-15

    The evaluation of the local Renin-Angiotensin-Aldosterone system (RAAS) gene expressions in the heart of ovariectomized (OVX) apolipoprotein E deficient mice (ApoE). Four-months old C57BL/6 female mice (wild-type, wt, n=20), and ApoE female mice (n=20), were submitted to OVX or a surgical procedure without ovary removal (SHAM) and formed four groups (n=10/group): SHAM/wt, SHAM/ApoE, OVX/wt, and OVX/ApoE. OVX led to greater body mass, plasma triglycerides (TG) and total cholesterol, and resulted in insulin resistance and altered RAAS gene expressions in the heart tissue. The gene expression of angiotensin-converting enzyme (ACE)-2 was lower in OVX/wt than in SHAM/wt (P=0.0004), Mas receptor (MASr) was lower in OVX/wt compared to SHAM/wt (P<0.0001). Also, angiotensin II receptor type 1 (AT1r) was higher in OVX/wt than in SHAM/wt (P=0.0229), and AT2r was lower in OVX/wt than in SHAM/wt (P=0.0121). OVX and ApoE deficiency showed interaction potentializing the insulin resistance, increasing TG levels and altering ACE and MASr gene expressions. ACE gene expression was higher in OVX/ApoE than in OVX/wt (P<0.0001), and MASr gene expression was lower in OVX/ApoE than in OVX/wt (P<0.0001). The impact of OVX on local RAAS cascade in the heart of ApoE deficient animals, besides the metabolic changes culminating with insulin resistance, involves an upregulation of renin, ACE, and AT1r gene expressions. The findings may contribute to clarify the mechanisms of development of postmenopausal hypertension and the link between RAAS and apolipoprotein E. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Decreased serum and mucosa immunoglobulin A levels in vitamin Aand zinc-deficient mice

    PubMed Central

    Kheirouri, Sorayya

    2014-01-01

    Simultaneous zinc and vitamin A deficiency are common health problems in developing countries. The objective of this study was to assess the effect of vitamin A- and zinc-deficient diet on immunoglobulin A (IgA) response. Six-week-old mice were assigned into two groups receiving a normal vitamin A and zinc or low vitamin A and zinc diet for five months. Serum and intestinal mucosa IgA levels were determined by the enzyme-linked immunosorbent assay method. The concentration of zinc in serum was determined using an inductively coupled plasma mass spectrometer. Vitamin A measurement in serum was carried out by high performance liquid chromatography. Mice maintained on a low vitamin A and zinc diet showed significantly greater food intake but lower production of IgA both in serum and mucosa. A mucosa IgA level was significantly higher in both control and deficient groups than the serum IgA level. Results indicated that zinc and vitamin A deficiency is associated with a lower production of IgA. Micronutrient intervention strategies addressing IgA-related gastrointestinal infections are needed. PMID:26155118

  16. Angiopoietin-1 deficiency increases tumor metastasis in mice.

    PubMed

    Michael, Iacovos P; Orebrand, Martina; Lima, Marta; Pereira, Beatriz; Volpert, Olga; Quaggin, Susan E; Jeansson, Marie

    2017-08-11

    Angipoietin-1 activation of the tyrosine kinase receptor Tek expressed mainly on endothelial cells leads to survival and stabilization of endothelial cells. Studies have shown that Angiopoietin-1 counteracts permeability induced by a number of stimuli. Here, we test the hypothesis that loss of Angiopoietin-1/Tek signaling in the vasculature would increase metastasis. Angiopoietin-1 was deleted in mice just before birth using floxed Angiopoietin-1 and Tek mice crossed to doxycycline-inducible bitransgenic ROSA-rtTA/tetO-Cre mice. By crossing Angiopoietin-1 knockout mice to the MMTV-PyMT autochthonous mouse breast cancer model, we investigated primary tumor growth and metastasis to the lung. Furthermore, we utilized B16F10 melanoma cells subcutaneous and experimental lung metastasis models in Angiopoietin-1 and Tek knockout mice. We found that primary tumor growth in MMTV-PyMT mice was unaffected, while metastasis to the lung was significantly increased in Angiopoietin-1 knockout MMTV-PyMT mice. In addition, angiopoietin-1 deficient mice exhibited a significant increase in lung metastasis of B16F10 melanoma cells, compared to wild type mice 3 weeks after injection. Additional experiments showed that this was likely an early event due to increased attachment or extravasation of tumor cells, since seeding of tumor cells was significantly increased 4 and 24 h post tail vein injection. Finally, using inducible Tek knockout mice, we showed a significant increase in tumor cell seeding to the lung, suggesting that Angiopoietin-1/Tek signaling is important for vascular integrity to limit metastasis. This study show that loss of the Angiopoietin-1/Tek vascular growth factor system leads to increased metastasis without affecting primary tumor growth.

  17. CDKL5 deficiency entails sleep apneas in mice.

    PubMed

    Lo Martire, Viviana; Alvente, Sara; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Valli, Alice; Viggiano, Rocchina; Ciani, Elisabetta; Zoccoli, Giovanna

    2017-08-01

    A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients. © 2017 European Sleep Research Society.

  18. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer

    PubMed Central

    Kober, Olivia I.; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R.

    2014-01-01

    Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ−/−) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ−/− mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ−/− mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ−/− mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ−/− and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine. PMID:24503767

  19. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension. Copyright © 2015 the American Physiological

  20. Impact of toll-like-receptor-9 (TLR9) deficiency on visceral adipose tissue adipokine expression during chronic DSS-induced colitis in mice.

    PubMed

    Karrasch, T; Schmid, A; Kopp, A; Obermeier, F; Hofmann, C; Schäffler, A

    2015-02-01

    Studies postulate an involvement of adipokines in inflammatory gastrointestinal diseases. Leptin-deficient ob/ob mice as well as TLR9-deficient mice have a more moderate course of chronic DSS-induced colitis (DSS-CC) and adipocytes do express functional TLR9 molecules. Adipokine mRNA expression in visceral adipose tissue of mice before and after the induction of DSS-CC was investigated. Experiments were performed in both TLR9(wt/wt) and TLR9(-/-) mice. In vitro, the effect of TLR9 blocking peptide on leptin and visfatin protein secretion was studied in 3T3-L1 adipocytes. Induction of DSS-CC led to an upregulation of leptin mRNA expression in TLR9(wt/wt) mice, while TLR9(-/-) animals showed a significant reduction of leptin expression even below baseline. While visfatin expression remained unchanged in TLR9(wt/wt) animals, TLR9(-/-) mice exhibited a significant induction during DSS-CC. CTRP-3 expression was reduced after colitis induction only in TLR9(-/-) animals. Of note, IL-6 expression levels remained unchanged, while CXCL1/KC and cyclophilin A expression was reduced in DSS-CC. Inhibition of TLR9 signaling by using TLR9 blocking peptide led to reduced leptin protein secretion into cell culture supernatants in 3T3-L1 adipocytes, while visfatin protein secretion was enhanced. DSS-CC leads to differential adipokine expression profiles in the visceral fat pad in TLR9(wt/wt) vs. TLR9(-/-) mice. In vitro, inhibition of TLR9 signaling induces visfatin secretion while inhibiting leptin secretion in adipocytes. Thus, visceral adipokines are regulated by intact TLR9 signaling pathway and a specific interplay between the leptin- and the TLR9-pathways might be of pathophysiological importance in chronic intestinal inflammation. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Deletion of Galgt2 (B4Galnt2) Reduces Muscle Growth in Response to Acute Injury and Increases Muscle Inflammation and Pathology in Dystrophin-Deficient Mice

    PubMed Central

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A.; Janssen, Paulus M.L.; Martin, Paul T.

    2016-01-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2−/−mdx). Galgt2−/− mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413

  2. PKK deficiency in B cells prevents lupus development in Sle lupus mice

    PubMed Central

    Oleksyn, D.; Zhao, J.; Vosoughi, A.; Zhao, JC.; Misra, R; Pentland, AP; Ryan, D.; Anolik, J.; Ritchlin, C.; Looney, J.; Anandarajah, AP.; Schwartz, G.; Calvi, LM; Georger, M; Mohan, C.; Sanz, I.; Chen, L

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can result in damage to multiple organs. It is well documented that B cells play a critical role in the development of the disease. We previously showed that protein kinase C associated kinase (PKK) is required for B1 cell development as well as for the survival of recirculating mature B cells and B- lymphoma cells. Here, we investigated the role of PKK in lupus development in a lupus mouse model. We demonstrate that the conditional deletion of PKK in B cells prevents lupus development in Sle1Sle3 mice. The loss of PKK in Sle mice resulted in the amelioration of multiple classical lupus-associated phenotypes and histologic features of lupus nephritis, including marked reduction in the levels of serum autoantibodies, proteinuria, spleen size, peritoneal B-1 cell population and the number of activated CD4 T cells. In addition, the abundance of autoreactive plasma cells normally seen in Sle lupus mice was also significantly decreased in the PKK-deficient Sle mice. Sle B cells deficient in PKK display defective proliferation responses to BCR and LPS stimulation. Consistently, B cell receptor-mediated NF-κB activation, which is required for the survival of activated B cells, was impaired in the PKK-deficient B cells. Taken together, our work uncovers a critical role of PKK in lupus development and suggests that targeting the PKK-mediated pathway may represent a promising therapeutic strategy for lupus treatment. PMID:28274793

  3. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age.

    PubMed

    Agudo, J; Martin, M; Roca, C; Molas, M; Bura, A S; Zimmer, A; Bosch, F; Maldonado, R

    2010-12-01

    The endocannabinoid system has a key role in energy storage and metabolic disorders. The endocannabinoid receptor 2 (CB2R), which was first detected in immune cells, is present in the main peripheral organs responsible for metabolic control. During obesity, CB2R is involved in the development of adipose tissue inflammation and fatty liver. We examined the long-term effects of CB2R deficiency in glucose metabolism. Mice deficient in CB2R (Cb2 ( -/- ) [also known as Cnr2]) were studied at different ages (2-12 months). Two-month-old Cb2 (-/-) and wild-type mice were treated with a selective CB2R antagonist or fed a high-fat diet. The lack of CB2R in Cb2 (-/-) mice led to greater increases in food intake and body weight with age than in Cb2 (+/+) mice. However, 12-month-old obese Cb2 (-/-) mice did not develop insulin resistance and showed enhanced insulin-stimulated glucose uptake in skeletal muscle. In agreement, adipose tissue hypertrophy was not associated with inflammation. Similarly, treatment of wild-type mice with CB2R antagonist resulted in improved insulin sensitivity. Moreover, when 2-month-old Cb2 (-/-) mice were fed a high-fat diet, reduced body weight gain and normal insulin sensitivity were observed. These results indicate that the lack of CB2R-mediated responses protected mice from both age-related and diet-induced insulin resistance, suggesting that these receptors may be a potential therapeutic target in obesity and insulin resistance.

  4. IgG3 deficiency extends lifespan and attenuates progression of glomerulonephritis in MRL/lpr mice

    PubMed Central

    2012-01-01

    Background Antibodies of the IgG3 subclass have been implicated in the pathogenesis of the spontaneous glomerulonephritis observed in mice of the MRL/MpJ-Tnfrsf6lpr (MRL/lpr) inbred strain which have been widely studied as a model of systemic lupus erythematosus We have produced IgG3-deficient (-/-) mice with the MRL/lpr genetic background to determine whether IgG3 antibodies are necessary for or at least contributory to MRL/lpr-associated nephritis. Results The gamma3 genotype (+/+ vs. +/- vs. -/-) did not appear to significantly affect serum titers of IgG auto-antibodies specific for double-stranded DNA (dsDNA) or α-actinin. However, while substantial serum titers of IgG3 auto-antibodies specific for double-stranded DNA (dsDNA) or α-actinin were seen in gamma3 +/+ mice, somewhat lower serum titers of these IgG3 auto-antibodies were found in gamma3 +/- mice, and gamma3 -/- mice exhibited baseline concentrations of these auto-antibodies. Analysis of immunoglobulins eluted from snap-frozen kidneys obtained from mice of all three gamma3 genotypes at ~18 weeks of age revealed much higher quantities of IgG in the kidneys from gamma3 +/+ than gamma3 -/- mice, and most IgG eluted from +/+ mice was IgG3. The serum creatinine levels in gamma3 +/+ mice substantially exceeded those of age-matched gamma3 -/- mice after ~21 weeks of age. Histopathological examination of kidneys from mice sacrificed at pre-determined ages also revealed more extensive glomerulosclerosis in gamma3 +/+ or +/- mice than in -/- mice beginning at 21 weeks of age. Survival analysis for IgG3-deficient and IgG3-producing MRL/lpr mice revealed that gamma3 -/- mice lived significantly longer (p = 0.0006) than either gamma3 +/- or +/+ mice. Spontaneous death appeared to be due to irreversible renal failure, because > 85% of glomeruli in kidneys from mice that died spontaneously were obliterated by glomerulosclerosis. Conclusions The available evidence suggests that IgG3 deficiency partially protects MRL

  5. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation.

    PubMed

    Tay, Christopher; Liu, Yu-Han; Hosseini, Hamid; Kanellakis, Peter; Cao, Anh; Peter, Karlheinz; Tipping, Peter; Bobik, Alex; Toh, Ban-Hock; Kyaw, Tin

    2016-09-01

    B2 lymphocytes promote atherosclerosis development but their mechanisms of action are unknown. Here, we investigated the role of tumour necrosis factor alpha (TNF-α) produced by B2 cells in atherogenesis. We found that 50% of TNF-α-producing spleen lymphocytes were B2 cells and ∼20% of spleen and aortic B cells produced TNF-α in hyperlipidemic ApoE(-/-) mice. We generated mixed bone marrow (80% μMT/20% TNF-α(-/-)) chimeric LDLR(-/-) mice where only B cells did not express TNF-α. Atherosclerosis was reduced in chimeric LDLR(-/-) mice with TNF-α-deficient B cells. TNF-α expression in atherosclerotic lesions and in macrophages were also reduced accompanied by fewer apoptotic cells, reduced necrotic cores, and reduced lesion Fas, interleukin-1β and MCP-1 in mice with TNF-α-deficient B cells compared to mice with TNF-α-sufficient B cells. To confirm that the reduced atherosclerosis is attributable to B2 cells, we transferred wild-type and TNF-α-deficient B2 cells into ApoE(-/-) mice deficient in B cells or in lymphocytes. After 8 weeks of high fat diet, we found that atherosclerosis was increased by wild-type but not TNF-α-deficient B2 cells. Lesions of mice with wild-type B2 cells but not TNF-α-deficient B2 cells also had increased apoptotic cells and necrotic cores. Transferred B2 cells were found in lesions of recipient mice, suggesting that TNF-α-producing B2 cells promote atherosclerosis within lesions. We conclude that TNF-α produced by B2 cells is a key mechanism by which B2 cells promote atherogenesis through augmenting macrophage TNF-α production to induce cell death and inflammation that promote plaque vulnerability. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  6. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    PubMed

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Integrin beta 1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice.

    PubMed

    Peuhu, Emilia; Salomaa, Siiri I; De Franceschi, Nicola; Potter, Christopher S; Sundberg, John P; Pouwels, Jeroen

    2017-01-01

    SHARPIN (Shank-Associated RH Domain-Interacting Protein) is a component of the linear ubiquitin chain assembly complex (LUBAC), which enhances TNF-induced NF-κB activity. SHARPIN-deficient (Sharpincpdm/cpdm) mice display multi-organ inflammation and chronic proliferative dermatitis (cpdm) due to TNF-induced keratinocyte apoptosis. In cells, SHARPIN also inhibits integrins independently of LUBAC, but it has remained enigmatic whether elevated integrin activity levels in the dermis of Sharpincpdm/cpdm mice is due to increased integrin activity or is secondary to inflammation. In addition, the functional contribution of increased integrin activation to the Sharpincpdm/cpdm phenotype has not been investigated. Here, we find increased integrin activity in keratinocytes from Tnfr1-/- Sharpincpdm/cpdm double knockout mice, which do not display chronic inflammation or proliferative dermatitis, thus suggesting that SHARPIN indeed acts as an integrin inhibitor in vivo. In addition, we present evidence for a functional contribution of integrin activity to the Sharpincpdm/cpdm skin phenotype. Treatment with an integrin beta 1 function blocking antibody reduced epidermal hyperproliferation and epidermal thickness in Sharpincpdm/cpdm mice. Our data indicate that, while TNF-induced cell death triggers the chronic inflammation and proliferative dermatitis, absence of SHARPIN-dependent integrin inhibition exacerbates the epidermal hyperproliferation in Sharpincpdm/cpdm mice.

  8. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice.

    PubMed

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K; Nagilla, Pruthvi S; Raghani, Pooja; Nagarajan, Shanmugam

    2014-09-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in a hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apolipoprotein E (apoE)-CD16 double knockout (DKO; apoE-CD16 DKO) mice have reduced atherosclerotic lesions compared with apoE knockout mice. In vivo and in vitro foam cell analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A, and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA- modified BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line, as well as soluble forms of recombinant mouse CD36, SR-A, and LOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited immune complex binding to sCD16, whereas it partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the immune complex binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL-induced proinflammatory cytokine expression. Finally, CD16-deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively, our findings suggest scavenger receptor activity of CD16 may, in part, contribute to the progression of atherosclerosis. Copyright © 2014 by The American Association of Immunologists, Inc.

  9. Sost deficiency leads to reduced mechanical strains at the tibia midshaft in strain-matched in vivo loading experiments in mice.

    PubMed

    Albiol, Laia; Cilla, Myriam; Pflanz, David; Kramer, Ina; Kneissel, Michaela; Duda, Georg N; Willie, Bettina M; Checa, Sara

    2018-04-01

    Sclerostin, a product of the Sost gene, is a Wnt-inhibitor and thus negatively regulates bone accrual. Canonical Wnt/β-catenin signalling is also known to be activated in mechanotransduction. Sclerostin neutralizing antibodies are being tested in ongoing clinical trials to target osteoporosis and osteogenesis imperfecta but their interaction with mechanical stimuli on bone formation remains unclear. Sost knockout (KO) mice were examined to gain insight into how long-term Sost deficiency alters the local mechanical environment within the bone. This knowledge is crucial as the strain environment regulates bone adaptation. We characterized the bone geometry at the tibial midshaft of young and adult Sost KO and age-matched littermate control (LC) mice using microcomputed tomography imaging. The cortical area and the minimal and maximal moment of inertia were higher in Sost KO than in LC mice, whereas no difference was detected in either the anterior-posterior or medio-lateral bone curvature. Differences observed between age-matched genotypes were greater in adult mice. We analysed the local mechanical environment in the bone using finite-element models (FEMs), which showed that strains in the tibiae of Sost KO mice are lower than in age-matched LC mice at the diaphyseal midshaft, a region commonly used to assess cortical bone formation and resorption. Our FEMs also suggested that tissue mineral density is only a minor contributor to the strain distribution in tibial cortical bone from Sost KO mice compared to bone geometry. Furthermore, they indicated that although strain gauging experiments matched strains at the gauge site, strains along the tibial length were not comparable between age-matched Sost KO and LC mice or between young and adult animals within the same genotype. © 2018 The Author(s).

  10. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    PubMed

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  11. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  12. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation.

    PubMed

    Kawabe, T; Naka, T; Yoshida, K; Tanaka, T; Fujiwara, H; Suematsu, S; Yoshida, N; Kishimoto, T; Kikutani, H

    1994-06-01

    An engagement of CD40 with CD40 ligand (CD40L) expressed on activated T cells is known to provide an essential costimulatory signal to B cells in vitro. To investigate the role of CD40 in in vivo immune responses, CD40-deficient mice were generated by gene targeting. The significant reduction of CD23 expression on mature B cells and relatively decreased number of IgM bright and IgD dull B cells were observed in the mutant mice. The mutant mice mounted IgM responses but no IgG, IgA, and IgE responses to thymus-dependent (TD) antigens. However, IgG as well as IgM responses to thymus-independent (TI) antigens were normal. Furthermore, the germinal center formation was defective in the mutant mice. These results suggest that CD40 is essential for T cell-dependent immunoglobulin class switching and germinal center formation, but not for in vivo T cell-dependent IgM responses and T cell-independent antibody responses.

  13. SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice

    PubMed Central

    Ding, Feng; Li, Hong Hua; Zhang, Shengwen; Solomon, Nicola M.; Camper, Sally A.; Cohen, Pinchas; Francke, Uta

    2008-01-01

    Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation. PMID:18320030

  14. GENETIC CATHEPSIN B DEFICIENCY REDUCES β-AMYLOID IN TRANSGENIC MICE EXPRESSING HUMAN WILD-TYPE AMYLOID PRECURSOR PROTEIN

    PubMed Central

    Hook, Vivian Y. H.; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory

    2009-01-01

    Neurotoxic β-amyloid (Aβ) peptides participate in Alzheimer’s disease (AD); therefore, reduction of Aβ generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Aβ may identify targets for reducing Aβ. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decrease of Aβ40 and Aβ42 by 67% in brain, and decreases levels of the C-terminal β-secretase fragment (CTFβ) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Aβ. The difference in reduction of Aβ in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Aβ in AD. PMID:19501042

  15. Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein.

    PubMed

    Hook, Vivian Y H; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory

    2009-08-21

    Neurotoxic beta-amyloid (Abeta) peptides participate in Alzheimer's disease (AD); therefore, reduction of Abeta generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Abeta may identify targets for reducing Abeta. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Abeta40 and Abeta42 by 67% and decreases in levels of the C-terminal beta-secretase fragment (CTFbeta) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Abeta. The difference in reduction of Abeta in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Abeta in AD.

  16. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis

    PubMed Central

    Zhu, Yan; Li, Guodong; Williams, Jessica A.; Buckley, Kyle; Tawfik, Ossama; Luyendyk, James P.

    2016-01-01

    Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of hepatocyte-specific FXR deficiency (FXRhep−/−) in liver tumor formation. The results showed that FXRhep−/− mice did not show spontaneous liver tumorigenesis with aging (up to 24 mo of age). Therefore FXRhep−/− mice were fed a bile acid (cholic acid)-containing diet alone or along with a liver tumor initiator, diethylnitrosamine (DEN). Thirty weeks later, no tumors were found in wild-type or FXRhep−/− mice without any treatment or with DEN only. However, with cholic acid, while only some wild-type mice developed tumors, all FXRhep−/− mice presented with severe liver injury and tumors. Interestingly, FXRhep−/− mouse livers increased basal expression of tumor suppressor p53 protein, apoptosis, and decreased basal cyclin D1 expression, which may prevent tumor development in FXRhep−/− mice. However, cholic acid feeding reversed these effects in FXRhep−/− mice, which is associated with an increased cyclin D1 and decreased cell cycle inhibitors. More in-depth analysis indicates that the increased in cell growth might result from disturbance of the MAPK and JAK/Stat3 signaling pathways. In conclusion, this study shows that hepatic FXR deficiency may only serve as a tumor initiator, and increased bile acids is required for tumor formation likely by promoting cell proliferation. PMID:26744468

  17. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Canxiang; Yang Qingwu; Lv Fenglin

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} andmore » IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.« less

  18. Long-term correction of very long-chain acyl-coA dehydrogenase deficiency in mice using AAV9 gene therapy.

    PubMed

    Keeler, Allison M; Conlon, Thomas; Walter, Glenn; Zeng, Huadong; Shaffer, Scott A; Dungtao, Fu; Erger, Kirsten; Cossette, Travis; Tang, Qiushi; Mueller, Christian; Flotte, Terence R

    2012-06-01

    Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 10(12) vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical correction was observed in vector-treated mice beginning 2 weeks postinjection, as characterized by a significant drop in long-chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks postinjection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long-chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD(-/-) mice dropped below 20 °C and the mice became lethargic, requiring euthanasia. In contrast, all rAAV9-treated VLCAD(-/-) mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD(-/-) mice maintained euglycemia, whereas untreated VLCAD(-/-) mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans.

  19. Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6.

    PubMed

    Hegan, Denise Campisi; Narayanan, Latha; Jirik, Frank R; Edelmann, Winfried; Liskay, R Michael; Glazer, Peter M

    2006-12-01

    Defects in genes associated with DNA mismatch repair (MMR) have been linked to hereditary colon cancer. Because the MMR pathway includes multiple factors with both overlapping and divergent functions, we sought to compare the impact of deficiencies in each of several MMR genes on genetic instability using a collection of knock-out mouse models. We investigated mutation frequencies and patterns in MMR-deficient mice using two transgenic reporter genes, supFG1 and cII, in the context of mice deficient for Pms2, Mlh1, Msh2, Msh3 or Msh6 or both Msh2 and Msh3 or both Msh3 and Msh6. We found that the mean mutation frequencies of all of the MMR-deficient mice were significantly higher than the mean mutation frequencies of wild-type mice. Mlh1-deficient mice and Msh2-deficient mice had the highest mutation frequencies in a comparison of the single nullizygous mice. Of all the mice studied, mice nullizygous for both Msh2 and Msh3 and those nullizygous for both Msh3 and Msh6 displayed the greatest overall increases in mutation frequencies compared with wild-type mice. Sequence analysis of the mutated reporter genes revealed significant differences between the individual groups of MMR-deficient mice. Taken together, our results further characterize the functions of the MMR factors in mutation avoidance and provide in vivo correlation to biochemical models of the MMR pathway.

  20. Alterations of arcuate nucleus neuropeptidergic development in contactin-deficient mice: comparison with anorexia and food-deprived mice.

    PubMed

    Fetissov, Sergueï O; Bergström, Ulrika; Johansen, Jeanette E; Hökfelt, Tomas; Schalling, Martin; Ranscht, Barbara

    2005-12-01

    A mutation in the Contactin-1 gene results in an ataxic and anorectic phenotype that is apparent by postnatal day 10 and lethal by postnatal day 19 [Berglund et al. (1999) Neuron 24, 739-750]. The resemblance of this phenotype with the anorexia (anx/anx) mouse mutation prompted us to investigate the hypothalamic neurochemistry of Contactin knock-out (KO) mice. Contactin was expressed in the hypothalamic neuropil of wild-type (WT) but not Contactin KO mice. In the KO condition, neuropeptide Y (NPY) and agouti-related protein (AgRP) immunoreactivity (IR) accumulated in the somata of arcuate nucleus neurons, whereas IR for these neuropeptides as well as for alpha-melanocyte-stimulating hormone (alpha-MSH) decreased in the corresponding axon projections. These changes in the pattern of neuropeptide expression in the Contactin-deficient hypothalamus were similar but more pronounced than those found in anx/anx mice. Increased levels of NPY and AgRP and decreased concentrations of pro-opiomelanocortin mRNA in arcuate neurons accompanied these changes. In relating these alterations a 24-h food deprivation period, we observed in 3-week-old WT mice an elevation of NPY- and AgRP-IR in the perikarya of arcuate neurons without notable reduction of NPY- or AgRP-IR in nerve fibers, suggesting that the decrease of arcuate projections can be associated with postnatal anorectic phenotype. Our data implicate Contactin in the postnatal development of the NPY/AgRP and alpha-MSH arcuate neurons and suggest that similar to anx/anx mutant mice, compromised orexigenic signaling via NPY/AgRP neurons may contribute to reduced food intake by the Contactin-mutant animals.

  1. Histochemical assessment for osteoblastic activity coupled with dysfunctional osteoclasts in c-src deficient mice.

    PubMed

    Toray, Hisashi; Hasegawa, Tomoka; Sakagami, Naoko; Tsuchiya, Erika; Kudo, Ai; Zhao, Shen; Moritani, Yasuhito; Abe, Miki; Yoshida, Taiji; Yamamoto, Tomomaya; Yamamoto, Tsuneyuki; Oda, Kimimitsu; Udagawa, Nobuyuki; Luiz de Freitas, Paulo Henrique; Li, Minqi

    2017-01-01

    Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos -/- or c-src -/- mice. Osteopetrotic c-fos deficient (c-fos -/- ) mice have no osteoclasts, while c-src deficient (c-src -/- ) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos -/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src -/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src -/- bone matrix. This indicates the possibility that in c-src -/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src -/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.

  2. Loss of T Cell and B Cell Quiescence Precedes the Onset of Microbial Flora-Dependent Wasting Disease and Intestinal Inflammation in Gimap5-Deficient Mice

    PubMed Central

    Barnes, Michael J.; Aksoylar, Halil; Krebs, Philippe; Bourdeau, Tristan; Arnold, Carrie N.; Xia, Yu; Khovananth, Kevin; Engel, Isaac; Sovath, Sosathya; Lampe, Kristin; Laws, Eleana; Saunders, Amy; Butcher, Geoffrey W.; Kronenberg, Mitchell; Steinbrecher, Kris; Hildeman, David; Grimes, H. Leighton; Beutler, Bruce; Hoebe, Kasper

    2015-01-01

    Homeostatic control of the immune system involves mechanisms that ensure the self-tolerance, survival and quiescence of hematopoietic-derived cells. In this study, we demonstrate that the GTPase of immunity associated protein (Gimap)5 regulates these processes in lymphocytes and hematopoietic progenitor cells. As a consequence of a recessive N-ethyl-N-nitrosourea–induced germline mutation in the P-loop of Gimap5, lymphopenia, hepatic extramedullary hematopoiesis, weight loss, and intestinal inflammation occur in homozygous mutant mice. Irradiated fetal liver chimeric mice reconstituted with Gimap5-deficient cells lose weight and become lymphopenic, demonstrating a hematopoietic cell-intrinsic function for Gimap5. Although Gimap5-deficient CD4+ T cells and B cells appear to undergo normal development, they fail to proliferate upon Ag-receptor stimulation although NF-κB, MAP kinase and Akt activation occur normally. In addition, in Gimap5-deficient mice, CD4+ T cells adopt a CD44high CD62Llow CD69low phenotype and show reduced IL-7rα expression, and T-dependent and T-independent B cell responses are abrogated. Thus, Gimap5-deficiency affects a noncanonical signaling pathway required for Ag-receptor–induced proliferation and lymphocyte quiescence. Antibiotic-treatment or the adoptive transfer of Rag-sufficient splenocytes ameliorates intestinal inflammation and weight loss, suggesting that immune responses triggered by microbial flora causes the morbidity in Gimap5-deficient mice. These data establish Gimap5 as a key regulator of hematopoietic integrity and lymphocyte homeostasis. PMID:20190135

  3. Dry eye symptoms are increased in mice deficient in phospholipid transfer protein (PLTP).

    PubMed

    Setälä, Niko L; Metso, Jari; Jauhiainen, Matti; Sajantila, Antti; Holopainen, Juha M

    2011-05-01

    In the tear fluid the outermost part facing the tear-air interface is composed of lipids preventing evaporation of the tears. Phospholipid transfer protein (PLTP) mediates phospholipid transfer processes between serum lipoproteins and is also a normal component of human tears. To study whether PLTP plays any functional role in tear fluid we investigated PLTP-deficient mice, applying functional and morphologic analyses under normal housing and experimentally induced dry eye conditions. Aqueous tear fluid production, corneal epithelial morphology, barrier function, and occludin expression were assessed. In mice with a full deficiency of functional PLTP enhanced corneal epithelial damage, increased corneal permeability to carboxyfluorescein, and decreased corneal epithelial occludin expression were shown. These pathologic signs were worsened by experimentally induced dry eye both in wild-type and PLTP knock-out mice. Deficiency in the production of tear PLTP in mice is accompanied by corneal epithelial damage, a feature that is typical in human dry eye syndrome (DES). To complement animal experiments we collected tear fluid from human dry eye patients as well as healthy control subjects. Increased tear fluid PLTP activity was observed among DES patients. In conclusion, the presence of PLTP in tear fluid appears to be essential for maintaining a healthy and functional ocular surface. Increased PLTP activity in human tear fluid in DES patients suggests an ocular surface protective role for this lipid transfer protein. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease

    PubMed Central

    Haase, Volker H.; King, Rhonda; Polyak, Erzsebet; Selak, Mary; Yudkoff, Marc; Hancock, Wayne W.; Meade, Ray; Saiki, Ryoichi; Lunceford, Adam L.; Clarke, Catherine F.; Gasser, David L.

    2008-01-01

    Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment. PMID:18437205

  5. Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase

    PubMed Central

    Kline, David D; Yang, Tianen; Huang, Paul L; Prabhakar, Nanduri R

    1998-01-01

    The role of endogenous nitric oxide (NO) generated by neuronal nitric oxide synthase (NOS-1) in the control of respiration during hypoxia and hypercapnia was assessed using mutant mice deficient in NOS-1. Experiments were performed on awake and anaesthetized mutant and wild-type control mice. Respiratory responses to varying levels of inspired oxygen (100, 21 and 12 % O2) and carbon dioxide (3 and 5 % CO2 balanced oxygen) were analysed. In awake animals, respiration was monitored by body plethysmograph along with oxygen consumption (V̇O2), CO2 production (V̇CO2) and body temperature. In anaesthetized, spontaneously breathing mice, integrated efferent phrenic nerve activity was monitored as an index of neural respiration along with arterial blood pressure and blood gases. Cyclic 3′,5′-guanosine monophosphate (cGMP) levels in the brainstem were analysed by radioimmunoassay as an index of nitric oxide generation. Unanaesthetized mutant mice exhibited greater respiratory responses during 21 and 12 % O2 than the wild-type controls. Respiratory responses were associated with significant decreases in oxygen consumption in both groups of mice, and the magnitude of change was greater in mutant than wild-type mice. Changes in CO2 production and body temperature, however, were comparable between both groups of mice. Similar augmentation of respiratory responses during hypoxia was also observed in anaesthetized mutant mice. In addition, five of the fourteen mutant mice displayed periodic oscillations in respiration (brief episodes of increases in respiratory rate and tidal phrenic nerve activity) while breathing 21 and 12 % O2, but not during 100 % O2. The time interval between the episodes decreased by reducing inspired oxygen from 21 to 12 % O2. Changes in arterial blood pressure and arterial blood gases were comparable at any given level of inspired oxygen between both groups of mice, indicating that changes in these variables do not account for the differences in the

  6. MAPK phosphotase 5 deficiency contributes to protection against blood-stage Plasmodium yoelii 17XL infection in mice.

    PubMed

    Cheng, Qianqian; Zhang, Qingfeng; Xu, Xindong; Yin, Lan; Sun, Lin; Lin, Xin; Dong, Chen; Pan, Weiqing

    2014-04-15

    Cell-mediated immunity plays a crucial role in the development of host resistance to asexual blood-stage malaria infection. However, little is known of the regulatory factors involved in this process. In this study, we investigated the impact of MAPK phosphotase 5 (MKP5) on protective immunity against a lethal Plasmodium yoelii 17XL blood-stage infection using MKP5 knockout C57BL/6 mice. Compared with wild-type control mice, MKP5 knockout mice developed significantly lower parasite burdens with prolonged survival times. We found that this phenomenon correlated with a rapid and strong IFN-γ-dependent cellular immune response during the acute phase of infection. Inactivation of IFN-γ by the administration of a neutralizing Ab significantly reduced the protective effects in MKP5 knockout mice. By analyzing IFN-γ production in innate and adaptive lymphocyte subsets, we observed that MKP5 deficiency specifically enhanced the IFN-γ response mediated by CD4+ T cells, which was attributable to the increased stimulatory capacity of splenic CD11c+ dendritic cells. Furthermore, following vaccination with whole blood-stage soluble plasmodial Ag, MKP5 knockout mice acquired strongly enhanced Ag-specific immune responses and a higher level of protection against subsequent P. yoelii 17XL challenge. Finally, we found the enhanced response mediated by MKP5 deficiency resulted in a lethal consequence in mice when infected with nonlethal P. yoelii 17XNL. Thus, our data indicate that MKP5 is a potential regulator of immune resistance against Plasmodium infection in mice, and that an understanding of the role of MKP5 in manipulating anti-malaria immunity may provide valuable information on the development of better control strategies for human malaria.

  7. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes

    PubMed Central

    Cheung, Leonard Y. M.; Okano, Hideyuki

    2016-01-01

    The hypothalamic-pituitary axes are the coordinating centers for multiple endocrine gland functions and physiological processes. Defects in the hypothalamus or pituitary gland can cause reduced growth and severe short stature, affecting approximately 1 in 4000 children, and a large percentage of cases of pituitary hormone deficiencies do not have an identified genetic cause. SOX21 is a protein that regulates hair, neural, and trophoblast stem cell differentiation. Mice lacking Sox21 have reduced growth, but the etiology of this growth defect has not been described. We studied the expression of Sox21 in hypothalamic-pituitary development and examined multiple endocrine axes in these mice. We find no evidence of reduced intrauterine growth, food intake, or physical activity, but there is evidence for increased energy expenditure in mutants. In addition, despite changes in pituitary hormone expression, hypothalamic-pituitary axes appear to be functional. Therefore, SOX21 variants may be a cause of non-endocrine short stature in humans. PMID:27616671

  8. Betaine supplementation is less effective than methionine restriction in correcting phenotypes of CBS deficient mice.

    PubMed

    Gupta, Sapna; Wang, Liqun; Kruger, Warren D

    2016-01-01

    Cystathionine beta synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by elevated serum total homocysteine (tHcy). Betaine supplementation, which can lower tHcy by stimulating homocysteine remethylation to methionine, is often given to CBS deficient patients in combination with other treatments such as methionine restriction and supplemental B-vitamins. However, the effectiveness of betaine supplementation by itself in the treatment of CBS deficiency has not been well explored. Here, we have examined the effect of a betaine supplemented diet on the Tg-I278T Cbs (-/-) mouse model of CBS deficiency and compared its effectiveness to our previously published data using a methionine restricted diet. Tg-I278T Cbs (-/-) mice on betaine, from the time of weaning until for 240 days of age, had a 40 % decrease in mean tHcy level and a 137 % increase in serum methionine levels. Betaine-treated Tg-I278T Cbs (-/-) mice also exhibited increased levels of betaine-dependent homocysteine methyl transferase (BHMT), increased levels of the lipogenic enzyme stearoyl-coenzyme A desaturase (SCD-1), and increased lipid droplet accumulation in the liver. Betaine supplementation largely reversed the hair loss phenotype in Tg-I278T Cbs (-/-) animals, but was far less effective than methionine restriction in reversing the weight-loss, fat-loss, and osteoporosis phenotypes. Surprisingly, betaine supplementation had several negative effects in control Tg-I278T Cbs (+/-) mice including decreased weight gain, lean mass, and bone mineral density. Our findings indicate that while betaine supplementation does have some beneficial effects, it is not as effective as methionine restriction for reversing the phenotypes associated with severe CBS deficiency in mice.

  9. Fetal hemorrhage and platelet dysfunction in SLP-76–deficient mice

    PubMed Central

    Clements, James L.; Lee, Jong Ran; Gross, Barbara; Yang, Baoli; Olson, John D.; Sandra, Alexander; Watson, Stephen P.; Lentz, Steven R.; Koretzky, Gary A.

    1999-01-01

    The adapter protein SLP-76 is expressed in T lymphocytes and hematopoietic cells of the myeloid lineage, and is known to be a substrate of the protein tyrosine kinases that are activated after ligation of the T-cell antigen receptor. Transient overexpression of SLP-76 in a T-cell line potentiates transcriptional activation after T-cell receptor ligation, while loss of SLP-76 expression abrogates several T-cell receptor–dependent signaling pathways. Mutant mice that lack SLP-76 manifest a severe block at an early stage of thymocyte development, implicating SLP-76 in signaling events that promote thymocyte maturation. While it is clear that SLP-76 plays a key role in development and activation of T lymphocytes, relatively little is understood regarding its role in transducing signals initiated after receptor ligation in other hematopoietic cell types. In this report, we describe fetal hemorrhage and perinatal mortality in SLP-76–deficient mice. Although megakaryocyte and platelet development proceeds normally in the absence of SLP-76, collagen-induced platelet aggregation and granule release is markedly impaired. Furthermore, treatment of SLP-76–deficient platelets with collagen fails to elicit tyrosine phosphorylation of phospholipase C-γ2 (PLC-γ2), suggesting that SLP-76 functions upstream of PLC-γ2 activation. These data provide one potential mechanism for the fetal hemorrhage observed in SLP-76–deficient mice and reveal that SLP-76 expression is required for optimal receptor-mediated signal transduction in platelets as well as T lymphocytes. PMID:9884330

  10. Addition of Estradiol to Cross-Sex Testosterone Therapy Reduces Atherosclerosis Plaque Formation in Female ApoE-/- Mice.

    PubMed

    Goetz, Laura G; Mamillapalli, Ramanaiah; Sahin, Cagdas; Majidi-Zolbin, Masoumeh; Ge, Guanghao; Mani, Arya; Taylor, Hugh S

    2018-02-01

    The contributions of estradiol and testosterone to atherosclerotic lesion progression are not entirely understood. Cross-sex hormone therapy (XHT) for transgender individuals dramatically alters estrogen and testosterone levels and consequently could have widespread consequences for cardiovascular health. Yet, no preclinical research has assessed atherosclerosis risk after XHT. We examined the effects of testosterone XHT after ovariectomy on atherosclerosis plaque formation in female mice and evaluated whether adding low-dose estradiol to cross-sex testosterone treatments after ovariectomy reduced lesion formation. Six-week-old female ApoE-/- C57BL/6 mice underwent ovariectomy and began treatments with testosterone, estradiol, testosterone with low-dose estradiol, or vehicle alone until euthanized at 23 weeks of age. Atherosclerosis lesion progression was measured by Oil Red O stain and confirmed histologically. We found reduced atherosclerosis in the estradiol- and combined testosterone/estradiol-treated mice compared with those treated with testosterone or vehicle only in the whole aorta (-75%), aortic arch (-80%), and thoracic aorta (-80%). Plaque size was similarly reduced in the aortic sinus. These reductions in lesion size after combined testosterone/estradiol treatment were comparable to those obtained with estrogen alone. Testosterone/estradiol combined therapy resulted in less atherosclerosis plaque formation than either vehicle or testosterone alone after ovariectomy. Testosterone/estradiol therapy was comparable to estradiol replacement alone, whereas mice treated with testosterone only fared no better than untreated controls after ovariectomy. Adding low-dose estrogen to cross-sex testosterone therapy after oophorectomy could improve cardiovascular outcomes for transgender patients. Additionally, these results contribute to understanding of the effects of estrogen and testosterone on atherosclerosis progression. Copyright © 2018 Endocrine Society.

  11. Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility.

    PubMed

    Natsuga, Ken; Cipolat, Sara; Watt, Fiona M

    2016-01-01

    Mice lacking three epidermal barrier proteins-envoplakin, periplakin, and involucrin (EPI-/- mice)-have a defective cornified layer, reduced epidermal γδ T cells, and increased dermal CD4(+) T cells. They are also resistant to developing skin tumors. The tumor-protective mechanism involves signaling between Rae-1 expressing keratinocytes and the natural killer group 2D receptor on immune cells, which also plays a role in host defenses against infection. Given the emerging link between bacteria and cancer, we investigated whether EPI-/- mice have an altered skin microbiota. The bacterial phyla were similar in wild-type and EPI-/- skin. However, bacteria were threefold more abundant in EPI-/- skin and penetrated deeper into the epidermis. The major epithelial defense mechanism against bacteria is production of antimicrobial proteins (AMPs). EPI-/- skin exhibited enhanced expression of antimicrobial peptides. However, reducing the bacterial load by antibiotic treatment or breeding mice under specific pathogen-free conditions did not reduce AMP expression or alleviate the abnormalities in T-cell populations. We conclude that the atopic characteristics of EPI-/- skin are a consequence of the defective barrier rather than a response to the increased bacterial load. It is therefore unlikely that the increase in skin microbiota contributes directly to the observed cancer resistance. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Involvement of Smad3 phosphoisoform-mediated signaling in the development of colonic cancer in IL-10-deficient mice.

    PubMed

    Hachimine, Daisaku; Uchida, Kazushige; Asada, Masanori; Nishio, Akiyoshi; Kawamata, Seiji; Sekimoto, Go; Murata, Miki; Yamagata, Hideo; Yoshida, Katsunori; Mori, Shigeo; Tahashi, Yoshiya; Matsuzaki, Koichi; Okazaki, Kazuichi

    2008-06-01

    Chronic inflammation predisposes to cancer. Transforming growth factor (TGF)-beta, a multifunctional protein, suppresses the growth of normal colonic epithelial cells, whereas it stimulates the proliferation of cancer cells. Interleukin (IL)-10-deficient mice, which develop colitis and colorectal cancer, show an increased level of plasma TGF-beta. Although TGF-beta may be a key molecule in the development of colon cancer arising from chronic colitis in IL-10-deficient mice, the role of TGF-beta still remains unclear. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which converts the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). We studied C57BL/6-IL-10-deficient mice (n=18) at 4 to 32 weeks of age. We investigated histology, and pSmad2/3L, pSmad2/3C, and p53 by immunohistochemistry. pSmad3L staining was detected in the cancer cells in all 10 mice with colonic cancer and in the epithelial cells in 7 of 12 mice with colonic dysplasia, but not in the normal or colitic mice. pSmad3c was detected without any significant difference between stages. p53 was weakly stained in a few cancer cells in 5 out of 10 mice. Smad3L signaling plays an important role in the carcinogenesis of chronic colitis in IL-10-deficient mice.

  13. Imaging colon cancer development in mice: IL-6 deficiency prevents adenoma in azoxymethane-treated Smad3 knockouts

    NASA Astrophysics Data System (ADS)

    Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy

    2016-02-01

    The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.

  14. Impaired clearance of influenza A virus in obese, leptin receptor deficient mice is independent of leptin signaling in the lung epithelium and macrophages.

    PubMed

    Radigan, Kathryn A; Morales-Nebreda, Luisa; Soberanes, Saul; Nicholson, Trevor; Nigdelioglu, Recep; Cho, Takugo; Chi, Monica; Hamanaka, Robert B; Misharin, Alexander V; Perlman, Harris; Budinger, G R Scott; Mutlu, Gökhan M

    2014-01-01

    During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients. We infected wild-type, obese mice globally deficient in the leptin receptor (db/db) and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepR fl/fl) or macrophages and alveolar type II cells (LysM-Cre/Lepr fl/fl) with influenza A virus (A/WSN/33 [H1N1]) (500 and 1500 pfu/mouse) and measured mortality, viral clearance and several markers of lung injury severity. The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db) compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl mice exhibited improved survival. Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.

  15. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice

    PubMed Central

    Pichon, Aurélien; Jeton, Florine; El Hasnaoui-Saadani, Raja; Hagström, Luciana; Launay, Thierry; Beaudry, Michèle; Marchant, Dominique; Quidu, Patricia; Macarlupu, Jose-Luis; Favret, Fabrice; Richalet, Jean-Paul; Voituron, Nicolas

    2016-01-01

    Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection. PMID:27800506

  16. Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo

    PubMed Central

    2012-01-01

    Background Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. Methods Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri’s Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. Results Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. Conclusions Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury. PMID:22901501

  17. Isothiocyanates Reduce Mercury Accumulation via an Nrf2-Dependent Mechanism during Exposure of Mice to Methylmercury

    PubMed Central

    Toyama, Takashi; Shinkai, Yasuhiro; Yasutake, Akira; Uchida, Koji; Yamamoto, Masayuki

    2011-01-01

    Background: Methylmercury (MeHg) exhibits neurotoxicity through accumulation in the brain. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) plays an important role in reducing the cellular accumulation of MeHg. Objectives: We investigated the protective effect of isothiocyanates, which are known to activate Nrf2, on the accumulation of mercury after exposure to MeHg in vitro and in vivo. Methods: We used primary mouse hepatocytes in in vitro experiments and mice as an in vivo model. We used Western blotting, luciferase assays, atomic absorption spectrometry assays, and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays, and we identified toxicity in mice based on hind-limb flaccidity and mortality. Results: The isothiocyanates 6-methylsulfinylhexyl isothiocyanate (6-HITC) and sulforaphane (SFN) activated Nrf2 and up-regulated downstream proteins associated with MeHg excretion, such as glutamate-cysteine ligase, glutathione S-transferase, and multidrug resistance–associated protein, in primary mouse hepatocytes. Under these conditions, intracellular glutathione levels increased in wild-type but not Nrf2-deficient primary mouse hepatocytes. Pretreatment with 6-HITC and SFN before MeHg exposure suppressed cellular accumulation of mercury and cytotoxicity in wild-type but not Nrf2-deficient primary mouse hepatocytes. In comparison, in vivo administration of MeHg to Nrf2-deficient mice resulted in increased sensitivity to mercury concomitant with an increase in mercury accumulation in the brain and liver. Injection of SFN before administration of MeHg resulted in a decrease in mercury accumulation in the brain and liver of wild-type, but not Nrf2-deficient, mice. Conclusions: Through activation of Nrf2, 6-HITC and SFN can suppress mercury accumulation and intoxication caused by MeHg intake. PMID:21382770

  18. MyD88 Deficiency Markedly Worsens Tissue Inflammation and Bacterial Clearance in Mice Infected with Treponema pallidum, the Agent of Syphilis

    PubMed Central

    Silver, Adam C.; Dunne, Dana W.; Zeiss, Caroline J.; Bockenstedt, Linda K.; Radolf, Justin D.; Salazar, Juan C.; Fikrig, Erol

    2013-01-01

    Research on syphilis, a sexually transmitted infection caused by the non-cultivatable spirochete Treponema pallidum, has been hampered by the lack of an inbred animal model. We hypothesized that Toll-like receptor (TLR)-dependent responses are essential for clearance of T. pallidum and, consequently, compared infection in wild-type (WT) mice and animals lacking MyD88, the adaptor molecule required for signaling by most TLRs. MyD88-deficient mice had significantly higher pathogen burdens and more extensive inflammation than control animals. Whereas tissue infiltrates in WT mice consisted of mixed mononuclear and plasma cells, infiltrates in MyD88-deficient animals were predominantly neutrophilic. Although both WT and MyD88-deficient mice produced antibodies that promoted uptake of treponemes by WT macrophages, MyD88-deficient macrophages were deficient in opsonophagocytosis of treponemes. Our results demonstrate that TLR-mediated responses are major contributors to the resistance of mice to syphilitic disease and that MyD88 signaling and FcR-mediated opsonophagocytosis are linked to the macrophage-mediated clearance of treponemes. PMID:23940747

  19. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet

    PubMed Central

    Noll, Christophe; Labbé, Sébastien M.; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C.; Gallo-Payet, Nicole

    2016-01-01

    ABSTRACT The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  20. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis.

    PubMed

    Nunberg, Moran; Werbner, Nir; Neuman, Hadar; Bersudsky, Marina; Braiman, Alex; Ben-Shoshan, Moshe; Ben Izhak, Meirav; Louzoun, Yoram; Apte, Ron N; Voronov, Elena; Koren, Omry

    2018-01-01

    Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1α-deficient

  1. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis

    PubMed Central

    2018-01-01

    ABSTRACT Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1

  2. NOX2 Deficiency Protects Against Streptozotocin-Induced β-Cell Destruction and Development of Diabetes in Mice

    PubMed Central

    Xiang, Fu-Li; Lu, Xiangru; Strutt, Brenda; Hill, David J.; Feng, Qingping

    2010-01-01

    OBJECTIVE The role of NOX2-containing NADPH oxidase in the development of diabetes is not fully understood. We hypothesized that NOX2 deficiency decreases reactive oxygen species (ROS) production and immune response and protects against streptozotocin (STZ)-induced β-cell destruction and development of diabetes in mice. RESEARCH DESIGN AND METHODS Five groups of mice—wild-type (WT), NOX2−/−, WT treated with apocynin, and WT adoptively transferred with NOX2−/− or WT splenocytes—were treated with multiple-low-dose STZ. Blood glucose and insulin levels were monitored, and an intraperitoneal glucose tolerance test was performed. Isolated WT and NOX2−/− pancreatic islets were treated with cytokines for 48 h. RESULTS Significantly lower blood glucose levels, higher insulin levels, and better glucose tolerance was observed in NOX2−/− mice and in WT mice adoptively transferred with NOX2−/− splenocytes compared with the respective control groups after STZ treatment. Compared with WT, β-cell apoptosis, as determined by TUNEL staining, and insulitis were significantly decreased, whereas β-cell mass was significantly increased in NOX2−/− mice. In response to cytokine stimulation, ROS production was significantly decreased, and insulin secretion was preserved in NOX2−/− compared with WT islets. Furthermore, proinflammatory cytokine release induced by concanavalin A was significantly decreased in NOX2−/− compared with WT splenocytes. CONCLUSIONS NOX2 deficiency decreases β-cell destruction and preserves islet function in STZ-induced diabetes by reducing ROS production, immune response, and β-cell apoptosis. PMID:20627937

  3. Impaired Bone Resorption by Lipopolysaccharide In Vivo in Mice Deficient in the Prostaglandin E Receptor EP4 Subtype

    PubMed Central

    Sakuma, Yoko; Tanaka, Kiyoshi; Suda, Michio; Komatsu, Yasato; Yasoda, Akihiro; Miura, Masako; Ozasa, Ami; Narumiya, Shuh; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Nakao, Kazuwa

    2000-01-01

    In a previous study we showed that the involvement of EP4 subtype of the prostaglandin E (PGE) receptor is crucial for lipopolysaccharide (LPS)-induced osteoclast formation in vitro. The present study was undertaken to test whether EP4 is actually associated with LPS-induced bone resorption in vivo. In wild-type (WT) mice, osteoclast formation in vertebrae and tibiae increased 5 days after systemic LPS injection, and urinary excretion of deoxypyridinoline, a sensitive marker for bone resorption, statistically increased 10 days after injection. In EP4 knockout (KO) mice, however, LPS injection caused no significant changes in these parameters throughout the experiment. LPS exposure for 4 h strongly induced osteoclast differentiation factor (ODF) mRNA expression in primary osteoblastic cells (POB) both from WT and EP4 KO mice, and this expression was not inhibited by indomethacin, suggesting prostaglandin (PG) independence. LPS exposure for 24 h further induced ODF expression in WT POB, but not in EP4 KO POB. Indomethacin partially inhibited ODF expression in WT POB, but not in EP4 KO POB. These data suggest that ODF is induced both PG dependently and PG independently. LPS exposure for 24 h induced slightly greater osteoclastgenesis inhibitory factor (OCIF) mRNA expression in EP4 KO than in WT POB. These findings suggest that the reduced ODF expression and apparently increased OCIF expression also are responsible for the markedly reduced LPS-induced osteoclast formation in EP4 KO mice. Our results show that the EP4 subtype of the PGE receptor is involved in LPS-induced bone resorption in vivo also. Since LPS is considered to be largely involved in bacterially induced bone loss, such as in periodontitis and osteomyelitis, our study is expected to help broaden our understanding of the pathophysiology of these conditions. PMID:11083800

  4. Osteopontin-deficient progenitor cells display enhanced differentiation to adipocytes.

    PubMed

    Moreno-Viedma, Veronica; Tardelli, Matteo; Zeyda, Maximilian; Sibilia, Maria; Burks, J Deborah; Stulnig, Thomas M

    2018-03-06

    Osteopontin (OPN, Spp1) is a protein upregulated in white adipose tissue (WAT) of obese subjects. Deletion of OPN protects mice from high-fat diet-induced WAT inflammation and insulin resistance. However, the alterations mediated by loss of OPN in WAT before the obesogenic challenge have not yet been investigated. Therefore, we hypothesised that the lack of OPN might enhance the pro-adipogenic micro environment before obesity driven inflammation. OPN deficiency was tested in visceral (V) and subcutaneous (SC) WAT from WT and Spp1 -/- female mice. Gene expression for hypoxia, inflammation and adipogenesis was checked in WT vs. Spp1 -/- mice (n=15). Adipocytes progenitor cells (APC) were isolated by fluorescence cell sorting and role of OPN deficiency in adipogenesis was investigated by cell images and RT-PCR. We show that Spp1 -/- maintained normal body and fat-pad weights, although hypoxia and inflammation markers were significantly reduced. In contrast, expression of genes involved in adipogenesis was increased in WAT from Spp1 -/- mice. Strikingly, APC from Spp1 -/- were diminished but differentiated more efficiently to adipocytes than those from control mice. APC from SC-WAT of lean OPN-deficient mice display an enhanced capacity for differentiating to adipocytes. These alterations may explain the healthy expansion of WAT in the OPN-deficient model which is associated with reduced inflammation and insulin resistance. Copyright © 2018. Published by Elsevier Ltd.

  5. Cyclic Alopecia and Abnormal Epidermal Cornification in Zdhhc13-Deficient Mice Reveal the Importance of Palmitoylation in Hair and Skin Differentiation.

    PubMed

    Liu, Kai-Ming; Chen, Yi-Ju; Shen, Li-Fen; Haddad, Amir N S; Song, I-Wen; Chen, Li-Ying; Chen, Yu-Ju; Wu, Jer-Yuarn; Yen, Jeffrey J Y; Chen, Yuan-Tsong

    2015-11-01

    Many biochemical pathways involved in hair and skin development have not been investigated. Here, we reported on the lesions and investigated the mechanism underlying hair and skin abnormalities in Zdhhc13(skc4) mice with a deficiency in DHHC13, a palmitoyl-acyl transferase encoded by Zdhhc13. Homozygous affected mice showed ragged and dilapidated cuticle of the hair shaft (CUH, a hair anchoring structure), poor hair anchoring ability, and premature hair loss at early telogen phase of the hair cycle, resulting in cyclic alopecia. Furthermore, the homozygous affected mice exhibited hyperproliferation of the epidermis, disturbed cornification, fragile cornified envelope (CE, a skin barrier structure), and impaired skin barrier function. Biochemical investigations revealed that cornifelin, which contains five palmitoylation sites at cysteine residues (C58, C59, C60, C95, and C101), was a specific substrate of DHHC13 and that it was absent in the CUH and CE structures of the affected mice. Furthermore, cornifelin levels were markedly reduced when two palmitoylated cysteines were replaced with serine (C95S and C101S). Taken together, our results suggest that DHHC13 is important for hair anchoring and skin barrier function and that cornifelin deficiency contributes to cyclic alopecia and skin abnormalities in Zdhhc13(skc4) mice.

  6. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.

    PubMed

    Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis

    2017-02-01

    Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC. © 2016 American Heart Association, Inc.

  7. Nur77 deficiency leads to systemic inflammation in elderly mice.

    PubMed

    Li, Xiu-Ming; Lu, Xing-Xing; Xu, Qian; Wang, Jing-Ru; Zhang, Shen; Guo, Peng-Da; Li, Jian-Ming; Wu, Hua

    2015-01-01

    Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. We found that elderly 8-month-old Nur77-deficient mice (Nur77(-/-)) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77(+/+)), Nur77(-/-) mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77(-/-) mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo.

  8. A link between premenopausal iron deficiency and breast cancer malignancy

    PubMed Central

    2013-01-01

    Background Young breast cancer (BC) patients less than 45 years old are at higher risk of dying from the disease when compared to their older counterparts. However, specific risk factors leading to this poorer outcome have not been identified. Methods One candidate is iron deficiency, as this is common in young women and a clinical feature of young age. In the present study, we used immuno-competent and immuno-deficient mouse xenograft models as well as hemoglobin as a marker of iron status in young BC patients to demonstrate whether host iron deficiency plays a pro-metastatic role. Results We showed that mice fed an iron-deficient diet had significantly higher tumor volumes and lung metastasis compared to those fed normal iron diets. Iron deficiency mainly altered Notch but not TGF-β and Wnt signaling in the primary tumor, leading to the activation of epithelial mesenchymal transition (EMT). This was revealed by increased expression of Snai1 and decreased expression of E-cadherin. Importantly, correcting iron deficiency by iron therapy reduced primary tumor volume, lung metastasis, and reversed EMT markers in mice. Furthermore, we found that mild iron deficiency was significantly associated with lymph node invasion in young BC patients (p<0.002). Conclusions Together, our finding indicates that host iron deficiency could be a contributor of poor prognosis in young BC patients. PMID:23800380

  9. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    PubMed

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  10. Deficient Gene Expression in Protein Kinase Inhibitor α Null Mutant Mice

    PubMed Central

    Gangolli, Esha A.; Belyamani, Mouna; Muchinsky, Sara; Narula, Anita; Burton, Kimberly A.; McKnight, G. Stanley; Uhler, Michael D.; Idzerda, Rejean L.

    2000-01-01

    Protein kinase inhibitor (PKI) is a potent endogenous inhibitor of the cyclic AMP (cAMP)-dependent protein kinase (PKA). It functions by binding the free catalytic (C) subunit with a high affinity and is also known to export nuclear C subunit to the cytoplasm. The significance of these actions with respect to PKI's physiological role is not well understood. To address this, we have generated by homologous recombination mutant mice that are deficient in PKIα, one of the three isoforms of PKI. The mice completely lack PKI activity in skeletal muscle and, surprisingly, show decreased basal and isoproterenol-induced gene expression in muscle. Further examination revealed reduced levels of the phosphorylated (active) form of the transcription factor CREB (cAMP response element binding protein) in the knockouts. This phenomenon stems, at least in part, from lower basal PKA activity levels in the mutants, arising from a compensatory increase in the level of the RIα subunit of PKA. The deficit in gene induction, however, is not easily explained by current models of PKI function and suggests that PKI may play an as yet undescribed role in PKA signaling. PMID:10779334

  11. N-Glycolylneuraminic acid deficiency worsens cardiac and skeletal muscle pathophysiology in α-sarcoglycan-deficient mice

    PubMed Central

    Martin, Paul T; Camboni, Marybeth; Xu, Rui; Golden, Bethannie; Chandrasekharan, Kumaran; Wang, Chiou-Miin; Varki, Ajit; Janssen, Paul M L

    2013-01-01

    Roughly 3 million years ago, an inactivating deletion occurred in CMAH, the human gene encoding CMP-Neu5Ac (cytidine-5′-monophospho-N-acetylneuraminic acid) hydroxylase (Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A. 1998. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA. 95:11751–11756). This inactivating deletion is now homozygous in all humans, causing the loss of N-glycolylneuraminic acid (Neu5Gc) biosynthesis in all human cells and tissues. The CMAH enzyme is active in other mammals, including mice, where Neu5Gc is an abundant form of sialic acid on cellular membranes, including those in cardiac and skeletal muscle. We recently demonstrated that the deletion of mouse Cmah worsened the severity of pathophysiology measures related to muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy (Chandrasekharan K, Yoon JH, Xu Y, deVries S, Camboni M, Janssen PM, Varki A, Martin PT. 2010. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med. 2:42–54). Here, we demonstrate similar changes in cardiac and skeletal muscle pathology and physiology resulting from Cmah deletion in α-sarcoglycan-deficient (Sgca−/−) mice, a model for limb girdle muscular dystrophy 2D. These experiments demonstrate that loss of mouse Cmah can worsen disease severity in more than one form of muscular dystrophy and suggest that Cmah may be a general genetic modifier of muscle disease. PMID:23514716

  12. Podocyte-Specific VEGF-A Gain of Function Induces Nodular Glomerulosclerosis in eNOS Null Mice

    PubMed Central

    Veron, Delma; Aggarwal, Pardeep K.; Velazquez, Heino; Kashgarian, Michael; Moeckel, Gilbert

    2014-01-01

    VEGF-A and nitric oxide are essential for glomerular filtration barrier homeostasis and are dysregulated in diabetic nephropathy. Here, we examined the effect of excess podocyte VEGF-A on the renal phenotype of endothelial nitric oxide synthase (eNOS) knockout mice. Podocyte-specific VEGF164 gain of function in eNOS−/− mice resulted in nodular glomerulosclerosis, mesangiolysis, microaneurysms, and arteriolar hyalinosis associated with massive proteinuria and renal failure in the absence of diabetic milieu or hypertension. In contrast, podocyte-specific VEGF164 gain of function in wild-type mice resulted in less pronounced albuminuria and increased creatinine clearance. Transmission electron microscopy revealed glomerular basement membrane thickening and podocyte effacement in eNOS−/− mice with podocyte-specific VEGF164 gain of function. Furthermore, glomerular nodules overexpressed collagen IV and laminin extensively. Biotin-switch and proximity ligation assays demonstrated that podocyte-specific VEGF164 gain of function decreased glomerular S-nitrosylation of laminin in eNOS−/− mice. In addition, treatment with VEGF-A decreased S-nitrosylated laminin in cultured podocytes. Collectively, these data indicate that excess glomerular VEGF-A and eNOS deficiency is necessary and sufficient to induce Kimmelstiel-Wilson–like nodular glomerulosclerosis in mice through a process that involves deposition of laminin and collagen IV and de-nitrosylation of laminin. PMID:24578128

  13. Agmatine reduces only peripheral-related behavioral signs, not the central signs, of morphine withdrawal in nNOS deficient transgenic mice.

    PubMed

    Aricioglu, Feyza; Paul, Ian A; Regunathan, Soundar

    2004-01-09

    Agmatine inhibits morphine tolerance/dependence and potentiates morphine analgesia. This study was designed to investigate whether neuronal nitric oxide mediates the actions of agmatine in morphine dependence by using mice lacking a functional form of this enzyme. Mice received agmatine just after the morphine pellet implantation for 3 days twice daily or single injection 30 min before naloxone. In both genotypes treated for 3 days with morphine pellets, naloxone administration precipitated clear signs of withdrawal. Both acute and chronic administration of agmatine reduced withdrawal signs in wild type mice and reduced only peripheral signs of morphine dependence in neuronal nitric oxide synthase knockout mice. Withdrawal signs, that are related to central nervous system activity were not affected. These findings indicate that neuronal nitric oxide synthase partly mediates the effects of agmatine in morphine physical dependence.

  14. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-kappaB and PPAR signaling.

    PubMed

    Shen, Huiyun; Oesterling, Elizabeth; Stromberg, Arnold; Toborek, Michal; MacDonald, Ruth; Hennig, Bernhard

    2008-10-01

    Marginal intake of dietary zinc can be associated with increased risk of cardiovascular diseases. In the current study we hypothesized that vascular dysfunction and associated inflammatory events are activated during a zinc deficient state. We tested this hypothesis using both vascular endothelial cells and mice lacking the functional LDL-receptor gene. Zinc deficiency increased oxidative stress and NF-kappaB DNA binding activity, and induced COX-2 and E-selectin gene expression, as well as monocyte adhesion in cultured endothelial cells. The NF-kappaB inhibitor CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-kappaB signaling. PPAR can inhibit NF-kappaB signaling, and our previous data have shown that PPAR transactivation activity requires adequate zinc. Zinc deficiency down-regulated PPARalpha expression in cultured endothelial cells. Furthermore, the PPARgamma agonist rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency, an event which could be reversed by zinc supplementation. Our in vivo data support the importance of PPAR dysregulation during zinc deficiency. For example, rosiglitazone induced inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS. In addition, rosiglitazone increased IkappaBalpha protein expression only in zinc adequate mice. Finally, plasma data from LDL-R-deficient mice suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. These studies suggest that zinc nutrition can markedly modulate mechanisms of the pathology of inflammatory diseases such as atherosclerosis.

  15. ESTABLISHMENT AND EVALUATION OF ORTHOTOPIC HEPATOCELLULAR CARCINOMA AND DRUG-INDUCED HEPATOCELLULAR CARCINOMA IN MICE WITH SPLEEN-DEFICIENCY SYNDROME IN TRADITIONAL CHINESE MEDICINE.

    PubMed

    Luo, Haoxuan; Chen, Yan; Sun, Baoguo; Xiang, Ting; Zhang, Shijun

    2017-01-01

    Spleen-deficiency syndrome (SDS) in Traditional Chinese Medicine (TCM) played pivotal roles on the development of hepatocellular carcinoma (HCC). This study was performed to establish and evaluate HCC model in mice with SDS in TCM. A total of 90 C57BL/6 mice were randomized in six groups (n=15 for each group): A, Control group; B, SDS group; C, orthotopic HCC (OHCC) group; D, OHCC based on SDS (SDS-OHCC) group; E, Drug-induced HCC (DHCC) group; F, DHCC based on SDS (SDS-DHCC) group. The SDS model were established by subcutaneous injection of reserpine, followed by the OHCC or DHCC model establishment. The SDS scores, tumor formation rate and survival time were recorded and calculated, as well as the histochemical stain was performed. The SDS scores of mice in Group B, D, F were 17.57±4.86 (P<0.05 vs. Group A), 18.13±4.53 (P<0.05 vs. Group A and C) and 23.32±4.94 (P<0.05 vs. Group A and E) respectively. The tumor formation rate of mice in Group C, D, E and F were 73.33%, 100%, 60% and 80% respectively. The survival time of mice in Group C, D, E and F were 26.42±5.27, 17.33±4.76 (P<0.05 vs. Group C), 35.77±6.12 and 22.61±5.05 (P<0.05 vs. Group E) respectively. The SDS-oriented HCC mice models were simple and easily-operated models for further studies on SDS oriented tumor. Meanwhile, SDS was a pivotal factor for low outcome of hepatic tumor. Abbreviations: HCC, Hepatocellular carcinoma; OHCC, Orthotopic hepatocellular carcinoma; DHCC, Drug-induced hepatocellular carcinoma; SDS, Spleen-deficiency syndrome; TCM, Traditional Chinese Medicine; SPF, Specific pathogen-free; DEN, Diethylnitrosamine; CCl4, Carbon tetrachloride; HE, Hematoxylin-eosin; IACUC, Institutional Animal Care and Use Committee.

  16. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine.

    PubMed

    Rong, Shunxing; McDonald, Jeffrey G; Engelking, Luke J

    2017-10-01

    SREBP-2 activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in the intestine, we generated a mouse model ( Vil-BP2 -/- ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2 -/- mice had reduced expression of genes required for sterol synthesis, in vivo sterol synthesis rates, and epithelial cholesterol contents. On a cholesterol-free diet, the mice displayed chronic enteropathy with histological abnormalities of both villi and crypts, growth restriction, and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise, SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2 -/- mice, highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that the small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available, and provide a unique example of cholesterol auxotrophy expressed in an intact, adult mammal. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    PubMed

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  18. Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation

    PubMed Central

    Hamaguchi, Masahide; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Kadoya, Masatoshi; Ishino, Hidetaka; Ashihara, Eishi; Kimura, Shinya; Tsubakimoto, Yoshinori; Takata, Hiroki; Yoshikawa, Toshikazu; Maekawa, Taira; Kawahito, Yutaka

    2010-01-01

    Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE−/− mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE−/− mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E2, F1α, and thromboxane B2, and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect. PMID:20838569

  19. Comprehensive behavioral study and proteomic analyses of CRMP2-deficient mice.

    PubMed

    Nakamura, Haruko; Yamashita, Naoya; Kimura, Ayuko; Kimura, Yayoi; Hirano, Hisashi; Makihara, Hiroko; Kawamoto, Yuko; Jitsuki-Takahashi, Aoi; Yonezaki, Kumiko; Takase, Kenkichi; Miyazaki, Tomoyuki; Nakamura, Fumio; Tanaka, Fumiaki; Goshima, Yoshio

    2016-10-01

    Collapsin response mediator protein 2 (CRMP2) plays a key role in axon guidance, dendritic morphogenesis and cell polarization. CRMP2 is implicated in various neurological and psychiatric disorders. However, in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2 -/- ) mice and examined their behavioral phenotypes. During 24-h home cage monitoring, the activity level during the dark phase of crmp2 -/- mice was significantly higher than that of wild-type (WT) mice. Moreover, the time during the open arm of an elevated plus maze was longer for crmp2 -/- mice than for WT mice. The duration of social interaction was shorter for crmp2 -/- mice than for WT mice. Crmp2 -/- mice also showed mild impaired contextual learning. We then examined the methamphetamine-induced behavioral change of crmp2 -/- mice. Crmp2 -/- mice showed increased methamphetamine-induced ambulatory activity and serotonin release. Crmp2 -/- mice also showed altered expression of proteins involved in GABAergic synapse, glutamatergic synapse and neurotrophin signaling pathways. In addition, SNAP25, RAB18, FABP5, ARF5 and LDHA, which are related genes to schizophrenia and methamphetamine sensitization, are also decreased in crmp2 -/- mice. Our study implies that dysregulation of CRMP2 may be involved in pathophysiology of neuropsychiatric disorders. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  20. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    PubMed

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  1. Thymic Stromal-Cell Abnormalities and Dysregulated T-Cell Development in IL-2-Deficient Mice

    PubMed Central

    Reya, Tannishtha; Bassiri, Hamid; Biancaniello, Renée

    1998-01-01

    The role that interleukin-2 (IL-2) plays in T-cell development is not known. To address this issue, we have investigated the nature of the abnormal thymic development and autoimmune disorders that occurs in IL-2-deficient (IL-2–/–) mice. After 4 to 5 weeks of birth, IL-2–/– mice progressively develop a thymic disorder resulting in the disruption of thymocyte maturation. This disorder is characterized by a dramatic reduction in cellularity, the selective loss of immature CD4-8- (double negative; DN) and CD4+8+ (double positive; DP) thymocytes and defects in the thymic stromal-cell compartment. Immunohistochemical staining of sections of thymuses from specific pathogen-free and germ-free IL-2–/– mice of various ages showed a progressive ,loss of cortical epithelial cells, MHC class II-expressing cells, monocytes, and macrophages. Reduced numbers of macrophages were apparent as early as week after birth. Since IL-2–/– thymocyte progenitor populations could mature normally on transfer into a normal thymus, the thymic defect in IL-2–/– mice appears to be due to abnormalities among thymic stromal cells. These results underscore the role of IL-2 in maintaining functional microenvironments that are necessary to support thymocyte growth, development, and selection. PMID:9814585

  2. Calpain-2 Compensation Promotes Angiotensin II-Induced Ascending and Abdominal Aortic Aneurysms in Calpain-1 Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Moorleghen, Jessica J.; Balakrishnan, Anju; Howatt, Deborah A.; Chishti, Athar H.; Uchida, Haruhito A.

    2013-01-01

    Background and Objective Recently, we demonstrated that angiotensin II (AngII)-infusion profoundly increased both aortic protein and activity of calpains, calcium-activated cysteine proteases, in mice. In addition, pharmacological inhibition of calpain attenuated AngII-induced abdominal aortic aneurysm (AA) in mice. Recent studies have shown that AngII infusion into mice leads to aneurysmal formation localized to the ascending aorta. However, the precise functional contribution of calpain isoforms (-1 or -2) in AngII-induced abdominal AA formation is not known. Similarly, a functional role of calpain in AngII-induced ascending AA remains to be defined. Using BDA-410, an inhibitor of calpains, and calpain-1 genetic deficient mice, we examined the relative contribution of calpain isoforms in AngII-induced ascending and abdominal AA development. Methodology/Results To investigate the relative contribution of calpain-1 and -2 in development of AngII-induced AAs, male LDLr −/− mice that were either calpain-1 +/+ or −/− were fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min) for 4 weeks. Calpain-1 deficiency had no significant effect on body weight or blood pressure during AngII infusion. Moreover, calpain-1 deficiency showed no discernible effects on AngII-induced ascending and abdominal AAs. Interestingly, AngII infusion induced increased expression of calpain-2 protein, thus compensating for total calpain activity in aortas of calpain-1 deficient mice. Oral administration of BDA-410, a calpain inhibitor, along with AngII-infusion significantly attenuated AngII-induced ascending and abdominal AA formation in both calpain-1 +/+ and −/− mice as compared to vehicle administered mice. Furthermore, BDA-410 administration attenuated AngII-induced aortic medial hypertrophy and macrophage accumulation. Western blot and immunostaining analyses revealed BDA-410 administration attenuated AngII-induced C-terminal fragmentation of filamin A, an

  3. Severe methylenetetrahydrofolate reductase deficiency in mice results in behavioral anomalies with morphological and biochemical changes in hippocampus.

    PubMed

    Jadavji, Nafisa M; Deng, Liyuan; Leclerc, Daniel; Malysheva, Olga; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2012-06-01

    The brain is particularly sensitive to folate metabolic disturbances, since methyl groups are critical for its functions. Methylenetetrahydrofolate reductase (MTHFR) generates the primary circulatory form of folate required for homocysteine remethylation to methionine. Neurological disturbances have been described in homocystinuria caused by severe MTHFR deficiency. The goal of this study was to determine if behavioral anomalies are present in severe Mthfr-deficient (Mthfr(-/-)) mice and to identify neurobiological changes that could contribute to these anomalies. Adult male mice of 3 Mthfr genotypes (+/+, +/-, -/-) were tested on motor, anxiety, exploratory and cognitive tasks. Volumes (whole brain and hippocampus) and morphology, global DNA methylation, apoptosis, expression of choline acetyltransferase (ChAT) and glucocorticoid receptor (GR), and concentrations of choline metabolites were assessed in hippocampus. Mthfr(-/-) mice had impairments in motor function and in short- and long-term memory, increased exploratory behavior and decreased anxiety. They showed decreased whole brain and hippocampal volumes, reduced thickness of the pyramidal cell layer of CA1 and CA3, and increased apoptosis in hippocampus. There was a disturbance in choline metabolism as manifested by differences in acetylcholine, betaine or glycerophosphocholine concentrations, and by increased ChAT levels. Mthfr(-/-) mice also had increased GR mRNA and protein. Our study has revealed significant anomalies in affective behavior and impairments in memory of Mthfr(-/-) mice. We identified structural changes, increased apoptosis, altered choline metabolism and GR dysregulation in hippocampus. These findings, as well as some similar observations in cerebellum, could contribute to the behavioral changes and suggest that choline is a critical metabolite in homocystinuria. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  5. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

    PubMed

    Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L

    2009-01-01

    Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.

  6. The intravenous injection of oxidized LDL- or Apolipoprotein B100 – Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein EDeficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmetz, Martin, E-mail: martin.steinmetz@ukb.uni-bonn.de; Internal Medicine II, University Hospital Bonn, 53105 Bonn; Ponnuswamy, Padmapriya

    Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10{sup 7} OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lowermore » IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein Edeficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen

  7. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    PubMed

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  8. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    USDA-ARS?s Scientific Manuscript database

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  9. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice

    PubMed Central

    Kaifu, Tomonori; Nakahara, Jin; Inui, Masanori; Mishima, Kenichi; Momiyama, Toshihiko; Kaji, Mitsuji; Sugahara, Akiko; Koito, Hisami; Ujike-Asai, Azusa; Nakamura, Akira; Kanazawa, Kiyoshi; Tan-Takeuchi, Kyoko; Iwasaki, Katsunori; Yokoyama, Wayne M.; Kudo, Akira; Fujiwara, Michihiro; Asou, Hiroaki; Takai, Toshiyuki

    2003-01-01

    Deletions in the DAP12 gene in humans result in Nasu-Hakola disease, characterized by a combination of bone fractures and psychotic symptoms similar to schizophrenia, rapidly progressing to presenile dementia. However, it is not known why these disorders develop upon deficiency in DAP12, an immunoreceptor signal activator protein initially identified in the immune system. Here we show that DAP12-deficient (DAP12–/–) mice develop an increased bone mass (osteopetrosis) and a reduction of myelin (hypomyelinosis) accentuated in the thalamus. In vitro osteoclast induction from DAP12–/– bone marrow cells yielded immature cells with attenuated bone resorption activity. Moreover, immature oligodendrocytes were arrested in the vicinity of the thalamus, suggesting that the primary defects in DAP12–/– mice are the developmental arrest of osteoclasts and oligodendrocytes. In addition, the mutant mice also showed synaptic degeneration, impaired prepulse inhibition, which is commonly observed in several neuropsychiatric diseases in humans including schizophrenia, and aberrant electrophysiological profiles in the thalami. These results provide a molecular basis for a unique combination of skeletal and psychotic characteristics of Nasu-Hakola disease as well as for schizophrenia and presenile dementia. PMID:12569157

  10. Dmp1-deficient Mice Display Severe Defects in Cartilage Formation Responsible for a Chondrodysplasia-like Phenotype*

    PubMed Central

    Ye, Ling; Mishina, Yuji; Chen, Di; Huang, Haiyang; Dallas, Sarah L.; Dallas, Mark R.; Sivakumar, Pitchumani; Kunieda, Tetsuo; Tsutsui, Takeo W.; Boskey, Adele; Bonewald, Lynda F.; Feng, Jian Q.

    2009-01-01

    Understanding the molecular mechanisms by which cartilage formation is regulated is essential toward understanding the physiology of both embryonic bone development and postnatal bone growth. Although much is known about growth factor signaling in cartilage formation, the regulatory role of noncollagenous matrix proteins in this process are still largely unknown. In the present studies, we present evidence for a critical role of DMP1 (dentin matrix protein 1) in postnatal chondrogenesis. The Dmp1 gene was originally identified from a rat incisor cDNA library and has been shown to play an important role in late stage dentinogenesis. Whereas no apparent abnormalities were observed in prenatal bone development, Dmp1-deficient (Dmp1−/−) mice unexpectedly develop a severe defect in cartilage formation during postnatal chondrogenesis. Vertebrae and long bones in Dmp1-deficient (Dmp1−/−) mice are shorter and wider with delayed and malformed secondary ossification centers and an irregular and highly expanded growth plate, results of both a highly expanded proliferation and a highly expanded hypertrophic zone creating a phenotype resembling dwarfism with chondrodysplasia. This phenotype appears to be due to increased cell proliferation in the proliferating zone and reduced apoptosis in the hypertrophic zone. In addition, blood vessel invasion is impaired in the epiphyses of Dmp1−/− mice. These findings show that DMP1 is essential for normal postnatal chondrogenesis and subsequent osteogenesis. PMID:15590631

  11. Increased pain and neurogenic inflammation in mice deficient of neutral endopeptidase.

    PubMed

    Krämer, Heidrun H; He, Lan; Lu, Bao; Birklein, Frank; Sommer, Claudia

    2009-08-01

    The complex regional pain syndrome (CRPS) is characterized by enhanced neurogenic inflammation, mediated by neuropeptides. Neutral endopeptidase (NEP) is a key enzyme in neuropeptide catabolism. We used NEP knock out (ko) mice to investigate whether NEP deficiency leads to increased pain behavior and signs of neurogenic inflammation after soft tissue trauma with and without nerve injury. After chronic constriction injury (CCI) of the right sciatic nerve, NEP ko mice were more sensitive to heat, to mechanical stimuli, and to cold than wild type mice. Tissue injury without nerve injury produced no differences between genotypes. After CCI, NEP ko mice showed increased hind paw edema but lower skin temperatures than wild type mice. Substance P (SP) and endothelin 1 (ET 1) determined by enzyme immuno assay (EIA) were increased in sciatic nerves from NEP ko mice after CCI. Tissue CGRP content did not differ between the genotypes. The results provide evidence that pain behavior and neurogenic inflammation are enhanced in NEP ko mice after nerve injury. These findings resemble human 'cold' CRPS and suggest that ET 1 plays an important role in the pathogenesis of CRPS with nerve injury.

  12. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.

    PubMed

    Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian

    2014-08-21

    Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.

  13. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R; Kohn, Donald B

    2012-11-01

    Gene therapy (GT) for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada(-/-)). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist.

  14. Deficiency of cholesterol 7α‐hydroxylase in bile acid synthesis exacerbates alcohol‐induced liver injury in mice

    PubMed Central

    Donepudi, Ajay C.; Ferrell, Jessica M.; Boehme, Shannon; Choi, Hueng‐Sik

    2017-01-01

    Alcoholic fatty liver disease (AFLD) is a major risk factor for cirrhosis‐associated liver diseases. Studies demonstrate that alcohol increases serum bile acids in humans and rodents. AFLD has been linked to cholestasis, although the physiologic relevance of increased bile acids in AFLD and the underlying mechanism of increasing the bile acid pool by alcohol feeding are still unclear. In this study, we used mouse models either deficient of or overexpressing cholesterol 7α‐hydroxylase (Cyp7a1), the rate‐limiting and key regulatory enzyme in bile acid synthesis, to study the effect of alcohol drinking in liver metabolism and inflammation. Mice were challenged with chronic ethanol feeding (10 days) plus a binge dose of alcohol by oral gavage (5 g/kg body weight). Alcohol feeding reduced bile acid synthesis gene expression but increased the bile acid pool size, hepatic triglycerides and cholesterol, and inflammation and injury in wild‐type mice and aggravated liver inflammation and injury in Cyp7a1‐deficient mice. Interestingly, alcohol‐induced hepatic inflammation and injury were ameliorated in Cyp7a1 transgenic mice. Conclusion: Alcohol feeding alters hepatic bile acid and cholesterol metabolism to cause liver inflammation and injury, while maintenance of bile acid and cholesterol homeostasis protect against alcohol‐induced hepatic inflammation and injury. Our findings indicate that CYP7A1 plays a key role in protection against alcohol‐induced steatohepatitis. (Hepatology Communications 2018;2:99–112) PMID:29404516

  15. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    PubMed Central

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  16. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    NASA Technical Reports Server (NTRS)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  17. Comprehensive behavioral analysis of RNG105 (Caprin1) heterozygous mice: Reduced social interaction and attenuated response to novelty

    PubMed Central

    Ohashi, Rie; Takao, Keizo; Miyakawa, Tsuyoshi; Shiina, Nobuyuki

    2016-01-01

    RNG105 (also known as Caprin1) is a major RNA-binding protein in neuronal RNA granules, and is responsible for mRNA transport to dendrites and neuronal network formation. A recent study reported that a heterozygous mutation in the Rng105 gene was found in an autism spectrum disorder (ASD) patient, but it remains unclear whether there is a causal relation between RNG105 deficiency and ASD. Here, we subjected Rng105+/− mice to a comprehensive behavioral test battery, and revealed the influence of RNG105 deficiency on mouse behavior. Rng105+/− mice exhibited a reduced sociality in a home cage and a weak preference for social novelty. Consistently, the Rng105+/− mice also showed a weak preference for novel objects and novel place patterns. Furthermore, although the Rng105+/− mice exhibited normal memory acquisition, they tended to have relative difficulty in reversal learning in the spatial reference tasks. These findings suggest that the RNG105 heterozygous knockout leads to a reduction in sociality, response to novelty and flexibility in learning, which are implicated in ASD-like behavior. PMID:26865403

  18. Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice.

    PubMed

    Holmes, Andrew P; Wong, Shi Quan; Pulix, Michela; Johnson, Kirsty; Horton, Niamh S; Thomas, Patricia; de Magalhães, João Pedro; Plagge, Antonius

    2016-04-14

    Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap

  19. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    PubMed

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. Copyright © 2015. Published by Elsevier Inc.

  20. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice

    PubMed Central

    Manzini, S.; Pinna, C.; Busnelli, M.; Cinquanta, P.; Rigamonti, E.; Ganzetti, G.S.; Dellera, F.; Sala, A.; Calabresi, L.; Franceschini, G.; Parolini, C.; Chiesa, G.

    2015-01-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcatwt) and LCAT knockout (LcatKO) mice exposed to noradrenaline showed reduced contractility in LcatKO mice (P < 0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in LcatKO mice (P < 0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in LcatKO mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcatwt and LcatKO mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103