DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinkuma, Takayoshi; Nguyen Thi Minh Huong
End-of-life home appliances discarded in Japan are reused in Southeast Asia; end-of-life computers are reused in China. E-waste scrap generated in Asia is recycled in China, especially in Guangdong Province. The informal sector in that province has been recycling E-waste scrap and its improper recycling methods have caused serious pollution. In response to this problem, there is wide support for a total ban on E-waste trade, including secondhand items and E-waste scrap. Alternatively, we recommend the establishment of an alternative proper recycling system in Asia that needs cooperation among all Asian countries. First, China is urged to promote proper domesticmore » recycling activities by providing a subsidy for proper recycling. Second, Japan, as a main exporter of E-waste, should establish a traceability system that ensures E-waste scrap exported from Japan will be recycled at proper recycling facilities in China.« less
Wang, Jianbo; Xu, Zhenming
2015-01-20
Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reis de Oliveira, Camila, E-mail: Camilareis.oliveira@hotmail.com; Moura Bernardes, Andrea, E-mail: amb@ufrgs.br; Gerbase, Annelise Engel, E-mail: agerbase@ufrgs.br
Highlights: Black-Right-Pointing-Pointer Review of the different e-waste collection systems and recycling processes. Black-Right-Pointing-Pointer We present the e-waste collection systems used in Europe and in the US. Black-Right-Pointing-Pointer We present e-waste collection systems used in Asia and Latin America. Black-Right-Pointing-Pointer E-waste management between developed and developing countries is very different. Black-Right-Pointing-Pointer We made a comparison of the world situation to the current Brazilian reality. - Abstract: Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Overmore » the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles.« less
de Oliveira, Camila Reis; Bernardes, Andréa Moura; Gerbase, Annelise Engel
2012-08-01
Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Over the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhou, Lei; Xu, Zhenming
2012-05-01
Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi Xinwen, E-mail: x.chi@pgrad.unimelb.edu.au; Streicher-Porte, Martin; Wang, Mark Y.L.
Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and healthmore » impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.« less
Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik
2015-07-01
Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system boundary, additional savings of up to 700 kg CO2 eq. and 16 GJ eq. of primary energy per tonne of imported waste were established. Conditions, such as energy recovery efficiency, and thresholds beyond which import-related savings potentially turn into GWP burdens were also determined. Copyright © 2015 Elsevier Ltd. All rights reserved.
"Control-alt-delete": rebooting solutions for the E-waste problem.
Li, Jinhui; Zeng, Xianlai; Chen, Mengjun; Ogunseitan, Oladele A; Stevels, Ab
2015-06-16
A number of efforts have been launched to solve the global electronic waste (e-waste) problem. The efficiency of e-waste recycling is subject to variable national legislation, technical capacity, consumer participation, and even detoxification. E-waste management activities result in procedural irregularities and risk disparities across national boundaries. We review these variables to reveal opportunities for research and policy to reduce the risks from accumulating e-waste and ineffective recycling. Full regulation and consumer participation should be controlled and reinforced to improve local e-waste system. Aiming at standardizing best practice, we alter and identify modular recycling process and infrastructure in eco-industrial parks that will be expectantly effective in countries and regions to handle the similar e-waste stream. Toxicity can be deleted through material substitution and detoxification during the life cycle of electronics. Based on the idea of "Control-Alt-Delete", four patterns of the way forward for global e-waste recycling are proposed to meet a variety of local situations.
78 FR 14774 - U.S. Environmental Solutions Toolkit-Universal Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... following list: (a) Mercury Recycling Technology (b) E-Waste Recycling Technology (c) CRT Recycling Technology (d) Lamp Crushing Systems For purposes of participation in the Toolkit, ``United States exporter...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Winifred Ka-Yan; Chung, Shan-Shan, E-mail: sschung@hkbu.edu.hk; Zhang, Chan
2013-03-15
Highlights: ► Most household TWARC waste is sold directly to private e-waste collectors in HK. ► The current e-waste recycling network is popular with HK households. ► About 80% of household generated TWARC is exported overseas each year. ► Over 7000 tonnes/yr of household generated TWARC reach landfills. ► It is necessary to upgrade safety and awareness in HK’s e-waste recycling industry. - Abstract: A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish anmore » e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.« less
Bakhiyi, Bouchra; Gravel, Sabrina; Ceballos, Diana; Flynn, Michael A; Zayed, Joseph
2018-01-01
Despite regulatory efforts and position papers, electrical and electronic waste (e-waste) remains ill-managed as evidenced by the extremely low rates of proper e-waste recycling (e-recycling) worldwide, ongoing illegal shipments to developing countries and constantly reported human health issues and environmental pollution. The objectives of this review are, first, to expose the complexity of e-waste problems, and then to suggest possible upstream and downstream solutions. Exploring e-waste issues is akin to opening a Pandora's box. Thus, a review of prevailing e-waste management practices reveals complex and often intertwined gaps, issues and challenges. These include the absence of any consistent definition of e-waste to date, a prevalent toxic potential still involving already banned or restricted hazardous components such as heavy metals and persistent and bioaccumulative organic compounds, a relentless growth in e-waste volume fueled by planned obsolescence and unsustainable consumption, problematic e-recycling processes, a fragile formal e-recycling sector, sustained and more harmful informal e-recycling practices, and more convoluted and unpredictable patterns of illegal e-waste trade. A close examination of the e-waste legacy contamination reveals critical human health concerns, including significant occupational exposure during both formal and informal e-recycling, and persistent environmental contamination, particularly in some developing countries. However, newly detected e-waste contaminants as well as unexpected sources and environmental fates of contaminants are among the emerging issues that raise concerns. Moreover, scientific knowledge gaps remain regarding the complexity and magnitude of the e-waste legacy contamination, specifically, a comprehensive characterization of e-waste contaminants, information on the scale of legacy contamination in developing countries and on the potential environmental damage in developed countries, and a stronger body of evidence of adverse health effects specifically ascribed to e-waste contaminants. However, the knowledge accumulated to date is sufficient to raise awareness and concern among all stakeholders. Potential solutions to curb e-waste issues should be addressed comprehensively, by focusing on two fronts: upstream and downstream. Potential upstream solutions should focus on more rational and eco-oriented consumer habits in order to decrease e-waste quantities while fostering ethical and sustained commitments from manufacturers, which include a limited usage of hazardous compounds and an optimal increase in e-waste recyclability. At the downstream level, solutions should include suitable and pragmatic actions to progressively reduce the illegal e-waste trade particularly through international cooperation and coordination, better enforcement of domestic laws, and monitoring in both exporting and receiving countries, along with the supervised integration of the informal sector into the recycling system of developing countries and global expansion of formal e-waste collection and recycling activities. Downstream solutions should also introduce stronger reverse logistics, together with upgraded, more affordable, and eco-friendly and worker-friendly e-recycling technologies to ensure that benefits are derived fully and safely from the great economic potential of e-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development potential of e-waste recycling industry in China.
Li, Jinhui; Yang, Jie; Liu, Lili
2015-06-01
Waste electrical and electronic equipment (WEEE or e-waste) recycling industries in China have been through several phases from spontaneous informal family workshops to qualified enterprises with treatment fund. This study attempts to analyse the development potential of the e-waste recycling industry in China from the perspective of both time and scale potential. An estimation and forecast of e-waste quantities in China shows that, the total e-waste amount reached approximately 5.5 million tonnes in 2013, with 83% of air conditioners, refrigerators, washing machines, televisions sand computers. The total quantity is expected to reach ca. 11.7 million tonnes in 2020 and 20 million tonnes in 2040, which indicates a large increase potential. Moreover, the demand for recycling processing facilities, the optimal service radius of e-waste recycling enterprises and estimation of the profitability potential of the e-waste recycling industry were analysed. Results show that, based on the e-waste collection demand, e-waste recycling enterprises therefore have a huge development potential in terms of both quantity and processing capacity, with 144 and 167 e-waste recycling facilities needed, respectively, by 2020 and 2040. In the case that e-waste recycling enterprises set up their own collection points to reduce the collection cost, the optimal collection service radius is estimated to be in the range of 173 km to 239 km. With an e-waste treatment fund subsidy, the e-waste recycling industry has a small economic profit, for example ca. US$2.5/unit for television. The annual profit for the e-waste recycling industry overall was about 90 million dollars in 2013. © The Author(s) 2015.
Designing and examining e-waste recycling process: methodology and case studies.
Li, Jinhui; He, Xin; Zeng, Xianlai
2017-03-01
Increasing concerns on resource depletion and environmental pollution have largely obliged electrical and electronic waste (e-waste) should be tackled in an environmentally sound manner. Recycling process development is regarded as the most effective and fundamental to solve the e-waste problem. Based on global achievements related to e-waste recycling in the past 15 years, we first propose a theory to design an e-waste recycling process, including measuring e-waste recyclability and selection of recycling process. And we summarize the indicators and tools in terms of resource dimension, environmental dimension, and economic dimension, to examine the e-waste recycling process. Using the sophisticated experience and adequate information of e-waste management, spent lithium-ion batteries and waste printed circuit boards are chosen as case studies to implement and verify the proposed method. All the potential theory and obtained results in this work can contribute to future e-waste management toward best available techniques and best environmental practices.
Evaluation of recycling programmes in household waste collection systems.
Dahlén, Lisa; Lagerkvist, Anders
2010-07-01
A case study and a literature review have been carried out to address the two questions: how can waste flow data from collection systems be interpreted and compared? and which factors are decisive in the results of recycling programmes in household waste collection systems? The aim is to contribute to the understanding of how recycling programmes affect the quantity of waste and sorting activities. It is shown how the results from various waste sorting systems can be interpreted and made comparable. A set of waste flow indicators is proposed, which together with generic system descriptions can facilitate comparisons of different collections systems. The evaluation of collection systems depends on the system boundaries and will always be site-specific to some degree. Various factors are relevant, e.g. environmental objectives, technical function, operating costs, types of recyclable materials collected separately, property-close collection or drop-off systems, economic incentives, information strategies, residential structure, social codes, etc. Kerbside collection of recyclables and weight-based billing led to increased waste sorting activities in the case study. Forty-three decisive factors are listed and discussed.
Contamination by trace elements at e-waste recycling sites in Bangalore, India.
Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke
2009-06-01
The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.
Lau, Winifred Ka-Yan; Chung, Shan-Shan; Zhang, Chan
2013-03-01
A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.
Life cycle assessment of a household solid waste source separation programme: a Swedish case study.
Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik
2011-10-01
The environmental impact of an extended property close source-separation system for solid household waste (i.e., a systems for collection of recyclables from domestic properties) is investigated in a residential area in southern Sweden. Since 2001, households have been able to source-separate waste into six fractions of dry recyclables and food waste sorting. The current system was evaluated using the EASEWASTE life cycle assessment tool. Current status is compared with an ideal scenario in which households display perfect source-separation behaviour and a scenario without any material recycling. Results show that current recycling provides substantial environmental benefits compared to a non-recycling alternative. The environmental benefit varies greatly between recyclable fractions, and the recyclables currently most frequently source-separated by households are often not the most beneficial from an environmental perspective. With optimal source-separation of all recyclables, the current net contribution to global warming could be changed to a net-avoidance while current avoidance of nutrient enrichment, acidification and photochemical ozone formation could be doubled. Sensitivity analyses show that the type of energy substituted by incineration of non-recycled waste, as well as energy used in recycling processes and in the production of materials substituted by waste recycling, is of high relevance for the attained results.
Wibowo, Santoso; Deng, Hepu
2015-06-01
This paper presents a multi-criteria group decision making approach for effectively evaluating the performance of e-waste recycling programs under uncertainty in an organization. Intuitionistic fuzzy numbers are used for adequately representing the subjective and imprecise assessments of the decision makers in evaluating the relative importance of evaluation criteria and the performance of individual e-waste recycling programs with respect to individual criteria in a given situation. An interactive fuzzy multi-criteria decision making algorithm is developed for facilitating consensus building in a group decision making environment to ensure that all the interest of individual decision makers have been appropriately considered in evaluating alternative e-waste recycling programs with respect to their corporate sustainability performance. The developed algorithm is then incorporated into a multi-criteria decision support system for making the overall performance evaluation process effectively and simple to use. Such a multi-criteria decision making system adequately provides organizations with a proactive mechanism for incorporating the concept of corporate sustainability into their regular planning decisions and business practices. An example is presented for demonstrating the applicability of the proposed approach in evaluating the performance of e-waste recycling programs in organizations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Perkins, Devin N; Brune Drisse, Marie-Noel; Nxele, Tapiwa; Sly, Peter D
2014-01-01
Waste from end-of-life electrical and electronic equipment, known as e-waste, is a rapidly growing global problem. E-waste contains valuable materials that have an economic value when recycled. Unfortunately, the majority of e-waste is recycled in the unregulated informal sector and results in significant risk for toxic exposures to the recyclers, who are frequently women and children. The aim of this study was to document the extent of the problems associated with inappropriate e-waste recycling practices. This was a narrative review that highlighted where e-waste is generated, where it is recycled, the range of adverse environmental exposures, the range of adverse health consequences, and the policy frameworks that are intended to protect vulnerable populations from inappropriate e-waste recycling practices. The amount of e-waste being generated is increasing rapidly and is compounded by both illegal exportation and inappropriate donation of electronic equipment, especially computers, from developed to developing countries. As little as 25% of e-waste is recycled in formal recycling centers with adequate worker protection. The health consequences of both direct exposures during recycling and indirect exposures through environmental contamination are potentially severe but poorly studied. Policy frameworks aimed at protecting vulnerable populations exist but are not effectively applied. E-waste recycling is necessary but it should be conducted in a safe and standardized manor. The acceptable risk thresholds for hazardous, secondary e-waste substances should not be different for developing and developed countries. However, the acceptable thresholds should be different for children and adults given the physical differences and pronounced vulnerabilities of children. Improving occupational conditions for all e-waste workers and striving for the eradication of child labor is non-negotiable. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Sustainable WEE management in Malaysia: present scenarios and future perspectives
NASA Astrophysics Data System (ADS)
Rezaul Hasan Shumon, Md; Ahmed, S.
2013-12-01
Technological advances have resulted development of a lot of electronic products for continuously increasing number of customers. As the customer taste and features of these products change rapidly, the life cycles have come down tremendously. Therefore, a large volume of e-wastes are now emanated every year. This scenario is very much predominant in Malaysia. On one hand e-wastes are becoming environmental hazards and affecting the ecological imbalance. On the other, these wastes are remaining still economically valuable. In Malaysia, e-waste management system is still in its nascent state. This paper describes the current status of e-waste generation and recycling and explores issues for future e-waste management system in Malaysia from sustainable point of view. As to draw some factual comparisons, this paper reviews the e-waste management system in European Union, USA, Japan, as a benchmark. Then it focuses on understanding the Malaysian culture, consumer discarding behavior, flow of the materials in recycling, e-waste management system, and presents a comparative view with the Swiss e-waste system. Sustainable issues for e-waste management in Malaysia are also presented. The response adopted so far in collection and recovery activities are covered in later phases. Finally, it investigates the barriers and challenges of e-waste system in Malaysia.
High levels of antimony in dust from e-waste recycling in southeastern China.
Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin
2011-11-01
Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. Copyright © 2011 Elsevier B.V. All rights reserved.
Gao, Shutao; Hong, Jianwen; Yu, Zhiqiang; Wang, Jingzhi; Yang, Guoyi; Sheng, Guoying; Fu, Jiamo
2011-12-01
Polybrominated diphenyl ethers (PBDEs) were determined in 60 surface soils from two e-waste recycling sites (Qingyuan and Guiyu, China) and their surrounding areas to assess the extent and influence of PBDEs from e-waste recycling sites on the surrounding areas. A total of 32 surface soils from industrial areas in South China were also investigated for comparison. The mean concentrations of total PBDEs in the e-waste recycling sites of Guiyu and Qingyuan were 2,909 and 3,230 ng/g dry weight, respectively, whereas the PBDE concentrations decreased dramatically (1-2 orders of magnitude) with increasing distance from the recycling site, suggesting that the e-waste recycling activities were the major source of PBDEs in the surrounding areas. Decabromodiphenyl ethers accounted for 77.0 to 85.8% of total PBDEs in e-waste recycling areas, whereas it accounted for 90.2% in industrial areas. Principal component analysis showed that the major source of PBDEs in e-waste recycling areas were a combination of penta-, octa-, and deca-BDE commercial formulations, whereas deca-BDE commercial formulations were the major source of PBDE congeners in industrial areas. The inventories of PBDEs gave preliminary estimates of 6.22 tons and 13.4 tons for the e-waste recycling areas and industrial areas. The results suggested that significantly higher PBDEs in the e-waste recycling sites have already affected surrounding areas negatively within a relatively large distance. Because of the environmental persistence, bioaccumulation, and toxicity of PBDEs, improving the recycling techniques employed at such facilities and developing e-waste management policies are necessary. Copyright © 2011 SETAC.
Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui
2016-11-01
Waste electrical and electronic equipment (e-waste) is the most rapidly growing waste stream in the world, and the majority of the residues are openly disposed of in developing countries. Waste printed circuit boards (WPCBs) make up the major portion of e-waste, and their informal recycling can cause environmental pollution and health risks. Furthermore, the conventional disposal and recycling techniques-mechanical treatments used to recover valuable metals, including copper-are not sustainable in the long term. Chemical leaching is rapid and efficient but causes secondary pollution. Bioleaching is a promising approach, eco-friendly and economically feasible, but it is slower process. This review considers the recycling potential of microbes and suggests an integrated bioleaching approach for Cu extraction and recovery from WPCBs. The proposed recycling system should be more effective, efficient and both technically and economically feasible.
E-waste bans and U.S. households' preferences for disposing of their e-waste.
Milovantseva, Natalia; Saphores, Jean-Daniel
2013-07-30
To deal with the inadequate disposal of e-waste, many states have instituted bans on its disposal in municipal landfills. However, the effectiveness of e-waste bans does not seem to have been analyzed yet. This paper starts addressing this gap. Using data from a survey of U.S. households, we estimate multivariate logit models to explain past disposal behavior by households of broken/obsolete ("junk") cell phones and disposal intentions for "junk" TVs. Our explanatory variables include factors summarizing general awareness of environmental issues, pro-environmental behavior in the past year, attitudes toward recycling small electronics (for the cell phones model only), socio-economic and demographic characteristics, and the presence of state e-waste bans. We find that California's Cell Phone Recycling Act had a significant and positive impact on the recycling of junk cell phones; however, state disposal bans for junk TVs seem to have been mostly ineffective, probably because they were poorly publicized and enforced. Their effectiveness could be enhanced by providing more information about e-waste recycling to women, and more generally to adults under 60. Given the disappointing performance of policies implemented to-date to enhance the collection of e-waste, it may be time to explore economic instruments such as deposit-refund systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ackah, Michael
2017-11-01
Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.
Relationship between e-waste recycling and human health risk in India: a critical review.
Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui
2016-06-01
Informal recycling of waste (including e-waste) is an emerging source of environmental pollution in India. Polychlorinated biphenyls (PCBs), polychlorinated diphenyl ethers (PBDEs), and heavy metals, among other substances, are a major health concern for workers engaged in waste disposal and processing, and for residents living near these facilities, and are also a detriment to the natural environment. The main objective of this review article was to evaluate the status of these impacts. The review found that, huge quantity of e-waste/waste generated, only a small amount is treated formally; the remainder is processed through the informal sector. We also evaluated the exposure pathways, both direct and indirect, and the human body load markers (e.g., serum, blood, breast milk, urine, and hair), and assessed the evidence for the association between these markers and e-waste exposure. Our results indicated that the open dumping and informal e-waste recycling systems should be replaced by the best available technology and environmental practices, with proper monitoring and regular awareness programs for workers and residents. Further and more detailed investigation in this area is also recommended.
Life cycle assessment of electronic waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jinglan, E-mail: hongjing@sdu.edu.cn; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012; Shi, Wenxiao
Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies havemore » a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)« less
Prevention-intervention strategies to reduce exposure to e-waste.
Heacock, Michelle; Trottier, Brittany; Adhikary, Sharad; Asante, Kwadwo Ansong; Basu, Nil; Brune, Marie-Noel; Caravanos, Jack; Carpenter, David; Cazabon, Danielle; Chakraborty, Paromita; Chen, Aimin; Barriga, Fernando Diaz; Ericson, Bret; Fobil, Julius; Haryanto, Budi; Huo, Xia; Joshi, T K; Landrigan, Philip; Lopez, Adeline; Magalini, Frederico; Navasumrit, Panida; Pascale, Antonio; Sambandam, Sankar; Aslia Kamil, Upik Sitti; Sly, Leith; Sly, Peter; Suk, Ann; Suraweera, Inoka; Tamin, Ridwan; Vicario, Elena; Suk, William
2018-06-27
As one of the largest waste streams, electronic waste (e-waste) production continues to grow in response to global demand for consumer electronics. This waste is often shipped to developing countries where it is disassembled and recycled. In many cases, e-waste recycling activities are conducted in informal settings with very few controls or protections in place for workers. These activities involve exposure to hazardous substances such as cadmium, lead, and brominated flame retardants and are frequently performed by women and children. Although recycling practices and exposures vary by scale and geographic region, we present case studies of e-waste recycling scenarios and intervention approaches to reduce or prevent exposures to the hazardous substances in e-waste that may be broadly applicable to diverse situations. Drawing on parallels identified in these cases, we discuss the future prevention and intervention strategies that recognize the difficult economic realities of informal e-waste recycling.
Life cycle assessment of electronic waste treatment.
Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi
2015-04-01
Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.
E-waste management and resources recovery in France.
Vadoudi, Kiyan; Kim, Junbeum; Laratte, Bertrand; Lee, Seung-Jin; Troussier, Nadège
2015-10-01
There are various issues of concern regarding electronic waste management, such as the toxicity of hazardous materials and the collection, recycling and recovery of useful resources. To understand the fate of electronic waste after collection and recycling, a products and materials flow analysis should be performed. This is a critical need, as material resources are becoming increasingly scarce and recycling may be able to provide secondary sources for new materials in the future. In this study, we investigate electronic waste systems, specifically the resource recovery or recycling aspects, as well as mapping electronic waste flows based on collection data in France. Approximately 1,588,453 t of new electrical and electronic equipment were sold in the French market in 2010. Of this amount, 430,000 t of electronic waste were collected, with the remaining 1,128,444 t remaining in stock. Furthermore, the total recycled amounts were 354,106 t and 11,396 t, respectively. The main electronic waste materials were ferrous metals (37%), plastic (22%), aluminium (12%), copper (11%) and glass (7%). This study will contribute to developing sustainable electronic waste and resource recycling systems in France. © The Author(s) 2015.
How much e-waste is there in US basements and attics? Results from a national survey.
Saphores, Jean-Daniel M; Nixon, Hilary; Ogunseitan, Oladele A; Shapiro, Andrew A
2009-08-01
The fate of used electronic products (e-waste) is of increasing concern because of their toxicity and the growing volume of e-waste. Addressing these concerns requires developing the recycling infrastructure, but good estimates of the volume of e-waste stored by US households are still unavailable. In this context, we make two contributions based on a national random survey of 2136 US households. First, we explain how much e-waste is stored by US households using count models. Significant explanatory variables include age, marital and employment status, ethnicity, household size, previous e-waste recycling behavior, and to some extent education, home ownership, and understanding the consequences of recycling, but neither income nor knowledge of e-waste recycling laws. Second, we estimate that on average, each US household has 4.1 small (
Zeng, Zhijun; Huo, Xia; Zhang, Yu; Xiao, Zhehong; Zhang, Yuling; Xu, Xijin
2018-05-12
Environmental lead exposure leads to various deleterious effects on multiple organs and systems, including the hematopoietic system. To explore the effects of lead exposure on platelet indices in preschool children from an informal, lead-contaminated electronic waste (e-waste) recycling area, we collected venous blood samples from 466 preschool children (331 from an e-waste area (Guiyu) and 135 from a non-e-waste area (Haojiang)). Child blood lead levels (BLLs) were determined by graphite furnace atomic absorption spectrophotometry, while platelet indices were quantified using a Sysmex XT-1800i hematology analyzer. Higher blood lead levels are observed in e-waste lead-exposed preschool children. Significant relationships between high blood lead levels (exceeding current health limits) and elevated platelet count (PLT), plateletcrit (PCT), mean platelet volume (MPV), and platelet large cell ratio (P-LCR) were also uncovered. Furthermore, the median PLT and PCT levels of children from the exposed group both exceeded the respective recommended maximum reference range value, whereas the reference group did not. Location of child residence in Guiyu and BLLs were both risk factors related to platelet indices. These results suggest that high blood lead exposure from e-waste recycling may increase the risk of an amplified coagulation process through the activation of platelets in preschool children.
Mia, Shamim; Uddin, Md Ektear; Kader, Md Abdul; Ahsan, Amimul; Mannan, M A; Hossain, Mohammad Monjur; Solaiman, Zakaria M
2018-05-01
Waste causes environmental pollution and greenhouse gas (GHG) emissions when it is not managed sustainably. In Bangladesh, municipal organic waste (MOW) is partially collected and landfilled. Thus, it causes deterioration of the environment urging a recycle-oriented waste management system. In this study, we propose a waste management system through pyrolysis of selective MOW for biochar production and composting of the remainder with biochar as an additive. We estimated the carbon (C), nitrogen (N), phosphorus (P) and potassium (K) recycling potentials in the new techniques of waste management. Waste generation of a city was calculated using population density and per capita waste generation rate (PWGR). Two indicators of economic development, i.e., gross domestic product (GDP) and per capita gross national income (GNI) were used to adopt PWGR with a projected contribution of 5-20% to waste generation. The projected PWGR was then validated with a survey. The waste generation from urban areas of Bangladesh in 2016 was estimated between 15,507 and 15,888 t day -1 with a large share (∼75%) of organic waste. Adoption of the proposed system could produce 3936 t day -1 biochar blended compost with an annual return of US $210 million in 2016 while it could reduce GHG emission substantially (-503 CO 2 e t -1 municipal waste). Moreover, the proposed system would able to recover ∼46%, 54%, 54% and 61% of total C, N, P and K content in the initial waste, respectively. We also provide a projection of waste generation and nutrient recycling potentials for the year 2035. The proposed method could be a self-sustaining policy option for waste management as it would generate ∼US$51 from each tonne of waste. Moreover, a significant amount of nutrients can be recycled to agriculture while contributing to the reduction in environmental pollution and GHG emission. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluating the feasibility of biological waste processing for long term space missions.
Garland, J L; Alazraki, M P; Atkinson, C F; Finger, B W
1998-01-01
Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.
Evaluating the feasibility of biological waste processing for long term space missions
NASA Technical Reports Server (NTRS)
Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)
1998-01-01
Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.
A comparison of electronic waste recycling in Switzerland and in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha-Khetriwal, Deepali; Kraeuchi, Philipp; Schwaninger, Markus
2005-07-15
Electronic waste, commonly known as e-waste, is comprised of discarded computers, television sets, microwave ovens and other such appliances that are past their useful lives. As managing e-waste becomes a priority, countries are being forced to develop new models for the collection and environmentally sound disposal of this waste. Switzerland is one of the very few countries with over a decade of experience in managing e-waste. India, on the other hand, is only now experiencing the problems that e-waste poses. The paper aims to give the reader insight into the disposal of end-of-life appliances in both countries, including appliance collectionmore » and the financing of recycling systems as well as the social and environmental aspects of the current practices.« less
He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa
2017-04-01
The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.
Tansel, Berrin
2017-01-01
Advancements in technology, materials development, and manufacturing processes have changed the consumer products and composition of municipal solid waste (MSW) since 1960s. Increasing quantities of discarded consumer products remain a major challenge for recycling efforts, especially for discarded electronic products (also referred as e-waste). The growing demand for high tech products has increased the e-waste quantities and its cross boundary transport globally. This paper reviews the challenges associated with increasing e-waste quantities. The increasing need for raw materials (especially for rare earth and minor elements) and unregulated e-waste recycling operations in developing and underdeveloped counties contribute to the growing concerns for e-waste management. Although the markets for recycled materials are increasing; there are major challenges for development of the necessary infrastructure for e-waste management and accountability as well as development of effective materials recovery technologies and product design. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina
2013-11-15
Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well asmore » for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.« less
State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
Zhan, Lu; Xu, Zhenming
2014-12-16
In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.
Requirement analysis to promote small-sized E-waste collection from consumers.
Mishima, Kuniko; Nishimura, Hidekazu
2016-02-01
The collection and recycling of small-sized waste electrical and electronic equipment is an emerging problem, since these products contain certain amounts of critical metals and rare earths. Even if the amount is not large, having a few supply routes for such recycled resources could be a good strategy to be competitive in a world of finite resources. The small-sized e-waste sometimes contains personal information, therefore, consumers are often reluctant to put them into recycling bins. In order to promote the recycling of E-waste, collection of used products from the consumer becomes important. Effective methods involving incentives for consumers might be necessary. Without such methods, it will be difficult to achieve the critical amounts necessary for an efficient recycling system. This article focused on used mobile phones among information appliances as the first case study, since it contains relatively large amounts of valuable metals compared with other small-sized waste electrical and electronic equipment and there are a large number of products existing in the market. The article carried out surveys to determine what kind of recycled material collection services are preferred by consumers. The results clarify that incentive or reward money alone is not a driving force for recycling behaviour. The article discusses the types of effective services required to promote recycling behaviour. The article concludes that securing information, transferring data and providing proper information about resources and environment can be an effective tool to encourage a recycling behaviour strategy to promote recycling, plus the potential discount service on purchasing new products associated with the return of recycled mobile phones. © The Author(s) 2015.
Cong, Xiaowei; Xu, Xijin; Xu, Long; Li, Minghui; Xu, Cheng; Qin, Qilin; Huo, Xia
2018-06-01
Air pollution is a risk factor for cardiovascular disease (CVD), and cardiovascular regulatory changes in childhood contribute to the development and progression of cardiovascular events at older ages. The aim of the study was to investigate the effect of air pollutant exposure on the child sympatho-adrenomedullary (SAM) system, which plays a vital role in regulating and controlling the cardiovascular system. Two plasma biomarkers (plasma epinephrine and norepinephrine) of SAM activity and heart rate were measured in preschool children (n = 228) living in Guiyu, and native (n = 104) and non-native children (n = 91) living in a reference area (Haojiang) for >1 year. Air pollution data, over the 4-months before the health examination, was also collected. Environmental PM 2.5 , PM 10 , SO 2 , NO 2 and CO, plasma norepinephrine and heart rate of the e-waste recycling area were significantly higher than for the non-e-waste recycling area. However, there was no difference in plasma norepinephrine and heart rate between native children living in the non-e-waste recycling area and non-native children living in the non-e-waste recycling area. PM 2.5 , PM 10 , SO 2 and NO 2 data, over the 30-day and the 4-month average of pollution before the health examination, showed a positive association with plasma norepinephrine level. PM 2.5 , PM 10 , SO 2 , NO 2 and CO concentrations, over the 24 h of the day of the health examination, the 3 previous 24-hour periods before the health examination, and the 24 h after the health examination, were related to increase in heart rate. At the same time, plasma norepinephrine and heart rate on children in the high air pollution level group (≤50-m radius of family-run workshops) were higher than those in the low air pollution level group. Our results suggest that air pollution exposure in e-waste recycling areas could result in an increase in heart rate and plasma norepinephrine, implying e-waste air pollutant exposure impairs the SAM system in children. Copyright © 2018 Elsevier Ltd. All rights reserved.
Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
Kaya, Muammer
2016-11-01
This paper reviews the existing and state of art knowledge for electronic waste (e-waste) recycling. Electrical and/or electronic devices which are unwanted, broken or discarded by their original users are known as e-waste. The main purpose of this article is to provide a comprehensive review of e-waste problem, strategies of e-waste management and various physical, chemical and metallurgical e-waste recycling processes, their advantages and disadvantages towards achieving a cleaner process of waste utilization, with special attention towards extraction of both metallic values and nonmetallic substances. The hazards arise from the presence of heavy metals Hg, Cd, Pb, etc., brominated flame retardants (BFRs) and other potentially harmful substances in e-waste. Due to the presence of these substances, e-waste is generally considered as hazardous waste and, if improperly managed, may pose significant human and environmental health risks. This review describes the potential hazards and economic opportunities of e-waste. Firstly, an overview of e-waste/printed circuit board (PCB) components is given. Current status and future perspectives of e-waste/PCB recycling are described. E-waste characterization, dismantling methods, liberation and classification processes are also covered. Manual selective dismantling after desoldering and metal-nonmetal liberation at -150μm with two step crushing are seen to be the best techniques. After size reduction, mainly physical separation processes employing gravity, electrostatic, magnetic separators, froth floatation, etc. have been critically reviewed here for separation of metals and nonmetals, along with useful utilizations of the nonmetallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining. Suitable PCB recycling flowsheets for industrial applications are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives. Recycling technology aims to take today's waste and turn it into conflict-free, sustainable polymetallic secondary resources (i.e. Urban Mining) for tomorrow. Recycling technology must ensure that e-waste is processed in an environmentally friendly manner, with high efficiency and lowered carbon footprint, at a fraction of the costs involved with setting multibillion dollar smelting facilities. Taking into consideration our depleting natural resources, this Urban Mining approach offers quite a few benefits. This results in increased energy efficiency and lowers demand for mining of new raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
AUTOMATED IDENTIFICATION AND SORTING OF RARE EARTH ELEMENTS IN AN E-WASTE RECYCLING STREAM - PHASE I
Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfills and leaching into the water supply. Because of these concerns, e-waste recycling is a rapidly gro...
Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfill and leaching into the water supply. Due to there concerns e-waste recycling is a rapidly growing...
On the effectiveness of a license scheme for E-waste recycling: The challenge of China and India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinkuma, Takayoshi, E-mail: shinkuma@kansai-u.ac.j; Managi, Shunsuke, E-mail: managi@ynu.ac.j
2010-07-15
It is well known that China and India have been recycling centers of WEEE, especially printed circuit boards, and that serious environmental pollution in these countries has been generated by improper recycling methods. After the governments of China and India banned improper recycling by the informal sector, improper recycling activities spread to other places. Then, these governments changed their policies to one of promoting proper recycling by introducing a scheme, under which E-waste recycling requires a license issued by the government. In this paper, the effectiveness of that license scheme is examined by means of an economic model. It canmore » be shown that the license scheme can work effectively only if disposers of E-waste have a responsibility to sell E-waste to license holders. Our results run counter to the idea that international E-waste trade should be banned and provide an alternative solution to the problem.« less
Nixon, Hilary; Saphores, Jean-Daniel M
2007-09-01
The growth of electronic waste (e-waste) is of increasing concern because of its toxic content and low recycling rates. The e-waste recycling infrastructure needs to be developed, yet little is known about people's willingness to fund its expansion. This paper examines this issue based on a 2004 mail survey of California households. Using an ordered logit model, we find that age, income, beliefs about government and business roles, proximity to existing recycling facilities, community density, education, and environmental attitudes are significant factors for explaining people's willingness to pay an advanced recycling fee (ARF) for electronics. Most respondents are willing to support a 1% ARF. Our results suggest that policymakers should target middle-aged and older adults, improve programs in communities with existing recycling centers or in rural communities, and consider public-private partnerships for e-waste recycling programs.
Abedini, Ali R; Atwater, James W; Fu, George Yuzhu
2012-08-01
Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.
Zheng, Jing; Luo, Xiao-Jun; Yuan, Jian-Gang; He, Luo-Yiyi; Zhou, Yi-Hui; Luo, Yong; Chen, She-Jun; Mai, Bi-Xian; Yang, Zhong-Yi
2011-11-01
Heavy metals were measured in hair from occupationally and nonoccupationally exposed populations in an e-waste recycling area and from residents from a control rural town. The levels of five heavy metals were in the following order of Zn > Pb, Cu > Cd > Ni, with the highest levels found in the occupationally exposed workers. The levels of Cd, Pb, and Cu were significantly higher in residents from the e-waste recycling area than in the control area. Elevated Cd, Pb, and Cu contents along with significant positive correlations between them in hair from the e-waste recycling area indicated that these metals were likely to have originated from the e-waste recycling activities. The similarity in heavy metal pattern between children and occupationally exposed workers indicated that children are particularly vulnerable to heavy metal pollution caused by e-waste recycling activities. The increased Cu exposure might be a benefit for the insufficient intake of Cu in the studied area. However, the elevated hair Cd and Pb levels implied that the residents in the e-waste area might be at high risk of toxic metal, especially for children and occupationally exposed workers.
Pradhan, Jatindra Kumar; Kumar, Sudhir
2014-01-01
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.
Packaging waste recycling in Europe: is the industry paying for it?
da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha
2014-02-01
This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and Portugal the industry is paying local authorities more than just the incremental costs of recycling (full costs of selective collection and sorting minus the avoided costs). To provide a more definitive judgment on the fairness of the systems it will be necessary to assess the cost efficiency of waste management operators (and judge whether operators are claiming costs or eliciting "prices"). Copyright © 2013 Elsevier Ltd. All rights reserved.
Asante, Kwadwo Ansong; Agusa, Tetsuro; Biney, Charles Augustus; Agyekum, William Atuobi; Bello, Mohammed; Otsuka, Masanari; Itai, Takaaki; Takahashi, Shin; Tanabe, Shinsuke
2012-05-01
To understand human contamination by multi-trace elements (TEs) in electrical and electronic waste (e-waste) recycling site at Agbogbloshie, Accra in Ghana, this study analyzed TEs and As speciation in urine of e-waste recycling workers. Concentrations of Fe, Sb, and Pb in urine of e-waste recycling workers were significantly higher than those of reference sites after consideration of interaction by age, indicating that the recycling workers are exposed to these TEs through the recycling activity. Urinary As concentration was relatively high, although the level in drinking water was quite low. Speciation analysis of As in human urine revealed that arsenobetaine and dimethylarsinic acid were the predominant As species and concentrations of both species were positively correlated with total As concentration as well as between each other. These results suggest that such compounds may be derived from the same source, probably fish and shellfish and greatly influence As exposure levels. To our knowledge, this is the first study on human contamination resulting from the primitive recycling of e-waste in Ghana. This study will contribute to the knowledge about human exposure to trace elements from an e-waste site in a less industrialized region so far scantly covered in the literature. Copyright © 2012 Elsevier B.V. All rights reserved.
Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future.
Man, Ming; Naidu, Ravi; Wong, Ming H
2013-10-01
The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. Copyright © 2012 Elsevier B.V. All rights reserved.
Electrical and electronic waste: a global environmental problem.
Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya
2007-08-01
The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.
Shared responsibility for managing electronic waste: a case study of Maine, USA.
Wagner, Travis P
2009-12-01
Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine's program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine's program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine's program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste was collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine's program, its positive aspects warrant consideration by other governments.
Kang, Hai-Yong; Schoenung, Julie M
2006-03-01
The objectives of this study are to identify the various techniques used for treating electronic waste (e-waste) at material recovery facilities (MRFs) in the state of California and to investigate the costs and revenue drivers for these techniques. The economics of a representative e-waste MRF are evaluated by using technical cost modeling (TCM). MRFs are a critical element in the infrastructure being developed within the e-waste recycling industry. At an MRF, collected e-waste can become marketable output products including resalable systems/components and recyclable materials such as plastics, metals, and glass. TCM has two main constituents, inputs and outputs. Inputs are process-related and economic variables, which are directly specified in each model. Inputs can be divided into two parts: inputs for cost estimation and for revenue estimation. Outputs are the results of modeling and consist of costs and revenues, distributed by unit operation, cost element, and revenue source. The results of the present analysis indicate that the largest cost driver for the operation of the defined California e-waste MRF is the materials cost (37% of total cost), which includes the cost to outsource the recycling of the cathode ray tubes (CRTs) (dollar 0.33/kg); the second largest cost driver is labor cost (28% of total cost without accounting for overhead). The other cost drivers are transportation, building, and equipment costs. The most costly unit operation is cathode ray tube glass recycling, and the next are sorting, collecting, and dismantling. The largest revenue source is the fee charged to the customer; metal recovery is the second largest revenue source.
High levels of PAH-metabolites in urine of e-waste recycling workers from Agbogbloshie, Ghana.
Feldt, Torsten; Fobil, Julius N; Wittsiepe, Jürgen; Wilhelm, Michael; Till, Holger; Zoufaly, Alexander; Burchard, Gerd; Göen, Thomas
2014-01-01
The informal recycling of electronic waste (e-waste) is an emerging source of environmental pollution in Africa. Among other toxins, polycyclic aromatic hydrocarbons (PAHs) are a major health concern for exposed individuals. In a cross-sectional study, the levels of PAH metabolites in the urine of individuals working on one of the largest e-waste recycling sites of Africa, and in controls from a suburb of Accra without direct exposure to e-waste recycling activities, were investigated. Socioeconomic data, basic health data and urine samples were collected from 72 exposed individuals and 40 controls. In the urine samples, concentrations of the hydroxylate PAH metabolites (OH-PAH) 1-hydroxyphenanthrene (1-OH-phenanthrene), the sum of 2- and 9-hydroxyphenanthrene (2-/9-OH-phenanthrene), 3-hydroxyphenanthrene (3-OH-phenanthrene), 4-hydroxyphenanthrene (4-OH-phenanthrene) and 1-hydroxypyrene (1-OH-pyrene), as well as cotinine and creatinine, were determined. In the exposed group, median urinary concentrations were 0.85 μg/g creatinine for 1-OH-phenanthrene, 0.54 μg/g creatinine for 2-/9-OH-phenanthrene, 0.99 μg/g creatinine for 3-OH-phenanthrene, 0.22 μg/g creatinine for 4-OH-phenanthrene, and 1.33 μg/g creatinine for 1-OH-pyrene, all being significantly higher compared to the control group (0.55, 0.37, 0.63, 0.11 and 0.54 μg/g creatinine, respectively). Using a multivariate linear regression analysis including sex, cotinine and tobacco smoking as covariates, exposure to e-waste recycling activities was the most important determinant for PAH exposure. On physical examination, pathological findings were rare, but about two thirds of exposed individuals complained about cough, and one quarter about chest pain. In conclusion, we observed significantly higher urinary PAH metabolite concentrations in individuals who were exposed to e-waste recycling compared to controls who were not exposed to e-waste recycling activities. The impact of e-waste recycling on exposure to environmental toxins and health of individuals living in the surroundings of e-waste recycling sites warrant further investigation. © 2013 Elsevier B.V. All rights reserved.
Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, William G.; Esparza, Brian P.
2013-07-01
Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less
Status of electronic waste recycling techniques: a review.
Abdelbasir, Sabah M; Hassan, Saad S M; Kamel, Ayman H; El-Nasr, Rania Seif
2018-05-08
The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.
2003-09-01
Pollution Prevention Requirements; E.O. 12873 Federal Acquisition, Recycling , and Waste Prevention; E.O. 12902 Energy Efficiency and Water Conservation... recycled or recovered. The management of solid (non-hazardous) waste on Fairchild AFB includes the collection and disposal of solid wastes and... recyclable material. Demolition and inert wastes generated on Environmental Assessment Anti-Terrorism/Force Protection Gate Projects at Fairchild AFB
Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C
2012-06-30
We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, "formal" and "informal") revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p<0.005), excluding informal dust (p=0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites. Copyright © 2012 Elsevier B.V. All rights reserved.
Shared responsibility for managing electronic waste: A case study of Maine, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Travis P., E-mail: twagner@usm.maine.ed
2009-12-15
Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine's program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine's program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine's program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste wasmore » collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine's program, its positive aspects warrant consideration by other governments.« less
The consumption and recycling collection system of PET bottles: a case study of Beijing, China.
Zhang, Hua; Wen, Zong-Guo
2014-06-01
After studying the recycling collection system of polyethylene terephthalate (PET) bottles worldwide, the authors conducted an intercept survey in Beijing. Two separate questionnaires were issued, one questionnaire to PET bottle consumers and one to PET bottle recyclers. In this study, consumers are defined as people that consume PET-bottled beverages in their daily life. Recyclers were defined as those involved in the collection and recycling of PET bottles. These include scavengers, itinerant waste buyers, small community waste-buying depots, medium/large redemption depots, and recycling companies. In total, 580 surveys were completed, including 461 by consumers and 119 by recyclers. The authors found that consumption of PET bottles in Beijing was nearly 100,000 tonnes in 2012. Age, occupation, gender, and education were identified as significant factors linked to PET-bottled beverage consumption, while income was not a significant factor. 90% Of post-consumed PET bottles were collected by informal collectors (i.e., scavengers and itinerant waste buyers). The survey also found that nearly all PET bottles were reprocessed by small factories that were not designed with pollution control equipment, which allows them to offer higher prices for waste recyclable bottles. As Beijing is trying to build a formal recycling collection system for recyclables, subsidies should be given to the formal recycling sector rather than being charged land use fees, and attention should also be given to informal recyclers that make their living from the collection of recyclables. Informal and formal sectors may work together by employing the scavengers and itinerant waste buyers for the formal sectors. In addition to the recycling of PET bottles, concern should also be allocated to reduce consumption, especially among young people, as they, compared to other groups, have a stronger demand for PET-bottled beverages and will be the main body of society. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ma, Jing; Cheng, Jinping; Wang, Wenhua; Kunisue, Tatsuya; Wu, Minghong; Kannan, Kurunthachalam
2011-02-28
Hair samples collected from e-waste recycling workers (n=23 males, n=4 females) were analyzed to assess occupational exposures to polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) at a large e-waste recycling facility in Taizhou, eastern China. Hair samples from a reference population composed of residents of Shanghai (n=11) were analyzed for comparison. The mean concentration of ∑PBDEs (range, 22.8-1020 ng/g dw; mean, 157 ng/g dw) found in hair samples from e-waste recycling workers was approximately 3 times higher than the mean determined for the reference samples. The congener profiles of PBDEs in hair from e-waste recycling workers were dominated by BDE 209, whereas the profiles in the reference-population samples showed comparable levels of BDE 47 and BDE 209. Total PCDD/F concentrations in hair from e-waste workers (range, 126-5820 pg/g dw; mean, 1670 pg/g dw) were approximately 18-fold greater than the concentrations measured in hair from the reference population. Concentrations of PCDFs were greater than concentrations of PCDDs, in all of the hair samples analyzed (samples from e-waste and non-e-waste sites). Tetrachlorodibenzofurans (TCDFs) were the major homologues in hair samples. Overall, e-waste recycling workers had elevated concentrations of both PBDEs and PCDD/Fs, indicating that they are exposed to high levels of multiple persistent organic pollutants. Copyright © 2010 Elsevier B.V. All rights reserved.
Wu, Chunfa; Luo, Yongming; Deng, Shaopo; Teng, Ying; Song, Jing
2014-02-15
Informal electrical and electronic waste (e-waste) recycling often creates secondary sources of cadmium (Cd) pollution. To characterize the total Cd concentration (Cdtotal) in topsoil and evaluate the threat of Cd in topsoils to shallow groundwater, 187 topsoil samples and 12 shallow groundwater samples were collected in a typical e-waste recycling area in southeast China. Soil organic matter content, soil pH and Cdtotal in topsoil, pH and dissolved Cd concentration in shallow groundwater were measured. Cdtotal in the topsoils showed an inverse distribution trend with soil pH in that high Cd concentrations (and low pH values) were found in the surrounding area of the metal recycling industrial park where there were many family-operated e-waste recycling facilities before the industrial park was established and with low concentrations (and high pH values) in other areas, and they had similar spatial correlation structures. Cd accumulation and acidification were synchronous in topsoils, and soil pH was significantly correlated with Cdtotal in topsoils with low to moderate negative correlation coefficient (r=-0.24), indicating that both of them maybe correlated with informal recycling. The shallow groundwater in the surrounding area of the metal recycling industrial park was seriously contaminated by Cd, and topsoil Cd accumulation and acidification in the surrounding area of e-waste recycling sites significantly increase the risk of shallow groundwater contaminated by Cd. Action is urgently required to control Cd accumulation and acidification by improving the recycling operations of e-wastes in order to reduce the risk of Cd leaching from topsoils and shallow groundwater contamination. Copyright © 2013. Published by Elsevier B.V.
Global perspectives on e-waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widmer, Rolf; Oswald-Krapf, Heidi; Sinha-Khetriwal, Deepali
2005-07-15
Electronic waste, or e-waste, is an emerging problem as well as a business opportunity of increasing significance, given the volumes of e-waste being generated and the content of both toxic and valuable materials in them. The fraction including iron, copper, aluminium, gold and other metals in e-waste is over 60%, while pollutants comprise 2.70%. Given the high toxicity of these pollutants especially when burned or recycled in uncontrolled environments, the Basel Convention has identified e-waste as hazardous, and developed a framework for controls on transboundary movement of such waste. The Basel Ban, an amendment to the Basel Convention that hasmore » not yet come into force, would go one step further by prohibiting the export of e-waste from developed to industrializing countries. Section 1 of this paper gives readers an overview on the e-waste topic-how e-waste is defined, what it is composed of and which methods can be applied to estimate the quantity of e-waste generated. Considering only PCs in use, by one estimate, at least 100 million PCs became obsolete in 2004. Not surprisingly, waste electrical and electronic equipment (WEEE) today already constitutes 8% of municipal waste and is one of the fastest growing waste fractions. Section 2 provides insight into the legislation and initiatives intended to help manage these growing quantities of e-waste. Extended Producer Responsibility (EPR) is being propagated as a new paradigm in waste management. The European Union's WEEE Directive, which came into force in August of 2004, makes it incumbent on manufacturers and importers in EU states to take back their products from consumers and ensure environmentally sound disposal. WEEE management in industrializing countries has its own characteristics and problems, and therefore this paper identifies some problems specific to such countries. The risky process of extracting copper from printed wiring boards is discussed as an example to illustrate the hazards of the e-waste recycling industry in India. The WEEE Knowledge Partnership programme funded by seco (Swiss State Secretariat for Economic Affairs) and implemented by Empa has developed a methodology to assess the prevailing situation, in order to better understand the opportunities and risks in pilot urban areas of three countries-Beijing-China, Delhi-India and Johannesburg-South Africa. The three countries are compared using an assessment indicator system which takes into account the structural framework, the recycling system and its various impacts. Three key points have emerged from the assessments so far: a) e-waste recycling has developed in all countries as a market based activity, b) in China and India it is based on small to medium-sized enterprises (SME) in the informal sector, whereas in South Africa it is in the formal sector, and c) each country is trying to overcome shortcomings in the current system by developing strategies for improvement.« less
Xue, Mianqiang; Li, Jia; Xu, Zhenming
2013-02-01
Electronic waste (e-waste) management is pressing as global production has increased significantly in the past few years and is rising continuously at a fast rate. Many countries are facing hazardous e-waste mountains, most of which are disposed of by backyard recyclers, creating serious threats to public health and ecosystems. Industrialization of state-of-the-art recycling technologies is imperative to enhance the comprehensive utilization of resources and to protect the environment. This article aims to provide an overview of management strategies solving the crucial problems during the process of industrialization. A typical case study of electrostatic separation for recycling waste printed circuit boards was discussed in terms of parameters optimization, materials flow control, noise assessment, risk assessment, economic evaluation and social benefits analysis. The comprehensive view provided by the review could be helpful to the progress of the e-waste recycling industry.
Packaging waste recycling in Europe: Is the industry paying for it?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira da Cruz, Nuno, E-mail: nunocruz@ist.utl.pt; Ferreira, Sandra; Cabral, Marta
Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowedmore » the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the “recycling system” are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and Portugal the industry is paying local authorities more than just the incremental costs of recycling (full costs of selective collection and sorting minus the avoided costs). To provide a more definitive judgment on the fairness of the systems it will be necessary to assess the cost efficiency of waste management operators (and judge whether operators are claiming costs or eliciting “prices”)« less
Electronic waste - an emerging threat to the environment of urban India.
Needhidasan, Santhanam; Samuel, Melvin; Chidambaram, Ramalingam
2014-01-20
Electronic waste or e-waste is one of the emerging problems in developed and developing countries worldwide. It comprises of a multitude of components with valuable materials, some containing toxic substances, that can have an adverse impact on human health and the environment. Previous studies show that India has generated 0.4 million tons of e-waste in 2010 which may increase to 0.5 to 0.6 million tons by 2013-2014. Coupled with lack of appropriate infrastructural facilities and procedures for its disposal and recycling have posed significant importance for e-waste management in India. In general, e-waste is generated through recycling of e-waste and also from dumping of these wastes from other countries. More of these wastes are ending up in dumping yards and recycling centers, posing a new challenge to the environment and policy makers as well. In general electronic gadgets are meant to make our lives happier and simpler, but the toxicity it contains, their disposal and recycling becomes a health nightmare. Most of the users are unaware of the potential negative impact of rapidly increasing use of computers, monitors, and televisions. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal, recycling operations and mechanisms to improve the condition for better environment.
Electronic waste – an emerging threat to the environment of urban India
2014-01-01
Electronic waste or e-waste is one of the emerging problems in developed and developing countries worldwide. It comprises of a multitude of components with valuable materials, some containing toxic substances, that can have an adverse impact on human health and the environment. Previous studies show that India has generated 0.4 million tons of e-waste in 2010 which may increase to 0.5 to 0.6 million tons by 2013–2014. Coupled with lack of appropriate infrastructural facilities and procedures for its disposal and recycling have posed significant importance for e-waste management in India. In general, e-waste is generated through recycling of e-waste and also from dumping of these wastes from other countries. More of these wastes are ending up in dumping yards and recycling centers, posing a new challenge to the environment and policy makers as well. In general electronic gadgets are meant to make our lives happier and simpler, but the toxicity it contains, their disposal and recycling becomes a health nightmare. Most of the users are unaware of the potential negative impact of rapidly increasing use of computers, monitors, and televisions. This review article provides a concise overview of India’s current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal, recycling operations and mechanisms to improve the condition for better environment. PMID:24444377
A review on human health consequences of metals exposure to e-waste in China.
Song, Qingbin; Li, Jinhui
2015-01-01
As the world's the largest dumping ground for e-waste, much of the population in China is exposed to heavy metals due to informal e-waste recycling processes. We reviewed recent studies on body burdens and human health effects of heavy metals from the major e-waste recycling sites in China. The results showed that the residents in the e-waste recycling sites are facing a potential higher daily intake of heavy metals. Moreover, heavy metals had entered subjects' bodies (the collected 5 tissue samples). Additionally,individual exposure to heavy metals in e-waste has also caused negative health outcomes,especially in neonates and children. We also recorded plausible outcomes associated with exposure to e wast (to heavy metals). A precautionary approach toward exposure, especially in neonates and children, therefore seems warranted.
Huang, Yue; Ni, Wenqing; Chen, Yaowen; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng
2015-05-01
The primitive electronic waste (e-waste) recycling has brought a series of environmental pollutants in Guiyu, China. Antimony is one of the important metal contaminants and has aroused the global concerns recently. We aimed to investigate concentrations of antimony in human hair from Guiyu and compared them with those from a control area where no e-waste recycling exists, and assessed the potential risk factors. A total of 205 human hair samples from Guiyu and 80 samples from Jinping were collected for analysis. All volunteers were asked to complete a questionnaire including socio-demographic characteristics and other possible factors related to hair antimony exposure. The concentrations of hair antimony were analyzed using atomic absorption spectrophotometer. Our results indicated that the level of hair antimony in volunteers from Guiyu (median, 160.78; range, 6.99-4412.59 ng/g) was significantly higher than those from Jinping (median, 61.74; range, 2.98-628.43 ng/g). The residents who engaged in e-waste recycling activities in Guiyu had higher hair antimony concentrations than others (P < 0.001). There was no significant difference of hair antimony concentrations among different occupation types in e-waste recycling. Multiple stepwise regression analysis indicated that hair antimony concentrations were associated with education level (β = -0.064), the time of residence in Guiyu (β = 0.112), living house also served as e-waste workshop (β = 0.099), the work related to e-waste (β = 0.169), and smoking (β = 0.018). The elevated hair antimony concentrations implied that the residents in Guiyu might be at high risk of antimony contamination, especially the e-waste recycling workers. Work related to e-waste recycling activities and long-time residence in Guiyu contributed to the high hair antimony exposure.
Impact of informal electronic waste recycling on metal concentrations in soils and dusts.
Ohajinwa, Chimere May; van Bodegom, Peter M; Vijver, Martina G; Peijnenburg, Willie J G M
2018-07-01
Electronic and electrical equipment contains over 1000 different substances, including metals. During informal e-waste recycling some of these substances such as metals, are released into the environment causing environmental pollution. This study assessed the impact of different informal e-waste recycling activities (burning, dismantling, and repairing) on metal concentrations in top soils and various dust. A comparative cross-sectional study design was adopted to assess metal concentrations in top soils and in various dust samples from multiple e-waste recycling sites. Metal concentrations at e-waste recycling sites were compared to the concentrations at control sites in three study locations in Nigeria (Lagos, Ibadan, and Aba). In the three study locations, mean metal concentrations at the e-waste recycling sites exceeded the concentrations at the control sites and the Nigerian standard guideline values by 100 s to 1000 s times. Burning sites showed the highest pollution level, followed by dismantling sites, then repair sites. Our findings show serious environmental and public health concerns. The metal concentrations were also higher than levels reported in other studies at the same locations in Nigeria, indicating that the situation is worsening. This study provides scientific evidence for an urgent need to develop effective strategies to strengthen enforcement of existing e-waste regulations in Nigeria. Copyright © 2018 Elsevier Inc. All rights reserved.
Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua
2008-11-15
Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion and dermal exposure (2.3 and 0.363 pg TEQ/kg bw/day for children and adults, respectively) were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site (0.021 and 0.0053 pg TEQ/kg bw/day for children and adults, respectively), implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations.
Julander, Anneli; Lundgren, Lennart; Skare, Lizbet; Grandér, Margaretha; Palm, Brita; Vahter, Marie; Lidén, Carola
2014-12-01
Electrical and electronic waste (e-waste) contains multiple toxic metals. However, there is currently a lack of exposure data for metals on workers in formal recycling plants. The objective of this study was to evaluate workers' exposure to metals, using biomarkers of exposure in combination with monitoring of personal air exposure. We assessed exposure to 20 potentially toxic metals among 55 recycling workers and 10 office workers at three formal e-waste recycling plants in Sweden. Workers at two of the plants were followed-up after 6 months. We collected the inhalable fraction and OFC (37-mm) fraction of particles, using personal samplers, as well as spot samples of blood and urine. We measured metal concentrations in whole blood, plasma, urine, and air filters using inductively coupled plasma-mass spectrometry following acid digestion. The air sampling indicated greater airborne exposure, 10 to 30 times higher, to most metals among the recycling workers handling e-waste than among the office workers. The exposure biomarkers showed significantly higher concentrations of chromium, cobalt, indium, lead, and mercury in blood, urine, and/or plasma of the recycling workers, compared with the office workers. Concentrations of antimony, indium, lead, mercury, and vanadium showed close to linear associations between the inhalable particle fraction and blood, plasma, or urine. In conclusion, our study of formal e-waste recycling shows that workers performing recycling tasks are exposed to multiple toxic metals. Copyright © 2014. Published by Elsevier Ltd.
40 CFR 60.55c - Waste management plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation of non-recyclable wastes (e.g., polychlorinated biphenyl... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management plan. 60.55c Section...
Systematic characterization of generation and management of e-waste in China.
Duan, Huabo; Hu, Jiukun; Tan, Quanyin; Liu, Lili; Wang, Yanjie; Li, Jinhui
2016-01-01
Over the last decade, there has been much effort to promote the management of e-waste in China. Policies have been affected to prohibit imports and to control pollution. Research has been conducted in laboratories and on large-scale industrial operations. A subsidy system to support sound e-waste recycling has been put in place. However, the handling of e-waste is still a concern in China and the issue remains unresolved. There has been relatively little work to follow up this issue or to interpret continuing problems from the perspective of sustainable development. This paper first provides a brief overview of conventional and emerging environmental pollution in Chinese "famous" e-waste dismantling areas, including Guiyu in Guangdong and Wenling in Zhejiang. Environmentalists have repeatedly proven that these areas are significantly polluted. Importing and backyard recycling are decreasing but are ongoing. Most importantly, no work is being done to treat or remediate the contaminated environmental media. The situation is exacerbated by the rising tide of e-waste generated by domestic update of various electronics. This study, therefore, employs a Sales Obsolescence Model approach to predict the generation of e-waste. When accounting for weight, approximately 8 million tons of e-waste will be generated domestically in 2015, of which around 50% is ferrous metals, followed by miscellaneous plastic (30%), copper metal and cables (8%), aluminum (5%), and others (7%). Of this, 3.6% will come from scrap PCBs and 0.2% from lead CRT glass. While more and more end-of-life electronics have been collected and treated by formal or licensed recyclers in China in terms of our analysis, many of them only have dismantling and separation activities. Hazardous e-wastes, including those from PCBs, CRT glass, and brominated flame retardant (BFR) plastics, have become problematic and probably flow to small or backyard recyclers without environmentally sound management. Traditional technologies are still being used to recover precious metals--such as cyanide method of gold hydrometallurgy--from e-waste. While recovery rates of precious metals from e-waste are above 50%, it has encountered some challenges from environmental considerations. Worse, many critical metals contained in e-waste are lost because the recovery rates are less than 1%. On the other hand, this implies that there is opportunity to develop the urban mine of the critical metals from e-waste.
Children with health impairments by heavy metals in an e-waste recycling area.
Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Huo, Xia
2016-04-01
E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals derived from electronic waste (e-waste), such as, lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), aluminum (Al) and cobalt (Co), differ in their chemical composition, reaction properties, distribution, metabolism, excretion and biological transmission. Our previous studies showed that heavy metal exposure have adverse effects on children's health including lower birth weight, lower anogenital distance, lower Apgar scores, lower current weight, lower lung function, lower hepatitis B surface antibody levels, higher prevalence of attention-deficit/hyperactivity disorder, and higher DNA and chromosome damage. Heavy metals influence a number of diverse systems and organs, resulting in both acute and chronic effects on children's health, ranging from minor upper respiratory irritation to chronic respiratory, cardiovascular, nervous, urinary and reproductive disease, as well as aggravation of pre-existing symptoms and disease. These effects of heavy metals on children's health are briefly discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improper disposal of electronic waste (e-waste) can lead to release of toxic chemicals into the environment and also may pose health risks. Thus, recycling e-waste, instead of landfilling, is considered to be an effective way to reduce pollutant release and exposure. However, lit...
Air emissions and residual ash measurements were made from open, uncontrolled combustion of electronic waste (e-waste) during simulations of practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were separately burned to simulate p...
Modelling the correlations of e-waste quantity with economic increase.
Awasthi, Abhishek Kumar; Cucchiella, Federica; D'Adamo, Idiano; Li, Jinhui; Rosa, Paolo; Terzi, Sergio; Wei, Guoyin; Zeng, Xianlai
2018-02-01
Waste from Electrical and Electronic Equipment (WEEE or e-waste) is regarded as one of the fastest growing waste streams in the world and is becoming an emerging issue owing to adverse consequences on the natural environment and the human health. This research article reveals the presence of a strong linear correlation among global e-waste generation and Gross Domestic Product. The obtained results indicate that the best fit for data can be reached by comparing e-waste collected volumes and GDP PPS. More in detail, an increase of 1000 GDP PPS means an additional 0.27kg of e-waste collected and 0.22kg of e-waste reused/recycled. Furthermore, for each additional citizen, there will be an increase of 7.7kg of e-waste collected and 6.2kg of e-waste reused/recycled. The better collection of e-waste acts an important role concerning the circular economy, and it can be an advantageous approach. Therefore, e-waste could be considered as an opportunity for recycling or recovery of valuable metals (e.g., copper, gold, silver, and palladium), given their significant content in precious metals than in mineral ores. Copyright © 2017 Elsevier B.V. All rights reserved.
Strategic exploration of battery waste management: A game-theoretic approach.
Kaushal, Rajendra Kumar; Nema, Arvind K; Chaudhary, Jyoti
2015-07-01
Electronic waste or e-waste is the fastest growing stream of solid waste today. It contains both toxic substances as well as valuable resources. The present study uses a non-cooperative game-theoretic approach for efficient management of e-waste, particularly batteries that contribute a major portion of any e-waste stream and further analyses the economic consequences of recycling of these obsolete, discarded batteries. Results suggest that the recycler would prefer to collect the obsolete batteries directly from the consumer rather than from the manufacturer, only if, the incentive return to the consumer is less than 33.92% of the price of the battery, the recycling fee is less than 6.46% of the price of the battery, and the price of the recycled material is more than 31.08% of the price of the battery. The manufacturer's preferred choice of charging a green tax from the consumer can be fruitful for the battery recycling chain. © The Author(s) 2015.
Chakraborty, Paromita; Prithiviraj, Balasubramanian; Selvaraj, Sakthivel; Kumar, Bhupander
2016-12-15
Polychlorinated biphenyls (PCBs) were quantified in settled dust collected from informal electronic waste (e-waste) recycling workshops and nearby highways in the urban centers and roadside dust from the suburban industrial belt of Chennai city in India. Further dust samples were subjected to a high resolution field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer (FESEM/EDX) to characterize the shape, size and elemental composition of the dust particles. Geomean of total PCB concentration followed the following order: informal e-waste metal recovery workshops (53ngg -1 )>e-waste dismantling sites (3.6ngg -1 )>nearby highways (1.7ngg -1 )>suburban industrial roadsides (1.6ngg -1 ). In e-waste workshops, tetra, penta and hexa-PCB homologs contributed two third of Σ 26 PCB concentration. Informal e-waste recycling workshops contributed more than 80% concentration of all the PCB congeners loaded in the first principal component. Predominance of dioxin like PCBs, PCB-l14, -118 and -126 in the e-waste metal recovery sites were presumably due to combustion and pyrolytic processes performed during recycling of electrical components. According to the morphology and elemental composition, settled dust from e-waste workshops were irregular particles heavily embedded with toxic metals and industrial roadside dust were distinct angular particles. FESEM revealed that average particle size (in Ferret diameter) increased in the following order: e-waste recycling workshops (0.5μm)
Eguchi, Akifumi; Nomiyama, Kei; Devanathan, Gnanasekaran; Subramanian, Annamalai; Bulbule, Kesav A; Parthasarathy, Peethambaram; Takahashi, Shin; Tanabe, Shinsuke
2012-10-15
We determined the contamination status and accumulation profiles of polychlorinated biphenyls (PCBs), hydroxylated PCB congeners (OH-PCBs), polybrominated diphenyl ethers (PBDEs), hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and bromophenols (BPhs) in serum from e-waste recycling workers and residents near a coastal area in India. Residue levels of penta- to octa-chlorinated PCBs, penta- to octa-chlorinated OH-PCBs, 6MeO-BDE47, 6OH-BDE47, and 2,4,6-tri-BPh in serum from residents living near the coastal area were significantly higher than those in serum from e-waste recycling workers. Residue levels of tri- to tetra-chlorinated PCBs, tri- to tetra-chlorinated OH-PCBs, PBDEs, octa-brominated OH-PBDEs, and tetra-BPhs in serum from e-waste recycling workers were higher than those in serum from residents living near the coastal area. Principal component analysis revealed that residents living near the coastal area and e-waste recycling workers had different serum profiles of chlorinated and brominated compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bi, Xinhui; Simoneit, Bernd R. T.; Wang, ZhenZhen; Wang, Xinming; Sheng, Guoying; Fu, Jiamo
2010-11-01
Electronic waste from across the world is dismantled and disposed of in China. The low-tech recycling methods have caused severe air pollution. Air particle samples from a typical workshop of South China engaged in recycling waste printed circuit boards have been analyzed with respect to chemical constituents. This is the first report on the chemical composition of particulate matter (PM) emitted in an e-waste recycling workshop of South China. The results show that the composition of PM from this recycling process was totally different from other emission sources. Organic matter comprised 46.7-51.6% of the PM. The major organic constituents were organophosphates consisting mainly of triphenyl phosphate (TPP) and its methyl substituted compounds, methyl esters of hexadecanoic and octadecanoic acids, levoglucosan and bisphenol A. TPP and bisphenol A were present at 1-5 orders of magnitude higher than in other indoor and outdoor environments throughout the world, which implies that they might be used as potential markers for e-waste recycling. The elemental carbon, inorganic elements and ions had a minor contribution to the PM (<5% each). The inorganic elements were dominated by phosphorus and followed by crustal elements and metal elements Pb, Zn, Sn, and lesser Cu, Sb, Mn, Ni, Ba and Cd. The recycling of printed circuit boards was demonstrated as an important contributor of heavy metal contamination, particularly Cd, Pb and Ni, to the local environment. These findings suggest that this recycling method represents a strong source of PM associated with pollutants to the ambient atmosphere of an e-waste recycling locale.
Song, Qingbin; Li, Jinhui
2014-12-01
As the world's leading manufacturing country, China has become the largest dumping ground for e-waste, resulting in serious pollution of heavy metals in China. This study reviews recent studies on environmental effects of heavy metals from the e-waste recycling sites in China, especially Taizhou, Guiyu, and Longtang. The intensive uncontrolled processing of e-waste in China has resulted in the release of large amounts of heavy metals in the local environment, and caused high concentrations of metals to be present in the surrounding air, dust, soils, sediments and plants. Though the pollution of many heavy metals was investigated in the relevant researches, the four kinds of heavy metals (Cu, Pb, Cd and Cr) from e-waste recycling processes attracted more attention. The exceedance of various national and international standards imposed negative effects to the environment, which made the local residents face with the serious heavy metal exposure. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations. Copyright © 2014 Elsevier Ltd. All rights reserved.
'Away' is a place: The impact of electronic waste recycling on blood lead levels in Ghana.
Amankwaa, Ebenezer Forkuo; Adovor Tsikudo, Kwame A; Bowman, Jay A
2017-12-01
E-waste recycling remains a major source of livelihood for many urban poor in developing countries, but this economic activity is fraught with significant environmental health risk. Yet, human exposure to the toxic elements associated with e-waste activities remains understudied and not evidently understood. This study investigates the impact of informal e-waste processing on the blood lead levels (BLLs) of e-waste workers and non-e-waste workers (mainly females working in activities that serve the Agbogbloshie e-waste site), and relates their lead exposure to socio-demographic and occupational characteristics. A total of 128 blood samples were analysed for lead levels. Surprisingly, the mean BLL (3.54μg/dL) of non-e-waste workers was slightly higher than that of e-waste workers (3.49μg/dL), although higher BLLs ranges were found among e-waste workers (0.50-18.80μg/dL) than non-e-waste workers (0.30-8.20μg/dL). Workers who engaged in e-waste burning tended to have the highest BLLs. In general, the BLLs are within the ABLES/US CDC reference level of 5μg/dL, although 12.3% of the workers have elevated BLLs, i.e. BLL ≥5μg/dL. The study concludes that the impact of e-waste recycling is not limited to workers alone. Traders and residents within the Agbogbloshie enclave are equally at risk through a range of environmental vectors. This calls for increased public awareness about the effects of human exposure to lead and other toxic elements from e-waste recycling. A key contribution is that government and stakeholder projects for safe e-waste infrastructure should disaggregate the e-waste value chain, recognize differential risk and resist one-size-fits-all strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
The effects of unit pricing system upon household solid waste management: The Korean experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, S.
1999-09-01
Initial effects of adoption of a unit pricing system paired with aggressive recycling programs appear to be substantial. This paper explores the impact of price incentives under the unit pricing system on household solid waste generation and recycling in Korea. The author employs a simultaneous equation model considering the feedback effects between total waste generation and recycling. Estimation results using 3017 Korean household survey data indicate that a rise in waste collection fee induces households to recycle more wastes. However, this effect is partially offset by decreases in source-reduction efforts due to the feedback effects, resulting in relatively lower pricemore » elasticity of demand for solid waste collection services. This implies that household demand for solid waste collection services will not decrease much with additional increases in the collection fee, unless further recycling incentives such as more frequent recyclable pickup services are accompanied.« less
Working conditions and environmental exposures among electronic waste workers in Ghana.
Akormedi, Matthew; Asampong, Emmanuel; Fobil, Julius N
2013-01-01
To investigate and describe informal e-waste recycling and working conditions at Agbogbloshie, Accra, Ghana. We conducted in-depth interviews which were qualitatively analysed from a grounded theory perspective. Workers obtained e-waste from the various residential areas in Accra, then dismantled and burned them in open air to recover copper, aluminum, steel, and other products for sale to customers on-site or at the nearby Agbogbloshie market. The processers worked under unhealthy conditions often surrounded by refuse and human excreta without any form of protective gear and were thus exposed to frequent burns, cuts, and inhalation of highly contaminated fumes. We observed no form of social security/support system for the workers, who formed informal associations to support one another in times of difficulty. e-waste recycling working conditions were very challenging and presented serious hazards to worker health and wellbeing. Formalizing the e-waste processing activities requires developing a framework of sustainable financial and social security for the e-waste workers, including adoption of low-cost, socially acceptable, easy-to-operate, and cleaner technologies that would safeguard the health of the workers and the general public.
E-waste interventions in Ghana.
Asante, Kwadwo Ansong; Pwamang, John A; Amoyaw-Osei, Yaw; Ampofo, Joseph Addo
2016-03-01
Electrical and electronic waste (e-waste) has become an emerging environmental and human health problem in the world in the 21st century. Recently, the developing nations of West Africa (e.g. Ghana and Nigeria) have become a major destination for e-waste worldwide. In Ghana, the e-waste recyclers use primitive methods (mechanical shredding and open burning) to remove plastic insulation from copper cables. This technique can release highly toxic chemicals and severely affect the environment and human health if improperly managed. It is as a result of the adverse impact on human health that some interventions are being made in Ghana to reduce exposure. The present mode of recycling/dismantling, which happens at Agbogbloshie must be replaced by official receiving/recycling centers to be established. Currently, equipment to strip both large and small cables are available in the country via the Blacksmith Institute (USA) and it is expected that the e-waste workers will embrace the use of these machines. This technology will go a long way to help prevent the burning of e-waste and will be replicated in other smaller e-waste centers in the country.
ETV REPORT: AND STATEMENT: HYDROMATIX 786E ION EXCHANGE RINSEWATER RECYCLING SYSTEM
RPA's ETV Program, through the NRMRL, has partnered with the California Dept. of Toxic Substances Contol (DTSCO) under an ETV Pilot to verify pollution prevention, recycling, and waste treatment technologies. This report provides a verification of performance results for the Hydr...
Special Report: E-Waste Management in the United States and Public Health Implications.
Seeberger, Jessica; Grandhi, Radhika; Kim, Stephani S; Mase, William A; Reponen, Tiina; Ho, Shuk-mei; Chen, Aimin
2016-10-01
Electronic waste (e-waste) generation is increasing worldwide, and its management becomes a significant challenge because of the many toxicants present in electronic devices. The U.S. is a major producer of e-waste, although its management practice and policy regulation are not sufficient to meet the challenge. We reviewed e-waste generation, current management practices and trends, policy challenges, potential health impact, and toxicant exposure prevention in the U.S. A large amount of toxic metals, flame retardants, and other persistent organic pollutants exist in e-waste or can be released from the disposal of e-waste (e.g., landfill, incineration, recycling). Landfill is still a major method used to dispose of obsolete electronic devices, and only about half of the states have initiated a landfill ban for e-waste. Recycling of e-waste is an increasing trend in the past few years. There is potential, however, for workers to be exposed to a mixture of toxicants in e-waste and these exposures should be curtailed. Perspectives and recommendations are provided regarding managing e-waste in the U.S. to protect public health, including enacting federal legislation, discontinuing landfill disposal, protecting workers in recycling facilities from toxicant exposure, reducing toxicant release into the environment, and raising awareness of this growing environmental health issue among the public.
Residents' behaviors, attitudes, and willingness to pay for recycling e-waste in Macau.
Song, Qingbin; Wang, Zhishi; Li, Jinhui
2012-09-15
Large quantities of e-waste are presently being generated in Macau, but since recycling facilities and laws on e-waste still need to be developed, most e-waste cannot currently be properly treated. Moreover, little is known about residents' behaviors, attitudes, and their willingness to pay (WTP) for recycling e-waste. These issues are discussed in this study, based on a questionnaire survey on household electronic product usage. In 2010, "Life span completed" was the primary reason respondents abandoned their electronic products, accounting for about 37.97% of responses; the main disposal methods of e-waste in Macau were "Retailers retrieve from consumer" and "Sale to a recycling corporation." While having little understanding of e-waste disposal issues, most residents were still willing to hand their e-waste into the government for centralized collection. In addition, the respondents gave "telephone reservation" as their preferred collection method. Finally, the residents' WTP in Macau was estimated by the logistic regression method. It was found that education level, age and household income were the significant factors affecting residents' WTP. The monthly mean WTP was 20.03MOP (2.50 US dollar) per household, and the annual WTP was approximately 40,185,067 MOP (5,023,133 US dollar) for all of Macau. The results of our study can help managers develop more effective environmental management policies for e-waste disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Environmental pollution of electronic waste recycling in India: A critical review.
Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui
2016-04-01
The rapid growth of the production of electrical and electronic products has meant an equally rapid growth in the amount of electronic waste (e-waste), much of which is illegally imported to India, for disposal presenting a serious environmental challenge. The environmental impact during e-waste recycling was investigated and metal as well as other pollutants [e.g. polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs)] were found in excessive levels in soil, water and other habitats. The most e-waste is dealt with as general or crudely often by open burning, acid baths, with recovery of only a few materials of value. As resulted of these process; dioxins, furans, and heavy metals are released and harmful to the surrounding environment, engaged workers, and also residents inhabiting near the sites. The informal e-waste sectors are growing rapidly in the developing countries over than in the developed countries because of cheapest labor cost and week legislations systems. It has been confirmed that contaminates are moving through the food chain via root plant translocation system, to the human body thereby threatening human health. We have suggested some possible solution toward in which plants and microbes combine to remediate highly contaminated sites. Copyright © 2015 Elsevier Ltd. All rights reserved.
E-waste hazard: The impending challenge.
Pinto, Violet N
2008-08-01
Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan
Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well asmore » dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.« less
Zhong, Yin; Peng, Ping'an; Yu, Zhiqiang; Deng, Haopeng
2010-09-01
The management of electronic wastes (e-wastes) has become a global issue as it may release large quantities of hazardous materials such as heavy metals and brominated flame retardants (BFRs) to the environment. Solvent-based recycling is a newly developed, efficient and environmentally beneficial technology for the removal or recovery of BFRs from e-wastes. However, little is known about the behavior of BFRs in the solvents and to what extent they may be affected by co-existing heavy metals. This study quantified the rates of transformation of hexabromocyclododecane (HBCD), a widely used BFR, in the presence of different solvents (i.e. acetone, methanol or toluene) and metals (i.e. Ni, Cu, Zn, Fe or Al). Our experimental results showed that less than 20% of HBCD was transformed in all pure solvent systems within 24h at 50 degrees C. The presence of Ni greatly increased the transformation of HBCD (45-99%) in these solvent systems, whereas other metals had little or no effect on extraction process. The kinetics study showed that transformation of HBCD in Ni-containing systems followed pseudo-first-order kinetics and that the highest transformation rate constant (1.2+/-0.1h(-1)) of HBCD was recorded in the Ni+acetone system. The formation of HBr and pentabromocyclododecene in the acetone+Ni system suggested that transformation of HBCD proceeded via dehydrobromination. Collectively, these results indicated that acetone should not be applied in the recycling or extraction of HBCD from Ni-rich e-wastes, as debromination of HBCD may occur during these processes, even at mild extraction temperatures. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
E-waste environmental contamination and harm to public health in China.
Xu, Xijin; Zeng, Xiang; Boezen, H Marike; Huo, Xia
2015-06-01
The adverse effects of electronic waste (e-waste) on the human body have stirred up concern in recent years. China is one of the countries that confront serious pollution and human exposure of e-waste, and the majority of the population is exposed to potentially hazardous substances that are derived from informal e-waste recycling processes. This study reviews recent reports on human exposure to e-waste in China, with particular focus on exposure routes (e.g., inhalation and ingestion) and several toxicities of human (e.g., endocrine system, respiratory system, reproductive system, developmental toxicity, neurotoxicity, and genetic toxicity). Pieces of evidence that associate e-waste exposure with human health effects in China are assessed. The role of toxic heavy metals (e.g., lead, cadmium, chromium, mercury, and nickel) and organic pollutants (e.g., polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyl (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated biphenyls (PBBs), polyhalogenated aromatic hydrocarbons (PHAHs), bisphenol A (BPA)) on human health is also briefly discussed.
Iqbal, Mehreen; Syed, Jabir Hussain; Breivik, Knut; Chaudhry, Muhammad Jamshed Iqbal; Li, Jun; Zhang, Gan; Malik, Riffat Naseem
2017-12-05
Informal e-waste recycling activities have been shown to be a major emitter of organic flame retardants (FRs), contributing to both environmental and human exposure to laborers at e-waste recycling sites in some West African countries, as well as in China and India. The main objective of this study was to determine the levels of selected organic FRs in both air and soil samples collected from areas with intensive informal e-waste recycling activities in Karachi, Pakistan. Dechlorane Plus (DP) and "novel" brominated flame retardants (NBFRs) were often detected in high concentrations in soils, while phosphorus-based FRs (OPFRs) dominated atmospheric samples. Among individual substances and substance groups, decabromodiphenyl ether (BDE-209) (726 ng/g), decabromodiphenyl ethane (DBDPE) (551 ng/g), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) (362 ng/g), and triphenyl-phosphate (∑TPP) (296 ng/g) were found to be prevalent in soils, while OPFR congeners (5903-24986 ng/m 3 ) were prevalent in air. The two major e-waste recycling areas (Shershah and Lyari) were highly contaminated with FRs, suggesting informal e-waste recycling activities as a major emission source of FRs in the environment in Karachi City. However, the hazards associated with exposure to PM 2.5 appear to exceed those attributed to exposure to selected FRs via inhalation and soil ingestion.
Modular life cycle assessment of municipal solid waste management.
Haupt, M; Kägi, T; Hellweg, S
2018-05-31
Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material substitution as key variables. In countries with advanced waste management systems such as Switzerland, there is limited improvement potential with further increases in recycling rates. In these cases, the focus of political measures should be laid on (i) the utilization of secondary materials in applications where they replace high-impact primary production, and (ii) an increased recovery of energy in waste-to-energy plants. Copyright © 2018. Published by Elsevier Ltd.
Environmental impacts and benefits of state-of-the-art technologies for E-waste management.
Ikhlayel, Mahdi
2017-10-01
This study aims to evaluate the environmental impacts and benefits of state-of-the-art technologies for proper e-waste handling using Jordan as a case study. Life Cycle Assessment (LCA) was employed to evaluate five advanced management systems represent state-of-the-art treatment technologies, including sanitary landfilling; proper recycling of metals, materials, and precious metals (PMs); and incineration of plastic and the hazardous portion of printed circuit boards (PCBs). Six e-waste products that contribute the most to the e-waste in Jordan were included in the assessment of each scenario, which resulted in 30 total cases of e-waste management. The findings indicated that landfills for the entire components of the e-waste stream are the worst option and should be avoided. The most promising e-waste management scenario features integrated e-waste processes based on the concept of Integrated Waste Management (IWM), including recycling materials such as non-PMs and PMs, incinerating plastic and the hazardous content of PCBs using the energy recovered from incineration, and using sanitary landfills of residues. For this scenario, the best environmental performance was obtained for the treatment of mobile phones. Incineration of the portion of hazardous waste using energy recovery is an option that deserves attention. Because scenario implementation depends on more than just the environmental benefits (e.g., economic cost and technical aspects), the study proposes a systematic approach founded on the IWM concept for e-waste management scenario selection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Kelsea A., E-mail: kschum@udel.edu; Schumacher, Thomas, E-mail: schumact@udel.edu; Agbemabiese, Lawrence, E-mail: agbe@udel.edu
2014-11-15
Highlights: • We modeled the obsolescence of cathode ray tube devices in the State of Delaware. • 411,654 CRT units or ∼16,500 metric tons have been recycled in Delaware since 2002. • The peak of the CRT obsolescence in Delaware passed by 2012. • The Delaware average CRT recycling rate between 2002 and 13 was approximately 27.5%. • CRTs will continue to infiltrate the system likely until 2033. - Abstract: The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream.more » However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware’s e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033.« less
Zheng, Guina; Xu, Xijin; Li, Bin; Wu, Kusheng; Yekeen, Taofeek Akangbe; Huo, Xia
2013-01-01
The informal processing of electronic waste or e-waste contributes to the release of high concentrations of transition metals into the ambient air. The damage caused by chromium, nickel and manganese exposure on lung function in school children from an e-waste recycling area and the role of oxidative stress in this process were evaluated. We recruited school children (n=144, 8-13 years) from an e-waste recycling area in China compared with the control. Spirometry was performed to assess lung function status. The blood levels of chromium, nickel and manganese, antioxidant enzyme activities and lipid peroxidation of the subjects were examined. The concentrations of blood manganese (bMn) and serum nickel (sNi) in the exposed group were significantly higher than those in controls for all three age groups. The forced vital capacity value of boys aged 8-9 years was significantly lower than that of the control. Malondialdehyde levels and superoxide dismutase activities increased significantly in children aged 8-9 years from e-waste environment, but catalase activities declined. School children from an e-waste recycling area were exposed to high levels of the three transition metals. The accumulation of bMn and sNi may be risk factors for oxidative damage and decreased pulmonary function.
Kumar, Anil; Saini, Harvinder Singh; Kumar, Sudhir
2018-02-01
Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC 50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.
Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam
2009-02-01
Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of CIPAHs during e-waste recycling operations. Dioxin-like toxic equivalency quotients (TEQs) for CIPAHs and PAHs in samples were calculated on the basis of relative potencies reported for CIPAHs and PAHs. The highest mean TEQ concentrations of CIPAHs (518 pg-TEQ/g) were found for workshop-floor dust, followed by leaves (361 pg-TEQ/g), electronic shredder waste (308 pg-TEQ/g), soil from the chemical industrial complex (146 pg-TEQ/g), and soil from the sites of the e-waste recycling facility (92.3 pg-TEQ/g). With one exception, the floor dust samples, the TEQ concentrations of CIPAHs found in multiple environmental matrices in this study were higher than the TEQ concentrations of PCDD/Fs in the same samples reported in our earlier study.
E-waste scenario in India, its management and implications.
Wath, Sushant B; Dutt, P S; Chakrabarti, T
2011-01-01
Electronic waste or E-waste comprises of old, end-of-life electronic appliances such as computers, laptops, TVs, DVD players, refrigerators, freezers, mobile phones, MP3 players, etc., which have been disposed of by their original users. E-waste contains many hazardous constituents that may negatively impact the environment and affect human health if not properly managed. Various organizations, bodies, and governments of many countries have adopted and/or developed the environmentally sound options and strategies for E-waste management to tackle the ever growing threat of E-waste to the environment and human health. This paper presents E-waste composition, categorization, Global and Indian E-waste scenarios, prospects of recoverable, recyclable, and hazardous materials found in the E-waste, Best Available Practices, recycling, and recovery processes followed, and their environmental and occupational hazards. Based on the discussion, various challenges for E-waste management particularly in India are delineated, and needed policy interventions were discussed.
E-waste hazard: The impending challenge
Pinto, Violet N.
2008-01-01
Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981
Evaluating the progress of the UK's Material Recycling Facilities: a mini review.
Ali, Muhammad; Courtenay, Peter
2014-12-01
Over the last 15 years, the UK has made great strides in reducing the amount of waste being sent to landfill while also increasing the amount of waste being recycled. The key drivers for this change are the European Union Landfill Directive (1999/31/EC) and the UK Landfill Tax. However, also playing their part are the growing numbers of Material Recycling Facilities (MRFs), which process recyclables. This mini review evaluates the current state of MRFs in the UK, through extensive secondary research, and detailed primary data analysis focussing on MRFs located in South-East England, UK. This study also explores technologies that aim to generate energy from waste, including Waste-to-Energy (WtE) and Refuse-derived Fuel (RDF) facilities. These facilities can have a huge appetite for waste, which can be detrimental to recycling efforts as some of the waste being sent there should be recycled. It was found that the waste sent to a typical UK MRF would recycle around 92% of materials while 6% was sent to energy recovery and the remaining 2% ended up in landfill. Therefore, the total estimated rejected or non-compliance materials from MRFs are around 8%. A key recommendation from this study is to adopt a strategy to combine MRFs with a form of energy generation, such as WtE or RDF. This integrated approach would ensure any residual waste arising from the recycling process can be used as a sustainable fuel, while also increasing the recycling rates. © The Author(s) 2014.
40 CFR 264.1050 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a “90-day... provisions of 40 CFR 262.34(a) (i.e., a “90-day” tank or container) and is not a recycling unit under the...
40 CFR 264.1050 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a “90-day... provisions of 40 CFR 262.34(a) (i.e., a “90-day” tank or container) and is not a recycling unit under the...
40 CFR 264.1050 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a “90-day... provisions of 40 CFR 262.34(a) (i.e., a “90-day” tank or container) and is not a recycling unit under the...
40 CFR 264.1050 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a “90-day... provisions of 40 CFR 262.34(a) (i.e., a “90-day” tank or container) and is not a recycling unit under the...
40 CFR 264.1050 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a “90-day... provisions of 40 CFR 262.34(a) (i.e., a “90-day” tank or container) and is not a recycling unit under the...
Waste printed circuit board recycling techniques and product utilization.
Hadi, Pejman; Xu, Meng; Lin, Carol S K; Hui, Chi-Wai; McKay, Gordon
2015-01-01
E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly "recycling" has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Yan; Wu, Xiaowei; Hou, Minmin; Zhao, Hongxia; Chen, Ruize; Luo, Chunling; Zhang, Gan
2017-02-01
The diurnal atmospheric concentrations of polychlorinated biphenyls (PCBs) were investigated at an abandoned e-waste recycling site in South China during winter and summer. Total PCB concentrations during winter and summer were 27.6-212 and 368-1704pg/m 3 in the particulate phase and 270-697 and 3000-15,500pg/m 3 in the gaseous phase, respectively. Both gaseous and particulate PCB concentrations and compositions exhibited significant difference between winter and summer samples, but no diurnal variations during the measurement period. The correlation analysis between PCB concentrations and meteorological conditions, including atmospheric temperature, humidity, and mixing layer height, suggested that the seasonal variability of atmospheric PCB concentrations was strongly temperature-dependent, while the diurnal variability was probably source-dependent. The temperature-driven variations can also be proved by the significant linear correlation between ln P and 1/T in the Clausius-Clapeyron plot. Although government has implemented controls to reduce e-waste pollution, both the relatively high concentrations of PCBs and the diurnal variation in the air suggested that emissions from occasional e-waste recycling activities may still exist in this recycling area. These results underline the importance of continuing e-waste recycling site management long after abandonment. Copyright © 2016 Elsevier B.V. All rights reserved.
Multiple use of waste catalysts with and without regeneration for waste polymer cracking.
Salmiaton, A; Garforth, A A
2011-06-01
Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidized bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C(2)-C(7)) remained fairly constant. For the first time, these results indicate that "waste" FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A
2015-11-01
Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimation of future outflows of e-waste in India.
Dwivedy, Maheshwar; Mittal, R K
2010-03-01
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated. Copyright 2009 Elsevier Ltd. All rights reserved.
Estimation of future outflows of e-waste in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedy, Maheshwar, E-mail: dwivedy_m@bits-pilani.ac.i; Mittal, R.K.
2010-03-15
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planningmore » for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.« less
Chen, Xi; Yao, Xiaoyan; Yu, Chunna; Su, Xiaomei; Shen, Chaofeng; Chen, Chen; Huang, Ronglang; Xu, Xinhua
2014-04-01
Soil pollution by polychlorinated biphenyls (PCBs) arising from the crude disposal and recycling of electronic and electrical waste (e-waste) is a serious issue, and effective remediation technologies are urgently needed. Nanoscale zerovalent iron (nZVI) and bimetallic systems have been shown to promote successfully the destruction of halogenated organic compounds. In the present study, nZVI and Pd/Fe bimetallic nanoparticles synthesized by chemical deposition were used to remove 2,2',4,4',5,5'-hexachlorobiphenyl from deionized water, and then applied to PCBs contaminated soil collected from an e-waste recycling area. The results indicated that the hydrodechlorination of 2,2',4,4',5,5'-hexachlorobiphenyl by nZVI and Pd/Fe bimetallic nanoparticles followed pseudo-first-order kinetics and Pd loading was beneficial to the hydrodechlorination process. It was also found that the removal efficiencies of PCBs from soil achieved using Pd/Fe bimetallic nanoparticles were higher than that achieved using nZVI and that PCBs degradation might be affected by the soil properties. Finally, the potential challenges of nZVI application to in situ remediation were explored.
A production-theory-based framework for analysing recycling systems in the e-waste sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Mario
2005-07-15
Modern approaches in the production theory of business and management economics propose that objects (e.g. materials) be divided into good, bad or neutral. In transformation processes such as occur in production or recycling this makes it possible to distinguish stringently between the economic revenue of a process and the economic and ecological expenditures for it. This approach can be transferred to entire systems of processes in order to determine the system revenue and the system expenditure. Material flow nets or graphs are used for this purpose. In complex material flow systems it becomes possible to calculate not only the costs,more » but also the direct and indirect environmental impacts of an individual process or a system revenue (for example a product or the elimination of waste) consistently. The approach permits a stringent analysis as well as different analysis perspectives of a material flow system. It is particularly suitable for closed-loop economic systems in which material backflows occur. With the aid of an example developed jointly with Hewlett Packard Europe, the paper outlines how this approach can be employed in the field of e-waste management.« less
Zhu, Zongmin; Han, Zhixuan; Bi, Xiangyang; Yang, Wenlin
2012-09-01
Environmental contamination due to uncontrolled e-waste recycling is an emerging global problem. The aim of this study is to test the applicability of magnetic methods for detecting the metal pollutants emitted from e-waste recycling activities. Dust samples collected from a typical e-waste recycling region in Guiyu, Guangdong Province, China, were investigated using magnetic, geochemical, micro-morphological and mineralogical analysis. The values of mass-specific susceptibility (χ) and saturation isothermal remanent magnetization (SIRM) in dusts from e-waste recycling impacted areas ranged from 101 to 636×10(-8) m(3) kg(-1) and from 10.5 to 85.2×10(-3) Am(2) kg(-1), respectively. There was a significant correlation between SIRM and χ (r(2)=0.747, p<0.001), indicating that ferrimagnetic minerals were dominating χ in the dust samples. The values of χ(fd)% varied from 2.6 to 4.6% with a mean of 3.4%, which suggested that magnetic carriers in the dusts are predominately coarse-grained particles. Two shapes of magnetic particles, spherule (10-150 μm) and angular-shaped particles (30-300 μm), were identified by scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analyses. κ-T curves, magnetic hysteresis loops and X-ray diffraction (XRD) analysis indicated that these magnetic particles were magnetite and goethite. There were significant correlations between SIRM and heavy metals (especially Cd, Co, Fe, Ni and Zn) as well as the Tomlinson pollution load index (PLI) of the dust, indicating that SIRM can be used as an efficient proxy for metal pollution in the e-waste recycling impacted area. Copyright © 2012 Elsevier B.V. All rights reserved.
He, Chun-Tao; Zheng, Xiao-Bo; Yan, Xiao; Zheng, Jing; Wang, Mei-Huan; Tan, Xiao; Qiao, Lin; Chen, She-Jun; Yang, Zhong-Yi; Mai, Bi-Xian
2017-06-01
The concentrations of several organic contaminants (OCs) and heavy metals were measured in indoor dust from e-waste recycling, rural, and urban areas in South China to illustrate the spatial characteristics of these pollutants and to further evaluate human exposure risks. The median concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), and dechlorane plus (DPs) were 38.6-3560, 2360-30,100, 665-2720, and 19.5-1860ng/g, while the median concentrations of Cd, Pb, Cu, Cr, and Zn were 2.46-40.4, 206-1380, 217- 1200, 25.3-134, and 176-212μg/g in indoor dust. The levels of all pollutants, except Zn, in dust from the e-waste recycling area were significantly higher than those from the other areas. Cd, Pb, and most OCs exhibited similar pollution patterns in the three areas, indicating that e-waste recycling activities are the major pollution source. In contrast, Cu, Cr, Zn, and penta-BDE are likely derived from household products in the rural and urban areas. The highest estimated daily intakes (EDIs) of PCBs, PBDEs, DBDPE, and DPs were 0.15-163, 3.97-1470, 1.26-169, and 0.11-134ng/kg bw/day for toddlers and adults. The highest EDIs of BDE 209 and Pb in toddlers in the e-waste recycling area were 16% and 18 times higher than the reference doses, indicating the high exposure risk of these pollutants in the e-waste recycling area. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Yue; Duan, Yan-Ping; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling
2014-06-01
Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ18PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1-2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Worldwide Emerging Environmental Issues Affecting the U.S. Military. November 2005 Report
2005-11-01
rapid development. At the program’s launch festivity, the need for developing an international e- waste recycling systems along with transparent...electronic equipment. Sources: Roadmap Set for the Environmentally Sound Management of Electronic Waste in Asia-Pacific under the Basel Convention...34 Tom Dunne, of the agency’s Office of Solid Waste and Emergency Response, wrote in an e-mail message. 4.5 Sunk Weapons Represent a Growing
Export of electronics equipment waste.
LaDou, Joseph; Lovegrove, Sandra
2008-01-01
Electronics equipment waste ("e-waste") includes discarded computers, computer monitors, television sets, and cell phones. Less than 10% of e-waste is currently recycled. The United States and other developed countries export e-waste primarily to Asia, knowing it carries a real harm to the poor communities where it will be discarded. A 2006 directive bans the use of lead, mercury, cadmium, hexavalent chromium, and certain brominated flame retardants in most electronics products sold in the EU. A similar directive facilitates the development and design of clean electronics products with longer lifespans that are safe and easy to repair, upgrade, and recycle, and will not expose workers and the environment to hazardous chemicals. These useful approaches apply only regionally and cover only a fraction of the hazardous substances used in electronics manufacture, however. There is an urgent need for manufacturers of electronics products to take responsibility for their products from production to end-of-life, and for much tighter controls both on the transboundary movement of e-waste and on the manner in which it is recycled. Manufacturers must develop clean products with longer lifespans that are safe and easy to repair, upgrade, and recycle and will not expose workers and the environment to hazardous chemicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xudong, E-mail: chen.xudong@nies.go.jp; National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506; Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601
Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developingmore » countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.« less
Leung, Anna O W; Duzgoren-Aydin, Nurdan S; Cheung, K C; Wong, Ming H
2008-04-01
The recycling of printed circuit boards in Guiyu, China, a village intensely involved in e-waste processing, may present a significant environmental and human health risk. To evaluate the extent of heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn) contamination from printed circuit board recycling, surface dust samples were collected from recycling workshops, adjacent roads, a schoolyard, and an outdoor food market. ICP-OES analyses revealed elevated mean concentrations in workshop dust (Pb 110,000, Cu 8360, Zn 4420, and Ni 1500 mg/kg) and in dust of adjacent roads (Pb 22,600, Cu 6170, Zn 2370, and Ni 304 mg/kg). Lead and Cu in road dust were 330 and 106, and 371 and 155 times higher, respectively, than non e-waste sites located 8 and 30 km away. Levels at the schoolyard and food market showed that public places were adversely impacted. Risk assessment predicted that Pb and Cu originating from circuit board recycling have the potential to pose serious health risks to workers and local residents of Guiyu, especially children, and warrants an urgent investigation into heavy metal related health impacts. The potential environmental and human health consequences due to uncontrolled e-waste recycling in Guiyu serves as a case study for other countries involved in similar crude recycling activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Kannan, K.; Cheng, J.
2008-11-15
Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less
Chen, Zhiliang; Zhang, Jianqiang; Liu, Minchao; Wu, Yingxin; Yuan, Zhihui
2017-08-24
E-waste is a growing concern around the world and varieties of abandoned E-waste recycling sites, especially in urban area, need to remediate immediately. The impacts of dairy-manure-derived biochars (BCs) on the amelioration of soil properties, the changes in the morphologies as well as the mobility of metals were studied to test their efficacy in immobilization of metals for a potential restoration of vegetation landscape in abandoned E-waste recycling site. The amendment with BCs produced positive effects on bioavailability and mobility reduction for Pb, Cd, Zn and Cu depending on BC ratio and incubation time. The BCs promoted the transformation of species of heavy metals to a more stable fraction, and the metals concentrations in Toxicity Characteristic Leaching Procedure extract declined significantly, especially Pb and Cu. Besides, the BCs ameliorated the substrate with increasing the soil pH, cations exchangeable capacity and available phosphorous, which suggested BC as a potential amendment material for abandoned E-waste recycling sites before restoration of vegetation landscape. Generally, the BC modified by alkaline treatment has a higher efficacy, probably due to increase of specific surface area and porosity as well as the functional groups after alkaline treatment.
Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers
Burns, Katrina N.; Sun, Kan; Fobil, Julius N.; Neitzel, Richard L.
2016-01-01
Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people’s livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen’s Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman’s ρ 0.46, p < 0.001). A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01) even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage. PMID:26797626
Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers.
Burns, Katrina N; Sun, Kan; Fobil, Julius N; Neitzel, Richard L
2016-01-19
Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people's livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen's Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman's ρ 0.46, p < 0.001). A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01) even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrild, Hanna; Larsen, Anna W., E-mail: awla@env.dtu.dk; Christensen, Thomas H.
Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the casemore » if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.« less
Wang, Jianbo; Xu, Zhenming
2017-03-15
up to now, the recycling of e-waste should be developed towards more depth and refinement to promote industrial production of e-waste resource recovery. in the present study, the recycling of aluminum electrolytic capacitors (AECs) from waste printed circuit boards (WPCBs) is focused on. First of all, AECs are disassembled from WPCBs by a self-designed machine; meanwhile, the disassembled AECs are subjected to an integrated process, involving heating treatment, crushing, sieving, and magnetic separating, to recover aluminum and iron; finally, the off-gas and residue generated during the aforementioned processes are analyzed to evaluate environmental risks. The results indicate that 96.52% and 98.68% of aluminum and iron, respectively, can be recovered from AECs under the optimal condition. The off-gas generated during the process is mainly composed of elements of C, H, and O, indicating that the off-gas is non-toxic and could be re-utilized as clean energy source. The residue according with toxicity characteristics leaching standard can be landfilled safely in sanitary landfill site. The present study provides an environmentally friendly and industrial application potential strategy to recycle AECs to promote e-waste recycling industry. Copyright © 2016 Elsevier B.V. All rights reserved.
40 CFR 35.917-5 - Public participation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... identification and evaluation of locations for waste water treatment facilities and of alternative treatment technologies and systems including those which recycle and reuse waste water (including sludge), use land... Public participation. (a) General. Consistent with section 101(e) of the Clean Water Act and 40 CFR part...
40 CFR 35.917-5 - Public participation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... identification and evaluation of locations for waste water treatment facilities and of alternative treatment technologies and systems including those which recycle and reuse waste water (including sludge), use land... Public participation. (a) General. Consistent with section 101(e) of the Clean Water Act and 40 CFR part...
40 CFR 35.917-5 - Public participation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... identification and evaluation of locations for waste water treatment facilities and of alternative treatment technologies and systems including those which recycle and reuse waste water (including sludge), use land... Public participation. (a) General. Consistent with section 101(e) of the Clean Water Act and 40 CFR part...
STUDY ON THE RECYCLING SYSTEM OF WASTE PLASTICS AND MIXED PAPER FROM A LONG-TERM PERSPECTIVE
NASA Astrophysics Data System (ADS)
Fujii, Minoru; Fujita, Tsuyoshi; Chen, Xudong; Ohnishi, Satoshi; Osako, Masahiro; Moriguchi, Yuichi; Yamaguchi, Naohisa
Plastics and mixed paper in municipal solid waste are valuable resources with high calorific value. However, the recycling cost to utilize them tends to be expensive. In addition, recycling system has to be consistent with the reduce of wastes on which should be put higher-priority to lower carbon emission and save resources in the long term. In this paper, we proposed a recycling system (smart recycling system) which consists of a local center an d existing facilities in arterial industries. In the local center, collected waste plastics and mixed paper from household are processed on the same line into a form suitable for transportation and handling in a facility of arterial in dustry which can utilize those wastes effectively. At the same time, a part of plastics with high quality is processed into a recycled resin in the center. It was suggested that, by utilizing existing facilities in arterial industries which have enough and flexible capacity to accept those wastes, the system can be a robust system even if the amount of wastes generation fluctuates widely. The effect of CO2 reduction and cost by installing the system were calculated and it was estimated that 3.5 million ton of additional annual CO2 reduction could be brought in Tokyo and surrounding three prefectures without co nsiderable increase in cost.
Emergy analysis of the recycling options for construction and demolition waste.
Yuan, Fang; Shen, Li-yin; Li, Qi-ming
2011-12-01
Construction and demolition (C&D) waste is becoming a major contributor to environmental pollution. In Shanghai, China, the quantity of C&D waste is 2.11E+07 t/yr, which accounts for 45% of the total quantity of solid waste. There has been a growing promotion of recycling C&D waste as an effective way to solve this waste problem. However, the evaluation of the efficiency of recycling C&D waste as a potential source of resources is largely based on traditional economic analysis. The economic analysis emphasizes money instead of the harmony between economic benefit and environmental effects. There is a need for a new strategic approach to investigate the efficiency of recycling C&D waste to achieve the integration between economic, social and environmental effects. Emergy theory can be employed to analyze different recycling options for C&D waste. With reference to the Chinese construction industry, this paper demonstrates that the close-loop recycling option is better than the open-loop recycling option for C&D waste in terms of the integration of social, environmental and sustainable aspects. To evaluate different technology solutions for C&D waste recycling, the emergy theory and method is not limited to a cost-benefit balance but can include economic, social, environmental and sustainable effects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cost effectiveness of recycling: A systems model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonjes, David J., E-mail: david.tonjes@stonybrook.edu; Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000; Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044
Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have alsomore » found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.« less
Tue, Nguyen Minh; Takahashi, Shin; Suzuki, Go; Isobe, Tomohiko; Viet, Pham Hung; Kobara, Yuso; Seike, Nobuyasu; Zhang, Gan; Sudaryanto, Agus; Tanabe, Shinsuke
2013-01-01
This study investigated the occurrence of polychlorinated biphenyls (PCBs), and several additive brominated flame retardants (BFRs) in indoor dust and air from two Vietnamese informal e-waste recycling sites (EWRSs) and an urban site in order to assess the relevance of these media for human exposure. The levels of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenyl ethane (DBDPE) in settled house dust from the EWRSs (130-12,000, 5.4-400, 5.2-620 and 31-1400 ng g(-1), respectively) were significantly higher than in urban house dust but the levels of PCBs (4.8-320 ng g(-1)) were not higher. The levels of PCBs and PBDEs in air at e-waste recycling houses (1000-1800 and 620-720 pg m(-3), respectively), determined using passive sampling, were also higher compared with non-e-waste houses. The composition of BFRs in EWRS samples suggests the influence from high-temperature processes and occurrence of waste materials containing older BFR formulations. Results of daily intake estimation for e-waste recycling workers are in good agreement with the accumulation patterns previously observed in human milk and indicate that dust ingestion contributes a large portion of the PBDE intake (60%-88%), and air inhalation to the low-chlorinated PCB intake (>80% for triCBs) due to their high levels in dust and air, respectively. Further investigation of both indoor dust and air as the exposure media for other e-waste recycling-related contaminants and assessment of health risk associated with exposure to these contaminant mixtures is necessary. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chan, Janet Kit Yan; Wong, Ming H
2013-10-01
This paper reviews the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in different environmental media, human body burdens and health risk assessment results at e-waste recycling sites in China. To provide an indication of the seriousness of the pollution levels in the e-waste recycling sites in China, the data are compared with guidelines and available existing data for other areas. The comparison clearly shows that PCDD/Fs derived from the recycling processes lead to serious pollution in different environmental compartments (such as air, soil, sediment, dust and biota) and heavy body burdens. Of all kinds of e-waste recycling operations, open burning of e-waste and acid leaching activities are identified as the major sources of PCDD/Fs. Deriving from the published data, the estimated total exposure doses via dietary intake, inhalation, soil/dust ingestion and dermal contact are calculated for adults, children and breast-fed infants living in two major e-waste processing locations in China. The values ranged from 5.59 to 105.16 pg WHO-TEQ/kg bw/day, exceeding the tolerable daily intakes recommended by the WHO (1-4 pg WHO-TEQ/kg bw/day). Dietary intake is the most important exposure route for infants, children and adults living in these sites, contributing 60-99% of the total intakes. Inhalation is the second major exposure route, accounted for 12-30% of the total exposure doses of children and adults. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations. Knowledge gaps, such as comprehensive dietary exposure data, epidemiological and clinical studies, body burdens of infants and children, and kinetics about PCDD/Fs partitions among different human tissues should be addressed. Copyright © 2012 Elsevier B.V. All rights reserved.
A systematic review of the human body burden of e-waste exposure in China.
Song, Qingbin; Li, Jinhui
2014-07-01
As China is one of the countries facing the most serious pollution and human exposure effects of e-waste in the world, much of the population there is exposed to potentially hazardous substances due to informal e-waste recycling processes. This report reviews recent studies on human exposure to e-waste in China, with particular focus on exposure routes (e.g. dietary intake, inhalation, and soil/dust ingestion) and human body burden markers (e.g. placenta, umbilical cord blood, breast milk, blood, hair, and urine) and assesses the evidence for the association between such e-waste exposure and the human body burden in China. The results suggest that residents in the e-waste exposure areas, located mainly in the three traditional e-waste recycling sites (Taizhou, Guiyu, and Qingyuan), are faced with a potential higher daily intake of these pollutants than residents in the control areas, especially via food ingestion. Moreover, pollutants (PBBs, PBDEs, PCBs, PCDD/Fs, and heavy metals) from the e-waste recycling processes were all detectable in the tissue samples at high levels, showing that they had entered residents' bodies through the environment and dietary exposure. Children and neonates are the groups most sensitive to the human body effects of e-waste exposure. We also recorded plausible outcomes associated with exposure to e-waste, including 7 types of human body burden. Although the data suggest that exposure to e-waste is harmful to health, better designed epidemiological investigations in vulnerable populations, especially neonates and children, are needed to confirm these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ceballos, Diana Maria; Dong, Zhao
2016-10-01
E-waste includes electrical and electronic equipment discarded as waste without intent of reuse. Informal e-waste recycling, typically done in smaller, unorganized businesses, can expose workers and communities to serious chemical health hazards. It is unclear if formalization into larger, better-controlled electronics recycling (e-recycling) facilities solves environmental and occupational health problems. To systematically review the literature on occupational and environmental health hazards of formal e-recycling facilities and discuss challenges and opportunities to strengthen research in this area. We identified 37 publications from 4 electronic databases (PubMed, Web of Science, Environmental Index, NIOSHTIC-2) specific to chemical exposures in formal e-recycling facilities. Environmental and occupational exposures depend on the degree of formalization of the facilities but further reduction is needed. Reported worker exposures to metals were often higher than recommended occupational guidelines. Levels of brominated flame-retardants in worker's inhaled air and biological samples were higher than those from reference groups. Air, dust, and soil concentrations of metals, brominated flame-retardants, dioxins, furans, polycyclic-aromatic hydrocarbons, or polychlorinated biphenyls found inside or near the facilities were generally higher than reference locations, suggesting transport into the environment. Children of a recycler had blood lead levels higher than public health recommended guidelines. With mounting e-waste, more workers, their family members, and communities could experience unhealthful exposures to metals and other chemicals. We identified research needs to further assess exposures, health, and improve controls. The long-term solution is manufacturing of electronics without harmful substances and easy-to-disassemble components. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jiang, Longfei; Cheng, Zhineng; Zhang, Dayi; Song, Mengke; Wang, Yujie; Luo, Chunling; Yin, Hua; Li, Jun; Zhang, Gan
2017-12-01
Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.
Resmi, N G; Fasila, K A
2017-10-01
This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam
2009-10-01
The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p < 0.01) and between sigmaPBDD/Fs and the previously reported sigmaPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/ Fs, calculated in our previous study.
Cimpan, Ciprian; Wenzel, Henrik
2013-07-01
Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.
E-waste management and sustainability: a case study in Brazil.
Azevedo, Luís Peres; da Silva Araújo, Fernando Gabriel; Lagarinhos, Carlos Alberto Ferreira; Tenório, Jorge Alberto Soares; Espinosa, Denise Crocce Romano
2017-11-01
The advancement of technology and development of new electronic and electrical equipment with a reduced life cycle has increased the need for the disposal of them (called Waste of Electric and Electronic Equipment or simply e-waste) due to defects presented during use, replacement of obsolete equipment, and ease of acquisition of new equipment. There is a lack of consumer awareness regarding the use, handling storage, and disposal of this equipment. In Brazil, the disposal of post-consumer waste is regulated by the National Solid Waste Policy, established by Law No. 12305 and regulated on the 23rd December 2010. Under this legislation, manufacturers and importers are required to perform a project for the Reverse Logistics of e-waste, though its implementation is not well defined. This work focuses on the verification of the sustainability of reverse logistics suggested by the legislation and the mandatory points, evaluating its costs and the possible financial gain with recycling of the waste. The management of reverse logistics and recycling of waste electrical and electronic equipment, or simply recycling of e-waste, as suggested by the government, will be the responsibility of the managing organization to be formed by the manufacturers/importers in Brazil.
Closing the phosphorus cycle in a food system: insights from a modelling exercise.
van Kernebeek, H R J; Oosting, S J; van Ittersum, M K; Ripoll-Bosch, R; de Boer, I J M
2018-05-21
Mineral phosphorus (P) used to fertilise crops is derived from phosphate rock, which is a finite resource. Preventing and recycling mineral P waste in the food system, therefore, are essential to sustain future food security and long-term availability of mineral P. The aim of our modelling exercise was to assess the potential of preventing and recycling P waste in a food system, in order to reduce the dependency on phosphate rock. To this end, we modelled a hypothetical food system designed to produce sufficient food for a fixed population with a minimum input requirement of mineral P. This model included representative crop and animal production systems, and was parameterised using data from the Netherlands. We assumed no import or export of feed and food. We furthermore assumed small P soil losses and no net P accumulation in soils, which is typical for northwest European conditions. We first assessed the minimum P requirement in a baseline situation, that is 42% of crop waste is recycled, and humans derived 60% of their dietary protein from animals (PA). Results showed that about 60% of the P waste in this food system resulted from wasting P in human excreta. We subsequently evaluated P input for alternative situations to assess the (combined) effect of: (1) preventing waste of crop and animal products, (2) fully recycling waste of crop products, (3) fully recycling waste of animal products and (4) fully recycling human excreta and industrial processing water. Recycling of human excreta showed most potential to reduce P waste from the food system, followed by prevention and finally recycling of agricultural waste. Fully recycling P could reduce mineral P input by 90%. Finally, for each situation, we studied the impact of consumption of PA in the human diet from 0% to 80%. The optimal amount of animal protein in the diet depended on whether P waste from animal products was prevented or fully recycled: if it was, then a small amount of animal protein in the human diet resulted in the most sustainable use of P; but if it was not, then the most sustainable use of P would result from a complete absence of animal protein in the human diet. Our results apply to our hypothetical situation. The principles included in our model however, also hold for food systems with, for example, different climatic and soil conditions, farming practices, representative types of crops and animals and population densities.
Xu, Zhitao; Elomri, Adel; Pokharel, Shaligram; Zhang, Qin; Ming, X G; Liu, Wenjie
2017-06-01
The emergence of concerns over environmental protection, resource conservation as well as the development of logistics operations and manufacturing technology has led several countries to implement formal collection and recycling systems of solid waste. Such recycling system has the benefits of reducing environmental pollution, boosting the economy by creating new jobs, and generating income from trading the recyclable materials. This leads to the formation of a global reverse supply chain (GRSC) of solid waste. In this paper, we investigate the design of such a GRSC with a special emphasis on three aspects; (1) uncertainty of waste collection levels, (2) associated carbon emissions, and (3) challenges posed by the supply chain's global aspect, particularly the maritime transportation costs and currency exchange rates. To the best of our knowledge, this paper is the first attempt to integrate the three above-mentioned important aspects in the design of a GRSC. We have used mixed integer-linear programming method along with robust optimization to develop the model which is validated using a sample case study of e-waste management. Our results show that using a robust model by taking the complex interactions characterizing global reverse supply chain networks into account, we can create a better GRSC. The effect of uncertainties and carbon constraints on decisions to reduce costs and emissions are also shown. Copyright © 2017 Elsevier Ltd. All rights reserved.
TRANSPORT PLANNING MODEL FOR WIDE AREA RECYCLING SYSTEM OF INDUSTRIAL WASTE PLASTIC
NASA Astrophysics Data System (ADS)
Arai, Yasuhiro; Kawamura, Hisashi; Koizumi, Akira; Mogi, Satoshi
To date, the majority of industrial waste plastic generated in an urban city has been processed into landfill. However, it is now necessary to actively utilize that plastic as a useful resource to create a recycling society with a low environment influence. In order to construct a reasonable recycling system, it is necessary to address the "transportation problem," which means determining how much industrial waste plastic is to be transported to what location. With the goal of eliminating landfill processing, this study considers a transport planning model for industrial waste plastic applying linear programming. The results of running optimized calculations under given scenarios clarified not only the possibilities for recycle processing in the Metropolitan area, but also the validity of wide area recycling system.
Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson Manukure; Ephraim, James
2017-01-01
The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn). Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area.
Greve, Klaus; Atiemo, Sampson Manukure
2017-01-01
The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn). Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area. PMID:29056034
A roadmap for development of sustainable E-waste management system in India.
Wath, Sushant B; Vaidya, Atul N; Dutt, P S; Chakrabarti, Tapan
2010-12-01
The problem of E-waste has forced Environmental agencies of many countries to innovate, develop and adopt environmentally sound options and strategies for E-waste management, with a view to mitigate and control the ever growing threat of E-waste to the environment and human health. E-waste management is given the top priority in many developed countries, but in rapid developing countries like India, it is difficult to completely adopt or replicate the E-waste management system in developed countries due to many country specific issues viz. socio-economic conditions, lack of infrastructure, absence of appropriate legislations for E-waste, approach and commitments of the concerned, etc. This paper presents a review and assessment of the E-waste management system of developed as well as developing countries with a special emphasis on Switzerland, which is the first country in the world to have established and implemented a formal E-waste management system and has recycled 11kg/capita of WEEE against the target of 4kg/capita set by EU. And based on the discussions of various approaches, laws, legislations, practices of different countries, a road map for the development of sustainable and effective E-waste management system in India for ensuring environment, as well as, occupational safety and health, is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.
Innovating e-waste management: From macroscopic to microscopic scales.
Zeng, Xianlai; Yang, Congren; Chiang, Joseph F; Li, Jinhui
2017-01-01
Waste electrical and electronic equipment (WEEE or e-waste) has become a global problem, due to its potential environmental pollution and human health risk, and its containing valuable resources (e.g., metals, plastics). Recycling for e-waste will be a necessity, not only to address the shortage of mineral resources for electronics industry, but also to decline environmental pollution and human health risk. To systematically solve the e-waste problem, more attention of e-waste management should transfer from macroscopic to microscopic scales. E-waste processing technology should be significantly improved to diminish and even avoid toxic substance entering into downstream of material. The regulation or policy related to new production of hazardous substances in recycled materials should also be carried out on the agenda. All the findings can hopefully improve WEEE legislation for regulated countries and non-regulated countries. Copyright © 2016 Elsevier B.V. All rights reserved.
Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke
2014-02-01
Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.
40 CFR 265.1050 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) Each piece of equipment to which this subpart...
40 CFR 265.1050 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) Each piece of equipment to which this subpart...
40 CFR 265.1050 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) Each piece of equipment to which this subpart...
26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... section), or a recycling process (as defined in paragraph (d)(3) of this section). Absent an express... product within the meaning of paragraph (e) of this section. (3) Recycling process—(i) In general. The term recycling process means reconstituting, transforming, or otherwise processing solid waste into a...
40 CFR 265.1050 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) Each piece of equipment to which this subpart...
40 CFR 265.1050 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) Each piece of equipment to which this subpart...
Elevated Blood Lead Levels of Children in Guiyu, an Electronic Waste Recycling Town in China
Huo, Xia; Peng, Lin; Xu, Xijin; Zheng, Liangkai; Qiu, Bo; Qi, Zongli; Zhang, Bao; Han, Dai; Piao, Zhongxian
2007-01-01
Background Electronic waste (e-waste) recycling has remained primitive in Guiyu, China, and thus may contribute to the elevation of blood lead levels (BLLs) in children living in the local environment. Objectives We compared the BLLs in children living in the e-waste recycling town of Guiyu with those living in the neighboring town of Chendian. Methods We observed the processing of e-waste recycling in Guiyu and studied BLLs in a cluster sample of 226 children < 6 years of age who lived in Guiyu and Chendian. BLLs were determined with atomic absorption spectrophotometry. Hemoglobin (Hgb) and physical indexes (height and weight, head and chest circumferences) were also measured. Results BLLs in 165 children of Guiyu ranged from 4.40 to 32.67 μg/dL with a mean of 15.3 μg/dL, whereas BLLs in 61 children of Chendian were from 4.09 to 23.10 μg/dL with a mean of 9.94 μg/dL. Statistical analyses showed that children living in Guiyu had significantly higher BLLs compared with those living in Chendian (p < 0.01). Of children in Guiyu, 81.8% (135 of 165) had BLLs > 10 μg/dL, compared with 37.7% of children (23 of 61) in Chendian (p < 0.01). In addition, we observed a significant increasing trend in BLLs with increasing age in Guiyu (p < 0.01). It appeared that there was correlation between the BLLs in children and numbers of e-waste workshops. However, no significant difference in Hgb level or physical indexes was found between the two towns. Conclusions The primitive e-waste recycling activities may contribute to the elevated BLLs in children living in Guiyu. PMID:17637931
Fujimori, Takashi; Takigami, Hidetaka
2014-02-01
We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.
Chemical hazards associated with treatment of waste electrical and electronic equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsydenova, Oyuna; Bengtsson, Magnus, E-mail: bengtsson@iges.or.jp
2011-01-15
This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associatedmore » with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.« less
Wang, Xiaofeng; Miller, Greg; Ding, Gangqiang; Lou, Xiaoming; Cai, Delei; Chen, Zhijian; Meng, Jia; Tang, Jun; Chu, Cordia; Mo, Zhe; Han, Jianlong
2012-06-01
Tinfoil manufacturing and electronic waste (e-waste) recycling remain rudimentary processes in Zhejing Province, China, which could account for elevated blood lead levels (BLLs) and health impacts on children. We assessed the potential health risks of lead in tinfoil manufacturing and e-waste recycling areas. 329 children in total aged 11-12 who lived in a tinfoil manufacturing area (Lanxi), an e-waste recycling area (Luqiao) and a reference area (Chun'an) were studied. Lead levels in children's blood were determined by inductively coupled plasma mass spectrometer (ICP-MS). Blood urea nitrogen (BUN), serum creatinine, serum calcium, δ-Aminolaevulinic acid (δ-ALA) and intelligence quotient (IQ) were also measured. Geometric mean of BLLs in Lanxi, Luqiao and Chun'an were 8.11 μg/dL, 6.97 μg/dL, and 2.78 μg/dL respectively, with 35.1%, 38.9% and 0% of children who had BLLs above 10 μg/dL. The BLLs in exposed areas were much higher than those in the control area. Lanxi children had higher creatinine and calcium than Chun'an children, and Luqiao children had higher δ-ALA and lower calcium than Chun'an children. No significant differences of IQ were observed between Lanxi, Luqiao and Chun'an, however a negative relationship between BLLs and IQ was shown for the study children. The results indicated that lead pollution from e-waste recycling and tinfoil processing appears to be a potential serious threat to children's health. Copyright © 2012 Elsevier B.V. All rights reserved.
Integrated waste management for rural development in Egypt.
Shehata, S M; El Shimi, S A; Elkattan, M H; Ali, B E; El-Housseini, M; El Sayad, S A; Mahmoud, M S; Zaki, A M; Hamdi, Y A; El-Nawawy, A S
2004-01-01
Rural areas generate a large amount of plant and animal residues that can be recycled and utilized instead of relocation and/or burning. This will lead to increasing the benefits from agricultural sector in rural communities and ensuring a better environment. To increase the economic output and environmental benefits of recycling agricultural residues, integrated system should be considered, e.g., energy--compost-recycled water system; composting--co-composting system; food-feed compost system, ensilage of crop residues. The present work was a pilot study for optimizing integrated systems for bioconversion agricultural residues completed by establishing a Training Center for Recycling Agricultural Residues (TCRAR) thereby ensuring the dissemination of the technical, environmental, and socioeconomic aspects to farmers, live stock producers, extensions service staff, and private sector. Three integrated subsystems for bioconversion of agricultural residues were developed. They were based on (i) energy--manure-recycled water system, (ii) composting and co-composting system, and (iii) food-feed/compost system.
Rutkowski, Jacqueline E; Rutkowski, Emília W
2015-12-01
'If an integrated urban waste management system includes the informal recycling sector (IRS), there is a good chance that more solid waste is recycled' is common sense. However, informal integration brings additional social, environmental, and economic benefits, such as reduction of operational costs and environmental impacts of landfilling. Brazil is a global best practice example in terms of waste picker inclusion, and has received international recognition for its recycling levels. In addition to analysing the results of inclusive recycling approaches, this article evaluates a selection of the best Brazilian inclusive recycling practices and summaries and presents the resulting knowledge. The objective is to identify processes that enable the replication of the inclusion of the informal recycling sector model as part of municipal solid waste management. Qualitative and quantitative data have been collected in 25 Brazilian cities that have contracted waste pickers co-operatives for door-to-door selective collection of recyclables. Field data was collected in action research projects that worked with waste pickers co-operatives between 2006 and 2013. The Brazilian informal recycling sector integration model improves municipal solid waste recycling indicators: it shows an increase in the net tonness recycled, from 140 to 208 t month(-1), at a much lower cost per tonne than conventional selective collection systems. Inclusive systems show costs of US$35 per tonne of recyclables collected, well below the national average of US$195.26. This inclusive model improves the quality of collected material and the efficiency of municipal selective collection. It also diminishes the negative impacts of informal recycling, by reducing child labour, and by improving the conditions of work, occupational health and safety, and uncontrolled pollution. Although treating the Brazilian experience as a blueprint for transfer of experience in every case is unrealistic, the results suggest that this approach to informal sector integration can be considered among the global best practices for informal sector integration. The article closes with recommendations for deploying technology in other urban areas throughout the world. © The Author(s) 2015.
Assessment of Food Waste Prevention and Recycling Strategies Using a Multilayer Systems Approach.
Hamilton, Helen A; Peverill, M Samantha; Müller, Daniel B; Brattebø, Helge
2015-12-15
Food waste (FW) generates large upstream and downstream emissions to the environment and unnecessarily consumes natural resources, potentially affecting future food security. The ecological impacts of FW can be addressed by the upstream strategies of FW prevention or by downstream strategies of FW recycling, including energy and nutrient recovery. While FW recycling is often prioritized in practice, the ecological implications of the two strategies remain poorly understood from a quantitative systems perspective. Here, we develop a multilayer systems framework and scenarios to quantify the implications of food waste strategies on national biomass, energy, and phosphorus (P) cycles, using Norway as a case study. We found that (i) avoidable food waste in Norway accounts for 17% of sold food; (ii) 10% of the avoidable food waste occurs at the consumption stage, while industry and retailers account for only 7%; (iii) the theoretical potential for systems-wide net process energy savings is 16% for FW prevention and 8% for FW recycling; (iv) the theoretical potential for systems-wide P savings is 21% for FW prevention and 9% for FW recycling; (v) while FW recycling results in exclusively domestic nutrient and energy savings, FW prevention leads to domestic and international savings due to large food imports; (vi) most effective is a combination of prevention and recycling, however, FW prevention reduces the potential for FW recycling and therefore needs to be prioritized to avoid potential overcapacities for FW recycling.
Chakraborty, Paromita; Selvaraj, Sakthivel; Nakamura, Masafumi; Prithiviraj, Balasubramanian; Cincinelli, Alessandra; Bang, John J
2018-04-15
Growth of informal electronic waste (e-waste) recycling sector is an emerging problem for India. The presence of halogenated compounds in e-wastes may result in the formation of persistent organic pollutants like polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during recycling processes. We therefore investigated PCBs and PCDD/Fs in surface soils explicitly from the informal e-waste recycling sites and nearby open dumpsites of major metropolitan cities from four corners of India, viz., New Delhi (North), Kolkata (East), Mumbai (West) and Chennai (South). In the informal e-waste recycling sites, the range of Σ 26 PCBs (0.4-488ng/g) and ƩPCDD/Fs (1.0-10.6ng/g) were higher than Ʃ 26 PCBs (0.3-21ng/g) and ƩPCDD/Fs (0.15-7.3ng/g) from open dumpsites. In the e-waste sites, ƩPCDDs were found with increasing trend from ƩTetraCDD to OctaCDD, whereas ƩPCDFs showed a reverse trend. The dominance of PCDF congeners and maximum toxicity equivalents (TEQ) for both PCDDs (17pg TEQ/g) and PCDFs (82pg TEQ/g) at Mandoli in New Delhi has been related to intensive precious metal recovery process using acid bath. Among dumpsites, highest TEQ for PCDD/Fs was observed at Kodangaiyur dumpsite of Chennai (CN DS -02, 45pg TEQ/g). Positive Matrix Factorization (PMF) model identified distinct congener pattern based on the functional activities, such as e-waste dismantling, shredding, precious metal recovery and open burning in dumpsites. E-waste metal recovery factor was loaded with 86-91% of PCB-77, -105, -114, -118 and 30% of PCB-126, possibly associated with the burning of wires during the copper extraction process. Almost 70% of the Ʃ 26 PCB concentrations was comprised of the dioxin-like PCB congeners with a maximum concentration of 437ng/g at New Moore market in Chennai, followed by Wire Lane (102ng/g), in Mumbai. We speculate that PCB-126 might have resulted from combustion of plastic materials in e-waste stream and dumped waste. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi
2011-01-01
With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.
Luo, Pei; Bao, Lian-Jun; Li, Shao-Meng; Zeng, Eddy Y
2015-05-01
Atmospheric particle size distribution of polycyclic aromatic hydrocarbons (PAHs) in a typical e-waste recycling zone and an urban site (Guangzhou) in southern China featured a unimodal peak in 0.56-1.8 μm for 4-6 ring PAHs but no obvious peak for 2-3 ring PAHs at both sites. The atmospheric deposition fluxes of PAHs were estimated at 5.4 ± 2.3 μg m(-2) d(-1) in the e-waste recycling zone and 3.1 ± 0.6 μg m(-2) d(-1) in Guangzhou. In addition, dry and wet deposition fluxes of PAHs were dominated by coarse (Dp > 1.8 μm) and fine particles (Dp < 1.8 μm), respectively. Fine particles predominated the deposition of PAHs in the lung. The results estimated by incremental inhalation cancer risk suggested that particle-bound PAHs posed serious threat to human health within the e-waste recycling zone and Guangzhou. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research on Recycling and Utilization of Solid Waste in Civil Airport
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Wen; Wang, Jianping; Yi, Wei
2018-05-01
The aviation industry is embracing unprecedented prosperity together with the economic development. Building green airports resource-saving, environment-friendly and sustainable has become the inevitability of the times. The operation of airport will generate the large amount of waste every day, which certainly exposes airports and surrounding regions to waste disposal and ecological environment pressure. Waste disposal directly affects the surrounding environment of airports, which can be effectively mitigated by disposing waste into resources, i.e., sorting and recycling them into renewable materials. The development of green airport can also be promoted in this process. The article elaborates on the current methods of waste disposal adopted by airports. According to the principle of waste reduction, harmlessness, and resource recycling, a set of solid waste recycling and utilization methods suitable for airports are proposed, which can reduce the costs of waste transported to other places and landfilled. Various environmental pollution caused by landfill and other disposal methods can also be contained effectively. At the same time, resources can be fully recycled, converting waste into useful resources in an efficient and environmental-friendly way.
Woon, Kok Sin; Lo, Irene M C
2016-01-01
Hong Kong is experiencing a pressing need for food waste management. Currently, approximately 3600 tonnes of food waste are disposed of at landfills in Hong Kong daily. The landfills in Hong Kong are expected to be exhausted by 2020. In the long run, unavoidable food waste should be sorted out from the other municipal solid waste (MSW) and then valorized into valuable resources. A simple sorting process involving less behavioural change of residents is, therefore, of paramount importance in order to encourage residents to sort the food waste from other MSW. In this paper, a sustainable framework of food waste collection and recycling for renewable biogas fuel production is proposed. For an efficient separation and collection system, an optic bag (i.e. green bag) can be used to pack the food waste, while the residual MSW can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations in the conventional way (i.e. refuse collection vehicles). At the refuse transfer stations, the food waste is separated from the residual MSW using optic sensors which recognize the colours of the bags. The food waste in the optic bags is then delivered to the proposed Organic Waste Treatment Facilities, in which biogas is generated following the anaerobic digestion technology. The biogas can be further upgraded via gas upgrading units to a quality suitable for use as a vehicle biogas fuel. The use of biogas fuel from food waste has been widely practiced by some countries such as Sweden, France, and Norway. Hopefully, the proposed framework can provide the epitome of the waste-to-wealth concept for the sustainable collection and recycling of food waste in Hong Kong. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tue, Nguyen Minh; Takahashi, Shin; Subramanian, Annamalai; Sakai, Shinichi; Tanabe, Shinsuke
2013-07-01
E-waste recycling using uncontrolled processes is a major source of dioxin-related compounds (DRCs), including not only the regulated polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) but also non-regulated brominated and mixed halogenated compounds (PBDD/Fs and PXDD/Fs). Various studies at informal e-waste recycling sites (EWRSs) in Asian developing countries found the soil contamination levels of PCDD/Fs from tens to ten thousand picogram TCDD-equivalents (TEQ) per gram and those of DL-PCBs up to hundreds of picogram TEQ per gram. The air concentration of PCDD/Fs was reported as high as 50 pg TEQ per m(3) in Guiyu, the largest Chinese EWRS. Non-regulated compounds also contributed substantially to the total DL toxicity of the DRC mixtures from e-waste, as evidenced by the high TEQ levels estimated for the currently identifiable PBDD/Fs as well as the large portion of unexplained bioassay-derived TEQ levels in soils/dusts from EWRSs. Considering the high exposure levels estimated for EWRS residents, especially children, comprehensive emission inventories of DRCs from informal e-waste recycling, the identities and toxic potencies of unidentified DRCs released, and their impacts on human health need to be investigated in future studies.
Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H
2012-05-01
Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon
2015-04-01
Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.
Luo, Pei; Bao, Lian-Jun; Wu, Feng-Chang; Li, Shao-Meng; Zeng, Eddy Y
2014-01-01
Inhalation of pollutants is an important exposure route for causing human health hazards, and inhalation exposure assessment must take into account particle size distribution because particle-bound pollutants are size-dependent. Such information is scarce, particularly for residents dwelling within e-waste recycling zones where abundant atmospheric halogenated flame retardants (HFRs) commonly used in electronic/electrical devices have been widely reported. Atmospheric size-fractioned particle samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor from an e-waste recycling zone in South China. The deposition efficiencies and fluxes of size-fractioned HFRs including polybrominated diphenyl ethers (PBDEs), alternative brominated flame retardants, and Dechlorane Plus in the human respiratory tract were estimated using the International Commission on Radiological Protection deposition model. The majority of HFRs was found to deposit in the head airways, with coarse particles (aerodynamic diameter (Dp) > 1.8 μm) contributing the most (69-91%). Conversely, fine particles (Dp < 1.8 μm) were dominant in the alveolar region (62-80%). The inhalation intake of PBDEs within the e-waste recycling zone was 44 ng/d (95% confidence interval (CI): 30-65 ng/d), close to those through food consumption in non-e-waste recycling regions. The estimated total hazard quotient of particle-bound HFRs was 5.6 × 10(-4) (95% CI: 3.8 × 10(-4)-8.8 × 10(-4)). In addition, incremental lifetime cancer risk induced by BDE-209 was 1.36 × 10(-10) (95% CI: 7.3 × 10(-11)-2.3 × 10(-10)), much lower than the Safe Acceptable Range (1.0 × 10(-6)-1.0 × 10(-4)) established by the United States Environmental Protection Agency. These results indicate that the potential health risk from inhalation exposure to particle-bound HFRs for residents dwelling in the e-waste recycling zone was low.
Andersson, Camilla; Stage, Jesper
2018-03-28
Swedish legislation makes municipalities responsible for recycling or disposing of household waste. Municipalities therefore play an important role in achieving Sweden's increased levels of ambition in the waste management area and in achieving the goal of a more circular economy. This paper studies how two municipal policy instruments - weight-based waste tariffs and special systems for the collection of food waste - affect the collected volumes of different types of waste. We find that a system of collecting food waste separately is more effective overall than imposing weight-based waste tariffs in respect not only of reducing the amounts of waste destined for incineration, but also of increasing materials recycling and biological recovery, despite the fact that the direct incentive effects of these two systems should be similar. Separate food waste collection was associated with increased recycling not only of food waste but also of other waste. Introducing separate food waste collection indirectly signals to households that recycling is important and desirable, and our results suggest that this signalling effect may be as important as direct incentive effects. Copyright © 2018. Published by Elsevier Ltd.
Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin
2015-05-01
Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.
Lu, Shao-You; Li, Yan-Xi; Zhang, Jian-Qing; Zhang, Tao; Liu, Gui-Hua; Huang, Ming-Zhi; Li, Xiao; Ruan, Ju-Jun; Kannan, Kurunthachalam; Qiu, Rong-Liang
2016-09-01
Emission of polycyclic aromatic hydrocarbons (PAHs) from e-waste recycling activities in China is known. However, little is known on the association between PAH exposure and oxidative damage to DNA and lipid content in people living near e-waste dismantling sites. In this study, ten hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and two biomarkers [8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)] of oxidative stress were investigated in urine samples collected from people living in and around e-waste dismantling facilities, and in reference population from rural and urban areas in China. The urinary levels of ∑10OH-PAHs determined in e-waste recycling area (GM: 25.4μg/g Cre) were significantly higher (p<0.05) than those found in both rural (11.7μg/g Cre) and urban (10.9μg/g Cre) reference areas. The occupationally exposed e-waste workers (36.6μg/g Cre) showed significantly higher (p<0.01) urinary Σ10OH-PAHs concentrations than non-occupationally exposed people (23.2μg/g Cre) living in the e-waste recycling site. The differences in urinary Σ10OH-PAHs levels between smokers (23.4μg/g Cre) and non-smokers (24.7μg/g Cre) were not significant (p>0.05) in e-waste dismantling sites, while these differences were significant (p<0.05) in rural and urban reference areas; this indicated that smoking is not associated with elevated levels of PAH exposure in e-waste dismantling site. Furthermore, we found that urinary concentrations of Σ10OH-PAHs and individual OH-PAHs were significantly associated with elevated 8-OHdG, in samples collected from e-waste dismantling site; the levels of urinary 1-hydroxypyrene (1-PYR) (r=0.284, p<0.01) was significantly positively associated with MDA. Our results indicate that the exposure to PAHs at the e-waste dismantling site may have an effect on oxidative damage to DNA among selected participants, but this needs to be validated in large studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 264.1030 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) For the owner and operator of a facility subject to...
40 CFR 264.1030 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) For the owner and operator of a facility subject to...
40 CFR 264.1030 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) For the owner and operator of a facility subject to...
40 CFR 264.1030 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) For the owner and operator of a facility subject to...
40 CFR 264.1030 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of 40 CFR part 270, or (2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that... recycling unit under the provisions of 40 CFR 261.6. (c) For the owner and operator of a facility subject to...
International law on ship recycling and its interface with EU law.
Argüello Moncayo, Gabriela
2016-08-15
The regulation on ship recycling at international and European Union (EU) level has transitioned from the realm of transboundary movement of wastes to a specialized regime, i.e., the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships (2009) (Hong Kong Convention). Although this convention is not in force yet, the principal features of it have been incorporated in EU Regulation 1257/2013 on ship recycling. This paper examines the rationale behind developing a ship recycling regime, its disassociation from wastes, and the departure from the main principles of transboundary movement of wastes, such as the proximity principle, reduction of transboundary movement of wastes, and the prior informed consent procedure. While acknowledging some of the positive features of the emerging ship recycling, it is submitted that the Hong Kong Convention and EU Regulation 1257/2013 on ship recycling represent a step back in the regulation of ship recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
The challenge of electronic waste (e-waste) management in developing countries.
Osibanjo, O; Nnorom, I C
2007-12-01
Information and telecommunications technology (ICT) and computer Internet networking has penetrated nearly every aspect of modern life, and is positively affecting human life even in the most remote areas of the developing countries. The rapid growth in ICT has led to an improvement in the capacity of computers but simultaneously to a decrease in the products lifetime as a result of which increasingly large quantities of waste electrical and electronic equipment (e-waste) are generated annually. ICT development in most developing countries, particularly in Africa, depends more on secondhand or refurbished EEEs most of which are imported without confirmatory testing for functionality. As a result large quantities of e-waste are presently being managed in these countries. The challenges facing the developing countries in e-waste management include: an absence of infrastructure for appropriate waste management, an absence of legislation dealing specifically with e-waste, an absence of any framework for end-of-life (EoL) product take-back or implementation of extended producer responsibility (EPR). This study examines these issues as they relate to practices in developing countries with emphasis on the prevailing situation in Nigeria. Effective management of e-waste in the developing countries demands the implementation of EPR, the establishment of product reuse through remanufacturing and the introduction of efficient recycling facilities. The implementation of a global system for the standardization and certification/labelling of secondhand appliances intended for export to developing countries will be required to control the export of electronic recyclables (e-scarp) in the name of secondhand appliances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, T.D.; Shaw, P.J.; Williams, I.D., E-mail: idw@soton.ac.uk
Highlights: • Critical analysis of municipal waste management practices and performance in England. • Trends visualised via innovative ternary plots and changes and reasons explored. • Performance 1996–2013 moved slowly away from landfill dominance. • Large variations in %s of waste landfilled, incinerated and recycled/composted. • Progress to resource efficiency slow; affected by poor planning and hostile disputes. - Abstract: European nations are compelled to reduce reliance on landfill as a destination for household waste, and should, in principle, achieve this goal with due recognition of the aims and principles of the waste hierarchy. Past research has predominantly focused onmore » recycling, whilst interactions between changing waste destinies, causes and drivers of household waste management change, and potential consequences for the goal of the waste hierarchy are less well understood. This study analysed Local Authority Collected Waste (LACW) for England, at national, regional and sub-regional level, in terms of the destination of household waste to landfill, incineration and recycling. Information about waste partnerships, waste management infrastructure and collection systems was collected to help identify and explain changes in waste destinies. Since 1996, the proportion of waste landfilled in England has decreased, in tandem with increases in recycling and incineration. At the regional and sub-regional (Local Authority; LA) level, there have been large variations in the relative proportions of waste landfilled, incinerated and recycled or composted. Annual increases in the proportion of household waste incinerated were typically larger than increases in the proportion recycled. The observed changes took place in the context of legal and financial drivers, and the circumstances of individual LAs (e.g. landfill capacity) also explained the changes seen. Where observed, shifts from landfill towards incineration constitute an approach whereby waste management moves up the waste hierarchy as opposed to an attempt to reach the most preferred option(s); in terms of resource efficiency, this practice is sub-optimal. The requirement to supply incinerators with a feedstock over their lifespan reduces the benefits of developing of recycling and waste reduction, although access to incineration infrastructure permits short-term and marked decreases in the proportion of LACW landfilled. We conclude that there is a need for clearer national strategy and co-ordination to inform and guide policy, practice, planning and investment in infrastructure such that waste management can be better aligned with the principles of the circular economy and resource efficiency. If the ongoing stand-off between national political figures and the waste sector continues, England’s waste policy remains destined for indecision.« less
Phosphorus cycling in Montreal's food and urban agriculture systems.
Metson, Geneviève S; Bennett, Elena M
2015-01-01
Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.
Phosphorus Cycling in Montreal’s Food and Urban Agriculture Systems
Metson, Geneviève S.; Bennett, Elena M.
2015-01-01
Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities’ P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents’ relationship to, and understanding of, the food system and increases their acceptance of composting. PMID:25826256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsitomeneas, S. Th., E-mail: stsit@teipir.gr; Vourlias, K., E-mail: kvourlias@yahoo.gr; Geronikolou, St. A., E-mail: sgeronik@bioacademy.gr
The electrical and electronic waste (e-waste) management is a global environmental problem dominated by the precautionary principle application, resulted to preliminary and ambiguous potential adverse effects, of extensive scientific uncertainty. In order to overcome the detected stochastic effects confusions in this field, we propose the inclusion of the principles of justification-optimization-limitation and of prudent avoidance. This model is already, established in radiation protection, so that toxicity as a result of the e-waste management would decrease, whilst the precious metals would be saved. We, further, resolve the classification of rejected items as reusable or as waste, so that the procedure ofmore » dismantling and recycling becomes easier, and the collecting-transporting-placement at an e-waste landfill would be safer. In conclusion, our proposing pattern in the e-waste management enforces the sustainable reducing-reusing-recycling, saves time/money and advances safety by including more sources of e-waste (military, medical etc) that were excluded previously.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik
2013-07-15
Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.« less
Health consequences of exposure to e-waste: a systematic review.
Grant, Kristen; Goldizen, Fiona C; Sly, Peter D; Brune, Marie-Noel; Neira, Maria; van den Berg, Martin; Norman, Rosana E
2013-12-01
The population exposed to potentially hazardous substances through inappropriate and unsafe management practices related to disposal and recycling of end-of-life electrical and electronic equipment, collectively known as e-waste, is increasing. We aimed to summarise the evidence for the association between such exposures and adverse health outcomes. We systematically searched five electronic databases (PubMed, Embase, Web of Science, PsycNET, and CINAHL) for studies assessing the association between exposure to e-waste and outcomes related to mental health and neurodevelopment, physical health, education, and violence and criminal behaviour, from Jan 1, 1965, to Dec 17, 2012, and yielded 2274 records. Of the 165 full-text articles assessed for eligibility, we excluded a further 142, resulting in the inclusion of 23 published epidemiological studies that met the predetermined criteria. All studies were from southeast China. We assessed evidence of a causal association between exposure to e-waste and health outcomes within the Bradford Hill framework. We recorded plausible outcomes associated with exposure to e-waste including change in thyroid function, changes in cellular expression and function, adverse neonatal outcomes, changes in temperament and behaviour, and decreased lung function. Boys aged 8-9 years living in an e-waste recycling town had a lower forced vital capacity than did those living in a control town. Significant negative correlations between blood chromium concentrations and forced vital capacity in children aged 11 and 13 years were also reported. Findings from most studies showed increases in spontaneous abortions, stillbirths, and premature births, and reduced birthweights and birth lengths associated with exposure to e-waste. People living in e-waste recycling towns or working in e-waste recycling had evidence of greater DNA damage than did those living in control towns. Studies of the effects of exposure to e-waste on thyroid function were not consistent. One study related exposure to e-waste and waste electrical and electronic equipment to educational outcomes. Although data suggest that exposure to e-waste is harmful to health, more well designed epidemiological investigations in vulnerable populations, especially pregnant women and children, are needed to confirm these associations. Children's Health and Environment Program, Queensland Children's Medical Research Institute, The University of Queensland, Australia. Copyright © 2013 Grant et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
Farmer, T D; Shaw, P J; Williams, I D
2015-05-01
European nations are compelled to reduce reliance on landfill as a destination for household waste, and should, in principle, achieve this goal with due recognition of the aims and principles of the waste hierarchy. Past research has predominantly focused on recycling, whilst interactions between changing waste destinies, causes and drivers of household waste management change, and potential consequences for the goal of the waste hierarchy are less well understood. This study analysed Local Authority Collected Waste (LACW) for England, at national, regional and sub-regional level, in terms of the destination of household waste to landfill, incineration and recycling. Information about waste partnerships, waste management infrastructure and collection systems was collected to help identify and explain changes in waste destinies. Since 1996, the proportion of waste landfilled in England has decreased, in tandem with increases in recycling and incineration. At the regional and sub-regional (Local Authority; LA) level, there have been large variations in the relative proportions of waste landfilled, incinerated and recycled or composted. Annual increases in the proportion of household waste incinerated were typically larger than increases in the proportion recycled. The observed changes took place in the context of legal and financial drivers, and the circumstances of individual LAs (e.g. landfill capacity) also explained the changes seen. Where observed, shifts from landfill towards incineration constitute an approach whereby waste management moves up the waste hierarchy as opposed to an attempt to reach the most preferred option(s); in terms of resource efficiency, this practice is sub-optimal. The requirement to supply incinerators with a feedstock over their lifespan reduces the benefits of developing of recycling and waste reduction, although access to incineration infrastructure permits short-term and marked decreases in the proportion of LACW landfilled. We conclude that there is a need for clearer national strategy and co-ordination to inform and guide policy, practice, planning and investment in infrastructure such that waste management can be better aligned with the principles of the circular economy and resource efficiency. If the ongoing stand-off between national political figures and the waste sector continues, England's waste policy remains destined for indecision. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Ran; Yang, Qiaoyun; Qiu, Xinghua; Li, Keqiu; Li, Guang; Zhu, Ping; Zhu, Tong
2013-04-02
The health effects of exposure to pollutants from electronic waste (e-waste) pose an important issue. In this study, we explored the association between oxidative stress and blood levels of e-waste-related pollutants. Blood samples were collected from individuals living in the proximity of an e-waste recycling site located in northern China, and pollutants, as well as reactive oxygen species (ROS), were measured in comparison to a reference population. The geometric mean concentrations of PCBs, dechlorane plus, and 2,2',4,4',5,5'-hexabromobiphenyl in plasma from the exposure group were 60.4, 9.0, and 0.55 ng g(-1) lipid, respectively, which were 2.2, 3.2, and 2.2 times higher than the corresponding measurement in the reference group. Correspondingly, ROS levels in white blood cells, including in neutrophil granulocytes, from the exposure group were significantly higher than in those from the reference group, suggesting potential ROS related health effects for residents at the e-waste site. In contrast, fewer ROS were generated in the respiratory burst of neutrophil granulocytes for the exposure group, indicating a depressed innate immune function for the individuals living at the e-waste site. These findings suggest a potential linkage between exposure to pollutants from e-waste recycling and both elevated oxidative stress and altered immune function.
Municipal solid waste recycling and the significance of informal sector in urban China.
Linzner, Roland; Salhofer, Stefan
2014-09-01
The informal sector is active in the collection, processing and trading of recyclable materials in urban China. Formal waste management organisations have established pilot schemes for source separation of recyclables, but this strategy is still in its infancy. The amounts of recyclables informally picked out of the municipal solid waste stream are unknown as informal waste workers do not record their activities. This article estimates the size and significance of the current informal recycling system with a focus on the collection of recyclables. A majority of the reviewed literature detects that official data is displaying mainly 'municipal solid waste collected and transported', whereas less information is available on 'real' waste generation rates at the source. Based on a literature review the variables, the 'number of informal waste workers involved in collection activities', the 'amounts collected daily per informal collector' and the 'number of working days' are used to estimate yearly recyclable amounts that are informally diverted from municipal solid waste. The results show an interval of approximately 0.56%-0.93% of the urban population or 3.3-5.6 million people involved in informal waste collection and recycling activities in urban China. This is the equivalent to estimated informal recycling rates of approximately 17-38 w/w% of the municipal solid waste generated. Despite some uncertainties in these assessments, it can be concluded that a significant share of recyclables is collected and processed by informal waste workers. © The Author(s) 2014.
Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto
2011-11-01
Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Liangkai; Wu Kusheng; Li Yan
Background: Primitive electronic waste (e-waste) recycling is ongoing in Guiyu, and thus toxic heavy metals may keep on threatening to the health of local children. Some related factors may contribute to the elevation of blood lead levels (BLLs) or blood cadmium levels (BCLs). Objective: To investigate the children's BLLs and BCLs in Guiyu and Chendian as compare to discuss the effects of primitive e-waste recycling activities on children's health. Methods: Two hundred and seventy-eight children less than 8 years who lived in Guiyu and Chendian were observed, and their BLLs and BCLs were determined by graphite atomizer absorption spectrophotometer. Questionnairemore » survey for risk factors was also performed and data were analyzed using spearman correlation analyses and logistic regression analyses. Results: Children living in Guiyu had significantly higher BLLs and BCLs as compared with those living in Chendian (p<0.01). In Guiyu, 70.8% of children (109/154) had BLLs>10 {mu}g/dL, and 20.1% of children (31/154) had BCLs>2 {mu}g/L, compared with 38.7% of children (48/124) had BLLs>10 {mu}g/dL and 7.3% of children (9/124) had BCLs>2 {mu}g/L in Chendian (p<0.01, respectively). We also observed a significant increasing trend in BLLs with increasing age in Guiyu (p<0.01). Mean height of children in Guiyu was significantly lower than that in Chendian (p<0.01). The risk factors related to children's BLLs and BCLs mainly included father's engagement in the work related to e-waste, children's residence in Guiyu and the amount of time that children played outside near the road everyday. Conclusions: There are close relationships between the BLLs, BCLs in children and the primitive e-waste recycling activities in Guiyu. Environmental pollution, especially lead pollution, has threatened the health of children living around e-waste recycling site.« less
Mo, Ling; Wu, Jiang-Ping; Luo, Xiao-Jun; Sun, Yu-Xin; Zheng, Xiao-Bo; Zhang, Qiang; Zou, Fa-Shen; Mai, Bi-Xian
2013-03-01
Dechlorane Plus (DP) isomers were examined in common kingfishers (Alcedo atthis) and their prey fishes collected from an electronic waste (e-waste) recycling site and a reference site in South China, to investigate the possible influence of DP residue levels on the isomeric compositions. ∑DP (sum of syn-DP and anti-DP) concentrations in kingfishers from the e-waste recycling site ranged from 29 to 150 (median of 58) ng/g lipid weight (lw), which were one order of magnitude greater than those from the reference site (median = 3.9 ng/g lw). The isomer fractions of anti-DP (f(anti)) in kingfishers from the e-waste recycling site (mean of 0.65) were significantly smaller than those from the reference site (0.76). Additionally, the f(anti) values were negatively correlated to logarithm of ∑DP concentrations in the kingfishers (r(2) = 0.41, p < 0.0001). These results suggested that DP residue levels could influence its isomeric composition in the piscivorous bird. Copyright © 2012 Elsevier Ltd. All rights reserved.
Energy efficiency of substance and energy recovery of selected waste fractions.
Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian
2011-04-01
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.
Energy efficiency of substance and energy recovery of selected waste fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Klaus, E-mail: klaus.fricke@tu-bs.de; Bahr, Tobias, E-mail: t.bahr@tu-bs.de; Bidlingmaier, Werner, E-mail: werner.bidlingmaier@uni-weimar.de
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard tomore » the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.« less
Toward zero waste: composting and recycling for sustainable venue based events.
Hottle, Troy A; Bilec, Melissa M; Brown, Nicholas R; Landis, Amy E
2015-04-01
This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO2 equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO2 eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO2 eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kranzinger, Lukas; Schopf, Kerstin; Pomberger, Roland; Punesch, Elisabeth
2017-02-01
Austria's performance in the collection of separated waste is adequate. However, the residual waste still contains substantial amounts of recyclable materials - for example, plastics, paper and board, glass and composite packaging. Plastics (lightweight packaging and similar non-packaging materials) are detected at an average mass content of 13% in residual waste. Despite this huge potential, only 3% of the total amount of residual waste (1,687,000 t y -1 ) is recycled. This implies that most of the recyclable materials contained in the residual waste are destined for thermal recovery and are lost for recycling. This pilot project, commissioned by the Land of Lower Austria, applied a holistic approach, unique in Europe, to the Lower Austrian waste management system. It aims to transfer excess quantities of plastic packaging and non-packaging recyclables from the residual waste system to the separately collected waste system by introducing a so-called 'catch-all-plastics bin'. A quantity flow model was constructed and the results showed a realistic increase in the amount of plastics collected of 33.9 wt%. This equals a calculated excess quantity of 19,638 t y -1 . The increased plastics collection resulted in a positive impact on the climate footprint (CO 2 equivalent) in line with the targets of EU Directive 94/62/EG (Circular Economy Package) and its Amendments. The new collection system involves only moderate additional costs.
Thorium Fuel Cycle Option Screening in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, Temitope A.; Kim, Taek K.; Wigeland, Roald A.
2016-05-01
As part of a nuclear fuel cycle Evaluation and Screening (E&S) study, a wide-range of thorium fuel cycle options were evaluated and their performance characteristics and challenges to implementation were compared to those of other nuclear fuel cycle options based on criteria specified by the Nuclear Energy Office of the U.S. Department of Energy (DOE). The evaluated nuclear fuel cycles included the once-through, limited, and continuous recycle options using critical or externally-driven nuclear energy systems. The E&S study found that the continuous recycle of 233U/Th in fuel cycles using either thermal or fast reactors is an attractive promising fuel cyclemore » option with high effective fuel resource utilization and low waste generation, but did not perform quite as well as the continuous recycle of Pu/U using a fast critical system, which was identified as one of the most promising fuel cycle options in the E&S study. This is because compared to their uranium counterparts the thorium-based systems tended to have higher radioactivity in the short term (about 100 years post irradiation) because of differences in the fission product yield curves, and in the long term (100,000 years post irradiation) because of the decay of 233U and daughters, and because of higher mass flow rates due to lower discharge burnups. Some of the thorium-based systems also require enriched uranium support, which tends to be detrimental to resource utilization and waste generation metrics. Finally, similar to the need for developing recycle fuel fabrication, fuels separations and fast reactors for the most promising options using Pu/U recycle, the future thorium-based fuel cycle options with continuous recycle would also require such capabilities, although their deployment challenges are expected to be higher since such facilities have not been developed in the past to a comparable level of maturity for Th-based systems.« less
2015-04-22
ISS043E128431 (04/22/2015) --- The International Space Station employs one of the most complex water recycling systems ever designed, reclaiming waste water from astronauts and the environment and turning it into potable water. NASA astronaut Scott Kelly tweeted out this image of part of the innovative device with this remark: " Recycle Good to the last drop! Making pee potable and turning it into coffee on @space station. #NoPlaceLikeHome"
Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming
2014-11-01
The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system.
Environmental risk assessment of CRT and PCB workshops in a mobile e-waste recycling plant.
Song, Qingbin; Zeng, Xianlai; Li, Jinhui; Duan, Huabo; Yuan, Wenyi
2015-08-01
The mobile e-waste recycling equipment was chosen as the object of this study, including manual dismantling, mechanical separation of cathode ray tubes (CRTs), and printed circuit boards (PCBs) in the two independent workshops. To determine the potential environmental contamination, the noise, the heavy metals (Cu, Cd, Pb), and the environmental impacts of the e-waste recycling processes in the two workshops of the mobile plant have been evaluated in this paper. This study determined that when control measures are employed, the noise within the two workshops (<80 dB) will meet the national standards. In the CRT workshop, Pb was the most polluting metal, with 2.3 μg/m(3) and 10.53 mg/g in the air and floor dust, respectively. The result of a health risk assessment shows that noncancerous effects are possible for Pb (hazard index (HI) = 3.54 in the CRT workshop and HI = 1.27 in the PCB workshop). The carcinogenic risks to workers for Cd are relatively light in both the workshops. From the results of life cycle assessment (LCA), it can be seen that there was an environmental benefit from the e-waste recycling process as a whole.
Improving the layout of recycling centres by use of lean production principles.
Sundin, Erik; Björkman, Mats; Eklund, Mats; Eklund, Jörgen; Engkvist, Inga-Lill
2011-06-01
There has been increased focus on recycling in Sweden during recent years. This focus can be attributed to external environmental factors such as tougher legislation, but also to the potential gains for raw materials suppliers. Recycling centres are important components in the Swedish total recycling system. Recycling centres are manned facilities for waste collection where visitors can bring, sort and discard worn products as well as large-sized, hazardous, and electrical waste. The aim of this paper was to identify and describe the main flows and layout types at Swedish recycling centres. The aim was also to adapt and apply production theory for designing and managing recycling centre operations. More specifically, this means using lean production principles to help develop guidelines for recycling centre design and efficient control. Empirical data for this research was primarily collected through interviews and questionnaires among both visitors and employees at 16 Swedish recycling centres. Furthermore, adapted observation protocols have been used in order to explore visitor activities. There was also close collaboration with a local recycling centre company, which shared their layout experiences with the researchers in this project. The recycling centres studied had a variety of problems such as queues of visitors, overloading of material and improper sorting. The study shows that in order to decrease the problems, the recycling centres should be designed and managed according to lean production principles, i.e. through choosing more suitable layout choices with visible and linear flows, providing better visitor information, and providing suitable technical equipment. Improvements can be achieved through proper planning of the layout and control of the flow of vehicles, with the result of increased efficiency and capacity, shorter visits, and cleaner waste fractions. The benefits of a lean production mindset include increased visitor capacity, waste flexibility, improved sorting quality, shorter time for visits and improved working conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
E-waste: a problem or an opportunity? Review of issues, challenges and solutions in Asian countries.
Herat, Sunil; Agamuthu, P
2012-11-01
Safe management of electronic and electrical waste (e-waste/WEEE) is becoming a major problem for many countries around the world. In particular, developing countries face a number of issues with the generation, transboundary movement and management of e-waste. It is estimated that the world generates around 20-50 million tonnes of e-waste annually, most of it from Asian countries. Improper handling of e-waste can cause harm to the environment and human health because of its toxic components. Several countries around the world are now struggling to deal with this emerging threat. Although the current emphasis is on end-of-life management of e-waste activities, such as reuse, servicing, remanufacturing, recycling and disposal, upstream reduction of e-waste generation through green design and cleaner production is gaining much attention. Environmentally sound management (ESM) of e-waste in developing countries is absent or very limited. Transboundary movement of e-waste is a major issue throughout the region. Dealing with the informal recycling sector is a complex social and environmental issue. There are significant numbers of such challenges faced by these countries in achieving ESM of e-waste. This article aims to present a review of challenges and issues faced by Asian countries in managing their e-waste in a sustainable way.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste recycling...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste recycling...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste recycling...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste recycling...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste recycling...
Cost effectiveness of recycling: a systems model.
Tonjes, David J; Mallikarjun, Sreekanth
2013-11-01
Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets. Copyright © 2013 Elsevier Ltd. All rights reserved.
Urinary heavy metal levels and relevant factors among people exposed to e-waste dismantling.
Wang, Hongmei; Han, Mei; Yang, Suwen; Chen, Yanqing; Liu, Qian; Ke, Shen
2011-01-01
Primitive electronic waste (e-waste) recycling has become a growing environmental concern, and toxic heavy metals released from e-waste activities may continue to threaten the health of local people. To study the impact of heavy metals in people around e-waste sites, 349 people from e-waste recycling sites (exposure group) and 118 people from a green plantation (control group) were surveyed, and their urinary levels of lead (UPb), cadmium (UCd), manganese (UMn), copper (UCu), and Zinc (UZn) were assayed. Questionnaire surveys for risk factors were also performed and analyzed by using the Pearson correlation analysis. Results indicated that the levels of urinary Cd in both occupational dismantling people {GM(GSD) 0.72(0.71) ug/L} and non-occupational dismantling people {GM(GSD) 0.50(0.79) ug/L} were higher than the control group {GM(GSD) 0.27(0.85) ug/L}. Further analyses of correlations between urinary heavy metal levels and exposure factors in the exposed group revealed positive relationship between the duration of dismantling and the level of UPb (p < 0.05). Meanwhile, rice sources from local village have a positive correlation with the level of UPb and UCd (p < 0.01). Other factors, however, may also have influences on heavy metal burden, and not all urinary heavy metal levels can be contributed to e-waste dismantling exposure levels. Primitive e-waste recycling activities may contribute to the changes of urinary heavy metal levels and increase the health risk for those chronically working on e-waste dismantling. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zheng, Jing; He, Chun-Tao; Chen, She-Jun; Yan, Xiao; Guo, Mi-Na; Wang, Mei-Huan; Yu, Yun-Jiang; Yang, Zhong-Yi; Mai, Bi-Xian
2017-05-01
Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are the primary toxicants released by electronic waste (e-waste) recycling, but their adverse effects on people working in e-waste recycling or living near e-waste sites have not been studied well. In the present study, the serum concentrations of PBDEs, PCBs, and hydroxylated PCBs, the circulating levels of thyroid hormones (THs), and the mRNA levels of seven TH-regulated genes in peripheral blood leukocytes of e-waste recycling workers were analyzed. The associations of the hormone levels and gene expression with the exposure to these contaminants were examined using multiple linear regression models. There were nearly no associations of the TH levels with PCBs and hydroxylated PCBs, whereas elevated hormone (T 4 and T 3 ) levels were associated with certain lower-brominated BDEs. While not statistically significant, we did observe a negative association between highly brominated PBDE congeners and thyroid-stimulating hormone (TSH) levels in the e-waste workers. The TH-regulated gene expression was more significantly associated with the organohalogen compounds (OHCs) than the TH levels in these workers. The TH-regulated gene expression was significantly associated with certain PCB and hydroxylated PCB congeners. However, the expression of most target genes was suppressed by PBDEs (mostly highly brominated congeners). This is the first evidence of alterations in TH-regulated gene expression in humans exposed to OHCs. Our findings indicated that OHCs may interfere with TH signaling and/or exert TH-like effects, leading to alterations in related gene expression in humans. Further research is needed to investigate the mechanisms of action and associated biological consequences of the gene expression disruption by OHCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Present status of recycling waste mobile phones in China: a review.
Li, Jingying; Ge, Zhongying; Liang, Changjin; An, Ni
2017-07-01
A large number of waste mobile phones have already been generated and are being generated. Various countries around the world have all been positively exploring the way of recycling and reuse when facing such a large amount of waste mobile phones. In some countries, processing waste mobile phones has been forming a complete industrial chain, which can not only recycle waste mobile phones to reduce their negative influence on the environment but also turn waste into treasure to acquire economic benefits dramatically. However, the situation of recycling waste mobile phones in China is not going well. Waste mobile phones are not formally covered by existing regulations and policies for the waste electric and electronic equipment in China. In order to explore an appropriate system to recover waste mobile phones, the mobile phone production and the amount of waste mobile phones are introduced in this paper, and status of waste mobile phones recycling is described; then, the disposal technology of electronic waste that would be most likely to be used for processing of electronic waste in industrial applications in the near future is reviewed. Finally, rationalization proposals are put forward based on the current recovery status of waste mobile phones for the purpose of promoting the development of recycling waste mobile phones in developing countries with a special emphasis on China.
Life cycle assessment of a packaging waste recycling system in Portugal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, S.; Cabral, M.; Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt
Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. Themore » operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.« less
The role of intergenerational influence in waste education programmes: The THAW project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, P.; Doran, C.; Williams, I.D., E-mail: idw@soton.ac.uk
Highlights: > Children can be effective advocates in changing their parents' lifestyles. > We investigated the role of intergenerational influence in waste education programmes. > Waste Watch's Take Home Action on Waste project worked with 6705 children in 39 schools. > The results showed increased participation in recycling and declines in residual waste. > The study shows that recycling behaviour is positively impacted by intergenerational influence. - Abstract: Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other householdmore » members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity ((www.wastewatch.org.uk)), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the 'reduce, reuse and recycle message' home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project in these areas, an average increase of 8.6% was recorded in recycling set out rates which led to a 4.3% increase in paper recycling tonnages and an 8.7% increase in tonnages of cans, glass and textiles collected for recycling. Correspondingly, there was a 4.5% fall in tonnages of residual waste. Waste Watch's THAW project was the first serious attempt to measure the intergenerational influence of an education programme on behaviour at home (i.e. other than schools' own waste). It clearly shows that household recycling behaviour can be positively impacted by intergenerational influence via a practical school-based waste education model. However, although the model could potentially have a big impact if rolled out nationally, it will require seed funding and the long-term durability of the model has not yet been fully quantified.« less
Research on solid waste management system: to improve existing situation in Corlu Town of Turkey.
Tinmaz, Esra; Demir, Ibrahim
2006-01-01
Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day. Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinmaz, Esra; Demir, Ibrahim
Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day.more » Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.« less
Nie, Xiangping; Fan, Canpeng; Wang, Zhaohui; Su, Tian; Liu, Xinyu; An, Taicheng
2015-01-01
The potential adverse effects of e-waste recycling activity on environment are getting increasing concern. In this work, a model alga, Pseudokirchneriella subcapitata, was employed to assess the toxic effects of the leachates of paddy soils and river sediments collected from e-waste dismantling sites. Chemical analysis of the paddy soils and river sediments and their leachates were carried out and the growth rate, chlorophyll a fluorescence and anti-oxidative systems of the alga were measured. Results showed that two leachates decreased the amount of PSII active reaction centers and affected photosynthesis performance, interfered with chlorophyll synthesis and inhibited algal growth. Some chemical pollutants in the sediments and soils such as polybrominated diphenyl ethers (PBDEs) and metals derived from e-waste recycling activity may impose oxidative stress on algae and affect the activity of anti-oxidative enzymes such as GST, SOD, CAT and APX. The leachates of both river sediments and paddy soils are potentially toxic to the primary producers, P. subcapitata and the leachate from sediments was more deleterious than that from soils. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung
Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium,more » two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.« less
Anh, Hoang Quoc; Nam, Vu Duc; Tri, Tran Manh; Ha, Nguyen Manh; Ngoc, Nguyen Thuy; Mai, Pham Thi Ngoc; Anh, Duong Hong; Minh, Nguyen Hung; Tuan, Nguyen Anh; Minh, Tu Binh
2017-08-01
Residue concentrations of polybrominated diphenyl ethers (PBDEs) in different kinds of samples including consumer products, indoor dust, sediment and fish collected from two e-waste recycling sites, and some industrial, urban and suburban areas in Vietnam were determined to provide a comprehensive assessment of the contamination levels, accumulation pattern, emission potential and human exposure through dust ingestion and fish consumption. There was a large variation of PBDE levels in plastic parts of obsolete electronic equipment (from 1730 to 97,300 ng/g), which is a common result observed in consumer plastic products reported elsewhere. PBDE levels in indoor dust samples collected from e-waste recycling sites ranged from 250 to 8740 ng/g, which were markedly higher than those in industrial areas and household offices. Emission rate of PBDEs from plastic parts of disposed electronic equipment to dust was estimated to be in a range from 3.4 × 10 -7 to 1.2 × 10 -5 (year -1 ) for total PBDEs and from 2.9 × 10 -7 to 7.2 × 10 -6 (year -1 ) for BDE-209. Some fish species collected from ponds in e-waste recycling villages contained elevated levels of PBDEs, especially BDE-209, which were markedly higher than those in fish previously reported. Overall, levels and patterns of PBDE accumulation in different kinds of samples suggest significant emission from e-waste sites and that these areas are potential sources of PBDE contamination. Intakes of PBDEs via fish consumption were generally higher than those estimated through dust ingestion. Intake of BDE-99 and BDE-209 through dust ingestion contributes a large proportion due to higher concentrations in dust and fish. Body weight normalized daily intake through dust ingestion estimated for the e-waste recycling sites (0.10-3.46 ng/day/kg body wt.) were in a high range as compared to those reported in other countries. Our results highlight the potential releases of PBDEs from informal recycling activities and the high degree of human exposure and suggest the need for continuous investigations on environmental pollution and toxic impacts of e-waste-related hazardous chemicals.
Li, Yan; Xu, Xijin; Wu, Kusheng; Chen, Gangjian; Liu, Junxiao; Chen, Songjian; Gu, Chengwu; Zhang, Bao; Zheng, Liangkai; Zheng, Minghao; Huo, Xia
2008-10-01
Guiyu is the major electronic waste (e-waste) recycling town in China. The primary purpose of this study was to measure the lead levels in neonates and examine the correlation between lead levels and neurobehavioral development. One hundred full-term neonates from Guiyu and fifty-two neonates from neighboring towns (control group) in the late summer of 2006 were selected for study. The lead levels in the umbilical cord blood (CBPb) and lead levels in meconium (MPb) of neonates were determined with atomic absorption spectrophotometry. The neonatal behavioral neurological assessment (NBNA) was conducted on all neonates. A questionnaire related to the exposure to lead of pregnant women was used as a survey of the neonates' mothers. Compared with the control group, neonates in Guiyu had significantly higher levels of lead (P < 0.01), and the mean CBPb and MPb were 113.28 microg L(-1) and 2.50 microg g(-1), respectively. The relatively high lead levels in the neonates of the Guiyu group were found to correlate with their maternal occupation in relation to e-waste recycling. Neonates with high levels of lead load have lower NBNA scores (P < 0.01). There was a statistically significant difference in NBNA scores between the Guiyu group and the control group by t test (P < 0.05). No correlation was found between CBPb and NBNA scores; however, a negative correlation was found between MPb and NBNA scores (P < 0.01). There is a correlation between relatively high lead levels in the umbilical cord blood and meconium in neonates and the local e-waste recycling activities related to lead contamination. This study suggests that environmental lead contamination due to e-waste recycling have an impact on neurobehavioral development of neonates in Guiyu.
Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling
2008-09-01
ER D C/ CE R L TR -0 8 -1 3 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling Gary L. Gerdes, Deborah...release; distribution is unlimited. ERDC/CERL TR-08-13 September 2008 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling...a technology to process domestic solid waste using a unique hydrothermal system. The process was successfully demonstrated at Forts Benning and
Lo, Irene M C; Woon, Kok Sin
2016-04-01
About 3600 tonnes food waste are discarded in the landfills in Hong Kong daily. It is expected that the three strategic landfills in Hong Kong will be exhausted by 2020. In consideration of the food waste management environment and community needs in Hong Kong, as well as with reference to the food waste management systems in cities such as Linköping in Sweden and Oslo in Norway, a framework of food waste separation, collection, and recycling for food waste valorization is proposed in this paper. Food waste can be packed in an optic bag (i.e., a bag in green color), while the residual municipal solid waste (MSW) can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations, in which food waste is separated from the residual MSW using an optic sensor. On the one hand, the sorted food waste can be converted into valuable materials (e.g., compost, swine feed, fish feed). On the other hand, the sorted food waste can be sent to the proposed Organic Waste Treatment Facilities and sewage treatment works for producing biogas. The biogas can be recovered to produce electricity and city gas (i.e., heating fuel for cooking purpose). Due to the challenges faced by the value-added products in Hong Kong, the biogas is recommended to be upgraded as a biogas fuel for vehicle use. Hopefully, the proposed framework will provide a simple and effective approach to food waste separation at source and promote sustainable use of waste to resource in Hong Kong.
Environmental and human exposure to persistent halogenated compounds derived from e-waste in China.
Ni, Hong-Gang; Zeng, Hui; Tao, Shu; Zeng, Eddy Y
2010-06-01
Various classes of persistent halogenated compounds (PHCs) can be released into the environment due to improper handling and disposal of electronic waste (e-waste), which creates severe environmental problems and poses hazards to human health as well. In this review, polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), tetrabromobisphenol A (TBBPA), polybrominated phenols (PBPs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs), and chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are the main target contaminants for examination. As the world's largest importer and recycler of e-waste, China has been under tremendous pressure to deal with this huge e-waste situation. This review assesses the magnitude of the e-waste problems in China based on data obtained from the last several years, during which many significant investigations have been conducted. Comparative analyses of the concentrations of several classes of toxic compounds, in which e-waste recycling sites are compared with reference sites in China, have indicated that improper e-waste handling affects the environment of dismantling sites more than that of control sites. An assessment of the annual mass loadings of PBDEs, PBBs, TBBPA, PBPs, PCDD/Fs, and ClPAHs from e-waste in China has shown that PBDEs are the dominant components of PHCs in e-waste, followed by ClPAHs and PCDD/Fs. The annual loadings of PBDEs, ClPAHs, and PCDD/Fs emission were estimated to range from 76,200 to 182,000, 900 to 2,000 and 3 to 8 kg/year, respectively. However, PCDD/Fs and ClPAHs should not be neglected because they are also primarily released from e-waste recycling processes. Overall, the magnitude of human exposure to these toxics in e-waste sites in China is at the high end of the global range. Copyright 2010 SETAC.
Multi-Material Recycling Manual. The Keep America Beautiful System. Revised Edition.
ERIC Educational Resources Information Center
1987
Solid waste management ranks third after schools and roads in most municipal budgets in the United States. Maximizing the separation of recyclable materials that can be reused may offer the highest priority and best use of our waste and should receive high priority in a solid waste management plan. This manual deals with the recycling of material…
Utilization of Aluminum Waste with Hydrogen and Heat Generation
NASA Astrophysics Data System (ADS)
Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.
2017-10-01
A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.
Waste paper for recycling: Overview and identification of potentially critical substances.
Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas F
2015-11-01
Paper product manufacturing involves a variety of chemicals used either directly in paper and pulp production or in the conversion processes (i.e. printing, gluing) that follow. Due to economic and environmental initiatives, paper recycling rates continue to rise. In Europe, recycling has increased by nearly 20% within the last decade or so, reaching a level of almost 72% in 2012. With increasing recycling rates, lower quality paper fractions may be included. This may potentially lead to accumulation or un-intended spreading of chemical substances contained in paper, e.g. by introducing chemicals contained in waste paper into the recycling loop. This study provides an overview of chemicals potentially present in paper and applies a sequential hazard screening procedure based on the intrinsic hazard, physical-chemical and biodegradability characteristics of the substances. Based on the results, 51 substances were identified as potentially critical (selected mineral oils, phthalates, phenols, parabens, as well as other groups of chemicals) in relation to paper recycling. It is recommended that these substances receive more attention in waste paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afroz, Rafia, E-mail: rafia_afroz@yahoo.com; Masud, Muhammad Mehedi
2011-04-15
This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation ismore » not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.« less
Flows of engineered nanomaterials through the recycling process in Switzerland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd, E-mail: nowack@empa.ch
Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, formore » example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO{sub 2}, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs.« less
SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. C. Khamankar
2000-06-20
The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.A.; Baetz, B.W.
1998-12-31
Although there are a number of expert systems available which are designed to assist in resolving environmental problems, there is still a need for a system which would assist managers in determining waste management options for all types of wastes from one or more industrial plants, giving priority to sustainable use of resources, reuse and recycling. A prototype model was developed to determine the potentials for reuse and recycling of waste materials, to select the treatments needed to recycle waste materials or for treatment before disposal, and to determine potentials for co-treatment of wastes. A knowledge-based decision support system wasmore » then designed using this model. This paper describes the prototype model, the developed knowledge-based decision support system, the input and storage of data within the system and the inference engine developed for the system to determine the treatment options for the wastes. Options for sorting and selecting treatment trains are described, along with a discussion of the limitations of the approach and future developments needed for the system.« less
Xu, Yidong; Chen, Wei; Jin, Ruoyu; Shen, Jiansheng; Smallbone, Kirsty; Yan, Chunyang; Hu, Lei
2018-07-05
This research investigated the capacities of recycled aggregate concrete adopting entire concrete waste reuse model in degrading NO 2. Two major issues within environmental sustainability were addressed: concrete waste reuse rate and mitigation of hazards substances in the polluted air. The study consisted of two stages: identification of proper replacement rates of recycled concrete wastes in new concrete mixture design, and the evaluation of photocatalytic performance of recycled aggregate concrete in degrading NO 2 . It was found that replacement rates up to 3%, 30%, and 50% for recycled power, recycled fine aggregate, and recycled coarse aggregate respectively could be applied in concrete mixture design without deteriorating concrete strength. Recycled aggregates contained both positive attributes ("internal curing") and negative effects (e.g., lower hardness) to concrete properties. It was found that 30%-50% of natural coarse aggregate replaced by recycled coarse aggregates coated with TiO 2 would significantly improve the photocatalytic performance of concrete measured by degradation rate of NO 2 . Micro-structures of recycled aggregates observed under microscope indicated that soaking recycled aggregates in TiO 2 solution resulted in whiskers that filled the porosity within recycled aggregates which enhanced concrete strength. Copyright © 2018 Elsevier B.V. All rights reserved.
Leung, Anna O W; Cheung, Kwai Chung; Wong, Ming Hung
2015-06-01
The environmental pollution and health impacts caused by the primitive and crude recycling of e-waste have become urgent global issues. Guiyu, China is a major hotspot of e-waste recycling. In this study, the levels and distribution of polycyclic aromatic hydrocarbons in soil in Guiyu were determined to investigate the effect of e-waste activities on the environment and to identify possible sources of these pollutants. Sediment samples from a local duck pond, water gullies, a river tributary, and combusted residue from e-waste burning sites were also investigated. The general trend found in soil (Σ16 PAHs) was acid leaching site > duck pond > rice field > printer roller dump site > reservoir (control site) and ranged from 95.2 ± 54.2 to 5,210 ± 89.6 ng/g (dry wt). The highest average total PAH concentrations were found in combusted residues of wires, cables, and other computer electrical components located at two e-waste open burning sites (18,600 and 10,800 ± 3,940 ng/g). These were 195- and 113-fold higher than the PAH concentrations of soil at the control site. Sediment PAH concentrations ranged from 37.2 ± 6 to 534 ± 271 ng/g. Results of this study provide further evidence of significant input of PAHs to the environment attributed to crude e-waste recycling.
Recycled Thermal Energy from High Power Light Emitting Diode Light Source.
Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk
2018-09-01
In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.
Beiyuan, Jingzi; Tsang, Daniel C W; Yip, Alex C K; Zhang, Weihua; Ok, Yong Sik; Li, Xiang-Dong
2017-02-01
Permeable reactive barriers (PRBs) have proved to be a promising passive treatment to control groundwater contamination and associated human health risks. This study explored the potential use of low-cost adsorbents as PRBs media and assessed their longevity and risk mitigation against leaching of acidic rainfall through an e-waste recycling site, of which Cu, Zn, and Pb were the major contaminants. Batch adsorption experiments suggested a higher adsorption capacity of inorganic industrial by-products [acid mine drainage sludge (AMDS) and coal fly ash (CFA)] and carbonaceous recycled products [food waste compost (FWC) and wood-derived biochar] compared to natural inorganic minerals (limestone and apatite). Continuous leaching tests of sand columns with 10 wt% low-cost adsorbents were then conducted to mimic the field situation of acidic rainfall infiltration through e-waste-contaminated soils (collected from Qingyuan, China) by using synthetic precipitation leaching procedure (SPLP) solution. In general, Zn leached out first, followed by Cu, and finally delayed breakthrough of Pb. In the worst-case scenario (e.g., at initial concentrations equal to 50-fold of average SPLP result), the columns with limestone, apatite, AMDS, or biochar were effective for a relatively short period of about 20-40 pore volumes of leaching, after which Cu breakthrough caused non-cancer risk concern and later-stage Pb leaching considerably increased both non-cancer and lifetime cancer risk associated with portable use of contaminated water. In contrast, the columns with CFA or FWC successfully mitigated overall risks to an acceptable level for a prolonged period of 100-200 pore volumes. Therefore, with proper selection of low-cost adsorbents (or their mixture), waste-based PRBs is a technically feasible and economically viable solution to mitigate human health risk due to contaminated groundwater at e-waste recycling sites.
Moving from recycling to waste prevention: A review of barriers and enables.
Bartl, Andreas
2014-09-01
Current European waste policy does not mainly aim to treat waste streams but rather place in the foreground of interest the complete supply chain of a product. Waste prevention and re-use do have the highest priority and they take effect before the end-of-life phase of a product or a material is reached. Recycling only takes the third place whereas recovery and disposal represent the least favourable options. Recycling can help to decrease the consumption of primary resources but it does not tackle the causes but only the symptoms. In principle, recycling processes require energy and will generate side streams (i.e. waste). Furthermore, there are insuperable barriers and the practice is far from 100% recycling. The philosophy of waste prevention and re-use is completely different since they really tackle the causes. It is self-evident that a decrease of waste will also decrease the consumption of resources, energy and money to process the waste. However, even if European legislation is proceeding in the right direction, a clear decrease in waste generation did not occur up to now. Unfortunately, waste generation represents a positive factor of economic growth. Basically, waste generation is a huge business and numerous stakeholders are not interested to reduce waste. More sophisticated incentives are required to decouple economic growth from waste generation. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.
2012-01-01
Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 °C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.
Wu, Wencheng; Dong, Changxun; Wu, Jiahui; Liu, Xiaowen; Wu, Yingxin; Chen, Xianbin; Yu, Shixiao
2017-12-01
Soil microbes play vital roles in ecosystem functions, and soil microbial communities may be strongly structured by land use patterns associated with electronic waste (e-waste) recycling activities, which can increase the heavy metal concentration in soils. In this study, a suite of soils from five land use types (paddy field, vegetable field, dry field, forest field, and e-waste recycling site) were collected in Longtang Town, Guangdong Province, South China. Soil physicochemical properties and heavy metal concentrations were measured, and the indigenous microbial assemblages were profiled using 16S rRNA high-throughput sequencing and clone library analyses. The results showed that mercury concentration was positively correlated with both Faith's PD and Chao1 estimates, suggesting that the soil microbial alpha diversity was predominantly regulated by mercury. In addition, redundancy analysis indicated that available phosphorus, soil moisture, and mercury were the three major drivers affecting the microbial assemblages. Overall, the microbial composition was determined primarily by land use patterns, and this study provides a novel insight on the composition and diversity of microbial communities in soils associated with e-waste recycling activities. Copyright © 2017 Elsevier B.V. All rights reserved.
Chromium exposure among children from an electronic waste recycling town of China.
Xu, Xijin; Yekeen, Taofeek Akangbe; Liu, Junxiao; Zhuang, Bingrong; Li, Weiqiu; Huo, Xia
2015-02-01
Guiyu is one of the most heavily chromium-polluted areas in China due to the numerous informal electronic waste (e-waste) recycling activities. A 3-year (2004, 2006, and 2008) independent cross-sectional study on blood chromium (BCr) levels of 711 children from Guiyu and a control area was investigated. Questionnaire completed by parents/guardians was used to assess the risk factors of chromium (Cr) exposure, while physical examination, for the year 2008 only, was used to evaluate the effects of long-term exposure to Cr on child physical development. Children living in Guiyu had significantly higher BCr levels compared with those living in Chendian at the same period from 2004 to 2008 (P < 0.001). The predominant risk factors related to elevated child BCr levels included the use of house as a family workshop, parent involved in e-waste recycling, and child residence in Guiyu. Children's weight and chest circumferences in group with high exposure to Cr (upper quartile) were higher than in the low-exposure group (P < 0.01), although the difference was less significant for boys between the two groups (P < 0.05). The results suggest that elevated child BCr in Guiyu due to informal e-waste recycling activities might be threatening the health of children, with implications on physical growth and development.
Building recycling rates through the informal sector.
Wilson, David C; Araba, Adebisi O; Chinwah, Kaine; Cheeseman, Christopher R
2009-02-01
Many developing country cities aspire to modern waste management systems, which are associated with relatively high recycling rates of clean, source separated materials. Most already have informal sector recycling systems, which are driven solely by the revenues derived from selling recovered materials, even though they are saving the formal sector money by reducing waste quantities. There is clear potential for 'win-win' co-operation between the formal and informal sectors, as providing support to the informal sector, to build recycling rates and to address some of the social issues could reduce the overall costs of waste management for the formal sector. This paper shows that recycling rates already achieved by the informal sector can be quite high, typically in the range from 20% to 50%; often up to half of this is in the form of clean, source separated materials collected directly from households and businesses by itinerant waste buyers. Four country case studies provide a number of lessons on how this solid foundation could be used to build high recycling rates of clean materials.
Direction of CRT waste glass processing: electronics recycling industry communication.
Mueller, Julia R; Boehm, Michael W; Drummond, Charles
2012-08-01
Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.
The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences
NASA Astrophysics Data System (ADS)
Sitters, Judith; Bakker, Elisabeth S.; Veldhuis, Michiel P.; Veen, G. F.; Olde Venterink, Harry; Vanni, Michael J.
2017-04-01
It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N) and phosphorus (P) recycled through herbivore release (i.e., waste N:P) are mainly determined by the stoichiometric composition of the herbivore’s food (food N:P) and its body nutrient content (body N:P). Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C ):N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces) and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.
Recycling and reuse: Are they the answer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-11-01
At a time when reuse is widely recognized as a partial solution to the US mounting waste problem, it comes as no surprise that drinking water suppliers are giving thought to reclaiming residuals. This reuse may occur within the treatment plant, for example, by recovering alum from sludge or recycling waste streams, or outside the plant, where endeavors such as controlled land application return components of sludge to the soil. By nature, sludges and other residuals likely contain contaminants that have been removed from the water--e.g., Giardia and Cryptosporidium, trihalomethane precursors, and heavy metals. Recycling waste flows has the potentialmore » to disturb the treatment process or to affect the quality of finished water. Proper treatment and monitoring of waste streams can render them acceptable for recycling.« less
The role of intergenerational influence in waste education programmes: the THAW project.
Maddox, P; Doran, C; Williams, I D; Kus, M
2011-12-01
Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity (www.wastewatch.org.uk), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the "reduce, reuse and recycle message" home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project in these areas, an average increase of 8.6% was recorded in recycling set out rates which led to a 4.3% increase in paper recycling tonnages and an 8.7% increase in tonnages of cans, glass and textiles collected for recycling. Correspondingly, there was a 4.5% fall in tonnages of residual waste. Waste Watch's THAW project was the first serious attempt to measure the intergenerational influence of an education programme on behaviour at home (i.e. other than schools' own waste). It clearly shows that household recycling behaviour can be positively impacted by intergenerational influence via a practical school-based waste education model. However, although the model could potentially have a big impact if rolled out nationally, it will require seed funding and the long-term durability of the model has not yet been fully quantified. Copyright © 2011 Elsevier Ltd. All rights reserved.
Occupational health hazards related to informal recycling of E-waste in India: An overview.
Annamalai, Jayapradha
2015-01-01
The innovation in science and technology coupled with the change in lifestyle of an individual has made an incredible change in the electronic industry show casing an assorted range of new products every day to the world. India too has been impacted by this digital revolution where consumption of electronics goods grows at a rapid rate producing a large amount of waste electrical and electronic equipment. This substantial generation of electronic waste referred to as e-waste accompanied with the lack of stringent environmental laws and regulations for handling the hazardous e-waste has resulted in the cropping of number of informal sectors. Over 95% of the e-waste is treated and processed in the majority of urban slums of the country, where untrained workers carry out the dangerous procedures without personal protective equipment, which are detrimental not only to their health but also to the environment. This paper focuses on the occupational health hazards due to the informal recycling of e-waste and then proceeds to show the safe disposal methods for handling the large quantities of e-waste generated in this electronic era and thus finds a sustainable solution for the formal processing of e-waste.
Occupational health hazards related to informal recycling of E-waste in India: An overview
Annamalai, Jayapradha
2015-01-01
The innovation in science and technology coupled with the change in lifestyle of an individual has made an incredible change in the electronic industry show casing an assorted range of new products every day to the world. India too has been impacted by this digital revolution where consumption of electronics goods grows at a rapid rate producing a large amount of waste electrical and electronic equipment. This substantial generation of electronic waste referred to as e-waste accompanied with the lack of stringent environmental laws and regulations for handling the hazardous e-waste has resulted in the cropping of number of informal sectors. Over 95% of the e-waste is treated and processed in the majority of urban slums of the country, where untrained workers carry out the dangerous procedures without personal protective equipment, which are detrimental not only to their health but also to the environment. This paper focuses on the occupational health hazards due to the informal recycling of e-waste and then proceeds to show the safe disposal methods for handling the large quantities of e-waste generated in this electronic era and thus finds a sustainable solution for the formal processing of e-waste. PMID:26023273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing Ma; Rudolf Addink; Sehun Yun
2009-10-01
In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, andmore » 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.« less
Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming
2012-10-02
Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.
Potential useful products from solid wastes.
Golueke, C G; Diaz, L F
1991-10-01
Wastes have been aptly defined as "items, i.e. resources, that have been discarded because their possessors no longer have an apparent use for them". Accordingly, "wastes" have a significance only in relation to the items and those who have discarded them. The discarded items now are resources awaiting reclamation. Reclamation usually involves either salvage or conversion--or in modern terminology, "reuse" or "recycling". Reclamation for reuse consists in refurbishing or other upgrading without significantly altering original form and composition. Examples of wastes amenable to reuse are containers (bottles, etc.), cartons and repairable tires. With "recycling" (i.e. conservation), the discarded items are processed such that they become raw material, i.e. resources in the manufacture of "new" products. The variety of processes is wide, ranging from simply physical (grinding) through thermal (melting, gasification, combustion), to biological (composting, biogasification, hydrolysis, microbial protein production). In the paper, reuse and recycling (conversion) are evaluated in terms of advantages and disadvantages (limitations) and their respective technologies are described and discussed in detail.
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2011 CFR
2011-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does...) to recycling, treatment, or disposal in compliance with Subtitle C of RCRA. (g) Regulation of the...
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2010 CFR
2010-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does...) to recycling, treatment, or disposal in compliance with Subtitle C of RCRA. (g) Regulation of the...
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2014 CFR
2014-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does...) to recycling, treatment, or disposal in compliance with Subtitle C of RCRA. (g) Regulation of the...
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2013 CFR
2013-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does...) to recycling, treatment, or disposal in compliance with Subtitle C of RCRA. (g) Regulation of the...
E-waste management in India: A mini-review.
Awasthi, Abhishek Kumar; Wang, Mengmeng; Wang, Zhishi; Awasthi, Mrigendra Kumar; Li, Jinhui
2018-05-01
Environmental deterioration and health risk due to improper e-waste management has become a serious issue in India. The major portion of e-waste reaches an unorganized e-waste recycling sector and is then treated by using crude methods. This review article presents a brief highlight on e-waste management status, legislation, and technology uses in India. The present e-waste management needs to be more focused on environmentally sound management, by more active support from all the participants involved in the e-waste flow chain in India.
Eguchi, Akifumi; Kunisue, Tatsuya; Wu, Qian; Trang, Pham Thi Kim; Viet, Pham Hung; Kannan, Kurunthachalam; Tanabe, Shinsuke
2014-07-01
Perchlorate (ClO4 (-)) and thiocyanate (SCN(-)) interfere with iodide (I(-)) uptake by the sodium/iodide symporter, and thereby these anions may affect the production of thyroid hormones (THs) in the thyroid gland. Although human exposure to perchlorate and thiocyanate has been studied in the United States and Europe, few investigations have been performed in Asian countries. In this study, we determined concentrations of perchlorate, thiocyanate, and iodide in 131 serum samples collected from 2 locations in Northern Vietnam, Bui Dau (BD; electrical and electronic waste [e-waste] recycling site) and Doung Quang (DQ; rural site) and examined the association between serum levels of these anions with levels of THs. The median concentrations of perchlorate, thiocyanate, and iodide detected in the serum of Vietnamese subjects were 0.104, 2020, and 3.11 ng mL(-1), respectively. Perchlorate levels were significantly greater in serum of the BD population (median 0.116 ng mL(-1)) than those in the DQ population (median 0.086 ng mL(-1)), which indicated greater exposure from e-waste recycling operations by the former. Serum concentrations of thiocyanate were not significantly different between the BD and DQ populations, but increased levels of this anion were observed among smokers. Iodide was a significant positive predictor of serum levels of FT3 and TT3 and a significant negative predictor of thyroid-stimulating hormone in males. When the association between serum levels of perchlorate or thiocyanate and THs was assessed using a stepwise multiple linear regression model, no significant correlations were found. In addition to greater concentrations of perchlorate detected in the e-waste recycling population, however, given that lower concentrations of iodide were observed in the serum of Vietnamese females, detailed risk assessments on TH homeostasis for females inhabiting e-waste recycling sites, especially for pregnant women and their neonates, are required.
Matsukami, Hidenori; Tue, Nguyen Minh; Suzuki, Go; Someya, Masayuki; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka
2015-05-01
Three oligomeric organophosphorus flame retardants (o-PFRs), eight monomeric PFRs (m-PFRs), tetrabromobisphenol A (TBBPA), and polybrominated diphenyl ethers (PBDEs) were identified and quantified in surface soils and river sediments around the e-waste recycling area in Bui Dau, northern Vietnam. Around the e-waste recycling workshops, 1,3-phenylene bis(diphenyl phosphate) (PBDPP), bisphenol A bis(diphenyl phosphate) (BPA-BDPP), triphenyl phosphate (TPHP), TBBPA, and PBDEs were dominant among the investigated flame retardants (FRs). The respective concentrations of PBDPP, BPA-BDPP, TPHP, TBBPA and the total PBDEs were 6.6-14000 ng/g-dry, <2-1500 ng/g-dry, 11-3300 ng/g-dry, <5-2900 ng/g-dry, and 67-9200 ng/g-dry in surface soils, and 4.4-78 ng/g-dry, <2-20 ng/g-dry, 7.3-38 ng/g-dry, 6.0-44 ng/g-dry and 100-350 ng/g-dry in river sediments. Near the open burning site of e-waste, tris(methylphenyl) phosphate (TMPP), (2-ethylhexyl)diphenyl phosphate (EHDPP), TPHP, and the total PBDEs were abundantly with respective concentrations of <2-190 ng/g-dry, <2-69 ng/g-dry, <3-51 ng/g-dry and 1.7-67 ng/g-dry in surface soils. Open storage and burning of e-waste have been determined to be important factors contributing to the emissions of FRs. The environmental occurrence of emerging FRs, especially o-PFRs, indicates that the alternation of FRs addition in electronic products is shifting in response to domestic and international regulations of PBDEs. The emissions of alternatives from open storage and burning of e-waste might become greater than those of PBDEs in the following years. The presence and environmental effects of alternatives should be regarded as a risk factor along with e-waste recycling. Copyright © 2015 Elsevier B.V. All rights reserved.
Auditing an intensive care unit recycling program.
Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha
2015-06-01
The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated (primarily by other plastics), but there was less than 1% contamination of other recycling streams. The estimated cost of the recycling program was about an additional $1000/year. In our 11-bed ICU, we recycled 14% of the total waste produced over 7-days, which was nearly half of the potentially recyclable waste. There was no infectious contamination of recyclables and minimal contamination with other waste streams, except for the PVC plastic. The estimated annual cost of the recycling program was $1000, reflecting the greater cost of disposal of some recyclables (paper and cardboard v most plastic types).
Shi, Jingchun; Zheng, Gene Jin-Shu; Wong, Ming-Hung; Liang, Hong; Li, Yuelin; Wu, Yinglin; Li, Ping; Liu, Wenhua
2016-05-01
Guiyu, China has been one of the largest e-waste recycling sites of the world for more than 20 years. Abundant data show that local dwellers there suffered from severe health risks from e-waste contaminants. In this study, polycyclic aromatic hydrocarbons (PAHs) were used as candidates to test the contamination levels and their possible adverse effects on residents in Haimen Bay, the estuary of Lian River (less than 30km from Guiyu), which has been totally neglected. The concentrations of 16PAHs were determined in collected marine fish with a median ΣPAH concentration of 1478ng/g (wet weight), and the contamination may be mainly influenced by Lian River runoff, specifically from Guiyu. The lifetime excess cancer risk for local dwellers was much higher than the serious risk level (10(-4)). More seriously, outflows of PAHs from the e-waste recycling site (Guiyu) seemed to exert health risks of a much larger scale of population downstream. Copyright © 2016 Elsevier Inc. All rights reserved.
Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining.
Zeng, Xianlai; Mathews, John A; Li, Jinhui
2018-04-17
Stocks of virgin-mined materials utilized in linear economic flows continue to present enormous challenges. E-waste is one of the fastest growing waste streams, and threatens to grow into a global problem of unmanageable proportions. An effective form of management of resource recycling and environmental improvement is available, in the form of extraction and purification of precious metals taken from waste streams, in a process known as urban mining. In this work, we demonstrate utilizing real cost data from e-waste processors in China that ingots of pure copper and gold could be recovered from e-waste streams at costs that are comparable to those encountered in virgin mining of ores. Our results are confined to the cases of copper and gold extracted and processed from e-waste streams made up of recycled TV sets, but these results indicate a trend and potential if applied across a broader range of e-waste sources and metals extracted. If these results can be extended to other metals and countries, they promise to have positive impact on waste disposal and mining activities globally, as the circular economy comes to displace linear economic pathways.
40 CFR 63.1207 - What are the performance testing requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) If you own or operate a hazardous waste cement kiln that recycles collected particulate matter (i.e... on a hazardous waste thermal concentration basis (i.e., pounds emitted per million Btu of heat input... this section for all hazardous waste feedstreams; (E) Interlock the HAP thermal feed concentration for...
40 CFR 63.1207 - What are the performance testing requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) If you own or operate a hazardous waste cement kiln that recycles collected particulate matter (i.e... on a hazardous waste thermal concentration basis (i.e., pounds emitted per million Btu of heat input... this section for all hazardous waste feedstreams; (E) Interlock the HAP thermal feed concentration for...
40 CFR 63.1207 - What are the performance testing requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) If you own or operate a hazardous waste cement kiln that recycles collected particulate matter (i.e... on a hazardous waste thermal concentration basis (i.e., pounds emitted per million Btu of heat input... this section for all hazardous waste feedstreams; (E) Interlock the HAP thermal feed concentration for...
A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System
NASA Technical Reports Server (NTRS)
Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.
1996-01-01
As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.
Recycling the construction and demolition waste to produce polymer concrete
NASA Astrophysics Data System (ADS)
Hamza, Mohammad T.; Hameed, Awham M., Dr.
2018-05-01
The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.
Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware.
Schumacher, Kelsea A; Schumacher, Thomas; Agbemabiese, Lawrence
2014-11-01
The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware's e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033. Copyright © 2014 Elsevier Ltd. All rights reserved.
Toward zero waste: Composting and recycling for sustainable venue based events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hottle, Troy A., E-mail: troy.hottle@asu.edu; Bilec, Melissa M., E-mail: mbilec@pitt.edu; Brown, Nicholas R., E-mail: nick.brown@asu.edu
Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g.more » recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO{sub 2} equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO{sub 2} eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO{sub 2} eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game.« less
Recycling of plastic: accounting of greenhouse gases and global warming contributions.
Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H
2009-11-01
Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.
Direction of CRT waste glass processing: Electronics recycling industry communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Julia R., E-mail: mueller.143@osu.edu; Boehm, Michael W.; Drummond, Charles
2012-08-15
Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, andmore » the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.« less
Dai, Yifeng; Huo, Xia; Zhang, Yu; Yang, Tian; Li, Minghui; Xu, Xijin
2017-08-15
Improper dismantling and combustion of electronic waste (e-waste) may release persistent organic pollutants and heavy metals that possess potential risk for human health. Lead (Pb) is carried through the circulatory system by erythrocytes and is known to alter the functions of hematopoietic and immune systems. The aim of the study was to investigate the effect of Pb exposure on blood morphology and erythrocyte complement receptor 1 (CR1) levels as related to immunologic function in preschool children. We recruited 484 preschool children, 2- to 6-years of age, among whom 332 children were from Guiyu, a typical and primitive e-waste processing area, and 152 children from Haojiang (reference area). Results showed that the blood Pb level (BPb) and erythrocyte Pb level (EPb) of exposed children were significantly higher, but, the mean corpuscular hemoglobin concentration (MCHC) and erythrocyte CR1 levels were significantly lower than reference children. Elevated EPb and BPb was related to disadvantageous changes in hematocrit (HCT), mean corpuscular volume (MCV), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), and MCHC, respectively, in children from the e-waste recycling area. Furthermore, in the high Pb-exposed group, the Pb toxicity of erythrocytes was more significant compared to the low Pb-exposed group in e-waste-exposed children. Combine with the BPb and EPb would be better to evaluating the Pb toxicity of erythrocytes. Compared to low Pb exposure, high BPb and EPb were associated with lower erythrocyte CR1 expression in all children. Our data suggests that elevated Pb levels result in adverse changes in blood morphology, hemoglobin synthesis and CR1 expression, which might be a non-negligible threat to erythrocyte immunity development in local preschool children. It is therefore imperative for any intervention to control the Pb exposure of children and actively educate adults to raise their environmental awareness of potential e-waste pollution during the recycling process. Copyright © 2017 Elsevier B.V. All rights reserved.
Tang, Zhenwu; Huang, Qifei; Cheng, Jiali; Yang, Yufei; Yang, Jun; Guo, Wei; Nie, Zhiqiang; Zeng, Ning; Jin, Lu
2014-01-01
The release of pollutants during the recycling of contaminated plastics is a problem which has drawn worldwide attention; however, little information on the transfer of polybrominated diphenyl ethers (PBDEs) in these processes is available. We conducted a survey of PBDEs in soils, sediments, and human hair in a typical plastic waste recycling area in northern China. The total concentrations (ng/g) of 21 PBDEs were 1.25-5504 (average 600), 18.2-9889 (average 1619), and 1.50-861 (average 112) in soils, sediments, and hair, respectively. The PBDE concentrations were comparable to concentrations observed in e-waste recycling areas; however, the concentrations in soils and sediments were 1-3 orders of magnitude higher than in other areas, and the concentrations in hair were much higher than in other areas. This indicates that this area is highly polluted with PBDEs. BDE-209 was the dominant congener (representing 91.23%, 92.3%, and 91.5% of the total PBDEs observed in soils, sediments, and hair, respectively), indicating that the commercial deca-BDE product was dominant. The commercial penta- and octa-BDE products made small contributions to the total PBDE concentrations, unlike what has been found in some e-waste recycling areas. Our results show that crude plastic waste processing is a major contributor of PBDEs to the environment and humans, which should be of great concern.
Yan, Xiao; Zheng, Xiaobo; Wang, Meihuan; Zheng, Jing; Xu, Rongfa; Zhuang, Xi; Lin, Ying; Ren, Mingzhong
2018-06-01
Urinary metabolites of phosphate flame retardants (PFRs) were determined in workers from an electronic waste (e-waste) recycling site and an incineration plant, in order to assess the PFR exposure risks of workers occupied with e-waste recycling and incineration. Bis(2-chloroethyl) phosphate (BCEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and diphenyl phosphate (DPHP) were the most frequently detected chemicals (82-93%). The median concentrations of BCEP, BDCIPP, and DPHP were 1.77, 0.23, and 0.70 ng/mL, and 1.44, 0.22, and 0.11 ng/mL in samples from the e-waste site and the incineration plant, respectively. Dibutyl phosphate (DBP) was detected in all samples from the incineration plant, with a median level of 0.30 ng/mL. The concentrations of BDCIPP (r = -0.31, p < 0.05) were significantly correlated with the occupational exposure time rather than age in workers from the e-waste site. Negative and significant correlations were also observed between the concentrations of BCEP (r = -0.42, p < 0.05), BDCIPP (r = -0.37, p < 0.05), and DPHP (r = -0.37, p < 0.05) and occupational exposure time rather than age in workers from the incineration plant. No gender differences were observed in levels of PFR metabolites in urine samples (p > 0.05). Concentrations of BDCIPP in female were significantly correlated with occupational exposure time (r = -0.507, p < 0.01). Concentrations of PFR metabolites in male were not significantly correlated with age or occupational exposure time (p > 0.05). Overall, the workers with occupational exposure to PFRs had different profiles of urinary PFR metabolites. The age, occupational exposure time, and gender seemed not to be main factors mediating the exposure to PFRs for workers occupied with e-waste recycling and incineration. Copyright © 2018 Elsevier Ltd. All rights reserved.
The use of short rotation willows and poplars for the recycling of saline waste waters
Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee
2009-01-01
The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...
Plastic flexible films waste management - A state of art review.
Horodytska, O; Valdés, F J; Fullana, A
2018-04-21
Plastic flexible films are increasingly used in many applications due to their lightness and versatility. In 2014, the amount of plastic films represented 34% of total plastic packaging produced in UK. The flexible film waste generation rises according to the increase in number of applications. Currently, in developed countries, about 50% of plastics in domestic waste are films. Moreover, about 615,000 tonnes of agricultural flexible waste are generated in the EU every year. A review of plastic films recycling has been conducted in order to detect the shortcomings and establish guidelines for future research. This paper reviews plastic films waste management technologies from two different sources: post-industrial and post-consumer. Clean and homogeneous post-industrial waste is recycled through closed-loop or open-loop mechanical processes. The main differences between these methods are the quality and the application of the recycled materials. Further research should be focused on closing the loops to obtain the highest environmental benefits of recycling. This could be accomplished through minimizing the material degradation during mechanical processes. Regarding post-consumer waste, flexible films from agricultural and packaging sectors have been assessed. The agricultural films and commercial and industrial flexible packaging are recycled through open-loop mechanical recycling due to existing selective waste collection routes. Nevertheless, the contamination from the use phase adversely affects the quality of recycled plastics. Therefore, upgrading of current washing lines is required. On the other hand, household flexible packaging shows the lowest recycling rates mainly because of inefficient sorting technologies. Delamination and compatibilization methods should be further developed to ensure the recycling of multilayer films. Finally, Life Cycle Assessment (LCA) studies on waste management have been reviewed. A lack of thorough LCA on plastic films waste management systems was identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hu, Jianfang; Xiao, Xiao; Peng, Ping'an; Huang, Weilin; Chen, Deyi; Cai, Ying
2013-10-01
Workshop dust, soil and sediment samples were collected to investigate the level and spatial distribution of PCDDs/Fs at an intensive electronic waste (e-waste) recycling site in Southern China, and also to characterize the dioxin emission in different e-waste recycling procedures. The concentrations of total PCDDs/Fs ranged from 1866 to 234292 ng kg(-1) for the dust samples, from 3187 to 63998 ng kg(-1) dry wt for the top soils, and 33718 ng kg(-1) for the surface sediment. All the samples were characterized by abnormally high concentrations of OCDD and an extremely low portion of PCDFs. Different e-waste recycling procedures may generate different congener profiles. Open burning and dismantling were the two procedures emitting relatively higher concentrations of PCDDs/Fs in this case, indicating that low-tech recycling operations were one of the major contributors of PCDDs/Fs to the environment. The variation and distinction of the concentrations and homologue/congener profiles among different environmental matrices reveal the characteristics of contaminant environmental behavior and fate during the transportation from "source" to "sink". Daily intake of PCDDs/Fs through soil ingestion and dermal absorption was negligible, but the rough estimated total PCDD/F intake dose far exceeded the tolerance daily intake value of 4 pg-TEQ per kg per day recommended by WHO, indicating that residents in Longtang were at a high risk of exposure to dioxins, especially children.
Massawe, Ephraim; Legleu, Tye; Vasut, Laura; Brandon, Kelly; Shelden, Greg
2014-06-01
An enormous amount of household hazardous waste (HHW) is generated as part of municipal solid waste. This scenario presents problems during disposal, including endangering human health and the environment if improperly disposed. This article examines current HHW recycling efforts in Hammond, Louisiana, with the following objectives: (a) analyze factors and attitudes that motivate residents to participate in the program; (b) quantify various types of HHW; and (c) analyze the e-waste stream in the HHW. Residents and city officials who were surveyed and interviewed cited that commitment shown by local authorities and passion to protect the environment and human health were part of their active participation in the program. An awareness program has played a key role in the success of the program. A legislation specific to e-waste is encouraged. While knowledge and information on laws and permit application processes and the promotion of greener products are encouraged, provision of storage or collection facilities and communal transportation will further motivate more residents to participate in the recycling program.
Wang, Yan; Tian, Zhongjing; Zhu, Haolin; Cheng, Zhineng; Kang, Meiling; Luo, Chunling; Li, Jun; Zhang, Gan
2012-11-15
This study determined the concentrations of PAHs generated from e-waste recycling activities and their potential impacts on soil, vegetation, and human health. The total PAH concentrations in soils and plants ranged from 127 to 10,600 and 199 to 2420 ng/g, respectively. Samples from an e-waste burning site had higher PAH concentrations than samples from adjacent locations. The PAHs in plants varied with plant species and tissue, and Lactuca sativa L. contained the highest PAHs of all the vegetable species. Various land use types showed different PAH concentrations in soils, with vegetable fields showing higher concentrations than paddy fields. Low molecular weight PAHs, such as phenanthrene, were the predominant congeners in soils, whereas high molecular weight PAHs, such as fluoranthene, pyrene, and benzo[a]anthracene, were enriched in plants relative to soils. Dissimilar PAH profiles in soil and the corresponding vegetation indicated that the uptake of PAHs by plants was selective. A source analysis showed that the contamination by PAHs originated primarily from the open burning of e-waste. The total daily intakes of PAHs and carcinogenic PAHs through vegetables at the e-waste dismantling site were estimated to be 279 and 108 ng/kg/d, respectively, indicating that the consumption of vegetables grown near e-waste recycling sites is risky and should be completely avoided. Copyright © 2012 Elsevier B.V. All rights reserved.
Sustainable recycling technologies for Solar PV off-grid system
NASA Astrophysics Data System (ADS)
Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan
2017-11-01
Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.
Klees, Marcel; Hombrecher, Katja; Gladtke, Dieter
2017-12-15
During this study the occurrence of polychlorinated biphenyls (PCBs) in the surrounding of an e-waste recycling facility in North-Rhine Westphalia was analysed. PCB levels were analysed in curly kale, spruce needles, street dusts and dusts. Conspicuously high PCB concentrations in curly kale and spruce needles were found directly northwards of the industrial premises. Furthermore a concentration gradient originating from the industrial premises to the residential areas in direction southwest to northeast was evident. Homologue patterns of highly PCB contaminated dusts and street dusts were comparable to the homologue patterns of PCB in curly kale and spruce needles. This corroborates the suspicion that the activities at the e-waste recycling facility were responsible for the elevated PCB levels in curly kale and spruce needles. The utilization of multiple linear regression of wind direction data and analysed PCB concentrations in spruce needles proved that the e-waste recycling facility caused the PCB emissions to the surrounding. Additionally, this evaluation enabled the calculation of source specific accumulation constants for certain parts of the facility. Consequently the different facility parts contribute with different impacts to the PCB levels in bioindicators. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluating the Sustainability of Manufacturing: Process and Life Cycle Assessments
The Circular Economy is a popular term in environmental studies, but methods are needed to quickly and accurately evaluate recycling opportunities rather than assuming that recycling is appropriate. Through the study of recycling processes (i.e., processes that turn wastes into ...
Factors influencing the recycling rate under the volume-based waste fee system in South Korea.
Park, Seejeen
2018-04-01
Since the early 2000s, the Republic of Korea (South Korea) has maintained its top-rank status for its municipal solid waste (MSW) recycling rate among OECD (Organization for Economic Cooperation and Development) member countries. The volume-based waste fee system (VWF) has been considered to be the major factor contributing to the high recycling performance, and extant research has verified the positive relationship between VWF adoption and the MSW recycling rate. Nevertheless, there exists a gap in the literature, as past research has focused more on testing the positive effects of VWF rather than on investigating the determinants of recycling rates after the adoption of VWF. The current study seeks to address this gap by investigating the various factors that affect recycling rates under the VWF system. More specifically, using data from 16 regions in South Korea over a period of 11 years, this study empirically tests the effects of VWF pricing, the citizen cost burden ratio for the VWF system, and pro-environmental behavior related to VWF on the recycling rate. The findings indicate that economic incentives such as cost savings on VWF plastic bag purchases and reduced burden from paying VWF expenses result in higher recycling rates. The findings also demonstrate that pro-environmental behavior in the VWF context positively affects the recycling rate. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Hongmei; Zhang, Yuan; Liu, Qian; Wang, Feifei; Nie, Jing; Qian, Yan
2010-09-01
Brominated flame retardants (BFRs) released from e-waste related activities may affect the health of local people. Assessing the impact of e-waste exposure during recycling and dismantling activities on local people's thyroid hormone levels is an area of ongoing research. During November and December 2008, the process of e-waste recycling and dismantling was investigated, and 236 occupation-exposed people and 89 non-occupation-exposed people approximate to the e-waste recycling sites were surveyed; their thyroid hormone levels (THs), thyrotropins (TSH) and BFRs levels in serum were assayed. Multiple regression models were constructed to analyze the changes of serum THs and TSH in the people living in the exposure area (exposure group) and the people in the control group. Covariates known to be or likely to be associated with THs, TSH and BFRs levels were analyzed. Lower level of Triiodothyronine (T(3)) in both occupation-exposed and non-occupation-exposed group were observed (p<0.01), when compared with the control group, and the same trend was obtained for free triiodothyronine (fT(3)) and free thyroxine (fT4) (p<0.01). However, no significant difference in thyroxine (T(4)) was found between the two groups. The level of TSH in the e-waste recycling occupational-exposed group ranged from 0.00 to 5.00microIU/ml with a mean of 1.26microIU/ml, whereas the level of TSH in the control group was from 0.03 to 5.54microIU/ml with a mean of 1.57microIU/ml. This study revealed that people having worked on e-waste recycling and dismantling had significantly lower TSH compared with the control group (p<0.01). Moreover, the level of BDE-205 is positively associated with the level of T4, as confirmed by the linear regression model (unstandardized regression coefficient, beta=0.25, rho=0.001) and a weaker positive relation was also found between the levels of BDE-126 and T4. Meanwhile, a weak negative relation was found between the levels of PBB 103 and T3, and between the levels of fT3 and fT4. These results suggest that exposure to BFRs released from primitive e-waste handling may contribute to the changes of THs and TSH levels. Crown Copyright 2010. Published by Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Wenqing; Chen, Yaowen; Huang, Yue
Objective: Toxic heavy metals are released to the environment constantly from unregulated electronic waste (e-waste) recycling in Guiyu, China, and thus may contribute to the elevation of mercury (Hg) and other heavy metals levels in human hair. We aimed to investigate concentrations of mercury in hair from Guiyu and potential risk factors and compared them with those from a control area where no e-waste processing occurs. Methods: A total of 285 human hair samples were collected from three villages (including Beilin, Xianma, and Huamei) of Guiyu (n=205) and the control area, Jinping district of Shantou city (n=80). All the volunteersmore » were administered a questionnaire regarding socio-demographic characteristics and other possible factors contributed to hair mercury concentration. Hair mercury concentration was analyzed by hydride generation atomic fluorescence spectrometry (AFS). Results: Our results suggested that hair mercury concentrations in volunteers of Guiyu (median, 0.99; range, 0.18–3.98 μg/g) were significantly higher than those of Jinping (median, 0.59; range, 0.12–1.63 μg/g). We also observed a higher over-limit ratio (>1 μg/g according to USEPA) in Guiyu than in Jinping (48.29% vs. 11.25%, P<0.001). Logistic regression model showed that the variables of living house also served as an e-waste workshop, work related to e-waste, family income, time of residence in Guiyu, the distance between home and waste incineration, and fish intake were associated with hair mercury concentration. After multiple stepwise regression analysis, in the Guiyu samples, hair mercury concentration was found positively associated with the time residence in Guiyu (β=0.299, P<0.001), and frequency of shellfish intake (β=0.184, P=0.016); and negatively associated with the distance between home and waste incineration (β=−0.190, P=0.015) and whether house also served as e-waste workshop (β=−0.278, P=0.001). Conclusions: This study investigated human mercury exposure and suggested elevated hair mercury concentrations in an e-waste recycling area, Guiyu, China. Living in Guiyu for a long time and work related to e-waste may primarily contribute to the high hair mercury concentrations. -- Highlights: • Mercury levels in hair samples from Guiyu and risk factors were assessed. • The recruitments from Guiyu were exposed to high levels of mercury. • Primitive e-waste recycling resulted in high mercury exposure of local people.« less
NASA Astrophysics Data System (ADS)
Yang, Fangxing; Jin, Shiwei; Xu, Ying; Lu, Yuanan
2011-04-01
To identify the different effects of organic-soluble and water-soluble pollutants adsorbed on PM2.5 (PM: particulate matter) released from e-waste (electrical/electronic waste) on inflammatory response, oxidative stress and DNA damage, interleukin-8 (IL-8), reactive oxygen species (ROS) and p53 protein levels were determined and compared in human lung epithelial A549 cells exposed to extracts of PM2.5 collected from two sampling sites in an e-waste recycling area in China. It is found that both extracts induced increases of IL-8 release, ROS production and p53 protein expression. The differences between the organic-soluble and water-soluble extracts were determined as of significance for ROS production (p < 0.05) and p53 protein expression (p < 0.01). The ROS production and p53 protein expression induced by the organic-soluble extracts were found to be greater than those induced by the water-soluble extracts, for both sampling sites. The results indicated that PM2.5 collected from the e-waste recycling areas could lead to inflammatory response, oxidative stress and DNA damage, and the organic-soluble extracts had higher potential to induce such adverse effects on human health.
Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi
2017-10-01
The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.
Ribić, Bojan; Voća, Neven; Ilakovac, Branka
2017-02-01
Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb. Municipal waste management in the developing countries in the EU (new eastern EU members) is often characterized by its limited utilization of recycling activities, inadequate management of nonindustrial hazardous waste, and inadequate landfill disposal. Many cities in Eastern Europe and Zagreb as well are facing serious problems in managing municipal wastes due to the existing solid waste management system that is found to be highly inefficient. The proposed scenario for city of Zagreb in the paper is an innovative upgrading of municipal waste management based on the waste management hierarchy and circular economy approach.
A recycling index for food and health security: urban Taipei.
Huang, Susana Tzy-Ying
2010-01-01
The modern food system has evolved into one with highly inefficient activities, producing waste at each step of the food pathway from growing to consumption and disposal. The present challenge is to improve recyclability in the food system as a fundamental need for food and health security. This paper develops a methodological approach for a Food Recycling Index (FRI) as a tool to assess recyclability in the food system, to identify opportunities to reduce waste production and environmental contamination, and to provide a self-assessment tool for participants in the food system. The urban Taipei framework was used to evaluate resource and nutrient flow within the food consumption and waste management processes of the food system. A stepwise approach for a FRI is described: (1) identification of the major inputs and outputs in the food chain; (2) classification of inputs and outputs into modules (energy, water, nutrients, and contaminants); (3) assignment of semi-quantitative scores for each module and food system process using a matrix; (4) assessment for recycling status and recyclability potential; (5) conversion of scores into sub-indices; (6) derivation of an aggregate FRI. A FRI of 1.24 was obtained on the basis of data for kitchen waste management in Taipei, a score which encompasses absolute and relative values for a comprehensive interpretation. It is apparent that a FRI could evolve into a broader ecosystem concept with health relevance. Community end-users and policy planners can adopt this approach to improve food and health security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.A.; Baetz, B.W.
1998-09-01
A knowledge-based decision support system (KBDSS) has been developed to examine the potentials for reuse, co-treatment, recycling and disposal of wastes from different industrial facilities. Four plants on the Point Lisas Industrial Estate in Trinidad were selected to test this KBDSS; a gas processing plant, a methanol plant, a fertilizer/ammonia plant and a steel processing plant. A total of 77 wastes were produced by the plants (51,481,500 t year{sup {minus}1}) with the majority being released into the ocean or emitted into the air. Seventeen wastes were already being recycled off-site so were not included in the database. Using a knowledgemore » base of 25 possible treatment processes, the KBDSS generated over 4,600 treatment train options for managing the plant wastes. The developed system was able to determine treatment options for the wastes which would minimize the number of treatments and the amount of secondary wastes produced and maximize the potential for reuse, recycling and co-treatment of wastes.« less
Health Risks Awareness of Electronic Waste Workers in the Informal Sector in Nigeria.
Ohajinwa, Chimere M; Van Bodegom, Peter M; Vijver, Martina G; Peijnenburg, Willie J G M
2017-08-13
Insight into the health risk awareness levels of e-waste workers is important as it may offer opportunities for better e-waste recycling management strategies to reduce the health effects of informal e-waste recycling. Therefore, this study assessed the knowledge, attitude, and practices associated with occupational health risk awareness of e-waste workers compared with a control group (butchers) in the informal sector in Nigeria. A cross-sectional study was used to assess health risk awareness of 279 e-waste workers (repairers and dismantlers) and 221 butchers from the informal sector in three locations in Nigeria in 2015. A questionnaire was used to obtain information on socio-demographic backgrounds, occupational history, knowledge, attitude, and work practices. The data was analysed using Analysis of Variance. The three job designations had significantly different knowledge, attitude, and practice mean scores ( p = 0.000), with butchers consistently having the highest mean scores. Only 43% of e-waste workers could mention one or more Personal Protective Equipment needed for their job compared with 70% of the butchers. The health risk awareness level of the e-waste workers was significantly lower compared with their counterparts in the same informal sector. A positive correlation existed between the workers' knowledge and their attitude and practice. Therefore, increasing the workers' knowledge may decrease risky practices.
Current status of circularity for aluminum from household waste in Austria.
Warrings, R; Fellner, J
2018-02-20
Aluminum (Al) represents the metal with the highest consumption growth in the last few decades. Beside its increasing usage in the transport (lightweight construction of vehicles) and building sector, Al is used ever more frequently for household goods like packaging material, which represents a readily available source for secondary aluminum due to its short lifetime. The present paper investigates the extent to which this potential source for recycling of Al is already utilized in Austria and highlights areas for future improvements. Thereto a detailed material flow analysis for Al used in packaging & household non-packaging in 2013 was conducted. In practice, all Al flows starting from market entrance through waste collection and processing until its final recycling or disposal have been investigated. The results indicate that about 25,100 t/a (2.96 kg/cap/a) of Al packaging & household non-packaging arose as waste. At present about 9800 t/a, or 39%, are recycled as secondary Al, of which 26% is regained from separate collection and sorting, 8% from bottom ash and 5% from mechanical treatment. The type of Al packaging & household non-packaging affects the recycling rate: 82% of the total recycled quantities come from rigid packaging & household non-packaging, while only 3% of the total recycled Al derives from flexible materials. A significant amount of Al was lost during thermal waste treatment due to oxidation (10%) and insufficient recovery of Al from both waste incineration bottom ash and municipal solid waste treated in mechanical biological treatment plants (49%). Overall it can be concluded that once Al ends up in commingled waste the recovery of Al becomes less likely and its material quality is reduced. Although Austria can refer to a highly developed recycling system, the Austrian packaging industry, collection and recovery systems and waste management need to increase their efforts to comply with future recycling targets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Davis, Georgina; Herat, S
2010-08-01
E-waste refers to both electronic and electrical waste materials; namely any items which rely on an electric current or electromagnetic fields in order to operate, and contain a hard-drive or significant electronic components and/or a printed circuit board. E-waste is outstripping the general growth of the municipal waste stream. Increasingly, smaller and cheaper electronic items are being disposed of in municipal waste systems and this, coupled with an increase in the number of, and turnover of manufacturers and suppliers, may see local councils assuming a key role in future e-waste management. A survey of local councils across Australia was undertaken to determine the current level of understanding and action on e-waste, and to solicit key responses regarding the identification of areas where improvements could be made. The survey achieved an overall response rate of 35%. Survey results identified key barriers experienced by councils regarding the collection and treatment of e-wastes, such as access to reprocessing facilities and the limited or complete unawareness by the public of the issues. With regards to who should pay for e-waste disposal at end-of-life, consumers and producers were most commonly cited, depending on the state with the preferred funding mechanisms being 'advanced recycling fee' and Expanded Producer Responsibility. Overwhelmingly, 88% of respondents believed that federal legislation was required to manage e-waste. Overall, the results did not indicate differences in views between states for most questions.
Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul
2017-12-01
There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Labunska, Iryna; Harrad, Stuart; Santillo, David; Johnston, Paul; Brigden, Kevin
2013-02-01
Electronic waste recycling operations in some parts of Asia are conducted using rudimentary techniques which result in workplace and environmental contamination with toxic metals and persistent organic pollutants. This study reports concentrations of 14 polybrominated diphenyl ethers (PBDEs), from tri- to deca-brominated, in 31 samples of soil, sediment, dust or ash collected in the vicinity of e-waste recycling sites in Guiyu (southeast China) which were engaged in common activities such as dismantling, shredding, solder recovery, acid processing and open burning. The concentrations detected in this study far exceed those reported previously in urban soil and sediment and are consistent with or exceed those reported in previous studies around e-waste processing facilities. Some of the highest PBDE concentrations reported to date (e.g. 390 000 ng g (-1) dw (∑ 14 PBDEs)) were found in a sample collected from a site used for open-burning of e-waste, while an average concentration of 220 000 ng g (-1) dw (∑ 14 PBDEs) occurred in sediments impacted by circuit board shredding. A decrease in PBDE concentrations observed with increasing distance from workshops in samples associated with acid processing of wastes provides evidence that such operations are a significant source of PBDEs to the environment. Principal components analysis reveals a complex PBDE congener distribution, suggesting contamination by two or even three commercial formulations consistent with the diverse range of wastes processed.
Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area.
Cao, Junjun; Xu, Xijin; Zhang, Yu; Zeng, Zhijun; Hylkema, Machteld N; Huo, Xia
2018-03-01
Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4 + central memory T cells and CD8 + central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4 + central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8 + central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4 + central memory T cells in these children. Copyright © 2017. Published by Elsevier B.V.
Waste electrical and electronic equipment (WEEE) estimation: A case study of Ahvaz City, Iran.
Alavi, Nadali; Shirmardi, Mohammad; Babaei, Aliakbar; Takdastan, Afshin; Bagheri, Nastaran
2015-03-01
The development of new technologies and the increasing consumption of electronic and electrical equipment have led to increased generation of e-waste in the municipal waste streams. This waste due to the presence of hazardous substances in its composition needs specific attention and management. The present study was carried out in Ahvaz metropolis using a survey method in 2011. For estimating the amount of waste electrical and electronic equipment (WEEE) generated, the "use and consumption" method was used. In order to determine the amounts of the electrical and electronic equipment that were used and their lifetime, and for investigating the current status of e-waste management in Ahvaz, an appropriate questionnaire was devised. In 2011, the total number of discarded electronic items was 2,157,742 units. According to the average weight of the equipment, the total generation of e-waste was 9952.25 metric tons per year and was 9.95 kg per capita per year. The highest e-waste generated was related to air conditioners, with 3125.36 metric tons per year, followed by the wastes from refrigerators and freezers, washing machines, and televisions. The wastes from desktop computers and laptops were 418 and 63 metric tons/year, respectively, and the corresponding values per capita were 0.42 and 0.063 kg, respectively. These results also showed that 10 tons fixed phones, 25 tons mobile phones, and by considering an average lifetime of 3 years for each lamp about 320 tons lamps were generated as e-waste in Ahvaz in the year 2011. Based on this study, currently there is not an integrated system for proper management of WEEE in Ahvaz, and this waste stream is collected and disposed of with other municipal waste. Some measures, including a specific collection system, recycling of valuable substances, and proper treatment and disposal, should be done about such waste. Ahvaz is one of the most important economic centers of Iran, and to the best of our knowledge, no study has been carried out to estimate the generation of waste electrical and electronic equipment (WEEE) in this city. Therefore, the authors estimated the generation of the WEEE by the "use and consumption" method. The results of this study can be useful not only for decision-making organizations of Ahvaz to manage and recycle this type of waste but also can be used as a method to estimate the generation of e-waste in different locations of the world, especially in places where the generation of such waste could be a risk to human health and the environment.
Götze, R; Pivnenko, K; Boldrin, A; Scheutz, C; Astrup, T Fruergaard
2016-08-01
Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Deming; Xu, Zhenming
2011-09-15
Crushing and separating technology is widely used in waste printed circuit boards (PCBs) recycling process. A set of automatic line without negative impact to environment for recycling waste PCBs was applied in industry scale. Crushed waste PCBs particles grinding and classification cyclic system is the most important part of the automatic production line, and it decides the efficiency of the whole production line. In this paper, a model for computing the process of the system was established, and matrix analysis method was adopted. The result showed that good agreement can be achieved between the simulation model and the actual production line, and the system is anti-jamming. This model possibly provides a basis for the automatic process control of waste PCBs production line. With this model, many engineering problems can be reduced, such as metals and nonmetals insufficient dissociation, particles over-pulverizing, incomplete comminuting, material plugging and equipment fever. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn
Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less
Wang, Yalin; Hu, Jinxing; Lin, Wei; Wang, Ning; Li, Cheng; Luo, Peng; Hashmi, Muhammad Zaffar; Wang, Wenbo; Su, Xiaomei; Chen, Chen; Liu, Yindong; Huang, Ronglang; Shen, Chaofeng
2016-02-01
Migrant workers who work and live in polluted environment are a special vulnerable group in the accelerating pace of urbanization and industrialization in China. In the electronic waste (e-waste) recycling area, for example, migrant workers' exposure to pollutants, such as PCBs (polychlorinated biphenyls), is the result of an informal e-waste recycling process. A village in an electronic waste recycling area where migrant workers gather was surveyed. The migrant workers' daily routines were simulated according to the three-space transition: work place-on the road-home. Indoor air and dust in the migrant workers' houses and workplaces and the ambient air on the roads were sampled. The PCB levels of the air and dust in the places corresponding to the migrant workers are higher than those for local residents. The migrant workers have health risks from PCBs that are 3.8 times greater than those of local residents. This is not only caused by the exposure at work but also by their activity patterns and the environmental conditions of their dwellings. These results revealed the reason for the health risk difference between the migrant workers and local residents, and it also indicated that lifestyle and economic status are important factors that are often ignored compared to occupational exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 503.9 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., sanitary district, utility district, drainage district, or similar entity, or an integrated waste... that can be applied to a unit area of land (e.g., gallons per acre). (v) Runoff is rainwater, leachate... owned, publicly owned, or privately owned device or system used to treat (including recycle and reclaim...
Generation of and control measures for, e-waste in Hong Kong
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung Shanshan, E-mail: sschung@hkbu.edu.hk; Lau Kayan; Zhang Chan
2011-03-15
While accurately estimating electrical and electronic waste (e-waste) generation is important for building appropriate infrastructure for its collection and recycling, making reliable estimates of this kind is difficult in Hong Kong owing to the fact that neither accurate trade statistics nor sales data of relevant products are available. In view of this, data of e-products consumption at household level was collected by a tailor-made questionnaire survey from the public for obtaining a reasonable e-waste generation estimate. It was estimated that on average no more than 80,443 tonnes (11.5 kg/capita) of waste is generated from non-plasma and non-liquid crystal display televisions,more » refrigerators, washing machines, air-conditioners and personal computers each year by Hong Kong households. However, not more than 17% of this is disposed as waste despite a producer responsibility scheme (PRS) not being in place because of the existence of a vibrant e-waste trading sector. The form of PRS control that can possibly win most public support is one that would involve the current e-waste traders as a major party in providing the reverse logistics with a visible recycling charge levied at the point of importation. This reverse logistic service should be convenient, reliable and highly accessible to the consumers.« less
Generation of and control measures for, e-waste in Hong Kong.
Chung, Shan-shan; Lau, Ka-yan; Zhang, Chan
2011-03-01
While accurately estimating electrical and electronic waste (e-waste) generation is important for building appropriate infrastructure for its collection and recycling, making reliable estimates of this kind is difficult in Hong Kong owing to the fact that neither accurate trade statistics nor sales data of relevant products are available. In view of this, data of e-products consumption at household level was collected by a tailor-made questionnaire survey from the public for obtaining a reasonable e-waste generation estimate. It was estimated that on average no more than 80,443 tones (11.5 kg/capita) of waste is generated from non-plasma and non-liquid crystal display televisions, refrigerators, washing machines, air-conditioners and personal computers each year by Hong Kong households. However, not more than 17% of this is disposed as waste despite a producer responsibility scheme (PRS) not being in place because of the existence of a vibrant e-waste trading sector. The form of PRS control that can possibly win most public support is one that would involve the current e-waste traders as a major party in providing the reverse logistics with a visible recycling charge levied at the point of importation. This reverse logistic service should be convenient, reliable and highly accessible to the consumers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stock flow diagram analysis on solid waste management in Malaysia
NASA Astrophysics Data System (ADS)
Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack
2016-10-01
The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.
Liang, Sai; Zhang, Tianzhu
2012-01-01
Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tue, Nguyen Minh; Goto, Akitoshi; Takahashi, Shin; Itai, Takaaki; Asante, Kwadwo Ansong; Kunisue, Tatsuya; Tanabe, Shinsuke
2016-01-25
Although complex mixtures of dioxin-related compounds (DRCs) can be released from informal e-waste recycling, DRC contamination in African e-waste recycling sites has not been investigated. This study examined the concentrations of DRCs including chlorinated, brominated, mixed halogenated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs, PBDD/Fs, PXDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in surface soil samples from the Agbogbloshie e-waste recycling site in Ghana. PCDD/F and PBDD/F concentrations in open burning areas (18-520 and 83-3800 ng/g dry, respectively) were among the highest reported in soils from informal e-waste sites. The concentrations of PCDFs and PBDFs were higher than those of the respective dibenzo-p-dioxins, suggesting combustion and PBDE-containing plastics as principal sources. PXDFs were found as more abundant than PCDFs, and higher brominated analogues occurred at higher concentrations. The median total WHO toxic equivalent (TEQ) concentration in open burning soils was 7 times higher than the U.S. action level (1000 pg/g), with TEQ contributors in the order of PBDFs>PCDD/Fs>PXDFs. DRC emission to soils over the e-waste site as of 2010 was estimated, from surface soil lightness based on the correlations between concentrations and lightness, at 200mg (95% confidence interval 93-540 mg) WHO-TEQ over three years. People living in Agbogbloshie are potentially exposed to high levels of not only chlorinated but also brominated DRCs, and human health implications need to be assessed in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Ortiz, O; Pasqualino, J C; Castells, F
2010-04-01
The main objective of this paper is to evaluate environmental impacts of construction wastes in terms of the LIFE 98 ENV/E/351 project. Construction wastes are classified in accordance with the Life Program Environment Directive of the European Commission. Three different scenarios to current waste management from a case study in Catalonia (Spain) have been compared: landfilling, recycling and incineration, and these scenarios were evaluated by means of Life Cycle Assessment. The recommendations of the Catalan Waste Catalogue and the European Waste Catalogue have been taken into account. Also, the influence of transport has been evaluated. Results show that in terms of the Global Warming Potential, the most environmentally friendly treatment was recycling, followed by incineration and lastly landfilling. According to the influence of treatment plants location on the GWP indicator, we observe that incineration and recycling of construction wastes are better than landfilling, even for long distances from the building site to the plants. This is true for most wastes except for the stony types, than should be recycled close to the building site. In summary, data from construction waste of a Catalan case study was evaluated using the well established method of LCA to determine the environmental impacts. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, O., E-mail: oscarortiz@unipamplona.edu.c; University of Pamplona, Department of Industrial Engineering, Km 1 Via Bucaramanga, Pamplona, N de S; Pasqualino, J.C.
2010-04-15
The main objective of this paper is to evaluate environmental impacts of construction wastes in terms of the LIFE 98 ENV/E/351 project. Construction wastes are classified in accordance with the Life Program Environment Directive of the European Commission. Three different scenarios to current waste management from a case study in Catalonia (Spain) have been compared: landfilling, recycling and incineration, and these scenarios were evaluated by means of Life Cycle Assessment. The recommendations of the Catalan Waste Catalogue and the European Waste Catalogue have been taken into account. Also, the influence of transport has been evaluated. Results show that in termsmore » of the Global Warming Potential, the most environmentally friendly treatment was recycling, followed by incineration and lastly landfilling. According to the influence of treatment plants location on the GWP indicator, we observe that incineration and recycling of construction wastes are better than landfilling, even for long distances from the building site to the plants. This is true for most wastes except for the stony types, than should be recycled close to the building site. In summary, data from construction waste of a Catalan case study was evaluated using the well established method of LCA to determine the environmental impacts.« less
Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna
Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese
2009-01-01
Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...
Airborne PCDD/Fs in two e-waste recycling regions after stricter environmental regulations.
Zhang, Manwen; Feng, Guixian; Yin, Wenhua; Xie, Bing; Ren, Mingzhong; Xu, Zhencheng; Zhang, Sukun; Cai, Zongwei
2017-12-01
Since the 2010s, the authorities of Guangdong province and local governments have enhanced law enforcement and environmental regulations to abolish open burning, acid washing, and other uncontrolled e-waste recycling activities. In this study, ambient air and indoor dust near different kinds of e-waste recycling processes were collected in Guiyu and Qingyuan to investigate the pollution status of particles and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) after stricter environmental regulations. PM 2.5 and PCDD/Fs both showed significantly reduced levels in the two regions compared with the documented data. The congener distribution and principal component analysis results also confirmed the significant differences between the current PCDD/Fs pollution characterizations and the historical ones. The estimated total intake doses via air inhalation and dust ingestion of children in the recycling region of Guiyu ranged from 10 to 32pgTEQ/(kg•day), which far exceeded the tolerable daily intake (TDI) limit (1-4pgTEQ/(kg•day). Although the measurements showed a significant reduction of the release of PCDD/Fs, the pollution status was still considered severe in Guiyu town after stricter regulations were implemented. Copyright © 2017. Published by Elsevier B.V.
Dining at the periodic table: metals concentrations as they relate to recycling.
Johnson, Jeremiah; Harper, E M; Lifset, Reid; Graedel, T E
2007-03-01
A correlation between the prices of a variety of substances and their dilutions in their initial matrices was shown in 1959 by T.K. Sherwood. The research presented here shows that the relationship holds for engineering metals today, which we termed the metals-specific Sherwood plot. The concentrations of metals in products (e.g., printed wiring boards and automobiles) and waste streams (e.g., municipal solid waste, and construction and demolition debris) were plotted with this correlation. In addition, for the products and waste streams that undergo disassembly at end-of-life, the metals concentrations of the disassembled components were also plotted. It was found that most of the metals that are currently targeted for recycling have post-disassembly concentrations that lie above the metals-specific Sherwood plot (i.e., have concentrations that are more enriched than minimum profitable ore grades). This suggests that material concentration plays a role in the viability of recycling at end-of-life. As products grow in complexity and the variety of materials used, analyses such as this one provide insight for policymakers and those interested in material sustainability into macro-level trends of material use and future recycling practices.
Auditing Operating Room Recycling: A Management Case Report.
McGain, Forbes; Jarosz, Katherine Maria; Nguyen, Martin Ngoc Hoai Huong; Bates, Samantha; O'Shea, Catherine Jane
2015-08-01
Much waste arises from operating rooms (ORs). We estimated the practical and financial feasibility of an OR recycling program, weighing all waste from 6 ORs in Melbourne, Australia. Over 1 week, 237 operations produced 1265 kg in total: general waste 570 kg (45%), infectious waste 410 kg (32%), and recyclables 285 kg (23%). The achieved recycling had no infectious contamination. The achieved recycling/potential recycling rate was 285 kg/517 kg (55%). The average waste disposal costs were similar for general waste and recycling. OR recycling rates of 20%-25% total waste were achievable without compromising infection control or financial constraints.
A review on automated sorting of source-separated municipal solid waste for recycling.
Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul
2017-02-01
A crucial prerequisite for recycling forming an integral part of municipal solid waste (MSW) management is sorting of useful materials from source-separated MSW. Researchers have been exploring automated sorting techniques to improve the overall efficiency of recycling process. This paper reviews recent advances in physical processes, sensors, and actuators used as well as control and autonomy related issues in the area of automated sorting and recycling of source-separated MSW. We believe that this paper will provide a comprehensive overview of the state of the art and will help future system designers in the area. In this paper, we also present research challenges in the field of automated waste sorting and recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Less haste, less waste: on recycling and its limits in strand displacement systems
Condon, Anne; Hu, Alan J.; Maňuch, Ján; Thachuk, Chris
2012-01-01
We study the potential for molecule recycling in chemical reaction systems and their DNA strand displacement realizations. Recycling happens when a product of one reaction is a reactant in a later reaction. Recycling has the benefits of reducing consumption, or waste, of molecules and of avoiding fuel depletion. We present a binary counter that recycles molecules efficiently while incurring just a moderate slowdown compared with alternative counters that do not recycle strands. This counter is an n-bit binary reflecting Gray code counter that advances through 2n states. In the strand displacement realization of this counter, the waste—total number of nucleotides of the DNA strands consumed—is polynomial in n, the number of bits of the counter, while the waste of alternative counters grows exponentially in n. We also show that our n-bit counter fails to work correctly when many (Θ(n)) copies of the species that represent the bits of the counter are present initially. The proof applies more generally to show that in chemical reaction systems where all but one reactant of each reaction are catalysts, computations longer than a polynomial function of the size of the system are not possible when there are polynomially many copies of the system present. PMID:22649584
Global challenges for e-waste management: the societal implications.
Magalini, Federico
2016-03-01
Over the last decades the electronics industry and ICT Industry in particular has revolutionized the world: electrical and electronic products have become ubiquitous in today's life around the planet. After use, those products are discarded, sometimes after re-use cycles in countries different from those where they were initially sold; becoming what is commonly called e-waste. Compared to other traditional waste streams, e-waste handling poses unique and complex challenges. e-Waste is usually regarded as a waste problem, which can cause environmental damage and severe human health consequences if not safely managed. e-Waste contains significant amounts of toxic and environmentally sensitive materials and is, thus, extremely hazardous to humans and the environment if not properly disposed of or recycled. On the other hand, e-waste is often seen as a potential source of income for individuals and entrepreneurs who aim to recover the valuable materials (metals in particular) contained in discarded equipment. Recently, for a growing number of people, in developing countries in particular, recycling and separation of e-waste has become their main source of income. In most cases, this is done informally, with no or hardly any health and safety standards, exposing workers and the surrounding neighborhoods to extensive health dangers as well as leading to substantial environmental pollution. Treatment processes of e-waste aim to remove the hazardous components and recover as much reusable material (e.g. metals, glass and plastics) as possible; achieving both objectives is most desired. The paper discuss societal implications of proper e-waste management and key elements to be considered in the policy design at country level.
Eguchi, Akifumi; Nomiyama, Kei; Minh Tue, Nguyen; Trang, Pham Thi Kim; Hung Viet, Pham; Takahashi, Shin; Tanabe, Shinsuke
2015-02-01
This study demonstrated the contamination levels of polychlorinated biphenyls (PCBs), hydroxylated PCBs (OH-PCBs), polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs), hydroxylated PBDEs (OH-PBDEs), and bromophenols (BPhs), and their relationships with thyroid hormones (THs), in the serum of human donors from an e-waste recycling site and a rural site in Hung Yen province, Vietnam. Occupationally related exposure was indicated by significantly higher residue levels of PCBs, OH-PCBs, PBDEs, and BPhs in the serum of donors from the e-waste recycling site (median: 420, 160, 290, and 300pgg(-1) wet wt, respectively) than those in the serum of donors from the rural site (median: 290, 82, 230, and 200pgg(-)(1) wet wt, respectively). On the other hand, levels of OH-/MeO-PBDEs were significantly higher in serum of donors from the reference site (median: 160 and 20pgg(-1) wet wt, respectively) than in those from the e-waste recycling site (median: 43 and 0.52pgg(-1) wet wt, respectively). In addition, we implemented stepwise generalized linear models to assess the association between the levels of TH and PCBs, PBDEs, and their related compounds. In females, we found positive associations of PCBs and OH-PCB concentrations with total thyroxine, free thyroxine, total triiodothyronine, and free triiodothyronine, and a negative association with thyroid-stimulating hormone concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.
Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro
2015-03-01
This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
Flows of engineered nanomaterials through the recycling process in Switzerland.
Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd
2015-02-01
The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO2, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liang, Sai; Zhang, Tianzhu; Xu, Yijian
2012-03-01
Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Waste treatment integration in space
NASA Technical Reports Server (NTRS)
Baresi, L.; Kern, R.
1991-01-01
The circumstances and criteria for space-based waste treatment bioregenerative life-support systems differ in many ways from those needed in terrestrial applications. In fact, the term "waste" may not even be appropriate in the context of nearly closed, cycling, ecosystems such as those under consideration. Because of these constraints there is a need for innovative approaches to the problem of "materials recycling". Hybrid physico-chemico-biological systems offer advantages over both strictly physico-chemico or biological approaches that would be beneficial to material recycling. To effectively emulate terrestrial cycling, the use of various microbial consortia ("assemblies of interdependent microbes") should be seriously considered for the biological components of such systems. This paper will examine the use of consortia in the context of a hybrid-system for materials recycling in space.
Is Municipal Solid Waste Recycling Economically Efficient?
NASA Astrophysics Data System (ADS)
Lavee, Doron
2007-12-01
It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.
USDA-ARS?s Scientific Manuscript database
Integrated multi-trophic aquaculture is a promising direction for the sustainable development of aquaculture. Instead of releasing nutrition-rich waste to the environment or decomposition of nutrients via the biofilter, the ‘waste’ from fish can be recycled to produce byproducts (e.g., algae, plants...
An assessment of the current municipal solid waste management system in Lahore, Pakistan.
Masood, Maryam; Barlow, Claire Y; Wilson, David C
2014-09-01
The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.
Sustainability assessment and prioritisation of e-waste management options in Brazil.
de Souza, Ricardo Gabbay; Clímaco, João C Namorado; Sant'Anna, Annibal Parracho; Rocha, Tiago Barreto; do Valle, Rogério de Aragão Bastos; Quelhas, Osvaldo Luiz Gonçalves
2016-11-01
Brazil has an increasing rate of e-waste generation, but there are currently few adequate management systems in operation, with the largest share of Waste Electrical and Electronic Equipment (WEEE) going to landfill sites or entering informal chains. The National Solid Waste Policy (2010) enforces the implementation of reverse logistics systems under the shared responsibility of consumers, companies and governments. The objective of this paper is to assess sustainability and prioritise system alternatives for potential implementation in the metropolitan region of Rio de Janeiro. Sustainability criteria and decision alternatives were defined by elicitation of stakeholders. The adopted multicriteria approach combines Life Cycle Assessment with qualitative evaluations by a small sample of regional experts with knowledge of the problem. The recommended system consists of a hybrid WEEE collection scheme with delivery points at shops, metro stations and neighbourhood centres; a pre-treatment phase with the involvement of private companies, cooperatives and social enterprises; and full recycling of all components in the country. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Yan; Luo, Chunling; Wang, Shaorui; Cheng, Zhineng; Li, Jun; Zhang, Gan
2016-08-16
The recycling of e-waste has attracted significant attention due to emissions of polychlorinated biphenyls (PCBs) and other contaminants into the environment. We measured PCB concentrations in surface soils, air equilibrated with the soil, and air at 1.5-m height using a fugacity sampler in an abandoned electronic waste (e-waste) recycling site in South China. The total concentrations of PCBs in the soils were 39.8-940 ng/g, whereas the concentrations in air equilibrated with the soil and air at 1.5 m height were 487-8280 pg/m(3) and 287-7380 pg/m(3), respectively. The PCB concentrations displayed seasonal variation; they were higher in winter in the soils and higher in summer in the air, indicating that the emission of PCBs from the soil was enhanced during hot seasons for the relatively high temperature or additional sources, especially for low-chlorinated PCBs. We compared two methods (traditional fugacity model and fugacity sampler) for assessing the soil-air partition coefficients (Ksa) and the fugacity fractions of PCBs. The results suggested that the fugacity sampler provided more instructive and practical estimation on Ksa values and trends in air-soil exchange, especially for low-chlorinated PCBs. The abandoned e-waste burning site still acted as a significant source of PCBs many years after the prohibition on open burning.
10 CFR 110.23 - General license for the export of byproduct material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 110.28, or byproduct material in radioactive waste, or tritium for recovery or recycle purposes. (2... or recycle purposes (e.g., luminescent light sources and paint, accelerator targets, calibration...
Solid waste composition analysis and recycling evaluation: Zaatari Syrian Refugees Camp, Jordan.
Saidan, Motasem N; Drais, Ammar Abu; Al-Manaseer, Ehab
2017-03-01
There is a need for Municipal Solid Waste (MSW) stream characterization and composition analysis to allow for an accurate estimation of its recycling potential and for effective management of the entire system. Recycling provides employment and a livelihood for vulnerable social groups such as refugees. The aim of this paper is to determine the composition of MSW in Zaatari Syrian Refugee Camp, where approximately 430,000 Syrian refugees have passed through the camp. The representative waste samples and analysis included household waste and commercial waste produced by the refugees in the selected districts in Zaatari. The waste sampling was performed in 2015 over two seasons to ensure that the seasonal fluctuations in the composition of the waste stream are taken into consideration. Hand sorting was used for classifying the collected wastes into the categories and subcategories. The organic waste represents the main waste category with 53% of the total MSW, while plastics, textile, and paper and cardboard are 12.85%, 10.22% and 9%, respectively. Moreover, the MSW composition percentage in Zaatari Camp is similar to that in municipalities in Jordan with slight disparity. The potential recyclable materials market has been investigated in this study. Plastics and paper and cardboard have significant potential to be separated and collected for recycling purposes. Financial revenues of potential recyclables have been analyzed based on local prices. Recycling model in the camp is also proposed based on the present study findings. Consequently, these results should be taken as a baseline for all Syrian refugees camps in the Middle East, as well as, in Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M
2015-05-01
Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.
Health Risks Awareness of Electronic Waste Workers in the Informal Sector in Nigeria
Van Bodegom, Peter M.; Vijver, Martina G.
2017-01-01
Insight into the health risk awareness levels of e-waste workers is important as it may offer opportunities for better e-waste recycling management strategies to reduce the health effects of informal e-waste recycling. Therefore, this study assessed the knowledge, attitude, and practices associated with occupational health risk awareness of e-waste workers compared with a control group (butchers) in the informal sector in Nigeria. A cross-sectional study was used to assess health risk awareness of 279 e-waste workers (repairers and dismantlers) and 221 butchers from the informal sector in three locations in Nigeria in 2015. A questionnaire was used to obtain information on socio-demographic backgrounds, occupational history, knowledge, attitude, and work practices. The data was analysed using Analysis of Variance. The three job designations had significantly different knowledge, attitude, and practice mean scores (p = 0.000), with butchers consistently having the highest mean scores. Only 43% of e-waste workers could mention one or more Personal Protective Equipment needed for their job compared with 70% of the butchers. The health risk awareness level of the e-waste workers was significantly lower compared with their counterparts in the same informal sector. A positive correlation existed between the workers’ knowledge and their attitude and practice. Therefore, increasing the workers’ knowledge may decrease risky practices. PMID:28805712
Developmental neurotoxicants in e-waste: an emerging health concern.
Chen, Aimin; Dietrich, Kim N; Huo, Xia; Ho, Shuk-mei
2011-04-01
Electronic waste (e-waste) has been an emerging environmental health issue in both developed and developing countries, but its current management practice may result in unintended developmental neurotoxicity in vulnerable populations. To provide updated information about the scope of the issue, presence of known and suspected neurotoxicants, toxicologic mechanisms, and current data gaps, we conducted this literature review. We reviewed original articles and review papers in PubMed and Web of Science regarding e-waste toxicants and their potential developmental neurotoxicity. We also searched published reports of intergovernmental and governmental agencies and nongovernmental organizations on e-waste production and management practice. We focused on the potential exposure to e-waste toxicants in vulnerable populations-that is, pregnant women and developing children-and neurodevelopmental outcomes. In addition, we summarize experimental evidence of developmental neurotoxicity and mechanisms. In developing countries where most informal and primitive e-waste recycling occurs, environmental exposure to lead, cadmium, chromium, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons is prevalent at high concentrations in pregnant women and young children. Developmental neurotoxicity is a serious concern in these regions, but human studies of adverse effects and potential mechanisms are scarce. The unprecedented mixture of exposure to heavy metals and persistent organic pollutants warrants further studies and necessitates effective pollution control measures. Pregnant women and young children living close to informal e-waste recycling sites are at risk of possible perturbations of fetus and child neurodevelopment.
Characteristics of organic matter in PM2.5 from an e-waste dismantling area in Taizhou, China.
Gu, Zeping; Feng, Jialiang; Han, Wenliang; Wu, Minghong; Fu, Jiamo; Sheng, Guoying
2010-08-01
Solvent extractable organic compounds in PM(2.5) samples collected in Taizhou, a city famous for its electrical and electronic waste (e-waste) recycling industry in Zhejiang province of China, were analyzed to identify the main emission sources based on molecular markers. Two types of plastics which were most frequently contained in the e-wastes, wires/cables and plastic blocks, were burned in the lab and the particles emitted analyzed. The concentrations of PAHs and phthalate esters at the e-waste dismantling area during our sampling periods were about two times of that at the reference urban site, indicating the high pollution level there. The high concentrations of quaterphenyl found at the dismantling area indicated that burning of plastics or polymers was an important emission source of the PAHs in the fine particles. The diagnostic analysis based on the compositions of alkanes, hopanes and other molecular markers showed that engine exhaust, biomass burning and kitchen emissions were also important emission sources at the e-waste dismantling area. Our results suggested that more effort should be paid to control the correlative emission sources such as transportation and kitchen to achieve better air quality at the e-waste dismantling area besides regulating the recycling activities. Copyright 2010 Elsevier Ltd. All rights reserved.
Liu, Jun; He, Xiao-Xin; Lin, Xue-Rui; Chen, Wen-Ce; Zhou, Qi-Xing; Shu, Wen-Sheng; Huang, Li-Nan
2015-06-02
The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.
Solid waste recycling in Rajshahi city of Bangladesh.
Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul
2012-11-01
Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.
Characterization of brominated flame retardants from e-waste components in China.
Yu, Danfeng; Duan, Huabo; Song, Qingbin; Liu, Yicheng; Li, Ying; Li, Jinhui; Shen, Weijun; Luo, Jiahui; Wang, Jinben
2017-10-01
Many studies show that high levels of many toxic metals and persistent and bio-accumulative chemicals have been found in electronic waste (e-waste) dismantling sites and their surrounding environmental media. Both flame-retardant plastic housing materials and printed circuit boards (PCBs) could be the major contributors. However, relatively little work has focused on the use or content of toxic substances and their changing in scrap housing materials and PCBs from home appliances. This study evaluated the existence of brominated flame retardants (BFRs, including polybrominated diphenyl ethers (PBDEs) and Tetrabromobisphenol-A (TBBPA)) in housing plastics and PCBs from home appliances collected from various e-waste recyclers in China. These were then analyzed for the potential migration of BFRs from the e-waste components into their recycled products. The results show that both PBDEs and TBBPA were found with high level in most of e-waste samples, indicating that the widespread use of BFRs in home appliances are entering into the end-of-life stage. For the plastics samples, CRT TVs and LCD monitors should be given priority for the control of BFRs. Regarding PBDEs, the dominant congeners of BDE-209 in the plastics samples contributed 90.72-93.54% to the total concentrations of PBDEs, yet there are large variations for PCBs samples: BDE-28, -47, -99, and -153 were also important congeners compositions, except for BDE-209. Compared with previous studies, the BFRs concentrations in current Chinese e-waste are trending to decline. This study also found that BFRs in housing plastics and PCBs will be transferred into the recycled products with other purpose use, and the new products could have highly enriched capacities for BFRs. The obtained results could be helpful to manage e-waste and their components properly in order to minimize associated environmental and health risks of BFRs, particularly for their further reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.
Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.
Khoo, Hsien H; Lim, Teik Z; Tan, Reginald B H
2010-02-15
Proper management and recycling of huge volumes of food waste is one of the challenges faced by Singapore. Semakau island - the only offshore landfill of the nation - only accepts inert, inorganic solid waste and therefore a large bulk of food waste is directed to incinerators. A remaining small percent is sent for recycling via anaerobic digestion (AD), followed by composting of the digestate material. This article investigates the environmental performance of four food waste conversion scenarios - based on a life cycle assessment perspective - taking into account air emissions, useful energy from the incinerators and AD process, as well as carbon dioxide mitigation from the compost products derived from the digestate material and a proposed aerobic composting system. The life cycle impact results were generated for global warming, acidification, eutrophication, photochemical oxidation and energy use. The total normalized results showed that a small-scale proposed aerobic composting system is more environmentally favorable than incinerators, but less ideal compared to the AD process. By making full use of the AD's Recycling Phase II process alone, the Singapore Green Plan's 2012 aim to increase the recycling of food waste to 30% can easily be achieved, along with reduced global warming impacts.
Schouw, Nanette Levanius; Bregnhøj, Henrik; Mosbaek, Hans; Tjell, Jens Christian
2003-06-01
Technical, economic and environmental criteria were used to evaluate the feasibility of recycling plant nutrients in kitchen waste, human excreta and sullage from households in Phattalung (urban), Kuan Lang (peri urban) and Prik (rural) in Southern Thailand. The difference in situation and context of the three areas called for individual solutions, and for each area three sanitation systems were evaluated. However, in all three areas recycling human excreta and kitchen waste via composting latrines was found to be more environmental feasible than human excreta managed in septic tanks or sub surface trickle irrigation and kitchen waste disposed of at landfill sites or treated at composting plants. Sullage should in Kuan Lang and Prik be used directly on garden crops, but in Phattalung be treated in waste stabilisation ponds before discharge, to be environmentally feasible. The economic feasibility results varied among the three areas and among the involved stakeholders: farmers and Kuan Lang administration benefited from recycling waste, at the expense of other private users, Phattalung municipality and Prik municipality. The main cause of these conflicting interests was lack of cost recovery and public participation, which should therefore serve as the fundament of any future environmental and economic feasible sanitation system.
Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)
NASA Technical Reports Server (NTRS)
Garland, Jay L.
1992-01-01
The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.
Interactive analysis of waste recycling and energy recovery program in a small-scale incinerator.
Chen, Jeng-Chung; Chen, Wei-Hsin; Chang, Ni-Bin; Davila, Eric; Tsai, Cheng-Hsien
2005-09-01
Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai; Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn; Xu Yijian
Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for papermore » production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.« less
Systematic Review: Occupational illness in the waste and recycling sector
Poole, C J M; Basu, S
2017-01-01
Abstract Background The waste and recycling sector is a growing part of industry. Whether health surveillance is indicated and how it should be undertaken is unclear. Aims To undertake a review of the literature to identify hazards to health, biological effects and occupational illnesses for workers in the sector. Methods A systematic review of the published literature and two UK databases. Results Rates of fatal, non-fatal injuries and self-reported work-related illness were found to be higher in the waste and recycling sector than in UK industry as a whole. There was an increased prevalence of respiratory, gastro-intestinal and skin complaints in workers exposed to compost relative to controls. They may also be at increased risk of extrinsic allergic alveolitis, allergic bronchopulmonary aspergillosis, occupational asthma and abnormalities of lung function. Workers involved with the recycling of batteries and cables may be at risk of lead poisoning and exposure to other heavy metals. There were case reports of mercury poisoning from the recycling of fluorescent lights. Cases of occupational asthma have been reported in association with wood and paper recycling. The recycling of e-waste may cause exposure to heavy metals and organic pollutants, such as polybrominated diphenyl ethers, dioxins and polyaromatic hydrocarbons, which have been associated with damage to DNA and adverse neonatal outcomes. Conclusions Ill-health and adverse biological effects have been described in waste and recycling workers, but their true prevalence has probably not been captured. Targeted health surveillance may be required to assess exposure and to identify occupational illness. PMID:29165683
This action corrects several technical errors and provides clarifying amendments to the final recycled used oil management standards rule. The final rule was published on September 10, 1992 (57 FR 41566).
Wang, De-Gao; Alaee, Mehran; Byer, Jonathan D; Brimble, Samantha; Pacepavicius, Grazina
2013-02-15
A screening level human health risk assessment based on the worst-case scenario was conducted on the occupational and residential exposures to dechlorane plus (DP) in the manufacturing facility region and an electronic-waste (e-waste) recycling site in China, which are two of the most polluted areas of DP in the world. Total estimated exposure doses (EEDs) via dietary intake, dermal contact, and inhalation was approximately 0.01 mg kg(-1) d(-1) for people living in the manufacturing facility region. In comparison, total EEDs (approximate 0.03 μg kg(-1), d(-1)) were 300-fold lower in people living near an e-waste recycling site in China. Chronic oral, dermal, and inhalation reference doses (RfDs) were estimated to be 5.0, 2.0, and 0.01 mg kg(-1)d (-1), respectively. The oral RfD was markedly greater than Mirex (2×10(-4) mg kg(-1) d(-1)) and decabromodiphenyl ether (BDE-209; 7×10(-3) mg kg(-1) d(-1)), which have been or might be replaced by DP as a flame retardant with less toxicity. Monte Carlo simulation was used to generate the probability densities and functions for the hazard index which was calculated from the EEDs and RfDs to assess the human health risk. The hazard index was three orders of magnitude lower than 1, suggesting that occupational and residential exposures were relatively safe in the manufacturing facility region and e-waste recycling site. Copyright © 2012 Elsevier B.V. All rights reserved.
Consonni, Stefano; Viganò, Federico
2011-01-01
This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa). Copyright © 2011 Elsevier Ltd. All rights reserved.
Wu, Yuanyuan; Li, Yanyan; Kang, Duan; Wang, Jingjing; Zhang, Yanfang; Du, Dongli; Pan, Bishu; Lin, Zhenkun; Huang, Changjiang; Dong, Qiaoxiang
2016-01-15
This study was designed to investigate a prevalent brominated flame retardant tetrabromobisphenol A (TBBPA) and four heavy metals of Pb, Cr, As, Cd in dust samples (52 indoor and 52 outdoor) collected from residential houses in an e-waste recycling area in Southeast China. For TBBPA, the mean concentration in indoor dust (3435 ng/g, dw) was higher than that in outdoor dust (1998 ng/g, dw). For heavy metals, the mean concentrations of Pb, Cr, As, Cd were 399, 151, 48.13, and 5.85 mg/kg in indoor dust, respectively, and were 328, 191, 17.59, and 4.07 mg/kg in outdoor dust, respectively. Except for As, concentrations of TBBPA and other metals decreased with the increased distance away from the e-waste recycling center, suggesting significant contribution of e-waste activities. The daily exposure doses of TBBPA ranged from 0.04 to 7.50 ng/kg-bw/day for adults and from 0.31 to 58.54 ng/kg-bw/day for children, representing the highest values reported to date for TBBPA exposure via dust ingestion. Daily exposure doses of Cr, As, and Cd were all below the reference doses. However, daily exposure dose of Pb for children in areas near the e-waste processing center was above the reference dose, posing significant health concern for children in that region. Copyright © 2015 Elsevier B.V. All rights reserved.
Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong
2016-12-01
To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2003-01-01
In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance. Published by Elsevier Science Ltd on behalf of COSPAR.
Wheeler, Raymond M
2003-01-01
In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance. Published by Elsevier Science Ltd on behalf of COSPAR.
NASA Astrophysics Data System (ADS)
Wheeler, Raymond M.
In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance.
Analyzing the success of the volume-based waste fee system in South Korea.
Park, Seejeen; Lah, T J
2015-09-01
For more than a decade, South Korea has been ranked first among the OECD (Organization for Economic Cooperation and Development) members in their municipal solid waste (MSW) recycling rate. One of the major contributing factors for its outstanding MSW recycling performance is the volume-based waste fee (VWF) system implemented in 1995. Despite the perceived success of VWF, there has been few research conducted that has sought to demonstrate the success of the policy in an empirical manner. Research conducted currently on VWF in South Korea tends to have limitations in empirical approaches and identifying the intervention effect of VWF on recycling performance. This study attempts to empirically test whether the adoption of VWF positively affected recycling performance in Korea over time. The findings suggest that although there was a dramatic increase of the recycling rate with the introduction of VWF in 1995, Korea's MSW recycling performance settled back again and showed the constant pace after the intervention. No significant differences in recycling rate were found between before and after 1995 period. In conclusion, implications and suggestions for both research and practice are proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Environmental management of construction and demolition waste in Kuwait.
Kartam, Nabil; Al-Mutairi, Nayef; Al-Ghusain, Ibrahim; Al-Humoud, Jasem
2004-01-01
There is an increasing pressure on the construction industry to reduce costs and improve the quality of our environment. The fact is that both of these goals can be achieved at the same time. Although construction and demolition (C&D) constitutes a major source of waste in terms of volume and weight, its management and recycling efforts have not yet seen the light in Kuwait. This study focuses on recycling efforts leading to the minimization of the total C&D waste that is currently landfilled in Kuwait. This paper presents the current status of C&D waste disposal system in Kuwait and identifies the potential problems to the environment, people and economy. Then, it investigates alternative solutions to manage and control this major type of waste in an economically efficient and environmentally safe manner. Next, the paper describes the feasibility of establishing a C&D waste recycling facility in Kuwait. It concludes by highlighting the major benefits and bottleneck problems with such a recycling facility.
Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofoworola, O.F.
The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods cleanmore » have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested.« less
Friege, Henning; Oberdörfer, Michael; Günther, Marko
2015-03-01
The first European waste from electric and electronic equipment directive obliged the Member States to collect 4 kg of used devices per inhabitant and year. The target of the amended directive focuses on the ratio between the amount of waste from electric and electronic equipment collected and the mass of electric and electronic devices put on the market in the three foregoing years. The minimum collection target is 45% starting in 2016, being increased to 65% in 2019 or alternatively 85% of waste from electric and electronic equipment generated. Being aware of the new target, the question arises how Member States with 'best practice' organise their collection systems and how they enforce the parties in this playing field. Therefore the waste from electric and electronic equipment schemes of Sweden, Denmark, Switzerland, Germany and the Flemish region of Belgium were investigated focusing on the categories IT and telecommunications equipment, consumer equipment like audio systems and discharge lamps containing hazardous substances, e.g. mercury. The systems for waste from electric and electronic equipment collection in these countries vary considerably. Recycling yards turned out to be the backbone of waste from electric and electronic equipment collection in most countries studied. For discharge lamps, take-back by retailers seems to be more important. Sampling points like special containers in shopping centres, lidded waste bins and complementary return of used devices in all retail shops for electric equipment may serve as supplements. High transparency of collection and recycling efforts can encourage ambition among the concerned parties. Though the results from the study cannot be transferred in a simplistic manner, they serve as an indication for best practice methods for waste from electric and electronic equipment collection. © The Author(s) 2015.
Integrated management of hazardous waste generated from community sources in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yodnane, P.; Spaeder, D.J.
A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less
Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.
ERIC Educational Resources Information Center
Shively, Patti J.; And Others
This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…
Composting in advanced life support systems
NASA Technical Reports Server (NTRS)
Atkinson, C. F.; Sager, J. C.; Alazraki, M.; Loader, C.
1998-01-01
Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.
Composting in advanced life support systems.
Atkinson, C F; Sager, J C; Alazraki, M; Loader, C
1998-01-01
Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.
Feedstock recycling program gets go ahead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layman, P.
1994-03-28
Feedstock recycling--recycling mixed plastics wastes back into chemical feedstocks such as olefins and naphtha--has received a commercial go ahead in Germany. DKR--Deutsche Kunstsoff recycling, a subsidiary of a commercial company, Duales System Deutschland, responsible for recycling packaging wastes in Germany--has issued three contracts to companies with feedstock recycling technology to convert to liquid feedstocks a total of some 500,000 metric tons per year of mixed plastics packaging wastes by 1996. DKR has also pledged to discontinue exports of used plastics packaging to foreign countries by that date. The three contracts go to a consortium between BASF and OTTO Kunststoff service,more » of Dossenheim; the oil and chemical producer Veba; and the electric power utilities company RWE. DKR's current processing costs are about $1,765 per ton of wastes. That total includes all costs for collecting, sorting, cleaning, and transporting the wastes. In its bid, the BASF-OTTO consortium envisioned a fee of about $190 per ton. That fee, says Niess, was determined by looking at BASF's and OTTO's costs, offset by the savings in raw materials BASF would be making as its technology converts mixed plastics wastes to a mixture of naphtha, aromatics, and oils, all of which can be used in BASF's processes in Ludwigshafen. And because BASF's technology requires no presorting or cleaning before it gets the wastes, the process will trim DKR's costs significantly.« less
DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M
2005-04-30
The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less
Paper waste - recycling, incineration or landfilling? A review of existing life cycle assessments.
Villanueva, A; Wenzel, H
2007-01-01
A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.
Circular economy of plastic packaging: Current practice and perspectives in Austria.
Van Eygen, Emile; Laner, David; Fellner, Johann
2018-02-01
Plastics, especially from packaging, have gained increasing attention in waste management, driving many policy initiatives to improve the circularity of these materials in the economy to increase resource efficiency. In this context, the EU has proposed increasing targets to encourage the recycling of (plastic) packaging. To accurately calculate the recycling rates, detailed information on the flows of plastic packaging is needed. Therefore, the aim of this paper is to quantitatively and qualitatively investigate the waste management system for plastic packaging in Austria in 2013 using material flow analysis, taking into account the used product types and the polymer composition. The results show that 300,000 ± 3% t/a (35 kg/cap·a) of waste plastic packaging were produced, mainly composed of large and small films and small hollow bodies, including PET bottles. Correspondingly, the polymer composition of the waste stream was dominated by LDPE (46% ± 6%), PET (19% ± 4%) and PP (14% ± 6%). 58% ± 3% was collected separately, and regarding the final treatment, 26% ± 7% of the total waste stream was recovered as re-granulates, whereas the rest was thermally recovered in waste-to-energy plants (40% ± 3%) and the cement industry (33% ± 6%). The targets set by the EU and Austria were reached comfortably, although to reach the proposed future target major technological steps regarding collection and sorting will be needed. However, the current calculation point of the targets, i.e. on the input side of the recycling plant, is not deemed to be fully in line with the overall objective of the circular economy, namely to keep materials in the economy and prevent losses. It is therefore recommended that the targets be calculated with respect to the actual output of the recycling process, provided that the quality of the output products is maintained, to accurately assess the performance of the waste management system. Copyright © 2017 Elsevier Ltd. All rights reserved.
A tale of five cities: Using recycling frameworks to analyse inclusive recycling performance.
Scheinberg, Anne; Simpson, Michael
2015-11-01
'Recycling' is a source of much confusion, particularly when comparing solid waste systems in high-income countries with those in low- and middle-income countries. Few analysts can explain why the performance and structure of recycling appears to be so different in rich countries from poor ones, nor why well-meaning efforts to implement recycling so often fail. The analysis of policy drivers, and the Integrated Sustainable Waste Management (ISWM) framework, come close to an explanation.This article builds on these earlier works, focusing in on five cities profiled in the 2010 UN-Habitat publication (Scheinberg A, Wilson DC and Rodic L (2010) Solid Waste Management in the World's Cities. UN-Habitat's Third Global Report on the State of Water and Sanitation in the World's Cities. Newcastle-on-Tyne, UK: Earthscan Publications). Data from these cities and others provides the basis for developing a new tool to analyse inclusive recycling performance. The points of departure are the institutional and economic relationships between the service chain, the public obligation to remove waste, pollution, and other forms of disvalue, and the value chain, a system of private enterprises trading valuable materials and providing markets for recyclables. The methodological innovation is to use flows of materials and money as indicators of institutional relationships, and is an extension of process flow diagramming.The authors are using the term 'recycling framework analysis' to describe this new form of institutional analysis. The diagrams increase our understanding of the factors that contribute to high-performance inclusive recycling. By focusing on institutional relationships, the article seeks to improve analysis, planning, and ultimately, outcomes, of recycling interventions. © The Author(s) 2015.
E-Waste and Harm to Vulnerable Populations: A Growing Global Problem.
Heacock, Michelle; Kelly, Carol Bain; Asante, Kwadwo Ansong; Birnbaum, Linda S; Bergman, Åke Lennart; Bruné, Marie-Noel; Buka, Irena; Carpenter, David O; Chen, Aimin; Huo, Xia; Kamel, Mostafa; Landrigan, Philip J; Magalini, Federico; Diaz-Barriga, Fernando; Neira, Maria; Omar, Magdy; Pascale, Antonio; Ruchirawat, Mathuros; Sly, Leith; Sly, Peter D; Van den Berg, Martin; Suk, William A
2016-05-01
Electronic waste (e-waste) is produced in staggering quantities, estimated globally to be 41.8 million tonnes in 2014. Informal e-waste recycling is a source of much-needed income in many low- to middle-income countries. However, its handling and disposal in underdeveloped countries is often unsafe and leads to contaminated environments. Rudimentary and uncontrolled processing methods often result in substantial harmful chemical exposures among vulnerable populations, including women and children. E-waste hazards have not yet received the attention they deserve in research and public health agendas. We provide an overview of the scale and health risks. We review international efforts concerned with environmental hazards, especially affecting children, as a preface to presenting next steps in addressing health issues stemming from the global e-waste problem. The e-waste problem has been building for decades. Increased observation of adverse health effects from e-waste sites calls for protecting human health and the environment from e-waste contamination. Even if e-waste exposure intervention and prevention efforts are implemented, legacy contamination will remain, necessitating increased awareness of e-waste as a major environmental health threat. Global, national, and local levels efforts must aim to create safe recycling operations that consider broad security issues for people who rely on e-waste processing for survival. Paramount to these efforts is reducing pregnant women and children's e-waste exposures to mitigate harmful health effects. With human environmental health in mind, novel dismantling methods and remediation technologies and intervention practices are needed to protect communities. Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman AL, Bruné MN, Buka I, Carpenter DO, Chen A, Huo X, Kamel M, Landrigan PJ, Magalini F, Diaz-Barriga F, Neira M, Omar M, Pascale A, Ruchirawat M, Sly L, Sly PD, Van den Berg M, Suk WA. 2016. E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect 124:550-555; http://dx.doi.org/10.1289/ehp.1509699.
Polyethylene recycling: Waste policy scenario analysis for the EU-27.
Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter
2015-08-01
This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.
Export of toxic chemicals - a review of the case of uncontrolled electronic-waste recycling.
Wong, M H; Wu, S C; Deng, W J; Yu, X Z; Luo, Q; Leung, A O W; Wong, C S C; Luksemburg, W J; Wong, A S
2007-09-01
This paper reviews the concentrations of persistent organic pollutants such as flame retardants (PBDEs), dioxins/furans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals/metalloid concentrations of different environmental media at Guiyu, a traditional rice-growing village located in southeastern Guangdong Province (PR China), which has turned into an intensive electronic-waste (e-waste) recycling site. Incomplete combustion of e-waste in open air and dumping of processed materials are the major sources of various toxic chemicals. By comparing with existing data available in other areas and also guidelines adopted in different countries, it is obvious that the environment is highly contaminated by these toxic chemicals derived from the recycling processes. For example, the monthly concentration of the sum of 22 PBDE congeners contained in PM(2.5) (16.8ngm(-3)) of air samples at Guiyu was 100 times higher than published data. In order to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways of different toxic chemicals which may affect the workers and local residents especially mothers, infants and children.
Reactor-based management of used nuclear fuel: assessment of major options.
Finck, Phillip J; Wigeland, Roald A; Hill, Robert N
2011-01-01
This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society
Applying Nightingale charts to evaluate the heterogeneity of biomedical waste in a Hospital
Paiz, Janini Cristina; Bigolin, Marcio; Schneider, Vania Elisabete; Stedile, Nilva Lúcia Rech
2014-01-01
OBJECTIVES: to evaluate the heterogeneity of biomedical waste (BW) using Nightingale charts. METHOD: cross-sectional study consisting of data collection on wastes (direct observation of receptacles, physical characterisation, and gravimetric composition), development of a Management Information System, and creation of statistical charts. RESULTS: the wastes with the greatest degree of heterogeneity are, in order, recyclable, infectious, and organic wastes; chemical waste had the most efficient segregation; Nightingale charts are useful for quick visualisation and systematisation of information on heterogeneity. CONCLUSION: the development of a management information system and the use of Nightingale charts allows for the identification and correction of errors in waste segregation, which increase health risks and contamination by infectious and chemical wastes and reduce the sale and profit from recyclables. PMID:25591088
40 CFR 60.55c - Waste management plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... include, but is not limited to, elements such as segregation and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation...
40 CFR 60.55c - Waste management plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... include, but is not limited to, elements such as segregation and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... non-hazardous waste management systems. Examples of Universal Wastes include certain batteries... oils destined for recycling. The Agency codified the used oil management standards in Part 279 of 40... potential mismanagement of used oils, while not discouraging recycling. Burden Statement: The annual public...
Potential resource and toxicity impacts from metals in waste electronic devices.
Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin
2016-04-01
As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices. © 2015 SETAC.
Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin
2015-02-15
Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Chun-Li; Bao, Lian-Jun; Luo, Pei; Wang, Zhao-Yi; Li, Shao-Meng; Zeng, Eddy Y
2016-11-05
Health risk of residents dwelling around e-waste recycling zones has been a global concern, but has not been adequately examined. The present study was intended to evaluate the potential health risk of residents through inhalation exposure to size-fractionated particle-bound heavy metals in a typical e-waste recycling zone, South China. Anthropogenic metals (Zn, Se, Pb, Sb, As, and Cd) were predominantly enriched in fine particles (Dp<1.8μm), whereas the crustal elements (Ti, Fe, and Co) tended to accumulate in coarse particles (Dp>1.8μm). Although the daily inhalation intakes of the target metals were significantly lower than those through food consumption and ingestion of house dust, the hazard quotients of total metals for adults (95% CI: 1.0-5.5) and children (95% CI: 3.0-17) were greater than 1. Moreover, the incremental lifetime cancer risks of five carcinogenic metals (Cr, Co, Ni, As, and Cd) for adults and children were 1.3×10(-3) (95% CI: 4.1×10(-4)-3.0×10(-3)) and 3.9×10(-3) (95% CI: 1.3×10(-3)-8.6×10(-3)), respectively, substantially higher than the acceptable cancer risk range of 10(-6)-10(-4). All these findings suggested that health risks were high for local residents dwelling around the e-waste recycling zone through inhalation exposure to particle-bound heavy metals, for both adults and children. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Friedlander, L. R.; Garb, Y.
2017-12-01
Electronic waste (e-waste) is one of today's fastest growing waste streams. Made up of discarded electronics, e-waste disposal is complex. However, e-waste also provides economic opportunity through the processing and extraction of precious metals. Sometimes referred to as "urban mining," this recycling operates informally or illegally and is characterized by dangerous practices such as, open-pit burning, acid leaching, and burning of low value wastes. Poorly controlled e-waste recycling releases dangerous contaminants, especially heavy metals, directly to the surface environment where they can infiltrate water resources and spread through precipitation events. Despite growing recognition of the prevalence of unregulated e-waste processing, systematic data on the extent and persistence of the released contamination is still limited. In general, contamination is established through techniques that provide only a snapshot in time and in a limited geographic area. Here we present preliminary results from attempts to combine field, laboratory, and remote sensing studies toward a systematic remote sensing methodology for e-waste contamination detection and monitoring. The ongoing work utilizes a tragic "natural experiment," in which over 500 e-waste burn sites were active over more than a decade in a variety of agricultural, residential, and natural contexts. We have collected over 100 soil samples for which we have both XRF and ICP-AES measurements showing soil Pb concentrations as high as 14000 ppm. We have also collected 480 in-situ reflectance spectra with corresponding soil samples over 4 field transects of areas with long-term burn activity. The most heavily contaminated samples come from within the burn sites and are made up of ash. Field spectra of these samples reflect their dark color with low overall reflectance and shallow spectral features. These spectra are challenging to use for image classification due to their similarity with other low-reflectance parts of the image (e.g., shadows). We have begun to distinguish shadows from the dark burn site centers by automatically detecting and masking shadows. This will allow us to utilize images taken at different times and our in-situ field spectral results to develop a method for monitoring contaminant spread from these complex point sources.
Global responses for recycling waste CRTs in e-waste.
Singh, Narendra; Li, Jinhui; Zeng, Xianlai
2016-11-01
The management of used cathode ray tube (CRT) devices is a major problem worldwide due to rapid uptake of the technology and early obsolescence of CRT devices, which is considered an environment hazard if disposed improperly. Previously, their production has grown in step with computer and television demand but later on with rapid technological innovation; TVs and computer screens has been replaced by new products such as Liquid Crystal Displays (LCDs) and Plasma Display Panel (PDPs). This change creates a large volume of waste stream of obsolete CRTs waste in developed countries and developing countries will be becoming major CRTs waste producers in the upcoming years. We studied that there is also high level of trans-boundary movement of these devices as second-hand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. Moreover, the current global production of e-waste is estimated to be '41million tonnes per year' where a major part of the e-waste stream consists of CRT devices. This review article provides a concise overview of world's current CRTs waste scenario, namely magnitude of the demand and processing, current disposal and recycling operations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marshall Space Flight Center solid waste characterization and recycling improvement study
NASA Technical Reports Server (NTRS)
Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James
1995-01-01
The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.
Tang, Wei; Cheng, Jinping; Zhao, Wenchang; Wang, Wenhua
2015-08-01
In order to assess the potential health risks of Hg pollution, total mercury (T-Hg) and methyl mercury (MeHg) concentrations were determined in air, dust, surface soil, crops, poultry, fish and human hair samples from an electronic waste (e-waste) recycling area in Taizhou, China. High concentrations of T-Hg and MeHg were found in these multiple matrices, and the mean concentration was 30.7 ng/m(3) of T-Hg for atmosphere samples, 3.1 μg/g of T-Hg for soil, 37.6 μg/g of T-Hg for dust, 20.3 ng/g of MeHg for rice and 178.1 ng/g of MeHg for fish, suggesting that the e-waste recycling facility was a significant source of Hg. The inorganic Hg (I-Hg) levels (0.84 μg/g) in hair samples of e-waste workers were much higher than that in the reference samples. Pearson's correlation coefficients showed that strong positive correlations (p<0.01) between hair I-Hg and time staying in industrial area (r=0.81) and between MeHg and fish consumption frequency (r=0.91), imply that workers were mainly exposed to Hg vapor through long-time inhalation of contaminated air and dust, while other population mainly exposed to MeHg through high-frequency fish consumption. The estimated daily intakes of Hg showed that dietary intake was the major Hg exposure source, and Hg intakes from rice and fish were significantly higher than from any other foods. The estimated total daily intakes (TDIs) of MeHg for both children (696.8 ng/(kg·day)) and adults (381.3 ng/(kg·day)) greatly exceeded the dietary reference dose (RfD) of 230 ng/(kg·day), implying greater health risk for humans from Hg exposures around e-waste recycling facilities. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kita, Tomoko; Kanaya, Ken
Purpose of this research is to clear present condition of food waste recycling loops based on recycling project certification of the Food Waste Recycling Law. Method of this research is questionnaire survey to companies constituting the loops. Findings of this research are as follows: 1. Proponents of the loop is most often the recycling companies. 2. Food waste recycling rate is 61% for the food retailing industry and 81% for the food service industry. These values are higher than the national average in 2006. The effect of the revision of recycling project certification is suggested.
Li, Xinghong; Tian, Yuan; Zhang, Yun; Ben, Yujie; Lv, Quanxia
2017-02-01
Polybrominated diphenyl ethers (PBDEs) can be transferred to infants through the ingestion of breast milk, resulting in potential health risk. In this study, PBDEs, hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and 2,2',4,4',5,6'-hexachlorobiphenyl (CB-153) in human milk from women living adjacent to e-waste recycling sites of Wenling, China, were investigated. The median level of PBDEs in samples from residents living in the e-waste recycling environment >20years (R 20 group, 19.5ng/g lipid weight (lw)) was significantly higher than that for residents living in Wenling <3years (R 3 group, 3.88ng/g lw) (p<0.05), likely ascribable to specific exposure to PBDEs from e-waste recycling activities. In the R 20 group, most congeners (except for BDE-209) were correlated with each other (p<0.05). Moreover, CB-153 showed significant association with most PBDE congeners, rather than BDE-209. The relationship indicated that most BDE congeners other than BDE-209 shared common sources and/or pathways with CB-153, e.g., dietary ingestion. The correlations between BDE-209 and other congeners were different in the two groups, likely suggesting their different exposure sources and/or pathways for PBDEs. Although estimated dietary intake of PBDEs for infants via breast milk was lower than the minimum value affecting human health, the PBDE exposure of infants should be of great concern because of their potential effect on the development of neonates over long-term exposure. OH-PBDEs were not detected in the collected samples, which is in accordance with reports in published literature, likely indicating that they were not apt to be accumulated in human milk. Copyright © 2016. Published by Elsevier B.V.
Zheng, Xiao-Bo; Wu, Jiang-Ping; Luo, Xiao-Jun; Zeng, Yan-Hong; She, Ya-Zhe; Mai, Bi-Xian
2012-09-15
Three regulated halogenated flame retardants (HFRs), i.e., polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs) and hexabromocyclododecanes (HBCDs), and several alternative HFRs (AHFRs) including Dechlorane Plus (DP), decabromodiphenyl ethane (DBDPE), and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), were investigated in the home-produced eggs from three recycling sites and a reference site in an electronic waste (e-waste) recycling region, South China. Mean levels of HFRs in eggs from the recycling sites ranged 2640-14100, 700-1620, 44-350, and 720-3920 ng/g lipid weight for ∑PBDEs, ∑PBBs, ∑HBCDs, and ∑AHFRs, respectively, which were one to two orders of magnitude higher than those examined in the reference site. PBDEs were the predominant HFR in those eggs, with contributions >50% to the total HFRs; followed by PBBs and the AHFRs (contributing 14-22% in average). The α-HBCD was the predominant diastereoisomers of HBCDs, with preferential enrichment of the (-)-enantiomer in most of the eggs; but no significant stereoselective enrichment of the DP isomers was observed in these eggs. The average estimated daily intakes (EDIs) of PBDEs, PBBs, HBCDs, and the AHFRs via eggs from the recycling sites ranged 4200-20000, 1120-2440, 80-490, and 970-4530 ng/day, respectively, which were one to two orders of magnitude higher than those reported from other parts of the world. The potential adverse effects of these HFRs to human health in the e-waste sites should be further investigated. This is the first report on the isomer compositions of DP and the chiral signatures of HBCDs in hen eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, F; Leung, A O W; Wu, S C; Yang, M S; Wong, M H
2009-07-01
A multi-trophic, multi-exposure phase assessment approach was applied to characterize the toxicity of sediments collected from two rivers in Guiyu, China, an e-waste recycling centre. Elutriate toxicity tests (bacterium Vibrio fischeri and microalga Selenastrum capricornutum) and whole sediment toxicity test (crustacean Heterocypris incongruens) showed that most sediments exhibited acute toxicity, due to elevated heavy metals and PAHs levels, and low pH caused by uncontrolled acid discharge. The survival rates of crustaceans were negatively (p < 0.05) correlated with total PAHs in sediments (411-1755 mg kg(-1)); EC50s of V. fischeri on the elutriates were significantly correlated with elutriate pH (p < 0.01). Significant (p < 0.05) correlations between the induction of hepatic metallothionein in tilapia (Oreochromis mossambicus) and metal concentrations (Cu, Zn, Pb) in sediments were also observed, when fish were fed with diets containing sediment. The results showed that uncontrolled e-waste recycling activities may bring adverse effects to local aquatic ecosystem.
40 CFR 265.1030 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a 90-day tank or container) and that is located at a hazardous... container) and is not a recycling unit under the requirements of 40 CFR 261.6. Note: The requirements of...
40 CFR 265.1030 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a 90-day tank or container) and that is located at a hazardous... container) and is not a recycling unit under the requirements of 40 CFR 261.6. Note: The requirements of...
40 CFR 265.1030 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a 90-day tank or container) and that is located at a hazardous... container) and is not a recycling unit under the requirements of 40 CFR 261.6. Note: The requirements of...
40 CFR 265.1030 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a 90-day tank or container) and that is located at a hazardous... container) and is not a recycling unit under the requirements of 40 CFR 261.6. Note: The requirements of...
40 CFR 265.1030 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.34(a) (i.e., a hazardous waste recycling unit that is not a 90-day tank or container) and that is located at a hazardous... container) and is not a recycling unit under the requirements of 40 CFR 261.6. Note: The requirements of...
Waste recycling issues in bioregenerative life support
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Wang, D.
1989-01-01
Research and technology development issues centering on the recycling of materials within a bioregenerative life support system are reviewed. The importance of recovering waste materials for subsequent use is emphasized. Such material reclamation will substantially decrease the energy penalty paid for bioregenerative life support systems, and can potentially decrease the size of the system and its power demands by a significant amount. Reclamation of fixed nitrogen and the sugars in cellulosic materials is discussed.
Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.
Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N
2008-10-01
Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities.
Pakpour, Amir H; Zeidi, Isa Mohammadi; Emamjomeh, Mohammad Mahdi; Asefzadeh, Saeed; Pearson, Heidi
2014-06-01
Understanding the factors influencing recycling behaviour can lead to better and more effective recycling programs in a community. The goal of this study was to examine factors associated with household waste behaviours in the context of the theory of planned behaviour (TPB) among a community sample of Iranians that included data collection at time 1 and at follow-up one year later at time 2. Study participants were sampled from households under the coverage of eight urban health centers in the city of Qazvin. Of 2000 invited households, 1782 agreed to participate in the study. A self-reported questionnaire was used for assessing socio-demographic factors and the TPB constructs (i.e. attitude, subjective norms, perceived behavioural control, and intention). Furthermore, questions regarding moral obligation, self-identity, action planning, and past recycling behaviour were asked, creating an extended TPB. At time 2, participants were asked to complete a follow-up questionnaire on self-reported recycling behaviours. All TPB constructs had positive and significant correlations with each other. Recycling behaviour at time 1 (past behaviour) significantly related to household waste behaviour at time 2. The extended TPB explained 47% of the variance in household waste behaviour at time 2. Attitude, perceived behavioural control, intention, moral obligation, self-identity, action planning, and past recycling behaviour were significant predictors of household waste behaviour at time 2 in all models. The fact that the expanded TPB constructs significantly predicted household waste behaviours holds great promise for developing effective public campaigns and behaviour-changing interventions in a region where overall rates of household waste reduction behaviours are low. Our results indicate that educational materials which target moral obligation and action planning may be particularly effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
Properties of concrete blocks prepared with low grade recycled aggregates.
Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren
2009-08-01
Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.
Global status of recycling waste solar panels: A review.
Xu, Yan; Li, Jinhui; Tan, Quanyin; Peters, Anesia Lauren; Yang, Congren
2018-05-01
With the enormous growth in the development and utilization of solar-energy resources, the proliferation of waste solar panels has become problematic. While current research into solar panels has focused on how to improve the efficiency of the production capacity, the dismantling and recycling of end-of-life (EOL) panels are seldom considered, as can be seen, for instance, in the lack of dedicated solar-panel recycling plants. EOL solar-panel recycling can effectively save natural resources and reduce the cost of production. To address the environmental conservation and resource recycling issues posed by the huge amount of waste solar panels regarding environmental conservation and resource recycling, the status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article. This review can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers. At present, from the technical aspect, the research on solar panel recovery is facing many problems, and we need to further develop an economically feasible and non-toxic technology. The research on solar photovoltaic panels' management at the end of life is just beginning in many countries, and there is a need for further improvement and expansion of producer responsibility. Copyright © 2018 Elsevier Ltd. All rights reserved.
Developmental Neurotoxicants in E-Waste: An Emerging Health Concern
Chen, Aimin; Dietrich, Kim N.; Huo, Xia; Ho, Shuk-mei
2011-01-01
Objective Electronic waste (e-waste) has been an emerging environmental health issue in both developed and developing countries, but its current management practice may result in unintended developmental neurotoxicity in vulnerable populations. To provide updated information about the scope of the issue, presence of known and suspected neurotoxicants, toxicologic mechanisms, and current data gaps, we conducted this literature review. Data sources We reviewed original articles and review papers in PubMed and Web of Science regarding e-waste toxicants and their potential developmental neurotoxicity. We also searched published reports of intergovernmental and governmental agencies and nongovernmental organizations on e-waste production and management practice. Data extraction We focused on the potential exposure to e-waste toxicants in vulnerable populations—that is, pregnant women and developing children—and neurodevelopmental outcomes. In addition, we summarize experimental evidence of developmental neurotoxicity and mechanisms. Data synthesis In developing countries where most informal and primitive e-waste recycling occurs, environmental exposure to lead, cadmium, chromium, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons is prevalent at high concentrations in pregnant women and young children. Developmental neurotoxicity is a serious concern in these regions, but human studies of adverse effects and potential mechanisms are scarce. The unprecedented mixture of exposure to heavy metals and persistent organic pollutants warrants further studies and necessitates effective pollution control measures. Conclusions Pregnant women and young children living close to informal e-waste recycling sites are at risk of possible perturbations of fetus and child neurodevelopment. PMID:21081302
Seyring, Nicole; Dollhofer, Marie; Weißenbacher, Jakob; Bakas, Ioannis; McKinnon, David
2016-09-01
The Waste Framework Directive obliged European Union Member States to set up separate collection systems to promote high quality recycling for at least paper, metal, plastic and glass by 2015. As implementation of the requirement varies across European Union Member States, the European Commission contracted BiPRO GmbH/Copenhagen Resource Institute to assess the separate collection schemes in the 28 European Union Member States, focusing on capital cities and on metal, plastic, glass (with packaging as the main source), paper/cardboard and bio-waste. The study includes an assessment of the legal framework for, and the practical implementation of, collection systems in the European Union-28 Member States and an in depth-analysis of systems applied in all capital cities. It covers collection systems that collect one or more of the five waste streams separately from residual waste/mixed municipal waste at source (including strict separation, co-mingled systems, door-to-door, bring-point collection and civic amenity sites). A scoreboard including 13 indicators is elaborated in order to measure the performance of the systems with the capture rates as key indicators to identify best performers. Best performance are by the cities of Ljubljana, Helsinki and Tallinn, leading to the key conclusion that door-to-door collection, at least for paper and bio-waste, and the implementation of pay-as-you-throw schemes results in high capture and thus high recycling rates of packaging and other municipal waste. © The Author(s) 2016.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... waste through waste prevention, recycling, and the purchase or manufacture of recycled-content products... report, via the Annual Assessment Form, on the accomplishments of their waste prevention and recycling.... They also provide WasteWise with information on total waste prevention revenue, total recycling revenue...
Doula, M K; Sarris, A; Hliaoutakis, A; Kydonakis, A; Papadopoulos, N S; Argyriou, L
2016-03-01
Agricultural wastes (AW) are produced in huge quantities worldwide and may cause detrimental effects on environmental quality, affecting soil, water, and air quality. Given the growing soil degradation worldwide, the need for more food of good quality and therefore the intensified agriculture, it is important to develop recycling plans even for those types of treated AW (e.g., composts) that are not considered hazardous. Two strategic approaches for safe and sustainable landspreading of organic wastes are proposed, depending on wastes properties and hazard potential, i.e., an approach appropriate for traditionally used wastes (manures and composts) and another approach for wastes that are potentially hazardous or hazardous and should only be reused under specific restrictions. Both approaches foresee concrete steps, require close cooperation between farmers and local/regional authorities, and are appropriate to ensure environmental sustainability at AW recycling or disposal areas. Desktop and web application tools are also presented that are anticipated to assist authorities in implementing their monitoring strategies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately recycled...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately recycled...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately recycled...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately recycled...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately recycled...
An integrated approach for the management of demolition waste in Cyprus.
Kourmpanis, Basilis; Papadopoulos, Achilleas; Moustakas, Konstantinos; Kourmoussis, Fotis; Stylianou, Marinos; Loizidou, Maria
2008-12-01
This study investigated the generation and management of demolition waste (DW) in Cyprus. A methodology has been developed and applied for the estimation of the quantities of the waste stream under examination, since quantitative primary data were not available. The existing situation relating to the practices applied for the management of DW was investigated and assessed. Furthermore, a multi-criteria analysis method (PROMETHEE II) was developed and applied in order to examine alternative systems that could be implemented for the management of the DW in the country. In particular, nine management systems (scenarios) were examined, evaluated and ranked according to their efficiency using seventeen individual criteria, divided into four groups (social-legislative, environmental, economic and technical). The ranking of the alternative waste management scenarios indicated that the optimum management system for possible implementation in the island included complete selective demolition procedures and transfer of mixed recyclable materials to the recycling centre and non-recyclable material to landfill.
Wäger, Patrick A; Hischier, Roland
2015-10-01
Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. Copyright © 2015 Elsevier B.V. All rights reserved.
Human dietary intake of organohalogen contaminants at e-waste recycling sites in Eastern China.
Labunska, Iryna; Abdallah, Mohamed Abou-Elwafa; Eulaers, Igor; Covaci, Adrian; Tao, Fang; Wang, Mengjiao; Santillo, David; Johnston, Paul; Harrad, Stuart
2015-01-01
This study reports concentrations and human dietary intake of hexabromocyclododecanes (HBCDs), polychlorinated biphenyls (PCBs) as well as selected "novel" brominated flame retardants (NBFRs) and organochlorine pesticides, in ten staple food categories. Samples were sourced from areas in Taizhou City, eastern China, where rudimentary recycling and disposal of e-waste is commonplace, as well as from nearby non-e-waste impacted control areas. In most instances, concentrations in foods from e-waste recycling areas exceeded those from control locations. Concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEH-TBP) in samples from e-waste sites were 3.09-62.2ng/g and 0.81-16.3ng/g lipid weight (lw), respectively; exceeding consistently those in foods acquired from control sites by an order of magnitude in many cases. In contrast, while concentrations of HBCD in some foods from e-waste impacted areas exceed those from control locations; concentrations in pork, shrimp, and duck liver are higher in control samples. This highlights the potential significance of non-e-waste sources of HBCD (e.g. building insulation foam) in our study areas. While concentrations of DDT in all foods examined except pork were higher in e-waste impacted samples than controls; our exposure estimates were well below the provisional tolerable daily intake of 0.01mg/kgbw/day derived by the Joint FAO/WHO Meeting on Pesticide Residues. Concentrations of ΣPCBs resulted in exposures (650 and 2340ng/kgbw/day for adults and children respectively) that exceed substantially the Minimal Risk Levels (MRLs) for ΣPCBs of 20ng/kgbw/day derived by the Agency for Toxic Substances & Disease Registry. Moreover, when expressed in terms of dioxin-like toxicity equivalency based on the four dioxin-like PCBs monitored in this study (DL-PCBs) (PCB-105, 118, 156, and 167); concentrations in e-waste impacted foods exceed limits set by the European Union in 6 of the 8 food groups studied and result in dietary exposures for children (10.2pgTEQ/kgbw/day) that exceed the WHO tolerable daily intake of 1-4pgTEQ/kgbw/day. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadi, Pejman; Ning, Chao; Ouyang, Weiyi
Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economicmore » and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.« less
Ni, Wenqing; Chen, Yaowen; Huang, Yue; Wang, Xiaoling; Zhang, Gairong; Luo, Jiayi; Wu, Kusheng
2014-01-01
Toxic heavy metals are released to the environment constantly from unregulated electronic waste (e-waste) recycling in Guiyu, China, and thus may contribute to the elevation of mercury (Hg) and other heavy metals levels in human hair. We aimed to investigate concentrations of mercury in hair from Guiyu and potential risk factors and compared them with those from a control area where no e-waste processing occurs. A total of 285 human hair samples were collected from three villages (including Beilin, Xianma, and Huamei) of Guiyu (n=205) and the control area, Jinping district of Shantou city (n=80). All the volunteers were administered a questionnaire regarding socio-demographic characteristics and other possible factors contributed to hair mercury concentration. Hair mercury concentration was analyzed by hydride generation atomic fluorescence spectrometry (AFS). Our results suggested that hair mercury concentrations in volunteers of Guiyu (median, 0.99; range, 0.18-3.98μg/g) were significantly higher than those of Jinping (median, 0.59; range, 0.12-1.63μg/g). We also observed a higher over-limit ratio (>1μg/g according to USEPA) in Guiyu than in Jinping (48.29% vs. 11.25%, P<0.001). Logistic regression model showed that the variables of living house also served as an e-waste workshop, work related to e-waste, family income, time of residence in Guiyu, the distance between home and waste incineration, and fish intake were associated with hair mercury concentration. After multiple stepwise regression analysis, in the Guiyu samples, hair mercury concentration was found positively associated with the time residence in Guiyu (β=0.299, P<0.001), and frequency of shellfish intake (β=0.184, P=0.016); and negatively associated with the distance between home and waste incineration (β=-0.190, P=0.015) and whether house also served as e-waste workshop (β=-0.278, P=0.001). This study investigated human mercury exposure and suggested elevated hair mercury concentrations in an e-waste recycling area, Guiyu, China. Living in Guiyu for a long time and work related to e-waste may primarily contribute to the high hair mercury concentrations. © 2013 Elsevier Inc. All rights reserved.
Quantification of chemical contaminants in the paper and board fractions of municipal solid waste.
Pivnenko, K; Olsson, M E; Götze, R; Eriksson, E; Astrup, T F
2016-05-01
Chemicals are used in materials as additives in order to improve the performance of the material or the production process itself. The presence of these chemicals in recyclable waste materials may potentially affect the recyclability of the materials. The addition of chemicals may vary depending on the production technology or the potential end-use of the material. Paper has been previously shown to potentially contain a large variety of chemicals. Quantitative data on the presence of chemicals in paper are necessary for appropriate waste paper management, including the recycling and re-processing of paper. However, a lack of quantitative data on the presence of chemicals in paper is evident in the literature. The aim of the present work is to quantify the presence of selected chemicals in waste paper derived from households. Samples of paper and board were collected from Danish households, including both residual and source-segregated materials, which were disposed of (e.g., through incineration) and recycled, respectively. The concentration of selected chemicals was quantified for all of the samples. The quantified chemicals included mineral oil hydrocarbons, phthalates, phenols, polychlorinated biphenyls, and selected toxic metals (Cd, Co, Cr, Cu, Ni, and Pb). The results suggest large variations in the concentration of chemicals depending on the waste paper fraction analysed. Research on the fate of chemicals in waste recycling and potential problem mitigation measures should be focused on in further studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meylan, Grégoire; Lai, Adelene; Hensley, John; Stauffacher, Michael; Krütli, Pius
2018-05-15
Solid waste management (SWM) is a significant challenge for the Seychelles. Waste generation, fueled by economic development and tourism, increases steadily, while landfilling continues to be the main disposal path, thus exacerbating the island nation's specific weaknesses. Due to the small scale of the Seychelles economy, there is little capital available to stimulate innovations in SWM and generate the knowledge for setting priorities and guiding SWM action. Students from ETH Zurich and UniSey conducted a transdisciplinary case study (tdCS) to fill this knowledge gap and gain insights into the obstacles and opportunities related to sustainable SWM. The tdCS approach allowed students to gain comprehensive and in-depth knowledge about the SWM system required to set priorities for action and next steps. The government should streamline the different financial frameworks according to a clear principle (e.g., polluter pays principle). Specific biogenic waste streams represent a potential source of energy and fertilizers. Expanding the scope and densifying the network of collection points could help raise recycling rates of other waste fractions. Diverting biogenic waste and recycling more glass, metals, paper, and plastics would also significantly reduce landfilling rates. Regardless of future amounts of waste ending up on landfills, the latter must be reengineered before the surrounding environment suffers major adverse impacts. All these actions imply a government-driven approach which integrates the views of stakeholders and consumers alike.
Zeng, Yan-Hong; Tang, Bin; Luo, Xiao-Jun; Zheng, Xiao-Bo; Peng, Ping-An; Mai, Bi-Xian
2016-11-01
To examine the environmental pollution associated with e-waste recycling activities, the concentrations of organohologenated pollutants (OHPs), i.e., short- and medium-chain chlorinated paraffins (SCCPs and MCCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and several other halogenated flame retardants (OHFRs), were investigated in surface particulates from the workshop floors of four major e-waste recycling sites (Taizhou, Guiyu, Dali and Qingyuan) in China. The mean levels of SCCPs, MCCPs, PCBs, PBDEs and OHFRs in surface particulates ranged from 30,000-61,000, 170,000-890,000, 2700-27,000, 52,000-240,000, and 62,000-140,000ng/g dry weight (dw), respectively. OHFRs, including decabromodiphenyl ethane, dechlorane plus, 1,2-bis(2,4,6-tribromophenoxy)ethane, tetrabromobisphenol A, hexabromocyclododecanes, polybrominated biphenyls, hexabromobenzene, pentabromotoluene, and pentabromoethylbenzene, were frequently (>50% detection frequency) detected in surface particulates with mean concentration ranges of 39,000-63,000, 310-2700, 98-16,000, 21,000-56,000, 55-5700, 1700-27,000, 42-1600, 3.2-220, and 5.8-12ng/g dw, respectively. The composition of OHPs varied depend on the e-waste items processing in different regions. Guiyu and Dali were typical sites contaminated by halogenated flame retardants (HFRs) and CPs, respectively, while Qingyuan, and Taizhou were representative PCB-polluted regions. The evidence produced by this preliminary study indicated that electronic devices and plastics may account for the high content of HFRs and the metal products are likely the major source of CPs in these e-waste sites. Copyright © 2016. Published by Elsevier B.V.
Uncovering the Recycling Potential of "New" WEEE in China.
Zeng, Xianlai; Gong, Ruying; Chen, Wei-Qiang; Li, Jinhui
2016-02-02
Newly defined categories of WEEE have increased the types of China's regulated WEEE from 5 to 14. Identification of the amounts and valuable-resource components of the "new" WEEE generated is critical to solving the e-waste problem, for both governmental policy decisions and recycling enterprise expansions. This study first estimates and predicts China's new WEEE generation for the period of 2010-2030 using material flow analysis and the lifespan model of the Weibull distribution, then determines the amounts of valuable resources (e.g., base materials, precious metals, and rare-earth minerals) encased annually in WEEE, and their dynamic transfer from in-use stock to waste. Main findings include the following: (i) China will generate 15.5 and 28.4 million tons WEEE in 2020 and 2030, respectively, and has already overtaken the U.S. to become the world's leading producer of e-waste; (ii) among all the types of WEEE, air conditioners, desktop personal computers, refrigerators, and washing machines contribute over 70% of total WEEE by weight. The two categories of EEE-electronic devices and electrical appliances-each contribute about half of total WEEE by weight; (iii) more and more valuable resources have been transferred from in-use products to WEEE, significantly enhancing the recycling potential of WEEE from an economic perspective; and (iv) WEEE recycling potential has been evolving from ∼16 (10-22) billion US$ in 2010, to an anticipated ∼42 (26-58) billion US$ in 2020 and ∼73.4 (44.5-103.4) billion US$ by 2030. All the obtained results can improve the knowledge base for closing the loop of WEEE recycling, and contribute to governmental policy making and the recycling industry's business development.
Sustainable waste management through end-of-waste criteria development.
Zorpas, Antonis A
2016-04-01
The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies.
Research challenges in municipal solid waste logistics management.
Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J
2016-02-01
During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Environmental risk related to specific processes during scrap computer recycling and disposal.
Li, Jinhui; Shi, Pixing; Shan, Hongshan; Xie, Yijun
2012-12-01
The purpose of this work was to achieve a better understanding of the generation of toxic chemicals related to specific processes in scrap computer recycling and disposal, such as thermal recycling of printed circuit boards (PCBs) and the landfilling or dumping of cathode ray tubes (CRTs). Tube furnace pyrolysis was carried out to simulate different thermal treatment conditions for the identification of the by-products and potential environmental risk from thermal recycling ofPCBs. The Toxicity Characteristic Leaching Procedure (TCLP) and a column test were used to study the leaching characteristics of lead from waste CRT glass, which is one of the most important environmental concerns arising from the disposal of e-waste. The results indicate that more attention should be paid to the benzene series when recycling PCBs under thermal conditions, especially for workers without any personal protection equipment. The impact of immersion on the leaching of lead from CRT leaded glass was more effective than the impact of washing only by acid rain. Thus when waste leaded glass has to be stored for some reason, the storage facility should be dry.
Hexabromocyclododecanes (HBCDs) in fish: Evidence of recent HBCD input into the coastal environment.
Sun, Runxia; Luo, Xiaojun; Zheng, Xiaobo; Cao, Kun; Peng, Pingan; Li, Qing X; Mai, Bixian
2018-01-01
Hexabromocyclododecanes (HBCDs) are flame retardants and emerging persistent organic pollutants. In the present study, α-, β-, and γ-HBCDs were measured in several fish species from rivers and an electronic waste (e-waste) recycling site in Pearl River Delta, South China. The concentrations of HBCDs were 12.8 to 640, 5.90 to 115, and 34.3 to 518ng/g lipid weight (lw) in mud carp (Cirrhinus molitorella), tilapia (Tilapia nilotica), and plecostomus (Hypostomus plecostomus), respectively. Plecostomus showed the highest HBCD concentrations among three fish species. The contributions of α-HBCD to total HBCDs were 78% to 97%, 93% to 99%, and 87% to 98% in carp, tilapia, and plecostomus, respectively. Fish samples from a harbor and the e-waste site exhibited the highest HBCD concentrations among all samples. The HBCD concentrations were not significantly correlated with the gross domestic product or population data. e-Waste recycling activities, harbor construction, and shipment might be recent HBCD sources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N.; Ho, Shuk-mei; Chen, Aimin; Huo, Xia
2017-01-01
Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metals concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consists of residential areas, kindergarten/school and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012–2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentration of Pb, Cd, Cr and Mn were 448.73, 0.71, 63.90 and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71 and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P≤ 0.05) than the reference area and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination and pollution load index indicated that all sampling points had high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr and Mn for children in exposed area was 0.99 and 1.62 for soil and dust respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk. PMID:27230155
Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N; Ho, Shuk-Mei; Chen, Aimin; Huo, Xia
2016-09-01
Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metal concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consisting of residential areas, kindergarten/school, and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012-2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentrations of Pb, Cd, Cr, and Mn were 448.73, 0.71, 63.90, and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71, and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P ≤ 0.05) than the reference area, and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination, and pollution load index indicated that all sampling points had a high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr, and Mn for children in exposed area was 0.99 and 1.62 for soil and dust, respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk.
Enhanced bioleaching efficiency of metals from E-wastes driven by biochar.
Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang; Dummi Mahadevan, Gurumurthy; Zhao, Feng
2016-12-15
Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.
The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.
The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less
Xing, Guan Hua; Chan, Janet Kit Yan; Leung, Anna Oi Wah; Wu, Sheng Chun; Wong, M H
2009-01-01
PCB levels in fish (collected from local rivers), atmosphere and human milk samples have been studied to determine the exposure levels of PCBs for local residents and e-waste workers in Guiyu, a major electronic waste scrapping center in China. The source appointment and correlation analyses showed that homologue composition of PCBs in 7 species of fish were consistent and similar to commercial PCBs Aroclor 1248. PCB levels in air surrounding the open burning site were significantly higher than those in residential area. Inhalation exposure contributed 27% and 93% to the total body loadings (the sum of dietary and inhalation exposure) of the local residents, and e-waste workers engaged in open burning respectively. Total PCB concentrations in human milk ranged from N.D. to 57.6 ng/g lipid, with an average of 9.50 ng/g lipid. The present results indicated that commercial PCBs derived from e-waste recycling are major sources of PCBs accumulating in different environmental media, leading to the accumulation of high chlorinated biphenyls in human beings.
Technical specifications for mechanical recycling of agricultural plastic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.
Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plasticmore » waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro
Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste.« less
Review of recycling performance indicators: A study on collection rate in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen Lihchyi; Lin Chunhsu; Lee, Soo-cheol
2009-08-15
The Taiwan Environmental Protection Administration (Taiwan EPA) launched a national Extended Producer Responsibility (EPR) system after integrating eight private recycling organizations in 1998. After that, the environmental performance of the EPR system brought a lot of attention to policy makers. Many studies show positive environmental effects of the EPR system in Taiwan. However, there are controversial questions remained, such as whether the performance indicators used are the right choice to estimate the environmental effects of the recycling policy? Can those estimated results really reflect the performance of the system? This paper would therefore like to more accurately evaluate the performancemore » indicators of the EPR system based on data observed over the past decade in Taiwan. In the process of evaluating the performance indicators, we have found that the collection rates for durable goods are often ignored in countries that pursue a zero waste policy. This may affect the actual recycling outcome and resource direction targeted by producers. However, in order for the collection rate to be adopted as a policy indicator, how to estimate the amounts of retired or waste products during a period is critical. In this paper, we estimate the collection rate for electrical and electronic waste by using the survival analysis and ownership data analysis approaches. We also provide a comparison of both approaches and put forward suggestions for directions in the future in solid waste management.« less
Review of recycling performance indicators: a study on collection rate in Taiwan.
Wen, Lihchyi; Lin, Chun-Hsu; Lee, Soo-Cheol
2009-08-01
The Taiwan Environmental Protection Administration (Taiwan EPA) launched a national Extended Producer Responsibility (EPR) system after integrating eight private recycling organizations in 1998. After that, the environmental performance of the EPR system brought a lot of attention to policy makers. Many studies show positive environmental effects of the EPR system in Taiwan. However, there are controversial questions remained, such as whether the performance indicators used are the right choice to estimate the environmental effects of the recycling policy? Can those estimated results really reflect the performance of the system? This paper would therefore like to more accurately evaluate the performance indicators of the EPR system based on data observed over the past decade in Taiwan. In the process of evaluating the performance indicators, we have found that the collection rates for durable goods are often ignored in countries that pursue a zero waste policy. This may affect the actual recycling outcome and resource direction targeted by producers. However, in order for the collection rate to be adopted as a policy indicator, how to estimate the amounts of retired or waste products during a period is critical. In this paper, we estimate the collection rate for electrical and electronic waste by using the survival analysis and ownership data analysis approaches. We also provide a comparison of both approaches and put forward suggestions for directions in the future in solid waste management.
Characterization of ecofriendly polyethylene fiber from plastic bag waste
NASA Astrophysics Data System (ADS)
Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus
2017-08-01
This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.
Effective Strategies for Enhancing Waste Management at University Campuses
ERIC Educational Resources Information Center
Ebrahimi, Kianoosh; North, Leslie A.
2017-01-01
Purpose: The purpose of this study is to identify and assess the waste management strategies that should be priorities for higher education institutions. The role of policy instruments (i.e. purchasing policies and recycling initiatives) in implementing sustainable zero-waste management programs at higher education institutions was investigated…
Zhang, Tao; Xue, Jingchuan; Gao, Chuan-zi; Qiu, Rong-liang; Li, Yan-xi; Li, Xiao; Huang, Ming-zhi; Kannan, Kurunthachalam
2016-04-05
In this study, concentrations of bisphenol A (BPA) and seven other bisphenols (BPs) were measured in urine samples collected from people living in and around e-waste dismantling facilities, and in matched reference population from rural and urban areas in China. BPA, bisphenol S (BPS), and bisphenol F (BPF) were frequently detected (detection frequencies: > 90%) in urine samples collected from individuals who live near e-waste facilities, with geometric mean (GM) concentrations of 2.99 (or 3.75), 0.361 (or 0.469), and 0.349 (or 0.435) ng/mL (or μg/g Cre), respectively; the other five BPs were rarely found in urine samples, regardless of the sampling location. The urinary concentrations of BPA and BPF, but not BPS, were significantly higher in individuals from e-waste recycling locations than did individuals from a rural reference location. Our findings indicated that e-waste dismantling activities contribute to human exposure to BPA and BPF. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was measured in urine as a marker of oxidative stress. In the e-waste dismantling location, urinary 8-OHdG was significantly and positively correlated (p < 0.001) with urinary BPA and BPS, but not BPF; a similar correlation was also observed in reference sites. These findings suggest that BPA and BPS exposures are associated with elevated oxidative stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, Stefano; LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza; Vigano, Federico, E-mail: federico.vigano@polimi.it
Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papersmore » reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).« less
Environmental performance of household waste management in Europe - An example of 7 countries.
Andreasi Bassi, Susanna; Christensen, Thomas H; Damgaard, Anders
2017-11-01
An attributional life cycle assessment (LCA) of the management of 1ton of household waste was conducted in accordance with ISO 14044:2006 and the ILCD Handbook for seven European countries, namely Germany, Denmark, France, UK, Italy, Poland and Greece, representing different household waste compositions, waste management practices, technologies, and energy systems. National data were collected from a range of sources regarding household waste composition, household sorting efficiency, collection, waste treatments, recycling, electricity and heat composition, and technological efficiencies. The objective was to quantify the environmental performance in the different countries, in order to analyze the sources of the main environmental impacts and national differences which affect the results. In most of the seven countries, household waste management provides environmental benefits when considering the benefits of recycling of materials and recovering and utilization of energy. Environmental benefits come from paper recycling and, to a lesser extent, the recycling of metals and glass. Waste-to-energy plants can lead to an environmental load (as in France) or a saving (Germany and Denmark), depending mainly on the composition of the energy being substituted. Sensitivity analysis and a data quality assessment identified a range of critical parameters, suggesting from where better data should be obtained. The study concluded that household waste management is environmentally the best in European countries with a minimum reliance on landfilling, also induced by the implementation of the Waste Hierarchy, though environmental performance does not correlate clearly with the rate of material recycling. From an environmental point of view, this calls for a change in the waste management paradigm, with less focus on where the waste is routed and more of a focus on the quality and utilization of recovered materials and energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Liulin; Hou, Meiling; An, Jing; Zhong, Yufang; Wang, Xuetong; Wang, Yangjun; Wu, Minghong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo
2011-10-01
Electrical and electronic waste (E-waste) has now become the fastest growing solid waste around the world. Primitive recycling operations for E-waste have resulted in severe contamination of toxic metals and organic chemicals in the related areas. In this study, six dust and soil samples collected from E-waste recycling workshops and open-burning sites in Longtang were analyzed to investigate their cytotoxicity and genotoxicity on L02 cells. These six samples were: dust No. 1 collected at the gate of the workshop; dust No. 2 collected from air conditioning compressor dismantling site; dust No. 3 collected from where some motors, wires, and aluminium products since the 1980s were dismantled; soil No. 1 collected at the circuit board acid washing site; soil No. 2 collected from a wire open-burning site; soil No. 3 collected near a fiber open-burning site. At the same time, two control soil samples were collected from farmlands approximately 8 km away from the dismantling workshops. The results showed that all of these samples could inhibit cell proliferation and cause cell membrane lesion, among which dust No. 3 and soil No. 2 had the strongest toxicity. Moreover, the comet assay showed that the dust No. 3 had the most significant capability to cause DNA single-strand beaks (SSB), while the road dust (dust No. 1) collected at the gate of the workshop, a relatively farer site, showed the slightest capability to induce DNA SSB. The intracellular reactive oxygen species (ROS) detection showed that ROS level was elevated with the increase of dust and soil samples concentration. Dust No. 3 and soil No. 2 had the highest ROS level, followed by dust No. 2 and 1, soil No. 3 and 1. All of the above results indicated that polluted soil and dust from the E-waste area had cytotoxicity and genotoxicity on L02 cells, the mechanism might involve the increased ROS level and consequent DNA SSB.
Liu, Fang; Liao, Chunyang; Fu, Jianjie; Lv, Jungang; Xue, Qinzhao; Jiang, Guibin
2014-02-01
The residue levels of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) and 16 selected organochlorine pesticides (OCPs) in rice and rice hull collected from a typical e-waste recycling area in southeast China were investigated from 2005 to 2007. PAHs and OCPs also were measured in ten mollusk species (soft tissues) collected in an adjacent bay in 2007. Individual PAHs were frequently found in the entire sample set (including the rice, hull, and mollusk samples) with a detection rate of 73 %. The total concentrations of 16 PAHs (ΣPAHs) and 16 OCPs (ΣOCPs) were in the range of 40.8-432 ng/g dry weight (mean: 171 ng/g) and 2.35-925 ng/g (122 ng/g), respectively, which were comparable or higher than those reported in some polluted areas. Statistical comparisons suggested that the concentrations of contaminants in hull gradually decreased from 2005 to 2007 and the residue levels were generally in the order of mollusk, hull, and rice, on a dry weight basis. Principal component analysis in combination with diagnostic ratios implied that combustion of coal, wood, and plastic wastes that are closely associated with crude e-waste recycling activities is the main source of PAHs. The finding of decreasing trend of concentrations of PAHs in this area is consistent with the efforts of local authorities to strengthen regulations on illegal e-waste recycling activities. Composition analysis suggested that there is a recent usage or discharge of hexachlorocyclohexane and dichlorodiphenyltrichloroethane into the tested area. The estimated daily intake (EDI) of ΣPAHs and ΣOCPs (calculated from mean concentrations) through rice and mollusk consumption was 0.411 and 0.921 μg/kg body weight (bw)/day, respectively.
Zeng, Yan-Hong; Luo, Xiao-Jun; Tang, Bin; Mai, Bi-Xian
2016-09-01
Organohalogen pollutants (OHPs) including chlorinated paraffins (CPs), polybrominated diphenyl ethers (PBDEs) and other halogenated flame retardants (OHFRs) (dechlorane plus (DP), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB), hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA)) originating from an e-waste recycling area in Guiyu, southern China were investigated in chicken and goose eggs. As expected, OHP concentrations were higher in chicken eggs collected from the location (site 1) approaching the e-waste recycling center than from the location (site 2) far from the e-waste recycling center. Also, much higher OHP levels were observed in goose eggs foraging in residential area (site 2) than that in agricultural area (site 1), suggesting a clear habitat dependent OHP bioaccumulation pattern both concerning distance from e-waste activities and type of foraging habitat. Goose eggs exhibited higher short chain chlorinated paraffins (SCCPs) concentrations but lower PBDE and OHFR levels than chicken eggs. The proportion of high brominated PBDEs (hepta-to deca-BDEs) was lower in goose eggs than that in chicken eggs and showed a clear decrease from site 1 to site 2. DP isomeric composition fanti values (the ratio of the anti-DP to the sum of the anti- and syn-DP) in goose eggs were significantly lower than those in chicken eggs (p < 0.001). These differences are likely a reflection of factors such as the species-specific differences in habitat preference and the differing environmental behaviors of the pollutants owing to their inherent properties (such as solubility and vapor pressure). Our findings suggested a high dietary intake of OHPs via home-produced eggs. For BDE99 there is a potential health concern with respect to the current dietary exposure via eggs. Copyright © 2016. Published by Elsevier Ltd.
Association between lead exposure from electronic waste recycling and child temperament alterations.
Liu, Junxiao; Xu, Xijin; Wu, Kusheng; Piao, Zhongxian; Huang, Jinrong; Guo, Yongyong; Li, Weiqiu; Zhang, Yuling; Chen, Aimin; Huo, Xia
2011-08-01
We aimed to evaluate the dose-dependent effects of lead exposure on temperament alterations in children from a primitive e-waste (obsolete electrical and electronic devices) recycling area in Guiyu of China and a control area (Chendian, China). Blood lead levels (BLL) might be correlated with temperament, health, and relevant factors that were evaluated through Parent Temperament Questionnaire (PTQ), physical examination, and residential questionnaires. We collected venipuncture blood samples from 303 children (aged 3-7 years old) between January and February 2008. Child BLL were higher in Guiyu than in Chendian (median 13.2 μg/dL, range 4.0-48.5 μg/dL vs. 8.2 μg/dL, 0-21.3 μg/dL) (P<0.01). Significant differences of mean scores in activity level (4.53±0.83 vs. 4.18±0.81), approach-withdrawal (4.62±0.85 vs. 4.31±0.89), and adaptability (4.96±0.73 vs. 4.67±0.83) were found between Guiyu and Chendian children (all P<0.01). High BLL (BLL≥10μg/dL) child had higher mean scores of approach-withdrawal when compared with those children with low BLL (BLL<10 μg/dL) (4.61±0.87 vs. 4.30±0.88, P<0.01). Location of child residence in Guiyu, and parents engagement in work related to e-waste were the risk factors related to child BLL, activity level, approach-withdrawal, adaptability, and mood. Child hand washing prior to food consumption was a protected factor for BLL and several dimensions. There are close relationships between BLL elevation, temperament alteration and the e-waste recycling activities in Guiyu. Primitive e-waste recycling may threaten the health of children by increasing BLL and altering children temperament, although the exposure to other toxicants needs to be examined in future studies. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkes, Olga, E-mail: o.parkes@ucl.ac.uk; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk; Bogle, I. David L.
Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting frommore » various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for sustainable waste management planning.« less
Martinho, Graça; Gomes, Ana; Santos, Pedro; Ramos, Mário; Cardoso, João; Silveira, Ana; Pires, Ana
2017-03-01
The need to increase packaging recycling rates has led to the study and analysis of recycling schemes from various perspectives, including technical, economic, social, and environmental. This paper is part one of a three-part study devoted to comparing two recyclable packaging waste collection systems operating in western Portugal: a mixed collection system, where curbside and drop-off collections are operated simultaneously (but where the curbside system was introduced after the drop-off system), and an exclusive drop-off system. This part of the study focuses on analyzing the operation and performance of the two waste collection systems. The mixed collection system is shown to yield higher material separation rates, higher recycling rates, and lower contamination rates compared with the exclusive drop-off system, a result of the curbside component in the former system. However, the operational efficiency of the curbside collection in the mixed system is lower than the drop-off collection in the mixed system and the exclusive drop-off system, mainly because of inefficiency of collection. A key recommendation is to ensure that the systems should be optimized in an attempt to improve performance. Optimization should be applied not only to logistical aspects but also to citizens' participation, which could be improved by conducting curbside collection awareness campaigns in the neighborhoods that have a mixed system. Copyright © 2017 Elsevier Ltd. All rights reserved.
GIS-based planning system for managing the flow of construction and demolition waste in Brazil.
Paz, Diogo Henrique Fernandes da; Lafayette, Kalinny Patrícia Vaz; Sobral, Maria do Carmo
2018-05-01
The objective of this article was to plan a network for municipal management of construction and demolition waste in Brazil with the assistance of a geographic information system, using the city of Recife as a case study. The methodology was carried out in three stages. The first was to map the illegal construction and demolition of waste disposal points across Recife and classify the waste according to its recyclability. In sequence, a method for indicating suitable areas for installation of voluntary delivery points, for small waste generators, are presented. Finally, a method for indicating suitable areas for the installation of trans-shipment and waste sorting areas, developed for large generators, is presented. The results show that a geographic information system is an essential tool in the planning of municipal construction and demolition waste management, in order to facilitate the spatial analysis and control the generation, sorting, collection, transportation, and final destination of construction and demolition waste, increasing the rate of recovery and recycling of materials.
Luo, Xiao-Jun; Sun, Yu-Xin; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian
2015-03-01
Short-chain chlorinated paraffins (SCCPs) are under review by the Stockholm Convention on Persistent Organic Pollutants. Currently, limited data are available about SCCPs in terrestrial organisms. In the present study, SCCP concentration in the muscles of seven terrestrial bird species (n = 38) inhabiting an e-waste recycling area in South China was determined. This concentration varied from 620 to 17,000 ng/g lipid. Resident birds accumulated significantly higher SCCP concentrations than migratory birds (p < 0.01). Trophic magnification was observed for migratory bird species but not for resident, which was attributed to high heterogeneity of SCCP in e-waste area. Two different homologue group patterns were observed in avian samples. The first pattern was found in five bird species dominated by C10 and C11 congeners, while the second was found in the remains, which show rather equal abundance of homologue groups. This may be caused by two sources of SCCPs (local and e-waste) in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.
van der Harst, Eugenie; Potting, José; Kroeze, Carolien
2016-02-01
Many methods have been reported and used to include recycling in life cycle assessments (LCAs). This paper evaluates six widely used methods: three substitution methods (i.e. substitution based on equal quality, a correction factor, and alternative material), allocation based on the number of recycling loops, the recycled-content method, and the equal-share method. These six methods were first compared, with an assumed hypothetical 100% recycling rate, for an aluminium can and a disposable polystyrene (PS) cup. The substitution and recycled-content method were next applied with actual rates for recycling, incineration and landfilling for both product systems in selected countries. The six methods differ in their approaches to credit recycling. The three substitution methods stimulate the recyclability of the product and assign credits for the obtained recycled material. The choice to either apply a correction factor, or to account for alternative substituted material has a considerable influence on the LCA results, and is debatable. Nevertheless, we prefer incorporating quality reduction of the recycled material by either a correction factor or an alternative substituted material over simply ignoring quality loss. The allocation-on-number-of-recycling-loops method focusses on the life expectancy of material itself, rather than on a specific separate product. The recycled-content method stimulates the use of recycled material, i.e. credits the use of recycled material in products and ignores the recyclability of the products. The equal-share method is a compromise between the substitution methods and the recycled-content method. The results for the aluminium can follow the underlying philosophies of the methods. The results for the PS cup are additionally influenced by the correction factor or credits for the alternative material accounting for the drop in PS quality, the waste treatment management (recycling rate, incineration rate, landfilling rate), and the source of avoided electricity in case of waste incineration. The results for the PS cup, which are less dominated by production of virgin material than aluminium can, furthermore depend on the environmental impact categories. This stresses the importance to consider other impact categories besides the most commonly used global warming impact. The multitude of available methods complicates the choice of an appropriate method for the LCA practitioner. New guidelines keep appearing and industries also suggest their own preferred method. Unambiguous ISO guidelines, particularly related to sensitivity analysis, would be a great step forward in making more robust LCAs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W.; Alvarez-Romo, N.; MacCallum, T.
1994-11-01
Biosphere 2 is the first man-made, soil-based, bioregenerative life support system to be developed and tested. The utilization and amendment of local space resources, e.g. martian soil or lunar regolith, for agricultural and other purposes will be necesary if we are to minimize the requirement for Earth materials in the creation of long-term off-planet bases and habitations. Several of the roles soil plays in Biosphere 2 are 1) for air purification 2) as a key component in created wetland systems to recycle human and animal wastes and 3) as nutrient base for a sustainable agricultural cropping program. Initial results from the Biosphere 2 closure experiment are presented. These include the accelerated cycling rates due to small reservoir sizes, strong diurnal and seasonal fluxes in atmospheric CO2, an unexpected and continuing decline in atmospheric oxygen, overall maintenance of low levels of trace gases, recycling of waste waters through biological regeneration systems, and operation of an agriculture designed to provide diverse and nutritionally adequate diets for the crew members.
E-Waste and Harm to Vulnerable Populations: A Growing Global Problem
Heacock, Michelle; Kelly, Carol Bain; Asante, Kwadwo Ansong; Birnbaum, Linda S.; Bergman, Åke Lennart; Bruné, Marie-Noel; Buka, Irena; Carpenter, David O.; Chen, Aimin; Huo, Xia; Kamel, Mostafa; Landrigan, Philip J.; Magalini, Federico; Diaz-Barriga, Fernando; Neira, Maria; Omar, Magdy; Pascale, Antonio; Ruchirawat, Mathuros; Sly, Leith; Sly, Peter D.; Van den Berg, Martin; Suk, William A.
2015-01-01
Background: Electronic waste (e-waste) is produced in staggering quantities, estimated globally to be 41.8 million tonnes in 2014. Informal e-waste recycling is a source of much-needed income in many low- to middle-income countries. However, its handling and disposal in underdeveloped countries is often unsafe and leads to contaminated environments. Rudimentary and uncontrolled processing methods often result in substantial harmful chemical exposures among vulnerable populations, including women and children. E-waste hazards have not yet received the attention they deserve in research and public health agendas. Objectives: We provide an overview of the scale and health risks. We review international efforts concerned with environmental hazards, especially affecting children, as a preface to presenting next steps in addressing health issues stemming from the global e-waste problem. Discussion: The e-waste problem has been building for decades. Increased observation of adverse health effects from e-waste sites calls for protecting human health and the environment from e-waste contamination. Even if e-waste exposure intervention and prevention efforts are implemented, legacy contamination will remain, necessitating increased awareness of e-waste as a major environmental health threat. Conclusion: Global, national, and local levels efforts must aim to create safe recycling operations that consider broad security issues for people who rely on e-waste processing for survival. Paramount to these efforts is reducing pregnant women and children’s e-waste exposures to mitigate harmful health effects. With human environmental health in mind, novel dismantling methods and remediation technologies and intervention practices are needed to protect communities. Citation: Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman AL, Bruné MN, Buka I, Carpenter DO, Chen A, Huo X, Kamel M, Landrigan PJ, Magalini F, Diaz-Barriga F, Neira M, Omar M, Pascale A, Ruchirawat M, Sly L, Sly PD, Van den Berg M, Suk WA. 2016. E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect 124:550–555; http://dx.doi.org/10.1289/ehp.1509699 PMID:26418733
Greenhouse gas emissions of waste management processes and options: A case study.
de la Barrera, Belen; Hooda, Peter S
2016-07-01
Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles. © The Author(s) 2016.
Problems of Waste Management at Poultry Plants and Ways to Address Them
NASA Astrophysics Data System (ADS)
Lazareva, L. P.; Kostryakova, O. N.
2017-11-01
The paper analyzes scientific literature on manure recycling and systems of waste management at two poultry plants that use different technologies of poultry housing and manure disposal and calculates the volumes of waste generation for two plants. The authors suggest an economically and ecologically efficient manure utilization technology, consider the feasibility of replacing traditional fuel with the one produced by manure recycling and calculate expected profits and the payback time of equipment.
Description of waste pretreatment and interfacing systems dynamic simulation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbrick, D.J.; Zimmerman, B.D.
1995-05-01
The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggestedmore » average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.« less
Technical specifications for mechanical recycling of agricultural plastic waste.
Briassoulis, D; Hiskakis, M; Babou, E
2013-06-01
Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.
Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.
Lau, Winifred Ka Yan; Liang, Peng; Man, Yu Bon; Chung, Shan Shan; Wong, Ming Hung
2014-03-01
This study investigated health risks exerted on electronic waste (e-waste) recycling workers exposed to cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), and zinc (Zn) in Hong Kong. E-waste recycling workshops were classified into eight working areas: 1 = office, 2 = repair, 3 = dismantling, 4 = storage, 5 = desoldering, 6 = loading, 7 = cable shredding, and 8 = chemical waste. The aforementioned metal concentrations were analyzed in suspended air particulates, surface dust and floor dust collected from the above study areas in five workshops. Elevated Pb levels were measured in dismantling and desoldering areas (582 and 486 μg/100 cm(2) in surface and 3,610 and 19,172 mg/kg in floor dust, respectively). Blood lead levels of 10 and 39.5 μg/dl were estimated using United States Environmental Protection Agency's Adult Lead Model as a result of exposure to the floor dust from these two areas. Human health risk assessments were conducted to evaluate cancer and noncancer risks resulting from exposure to floor dust through the combined pathways of ingestion, dermal contact, and inhalation. Findings indicated that workers may be exposed to cancer risks above the acceptable range at 147 in a million at the 95th percentile in the dismantling area. Workers should be informed of associated risks to safeguard their health.
Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik
2011-03-01
Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Prioritizing material recovery for end-of-life printed circuit boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xue, E-mail: xxw6590@rit.edu; Gaustad, Gabrielle, E-mail: gabrielle.gaustad@rit.edu
2012-10-15
Highlights: Black-Right-Pointing-Pointer Material recovery driven by composition, choice of ranking, and weighting. Black-Right-Pointing-Pointer Economic potential for new recycling technologies quantified for several metrics. Black-Right-Pointing-Pointer Indicators developed for materials incurring high eco-toxicity costs. Black-Right-Pointing-Pointer Methodology useful for a variety of stakeholders, particularly policy-makers. - Abstract: The increasing growth in generation of electronic waste (e-waste) motivates a variety of waste reduction research. Printed circuit boards (PCBs) are an important sub-set of the overall e-waste stream due to the high value of the materials contained within them and potential toxicity. This work explores several environmental and economic metrics for prioritizing the recovery ofmore » materials from end-of-life PCBs. A weighted sum model is used to investigate the trade-offs among economic value, energy saving potentials, and eco-toxicity. Results show that given equal weights for these three sustainability criteria gold has the highest recovery priority, followed by copper, palladium, aluminum, tin, lead, platinum, nickel, zinc, and silver. However, recovery priority will change significantly due to variation in the composition of PCBs, choice of ranking metrics, and weighting factors when scoring multiple metrics. These results can be used by waste management decision-makers to quantify the value and environmental savings potential for recycling technology development and infrastructure. They can also be extended by policy-makers to inform possible penalties for land-filling PCBs or exporting to the informal recycling sector. The importance of weighting factors when examining recovery trade-offs, particularly for policies regarding PCB collection and recycling are explored further.« less
On the prevailing construction waste recycling practices: a South East Queensland study.
Tam, Vivian W Y; Kotrayothar, Duangthidar; Loo, Yew-Chaye
2009-03-01
Waste generated from construction and building demolition work constitutes about 68% of all solid waste generated each year in South East Queensland. Consequently, it has created a serious waste management problem. The State Governments of Victoria and New South Wales have been encouraging the use of recycled materials from construction and related waste; they have also promulgated specifications for their use. In Queensland, however, similar regulations are not anticipated in the near future, which explains the lack of funded research conducted in this important arena. This paper presents an evaluation of the prevailing waste recycling practices in Queensland. Nine sites were visited, including two construction sites, three demolition sites, three recycling plants and one landfill in South East Queensland. The difficulties encountered by the recycling programme operators and their associates at these sites are described and the benefits of recycling construction materials are presented. One of the major barriers is that the local councils disallow the use of recycled materials in new construction work. To help rectify these impediments to recycling, recommendations are given to increase the use of recycled construction waste in South East Queensland.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... businesses and other organizations to reduce solid waste through waste prevention, recycling, and the... accomplishments of their waste prevention and recycling activities. Partners report the amount of waste prevented... total waste prevention revenue, total recycling revenue, total avoided purchasing costs due to waste...
Management of packaging waste in Poland--development agenda and accession to the EU.
Grodzińska-Jurczak, Małgorzata; Zakowska, Hanna; Read, Adam
2004-06-01
In recent years the issue of the municipal waste in Poland has become increasingly topical, with a considerable rise in the waste generation, much of which can be attributed to a boom in product packaging (mainly plastic). The annual production of plastics packaging has been constantly increasing over the last 20 to 30 years, and now exceeds 3.7 million tons. Due to a lack of processing technologies and poorly developed selective segregation system, packaging waste is still treated as a part of the municipal solid waste (MSW) stream, most of which is landfilled. As a result of Poland's access to the European Union, previous legal regulations governing municipal waste management have been harmonized with those binding on the member countries. One of the main changes, the most revolutionary one, is to make entrepreneurs liable for environmental risks resulting from the introduction of packaging to the market, and for its recycling. In practice, all entrepreneurs are to ensure recovery, and recycling, of used packaging from products introduced to the market at the required level. In recent year, the required recycling levels were fulfilled for all types of materials but mainly by large institutions using grouped and transport packaging waste for that matter. Household packaging gathered in the selective segregation system at the municipalities was practically left alone. This paper is an attempt to describe the system and assess the first year of functioning of the new, revamped system of packaging waste management in Poland. Recommendations are made relating to those features that need to be included in packaging waste management systems in order to maximize their sustainability and harmonization with the EU legal system.
Waste reduction and recycling initiatives in Japanese cities: lessons from Yokohama and Kamakura.
Hotta, Yasuhiko; Aoki-Suzuki, Chika
2014-09-01
Waste reduction and recycling at the city level will acquire greater significance in the near future due to rising global volumes of waste. This paper seeks to identify policy-relevant drivers for successful promotion of waste reduction and recycling. Factors influencing the success of waste reduction and recycling campaigns are identified. Two case study cities in Japan which depict the successful use of the 3Rs (reduce, reuse and recycle) at the municipal level are presented. In these cases, the existence of incinerators, which are generally considered as disincentives for recycling, was not functioning as a disincentive but rather as an incentive for waste reduction. Owing to the high cost of incineration facilities, the movement to close incinerators has become a strong incentive for waste reduction and recycling in these two cities. The study suggests that careful consideration is necessary when making decisions concerning high-cost waste treatment facilities with high installation, maintenance and renewal outlays. In addition, intensive source separation and other municipal recycling initiatives have a high potential for producing positive results. © The Author(s) 2014.
Chang, Yu-Min; Liu, Chien-Chung; Dai, Wen-Chien; Hu, Allen; Tseng, Chao-Heng; Chou, Chieh-Mei
2013-01-01
This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.
Development of demand forecasting tool for natural resources recouping from municipal solid waste.
Zaman, Atiq Uz; Lehmann, Steffen
2013-10-01
Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste relies to a high extent on the accuracy of the prediction and on a comprehensive understanding of the overall waste management systems. This study defies the traditional concepts of waste, in which waste was considered as the last phase of production and services, by putting forward the new concept of waste as an intermediate phase of production and services. The study aims to develop a demand forecasting tool called 'zero waste index' (ZWI) for measuring the natural resources recouped from municipal solid waste. The ZWI (ZWI demand forecasting tool) quantifies the amount of virgin materials recovered from solid waste and subsequently reduces extraction of natural resources. In addition, the tool estimates the potential amount of energy, water and emissions avoided or saved by the improved waste management system. The ZWI is tested in a case study of waste management systems in two developed cities: Adelaide (Australia) and Stockholm (Sweden). The ZWI of waste management systems in Adelaide and Stockholm is 0.33 and 0.17 respectively. The study also enumerates per capita energy savings of 2.9 GJ and 2.83 GJ, greenhouse gas emissions reductions of 0.39 tonnes (CO2e) and 0.33 tonnes (CO2e), as well as water savings of 2.8 kL and 0.92 kL in Adelaide and Stockholm respectively.
A BIM-based system for demolition and renovation waste estimation and planning.
Cheng, Jack C P; Ma, Lauren Y H
2013-06-01
Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gowing, John; Alataway, Abed
2013-04-01
Sustainability of irrigation in a country facing water scarcity depends upon adoption of best management practices to deliver 'more crop per drop' together with use of recycled waste-water from urban sewage systems. Saudi Arabia is a country facing extreme water scarcity and in this paper we report on research conducted at an extensive irrigation system where a concerted effort over several years has been devoted to achieving a high level of water productivity. Al-Ahsa oasis is located about 60 km inland from the Persian Gulf and has been inhabited since prehistoric times, due to the abundance of water in an otherwise arid region. It is one of the largest oases in the world with 12,000 hectares of irrigated land and more than 2 million palm trees. Historically the oasis was watered by over 60 artesian springs, but water is now pumped from the aquifer. To supplement this groundwater source, treated waste-water reuse has been practiced since 1992 and now comprises 30% of total supply. In addition, a comparable amount of agricultural drainage water is collected and recycled, so that the 'first-use' water represents only 40% of total irrigation supply. While this re-use system permits sustained irrigation with greatly reduced groundwater abstraction, there is a potential down-side in that fertilizers and contaminants applied with irrigation water move through the soil and return to the irrigation supply enhancing the risk for human and animal health. We investigated this problem using E coli and helminth eggs as indicators of human health risk. We sampled each of the three sources which are delivered separately to the head of the main irrigation canal where they are blended. The groundwater was free from E coli and helminths and the treated wastewater source was generally within designated quality standards. The recycled drainage water was delivered untreated into the canal system and was found to be contaminated with both E coli and helminths above acceptable standards. Sampling from the canal system showed that there was a general increase of E coli concentration with distance downstream representing an increasing risk to human health from consumption of sensitive crops. Reasons for this trend were explored with the most likely explanation being the use of contaminated drainage water. Natural processes of soil filtration were not providing adequate decontamination of drainage water.
Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?
Kim, Jihan; Rodgers, Jocelyn M; Athènes, Manuel; Smit, Berend
2011-10-11
In the waste recycling Monte Carlo (WRMC) algorithm, (1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.
Material flow and sustainability analyses of biorefining of municipal solid waste.
Sadhukhan, Jhuma; Martinez-Hernandez, Elias
2017-11-01
This paper presents material flow and sustainability analyses of novel mechanical biological chemical treatment system for complete valorization of municipal solid waste (MSW). It integrates material recovery facility (MRF); pulping, chemical conversion; effluent treatment plant (ETP), anaerobic digestion (AD); and combined heat and power (CHP) systems producing end products: recyclables (24.9% by mass of MSW), metals (2.7%), fibre (1.5%); levulinic acid (7.4%); recyclable water (14.7%), fertiliser (8.3%); and electricity (0.126MWh/t MSW), respectively. Refuse derived fuel (RDF) and non-recyclable other waste, char and biogas from MRF, chemical conversion and AD systems, respectively, are energy recovered in the CHP system. Levulinic acid gives profitability independent of subsidies; MSW priced at 50Euro/t gives a margin of 204Euro/t. Global warming potential savings are 2.4 and 1.3kg CO 2 equivalent per kg of levulinic acid and fertiliser, and 0.17kg CO 2 equivalent per MJ of grid electricity offset, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian
2015-10-06
Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the mouse lung and enrichment of these metals compared to levels normally present in the ambient PM could be of potential health concern.
Collection of domestic waste. Review of occupational health problems and their possible causes.
Poulsen, O M; Breum, N O; Ebbehøj, N; Hansen, A M; Ivens, U I; van Lelieveld, D; Malmros, P; Matthiasen, L; Nielsen, B H; Nielsen, E M
1995-08-18
During the last decade, a growing interest in recycling of domestic waste has emerged, and action plans to increase the recycling of domestic waste have been agreed by many governments. A common feature of these plans is the implementation of new systems and equipment for the collection of domestic waste which has been separated at source. However, only limited information exists on possible occupational health problems related to such new systems. Occupational accidents are very frequent among waste collectors. Based on current knowledge, it appears that the risk factors should be considered as an integrated entity, i.e. technical factors (poor accessibility to the waste, design of equipment) may act in concert with high working rate, visual fatigue due to poor illumination and perhaps muscle fatigue due to high work load. Musculoskeletal problems are also common among waste collectors. A good deal of knowledge has accumulated on mechanical load on the spine and energetic load on the cardio-pulmonary system in relation to the handling of waste bags, bins, domestic containers and large containers. However, epidemiologic studies with exposure classification based on field measurement are needed, both to further identify high risk work conditions and to provide a detailed basis for the establishment of occupational exposure limits for mechanical and energetic load particularly in relation to pulling, pushing and tilting of containers. In 1975, an excess risk for chronic bronchitis was reported for waste collectors in Geneva (Rufèner-Press et al., 1975) and data from the Danish Registry of Occupational Accidents and Diseases also indicate an excess risk for pulmonary problems among waste collectors compared with the total work force. Surprisingly few measurements of potentially hazardous airborne exposures have been performed, and the causality of work-related pulmonary problems among waste collectors is unknown. Recent studies have indicated that implementation of some new waste collection systems may result in an increased risk of occupational health problems. High incidence rates of gastrointestinal problems, irritation of the eye and skin, and perhaps symptoms of organic dust toxic syndrome (influenza-like symptoms, cough, muscle pains, fever, fatigue, headache) have been reported among workers collecting the biodegradable fraction of domestic waste. The few data available on exposure to bio-aerosols and volatile compounds have indicated that these waste collectors may be simultaneously exposed to multiple agents such as dust containing bacteria, endotoxin, mould spores, glucans, volatile organic compounds, and diesel exhaust. Several studies have reported similar health problems as well as high incidence rates of pulmonary disease among workers at plants recycling domestic waste.(ABSTRACT TRUNCATED AT 400 WORDS)
Wang, Shaorui; Wang, Yan; Luo, Chunling; Li, Jun; Yin, Hua; Zhang, Gan
2016-07-01
The concentrations and homolog patterns of halogenated flame retardants (HFRs) in vegetables grown at an e-waste contaminated site were investigated. Polybrominated diphenyl ethers (PBDEs) were the dominant HFRs in vegetable tissues, with concentrations ranging from 10.3 to 164 ng g(-1) and 1.16-107 ng g(-1) in shoots and roots, respectively, followed by novel brominated flame retardants (NBFRs) and dechlorane plus (DPs). This is an indication that PBDE contamination in vegetables grown around e-waste recycling sites may pose a risk to the local terrestrial ecosystem and residents. In addition, this is the first report on the concentrations and compositions of NBFRs in vegetables around e-waste recycling sites. The HFRs concentrations in vegetables varied greatly with the vegetable species, with the highest concentrations observed in Brassica oleracea var. capitata. Root concentration factors (RCF) decreased with increasing log Kow of HFRs, which indicated that the uptake of HFRs was controlled mainly by log Kow. Dissimilar HFRs profiles in shoots and roots suggested that the uptake and translocation of HFRs by plants were selective, with lower halogenated congeners prone to accumulation in vegetable tissues. Positive relationships between PBDEs and their substitutes were observed in vegetable tissues, suggesting that the replacement of PBDEs by NBFRs has not resulted in an obvious transition in plants within the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Lei; Templer, Richard; Murphy, Richard J
2012-09-01
This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Perspectives on recycling centres and future developments.
Engkvist, I-L; Eklund, J; Krook, J; Björkman, M; Sundin, E
2016-11-01
The overall aim of this paper is to draw combined, all-embracing conclusions based on a long-term multidisciplinary research programme on recycling centres in Sweden, focussing on working conditions, environment and system performance. A second aim is to give recommendations for their development of new and existing recycling centres and to discuss implications for the future design and organisation. Several opportunities for improvement of recycling centres were identified, such as design, layout, ease with which users could sort their waste, the work environment, conflicting needs and goals within the industry, and industrialisation. Combining all results from the research, which consisted of different disciplinary aspects, made it possible to analyse and elucidate their interrelations. Waste sorting quality was recognized as the most prominent improvement field in the recycling centre system. The research identified the importance of involving stakeholders with different perspectives when planning a recycling centre in order to get functionality and high performance. Practical proposals of how to plan and build recycling centres are given in a detailed checklist. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...
40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...
40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...
40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...
40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...
Political ecology and environmental justice analysis of information and communication technology
NASA Astrophysics Data System (ADS)
Seo, Wang-Jin
There has been rapid growth in Information and Communication Technology (ICT) development during the last decades. Worldwide PC numbers will rise to 2 billion by 2015, with more than 1 billion in use by the end of 2008. Over 4 billion subscribers use mobile cellular telephones, translating into a worldwide penetration rate of 61 percent by the end of 2008. Analyses have shown evidence that ICT has significantly contributed to capitalist growth economy. Regarding the environmental impacts of ICT, optimists hail a rosy future of a weightless knowledge economy, critics, however, point out that ICT also threatens environment through reinforcing capitalist growth economy and accelerating commodification of nature. Although some case studies have shown the potential environmental benefits through ICT application, these approaches need to be balanced against a range of countervailing effects, including negative direct impacts of ICT manufacture, use, and disposal, effects of incomplete substitution of ICT for existing services, and rebound effects. In addition, the migration of ICT, which includes not only manufacturing facilities of ICT devices, but electronic wastes, coincides with the distribution of environmental and social problems of high technology. Examples of how ICT reinforces economic growth, and at the same time, results in environmental problems are evident in a Korean context. Since the middle of the 1990s, the ICT industry has been a new growth driver in the Korean economy, and has played a critical role in restoring economic activity after the financial crisis in 1997. Due to the rapid diffusion of ICT products and a market trend that makes the life span of the products become shorter, the amount of e-waste has drastically increased in Korea. However, society's concern over environmental problems caused by ICT is at a rudimentary stage in Korea. Although Korea has established the EPR program to manage the e-waste problem, limited scope of e-waste items for recycling, along with defective infrastructure for recycling, such as lack of an adequate collection system, results in a much lower rate of e-waste recycling than that of the EU. In addition, a large amount of e-waste generated from Korea is exported to Asia, the Middle East, Africa, and Central Asia. Although the Korean government prohibits hazardous e-waste export based on the Act on the Control of Transboundary Movement of Hazardous Wastes & Their Disposal, this policy has not been adequately implemented or enforced. This study suggests policies which respond to the problems of e-waste and toxic ICT products that cause adverse impacts on both human beings and ecosystem within and among countries. It also looks forward to the challenges to and opportunities for building a sustainable ICT sector as part of a broader paradigm shift in the Korean society, the Asian region, and throughout the human communities.
A multilevel perspective to explain recycling behaviour in communities.
Tabernero, Carmen; Hernández, Bernardo; Cuadrado, Esther; Luque, Bárbara; Pereira, Cícero R
2015-08-15
Previous research on the motivation for environmentally responsible behaviour has focused mainly on individual variables, rather than organizational or collective variables. Therefore, the results of those studies are hardly applicable to environmental management. This study considers individual, collective, and organizational variables together that contribute to the management of environmental waste. The main aim is to identify, through the development of a multilevel model, those predictive variables of recycling behaviour that help organizations to increase the recycling rates in their communities. Individual (age, gender, educational level, self-efficacy with respect to residential recycling, individual recycling behaviour), organizational (satisfaction with the quality of the service provided by a recycling company), and collective (community recycling rates, number of inhabitants, community efficacy beliefs) motivational factors relevant to recycling behaviour were analysed. A sample of 1501 residents from 55 localities was surveyed. The results of multilevel analyses indicated that there was significant variability within and between localities. Interactions between variables at the level of the individual (e.g. satisfaction with service quality) and variables at the level of the collective (e.g. community efficacy) predicted recycling behaviour in localities with low and high community recycling rates and large and small populations. The interactions showed that the relationship between self-efficacy and recycling is stronger in localities with weak community efficacy beliefs than in communities with strong beliefs. The findings show that the relationship between satisfaction with service quality and recycling behaviour is stronger in localities with strong community efficacy beliefs than in communities with weaker beliefs and a smaller population. The results are discussed accordingly in relation to theory and possible contribution to waste management. Those findings may be incorporated in national and international environmental policies in order to promote environmentally responsible behaviour in citizenship. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, Stefano, E-mail: stefano.consonni@polimi.it; Giugliano, Michele; Massarutto, Antonio
Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW)more » in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.« less
Bees, A D; Williams, I D
2017-12-01
Separate household food waste collection for anaerobic digestion is one method used in the sustainable management of biodegradable municipal solid waste (MSW). Recycling of food waste contributes to the UK's reuse, recycling and composting targets and can help local authorities boost plateauing rates whilst encouraging landfill diversion. This study explored the reasons for differences in the provision of food waste collections, using two comparable local authorities, one with a collection in Wales (Cardiff), and the other absent of such service in England (Southampton). A PESTLE analysis investigated the political, economic, social, technological, legal and environmental impacts of separate food waste collections. The greenhouse gas impacts of the collection and treatment systems of MSW in both cities were estimated for 2012/13. Results showed significant policy and legislative differences between devolved governments, that separate food waste collections can save local authorities significant sums of money and substantially reduce greenhouse gas impacts. A survey of one hundred respondents in each city aimed to understand attitudes and behaviours towards recycling, food waste segregation, cooking and purchasing habits. The number of frequent recyclers and levels of satisfaction were higher in the authority which provided a separate food waste collection. In the area which lacked a separate collection service, over three-quarters of respondents would participate in such a scheme if it were available. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kawai, Kosuke; Osako, Masahiro; Matsui, Saburo; Dong, Nguyen The
2012-07-01
Even in developing countries, the amount of containers and packaging waste are increasing in line with population concentration and lifestyle changes in urban areas. This can cause serious problems for the disposal of municipal solid waste. Through a physical composition analysis of household waste in Hanoi, the capital of Vietnam, this study aimed to identify the contribution made by junk buyers to recycling. Interviews on the handling of recyclable waste by households were conducted. About 232 kg of recyclable waste was sampled from a total of 115 households, and about 230 kg of municipal solid waste was sampled from a total of 101 households and sorted into 69 categories for measurement by volume and weight. The interview survey revealed that a high proportion of households tended to routinely store recyclable waste for sale or donation to junk buyers. Junk buyers accounted for 8.8% of recycling by weight or 26.0% by volume according to the results of the physical composition analysis. In addition, the results suggested that containers and packaging waste accounted for the largest proportion of household waste by volume. Junk buyers recycled 25.5% by weight of containers and packaging waste. In the formulation of new plans for municipal solid waste management to improve the current situation and handle future challenges, the role of the informal sector should be monitored carefully and reliable data on recyclable waste should be collected continuously.
Yazdanbakhsh, Ardavan
2018-04-27
Several pioneering life cycle assessment (LCA) studies have been conducted in the past to assess the environmental impact of specific methods for managing mineral construction and demolition waste (MCDW), such as recycling the waste for use in concrete. Those studies focus on comparing the use of recycled MCDW and that of virgin components to produce materials or systems that serve specified functions. Often, the approaches adopted by the studies do not account for the potential environmental consequence of avoiding the existing or alternative waste management practices. The present work focuses on how product systems need to be defined in recycling LCA studies and what processes need to be within the system boundaries. A bi-level LCA framework is presented for modelling alternative waste management approaches in which the impacts are measured and compared at two scales of strategy and decision-making. Different functional units are defined for each level, all of which correspond to the same flow of MCDW in a cascade of product systems. For the sole purpose of demonstrating how the framework is implemented an illustrative example is presented, based on real data and a number of simplifying assumptions, which compares the impacts of a number of potential MCDW management strategies in New York City. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Impact of liquid volume of recycled methanogenic effluent on anaerobic hydrolysis].
Hao, Li-ping; Lü, Fan; He, Pin-jing; Shao, Li-ming
2008-09-01
Methanogenic effluent was recycled to regulate hydrolysis during two-phase anaerobic digestion of organic solid wastes. In order to study the impact of recycled effluent's volume on hydrolysis, four hydrolysis reactors filled with vegetable and flower wastes were constructed, with different liquid volumes of recycled methanogenic effluent, i.e., 0.1, 0.5, 1.0, 2.0 m3/(m3 x d), respectively. The parameters related to hydrolytic environment (pH, alkalinity, ORP, concentrations of ammonia and reducing sugar), microbial biomass and hydrolysis efficiency (accumulated SCOD, accumulated reducing sugar, and hydrolysis rate constants) were monitored. This research shows that recycling methanogenic effluent into the hydrolysis reactor can enhance its buffer capability and operation stability; higher recycled volume is favorable for microbial anabolism and further promotes hydrolysis. After 9 days of reaction, the accumulated SCOD in the hydrolytic effluent reach 334, 407, 413, 581 mg/g at recycled volumes of 0.1, 0.5, 1.0, 2.0 m3/(m3 x d) and their first-order hydrolysis rate kinetic constants are 0.065, 0.083, 0.089, 0.105 d(-1), respectively.
The impact of alternate weekly collections on waste arisings.
Williams, I D; Cole, C
2013-02-15
Residual waste is commonly collected separately from recyclable and organic materials. Different forms of collection and disposal are used internationally since regional or municipal authorities have to adapt to their own circumstances. Many authorities have adopted an alternate weekly collection (AWC) of residual waste and recyclables to force/encourage householders to recycle; however, the degree to which they achieve waste reduction has yet to be reliably quantified. This study reports on how the introduction of AWCs affects household waste arisings. The paper evaluates single and dual stream collection methods and compares their performance with the previous system. Household waste collection trials were conducted between March and June 2009 in England (Lichfield). The trials examined changes to frequency of collection, type of container issued, amounts of sorting required of residents, household participation and productivity levels. A survey of households was completed before any changes were implemented. The quantity of recyclates collected was examined for 2008/2009 and 2009/2010. The study showed that the AWC scheme positively impacted on recycling rates and household behaviour, with no adverse impacts on public participation, household waste arisings or the local environment. No public health problems were reported. Both trials saw an increase in the quantities of recyclates collected per household during the trial period compared to the same period of time in the previous year. The dual stream performed better than the single stream, collecting an average of 5.94 kg/hh/week compared to an average of 5.63 kg/hh/week. The single stream system showed a greater increase in the weight of material collected (0.53 kg/hh/week vs. 0.48 kg/hh/week). Participation and set-out rates showed an increase during the trial period. The single stream option (comingled materials in one container) outperformed the dual stream service. The reduction in costs and improved productivity were the principal reasons used for extending the trial and making changes to the district's waste collections. The study clearly demonstrates the benefits of local authorities and universities collaborating and identifies practical logistical and operational issues that need to be anticipated. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Naiyang
High zinc concentration in basic oxygen furnace (BOF) steelmaking offgas (OG) cleaning system solid wastes is one of the main barriers for recycling of the solid wastes in sintering — blast furnace ironmaking process. One of the possible solutions is to utilize zinc-free scrap in BOF steelmaking so that the BOF OG solid wastes will not be contaminated with zinc and can be recycled through sintering — blast furnace ironmaking. This paper describes a model for helping to decide whether to use zinc-free scrap in a BOF process. A model computing marginal price increment of zinc-free scrap is developed. The marginal price increment is proportional to value change of the BOF OG solid wastes after and before using zinc-free scrap, to ratio of BOF solid waste rate to purchased galvanized scrap rate, and to price of galvanized scrap. Due to the variations of consumption rate of purchased galvanized scrap and home galvanized scrap, iron ore price, landfill cost, and price of purchased galvanized scrap, using zinc-free scrap in a BOF process might be economically feasible for some ironmaking and steelmaking plants or in some particular market circumstances.
Zhang, Shaohui; Xu, Xijin; Wu, Yousheng; Ge, Jingjing; Li, Weiqiu; Huo, Xia
2014-05-01
A detailed investigation was conducted to understand the concentration, distribution, profile and possible source of polybrominated diphenyl ethers (PBDEs) in residential and agricultural soils from Guiyu, Shantou, China, one of the largest electronic waste (e-waste) recycling and dismantling areas in the world. Ten PBDEs were analyzed in 46 surface soil samples in terms of individual and total concentrations, together with soil organic matter concentrations. Much higher concentrations of the total PBDEs were predicted in the residential areas (more than 2000 ng g(-1)), exhibiting a clear urban source, while in the agricultural areas, concentrations were lower than 1500 ng g(-1). PBDE-209 was the most dominant congener among the study sites, indicating the prevalence of commercial deca-PBDE. However signature congeners from commercial octa-PBDE were also found. The total PBDE concentrations were significantly correlated with each individual PBDE. Principal component analysis indicated that PBDEs were mainly distributed in three groups according to the number of bromine atoms on the phenyl rings, and potential source. This study showed that the informal e-waste recycling has already introduced PBDEs into surrounding areas as pollutant which thus warrants an urgent investigation into the transport of PBDEs in the soil-plant system of agricultural areas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sim, Natasha M; Wilson, David C; Velis, Costas A; Smith, Stephen R
2013-10-01
The UN-Habitat Integrated Sustainable Waste Management (ISWM) benchmarking methodology was applied to profile the physical and governance features of municipal solid waste (MSW) management in the former Soviet Union city of Bishkek, capital of the Kyrgyz Republic. Most of the ISWM indicators were in the expected range for a low-income city when compared with 20 reference cities. Approximately 240,000 t yr(-1) of MSW is generated in Bishkek (equivalent to 200 kg capita(-1) yr(-1)); collection coverage is over 80% and 90% of waste disposed goes to semi-controlled sites operating with minimal environmental standards. The waste composition was a distinctive feature, with relatively high paper content (20-27% wt.) and intermediate organic content (30-40% wt.). The study provides the first quantitative estimates of informal sector recycling, which is currently unrecognised by the city authorities. Approximately 18% wt. of generated MSW is recycled, representing an estimated annual saving to the city authorities of US$0.7-1.1 million in avoided collection/disposal costs. The waste management system is controlled by a centralised municipal waste enterprise (Tazalyk); therefore, institutional coherence is high relative to lower-middle and low-income cities. However, performance on other governance factors, such as inclusivity and financial sustainability, is variable. Future priorities in Bishkek include extending collection to unserved communities; improving landfill standards; increasing recycling rates through informal sector cooperation; improving data availability; and engaging all stakeholders in waste management strategy decisions. Extending the scope and flexibility of the ISWM protocol is recommended to better represent the variation in conditions that occur in waste management systems in practice.
Cazabon, Danielle; Fobil, Julius N; Essegbey, George; Basu, Niladri
2017-11-01
Electronic waste (e-waste) is a growing problem across low- and middle-income countries. Agbogbloshie (Accra, Ghana) is among the world's largest and most notorious e-waste sites, with an increasing number of studies documenting a range of environmental health risks. The present study aimed to provide national, regional, and international stakeholders with a summary of expert opinion on the most pressing problems arising from e-waste activities at Agbogbloshie, as well as suggested solutions to address these problems. Structured interviews were performed between April and September 2015 that used a Logical Framework Approach as a scoping exercise to gauge problems and benefits of e-waste recycling, and the Delphi methodology to identify response options. Stakeholders (n = 19) from 15 institutions were interviewed with 2 rounds of a Delphi Poll: open-ended interviews followed by an electronic questionnaire in which experts ranked various proposed response options based on health, environmental, social, and economic benefit and feasibility. The goal was to prioritize potential interventions that would address identified problems at Agbogbloshie. Experts identified the most beneficial and feasible options in decreasing rank order as follows and prefaced by the statement "it is recommended that": 1) there be further research on the health effects; 2) e-waste workers be given appropriate personal protective equipment; 3) the Ministry of the Environment, Science, Technology and Innovation re-visit Ghana's Hazardous Waste Bill; 4) e-waste workers be involved in the planning process of interventions and are be kept informed of any results; and 5) there be increased education and sensitization on hazards related to e-waste for both workers and the general public. These solutions are discussed in relation to ongoing dialogue at the international level concerning e-waste recycling interventions, with strengths and weaknesses examined for the Ghanaian context. Integr Environ Assess Manag 2017;13:980-991. ©2017 SETAC. © 2017 SETAC.
NASA Astrophysics Data System (ADS)
Tikhomirov, Alexander A.; Kudenko, Yurii; Trifonov, Sergei; Ushakova, Sofya
Inclusion of products of human and plant wastes' `wet' incineration in 22 medium using alter-nating current into matter recycling of biological-technical life support system (BTLSS) has been considered. Fluid and gaseous components have been shown to be the products of such processing. In particular, the final product contained all necessary for plant cultivation nitrogen forms: NO2, NO3, NH4+. As the base solution included urine than NH4+ form dominated. At human solid wastes' mineralization NO2 NH4+ were registered in approximately equal amount. Comparative analysis of mineral composition of oxidized human wastes' and standard Knop solutions has been carried out. On the grounds of that analysis the dilution methods of solutions prepared with addition of oxidized human wastes for their further use for plant irrigation have been suggested. Reasonable levels of wheat productivity cultivated at use of given solutions have been obtained. CO2, N2 and O2 have been determined to be the main gas components of the gas admixture emitted within the given process. These gases easily integrate in matter recycling process of closed ecosystem. The data of plants' cultivation feasibility in the atmosphere obtained after closing of gas loop including physicochemical facility and vegetation chamber with plants-representatives of LSS phototrophic unit has been received. Conclusion of advance research on creation of matter recycling process in the integrated physical-chemical-biological model system has been drawn.
Waste management, informal recycling, environmental pollution and public health.
Yang, Hong; Ma, Mingguo; Thompson, Julian R; Flower, Roger J
2018-03-01
With rapid population growth, especially in low-income and middle-income countries, the generation of waste is increasing at an unprecedented rate. For example, annual global waste arising from waste electrical and electronic equipment alone will have increased from 33.8 to 49.8 million tonnes between 2010 and 2018. Despite incineration and other waste treatment techniques, landfill still dominates waste disposal in low-income and middle-income countries. There is usually insufficient funding for adequate waste management in these countries and uptake of more advanced waste treatment technologies is poor. Without proper management, many landfills represent serious hazards as typified by the landslide in Shenzhen, China on 20 December 2015. In addition to formal waste recycling systems, approximately 15million people around the world are involved in informal waste recycling, mainly for plastics, metals, glass and paper. This review examines emerging public health challenges, in particular within low-income and middle-income countries, associated with the informal sector. While informal recyclers contribute to waste recycling and reuse, the relatively primitive techniques they employ, combined with improper management of secondary pollutants, exacerbate environmental pollution of air, soil and water. Even worse, insufficient occupational health measures expose informal waste workers to a range of pollutants, injuries, respiratory and dermatological problems, infections and other serious health issues that contribute to low life expectancy. Integration of the informal sector with its formal counterparts could improve waste management while addressing these serious health and livelihood issues. Progress in this direction has already been made notably in several Latin American countries where integrating the informal and formal sectors has had a positive influence on both waste management and poverty alleviation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jack C.P., E-mail: cejcheng@ust.hk; Ma, Lauren Y.H., E-mail: yingzi@ust.hk
Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R wastemore » disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D and R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control.« less
Separate collection of plastic waste, better than technical sorting from municipal solid waste?
Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U
2017-02-01
The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.
Sasaki, Shunsuke; Araki, Tetsuya
2014-06-01
This article presents informal recycling contributions made by scavengers in the surrounding area of Bantar Gebang final disposal site for municipal solid waste generated in Jakarta. Preliminary fieldwork was conducted through daily conversations with scavengers to identify recycling actors at the site, and then quantitative field surveys were conducted twice. The first survey (n = 504 households) covered 33% of all households in the area, and the second survey (n = 69 households) was conducted to quantify transactions of recyclables among scavengers. Mathematical equations were formulated with assumptions made to estimate the possible range of recycling rates achieved by dump waste pickers. Slightly over 60% of all respondents were involved in informal recycling and over 80% of heads of households were waste pickers, normally referred to as live-in waste pickers and live-out waste pickers at the site. The largest percentage of their spouses were family workers, followed by waste pickers and housewives. Over 95% of all households of respondents had at least one waste picker or one small boss who has a coequal status of a waste picker. Average weight of recyclables collected by waste pickers at the site was estimated to be approximately 100 kg day(-1) per household on the net weight basis. The recycling rate of solid wastes collected by all scavengers at the site was estimated to be in the range of 2.8-7.5% of all solid wastes transported to the site. © The Author(s) 2014.
Approaches to resource recovery in controlled ecological life support systems
NASA Technical Reports Server (NTRS)
Bubenheim, D. L.; Wydeven, T.
1994-01-01
Recovery of resources from waste streams in a space habitat is essential to minimize the resupply burden and achieve self sufficiency. The ultimate goal of a Controlled Ecological Life Support System (CELSS) is to achieve the greatest practical level of mass recycle and provide self sufficiency and safety for humans. Several mission scenarios leading to the ultimate application could employ CELSS component technologies or subsystems with initial emphasis on recycle of the largest mass components of the waste stream. Candidate physical/chemical and biological processes for resource recovery from liquid and solid waste streams are discussed and the current fundamental recovery potentials are estimated.
From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.
Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv
2017-03-01
The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metal-contaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban-rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban-rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.
Godinho-Castro, Alcione P; Testolin, Renan C; Janke, Leandro; Corrêa, Albertina X R; Radetski, Claudemir M
2012-01-01
Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC(20%)=69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC(50%) level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool for the technical and environmental evaluation of this recycling process, bacterial and daphnid tests being more sensitive than algae and fish tests. Copyright © 2011 Elsevier Ltd. All rights reserved.
Leung, Anna O W; Luksemburg, William J; Wong, Anthony S; Wong, Ming H
2007-04-15
Surface soils and combusted residue from a village located in southeast China, which has been intensely involved in the dismantling and "recycling" of computer parts (e-waste) for the past decade, were analyzed for polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Total PBDE concentrations were highest in combusted residue of plastic chips and cables collected from a residential area (33,000-97,400 ng/g, dry wt), in soils from an acid leaching site (2720-4250 ng/g, dry wt), and a printer roller dump site (593-2890 ng/g, dry wt). BDE-209 was the most dominant congener (35-82%) among the study sites indicating the prevalence of commercial Deca-BDE, however signature congeners from commercial Penta- and Octa-BDE were also found. PCDD/F concentrations were also highest in soil from the acid leaching site (12,500-89,800 pg/g, 203-1100 pg WHO-TEQ/g, dry wt) and in combusted residue (13,500-25,300 pg/g, 84.3-174 pg WHO-TEQ/g, dry wt) and were comparable to PCDD/F levels of some open dumping sites in Asian developing countries. Of the e-waste activities, acid leaching and open burning emitted the highest concentrations of PBDEs and PCDD/Fs. This study is among the very few studies dealing with the important issue of pollution generated from crude e-waste recycling. Our results showthatthe crude processing of e-waste has become one of the major contributors of PBDEs and PCDD/Fs to the terrestrial environment.
Preliminary evaluation of waste processing in a CELSS
NASA Technical Reports Server (NTRS)
Jacquez, Ricardo B.
1990-01-01
Physical/chemical, biological, and hybrid methods can be used in a space environment for processing wastes generated by a Closed Ecological Life Support System (CELSS). Two recycling scenarios are presented. They reflect differing emphases on and responses to the waste system formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system.
Neural network hardware and software solutions for sorting of waste plastics for recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanton, S.L.; Alam, M.K.; Hebner, G.A.
1992-12-31
While plastic recycling efforts have expanded during the past several years, the cost of recovering plastics is still a major impediment for recyclers. Several factors contribute to the prohibitive cost of recycled resins, including the present low marketability of products made with mixed recycled materials, and costs of collecting, sorting and reprocessing plastic materials. A method for automatic sorting of post-consumer plastics into pure polymer streams is needed to overcome the inaccuracies and low product throughput of the currently used method of hand sorting of waste plastics for recycling. The Society of Plastics has designated seven categories as recyclable: Polyethylenemore » terephthalate (PET); High Density Polyethylene (HDPE); Polyvinyl Chloride (PVC); Low Density Polyethylene (LDPE); Polypropylene (PP); Polystyrene (PS); and Other (mixtures, layered items, etc.). With these categories in mind, a system for sorting of waste plastics using near-infrared reflectance spectra and a backpropagation neural network classifier has been developed. A solution has been demonstrated in the laboratory using a high resolution, and relatively slow instrument. A faster instrument is being developed at this time. Neural network hardware options have been evaluated for use in a real-time industrial system. In the lab, a Fourier transform Near Infrared (FT-NIR) scanning spectrometer was used to gather reflectance data from various locations on samples of actual waste plastics. Neural networks were trained off-line with this data using the NeuralWorks Professional II Plus software package on a SparcStation 2. One of the successfully trained networks was used to compare the neural accelerator hardware options available. The results of running this ``worst case`` network on the neural network hardware will be presented. The AT&T ANNA chip and the Intel 80170NX chip development system were used to determine the ease of implementation and accuracies for this network.« less
Neural network hardware and software solutions for sorting of waste plastics for recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanton, S.L.; Alam, M.K.; Hebner, G.A.
1992-01-01
While plastic recycling efforts have expanded during the past several years, the cost of recovering plastics is still a major impediment for recyclers. Several factors contribute to the prohibitive cost of recycled resins, including the present low marketability of products made with mixed recycled materials, and costs of collecting, sorting and reprocessing plastic materials. A method for automatic sorting of post-consumer plastics into pure polymer streams is needed to overcome the inaccuracies and low product throughput of the currently used method of hand sorting of waste plastics for recycling. The Society of Plastics has designated seven categories as recyclable: Polyethylenemore » terephthalate (PET); High Density Polyethylene (HDPE); Polyvinyl Chloride (PVC); Low Density Polyethylene (LDPE); Polypropylene (PP); Polystyrene (PS); and Other (mixtures, layered items, etc.). With these categories in mind, a system for sorting of waste plastics using near-infrared reflectance spectra and a backpropagation neural network classifier has been developed. A solution has been demonstrated in the laboratory using a high resolution, and relatively slow instrument. A faster instrument is being developed at this time. Neural network hardware options have been evaluated for use in a real-time industrial system. In the lab, a Fourier transform Near Infrared (FT-NIR) scanning spectrometer was used to gather reflectance data from various locations on samples of actual waste plastics. Neural networks were trained off-line with this data using the NeuralWorks Professional II Plus software package on a SparcStation 2. One of the successfully trained networks was used to compare the neural accelerator hardware options available. The results of running this worst case'' network on the neural network hardware will be presented. The AT T ANNA chip and the Intel 80170NX chip development system were used to determine the ease of implementation and accuracies for this network.« less
A multi-objective model for sustainable recycling of municipal solid waste.
Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz
2017-04-01
The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.
An innovative national health care waste management system in Kyrgyzstan.
Toktobaev, Nurjan; Emmanuel, Jorge; Djumalieva, Gulmira; Kravtsov, Alexei; Schüth, Tobias
2015-02-01
A novel low-cost health care waste management system was implemented in all rural hospitals in Kyrgyzstan. The components of the Kyrgyz model include mechanical needle removers, segregation using autoclavable containers, safe transport and storage, autoclave treatment, documentation, recycling of sterilized plastic and metal parts, cement pits for anatomical waste, composting of garden wastes, training, equipment maintenance, and management by safety and quality committees. The gravity-displacement autoclaves were fitted with filters to remove pathogens from the air exhaust. Operating parameters for the autoclaves were determined by thermal and biological tests. A hospital survey showed an average 33% annual cost savings compared to previous costs for waste management. All general hospitals with >25 beds except in the capital Bishkek use the new system, corresponding to 67.3% of all hospital beds. The investment amounted to US$0.61 per capita covered. Acceptance of the new system by the staff, cost savings, revenues from recycled materials, documented improvements in occupational safety, capacity building, and institutionalization enhance the sustainability of the Kyrgyz health care waste management system. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it
Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less
Catalytic Pyrolysis of Waste Plastic Mixture
NASA Astrophysics Data System (ADS)
Sembiring, Ferdianta; Wahyu Purnomo, Chandra; Purwono, Suryo
2018-03-01
Inorganic waste especially plastics still become a major problem in many places. Low biodegradability of this materials causes the effort in recycling become very difficult. Most of the municipal solid waste (MSW) recycling facilities in developing country only use composting method to recover the organic fraction of the waste, while the inorganic fraction is still untreated. By pyrolysis, plastic waste can be treated to produce liquid fuels, flammable gas and chars. Reduction in volume and utilization of the liquid and gas as fuel are the major benefits of the process. By heat integration actually this process can become a self-sufficient system in terms of energy demand. However, the drawback of this process is usually due to the diverse type of plastic in the MSW creating low grade of liquid fuel and harmful gases. In this study, the mixture of plastics i.e. polypropylene (PP) and polyethylene terephthalate (PET) is treated using pyrolysis with catalyst in several operating temperature. PET is problematic to be treated using pyrolysis due to wax-like byproduct in liquid which may cause pipe clogging. The catalyst is the mixture of natural zeolite and bentonite which is able to handle PP and PET mixture feed to produce high grade liquid fuels in terms of calorific value and other fuel properties.