E1 and M1 γ-strength functions in 144Nd
Voinov, A. V.; Grimes, S. M.
2015-12-14
Both E1 and M1 γ-strength functions below the neutron separation energy were analyzed based on experimental data from 143Nd(n,γ) 144Nd and 143Nd(n,γα) 140Ce reactions. It is confirmed that the commonly adopted E1 model based on the temperature dependence of the width of the giant dipole resonance works well. The popular M1 strength function due to the spin-flip magnetic resonance located near the neutron binding energy is not capable of reproducing experimental data. As a result, the low-energy enhancement of the M1 strength or the energy-independent model of Weisskopf, both leading to the low-energy strength sizable to E1 one, fit experimentalmore » data best.« less
Pope, Derek A; Poe, Lindsey; Stein, Jeffrey S; Kaplan, Brent A; Heckman, Bryan W; Epstein, Leonard H; Bickel, Warren K
2018-04-18
The experimental tobacco marketplace (ETM) provides a method to estimate, prior to implementation, the effects of new products or policies on purchasing across various products in a complex tobacco marketplace. We used the ETM to examine the relationship between nicotine strength and substitutability of alternative products for cigarettes to contribute to the literature on regulation of e-liquid nicotine strength. The present study contained four sampling and four ETM purchasing sessions. During sampling sessions, participants were provided 1 of 4 e-liquid strengths (randomised) to sample for 2 days followed by an ETM purchasing session. The nicotine strength sampled in the 2 days prior to an ETM session was the same strength available for purchase in the next ETM. Each participant sampled and could purchase 0 mg/mL, 6 mg/mL, 12 mg/mL and 24 mg/mL e-liquid, among other products, during the study. Cigarette demand was unaltered across e-liquid strength. E-liquid was the only product to substitute for cigarettes across more than one e-liquid strength. Substitutability increased as a function of e-liquid strength, with the 24 mg/mL displaying the greatest substitutability of all products. The present study found that e-liquid substitutability increased with nicotine strength, at least up to 24 mg/mL e-liquid. However, the effects of e-liquid nicotine strength on cigarette purchasing were marginal and total nicotine purchased increased as e-liquid nicotine strength increased. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon
2017-11-01
There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, P<0.05) and EX3 improved more than EX1 (P=0.007) at month 9. Compared to CON, EX3 improved in backward walk (P=0.047) and EX1 in timed-up-and-go (P=0.029) tests. No significant changes occurred in body composition. The present study found no evidence that higher training frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.
Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength.
Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Newman, Anne B; Strotmeyer, Elsa S
2015-04-01
Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age = 76.3 ± 2.8, body mass index = 27.2 ± 4.6kg/m(2), strength = 96.3 ± 34.7 Nm, 51.0% female, 34.8% black) from the Health ABC study. Isokinetic quadriceps strength was measured semiannually over 6 years. Peroneal motor nerve conduction amplitude and velocity were recorded. Sensory nerve function was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower strength, respectively, in women. Initial 10-g monofilament insensitivity predicted 14.2% lower strength and faster strength decline in women and 6.6% lower strength in men (all p < .05). Poor nerve function predicted lower strength and faster strength decline. Future work should examine interventions aimed at preventing declines in strength in older adults with impaired nerve function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Low-energy modification of the γ strength function of the odd-even nucleus 115In
NASA Astrophysics Data System (ADS)
Versteegen, Maud; Denis-Petit, David; Méot, Vincent; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Hannachi, Fazia; Tarisien, Medhi; Morel, Pascal; Martini, Marco; Péru, Sophie
2016-10-01
Photoactivation yield measurements on 115In have been performed at the ELSA facility with Bremsstrahlung photon beams over a range of endpoint energies between 4.5 and 18 MeV. The measured photoexcitation yields of the Inm115 metastable state are compared with calculated yields using cross sections obtained with different models of the photon strength function. It is shown that additional photon strength with respect to the general Lorentzian model is needed at 8.1 MeV for the calculated yields to reproduce the data. The origin of this extra strength is unclear, because it is compatible with additional strength predicted in both E 1 and M 1 photon strength distributions by quasiparticle random-phase approximation calculations using the Gogny D1S force.
NASA Astrophysics Data System (ADS)
Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.
2016-07-01
Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.
Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems.
Angom, D; Ghosh, S; Kota, V K B
2004-01-01
We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.
NASA Astrophysics Data System (ADS)
Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.
2018-05-01
The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.
Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air
NASA Astrophysics Data System (ADS)
Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri
2018-04-01
C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.
Tian, Xiaocao; Xu, Chunsheng; Wu, Yili; Sun, Jianping; Duan, Haiping; Zhang, Dongfeng; Jiang, Baofa; Pang, Zengchang; Li, Shuxia; Tan, Qihua
2017-02-01
Genetic and environmental influences on predictors of decline in daily functioning, including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), handgrip, and five-times-sit-to-stand test (FTSST), have not been addressed in the aging Chinese population. We performed classical twin modeling on FEV1, FVC, handgrip, and FTSST in 379 twin pairs (240 MZ and 139 DZ) with median age of 50 years (40-80 years). Data were analyzed by fitting univariate and bivariate twin models to estimate the genetic and environmental influences on these measures of physical function. Heritability was moderate for FEV1, handgrip, and FTSST (55-60%) but insignificant for FVC. Only FVC showed moderate control, with shared environmental factors accounting for about 50% of the total variance. In contrast, all measures of pulmonary function and muscle strength showed modest influences from the unique environment (40-50%). Bivariate analysis showed highly positive genetic correlations between FEV1 and FVC (r G = 1.00), and moderately negative genetic correlations between FTSST and FEV1 (r G = -0.33) and FVC (r G = -0.42). FEV1 and FVC, as well as FEV1 and handgrip, displayed high common environmental correlations (r C = 1.00), and there were moderate correlations between FVC and handgrip (r C = 0.44). FEV1 and FVC showed high unique environmental correlations (r E = 0.76) and low correlations between handgrip and FEV1 (r E = 0.17), FVC (r E = 0.14), and FTSST (r E = -0.13) with positive or negative direction. We conclude that genetic factors contribute significantly to the individual differences in common indicators of daily functioning (FEV1, handgrip, and FTSST). FEV1 and FVC were genetically and environmentally correlated. Pulmonary function and FTSST may share similar sets of genes but in the negative direction. Pulmonary function and muscle strength may have a shared environmental background.
NASA Astrophysics Data System (ADS)
Larsen, A. C.; Guttormsen, M.; Blasi, N.; Bracco, A.; Camera, F.; Crespo Campo, L.; Eriksen, T. K.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Leoni, S.; E Midtbø, J.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; E Ruud, I.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.; Zeiser, F.
2017-06-01
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter-Thomas fluctuations, there is no indication of any significant excitation energy dependence in the γ-ray strength function, in support of the generalized Brink-Axel hypothesis.
E1 and M1 strength functions at low energy
NASA Astrophysics Data System (ADS)
Schwengner, Ronald; Massarczyk, Ralph; Bemmerer, Daniel; Beyer, Roland; Junghans, Arnd R.; Kögler, Toni; Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner; Wagner, Andreas
2017-09-01
We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.
206Pb+n resonances for E=600-900 keV: Neutron strength functions
NASA Astrophysics Data System (ADS)
Horen, D. J.; Harvey, J. A.; Hill, N. W.
1981-11-01
Data from high resolution neutron transmission and differential scattering measurements performed on 206Pb have been analyzed for E=600-900 keV. Resonance parameters (i.e., E, l, J, and Γn) have been deduced for many of the 161 resonances observed. Strength functions and potential phase shifts for s-, p-, and d-wave neutrons for En-0-900 keV are compared with optical model calculations. It is found that the phase contributed by the external R function as well as the integrated neutron strength functions can be reproduced for the s and d waves with a well depth of V0=50.4 MeV for the real potential and WD=6.0 MeV for an imaginary surface potential. Somewhat smaller values (V0=48.7 MeV and WD=2.0 MeV) are required to reproduce the p-wave data. These values of the real potential are also found to give the experimentally observed binding energies for the 4s12, 3d32, and 3d52 single particle levels (V0=50.4 MeV), and the 3p12 single particle level (V0=48.7 MeV). Nuclear level densities for s and d waves are found to be well represented by a constant temperature model. However, the model under estimates the number of p-wave resonances. NUCLEAR REACTIONS 206Pb(n), (n,n), E=600-900 keV; measured σT(E), σ(E,θ). 207Pb deduced resonance parameters, Jπ, Γn, neutron strength functions, optical model parameters for l=0,1,2.
NASA Astrophysics Data System (ADS)
Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.
2017-08-01
Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.
Spectroscopy of samarium isotopes in the sdg interacting boson model
NASA Astrophysics Data System (ADS)
Devi, Y. D.; Kota, V. K. B.
1992-05-01
Successful spectroscopic calculations for the 0+1, 2+1, and 4+1 levels in 146-158Sm are carried out in sdg boson space with the restriction that the s-boson number ns>=2 and the g-boson number ng<=2. Observed energies, quadrupole and magnetic moments, E2 and E4 transition strengths, nuclear radii, and two-nucleon transfer intensities are reproduced with a simple two-parameter Hamiltonian. For a good simultaneous description of ground, β, and γ bands, a Hamiltonian interpolating the dynamical symmetries in the sdg model is employed. Using the resulting wave functions, in 152,154Sm, the observed B(E40+1-->4+γ) values are well reproduced and E4 strength distributions are predicted. Moreover, a particular ratio scrR involving two-nucleon transfer strengths showing a peak at neutron number 90 is well described by the calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, A. C.; Guttormsen, M.; Blasi, N.
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
Larsen, A. C.; Guttormsen, M.; Blasi, N.; ...
2017-04-24
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
Use of the ( e , e prime n ) reaction to study the giant multipole resonances in sup 116 Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskimen, R.A.; Ammons, E.A.; Arruda-Neto, J.D.T.
1991-04-01
The giant multipole resonances in {sup 116}Sn have been studied using the ({ital e},{ital e}{prime}{ital n}) reaction. Data were taken at effective momentum transfers of 0.37, 0.45, and 0.55 fm{sup {minus}1} and a multipole analysis of the data was performed. The inferred multipole strength functions identify the {ital E}2 and {ital E}0 resonances as distinct peaks at 12.2 and 17.9 MeV, respectively. The energy-weighted sum-rule strengths for the {ital E}2 and {ital E}0 resonances, obtained using a Lorentzian fit to the data, are 34{plus minus}13% and 93{plus minus}37%. When compared with results from alpha scattering and pion scattering the sum-rulemore » strengths exhibit approximate agreement, but the {ital E}0 strength identified in this measurement lies at higher excitation energy, consistent with the trend observed in heavier nuclei. The ({ital e},{ital e}{prime}{ital n}) data are compared with a continuum random phase approximation (RPA) calculation of the {ital E}2 and {ital E}0 strengths, and with an open-shell RPA calculation of the {ital E}2 strength. Both calculations disagree with the data in the region of the {ital E}2 resonance.« less
Signatures for a nuclear quantum phase transition from E 0 and E 2 observables in Gd isotopes
NASA Astrophysics Data System (ADS)
Wiederhold, J.; Kern, R.; Lizarazo, C.; Pietralla, N.; Werner, V.; Jolos, R. V.; Bucurescu, D.; Florea, N.; Ghita, D.; Glodariu, T.; Lica, R.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Mitu, I. O.; Negret, A.; Nita, C.; Olacel, A.; Pascu, S.; Stroe, L.; Toma, S.; Turturica, A.
2018-05-01
Nuclei are complex quantum objects due to complex nucleon-nucleon interactions. They can undergo rather rapid changes in structure as a function of nucleon number. A well known region of such a shape transition is the rare-earth region around N = 90, where accessible nuclei range from spherical nuclei at the closed neutron shell at N = 82 to deformed nuclei. For a better understanding of this phenomenon, it is of interest to study empirical signatures like the E2 transition strength B(E2;{2}1+\\to {0}1+) or the E0 excitation strength {ρ }2(E0;{0}1+\\to {0}2+). The nuclide 152Gd with 88 neutrons is located close to the quantum phase transition at N = 90. The lifetime τ ({0}2+) of 152Gd has been measured using fast electronic scintillation timing (FEST) with an array of HPGe- and LaBr3- detectors. Excited states of 152Gd were populated via an (α,n)-reaction on a gold-backed 149Sm target. The measured lifetime of τ ({0}2+)=96(6)\\text{ps} corresponds to a reduced transition strength of B(E2;{0}2+\\to {2}1+)=111(7) W.u. and an E0 transition strength of ρ 2(E0) = 39(3) · 10‑3 to the ground state. This result provides experimental support for the validity of a correlation between E0 and E2 strengths that is a novel indicator for a quantum phase transition. This work was published as J. Wiederhold et al., Phys. Rev. C 94, 044302 (2016).
Watters, James M; Vallerand, Andrew; Kirkpatrick, Susan M; Abbott, Heather E; Norris, Sonya; Wells, George; Barber, Graeme G
2002-08-01
Tissue injury following ischemia-reperfusion is mediated in part by free oxygen radicals. We hypothesized that perioperative micronutrient supplementation would augment antioxidant defenses, minimize muscle injury, and minimize postoperative decreases in muscle strength and physical function following abdominal aortic aneurysmectomy. A university-affiliated hospital and regional referral center. A randomized, double-blind, placebo-controlled trial of supplementation with beta-carotene, vitamins C and E, zinc, and selenium for a period of 2-3 weeks prior to surgery and 1 week thereafter. Patients undergoing elective abdominal aortic aneurysmectomy (n=18 per group). Handgrip and other measures of strength and physical function. Handgrip and quadriceps strength decreased following surgery, but not to a significantly different extent in the placebo and supplemented groups. Self-rated physical function decreased following surgery in the placebo group and was preserved in the supplemented group. Perioperative supplementation with micronutrients with antioxidant properties has limited effects on strength and physical function following major elective surgery.
Esteve Simó, Vicent; Junqué, Anna; Fulquet, Miquel; Duarte, Verónica; Saurina, Anna; Pou, Mónica; Moreno, Fátima; Carneiro, Jose; Ramírez de Arellano, Manel
2014-01-01
Patients on haemodialysis (HD) have a decreased physical and functional capacity. Several studies have reported the beneficial effects of exercise on the physical, functional and psychological functioning of HD patients. Despite these results, exercise programmes on HD are not commonplace. To analyse the effect of an intradialysis endurance training programme on muscular strength and functional capacity in our HD patients. A 6-month single-centre prospective study. HD patients were non-randomly assigned to an exercise group (group E) or a control group (group C). Exercise training included complete endurance training using balls, weights and elastic bands in the first 2 h of an HD session; group C received standard HD care. Analysed data: (1) biochemical parameters; (2) biceps and quadriceps muscle tone, maximum quadriceps length strength (MQLS) and dominant hand grip (HG); (3) functional capacity tests: sit-to-stand-to-sit (STS10) and 6-min walking test (6MWT). Forty patients were included, 55% were men; their mean age was 68.4 years; the patients were 61.6 months on HD; 16 patients were in group E and 24 in group C. In group E, muscular strength showed a significant improvement in MQLS (15.6 ± 10.7 vs. 17.7 ± 12.5 kg, p < 0.05) and HG (22.1 ± 13.2 vs. 24.1 ± 15.8 kg, p < 0.05) at the end of the programme, while a global decrease was reported in group C (MQLS 20.9 ± 9.3 vs. 16.2 ± 8.4 kg, p < 0.05; HG 25.1 ± 10.3 vs. 24.1 ± 11.1 kg). 6MWT significantly improved in group E (20%, 293.1 vs. 368 m, p < 0.001) and decreased in group C (10%, 350 vs. 315 m, p < 0.004). At the end of the programme, STS10 time was reduced in group E (2.1 ± 18.5 vs. 28.7 ± 20.6 s), while it rose in group C (31.5 ± 17.9 vs. 36.4 ± 19.8 s), though significant differences were not found. (1) The intradialysis training programme improved muscular strength and functional capacity in our HD patients. (2) These results support the benefits of exercise training for HD patients. (3) Nephrologists should consider exercise training as a standard practice for the care of HD patients. © 2014 S. Karger AG, Basel.
Electric and Magnetic Dipole Strength at Low Energy.
Sieja, K
2017-08-04
A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ-ray strength of the ^{44}Sc isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1ℏω sd-pf-gds model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M1 strength but show quite different behavior for the E1 strength.
Electric and Magnetic Dipole Strength at Low Energy
NASA Astrophysics Data System (ADS)
Sieja, K.
2017-08-01
A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ -ray strength of the
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-01-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a “connectivity strength-weighted sparse group constraint.” In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. PMID:28150897
Constraining nuclear photon strength functions by the decay properties of photo-excited states
NASA Astrophysics Data System (ADS)
Isaak, J.; Savran, D.; Krtička, M.; Ahmed, M. W.; Beller, J.; Fiori, E.; Glorius, J.; Kelley, J. H.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Scheck, M.; Schnorrenberger, L.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.
2013-12-01
A new approach for constraining the low-energy part of the electric dipole Photon Strength Function (E1-PSF) is presented. Experiments at the Darmstadt High-Intensity Photon Setup and the High Intensity γ→-Ray Source have been performed to investigate the decay properties of 130Te between 5.50 and 8.15 MeV excitation energy. In particular, the average γ-ray branching ratio to the ground state and the population intensity of low-lying excited states have been studied. A comparison to the statistical model shows that the latter is sensitive to the low-energy behavior of the E1-PSF, while the average ground state branching ratio cannot be described by the statistical model in the energy range between 5.5 and 6.5 MeV.
Luijkx, Tim; Velthuis, Birgitta K; Backx, Frank J G; Buckens, Constantinus F M; Prakken, Niek H J; Rienks, Rienk; Mali, Willem P Th M; Cramer, Maarten J
2013-08-10
Uncertainty remains about possible cardiac adaptation to resistance training. Androgenic anabolic steroids (AAS) use plays a potential role and may have adverse cardiovascular effects. To elucidate the effect of resistance training and of AAS-use on cardiac dimensions and function. Cardiac magnetic resonance (CMR) were performed in 156 male subjects aged 18-40 years: 52 non-athletes (maximum of 3 exercise hours/week), 52 strength-endurance (high dynamic-high static, HD-HS) athletes and 52 strength (low dynamic-high static, LD-HS) trained athletes (athletes ≥ 6 exercise hours/week). 28 LD-HS athletes denied and 24 admitted to AAS use for an average duration of 5 years (range 3 months-20 years). No significant differences were found between non-athletes and non-AAS-using LD-HS athletes. AAS-using LD-HS athletes had significantly larger LV and RV volumes and LV wall mass than non-AAS-using LD-HS athletes, but lower than HD-HS athletes. In comparison to all other groups AAS-using LD-HS athletes showed lower ejection fractions of both ventricles (LV/RV EF 51/48% versus 55-57/51-52%) and lower E/A ratios (LV/RV 1.5/1.2 versus 1.9-2.0/1.4-1.5) as an indirect measure of diastolic function. Linear regression models demonstrated a significant effect of AAS-use on LV EDV, LV EDM, systolic function and mitral valve E/A ratio (all ANOVA-tests p<0.05). Strength athletes who use AAS show significantly different cardiac dimensions and biventricular systolic dysfunction and impaired ventricular inflow as compared to non-athletes and non-AAS-using strength athletes. Increased ventricular volume and mass did not exceed that of strength-endurance athletes. These findings may help raise awareness of the consequences of AAS use. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-05-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l 1 -norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a "connectivity strength-weighted sparse group constraint." In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. Hum Brain Mapp 38:2370-2383, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Energy levels and radiative rates for Ne-like ions from Cu to Ga
NASA Astrophysics Data System (ADS)
Singh, Narendra; Aggarwal, Sunny
2017-11-01
Energy levels, lifetimes and wave function compositions are computed for 127 fine structural levels in Ne-like ions (Z=29{-}31). Configuration interaction has been included among 51 configurations (generating 1016 levels) and multiconfigurational Dirac-Fock method is used to generate the wave functions. Similar calculations have also been performed using the fully relativistic flexible atomic code (FAC). Transition wavelength, oscillator strength, transition probabilities and line strength are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions from the ground level. We compared our calculated results with the available data in the literature. The calculated results are found to be in close agreement with the previous results. Further, we predict some new atomic data which may be important for plasma diagnostics.
NASA Astrophysics Data System (ADS)
Vasilopoulos, P.; Wang, X. F.
2004-03-01
Spin-polarized electron transport through waveguides, in which the strength a of the spin-orbit interaction is varied periodically, is studied using the transfer-matrix technique. It is shown that the transmission T exhibits a spin-transistor action, as a function of a or of the length of one of the two subunits of the unit cell if only one mode is allowed to propagate in the waveguide. A similar but not periodic behavior is shown by T as a function of the elec-tron energy E. In a waveguide with only one segment, of strength a2 and length l2, comprised between two segments of strength a1, the total transmission, obtained as T=1/[cos2(D2*l2)+r*sin2(D2*l2)], shows a sinusoidal dependence. The spin-up (T+) and spin-down (T-) transmissions are given by T+=T cos2x and T-=T sin2x, where x is a measure of the spin precession. The total phase acquired by electrons in different branches during propagation is x=2[d1*(L-l2)+ d2*l2] with di=2m*a1/h2 and L the waveguide length. The transmission through a superlattice, with alternating segments of lengths l1, l2, and strengths a1, a2, is also a periodic function of aj and lj, j=1,2. As the strength a can be controlled by applying gates, the structure considered is a good candidate for the establishment of a realistic spin transistor.
Ma, Xingmao; Uddin, Sheikh
2013-01-01
The strong affinity of carbon nanotubes (CNTs) to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength) and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB) from multi-walled carbon nanotubes (MWNTs). The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH < 7 vs. pH > 7). In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs. PMID:28348336
Knoop, J; Steultjens, M P M; Roorda, L D; Lems, W F; van der Esch, M; Thorstensson, C A; Twisk, J W R; Bierma-Zeinstra, S M A; van der Leeden, M; Dekker, J
2015-06-01
Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee proprioception) underlie the beneficial effects of exercise therapy in patients with knee OA. Secondary analyses from a randomised controlled trial, with measurements at baseline, 6 weeks, 12 weeks and 38 weeks. Rehabilitation centre. One hundred and fifty-nine patients diagnosed with knee OA. Exercise therapy. Changes in pain [numeric rating scale (NRS)] and activity limitations [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and get-up-and-go test] during the study period. Independent variables were changes in upper leg muscle strength and knee joint proprioception (i.e. motion sense) during the study period. Longitudinal regression analyses (generalised estimating equation) were performed to analyse associations between changes in upper leg muscle strength and knee proprioception with changes in pain and activity limitations. Improved muscle strength was significantly associated with reductions in NRS pain {B coefficient -2.5 [95% confidence interval (CI) -3.7 to -1.4], meaning that every change of 1 unit of strength was linked to a change of -2.5 units of pain}, WOMAC physical function (-8.8, 95% CI -13.4 to -4.2) and get-up-and-go test (-1.7, 95% CI -2.4 to -1.0). Improved proprioception was not significantly associated with better outcomes of exercise therapy (P>0.05). Upper leg muscle strengthening is one of the mechanisms underlying the beneficial effects of exercise therapy in patients with knee OA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W.; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston
2011-01-01
Muscle strength is an important determinant in elite sports performance as well as in the activities of daily living. Muscle metabolism also plays a role in the genesis, and therefore prevention, of common pathological conditions and chronic diseases. Even though heritability estimates between 31 and 78% suggest a significant genetic component in muscle strength, only a limited number of genes influencing muscle strength have been identified. This study aimed to identify and prioritize positional candidate genes within a skeletal muscle strength quantitative trait locus on chromosome 12q22-23 for follow-up. A two-staged gene-centered fine-mapping approach using 122 single nucleotide polymorphisms (SNPs) in stage 1 identified a familybased association (n = 500) between several tagSNPs located in the ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 (ATP2A2; rs3026468), the NUAK family, SNF1-like kinase, 1 (NUAK1; rs10861553 and rs3741886), and the protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC; rs1050587 and rs7901769) genes and knee torque production (P values up to 0.00092). In stage 2, family-based association tests on additional putatively functional SNPs (e.g., exonic SNPs, SNPs in transcription factor binding sites or in conserved regions) in an enlarged sample (n = 536; 464 individuals overlap with stage 1) did not identify additional associations with muscle strength characteristics. Further in-depth analyses will be necessary to elucidate the exact role of ATP2A2, PPP1CC, and NUAK1 in muscle strength and to find out which functional polymorphisms are at the base of the interindividual strength differences. PMID:21750233
Granacher, Urs; Gollhofer, Albert; Hortobágyi, Tibor; Kressig, Reto W; Muehlbauer, Thomas
2013-07-01
The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Given that the mean PEDro quality score did not reach the predetermined cut-off of ≥6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises.
Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual, appendix 2
NASA Technical Reports Server (NTRS)
Boyce, Lola; Lovelace, Thomas B.
1989-01-01
The FORTRAN programs RANDOM3 and RANDOM4 are documented. They are based on fatigue strength reduction, using a probabilistic constitutive model. They predict the random lifetime of an engine component to reach a given fatigue strength. Included in this user manual are details regarding the theoretical backgrounds of RANDOM3 and RANDOM4. Appendix A gives information on the physical quantities, their symbols, FORTRAN names, and both SI and U.S. Customary units. Appendix B and C include photocopies of the actual computer printout corresponding to the sample problems. Appendices D and E detail the IMSL, Version 10(1), subroutines and functions called by RANDOM3 and RANDOM4 and SAS/GRAPH(2) programs that can be used to plot both the probability density functions (p.d.f.) and the cumulative distribution functions (c.d.f.).
On total irregularity strength of caterpillar graphs with two leaves on each internal vertex
NASA Astrophysics Data System (ADS)
Rosyida, I.; Widodo; Indriati, D.
2018-04-01
Let G(V, E) be a graph. A function f from V(G)\\cup E(G) to the set {1, 2, …, k} is said to be a totally irregular total k-labeling of G if the weights of any two different vertices x and y in V (G) satisfy {w}f(x)\
Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite
NASA Technical Reports Server (NTRS)
Lifshitz, J. M.
1981-01-01
Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented.
Froholdt, Anne; Holm, Inger; Keller, Anne; Gunderson, Ragnhild B; Reikeraas, Olav; Brox, Jens I
2011-08-01
Reduced muscle strength and density observed at 1 year after lumbar fusion may deteriorate more in the long term. To compare the long-term effect of lumbar fusion and cognitive intervention and exercises on muscle strength, cross-sectional area, density, and self-rated function in patients with chronic low back pain (CLBP) and disc degeneration. Randomized controlled study with a follow-up examination at 8.5 years (range, 7-11 years). Patients with CLBP and disc degeneration randomized to either instrumented posterolateral fusion of one or both of the two lower lumbar levels or a 3-week cognitive intervention and exercise program were included. Isokinetic muscle strength was measured by a Cybex 6000 (Cybex-Lumex, Inc., Ronkonkoma, NY, USA). All patients had previous experience with the test procedure. The back extension (E) flexion (F) muscles were tested, and the E/F ratios were calculated. Cross-sectional area and density of the back muscles were measured at the L3-L4 segment by computed tomography. Patients rated their function by the General Function Score. Trunk muscle strength, cross-sectional area, density, and self-rated function. Fifty-five patients (90%) were included at long-term follow-up. There were no significant differences in cross-sectional area, density, muscle strength, or self-rated function between the two groups. The cognitive intervention and exercise group increased trunk muscle extension significantly (p<.05), and both groups performed significantly better on trunk muscle flexion tests (p<.01) at long-term follow-up. On average, self-rated function improved by 56%, cross-sectional area was reduced by 8.5%, and muscle density was reduced by 27%. Although this study did not assess the morphology of muscles likely damaged by surgery, trunk muscle strength and cross-sectional area above the surgical levels are not different between those who had lumbar fusion or cognitive intervention and exercises at 7- to 11-year follow-up. Copyright © 2011 Elsevier Inc. All rights reserved.
Coelho-Junior, Hélio José; Rodrigues, Bruno; Gonçalves, Ivan de Oliveira; Asano, Ricardo Yukio; Uchida, Marco Carlos; Marzetti, Emanuele
2018-04-01
Timed 'Up and Go' (TUG) has been widely used in research and clinical practice to evaluate physical function and mobility in older adults. However, the physical capabilities underlying TUG performance are not well elucidated. Therefore, the present study aimed at investigating a selection of physical capacities underlying TUG performance in community-dwelling older women. Four hundred and sixty-eight apparently healthy older women independent to perform the activities of daily living (mean age: 65.8 ± 6.0 years) were recruited from two specialized healthcare centers for older adults to participate in the study. Volunteers had their medical books reviewed and underwent evaluations of anthropometric data as well as physical and functional capacities. Pearson's correlation results indicate that TUG performance was significantly associated with upper (i.e., handgrip strength) and lower (i.e., sit-to-stand) limb muscle strength, balance (i.e., one-leg stand), lower limb muscle power (i.e., countermovement jump), aerobic capacity (i.e., 6-minute walk test), and mobility (i.e., usual and maximal walking speeds). When the analyses were performed based on TUG quartiles, a larger number of physical capabilities were associated with TUG >75% in comparison with TUG <25%. Multiple linear regression results indicate that the variability in TUG (~20%) was explained by lower limb muscle strength (13%) and power (1%), balance (4%), mobility (2%), and aerobic capacity (<1%), even after adjusted by age and age plus body mass index (BMI). However, when TUG results were added as quartiles, a decrease in the impact of physical capacities on TUG performance was determined. As a whole, our findings indicate that the contribution of physical capabilities to TUG performance is altered according to the time taken to perform the test, so that older women in the lower quartiles - indicating a higher performance - have an important contribution of lower limb muscle strength, while volunteers in the highest quartile demonstrate a decreased dependence on lower limb muscle strength and an increased contribution of other physical capabilities, such as lower limb muscle power and balance. Copyright © 2018 Elsevier Inc. All rights reserved.
An extrapolation method for compressive strength prediction of hydraulic cement products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siqueira Tango, C.E. de
1998-07-01
The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late agemore » (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.« less
Electric field effects on the optical properties of buckled GaAs monolayer
NASA Astrophysics Data System (ADS)
Bahuguna, Bhagwati Prasad; Saini, L. K.; Sharma, Rajesh O.
2018-04-01
Buckled GaAs monolayer has a direct band gap semiconductor with energy gap of 1.31 eV in the absence of electric field. When we applied transverse electric field, the value of band gap decreases with increasing of electric field strength. In our previous work [1], it is observed that the buckled GaAs monolayer becomes metallic at 1.3 V/Å. In the present work, we investigate the optical properties such as photon energy-dependent dielectric functions, extinction coefficient, refractive index, absorption spectrum and reflectivity of buckled GaAs monolayer in the semiconducting phase i.e. absence of external electric field and metallic phase i.e. presence of external electric field using density functional theory.
Interrelations Between Mitochondrial DNA Copy Number and Inflammation in Older Adults.
Wu, I-Chien; Lin, Cheng-Chieh; Liu, Chin-San; Hsu, Chih-Cheng; Chen, Ching-Yu; Hsiung, Chao A
2017-07-01
Interplays between inflammation and mitochondrial biology are reported. Here, we examined the cross-sectional interrelationships of mitochondrial DNA copy number (mtDNACN) and inflammation and their interaction with physical functioning. A total of 1990 community-dwelling adults aged 65 years and older who were participating in the Healthy Aging Longitudinal Study in Taiwan underwent measurements of peripheral-blood leukocytes MtDNACN, multiple inflammatory markers, grip strength, and gait speed. Principal components analysis revealed two inflammatory factors: factor 1 (high-sensitivity C-reactive protein [hs-CRP], white blood cell count, fibrinogen and interleukin-6 [IL-6]); factor 2 (tumor necrosis factor receptor 1, D-dimer and soluble interleukin-6 receptor). Participants with severe physical functioning impairment (low grip strength and gait speed) had higher (p < .05) levels of factor 1 and 2, but not mtDNACN, than did those with moderately impaired (low grip strength or gait speed) and normal physical functioning. MtDNACN was negatively related to factor 1 (r = -.221, p < .001) but not factor 2 (r = -.002, p = .938). Increased factor 1 was strongly associated with higher odds of physical functioning impairment in those with a low mtDNACN (adjusted odds ratios [OR] of moderate physical function impairment 1.21, 95% CI 1.01-1.44; adjusted OR of severe physical function impairment 1.52, 95% CI 1.25-1.85) but not in those with a high mtDNACN (p for interaction = .016). A low mtDNACN was associated with an inflammation exhibiting elevated hs-CRP, IL-6, fibrinogen, and white blood cell count, and strengthened the association of this inflammation with physical functioning impairment. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Miles, D W; Redington, P K; Miles, D L; Eyring, H
1981-01-01
The circular dichroism and electronic absorption of three simple model systems for cytidine and uridine have been measured to 190 nm. The molecular spectral properties (excitation wavelengths, oscillator strengths, rotational strengths, and polarization directions) and electronic transitional patterns were investigated by using wave functions of the entire nucleoside with the goal of establishing the reliability of the theoretical method. The computed electronic absorption quantities were shown to be in satisfactory agreement with experimental data. It was found that the computed optical rotatory strengths of the B2u and E1u electronic transitions and lowest observed n-pi transition are in good agreement with experimental values. Electronic transitions were characterized by their electronic transitional patterns derived from population analysis of the transition density matrix. The theoretical rotational strengths associated with the B2u and E1u transitions stabilize after the use of just a few singly excited configurations in the configuration interaction basis and, hypothetically, are more reliable as indicators of conformation in pyrimidine nucleosides related to cytidine. PMID:6950393
2018-01-01
Corrections to an article published in the March 2013 issue of JOSPT: Xergia SA, Pappas E, Zampeli F, Georgiou S, Georgoulis AD. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 2018;48(1):52. doi:10.2519/jospt.2018.48.1.52.
Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.
Brown, B Alex; Larsen, A C
2014-12-19
A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8 MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates.
Reconciling Particle-Beam and Optical Stopping-Power Measurements in Silicon
NASA Astrophysics Data System (ADS)
Karstens, William; Shiles, E. J.; Smith, David Y.
A swift, charged particle passing through matter loses energy to electronic excitations via the electro-magnetic transients experienced by atoms along its path. Bethe related this process to the matter's frequency-dependent dielectric function ɛ (ℏω) through the energy-loss function, Im[-1/ ɛ (ℏω) ]. The matter's response may be summarized by a single parameter, the mean excitation energy, or I value, that combines the optical excitation spectrum and excitation probability. Formally, ln I is the mean of ln ℏω weighted by the energy-loss function. This provides an independent optical check on particle energy-loss experiments. However, a persistent disagreement is found for silicon: direct particle-beam studies yield 173.5< I<176 eV, but a fit to the stopping-power of 36 elements suggests 165 eV. An independent determination from optical data in 1986 gave 174 eV supporting the higher values. However, recent x-ray measurements disclosed short comings in the 1986 optical data: 1. Measurements by Ershov and Lukirskii underestimated the L-edge strength, and 2. A power-law extrapolation overestimated the K-edge strength. We have updated these data and find I = 162 eV, suggesting that silicon's recommended I value should be reconsidered. While this 5% change in I value changes the stopping power by only 1%, it is significant for precision measurements with Si detectors. Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC02-06CH11357.
Matsushita, Kunihiro; Ballew, Shoshana H.; Sang, Yingying; Kalbaugh, Corey; Loehr, Laura; Hirsch, Alan T.; Tanaka, Hirofumi; Heiss, Gerardo; Windham, B. Gwen; Selvin, Elizabeth; Coresh, Josef
2017-01-01
Background and aims Most prior studies investigating the association of lower extremity peripheral artery disease (PAD) with physical function were small or analyzed selected populations (e.g., patients at vascular clinics or persons with reduced function), leaving particular uncertainty regarding the association in the general community. Methods Among 5,262 ARIC participants (age 71-90 years during 2011-2013), we assessed the cross-sectional association of ankle-brachial index (ABI) with the Short Physical Performance Battery (SPPB) score (0-12), its individual components (chair stands, standing balance, and gait speed) (0-4 points each), and grip strength after accounting for potential confounders, including a history of coronary disease, stroke, or heart failure. Results There were 411 participants (7.8%) with low ABI ≤0.90 and 469 (8.9%) participants with borderline low ABI 0.91-1.00. Both ABI ≤0.90 and 0.91-1.00 were independently associated with poor physical function (SPPB score ≤6) compared to ABI 1.11-1.20 (adjusted odds ratio 2.10 [95% CI 1.55-2.84] and 1.86 [1.38-2.51], respectively). The patterns were largely consistent across subgroups by clinical conditions (e.g., leg pain or other cardiovascular diseases), in every SPPB component, and for grip strength. ABI >1.3 (472 participants [9.0%]), indicative of non-compressible pedal arteries, was related to lower physical function as well but did not necessarily reach significance. Conclusions In community-dwelling older adults, low and borderline low ABI suggestive of PAD were independently associated with poorer systemic physical function compared to those with normal ABI. Clinical attention to PAD as a potential contributor to poor physical function is warranted in community-dwelling older adults. PMID:28012644
Matsushita, Kunihiro; Ballew, Shoshana H; Sang, Yingying; Kalbaugh, Corey; Loehr, Laura R; Hirsch, Alan T; Tanaka, Hirofumi; Heiss, Gerardo; Windham, B Gwen; Selvin, Elizabeth; Coresh, Josef
2017-02-01
Most prior studies investigating the association of lower extremity peripheral artery disease (PAD) with physical function were small or analyzed selected populations (e.g., patients at vascular clinics or persons with reduced function), leaving particular uncertainty regarding the association in the general community. Among 5262 ARIC participants (age 71-90 years during 2011-2013), we assessed the cross-sectional association of ankle-brachial index (ABI) with the Short Physical Performance Battery (SPPB) score (0-12), its individual components (chair stands, standing balance, and gait speed) (0-4 points each), and grip strength after accounting for potential confounders, including a history of coronary disease, stroke, or heart failure. There were 411 participants (7.8%) with low ABI ≤0.90 and 469 (8.9%) participants with borderline low ABI 0.91-1.00. Both ABI ≤0.90 and 0.91-1.00 were independently associated with poor physical function (SPPB score ≤6) compared to ABI 1.11-1.20 (adjusted odds ratio 2.10 [95% CI 1.55-2.84] and 1.86 [1.38-2.51], respectively). The patterns were largely consistent across subgroups by clinical conditions (e.g., leg pain or other cardiovascular diseases), in every SPPB component, and for grip strength. ABI >1.3 (472 participants [9.0%]), indicative of non-compressible pedal arteries, was related to lower physical function as well but did not necessarily reach significance. In community-dwelling older adults, low and borderline low ABI suggestive of PAD were independently associated with poorer systemic physical function compared to those with normal ABI. Clinical attention to PAD as a potential contributor to poor physical function is warranted in community-dwelling older adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmad, Naseer; Kamal, Shahid; Raza, Zulfiqar Ali; Hussain, Tanveer
2017-03-01
The present study investigated multi-response optimization of certain input parameters viz. concentrations of oil and water repellent finish (Oleophobol CP-C®), dimethylol dihydroxy ethylene urea based cross linking agent (Knittex FEL) and curing temperature on some mechanical, (i.e. tear and tensile strengths), functional (i.e., water contact angle ‘WCA’, oil contact angle ‘OCA’) and comfort (i.e. crease recovery angle ‘CRA’, air permeability ‘AP’, and stiffness) properties of an oleo-hydrophobic finished fabric under response surface methodology and the desirability function. The results have been examined using analysis of variance (ANOVA) and desirability function for the identification of optimum levels of input variables. The ANOVA was employed also to identify the percentage contribution of process factors. Under the optimized conditions, which were obtained with a total desirability value of 0.7769, the experimental values of Oleophobol CP-C® (O-CPC), Knittex FEL (K-FEL) and curing temperature (C-Temp) agreed closely with the predicted values. The optimized process parameters for maximum WCA (135°), OCA (129°), AP (290 m s-1), CRA (214°), tear (1492 gf) and tensile (764 N) strengths and minimum stiffness (3.2928 cm) were found to be: concentration of OCP-C as 44.44 g l-1, concentration of cross linker K-FEL as 32.07 g l-1 and C-Temp as 161.81 °C.
Influence of strength training intensity on subsequent recovery in elderly.
Orssatto, L B R; Moura, B M; Bezerra, E S; Andersen, L L; Oliveira, S N; Diefenthaeler, F
2018-06-01
Understanding the influence of strength training intensity on subsequent recovery in elderly is important to avoid reductions in physical function during the days following training. Twenty-two elderly were randomized in two groups: G70 (65.9 ± 4.8 years, n = 11) and G95 (66.9 ± 5.1, n = 11). Baseline tests included maximum voluntary isometric contraction (peak torque and rate of torque development - RTD), countermovement jump, and functional capacity (timed up and go, stairs ascent and descent). Then, both groups performed a single strength training session with intensities of 70% (G70) or 95% (G95) of five repetition maximum. The same tests were repeated immediately, 24 h, 48 h, and 72 h after the session. Peak torque was lower than baseline immediately after for both groups and at 24 h for G95. Compared with G70, G95 had lower peak torque at 24 h and 48 h. Countermovement jump, timed up and go, stairs ascent, and RTD at 0-50 ms only differed from baseline immediately after for both groups. RTD at 0-200 ms was lower than baseline immediately after and 24 h after the session for both groups. In conclusion, reduced physical function immediately after strength training can last for 1-2 days in elderly depending on the type of physical function and intensity of training. Higher intensity resulted in greater impairment. Exercise prescription in elderly should take this into account, e.g., by gradually increasing intensity during the first months of strength training. These results have relevance for elderly who have to be fit for work or other activities in the days following strength training. Copyright © 2018 Elsevier Inc. All rights reserved.
Xu, Chunsheng; Zhang, Dongfeng; Tian, Xiaocao; Wu, Yili; Pang, Zengchang; Li, Shuxia; Tan, Qihua
2017-02-01
Although the correlation between cognition and physical function has been well studied in the general population, the genetic and environmental nature of the correlation has been rarely investigated. We conducted a classical twin analysis on cognitive and physical function, including forced expiratory volume in one second (FEV1), forced vital capacity (FVC), handgrip strength, five-times-sit-to-stand test (FTSST), near visual acuity, and number of teeth lost in 379 complete twin pairs. Bivariate twin models were fitted to estimate the genetic and environmental correlation between physical and cognitive function. Bivariate analysis showed mildly positively genetic correlations between cognition and FEV1, r G = 0.23 [95% CI: 0.03, 0.62], as well as FVC, r G = 0.35 [95% CI: 0.06, 1.00]. We found that FTSST and cognition presented very high common environmental correlation, r C = -1.00 [95% CI: -1.00, -0.57], and low but significant unique environmental correlation, r E = -0.11 [95% CI: -0.22, -0.01], all in the negative direction. Meanwhile, near visual acuity and cognition also showed unique environmental correlation, r E = 0.16 [95% CI: 0.03, 0.27]. We found no significantly genetic correlation for cognition with handgrip strength, FTSST, near visual acuity, and number of teeth lost. Cognitive function was genetically related to pulmonary function. The FTSST and cognition shared almost the same common environmental factors but only part of the unique environmental factors, both with negative correlation. In contrast, near visual acuity and cognition may positively share part of the unique environmental factors.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.
2014-01-01
The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.
Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint.
Pourret, Olivier; Houben, David
2018-02-01
The ability of biochar to immobilize metals relies on the amount of functional groups at its surface but the contribution of each functional groups (e.g. carboxylic, phenolic) to metal bonding is poorly known. Using a new approach based on previous works on rare earth element (REE) interactions with humic substances, we aim at elucidating the relative contribution of these binding sites to metal sorption under various conditions (i.e. pH and ionic strengths, IS). Using batch experiments, REE sorption onto biochar was analyzed from pH 3 to 9 and IS 10 -1 mol/L to 10 -3 mol/L. Rare earth element patterns show a Middle REE (MREE) downward concavity at acidic pH and low ionic strength. These patterns are in good agreement with existing datasets quantifying REE binding with humic substances. Indeed, the MREE downward concavity displayed by REE-biochar complexation pattern compares well with REE patterns with various organic compounds. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in biochar. Overall, our results indicate that the strength of the metal bonding with biochar increases when pH and IS increase, suggesting that biochar is more efficient for long-term metal immobilization at near neutral pH and high ionic strength.
Spatial electron density and electric field strength measurements in microwave cavity experiments
NASA Technical Reports Server (NTRS)
Peters, M.; Rogers, J.; Whitehair, S.; Asmussen, J.; Kerber, R.
1984-01-01
Measurements of electron density and electric field strength have been made in an argon plasma contained in a resonant microwave cavity at 2.45 GHz. Spatial measurements of electron density, n sub e, are correlated with fluorescence observations of the discharge. Measurements of n sub e were made with Stark broadening and compared with n sub 3 calculated from measured plasma conductivity. Additional measurements of n sub 3 as a function of pressure and in mixtures of argon and oxygen are presented for pressures from 10 Torr to 1 atm. Measurements in flowing gases and in static systems are presented. In addition, limitations of these measurements are identified.
NASA Astrophysics Data System (ADS)
Peiris, F. C.; Lewis, M. V.; Brill, G.; Doyle, Kevin; Myers, T. H.
2018-03-01
Using spectroscopic ellipsometry, the temperature-dependence of the dielectric functions of a series of Hg1-x Cd x Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates were investigated. Initially, for each sample, room-temperature ellipsometric spectra were obtained from 35 meV to 6 eV using two different ellipsometers. Subsequently, ellipsometry spectra were obtained from 10 K to 300 K by incorporating a cryostat to the ellipsometer. Using a standard inversion technique, the spectroscopic ellipsometric data were modeled in order to obtain the temperature-dependent dielectric functions of each of the Hg1-x Cd x Se thin films. The results indicate that the E 1 critical point blue-shifts as a function of Cd-alloy concentration. The temperature-dependence of E 1 was fitted to a Bose-Einstein occupation distribution function, which consequently allowed us to determine the electron-phonon coupling of Hg1-x Cd x Se alloys. From the fitting results, we obtain a value of 17 ± 2 meV for the strength of the electron-phonon coupling for Hg1-x Cd x Se alloy system, which compares nominally with the binary systems, such as CdSe and CdTe, which have values around 38 meV and 16 meV, respectively. This implies that the addition of Hg into the CdSe binary system does not significantly alter its electron-phonon coupling strength. Raman spectroscopy measurements performed on all the samples show the HgSe-like transverse optic (TO) and longitudinal optic (LO) phonons (˜ 130 cm-1 and ˜ 160 cm-1, respectively) for all the samples. While there is a slight red-shift of the HgSe-like TO peak as a function of the Cd-concentration, HgSe-like LO peak does not significantly change with the alloy concentration.
Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults
Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.
2014-01-01
Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203
NASA Astrophysics Data System (ADS)
Erhard, M.; Junghans, A. R.; Nair, C.; Schwengner, R.; Beyer, R.; Klug, J.; Kosev, K.; Wagner, A.; Grosse, E.
2010-03-01
Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental determination of the photon strength function covering the high excitation energy range above 4 MeV with its increasing level density. Photon scattering was used up to the neutron separation energies Sn and data up to the maximum of the isovector giant resonance (GDR) were obtained by photoactivation. After a proper correction for multistep processes the observed quasicontinuous spectra of scattered photons show a remarkably good match to the photon strengths derived from nuclear photoeffect data obtained previously by neutron detection and corrected in absolute scale by using the new activation results. The combined data form an excellent basis to derive a shape dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N=50 neutron shell (i.e., with the impact of quadrupole deformation and triaxiality). The wide energy coverage of the data allows for a stringent assessment of the dipole sum rule and a test of a novel parametrization developed previously which is based on it. This parametrization for the electric dipole strength function in nuclei with A>80 deviates significantly from prescriptions generally used previously. In astrophysical network calculations it may help to quantify the role the p-process plays in cosmic nucleosynthesis. It also has impact on the accurate analysis of neutron capture data of importance for future nuclear energy systems and waste transmutation.
NASA Astrophysics Data System (ADS)
Al-Hawat, Sh; Naddaf, M.
2005-04-01
The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density jd = 4.45 mA cm-2 and normalized electric field strength E/p = 1.88 V cm-1 Torr-1.
Exercise-Based Fall Prevention in the Elderly: What About Agility?
Donath, Lars; van Dieën, Jaap; Faude, Oliver
2016-02-01
Annually, one in three seniors aged over 65 years fall. Balance and strength training can reduce neuromuscular fall risk factors and fall rates. Besides conventional balance and strength training, explosive or high-velocity strength training, eccentric exercises, perturbation-based balance training, trunk strength, and trunk control have also been emphasized. In contrast, aerobic exercise has to date not been included in fall-prevention studies. However, well-developed endurance capacity might attenuate fatigue-induced declines in postural control in sports-related or general activities of daily living. Physical performance indices, such as balance, strength, and endurance, are generally addressed independently in exercise guidelines. This approach seems time consuming and may impede integrative training of sensorimotor, neuromuscular, and cardiocirculatory functions required to deal with balance-threatening situations in the elderly. An agility-based conceptual training framework comprising perception and decision making (e.g., visual scanning, pattern recognition, anticipation) and changes of direction (e.g., sudden starts, stops and turns; reactive control; concentric and eccentric contractions) might enable an integrative neuromuscular, cardiocirculatory, and cognitive training. The present paper aims to provide a scientific sketch of how to build such an integrated modular training approach, allowing adaptation of intensity, complexity, and cognitive challenge of the agility tasks to the participant's capacity. Subsequent research should address the (1) link between agility and fall risk factors as well as fall rates, (2) benefit-risk ratios of the proposed approach, (3) psychosocial aspects of agility training (e.g., motivation), and (4) logistical requirements (e.g., equipment needed).
Transition sum rules in the shell model
NASA Astrophysics Data System (ADS)
Lu, Yi; Johnson, Calvin W.
2018-03-01
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.
Joosten, Etienne; Detroyer, Elke; Milisen, Koen
2016-08-19
Anaemia is a common problem in hospitalized older patients and is recognized as a risk factor for a significant number of adverse outcomes. Data of the effect of anaemia on functional status during hospitalization and mortality after discharge are limited. Aim of the study is to examine whether there is an association between anaemia, hand grip strength, gait speed and basic activities of daily living (ADL) during hospitalization and mortality 1 year after discharge in geriatric patients. In a prospective study, data on age, sex, body mass index, Mini-Mental State Examination (MMSE), main clinical diagnosis, number of comorbidities, hand grip strength, gait speed, ADL, haemoglobin, C-reactive protein and estimated Glomerular filtration ratio (eGFR) were recorded in 220 older patients, admitted to the acute geriatric ward of a university hospital. Anaemia was defined as a haemoglobin level <13 g/dL for men and <12 g/dL for women and was further specified into severe (haemoglobin level <10 g/dL for both men and women) and moderate anaemia (haemoglobin between 10 and 12 g/dL for women and 10 and 13 g/dL for men). Gait speed (in meters per second) was calculated after a 4.5 m walk and hand grip strength (in kilogram) was assessed with a hydraulic hand dynamometer. Functionality was assessed in the six basic activities of daily living. Information about the vital status was obtained 1 year after discharge with a telephone call. Analysis of covariance (ANCOVA) was used to examine the effect of the anaemia status on the walking speed, hand grip strength and premorbid ADL index and logistic regression analysis was used to examine whether anaemia could be identified as risk factors for mortality 12 months after discharge. Overall, 106 (48 %) patients had anaemia. Hand-grip strength, gait speed and ADL score were not significantly different between anaemic and non-anaemic hospitalized geriatric patients. After adjustment for age, sex, body mass index, eGFR, MMSE, number of comorbidities and main clinical diagnosis, the means for hand-grip strength were 17.3, 19.9 and 19.1 kg (p = 0.38); for gait speed 0.57, 0.52 and 0.47 m/s (p = 0.28); and for the ADL score 3.50, 3.05 and 3.30 (p = 0.75) in patients with severe, moderate and without anaemia, respectively. In the unadjusted model, the odds ratio for mortality 1 year after discharge was 2.72 (95 % CI 1.20-6.14) and 4.70 (95 % CI 1.91-11.77) for moderate and severe anaemia, respectively, with no anaemia as the reference group. After adjustment for several confounders, a haemoglobin level less than 10 g/dl (OR 3.87; 95 % CI 1.25-11.99) remained significantly associated with an increased mortality over that 1 year period. Our results do not support that anaemia on admission is associated with a decline in physical performance (hand grip strength and gait speed) and functionality (ADL) during hospitalization in older patients. However, severe anaemia is a significant risk factor for an increased mortality over a 1 year period after discharge.
Zak, Marek; Swine, Christian; Grodzicki, Tomasz
2009-01-28
Consistently swelling proportion of the frail elderly within a modern society challenges the overstrained public health sector to provide both adequate medical care and comprehensive assistance in their multiple functional deficits of daily living. Easy-to-apply and task-specific ways of addressing this issue are being sought out, with a view to proposing systemic solutions for nationwide application. The present randomised, double-blind, placebo-controlled, 7-week clinical trial aimed to determine whether specifically structured, intensive exercise regimens, combined with nutritional supplementation, might improve and help sustain individual muscle strength and mobility, and possibly enhance individual functional capabilities in an on-going quest for active prevention of care-dependency. Ninety-one frail elderly (F 71 M 20; mean age 79 years) were recruited from both nursing home residents and community dwellers and randomly split into four groups: Group I - progressive resistance exercises (PRE) + functionally-oriented exercises (FOE) + nutritional supplementation (NS), Group II - PRE + FOE + placebo, Group III--standard exercises (SE) + FOE + NS, Group IV - SE + FOE + placebo. Each group pursued a 45 min. exercise session 5 times weekly. The subjects' strength with regard to four muscle groups, i.e. hip and knee extensors and flexons, was assessed at 80% (1 RM) weekly, whereas their balance and mobility at baseline and at the end of the study. The study was completed by 80 subjects. Despite its relatively short duration significant differences in muscle strength were noted both in Group I and Group II (p = 0.01; p = 0.04; respectively), although this did not translate directly into perceptible improvement in individual mobility. Notable improvements in individual mobility were reported in Group III and Group IV (p = 0.002), although without positive impact on individual muscle strength. Comprehensively structured, high-intensity regimen made up of diverse exercise types, i.e. functionally-oriented, progressive resistance and standard ones, preferably if combined with nutritional supplementation in adequate volume, demonstrates clear potential for appreciably improving overall functional status in the frail elderly in terms of individual walking capacity and muscle strength. Central Register of Clinical Trials, Poland--CEBK180/2000.
Mardirossian, Narbe; Head-Gordon, Martin
2016-08-18
The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. By and large, the main strength of the hybrid Minnesota density functionals is that the best ones provide verymore » good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). Finally, as an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses.« less
The ep -->e'p eta reaction at and above the S11(1535) baryon resonance.
Thompson, R; Dytman, S; Kim, K Y; Mueller, J; Adams, G S; Amaryan, M J; Anciant, E; Anghinolfi, M; Asavapibhop, B; Auger, T; Audit, G; Avakian, H; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bertozzi, W; Bianchi, N; Biselli, A; Boiarinov, S; Bonner, B E; Briscoe, W J; Brooks, W; Burkert, V D; Calarco, J R; Capitani, G; Carman, D S; Carnahan, B; Cole, P L; Coleman, A; Connelly, J; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J; Day, D; Degtyarenko, P V; Demirchyan, R A; Dennis, L C; Deppman, A; De Sanctis, E; De Vita, R; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Eckhause, M; Efremenko, Y V; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Farhi, L; Feuerbach, R J; Ficenec, J; Fissum, K; Freyberger, A; Funsten, H; Gai, M; Gavrilov, V B; Gilfoyle, G P; Giovanetti, K; Gilad, S; Girard, P; Griffioen, K A; Guidal, M; Guillo, M; Gyurjyan, V; Hancock, D; Hardie, J; Heddle, D; Heisenberg, J; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hyde-Wright, C E; Ito, M M; Jenkins, D; Joo, K; Kane, J; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klusman, M; Kossov, M; Kuhn, S E; Kuang, Y; Laget, J M; Lawrence, D; Leskin, G A; Longhi, A; Loukachine, K; Lucas, M; Magahiz, R; Major, R W; Manak, J J; Marchand, C; Matthews, S K; McAleer, S; McCarthy, J; McNabb, J W; Mecking, B A; Mestayer, M D; Meyer, C A; Minehart, R; Mirazita, M; Miskimen, R; Muccifora, V; Mutchler, G S; Napolitano, J; Niyazov, R A; Ohandjanyan, M S; O'Brien, J T; Opper, A; Patois, Y; Peterson, G A; Philips, S; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Preedom, B M; Price, J W; Qin, L M; Raue, B A; Reolon, A R; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rossi, P; Roudot, F; Rowntree, D; Rubin, P D; Salgado, C W; Sanzone, M; Sapunenko, V; Sarty, A; Sargsyan, M; Schumacher, R A; Shafi, A; Sharabian, Y G; Shaw, J; Shuvalov, S M; Skabelin, A; Smith, T; Smith, C; Smith, E S; Sober, D I; Spraker, M; Stepanyan, S; Stoler, P; Taiuti, M; Taylor, S; Tedeschi, D; Tung, T Y; Vineyard, M F; Vlassov, A; Weller, H; Weinstein, L B; Welsh, R; Weygand, D P; Whisnant, S; Witkowski, M; Wolin, E; Yegneswaran, A; Yun, J; Zhou, Z; Zhao, J
2001-02-26
New cross sections for the reaction e p-->e p eta are reported for total center of mass energy W = 1.5--1.86 GeV and invariant momentum transfer Q2 = 0.25--1.5 (GeV/c)(2). This large kinematic range allows extraction of important new information about response functions, photocouplings, and eta N coupling strengths of baryon resonances. Newly observed structure at W approximately 1.65 GeV is shown to come from interference between S and P waves and can be interpreted with known resonances. Improved values are derived for the photon coupling amplitude for the S11(1535) resonance.
Kostka, Joanna; Czernicki, Jan; Pruszyńska, Magdalena; Miller, Elżbieta
The purpose of the study was to assess the effectiveness of the multi-modal exercise program (MMEP) in patients after stroke, and to identify muscles that are the best predictors of functional performance and changes in functional status in a 3-week rehabilitation program. Thirty-one post-stroke patients (60.6±12.7 years) participating in a 3-week MMEP took part in the study. Measurements of extensor and flexor strength of the knee (F ext , F flex ) were done. Functional performance was measured using Timed Up & Go test (TUG), 6-Minute Walk Test (6-MWT) and Tinetti Test. The rehabilitation program improved all the results of functional tests, as well as the values of strength in the patients. Both baseline and post-rehabilitation functional status was associated with knee flexor and extensor muscle strength of paretic but not of non-paretic limbs. At baseline examination muscle strength difference between both F flex kg -1 and F ext kg -1 had an influence on functional status. After rehabilitation the effect of muscle strength difference on functional status was not evident for F ext kg -1 and, interestingly, even more prominent for F flex kg -1 . MMEP can effectively increase muscle strength and functional capacity in post-stroke patients. Knee flexor muscle strength of the paretic limb and the knee flexor difference between the limbs is the best predictor of functional performance in stroke survivors. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Bieler, T; Siersma, V; Magnusson, S P; Kjaer, M; Christensen, H E; Beyer, N
2017-08-01
This observer-blinded, randomized controlled trial compared the short- and long-term effects of 4 months of supervised strength training (ST) in a local fitness center, supervised Nordic Walking (NW) in a local park, and unsupervised home-based exercise (HBE, control) on functional performance in 60+-year-old persons (n = 152) with hip osteoarthritis (OA) not awaiting hip replacement. Functional performance [i.e., 30-s chair stand test (primary outcome), timed stair climbing, and 6-min walk test] and self-reported outcomes (i.e., physical function, pain, physical activity level, self-efficacy, and health-related quality of life) were measured at baseline and at 2, 4, and 12 months. Based on intention-to-treat-analyses improvements [mean (95% CI)] after intervention in number of chair stands were equal in all three groups at 4 months [ST: 0.9 (0.2-1.6), NW: 1.9 (0.8-3.0), HBE: 1.1 (0.1-2.0)] but greater in the NW group [1.4 (0.02-2.8)] than in the ST group at 12 months. Generally, improvements in functional performance were greater (P < 0.001-P < 0.03) after NW compared with HBE and ST at all follow-up time points. Furthermore, NW was superior (P < 0.01) to HBE for improving vigorous physical activity and to both ST and HBE for improving (P < 0.01) mental health. These data suggest that NW is the recommended exercise modality compared with ST and HBE. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E
2017-04-26
This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.
Identification of significant E0 strength in the 22+ → 21+ transitions of 58,60,62Ni
NASA Astrophysics Data System (ADS)
Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Smallcombe, J.; Reed, M. W.; Brown, B. A.; Stuchbery, A. E.; Lane, G. J.; Eriksen, T. K.; Akber, A.; Alshahrani, B.; de Vries, M.; Gerathy, M. S. M.; Holt, J. D.; Lee, B. Q.; McCormick, B. P.; Mitchell, A. J.; Moukaddam, M.; Mukhopadhyay, S.; Palalani, N.; Palazzo, T.; Peters, E. E.; Ramirez, A. P. D.; Stroberg, S. R.; Tornyi, T.; Yates, S. W.
2018-04-01
The E0 transition strength in the 22+ →21 + transitions of 58,60,62Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). The CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the δ (E 2 / M 1) mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, δ (E 2 / M 1) mixing ratios and γ-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the E0 strengths. These are the first 2+ →2+E0 transition strengths measured in nuclei with spherical ground states and the E0 component is found to be unexpectedly large; in fact, these are amongst the largest E0 transition strengths in medium and heavy nuclei reported to date.
Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.
2013-01-01
Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.
Functional modules by relating protein interaction networks and gene expression.
Tornow, Sabine; Mewes, H W
2003-11-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.
Functional modules by relating protein interaction networks and gene expression
Tornow, Sabine; Mewes, H. W.
2003-01-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317
Precision Measurements of the B(E1) Strengths in 11Be
NASA Astrophysics Data System (ADS)
Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finley, A.; Garnsworthy, A.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.
2014-09-01
The electromagnetic transition strength between the two bound states were measured in the one-neutron halo nucleus 11Be from Coulomb excitation on 196Pt at projectile energies of 1.727 and 2.086 MeV/nucleon at TRIUMF. A B(E1) strength of 0.102(2) e2fm2, deduced from the forward-scattering data, is consistent with previous Coulomb excitation measurements at intermediate projectile energies with a model-dependent analysis.
The Goals and Effects of Music Listening and Their Relationship to the Strength of Music Preference.
Schäfer, Thomas
2016-01-01
Individual differences in the strength of music preference are among the most intricate psychological phenomena. While one person gets by very well without music, another person needs to listen to music every day and spends a lot of temporal and financial resources on listening to music, attending concerts, or buying concert tickets. Where do these differences come from? The hypothesis presented in this article is that the strength of music preference is mainly informed by the functions that music fulfills in people's lives (e.g., to regulate emotions, moods, or physiological arousal; to promote self-awareness; to foster social relatedness). Data were collected with a diary study, in which 121 respondents documented the goals they tried to attain and the effects that actually occurred for up to 5 music-listening episodes per day for 10 successive days. As expected, listeners reporting more intense experience of the functional use of music in the past (1) had a stronger intention to listen to music to attain specific goals in specific situations and (2) showed a larger overall strength of music preference. It is concluded that the functional effectiveness of music listening should be incorporated in existing models and frameworks of music preference to produce better predictions of interindividual differences in the strength of music preference. The predictability of musical style/genre preferences is also discussed with regard to the present results.
Wetherill, Reagan R.; Fang, Zhuo; Jagannathan, Kanchana; Childress, Anna Rose; Rao, Hengyi; Franklin, Teresa R.
2015-01-01
Background Resting-state functional connectivity is a noninvasive, neuroimaging method for assessing neural network function. Altered functional connectivity among regions of the default-mode network have been associated with both nicotine and cannabis use; however, less is known about co-occurring cannabis and tobacco use. Methods We used posterior cingulate cortex (PCC) seed-based resting-state functional connectivity analyses to examine default mode network (DMN) connectivity strength differences between four groups: 1) individuals diagnosed with cannabis dependence who do not smoke tobacco (n=19; ages 20–50), 2) cannabis-dependent individuals who smoke tobacco (n=23, ages 21–52), 3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (n=24, ages 21–57), and 4) cannabis- and tobacco-naïve healthy controls (n=21, ages 21–50), controlling for age, sex, and alcohol use. We also explored associations between connectivity strength and measures of cannabis and tobacco use. Results PCC seed-based analyses identified the core nodes of the DMN (i.e., PCC, medial prefrontal cortex, inferior parietal cortex, and temporal cortex). In general, the cannabis-dependent, nicotine-dependent, and co-occurring use groups showed lower DMN connectivity strengths than controls, with unique group differences in connectivity strength between the PCC and the cerebellum, medial prefrontal cortex, parahippocampus, and anterior insula. In cannabis-dependent individuals, PCC-right anterior insula connectivity strength correlated with duration of cannabis use. Conclusions This study extends previous research that independently examined the differences in resting-state functional connectivity among individuals who smoke cannabis and tobacco by including an examination of co-occurring cannabis and tobacco use and provides further evidence that cannabis and tobacco exposure is associated with alterations in DMN connectivity. PMID:26094186
Quench dynamics in strongly correlated Bose-Hubbard chains
NASA Astrophysics Data System (ADS)
Naegerl, Hanns-Christoph
2013-05-01
We present a series of experiments in the context of 1D physics with ultracold atoms, combining optical lattice potentials with the capability to tune the strength of the onsite particle interaction U. For an array of tilted 1D chains with site-to-site tilt E and initial unity occupation we record the dynamics after a quench to the phase transition point U ~E by monitoring the number of doublons created as a function of time after the quench. We observe characteristic oscillations from which we deduce a shift of the resonance condition as time progresses. For U/2 ~E and U/3 ~E we observe coupling to next-nearest neighbors and beyond.
Caetano, Maria Joana D; Lord, Stephen R; Brodie, Matthew A; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C
2018-01-01
Reduced ability to adapt gait, particularly under challenging conditions, may be an important reason why older adults have an increased risk of falling. This study aimed to identify cognitive, psychological and physical mediators of the relationship between impaired gait adaptability and fall risk in older adults. Fifty healthy older adults (mean±SD: 74±7years) were categorised as high or low fall risk, based on past falls and their performance in the Physiological Profile Assessment. High and low-risk groups were then compared in the gait adaptability test, i.e. an assessment of the ability to adapt gait in response to obstacles and stepping targets under single and dual task conditions. Quadriceps strength, concern about falling and executive function were also measured. The older adults who made errors on the gait adaptability test were 4.76 (95%CI=1.08-20.91) times more likely to be at high risk of falling. Furthermore, each standard deviation reduction in gait speed while approaching the targets/obstacle increased the odds of being at high risk of falling approximately three fold: single task - OR=3.10,95%CI=1.43-6.73; dual task - 3.42,95%CI=1.56-7.52. Executive functioning, concern about falling and quadriceps strength substantially mediated the relationship between the gait adaptability measures and fall risk status. Impaired gait adaptability is associated with high risk of falls in older adults. Reduced executive function, increased concern about falling and weaker quadriceps strength contribute significantly to this relationship. Training gait adaptability directly, as well as addressing the above mediators through cognitive, behavioural and physical training may maximise fall prevention efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.
Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert
2013-01-01
Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.
Schumann, Moritz; Mykkänen, Olli-Pekka; Doma, Kenji; Mazzolari, Raffaele; Nyman, Kai; Häkkinen, Keijo
2015-01-01
This study investigated the effects of endurance training only (E, n = 14) and same-session combined training, when strength training is repeatedly preceded by endurance loading (endurance and strength training (E+S), n = 13) on endurance (1000-m running time during incremental field test) and strength performance (1-repetition maximum (1RM) in dynamic leg press), basal serum hormone concentrations, and endurance loading-induced force and hormone responses in recreationally endurance-trained men. E was identical in the 2 groups and consisted of steady-state and interval running, 4-6 times per week for 24 weeks. E+S performed additional mixed-maximal and explosive-strength training (2 times per week) immediately following an incremental running session (35-45 min, 65%-85% maximal heart rate). E and E+S decreased running time at week 12 (-8% ± 5%, p = 0.001 and -7% ± 3%, p < 0.001) and 24 (-13% ± 5%, p < 0.001 and -9% ± 5%, p = 0.001). Strength performance decreased in E at week 24 (-5% ± 5%, p = 0.014) but was maintained in E+S (between-groups at week 12 and 24, p = 0.014 and 0.011, respectively). Basal serum testosterone and cortisol concentrations remained unaltered in E and E+S but testosterone/sex hormone binding globulin ratio decreased in E+S at week 12 (-19% ± 26%, p = 0.006). At week 0 and 24, endurance loading-induced acute force (-5% to -9%, p = 0.032 to 0.001) and testosterone and cortisol responses (18%-47%, p = 0.013 to p < 0.001) were similar between E and E+S. This study showed no endurance performance benefits when strength training was performed repeatedly after endurance training compared with endurance training only. This was supported by similar acute responses in force and hormonal measures immediately post-endurance loading after the training with sustained 1RM strength in E+S.
Sex difference in the heat shock response to high external load resistance training in older humans.
Njemini, Rose; Forti, Louis Nuvagah; Mets, Tony; Van Roie, Evelien; Coudyzer, Walter; Beyer, Ingo; Delecluse, Christophe; Bautmans, Ivan
2017-07-01
Literature reports on the effects of resistance training on heat shock protein70 (Hsp70) adaptation in older subjects are scarce. Moreover, the optimum training load required to obtain a beneficial adaptation profile is lacking. Therefore, the aim of this study was to determine the effects of resistance training at various external loads on extracellular Hsp70 (eHsp70) resting levels in older humans. Fifty-six community-dwelling older (68±5years) volunteers were randomized to 12weeks of resistance training (3×/week) at either high-resistance (HIGH, 8 males, 10 females, 2×10-15 repetitions at 80% 1RM), low resistance (LOW, 9 Males, 10 Females, 1×80-100 repetitions at 20% 1RM), or mixed low resistance (LOW+, 9 Males, 10 Females, 1×60 repetitions at 20% 1RM followed by 1×10-20 repetitions at 40% 1RM). Serum was available from 48 out of the 56 participants at baseline and after 12weeks for determination of eHsp70. Mid-thigh muscle volume (computed tomography), muscle strength (1RM & Biodex dynamometer) and physical functioning (including 6min walk distance [6MWD]) were assessed. There was a sex-related dichotomy in the heat shock response to high external load training. We observed a significant decrease in eHsp70 concentration in the HIGH group for female, but not male, subjects. At baseline, men had a larger muscle volume, leg press and leg extension 1RM compared to women (all p<0.001). Also, the 6MWD was significantly higher in men compared to women at baseline. However, this difference disappeared when correcting for height. Moreover, the overall functional performance and physical activity scores were similar in men and women. None of the participants' characteristics nor any of the outcome variables differed between groups at baseline. There was a significant increase in the strength and physical performance parameters in both men and women post-exercise (all p<0.05). Females in the HIGH group clearly demonstrated a larger gain in leg press 1RM and the isometric knee extensor strength compared to females in the LOW group (p=0.036 and p=0.044, respectively). More so, we found an inverse association between the change in eHsp70 levels and improvement in isometric knee extensor strength and 6MWD (r=-0.443, p=0.002 and r=-0.428, p=0.002; respectively) post exercise. Our results show that resistance training at high external load decreases the resting levels of eHsp70 in older females. Whether this reflects a better health status requires further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh
2018-05-01
We have investigated the electronic properties, adsorptions strength and charge transfer using first principles calculations using density functional theory (DFT). The hexagonal boron nitride (h-BN) substrate shows metallic behavior, which helps to enhance the absorption process. The adsorption of three different orientations (S, D and T) of the H2S gas molecules to analyze the maximum adsorption strength from them onto a copper cluster (Cu4) based on h-BN nanosheet. The maximum adsorption energy of the H2S gas molecule is -1.50 eV for the S orientation and for D and U, it is -0.71 eV and -0.78 eV, respectively. The results show that Cu4 cluster helps to capture H2S gas from the environment and results are useful for the cleaning environment from the toxic gases.
Functional traits and root morphology of alpine plants
Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian
2011-01-01
Background and Aims Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. Methods In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Key Results Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. Conclusions The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level. PMID:21795278
Towards traceability in CO2 line strength measurements by TDLAS at 2.7 µm
NASA Astrophysics Data System (ADS)
Pogány, Andrea; Ott, Oliver; Werhahn, Olav; Ebert, Volker
2013-11-01
Direct tunable diode laser absorption spectroscopy (TDLAS) was combined in this study with metrological principles on the determination of uncertainties to measure the line strengths of the P36e and P34e line of 12C16O2 in the ν1+ν3 band at 2.7 μm. Special emphasis was put on traceability and a concise, well-documented uncertainty assessment. We have quantitatively analyzed the uncertainty contributions of different experimental parameters to the uncertainty of the line strength. Establishment of the wavenumber axis and the gas handling procedure proved to be the two major contributors to the final uncertainty. The obtained line strengths at 296 K are 1.593×10-20 cm/molecule for the P36e and 1.981×10-20 cm/molecule for the P34e line, with relative expanded uncertainties of 1.1% and 1.3%, respectively (k=2, corresponding to a 95% confidence level). The measured line strength values are in agreement with literature data (line strengths listed in the HITRAN and GEISA databases), but show an uncertainty, which is at least a factor of 2 lower.
Ilić, Ivan; Djordjević, Vitomir; Stanković, Ivan; Vlahović-Stipac, Alja; Putniković, Biljana; Babić, Rade; Nesković, Aleksandar N
2014-04-01
Long-term intensive training is associated with distinctive cardiac adaptations which are known as athlete's heart. The aim of this study was to determine whether the use of anabolic androgenic steroids (AAS) could affect echocardiographic parameters of left ventricular (LV) morphology and function in elite strength and endurance athletes. A total of 20 elite strength athletes (10 AAS users and 10 non-users) were compared to 12 steroid-free endurance athletes. All the subjects underwent comprehensive standard echocardiography and tissue Doppler imaging. After being indexed for body surface area, both left atrium (LA) and LV end-diastolic diameter (LVEDD) were significantly higher in the endurance than strength athletes, regardless of AAS use (p < 0.05, for both). A significant correlation was found between LA diameter and LVEDD in the steroid-free endurance athletes, showing that 75% of LA size variability depends on variability of LVEDD (p < 0.001). No significant differences in ejection fraction and cardiac output were observed among the groups, although mildly reduced LV ejection fraction was seen only in the AAS users. The AAS-using strength athletes had higher A-peak velocity when compared to steroid-free athletes, regardless of training type (p < 0.05 for both). Both AAS-using and AAS-free strength athletes had lower e' peak velocity and higher E/e' ratio than endurance athletes (p < 0.05, for all). There is no evidence that LV ejection fraction in elite athletes is altered by either type of training or AAS misuse. Long-term endurance training is associated with preferable effects on LV diastolic function compared to strength training, particularly when the latter is combined with AAS abuse.
NASA Astrophysics Data System (ADS)
Kurukuri, Srihari; Worswick, Michael J.
2013-12-01
An alternative approach is proposed to utilize symmetric yield functions for modeling the tension-compression asymmetry commonly observed in hcp materials. In this work, the strength differential (SD) effect is modeled by choosing separate symmetric plane stress yield functions (for example, Barlat Yld 2000-2d) for the tension i.e., in the first quadrant of principal stress space, and compression i.e., third quadrant of principal stress space. In the second and fourth quadrants, the yield locus is constructed by adopting interpolating functions between uniaxial tensile and compressive stress states. In this work, different interpolating functions are chosen and the predictive capability of each approach is discussed. The main advantage of this proposed approach is that the yield locus parameters are deterministic and relatively easy to identify when compared to the Cazacu family of yield functions commonly used for modeling SD effect observed in hcp materials.
Pomeroy, Valerie M; Ward, Nick S; Johansen-Berg, Heidi; van Vliet, Paulette; Burridge, Jane; Hunter, Susan M; Lemon, Roger N; Rothwell, John; Weir, Christopher J; Wing, Alan; Walker, Andrew A; Kennedy, Niamh; Barton, Garry; Greenwood, Richard J; McConnachie, Alex
2014-02-01
Functional strength training in addition to conventional physical therapy could enhance upper limb recovery early after stroke more than movement performance therapy plus conventional physical therapy. To determine (a) the relative clinical efficacy of conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy for upper limb recovery; (b) the neural correlates of response to conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy; (c) whether any one or combination of baseline measures predict motor improvement in response to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Randomized, controlled, observer-blind trial. The sample will consist of 288 participants with upper limb paresis resulting from a stroke that occurred within the previous 60 days. All will be allocated to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Functional strength training and movement performance therapy will be undertaken for up to 1·5 h/day, five-days/week for six-weeks. Measurements will be undertaken before randomization, six-weeks thereafter, and six-months after stroke. Primary efficacy outcome will be the Action Research Arm Test. Explanatory measurements will include voxel-wise estimates of brain activity during hand movement, brain white matter integrity (fractional anisotropy), and brain-muscle connectivity (e.g. latency of motor evoked potentials). The primary clinical efficacy analysis will compare treatment groups using a multilevel normal linear model adjusting for stratification variables and for which therapist administered the treatment. Effect of conventional physical therapy combined with functional strength training versus conventional physical therapy combined with movement performance therapy will be summarized using the adjusted mean difference and 95% confidence interval. To identify the neural correlates of improvement in both groups, we will investigate associations between change from baseline in clinical outcomes and each explanatory measure. To identify baseline measurements that independently predict motor improvement, we will develop a multiple regression model. © 2013 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.
Aye, Thanda; Thein, Soe; Hlaing, Thaingi
2016-01-01
[Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.
Aye, Thanda; Thein, Soe; Hlaing, Thaingi
2016-01-01
[Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561
Single-step process to improve the mechanical properties of carbon nanotube yarn.
Evora, Maria Cecilia; Lu, Xinyi; Hiremath, Nitilaksha; Kang, Nam-Goo; Hong, Kunlun; Uribe, Roberto; Bhat, Gajanan; Mays, Jimmy
2018-01-01
Carbon nanotube (CNT) yarns exhibit low tensile strength compared to conventional high-performance carbon fibers due to the facile sliding of CNTs past one another. Electron beam (e-beam) irradiation was employed for in a single-step surface modification of CNTs to improve the mechanical properties of this material. To this end, CNT yarns were simultaneously functionalized and crosslinked using acrylic acid (AA) and acrylonitrile (AN) in an e-beam irradiation process. The chemical modification of CNT yarns was confirmed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). The best improvement in mechanical properties was achieved on a sample treated with an aqueous solution of AA and subsequent irradiation. CNT yarn treatment with AA enhanced the strength (444.5 ± 68.4 MPa) by more than 75% and the modulus (21.5 ± 0.6 GPa) by more than 144% as compared to untreated CNT yarn (strength 251 ± 26.5 MPa and modulus 8.8 ± 1.2 GPa).
Single-step process to improve the mechanical properties of carbon nanotube yarn
Lu, Xinyi; Hiremath, Nitilaksha; Kang, Nam-Goo; Hong, Kunlun; Uribe, Roberto; Bhat, Gajanan; Mays, Jimmy
2018-01-01
Carbon nanotube (CNT) yarns exhibit low tensile strength compared to conventional high-performance carbon fibers due to the facile sliding of CNTs past one another. Electron beam (e-beam) irradiation was employed for in a single-step surface modification of CNTs to improve the mechanical properties of this material. To this end, CNT yarns were simultaneously functionalized and crosslinked using acrylic acid (AA) and acrylonitrile (AN) in an e-beam irradiation process. The chemical modification of CNT yarns was confirmed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). The best improvement in mechanical properties was achieved on a sample treated with an aqueous solution of AA and subsequent irradiation. CNT yarn treatment with AA enhanced the strength (444.5 ± 68.4 MPa) by more than 75% and the modulus (21.5 ± 0.6 GPa) by more than 144% as compared to untreated CNT yarn (strength 251 ± 26.5 MPa and modulus 8.8 ± 1.2 GPa). PMID:29527431
Electrocardiographic patterns in African University strength and endurance athletes of Zulu descent.
Grace, J; Duvenage, E; Jordaan, J P
2015-11-01
There is concern over the effect of training on heart function of athletes as recorded by 12-lead electrocardiography (ECG). Although ECG abnormalities with respect to ethnic origin of black athletes from the Caribbean, West Africa and East Africa have been reported, black athletes from southern Africa, specifically participating in different sports, have never been investigated before. The purpose of this study was to analyze the ECG patterns in South African students of Zulu descent, who represented our university in boxing (endurance modality) and body building (resistance modality) at a regional level. Fifteen subjects each were assigned to an endurance (E), resistance (R) or control (C) group, respectively. ECG patterns were recorded with a 12-lead ECG. Our subjects indicated no significant differences in ECG patterns in relation to whether they participate in strength or endurance related sport. However, 80% of the endurance group and 67% of the resistance displayed ECG criteria indicative of left ventricular hypertrophy (LVH), group E displays higher R5/S1-wave voltages (E=43.3 mm; R=36.8 mm; C=37.1 mm) as well distinctly abnormal ECG patterns (E=87%; R=73%; C=53%), raising clinical suspicion of structural heart disease. Our cohort presented with non-significant, marked ST-segment elevation (53% of both the E and R groups) and inverted T-waves in 27% of the E group. Similar to findings in other ethnic Africans, a large proportion of our Zulu study population displayed ECG criteria indicative of LVH on the evidence of a marked increase of R5/S1-wave voltage and ST/T-segment changes with no differences in relation to whether they participate in strength or endurance related sport.
Culvenor, Adam G; Ruhdorfer, Anja; Juhl, Carsten; Eckstein, Felix; Øiestad, Britt Elin
2017-05-01
To perform a systematic review and meta-analysis on the association between knee extensor strength and the risk of structural, symptomatic, or functional deterioration in individuals with or at risk of knee osteoarthritis (KOA). We systematically identified and methodologically appraised all longitudinal studies (≥1-year followup) reporting an association between knee extensor strength and structural (tibiofemoral, patellofemoral), symptomatic (self-reported, knee replacement), or functional (subjective, objective) decline in individuals with or at risk of radiographic or symptomatic KOA. Results were pooled for each of the above associations using meta-analysis, or if necessary, summarized according to a best-evidence synthesis. Fifteen studies were included, evaluating >8,000 participants (51% female), with a followup time between 1.5 and 8 years. Meta-analysis revealed that lower knee extensor strength was associated with an increased risk of symptomatic (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] pain: odds ratio [OR] 1.35, 95% confidence interval [95% CI] 1.10-1.67) and functional decline (WOMAC function: OR 1.38, 95% CI 1.00-1.89, and chair-stand task: OR 1.03, 95% CI 1.03-1.04), but not increased risk of radiographic tibiofemoral joint space narrowing (JSN) (OR 1.15, 95% CI 0.84-1.56). No trend in risk was observed for KOA status (present versus absent). Best-evidence synthesis showed inconclusive evidence for lower knee extensor strength being associated with increased risk of patellofemoral deterioration. Meta-analysis showed that lower knee extensor strength is associated with an increased risk of symptomatic and functional deterioration, but not tibiofemoral JSN. The risk of patellofemoral deterioration in the presence of knee extensor strength deficits is inconclusive. © 2016, American College of Rheumatology.
USAF Summer Faculty Research Program. 1980. Research Reports. Volume I.
1980-10-01
dt C f(t)e e. ( 1 ) Equation (10) is seen to be of the form of a sum of terms , each of which gives the absorption of an individual line with a strength...t4,8k2T 2 + 3(T+T 2) 12 kT( +"T + + 1 -- - (27) 4! TT2 12 In terms of the spectral moments, Eq. (17): t2 ReC(t) = 1 -- M(28)2 2 4! M4+* (8 with the result...Lorentzian profile and K is the modified 1 Bessel function of the second kind. The emission term rif(W+) is extremely small compared to the absorption
Hiraki, Koji; Shibagaki, Yugo; Izawa, Kazuhiro P; Hotta, Chiharu; Wakamiya, Akiko; Sakurada, Tsutomu; Yasuda, Takashi; Kimura, Kenjiro
2017-06-17
Only a few research is available on the effects of home-based exercise training on pre-dialysis chronic kidney disease (CKD) patients. Therefore, we aimed to elucidate the effect of home-based exercise therapy on kidney function and arm and leg muscle strength in pre-dialysis CKD patients. Thirty-six male stage 3-4 pre-dialysis CKD patients (age, 68.7 ± 6.8 years; estimated glomerular filtration rate (eGFR), 39.0 ± 11.6 ml/min/1.73 m 2 ) who were being treated as outpatients were included. The subjects were randomly assigned to an exercise intervention group (Ex group: 18) and a control group (C group: 18). The Ex group wore accelerometer pedometers and were instructed to perform home-based aerobic and resistance exercises, such as brisk walking for 30 min per day, for 12 months. The C group subjects wore accelerometer pedometers but received no exercise therapy guidance; the number of steps covered during normal daily activities was recorded for the C group. The outcome measures were changes in kidney function and handgrip and knee extension muscle strength. Values at the baseline (T1) and 12 months later (T2) were compared. There were no significant differences in baseline characteristics between the two groups; however, the C group was more physically active than the Ex group. Eight subjects dropped out, and 28 subjects (14 in each group) were included in the final analysis. Physical activity increased significantly only in the Ex group. Grip strength (F = 7.0, p = 0.01) and knee extension muscle strength (F = 14.3, p < 0.01) were found to improve only in the Ex group. Further, the changes in eGFR were not significantly different between the two groups (F = 0.01, p = 0.93). Home-based exercise therapy for pre-dialysis CKD patients was feasible and improved arm and leg muscle strength without affecting kidney function. UMIN Clinical Trials Registry ( UMIN000005091 ). Registered 2/15/2011.
Non-neutral plasma diode in the presence of a transverse magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanik, Sourav; Chakrabarti, Nikhil; Kuznetsov, V. I.
An analytical study of the plasma states in non-neutral plasma diodes in the presence of an external transverse magnetic field is presented for an arbitrary neutralization parameter γ. Considerations are restricted to the regime where no electrons are turned around by the magnetic field. The emitter electric field strength E{sub 0} is used as a characteristic function to investigate the existence of solutions depending on the diode length, the applied voltage, the neutralization parameter, and the magnetic field strength. The potential distribution has a wave form for small magnitudes of the external magnetic field, as well as for the casemore » when magnetic field is absent. A new family of solutions appears along with the Bursian ones. On the other hand, as the Larmor radius becomes comparable with the beam Debye length, oscillations in the potential disappear, and only the Bursian branches remain. Unlike the vacuum diode, there are steady state solutions for the negative values of the emitter field strength. As the neutralization parameter (γ) increases, the emitter field strength relating to the SCL (space charge limit) bifurcation point diminishes, and at γ > 1, the value of the emitter's electric field strength at the space charge limit (E{sub 0,SCL}) turns out to be negative.« less
Transition sum rules in the shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yi; Johnson, Calvin W.
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less
Transition sum rules in the shell model
Lu, Yi; Johnson, Calvin W.
2018-03-29
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less
ERIC Educational Resources Information Center
Wilson, Gloria Lodato; Michaels, Craig A.; Margolis, Howard
2005-01-01
This article discusses the use of IEP software applications from the perspectives of form (i.e., legally correct documents) and function (i.e., educationally appropriate individualized programs). The article provides an overview of the basic components of two fairly comprehensive IEP software programs and discusses the general strengths and…
Ho, Andrew T V; Palla, Adelaida R; Blake, Matthew R; Yucel, Nora D; Wang, Yu Xin; Magnusson, Klas E G; Holbrook, Colin A; Kraft, Peggy E; Delp, Scott L; Blau, Helen M
2017-06-27
Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.
Eckardt, Nils
2016-11-24
It is well documented that both balance and resistance training have the potential to mitigate intrinsic fall risk factors in older adults. However, knowledge about the effects of simultaneously executed balance and resistance training (i.e., resistance training conducted on unstable surfaces [URT]) on lower-extremity muscle strength, power and balance in older adults is insufficient. The objective of the present study was to compare the effects of machine-based stable resistance training (M-SRT) and two types of URT, i.e., machine-based (M-URT) and free-weight URT (F-URT), on measures of lower-extremity muscle strength, power and balance in older adults. Seventy-five healthy community-dwelling older adults aged 65-80 years, were assigned to three intervention groups: M-SRT, M-URT and F-URT. Over a period of ten weeks, all participants exercised two times per week with each session lasting ~60 min. Tests included assessment of leg muscle strength (e.g., maximal isometric leg extension strength), power (e.g., chair rise test) and balance (e.g., functional reach test), carried out before and after the training period. Furthermore, maximal training load of the squat-movement was assessed during the last training week. Maximal training load of the squat-movement was significantly lower in F-URT in comparison to M-SRT and M-URT. However, lower-extremity resistance training conducted on even and uneven surfaces meaningfully improved proxies of strength, power and balance in all groups. M-URT produced the greatest improvements in leg extension strength and F-URT in the chair rise test and functional reach test. Aside from two interaction effects, overall improvements in measures of lower-extremity muscle strength, power and balance were similar across training groups. Importantly, F-URT produced similar results with considerably lower training load as compared to M-SRT and M-URT. Concluding, F-URT seems an effective and safe alternative training program to mitigate intrinsic fall risk factors in older adults. This trial has been registered with clinicaltrials.gov ( NCT02555033 ) on 09/18/2015.
Reichert, Thaís; Delevatti, Rodrigo Sudatti; Prado, Alexandre Konig Garcia; Bagatini, Natália Carvalho; Simmer, Nicole Monticelli; Meinerz, Andressa Pellegrini; Barroso, Bruna Machado; Costa, Rochelle Rocha; Kanitz, Ana Carolina; Kruel, Luiz Fernando Martins
2018-03-27
Water-based resistance training (WRT) has been indicated to promote strength gains in elderly population. However, no study has compared different training strategies to identify the most efficient one. The aim of this study was to compare the effects of 3 WRT strategies on the strength and functional capacity of older women. In total, 36 women were randomly allocated to training groups: simple set of 30 seconds [1 × 30s; 66.41 (1.36) y; n = 12], multiple sets of 10 seconds [3 × 10s; 66.50 (1.43) y; n = 11], and simple set of 10 seconds [1 × 10s; 65.23 (1.09) y; n = 13]. Training lasted for 12 weeks. The maximal dynamic strength (in kilograms) and muscular endurance (number of repetitions) of knee extension, knee flexion, elbow flexion, and bench press, as well as functional capacity (number of repetitions), were evaluated. All types of training promoted similar gains in maximal dynamic strength of knee extension and flexion as well as elbow flexion. Only the 1 × 30s and 1 × 10s groups presented increments in bench press maximal strength. All 3 groups showed increases in muscular endurance in all exercises and functional capacity. WRT using long- or short-duration simple sets promotes the same gains in strength and functional capacity in older women as does WRT using multiple sets.
Ryabov, Artem; Berestneva, Ekaterina; Holubec, Viktor
2015-09-21
The paper addresses Brownian motion in the logarithmic potential with time-dependent strength, U(x, t) = g(t)log(x), subject to the absorbing boundary at the origin of coordinates. Such model can represent kinetics of diffusion-controlled reactions of charged molecules or escape of Brownian particles over a time-dependent entropic barrier at the end of a biological pore. We present a simple asymptotic theory which yields the long-time behavior of both the survival probability (first-passage properties) and the moments of the particle position (dynamics). The asymptotic survival probability, i.e., the probability that the particle will not hit the origin before a given time, is a functional of the potential strength. As such, it exhibits a rather varied behavior for different functions g(t). The latter can be grouped into three classes according to the regime of the asymptotic decay of the survival probability. We distinguish 1. the regular (power-law decay), 2. the marginal (power law times a slow function of time), and 3. the regime of enhanced absorption (decay faster than the power law, e.g., exponential). Results of the asymptotic theory show good agreement with numerical simulations.
Relationship between strength, power and balance performance in seniors.
Muehlbauer, Thomas; Besemer, Carmen; Wehrle, Anja; Gollhofer, Albert; Granacher, Urs
2012-01-01
Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Twenty-four healthy and physically active older adults (mean age: 70 ± 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. Copyright © 2012 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller, A; Voinov, A; Algin, E
Two-step-cascade spectra in {sup 172}Yb have been measured after thermal neutron capture. they are compared to calculations based on experimental values of the level density and radiative strength function (RSF) obtained from the {sup 173}Yb(3{sup 3}He,{alpha}{gamma}){sup 172}Yb reaction. The multipolarity of a 6.5(15) {mu}{sub N}{sup 2} resonance at E{sub {gamma}} = 3.3(1) MeV in the RSF is determined to be M1 by this comparison.
The Goals and Effects of Music Listening and Their Relationship to the Strength of Music Preference
Schäfer, Thomas
2016-01-01
Individual differences in the strength of music preference are among the most intricate psychological phenomena. While one person gets by very well without music, another person needs to listen to music every day and spends a lot of temporal and financial resources on listening to music, attending concerts, or buying concert tickets. Where do these differences come from? The hypothesis presented in this article is that the strength of music preference is mainly informed by the functions that music fulfills in people’s lives (e.g., to regulate emotions, moods, or physiological arousal; to promote self-awareness; to foster social relatedness). Data were collected with a diary study, in which 121 respondents documented the goals they tried to attain and the effects that actually occurred for up to 5 music-listening episodes per day for 10 successive days. As expected, listeners reporting more intense experience of the functional use of music in the past (1) had a stronger intention to listen to music to attain specific goals in specific situations and (2) showed a larger overall strength of music preference. It is concluded that the functional effectiveness of music listening should be incorporated in existing models and frameworks of music preference to produce better predictions of interindividual differences in the strength of music preference. The predictability of musical style/genre preferences is also discussed with regard to the present results. PMID:26985998
Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B
2009-08-01
To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.
Hall, Michelle; Hinman, Rana S; van der Esch, Martin; van der Leeden, Marike; Kasza, Jessica; Wrigley, Tim V; Metcalf, Ben R; Dobson, Fiona; Bennell, Kim L
2017-12-08
Clinical guidelines recommend knee muscle strengthening exercises to improve physical function. However, the amount of knee muscle strength increase needed for clinically relevant improvements in physical function is unclear. Understanding how much increase in knee muscle strength is associated with improved physical function could assist clinicians in providing appropriate strength gain targets for their patients in order to optimise outcomes from exercise. The aim of this study was to investigate whether an increase in knee muscle strength is associated with improved self-reported physical function following exercise; and whether the relationship differs according to physical function status at baseline. Data from 100 participants with medial knee osteoarthritis enrolled in a 12-week randomised controlled trial comparing neuromuscular exercise to quadriceps strengthening exercise were pooled. Participants were categorised as having mild, moderate or severe physical dysfunction at baseline using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Associations between 12-week changes in physical function (dependent variable) and peak isometric knee extensor and flexor strength (independent variables) were evaluated with and without accounting for baseline physical function status and covariates using linear regression models. In covariate-adjusted models without accounting for baseline physical function, every 1-unit (Nm/kg) increase in knee extensor strength was associated with physical function improvement of 17 WOMAC units (95% confidence interval (CI) -29 to -5). When accounting for baseline severity of physical function, every 1-unit increase in knee extensor strength was associated with physical function improvement of 24 WOMAC units (95% CI -42 to -7) in participants with severe physical dysfunction. There were no associations between change in strength and change in physical function in participants with mild or moderate physical dysfunction at baseline. The association between change in knee flexor strength and change in physical function was not significant, irrespective of baseline function status. In patients with severe physical dysfunction, an increase in knee extensor strength and improved physical function were associated. ANZCTR 12610000660088 . Registered 12 August 2010.
Relationship of maximum strength to weightlifting performance.
Stone, Michael H; Sands, William A; Pierce, Kyle C; Carlock, Jon; Cardinale, Marco; Newton, Robert U
2005-06-01
The primary objective was to assess the relationship of maximum strength to weightlifting ability using established scaling methods. The secondary objective was to compare men and women weightlifters on strength and weightlifting ability. Two correlational observations were carried out using Pearson's r. In the first observation (N = 65) the relationship of dynamic maximum strength (one-repetition maximum (1RM) squat) was compared with weightlifting ability; in the second observation (N = 16), isometric maximum strength (midthigh pull) was studied. Scaling methods for equating maximum strength and weightlifting results were used (load x (Ht), load x kg, load x lbm(-1), allometric, and Sinclair formula) to assess the association between measures of maximum strength and weightlifting performance. Using scaled values; correlations between maximum strength and weightlifting results were generally strong in both observations (e.g., using allometric scaling for the 1RM squat vs the 1RM snatch: r = 0.84, N = 65). Men were stronger than women (e.g., 1RM squat, N = 65: men = 188.1 +/- 48.6 kg; women = 126.7 +/- 28.3 kg); differences generally held when scaling was applied (e.g., 1RM squat scaled with the Sinclair formula: men = 224.7 +/- 36.5 kg; women = 144.2 +/- 25.4 kg). When collectively considering scaling methods, maximum strength is strongly related to weightlifting performance independent of body mass and height differences. Furthermore, men are stronger than women even when body mass and height are obviated by scaling methods.
Strength testing and training of rowers: a review.
Lawton, Trent W; Cronin, John B; McGuigan, Michael R
2011-05-01
In the quest to maximize average propulsive stroke impulses over 2000-m racing, testing and training of various strength parameters have been incorporated into the physical conditioning plans of rowers. Thus, the purpose of this review was 2-fold: to identify strength tests that were reliable and valid correlates (predictors) of rowing performance; and, to establish the benefits gained when strength training was integrated into the physical preparation plans of rowers. The reliability of maximal strength and power tests involving leg extension (e.g. leg pressing) and arm pulling (e.g. prone bench pull) was high (intra-class correlations 0.82-0.99), revealing that elite rowers were significantly stronger than their less competitive peers. The greater strength of elite rowers was in part attributed to the correlation between strength and greater lean body mass (r = 0.57-0.63). Dynamic lower body strength tests that determined the maximal external load for a one-repetition maximum (1RM) leg press (kg), isokinetic leg extension peak force (N) or leg press peak power (W) proved to be moderately to strongly associated with 2000-m ergometer times (r = -0.54 to -0.68; p < 0.05). Repetition tests that assess muscular or strength endurance by quantifying the number of repetitions accrued at a fixed percentage of the strength maximum (e.g. 50-70% 1RM leg press) or set absolute load (e.g. 40 kg prone bench pulls) were less reliable and more time consuming when compared with briefer maximal strength tests. Only leg press repetition tests were correlated with 2000-m ergometer times (e.g. r = -0.67; p < 0.05). However, these tests differentiate training experience and muscle morphology, in that those individuals with greater training experience and/or proportions of slow twitch fibres performed more repetitions. Muscle balance ratios derived from strength data (e.g. hamstring-quadriceps ratio <45% or knee extensor-elbow flexor ratio around 4.2 ± 0.22 to 1) appeared useful in the pathological assessment of low back pain or rib injury history associated with rowing. While strength partially explained variances in 2000-m ergometer performance, concurrent endurance training may be counterproductive to strength development over the shorter term (i.e. <12 weeks). Therefore, prioritization of strength training within the sequence of training units should be considered, particularly over the non-competition phase (e.g. 2-6 sets × 4-12 repetitions, three sessions a week). Maximal strength was sustained when infrequent (e.g. one or two sessions a week) but intense (e.g. 73-79% of maximum) strength training units were scheduled; however, it was unclear whether training adaptations should emphasize maximal strength, endurance or power in order to enhance performance during the competition phase. Additionally, specific on-water strength training practices such as towing ropes had not been reported. Further research should examine the on-water benefits associated with various strength training protocols, in the context of the training phase, weight division, experience and level of rower, if limitations to the reliability and precision of performance data (e.g. 2000-m time or rank) can be controlled. In conclusion, while positive ergometer time-trial benefits of clinical and practical significance were reported with strength training, a lack of statistical significance was noted, primarily due to an absence of quality long-term controlled experimental research designs.
Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean
2012-07-01
The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p < 0.0001) than the other two subgroups (subgroups 1.5C and 0.8C). For the ZirCAD group, the 0.8C-0.7VL subgroup had significantly lower flexural strength (p= 0.004) than subgroup 0.8C-0.7VP. Nonetheless, both veneered ZirCAD groups showed greater flexural strength than the monolithic Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had significantly higher flexural strength (p < 0.0001) than Empress Esthetic/CAD groups. Monolithic core specimens presented with higher Weibull modulus with all selected core materials. For the ZirCAD group, although the bilayer 0.8C-0.7VL subgroup exhibited significantly lower flexural strength, it had highest Weibull modulus than the 0.8C-0.7VP subgroup. The present study suggests that veneering porcelain onto a ceramic core material diminishes the flexural strength and the reliability of the bilayer specimens. Leucite-reinforced glass-ceramic cores have lower flexural strength than lithium-disilicate ones, while fabrication techniques (heat-pressed or CAD/CAM) and specimen thicknesses do not affect the flexural strength of all glass ceramics. Compared with the heat-pressed veneering technique, the powder/liquid veneering technique exhibited lower flexural strength but increased reliability with a higher Weibull modulus for zirconia bilayer specimens. Zirconia-veneered ceramics exhibited greater flexural strength than monolithic leucite-reinforced and lithium-disilicate ceramics regardless of zirconia veneering techniques (heat-pressed or powder/liquid technique). © 2012 by the American College of Prosthodontists.
Total and partial photoneutron cross sections for Pb isotopes
NASA Astrophysics Data System (ADS)
Kondo, T.; Utsunomiya, H.; Goriely, S.; Daoutidis, I.; Iwamoto, C.; Akimune, H.; Okamoto, A.; Yamagata, T.; Kamata, M.; Itoh, O.; Toyokawa, H.; Lui, Y.-W.; Harada, H.; Kitatani, F.; Hilaire, S.; Koning, A. J.
2012-07-01
Using quasimonochromatic laser-Compton scattering γ rays, total photoneutron cross sections were measured for 206,207,208Pb near neutron threshold with a high-efficiency 4π neutron detector. Partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near threshold by measuring anisotropies in photoneutron emission with linearly polarized γ rays. The E1 strength dominates over the M1 strength in the neutron channel where E1 photoneutron cross sections show extra strength of the pygmy dipole resonance in 207,208Pb near the neutron threshold corresponding to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to an M1 cross section less than 10% of the total photoneutron cross section.
Bania, Theofani A; Taylor, Nicholas F; Baker, Richard J; Graham, H Kerr; Karimi, Leila; Dodd, Karen J
2014-12-01
The aim of the study was to describe daily physical activity levels of adolescents and young adults with bilateral spastic cerebral palsy (CP) and to identify factors that help predict these levels. Daily physical activity was measured using an accelerometer-based activity monitor in 45 young people with bilateral spastic CP (23 males, 22 females; mean age 18y 6mo [SD 2y 5mo] range 16y 1mo-20y 11mo); classified as Gross Motor Function Classification System (GMFCS) level II or III and with contractures of <20° at hip and knee. Predictor variables included demographic characteristics (age, sex, weight) and physical characteristics (gross motor function, lower limb muscle strength, 6min walk distance). Data were analyzed using the information-theoretic approach, using the Akaike information criterion (AIC) and linear regression. Daily activity levels were low compared with published norms. Gross Motor Function Measure Dimension-E (GMFM-E; walking, running, and jumping) was the only common predictor variable in models that best predicted energy expenditure, number of steps, and time spent sitting/lying. GMFM Dimension-D (standing) and bilateral reverse leg press strength contributed to the models that predicted daily physical activity. Adolescents and young adults with bilateral spastic CP and mild to moderate walking disabilities have low levels of daily activity. The GMFM-E was an important predictor of daily physical activity. © 2014 Mac Keith Press.
Duality of Weak and Strong Scatterer in Luttinger Liquid Coupled to Massless Bosons
NASA Astrophysics Data System (ADS)
Galda, Alexey; Yurkevich, Igor; Yevtushenko, Oleg; Lerner, Igor
2013-03-01
We study electronic transport in a Luttinger liquid (LL) with an embedded impurity, which is either a weak scatterer (WS) or a weak link (WL), when interacting electrons are coupled to one-dimensional massless bosons (e.g., acoustic phonons). The additional coupling competes with Coulomb interaction changing scaling exponents of various correlation functions. The impurity strength λ and the tunneling amplitude t in the WS and WL limits scale at low energies ɛ as: λ (ɛ) ~λ0ɛ Δws - 1 and t (ɛ) ~t0ɛ Δwl - 1 , correspondingly. We find that the duality relation between the scaling dimensions established for the standard LL, ΔwsΔwl = 1 , holds in the presence of the additional coupling for an arbitrary fixed strength of boson scattering from the impurity. As a result, at low temperatures the system remains either an ideal insulator or an ideal metal, regardless of the scattering strength. However, in the case when electron and boson scattering from the impurity are correlated, the system has a rich phase diagram that includes a metal-insulator transition at some intermediate values of the scattering. Leverhulme grant RPG-380, DFG through SFB TR-12, DoE Office of Science under the Contract No. DEAC02-06CH11357
Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei
2016-07-01
Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Single molecule force spectroscopy reveals the adhesion mechanism of hydrophobins
NASA Astrophysics Data System (ADS)
Cao, Yi; Li, Bing; Qin, Meng; Wang, Wei
Hydrophobins are a special class of amphiphilic proteins produced by filamentous fungi. They show outstanding interfacial self-assembly and adhesion properties, which are critical to their biological function. Such feature also inspires their broad applications in bio-engineering, surface modification, and nanotechnology. However, the biophysical properties of hydrophobins are not well understood. We combined atomic force microscopy based single molecule force spectroscopy and protein engineering to directly quantify the adhesion strength of a hydorphobin (HFB1) to various surfaces in both the monomer and oligomer states to reveal the molecular determinant of the adhesion strength of hydrophobins. We found that the monomer HFB1 showed distinct adhesion properties towards hydrophobic and hydrophilic surfaces. The adhesion to hydrophobic surfaces (i.e. graphite and gold) was significantly higher than that to the hydrophilic ones (e.g. mica and silicon). However, when self-assembled monolayers were formed, the adhesion strengths to various surfaces were similar and were ubiquitously stronger than the monomer cases. We hypothesized that the interactions among hydrophobins in the monolayer played significant roles for the enhance adhesion strengths. Extracting any single hydrophobin monomers from the surface required the break of interactions not only with the surface but also with the neighboring units. We proposed that such a mechanism may be widely explored in nature for many biofilms for surface adhesion. May also inspire the design of novel adhesives.
Griffiths, Lowri A.; Doig, Jennifer; Churchhouse, Antonia M. D.; Davies, Faith C. J.; Squires, Charlotte E.; Newbery, Helen J.; Abbott, Catherine M.
2012-01-01
Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype “wasted” (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3–4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2. PMID:22848658
Preserving Healthy Muscle during Weight Loss123
Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina
2017-01-01
Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015
Movement of Negative Adverbs in French Infinitival Clauses.
ERIC Educational Resources Information Center
Martineau, France
1994-01-01
Positioning of negative adverbs (e.g., "mie, pas, point, jamais") in Middle and Classical French infinitival clauses is analyzed. It is proposed that, rather than linking movement of this infinitival verb to the strength of functional categories such as agreement, it be linked to parametric change in strength of the negative. (Author/MSE)
Gschwind, Yves J; Kressig, Reto W; Lacroix, Andre; Muehlbauer, Thomas; Pfenninger, Barbara; Granacher, Urs
2013-10-09
With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale - International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.
Monmaturapoj, Naruporn; Srion, Autcharaporn; Chalermkarnon, Prasert; Buchatip, Suthawan; Petchsuk, Atitsa; Noppakunmongkolchai, Warobon; Mai-Ngam, Katanchalee
2017-08-01
A composite of 70/30 poly(lactic acid)/hydroxyapatite was systematically prepared using various amounts of glycidyl methacrylate as reactive compatibilizer or Joncryl ADR®-4368 containing nine glycidyl methacrylate functions as a chain extension/branching agent to improve the mechanical and biological properties for suitable usage as internal bone fixation devices. The effect of glycidyl methacrylate/Joncryl on mechanical properties of poly(lactic acid)/hydroxyapatite was investigated through flexural strength. Cell proliferation and differentiation of osteoblast-like MC3T3-E1 cells cultured on the composite samples were determined by Alamar Blue assay and alkaline phosphatase expression, respectively. Result shows that flexural strength tends to decrease, as glycidyl methacrylate content increases except for 1 wt.% glycidyl methacrylate. With an addition of dicumyl peroxide, the flexural strength shows an improvement than that of without dicumyl peroxide probably due to the chemical bonding of the hydroxyapatite and poly(lactic acid) as revealed by FTIR and NMR, whereas the composite with 5 wt.% Joncryl shows the best result, as the flexural strength increases getting close to pure poly(lactic acid). The significant morphology change could be seen in composite with Joncryl where the uniform agglomeration of hydroxyapatite particles oriented in poly(lactic acid) matrix. Addition of the epoxy functional compatibilizers at suitable percentages could also have benefits to cellular attachment, proliferation, differentiation and mineralization. So that, this poly(lactic acid)/hydroxyapatite composite could be a promising material to be used as internal bone fixation devices such as screws, pins and plates.
Lustosa, Lygia P; Coelho, Fernanda M; Silva, Juscelio P; Pereira, Daniele S; Parentoni, Adriana N; Dias, João M D; Dias, Rosangela C; Pereira, Leani S M
2010-07-28
With the increase in the elderly population, a growing number of chronic degenerative diseases and a greater dependency on caregivers have been observed. Elderly persons in states of frailty remain more susceptible to significant health complications. There is evidence of an inverse relationship between plasma levels of inflammatory mediators and levels of functionality and muscle strength, suggesting that muscle-strengthening measures can aid in inflammatory conditions. The purpose of this study will be verified the effect of a muscle-strengthening program with load during a ten-week period in pre-frail elderly women with attention to the following outcomes: (1) plasma levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha), (2) functional capacity and (3) knee extensor muscle strength. The study design is a randomized crossover clinical trial evaluating 26 elderly women (regardless of their race and/or social condition) who are community residents, older than 65, and classified as pre-frail according to the criteria previously described by Fried et al. (2004). All subjects will be assessed using the Timed up and go and 10-Meter Walk Test functional tests. The plasma levels of IL-6 and TNF-alpha will be assessed by ELISA (enzyme-linked immunosorbent assay) with high sensitivity kits (QuantikineHS, R&D Systems Minneapolis, MN, U.S.). Knee extensor muscle strength will be assessed using the Byodex System 3 Pro(R) isokinetic dynamometer at angular speeds of 60 and 180 degrees/s. The intervention will consist of strengthening exercises of the lower extremities at 50 to 70% of 1RM (maximal resistance) three times per week for ten weeks. The volunteers will be randomized into two groups: group E, the intervention group, and group C, the control group that did not initiate any new activities during the initial study period (ten weeks). After the initial period, group C will begin the intervention and group E will maintain everyday activities without exercising. At the end of the total study period, all volunteers will be reassessed. To demonstrate and discuss possible influences of load-bearing exercises on the modification of plasma levels of IL-6 and TNF-alpha and in the functional performance of pre-frail elderly women. ISRCTN62824599.
Earthquake stress drop and laboratory-inferred interseismic strength recovery
Beeler, N.M.; Hickman, S.H.; Wong, T.-F.
2001-01-01
We determine the scaling relationships between earthquake stress drop and recurrence interval tr that are implied by laboratory-measured fault strength. We assume that repeating earthquakes can be simulated by stick-slip sliding using a spring and slider block model. Simulations with static/kinetic strength, time-dependent strength, and rate- and state-variable-dependent strength indicate that the relationship between loading velocity and recurrence interval can be adequately described by the power law VL ??? trn, where n=-1. Deviations from n=-1 arise from second order effects on strength, with n>-1 corresponding to apparent time-dependent strengthening and n<-1 corresponding to weakening. Simulations with rate and state-variable equations show that dynamic shear stress drop ????d scales with recurrence as d????d/dlntr ??? ??e(b-a), where ??e is the effective normal stress, ??=??/??e, and (a-b)=d??ss/dlnV is the steady-state slip rate dependence of strength. In addition, accounting for seismic energy radiation, we suggest that the static shear stress drop ????s scales as d????s/dlntr ??? ??e(1+??)(b-a), where ?? is the fractional overshoot. The variation of ????s with lntr for earthquake stress drops is somewhat larger than implied by room temperature laboratory values of ?? and b-a. However, the uncertainty associated with the seismic data is large and the discrepancy between the seismic observations and the rate of strengthening predicted by room temperature experiments is less than an order of magnitude. Copyright 2001 by the American Geophysical Union.
VizieR Online Data Catalog: Ba V, Ba VI, and Ba VII oscillator strengths (Rauch+, 2014)
NASA Astrophysics Data System (ADS)
Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.
2014-04-01
table1.dat contains calculated HFR oscillator strengths (loggf) and transition probabilities (gA, in 1/s) in Ba V. CF is the cancellation factor as defined by Cowan (1981). In columns 3 and 6, e is written for even and o for odd. table2.dat contains calculated HFR oscillator strengths (loggf) and transition probabilities (gA, in 1/s) in Ba VI. CF is the cancellation factor as defined by Cowan (1981). In columns 3 and 6, e is written for even and o for odd. table3.dat contains calculated HFR oscillator strengths (loggf) and transition probabilities (gA, in 1/s) in Ba VII. CF is the cancellation factor as defined by Cowan (1981). In columns 3 and 6, e is written for even and o for odd. (3 data files).
Ramlagan, Shandir; Peltzer, Karl; Phaswana-Mafuya, Nancy
2014-01-07
Little is known about the prevalence, predictors and gender differences in hand grip strength of older adults in Africa. This study aims to investigate social and health differences in hand grip strength among older adults in a national probability sample of older South Africans who participated in the Study of Global Ageing and Adults Health (SAGE wave 1) in 2008. We conducted a national population-based cross-sectional study with a sample of 3840 men and women aged 50 years or older in South Africa. The questionnaire included socio-demographic characteristics, health variables, and anthropometric measurements. Linear multivariate regression analysis was performed to assess the association of social factors, health variables and grip strength. The mean overall hand grip strength was 37.9 kgs for men (mean age 61.1 years, SD = 9.1) and 31.5 kgs for women (mean age 62.0 years, SD = 9.7). In multivariate analysis among men, greater height, not being underweight and lower functional disability was associated with greater grip strength, and among women, greater height, better cognitive functioning, and lower functional disability were associated with greater grip strength. Greater height and lower functional disability were found for both older South African men and women to be significantly associated with grip strength.
Andrade, Marilia Dos Santos; Fleury, Anna Maria; de Lira, Claudio Andre Barbosia; Dubas, Joao Paulo; da Silva, Antonio Carlos
2010-05-01
The purpose of this study was to establish the isokinetic profile of shoulder rotator muscles strength in female handball players. Twenty-seven handball players performed concentric and eccentric strength tests of both dominant and non-dominant upper limbs on an isokinetic dynamometer. Internal and external rotator muscles peak torque was assessed at 1.05, 3.14, and 5.23 rad . s(-1) in concentric mode and at 3.14 and 5.23 rad . s(-1) in eccentric mode. Concentric balance ratio and functional ratio were obtained. Bi-lateral deficiency was compared. Concentric strength for internal and external rotation was significantly greater for the dominant than for the non-dominant limb for all speeds (P < or = 0.0001). For eccentric actions, internal rotator muscles were stronger in the dominant than the non-dominant limb (P < or = 0.0001) at both speeds. Concentric balance and functional balance ratios did not differ between sides at 3.14 rad . s(-1) (P = 0.1631), but at 5.23 rad . s(-1) the functional balance ratio in the dominant limb was lower than for the non-dominant limb (P = 0.0500). Although the dominant side was stronger than the non-dominant side, balance concentric ratios remained the same, with only the functional strength ratio different at 5.23 rad . s(-1). Our results suggest that concentric strength exercises be used for internal and external rotators on the non-dominant side, and functional exercise that improves eccentric rotation strength for prevention programmes.
Anderson, Britt; Soliman, Sherif; O’Malley, Shannon; Danckert, James; Besner, Derek
2015-01-01
Drawing on theoretical and computational work with the localist dual route reading model and results from behavioral studies, Besner et al. (2011) proposed that the ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics when naming Arabic numerals, and phonology when evaluating the parity of number words) necessitate the ability to modulate the strength of connections between cognitive modules for lexical representation, semantics, and phonology on a task- and stimulus-specific basis. We used functional magnetic resonance imaging to evaluate this account by assessing changes in functional connectivity while participants performed tasks that did and did not require such stimulus-task default overrides. The occipital region showing the greatest modulation of BOLD signal strength for the two stimulus types was used as the seed region for Granger causality mapping (GCM). Our GCM analysis revealed a region of rostromedial frontal cortex with a crossover interaction. When participants performed tasks that required overriding stimulus type defaults (i.e., parity judgments of number words and naming Arabic numerals) functional connectivity between the occipital region and rostromedial frontal cortex was present. Statistically significant functional connectivity was absent when the tasks were the default for the stimulus type (i.e., parity judgments of Arabic numerals and reading number words). This frontal region (BA 10) has previously been shown to be involved in goal-directed behavior and maintenance of a specific task set. We conclude that overriding stimulus-task defaults requires a modulation of connection strengths between cognitive modules and that the override mechanism predicted from cognitive theory is instantiated by frontal modulation of neural activity of brain regions specialized for sensory processing. PMID:25870571
Work function tuning at Au-HfO{sub 2} interfaces using organophosphonate monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, Matthew; Cardinal, Thomas; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu
2016-05-09
We show that introducing organophosphonate nanomolecular monolayers (NMLs) at Au-HfO{sub 2} interfaces shift the effective work function by 0.2 eV ≥ ΔΦ{sub eff} ≥ −0.6 eV, due to NML body and bonding dipoles. Electron spectroscopy of NML-Au, NML-HfO{sub 2,} and Au-NML-HfO{sub 2} structures indicate that the Au-NML bond strength is the major factor. Au-NML covalent bonding yields ΔΦ{sub eff} ∼ − 0.2 eV, while weak bonding yields ΔΦ{sub eff} ∼ 0.6 eV. In contrast, NMLs on HfO{sub 2} decrease Φ{sub eff} by ∼0.4 eV due to competing contributions from NML-HfO{sub 2} bonding strength and NML orientation. These findings are relevant for nanomolecularly tailoring the electronic properties of metal–ceramic interfaces for applications.
Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali
2013-01-01
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817
Benvegnù, Stefano; Mateo, María Inés; Palomer, Ernest; Jurado-Arjona, Jerónimo; Dotti, Carlos G
2017-05-04
A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination. Copyright © 2017 Elsevier Inc. All rights reserved.
Strotmeyer, Elsa S; de Rekeneire, Nathalie; Schwartz, Ann V; Resnick, Helaine E; Goodpaster, Bret H; Faulkner, Kimberly A; Shorr, Ronald I; Vinik, Aaron I; Harris, Tamara B; Newman, Anne B
2009-11-01
To determine whether sensory and motor nerve function is associated cross-sectionally with quadriceps or ankle dorsiflexion strength in an older community-based population. Cross-sectional analyses within a longitudinal cohort study. Two U.S. clinical sites. Two thousand fifty-nine Health, Aging and Body Composition Study (Health ABC) participants (49.5% male, 36.7% black, aged 73-82) in 2000/01. Quadriceps and ankle strength were measured using an isokinetic dynamometer. Sensory and motor peripheral nerve function in the legs and feet was assessed using 10-g and 1.4-g monofilaments, vibration threshold, and peroneal motor nerve conduction amplitude and velocity. Monofilament insensitivity, poorest vibration threshold quartile (>60 mu), and poorest motor nerve conduction amplitude quartile (<1.7 mV) were associated with 11%, 7%, and 8% lower quadriceps strength (all P<.01), respectively, than in the best peripheral nerve function categories in adjusted linear regression models. Monofilament insensitivity and lowest amplitude quartile were both associated with 17% lower ankle strength (P<.01). Multivariate analyses were adjusted for demographic characteristics, diabetes mellitus, body composition, lifestyle factors, and chronic health conditions and included all peripheral nerve measures in the same model. Monofilament insensitivity (beta=-7.19), vibration threshold (beta=-0.097), and motor nerve conduction amplitude (beta=2.01) each contributed independently to lower quadriceps strength (all P<.01). Monofilament insensitivity (beta=-5.29) and amplitude (beta=1.17) each contributed independently to lower ankle strength (all P<.01). Neither diabetes mellitus status nor lean mass explained the associations between peripheral nerve function and strength. Reduced sensory and motor peripheral nerve function is related to poorer lower extremity strength in older adults, suggesting a mechanism for the relationship with lower extremity disability.
Biaxial flexural strength and microstructure changes of two recycled pressable glass ceramics.
Albakry, Mohammad; Guazzato, Massimiliano; Swain, Michael Vincent
2004-09-01
This study evaluated the biaxial flexural strength and identified the crystalline phases and the microstructural features of pressed and repressed materials of the glass ceramics, Empress 1 and Empress 2. Twenty pressed and 20 repressed disc specimens measuring 14 mm x 1 mm per material were prepared following the manufacturers' recommendations. Biaxial flexure (piston on 3-ball method) was used to assess strength. X-ray diffraction was performed to identify the crystalline phases, and a scanning electron microscope was used to disclose microstructural features. Biaxial flexural strength, for the pressed and repressed specimens, respectively, were E1 [148 (SD 18) and 149 (SD 35)] and E2 [340 (SD 40), 325 (SD 60)] MPa. There was no significant difference in strength between the pressed and the repressed groups of either material, Empress 1 and Empress 2 (p > 0.05). Weibull modulus values results were E1: (8, 4.7) and E2: (9, 5.8) for the same groups, respectively. X-ray diffraction revealed that leucite was the main crystalline phase for Empress 1 groups, and lithium disilicate for Empress 2 groups. No further peaks were observed in the X-ray diffraction patterns of either material after repressing. Dispersed leucite crystals and cracks within the leucite crystals and glass matrix were features observed in Empress 1 for pressed and repressed samples. Similar microstructure features--dense lithium disilicate crystals within a glass matrix--were observed in Empress 2 pressed and repressed materials. However, the repressed material showed larger lithium disilicate crystals than the singly pressed material. Second pressing had no significant effect on the biaxial flexural strength of Empress 1 or Empress 2; however, higher strength variations among the repressed samples of the materials may indicate less reliability of these materials after second pressing.
NASA Astrophysics Data System (ADS)
Wysocki, J. K.
1984-02-01
The idea of Young and Clark of independent evaluation of the work function φ and electric field strength F in FEM [R.D. Young and H.E. Clark, Phys. Rev. Letters 17 (1966) 351] has been extended to the energy region above the Fermi level. The estimation of slowly varying elliptic functions, necessary to compute φ and F, using only experimental data is presented. Calculations for the W(111) plane using the field electron energy distribution and the integral field-emission current dependence on retarding voltage have been performed.
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.
2014-03-01
Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.
Enamel and dentin bond strength following gaseous ozone application.
Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo
2009-08-01
To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p < 0.05). The use of ozone gas to disinfect the cavity before placing a restoration had no influence on immediate enamel and dentin bond strength.
Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.
Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F
2016-01-01
This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.
Line strengths of QED-sensitive forbidden transitions in B-, Al-, F- and Cl-like ions
NASA Astrophysics Data System (ADS)
Bilal, M.; Volotka, A. V.; Beerwerth, R.; Fritzsche, S.
2018-05-01
The magnetic dipole (M 1 ) line strength between the fine-structure levels of the ground configurations in B-, F-, Al-, and Cl-like ions are calculated for the four elements argon, iron, molybdenum, and tungsten. Systematically enlarged multiconfiguration Dirac-Hartree-Fock (MCDHF) wave functions are employed to account for the interelectronic interaction with the Breit interaction included in first-order perturbation theory. The QED corrections are evaluated to all orders in α Z utilizing an effective potential approach. The calculated line strengths are compared with the results of other theories. The M 1 transition rates are reported using accurate energies from the literature. Moreover, the lifetimes in the range of millisecond to picosecond are predicted including the contributions from the transition rate due to the E 2 transition channel. The discrepancies of the predicted rates from those available from the literature are discussed and a benchmark data set of theoretical lifetimes is provided to support future experiments.
Gamma Strength Functions and Level Densities from High-Resolution Proton Scattering under 0°
NASA Astrophysics Data System (ADS)
von Neumann-Cosel, Peter; Bassauer, Sergej; Martin, Dirk; Tamii, Atsushi
2018-05-01
Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0° provides a novel method to measure gamma strength functions (GSF) in nuclei in an energy range of about 5 - 20 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. Comparison with gamma decay data (e.g. from the Oslo method) allows to test the generalised Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance (PDR) crucial for the modelling of (n,γ) and (γ,n) reactions in astrophysical reaction networks. From the two test cases studied, 208Pb remains inconclusive in the energy region of the PDR because of large Porter-Thomas fluctuations due to the small level density (LD), while the BA hypothesis seems to hold in case of 96Mo. A fluctuation analysis of the high-resolution data also provides a direct measure of the LD in the energy region of the isovector giant dipole resonance (IVGDR) well above the neutron threshold, where hardly any experimental information is available. This permits an independent test of the decomposition of GSF and LD in Oslo-type experiments.
Scudder, Samantha L.; Goo, Marisa S.; Cartier, Anna E.; Molteni, Alice; Schwarz, Lindsay A.; Wright, Rebecca
2014-01-01
The trafficking of AMPA receptors (AMPARs) to and from synapses is crucial for synaptic plasticity. Previous work has demonstrated that AMPARs undergo activity-dependent ubiquitination by the E3 ubiquitin ligase Nedd4-1, which promotes their internalization and degradation in lysosomes. Here, we define the molecular mechanisms involved in ubiquitination and deubiquitination of AMPARs. We report that Nedd4-1 is rapidly redistributed to dendritic spines in response to AMPAR activation and not in response to NMDA receptor (NMDAR) activation in cultured rat neurons. In contrast, NMDAR activation directly antagonizes Nedd4-1 function by promoting the deubiquitination of AMPARs. We show that NMDAR activation causes the rapid dephosphorylation and activation of the deubiquitinating enzyme (DUB) USP8. Surface AMPAR levels and synaptic strength are inversely regulated by Nedd4-1 and USP8. Strikingly, we show that homeostatic downscaling of synaptic strength is accompanied by an increase and decrease in Nedd4-1 and USP8 protein levels, respectively. Furthermore, we show that Nedd4-1 is required for homeostatic loss of surface AMPARs and downscaling of synaptic strength. This study provides the first mechanistic evidence for rapid and opposing activity-dependent control of a ubiquitin ligase and DUB at mammalian CNS synapses. We propose that the dynamic regulation of these opposing forces is critical in maintaining synapses and scaling them during homeostatic plasticity. PMID:25505317
2013-01-01
Background The purpose of the present study was to compare dynamic muscle strength, functional performance, fatigue, and quality of life in premenopausal systemic lupus erythematosus (SLE) patients with low disease activity versus matched-healthy controls and to determine the association of dynamic muscle strength with fatigue, functional performance, and quality of life in SLE patients. Methods We evaluated premenopausal (18–45 years) SLE patients with low disease activity (Systemic lupus erythematosus disease activity index [SLEDAI]: mean 1.5 ± 1.2). The control (n = 25) and patient (n = 25) groups were matched by age, physical characteristics, and the level of physical activities in daily life (International Physical Activity Questionnaire IPAQ). Both groups had not participated in regular exercise programs for at least six months prior to the study. Dynamic muscle strength was assessed by one-repetition maximum (1-RM) tests. Functional performance was assessed by the Timed Up and Go (TUG), in 30-s test a chair stand and arm curl using a 2-kg dumbbell and balance test, handgrip strength and a sit-and-reach flexibility test. Quality of life (SF-36) and fatigue were also measured. Results The SLE patients showed significantly lower dynamic muscle strength in all exercises (leg press 25.63%, leg extension 11.19%, leg curl 15.71%, chest press 18.33%, lat pulldown 13.56%, 1-RM total load 18.12%, P < 0.001-0.02) compared to the controls. The SLE patients also had lower functional performance, greater fatigue and poorer quality of life. In addition, fatigue, SF-36 and functional performance accounted for 52% of the variance in dynamic muscle strength in the SLE patients. Conclusions Premenopausal SLE patients with low disease activity showed lower dynamic muscle strength, along with increased fatigue, reduced functional performance, and poorer quality of life when compared to matched controls. PMID:24011222
Evolution of the pygmy dipole resonance in Sn isotopes
NASA Astrophysics Data System (ADS)
Toft, H. K.; Larsen, A. C.; Bürger, A.; Guttormsen, M.; Görgen, A.; Nyhus, H. T.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Voinov, A.
2011-04-01
Nuclear level density and γ-ray strength functions of Sn121,122 below the neutron separation energy are extracted with the Oslo method using the (He3,He3'γ) and (He3,αγ) reactions. The level densities of Sn121,122 display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for Eγ≳5.2 MeV. This enhancement is compatible with pygmy resonances centered at ≈8.4(1) and ≈8.6(2) MeV, respectively, and with integrated strengths corresponding to ≈1.8-5+1% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in Sn116-119. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in Sn116-122 is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.
2014-01-01
Background Little is known about the prevalence, predictors and gender differences in hand grip strength of older adults in Africa. This study aims to investigate social and health differences in hand grip strength among older adults in a national probability sample of older South Africans who participated in the Study of Global Ageing and Adults Health (SAGE wave 1) in 2008. Methods We conducted a national population-based cross-sectional study with a sample of 3840 men and women aged 50 years or older in South Africa. The questionnaire included socio-demographic characteristics, health variables, and anthropometric measurements. Linear multivariate regression analysis was performed to assess the association of social factors, health variables and grip strength. Results The mean overall hand grip strength was 37.9 kgs for men (mean age 61.1 years, SD = 9.1) and 31.5 kgs for women (mean age 62.0 years, SD = 9.7). In multivariate analysis among men, greater height, not being underweight and lower functional disability was associated with greater grip strength, and among women, greater height, better cognitive functioning, and lower functional disability were associated with greater grip strength. Conclusions Greater height and lower functional disability were found for both older South African men and women to be significantly associated with grip strength. PMID:24393403
Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films
NASA Astrophysics Data System (ADS)
Migas, D. B.; Bogorodz, V. O.; Filonov, A. B.; Borisenko, V. E.; Skorodumova, N. V.
2018-04-01
By means of ab initio calculations with hybrid functionals we show a possibility for quasi-2D silicon structures originated from semiconducting Mg2Si, Ca2Si, Sr2Si and Ba2Si silicides to exist. Such a 2D structure is similar to the one of transition metal chalcogenides where silicon atoms form a layer in between of metal atoms aligned in surface layers. These metal surface atoms act as pseudo passivation species stabilizing crystal structure and providing semiconducting properties. Considered 2D Mg2Si, Ca2Si, Sr2Si and Ba2Si have band gaps of 1.14 eV, 0.69 eV, 0.33 eV and 0.19 eV, respectively, while the former one is also characterized by a direct transition with appreciable oscillator strength. Electronic states of the surface atoms are found to suppress an influence of the quantum confinement on the band gaps. Additionally, we report Sr2Si bulk in the cubic structure to have a direct band gap of 0.85 eV as well as sizable oscillator strength of the first direct transition.
Zani, Fabiana Vieira Breijão; Aguilar-Nascimento, José Eduardo; Nascimento, Diana Borges Dock; da Silva, Ageo Mário Cândido; Caporossi, Fernanda Stephan; Caporossi, Cervantes
2015-01-01
ABSTRACT Objective: To evaluate the change in respiratory function and functional capacity according to the type of preoperative fasting. Methods: Randomized prospective clinical trial, with 92 female patients undergoing cholecystectomy by laparotomy with conventional or 2 hours shortened fasting. The variables measured were the peak expiratory flow, forced expiratory volume in the first second, forced vital capacity, dominant handgrip strength, and non-dominant handgrip strength. Evaluations were performed 2 hours before induction of anesthesia and 24 hours after the operation. Results: The two groups were similar in preoperative evaluations regarding demographic and clinical characteristics, as well as for all variables. However, postoperatively the group with shortened fasting had higher values than the group with conventional fasting for lung function tests peak expiratory flow (128.7±62.5 versus 115.7±59.9; p=0.040), forced expiratory volume in the first second (1.5±0.6 versus 1.2±0.5; p=0.040), forced vital capacity (2.3±1.1 versus 1.8±0.9; p=0.021), and for muscle function tests dominant handgrip strength (24.9±6.8 versus 18.4±7.7; p=0.001) and non-dominant handgrip strength (22.9±6.3 versus 17.0±7.8; p=0.0002). In the intragroup evaluation, there was a decrease in preoperative compared with postoperative values, except for dominant handgrip strength (25.2±6.7 versus 24.9±6.8; p=0.692), in the shortened fasting group. Conclusion: Abbreviation of preoperative fasting time with ingestion of maltodextrin solution is beneficial to pulmonary function and preserves dominant handgrip strength. PMID:26154547
Stiffness and strength of oxygen-functionalized graphene with vacancies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu
2014-11-14
The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less
Kraschnewski, Jennifer L; Sciamanna, Christopher N; Ciccolo, Joseph T; Rovniak, Liza S; Lehman, Erik B; Candotti, Carolina; Ballentine, Noel H
2014-09-01
To determine the association between meeting strength training guidelines (≥2 times per week) and the presence of functional limitations among older adults. This cross-sectional study used data from older adult participants (N=6763) of the National Health Interview Survey conducted in 2011 in the United States. Overall, 16.1% of older adults reported meeting strength training guidelines. For each of nine functional limitations, those with the limitation were less likely to meet strength training recommendations than those without the limitation. For example, 20.0% of those who reported no difficulty walking one-quarter mile met strength training guidelines, versus only 10.1% of those who reported difficulty (p<.001). In sum, 21.7% of those with no limitations (33.7% of sample) met strength training guidelines, versus only 15.9% of those reporting 1-4 limitations (38.5% of sample) and 9.8% of those reporting 5-9 limitations (27.8% of sample) (p<.001). Strength training is uncommon among older adults and even less common among those who need it the most. The potential for strength training to improve the public's health is therefore substantial, as those who have the most to gain from strength training participate the least. Copyright © 2014 Elsevier Inc. All rights reserved.
Rocha, Flávia Roberta; Brüggemann, Ana Karla Vieira; Francisco, Davi de Souza; Medeiros, Caroline Semprebom de; Rosal, Danielle; Paulin, Elaine
2017-01-01
To evaluate diaphragmatic mobility in relation to lung function, respiratory muscle strength, dyspnea, and physical activity in daily life (PADL) in patients with COPD. We included 25 patients with COPD, classified according to the Global Initiative for Chronic Obstructive Lung Disease criteria, and 25 healthy individuals. For all of the participants, the following were evaluated: anthropometric variables, spirometric parameters, respiratory muscle strength, diaphragmatic mobility (by X-ray), PADL, and the perception of dyspnea. In the COPD group, diaphragmatic mobility was found to correlate with lung function variables, inspiratory muscle strength, and the perception of dyspnea, whereas it did not correlate with expiratory muscle strength or PADL. In patients with COPD, diaphragmatic mobility seems to be associated with airway obstruction and lung hyperinflation, as well as with ventilatory capacity and the perception of dyspnea, although not with PADL. Avaliar a relação da mobilidade diafragmática com a função pulmonar, força muscular respiratória, dispneia e atividade física de vida diária (AFVD) em pacientes com DPOC. Foram avaliados 25 pacientes com diagnóstico de DPOC, classificados de acordo com critérios da Global Initiative for Chronic Obstructive Lung Disease, e 25 indivíduos saudáveis. Todos foram submetidos às seguintes avaliações: mensuração antropométrica, espirometria, força muscular respiratória, mobilidade diafragmática (por radiografia), AFVD e percepção de dispneia. No grupo DPOC, houve correlações da mobilidade diafragmática com variáveis de função pulmonar, força muscular inspiratória e percepção de dispneia. Não houve correlações da mobilidade diafragmática com força muscular expiratória e AFVD. A mobilidade diafragmática parece estar associada tanto com a obstrução das vias aéreas quanto com a hiperinsuflação pulmonar em pacientes com DPOC, assim como com a capacidade ventilatória e percepção de dispneia, mas não com AFVD.
2013-01-01
Background With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale – International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3’) that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose–response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention. Trial registration ClinicalTrials.gov Identifier: NCT01906034 PMID:24106864
New true-triaxial rock strength criteria considering intrinsic material characteristics
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong
2018-02-01
A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.
Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans
2017-01-01
Research suggests that college-aged adults are vulnerable to tinnitus and hearing loss due to exposure to traumatic levels of noise on a regular basis. Recent human studies have associated exposure to high noise exposure background (NEB, i.e., routine noise exposure) with the reduced cochlear output and impaired speech processing ability in subjects with clinically normal hearing sensitivity. While the relationship between NEB and the functions of the auditory afferent neurons are studied in the literature, little is known about the effects of NEB on functioning of the auditory efferent system. The objective of the present study was to investigate the relationship between medial olivocochlear reflex (MOCR) strength and NEB in subjects with clinically normal hearing sensitivity. It was hypothesized that subjects with high NEB would exhibit reduced afferent input to the MOCR circuit which would subsequently lead to reduced strength of the MOCR. In normal-hearing listeners, the study examined (1) the association between NEB and baseline click-evoked otoacoustic emissions (CEOAEs) and (2) the association between NEB and MOCR strength. The MOCR was measured using CEOAEs evoked by 60 dB pSPL linear clicks in a contralateral acoustic stimulation (CAS)-off and CAS-on (a broadband noise at 60 dB SPL) condition. Participants with at least 6 dB signal-to-noise ratio (SNR) in the CAS-off and CAS-on conditions were included for analysis. A normalized CEOAE inhibition index was calculated to express MOCR strength in a percentage value. NEB was estimated using a validated questionnaire. The results showed that NEB was not associated with the baseline CEOAE amplitude (r = -0.112, p = 0.586). Contrary to the hypothesis, MOCR strength was positively correlated with NEB (r = 0.557, p = 0.003). NEB remained a significant predictor of MOCR strength (β = 2.98, t(19) = 3.474, p = 0.003) after the unstandardized coefficient was adjusted to control for effects of smoking, sound level tolerance (SLT) and tinnitus. These data provide evidence that MOCR strength is associated with NEB. The functional significance of increased MOCR strength is discussed. PMID:28886123
Smalley, John F.
2017-04-06
In this study, we demonstrate how small and rapid temperature perturbations (produced by the indirect laser-induced temperature jump (ILIT) technique) of solid metal electrode|electrolyte solution interfaces may be used to determine the potential of zero (total) charge (E pzc) and its temperature derivativemore » $$\\left(\\frac{dEpzc}{dT}\\right)$$ of Au(111) electrode surfaces modified by alkanethiol self-assembled monolayers in contact with high ionic strength (i.e., 1.0 M) aqueous electrolyte solutions. The E pzc’s measured for two different types of SAMs (made from either HS(CH 2) n-1CH 3 (5 ≤ n ≤ 12, E pzc = -(0.99 ± 0.12) V vs SSCE) or HS(CH 2) nOH (3 ≤ n ≤ 16, E pzc = (0.46 ± 0.22) V vs SSCE)) are considerably different than those measured previously at much lower electrolyte solution ionic strengths. For mixed monolayers made from both HS(CH 2) n-1CH 3 and HS(CH 2) nFc (where Fc refers to ferrocene), the difference in Epzc decreases as a function of the surface concentration of the Fc moiety (i.e., [Fc]), and it completely disappears at a surprisingly small [Fc] (~4.0 × 10 –11 mol cm –2). These observations for the Au(111)|hydrophobic (neat and mixed) SAM|aqueous electrolyte solution interfaces, along with the surface potentials (g Sml(dip)) evaluated for the contacting electrolyte solution surfaces of these interfaces, are consistent with a structure for the water molecule components of these surfaces where there is a net orientation of the dipoles of these molecules. Accordingly, the negative (oxygen) ends of these molecules point toward the SAM surface. The positive values of g Sml(dip) evaluated for hydrophilic SAM (e.g., made from HS(CH 2) nOH)|aqueous electrolyte solution interfaces) also indicate that the structure of these interfaces is similar to that of the hydrophobic interfaces. However, g Sml(dip) decreases with increasing ionic strength for the hydrophilic interfaces, while it increases with increasing ionic strength for the hydrophobic interfaces. The data (and calculations) reported in the present work and other studies of hydrophobic (and hydrophilic)|aqueous solution interfaces are as yet insufficient to support a complete explanation for the effects of ionic strength observed in the present study. Nevertheless, an analysis based upon the value of $$\\left(\\frac{dEpzc}{dT}\\right)$$ (= (0.51 ± 0.12) mV/K, essentially the same for SAMs made from both HS(CH 2) n-1CH 3 and HS(CH 2) nOH), determined in the present study provides a further indication that upon formation of the SAM there is a partial charge transfer of electrons from the relevant gold atoms on the Au(111) surface to the sulfur atoms of the alkanethiols.« less
Endocrine determinants of incident sarcopenia in middle-aged and elderly European men.
Gielen, Evelien; O'Neill, Terence W; Pye, Stephen R; Adams, Judith E; Wu, Frederick C; Laurent, Michaël R; Claessens, Frank; Ward, Kate A; Boonen, Steven; Bouillon, Roger; Vanderschueren, Dirk; Verschueren, Sabine
2015-09-01
In men, the long-term consequences of low serum levels of sex steroids, vitamin D metabolites, and insulin-like growth factor 1 (IGF-1) on the evolution of muscle mass, muscle strength, or physical performance are unclear. Moreover, there are no data about the relationship between these hormones and incident sarcopenia defined as low muscle mass and function. The aim of this study was to determine whether the baseline levels of sex hormones, vitamin D metabolites, and IGF-1 predict changes in muscle mass, muscle strength, physical performance, and incident sarcopenia. In 518 men aged 40-79 years, recruited for participation in the European Male Ageing Study, total, free, and bioavailable testosterone (T), oestradiol (E), sex hormone-binding globulin, IGF-1, 25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone were assessed at baseline. Appendicular lean mass (aLM), gait speed, and grip strength were measured at baseline and after a mean follow-up of 4.3 years. Sarcopenia was defined by the definition of Baumgartner (relative aLM ≤7.26 kg/m(2)), the International Working Group on Sarcopenia (IWGS), and the European Working Group on Sarcopenia in Older People (EWGSOP). aLM significantly decreased from age 50 years, while gait speed and grip strength significantly decreased from age 70 years. The incidence of sarcopenia by the definitions of Baumgartner, IWGS, and EWGSOP was 8.1%, 3.0%, and 1.6%, respectively. After adjustment for age, centre, body mass index, smoking, and number of comorbidities at baseline, baseline levels of T and vitamin D metabolites were not associated with change in aLM, gait speed, and/or grip strength, while a high baseline level of total E2 was associated with a greater decrease in aLM. In men aged ≥70 years, low IGF-1 was associated with a greater decrease in gait speed. Baseline endocrine variables were not independently associated with an increased risk of incident sarcopenia by any definition. Low levels of T and 25OHD do not predict loss of muscle mass, gait speed, or grip strength in middle-aged and elderly community-dwelling European men. Low IGF-1 predicts change in gait speed in men aged ≥70 years.
Endocrine determinants of incident sarcopenia in middle-aged and elderly European men
Gielen, Evelien; O'Neill, Terence W; Pye, Stephen R; Adams, Judith E; Wu, Frederick C; Laurent, Michaël R; Claessens, Frank; Ward, Kate A; Boonen, Steven; Bouillon, Roger; Vanderschueren, Dirk; Verschueren, Sabine
2015-01-01
Background In men, the long-term consequences of low serum levels of sex steroids, vitamin D metabolites, and insulin-like growth factor 1 (IGF-1) on the evolution of muscle mass, muscle strength, or physical performance are unclear. Moreover, there are no data about the relationship between these hormones and incident sarcopenia defined as low muscle mass and function. The aim of this study was to determine whether the baseline levels of sex hormones, vitamin D metabolites, and IGF-1 predict changes in muscle mass, muscle strength, physical performance, and incident sarcopenia. Methods In 518 men aged 40–79 years, recruited for participation in the European Male Ageing Study, total, free, and bioavailable testosterone (T), oestradiol (E), sex hormone-binding globulin, IGF-1, 25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone were assessed at baseline. Appendicular lean mass (aLM), gait speed, and grip strength were measured at baseline and after a mean follow-up of 4.3 years. Sarcopenia was defined by the definition of Baumgartner (relative aLM ≤7.26 kg/m2), the International Working Group on Sarcopenia (IWGS), and the European Working Group on Sarcopenia in Older People (EWGSOP). Results aLM significantly decreased from age 50 years, while gait speed and grip strength significantly decreased from age 70 years. The incidence of sarcopenia by the definitions of Baumgartner, IWGS, and EWGSOP was 8.1%, 3.0%, and 1.6%, respectively. After adjustment for age, centre, body mass index, smoking, and number of comorbidities at baseline, baseline levels of T and vitamin D metabolites were not associated with change in aLM, gait speed, and/or grip strength, while a high baseline level of total E2 was associated with a greater decrease in aLM. In men aged ≥70 years, low IGF-1 was associated with a greater decrease in gait speed. Baseline endocrine variables were not independently associated with an increased risk of incident sarcopenia by any definition. Conclusions Low levels of T and 25OHD do not predict loss of muscle mass, gait speed, or grip strength in middle-aged and elderly community-dwelling European men. Low IGF-1 predicts change in gait speed in men aged ≥70 years. PMID:26401471
Eto, Shuichi; Miyamoto, Hiroshi; Shobuike, Takeo; Noda, Iwao; Akiyama, Takayuki; Tsukamoto, Masatsugu; Ueno, Masaya; Someya, Shinsuke; Kawano, Shunsuke; Sonohata, Motoki; Mawatari, Masaaki
2015-09-01
Antibacterial silver with hydroxyapatite (Ag-HA) is a promising coating material for imparting antibacterial properties to implants. We previously reported that 3% (w/w) silver with HA (3% Ag-HA) has both antibacterial activity and osteoconductivity. In this study, we investigated the effects of Ag-HA on the in vitro osteoblast function and the in vivo anchorage strength and osteoconductivity of implants. Production of the osteoblast marker alkaline phosphatase, but not cytotoxicity, was observed in cells of the osteoblast cell line MC3T3-E1 cultured on the 3% Ag-HA-coated surface. These results were similar to those observed with silver-free HA coating. In contrast, a significant high level of cytotoxicity was observed when the cells were cultured on a 50% Ag-HA-coated surface. The anchorage strength of implants inserted into the femur of Sprague-Dawley (SD) rats was enhanced by coating the implants with 3% Ag-HA. On the 3% Ag-HA-coated surface, both metaphyseal and diaphyseal areas were largely covered with new bone and had adequate osteoconductivity. These results suggest that 3% Ag-HA, like conventional HA, promotes osteogenesis by supporting osteoblast viability and function and thereby contributes to sufficient anchorage strength of implants. Application of 3% Ag-HA, which combines the osteoconductivity of HA and the antibacterial activity of silver, to prosthetic joints will help prevent postoperative infections. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.
2018-04-01
The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.
Sundstrup, Emil; Jakobsen, Markus Due; Andersen, Lars Louis; Andersen, Thomas Rostgaard; Randers, Morten Bredsgaard; Helge, Jørn Wulff; Suetta, Charlotte; Schmidt, Jakob Friis; Bangsbo, Jens; Krustrup, Peter; Aagaard, Per
2016-06-01
A decline in physical capacity takes place with increasing age that negatively affects overall physical function including work ability and the ability to perform typical activities of daily living (ADL). The overall aim of the present study was to determine the neuromuscular adaptations to long-term (1 year) football and strength training in older untrained adults, and to assess the concurrent effect on functional ADL capacity. Twenty-seven healthy elderly males (68.2 ± 3.2 years) were randomly assigned to 12 months of either recreational football training (FT: n = 10), strength training (ST: n = 9) or served as inactive controls (CON: n = 8). Recreational football training consisted of small-sided training sessions whereas strength training consisted of high intensity exercises targeting the lower extremity and upper body. Maximal thigh muscle strength and rate of force development (RFD) were assessed with isokinetic dynamometry, while postural balance and vertical jumping performance were evaluated using force plate analysis. Furthermore, functional ability was evaluated by stair-ascent and chair-rising testing. A total of nine, nine and seven participants from FT, ST and CON, respectively, were included in the analysis. Both exercise regimens led to substantial gains in functional ability, evidenced by 24 and 18 % reduced stair-ascent time, and 32 and 21 % increased chair-rising performance in FT and ST, respectively (all P < 0.05). Long-term strength training led to increased concentric (14 %; P < 0.01) and isometric (23 %; P < 0.001) quadriceps and isometric hamstring strength (44 %; P < 0.0001), whereas football training mainly resulted in enhanced hamstring strength (18 %, P < 0.05) and RFD (89 %, P < 0.0001). Long-term (1 year) strength training led to increased quadriceps and hamstring strength, whereas the adaptations to football training mainly included enhanced strength and rapid force capacity of the hamstring muscles. Gains in functional ability were observed in response to both training regimens, evidenced by reduced stair-ascent time and increased chair-rising performance. Long-term football exercise and strength training both appear to be effective interventional strategies to improve factors of importance for ADL by counteracting the age-related decline in lower limb strength and functional capacity among old male adults. This could potentially be a way to improve work ability of senior workers.
Kingsley, J Derek; Panton, Lynn B; Toole, Tonya; Sirithienthad, Prawee; Mathis, Reed; McMillan, Victor
2005-09-01
To determine whether women with fibromyalgia benefit from strength training. Randomized controlled trial. Testing was completed at the university and training was completed at a local community wellness facility. Twenty-nine women (age range, 18-54 y) with fibromyalgia participated. Subjects were randomly assigned to a control (n=14; wait-listed for exercise) or strength (n=15) group. After the first 4 weeks, 7 (47%) women dropped from the strength group. Subjects underwent 12 weeks of training on 11 exercises, 2 times a week, performing 1 set of 8 to 12 repetitions at 40% to 60% of their maximal lifts and were progressed to 60% to 80%. Subjects were measured for strength, functionality, tender point sensitivity, and fibromyalgia impact. The strength group significantly (P< or =.05) improved upper- (strength, 39+/-11 to 42+/-12 kg; control, 38+/-13 to 38+/-12 kg) and lower- (strength, 68+/-28 to 82+/-25 kg; control, 61+/-25 to 61+/-26 kg) body strength. Upper-body functionality measured by the Continuous-Scale Physical Functional Performance test improved significantly (strength, 44+/-11 to 50+/-16U; control, 51+/-11 to 49+/-13U) after training. Tender point sensitivity and fibromyalgia impact did not change. Strength training improved strength and some functionality in women with fibromyalgia. Interventions with resistance have important implications on independence and quality of life issues for women with fibromyalgia.
Level densities and γ-ray strength functions in Sn isotopes
NASA Astrophysics Data System (ADS)
Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.
2010-06-01
The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.
Vikmoen, Olav; Rønnestad, Bent R; Ellefsen, Stian; Raastad, Truls
2017-03-01
The purpose of this study was to investigate the effects of adding heavy strength training to female duathletes' normal endurance training on both cycling and running performance. Nineteen well-trained female duathletes ( V O 2max cycling: 54 ± 3 ml∙kg -1 ∙min -1 , VO 2max running: 53 ± 3 ml∙kg -1 ∙min -1 ) were randomly assigned to either normal endurance training ( E , n = 8) or normal endurance training combined with strength training ( E+S , n = 11). The strength training consisted of four lower body exercises [3 × 4-10 repetition maximum (RM)] twice a week for 11 weeks. Running and cycling performance were assessed using 5-min all-out tests, performed immediately after prolonged periods of submaximal work (3 h cycling or 1.5 h running). E+S increased 1RM in half squat (45 ± 22%) and lean mass in the legs (3.1 ± 4.0%) more than E Performance during the 5-min all-out test increased in both cycling (7.0 ± 4.5%) and running (4.7 ± 6.0%) in E+S, whereas no changes occurred in E The changes in running performance were different between groups. E+S reduced oxygen consumption and heart rate during the final 2 h of prolonged cycling, whereas no changes occurred in E No changes occurred during the prolonged running in any group. Adding strength training to normal endurance training in well-trained female duathletes improved both running and cycling performance when tested immediately after prolonged submaximal work. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Flexural resistance of heat-pressed and CAD-CAM lithium disilicate with different translucencies.
Fabian Fonzar, Riccardo; Carrabba, Michele; Sedda, Maurizio; Ferrari, Marco; Goracci, Cecilia; Vichi, Alessandro
2017-01-01
To compare flexural strength of CAD-CAM and heat-pressed lithium disilicate. For Pressed specimens (Group A), acrylate polymer blocks were cut with a saw in bars shape. Sprueing, investing and preheating procedures were carried out following manufacturer's instructions. IPS e.max Press ingots (Ivoclar-Vivadent) were divided into subgroups (n=15) according to translucency: A.1=HT-A3; A.2=MT-A3; A.3=LT-A3; A.4=MO2. Ingots were then pressed following manufacturer's instructions. For CAD-CAM specimens (Group B) blocks of IPS e.max CAD (Ivoclar-Vivadent) were divided into subgroups: B.1=HT-A3; B.2=MT-A3; B.3=LT-A3; B.4=MO2. Specimens (n=15) were obtained by cutting the blocks with a saw. Final crystallization was performed following manufacturer's instructions. Both Press and CAD specimens were polished and finished with silica carbide papers of increasing grit. Final dimensions of the specimens were 4.0±0.2mm, 1.2±0.2mm, and 16.0±0.2mm. Specimens were tested using a three-point bending test. Flexural strength, Weibull modulus, and Weibull characteristic strength were calculated. Flexural strength data were statistically analyzed. The overall means of Press and CAD specimens did not differ significantly. Within the Press group different translucencies were found to have similar flexural strength. Within the CAD group, statistically significant differences emerged among the tested translucencies (p<0.001). Specifically, MT had significantly higher flexural strength than HT and MO. Also, LT exhibited significantly higher flexural strength than MO. The choice between IPS e.max Press and IPS e.max CAD formulations can be based on different criteria than flexural resistance. Within each formulation, for IPS e.max Press translucency does not affect the flexural strength while for IPS e.max CAD it is an influential factor. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia
2014-01-01
Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P < 0.05 was considered as significant. Results: There was a significant difference between enamel and dentin substrates (P < 0.001) and between lased and un-lased groups; the un-lased group had significantly higher bond strength (P < 0.001). Shear bond strength increased significantly with an increase in the laser irradiation distance (P < 0.05) on enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665
Universal energy distribution for interfaces in a random-field environment
NASA Astrophysics Data System (ADS)
Fedorenko, Andrei A.; Stepanow, Semjon
2003-11-01
We study the energy distribution function ρ(E) for interfaces in a random-field environment at zero temperature by summing the leading terms in the perturbation expansion of ρ(E) in powers of the disorder strength, and by taking into account the nonperturbational effects of the disorder using the functional renormalization group. We have found that the average and the variance of the energy for one-dimensional interface of length L behave as,
Brosseau, Lucie; Thevenot, Odette; MacKiddie, Olivia; Taki, Jade; Wells, George A; Guitard, Paulette; Léonard, Guillaume; Paquet, Nicole; Aydin, Sibel Z; Toupin-April, Karine; Cavallo, Sabrina; Moe, Rikke Helene; Shaikh, Kamran; Gifford, Wendy; Loew, Laurianne; De Angelis, Gino; Shallwani, Shirin Mehdi; Aburub, Ala' S; Mizusaki Imoto, Aline; Rahman, Prinon; Álvarez Gallardo, Inmaculada C; Cosic, Milkana Borges; Østerås, Nina; Lue, Sabrina; Hamasaki, Tokiko; Gaudreault, Nathaly; Towheed, Tanveer E; Koppikar, Sahil; Kjeken, Ingvild; Mahendira, Dharini; Kenny, Glen P; Paterson, Gail; Westby, Marie; Laferrière, Lucie; Longchamp, Guy
2018-06-01
To identify programmes involving therapeutic exercise that are effective for the management of hand osteoarthritis and to provide stakeholders with updated, moderate to high-quality recommendations supporting exercises for hand osteoarthritis. A systematic search and adapted selection criteria included comparable trials with exercise programmes for managing hand osteoarthritis. Based on the evaluated evidence, a panel of experts reached consensus through a Delphi approach endorsing the recommendations. A hierarchical alphabetical grading system (A, B, C+, C, C-, D-, D, D+, E, F) was based on clinical importance (≥15%) and statistical significance ( P < 0.05). Ten moderate- to high-quality studies were included. Eight studies with programmes involving therapeutic exercise (e.g. range of motion (ROM) + isotonic + isometric + functional exercise) seemed to be effective. Forty-six positive grade recommendations (i.e. A, B, C+) were obtained during short-term (<12 weeks) trials for pain, stiffness, physical function, grip strength, pinch strength, range of motion, global assessment, pressure pain threshold, fatigue and abductor pollicis longus moment and during long-term (>12 weeks) trials for physical function and pinch strength. Despite that many programmes involving exercise with positive recommendations for clinical outcomes are available to healthcare professionals and hand osteoarthritis patients that aid in the management of hand osteoarthritis, there is a need for further research to isolate the specific effect of exercise components.
NASA Astrophysics Data System (ADS)
Leadenham, Stephen; Erturk, Alper
2014-04-01
There has been growing interest in enabling wireless health and usage monitoring for rotorcraft applications, such as helicopter rotor systems. Large dynamic loads and acceleration fluctuations available in these environments make the implementation of vibration-based piezoelectric energy harvesters a very promising choice. However, such extreme loads transmitted to the harvester can also be detrimental to piezoelectric laminates and overall system reliability. Particularly flexible resonant cantilever configurations tuned to match the dominant excitation frequency can be subject to very large deformations and failure of brittle piezoelectric laminates due to excessive bending stresses at the root of the harvester. Design of resonant piezoelectric energy harvesters for use in these environments require nonlinear electroelastic dynamic modeling and strength-based analysis to maximize the power output while ensuring that the harvester is still functional. This paper presents a mathematical framework to design and analyze the dynamics of nonlinear flexible piezoelectric energy harvesters under large base acceleration levels. A strength-based limit is imposed to design the piezoelectric energy harvester with a proof mass while accounting for material, geometric, and dissipative nonlinearities, with a focus on two demonstrative case studies having the same linear fundamental resonance frequency but different overhang length and proof mass values. Experiments are conducted at different excitation levels for validation of the nonlinear design approach proposed in this work. The case studies in this work reveal that harvesters exhibiting similar behavior and power generation performance at low excitation levels (e.g. less than 0.1g) can have totally different strength-imposed performance limitations under high excitations (e.g. above 1g). Nonlinear modeling and strength-based design is necessary for such excitation levels especially when using resonant cantilevers with no geometric constraint.
NASA Astrophysics Data System (ADS)
Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan
2018-04-01
The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.
Baggish, Aaron L; Wang, Francis; Weiner, Rory B; Elinoff, Jason M; Tournoux, Francois; Boland, Arthur; Picard, Michael H; Hutter, Adolph M; Wood, Malissa J
2008-04-01
This prospective, longitudinal study examined the effects of participation in team-based exercise training on cardiac structure and function. Competitive endurance athletes (EA, n = 40) and strength athletes (SA, n = 24) were studied with echocardiography at baseline and after 90 days of team training. Left ventricular (LV) mass increased by 11% in EA (116 +/- 18 vs. 130 +/- 19 g/m(2); P < 0.001) and by 12% in SA (115 +/- 14 vs. 132 +/- 11 g/m(2); P < 0.001; P value for the compared Delta = NS). EA experienced LV dilation (end-diastolic volume: 66.6 +/- 10.0 vs. 74.7 +/- 9.8 ml/m(2), Delta = 8.0 +/- 4.2 ml/m(2); P < 0.001), enhanced diastolic function (lateral E': 10.9 +/- 0.8 vs. 12.4 +/- 0.9 cm/s, P < 0.001), and biatrial enlargement, while SA experience LV hypertrophy (posterior wall: 4.5 +/- 0.5 vs. 5.2 +/- 0.5 mm/m(2), P < 0.001) and diminished diastolic function (E' basal lateral LV: 11.6 +/- 1.3 vs. 10.2 +/- 1.4 cm/s, P < 0.001). Further, EA experienced right ventricular (RV) dilation (end-diastolic area: 1,460 +/- 220 vs. 1,650 +/- 200 mm/m(2), P < 0.001) coupled with enhanced systolic and diastolic function (E' basal RV: 10.3 +/- 1.5 vs. 11.4 +/- 1.7 cm/s, P < 0.001), while SA had no change in RV parameters. We conclude that participation in 90 days of competitive athletics produces significant training-specific changes in cardiac structure and function. EA develop biventricular dilation with enhanced diastolic function, while SA develop isolated, concentric left ventricular hypertrophy with diminished diastolic relaxation.
Li, Dongliang; Liu, Xinrong; Liu, Xianshan
2015-07-02
Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.
Wang, Hualin; Chen, Minmin; Jin, Chongyang; Niu, Baicheng; Jiang, Suwei; Li, Xingjiang; Jiang, Shaotong
2018-01-24
The objective of present work was to construct antibacterial [2-(methacryloyloxy) ethyl] trimethylammonium chloride functionalized reduced graphene oxide/poly(ethylene-co-vinyl alcohol) (MTAC-rGO/EVOH) multilayer barrier films by using layer-by-layer assembly under a parallel electric field. Besides barrier and mechanical properties, the antibacterial activities of the film and cytotoxicity of MTAC-rGO nanosheets were extensively investigated. The functionalization of rGO was achieved by grafting MTAC onto a graphene framework through C (sp 3 )-C bonds. The assembly of MTAC-rGO on the EVOH matrix not only significantly improved film mechanical strength, but also endowed the targeting film with outstanding moisture barrier even under a relative humidity of 99% (e.g., 0.019 g m -2 s -1 atm -1 for (MTAC-rGO/EVOH) 20 ) besides good oxygen barrier (e.g., 0.07 cm 3 m -2 d -1 atm -1 for (MTAC-rGO/EVOH) 20 ). Among the testing films, MTAC-rGO/EVOH film had the best antibacterial activity, and the activity against S. aureus was better than E. coli. Meanwhile, the cytotoxicity of MTAC-rGO nanosheets was very low. Results suggest that MTAC-rGO/EVOH film may have great potential in food active packaging.
A brief review of strength and ballistic assessment methodologies in sport.
McMaster, Daniel Travis; Gill, Nicholas; Cronin, John; McGuigan, Michael
2014-05-01
An athletic profile should encompass the physiological, biomechanical, anthropometric and performance measures pertinent to the athlete's sport and discipline. The measurement systems and procedures used to create these profiles are constantly evolving and becoming more precise and practical. This is a review of strength and ballistic assessment methodologies used in sport, a critique of current maximum strength [one-repetition maximum (1RM) and isometric strength] and ballistic performance (bench throw and jump capabilities) assessments for the purpose of informing practitioners and evolving current assessment methodologies. The reliability of the various maximum strength and ballistic assessment methodologies were reported in the form of intra-class correlation coefficients (ICC) and coefficient of variation (%CV). Mean percent differences (Mdiff = [/Xmethod1 - Xmethod2/ / (Xmethod1 + Xmethod2)] x 100) and effect size (ES = [Xmethod2 - Xmethod1] ÷ SDmethod1) calculations were used to assess the magnitude and spread of methodological differences for a given performance measure of the included studies. Studies were grouped and compared according to their respective performance measure and movement pattern. The various measurement systems (e.g., force plates, position transducers, accelerometers, jump mats, optical motion sensors and jump-and-reach apparatuses) and assessment procedures (i.e., warm-up strategies, loading schemes and rest periods) currently used to assess maximum isometric squat and mid-thigh pull strength (ICC > 0.95; CV < 2.0%), 1RM bench press, back squat and clean strength (ICC > 0.91; CV < 4.3%), and ballistic (vertical jump and bench throw) capabilities (ICC > 0.82; CV < 6.5%) were deemed highly reliable. The measurement systems and assessment procedures employed to assess maximum isometric strength [M(Diff) = 2-71%; effect size (ES) = 0.13-4.37], 1RM strength (M(Diff) = 1-58%; ES = 0.01-5.43), vertical jump capabilities (M(Diff) = 2-57%; ES = 0.02-4.67) and bench throw capabilities (M(Diff) = 7-27%; ES = 0.49-2.77) varied greatly, producing trivial to very large effects on these respective measures. Recreational to highly trained athletes produced maximum isometric squat and mid-thigh pull forces of 1,000-4,000 N; and 1RM bench press, back squat and power clean values of 80-180 kg, 100-260 kg and 70-140 kg, respectively. Mean and peak power production across the various loads (body mass to 60% 1RM) were between 300 and 1,500 W during the bench throw and between 1,500 and 9,000 W during the vertical jump. The large variations in maximum strength and power can be attributed to the wide range in physical characteristics between different sports and athletic disciplines, training and chronological age as well as the different measurement systems of the included studies. The reliability and validity outcomes suggest that a number of measurement systems and testing procedures can be implemented to accurately assess maximum strength and ballistic performance in recreational and elite athletes, alike. However, the reader needs to be cognisant of the inherent differences between measurement systems, as selection will inevitably affect the outcome measure. The strength and conditioning practitioner should also carefully consider the benefits and limitations of the different measurement systems, testing apparatuses, attachment sites, movement patterns (e.g., direction of movement, contraction type, depth), loading parameters (e.g., no load, single load, absolute load, relative load, incremental loading), warm-up strategies, inter-trial rest periods, dependent variables of interest (i.e., mean, peak and rate dependent variables) and data collection and processing techniques (i.e., sampling frequency, filtering and smoothing options).
Norman, Kristina; Wirth, Rainer; Neubauer, Maxi; Eckardt, Rahel; Stobäus, Nicole
2015-02-01
We investigated the impact of low phase angle (PhA) values on muscle strength, quality of life, symptom severity, and 1-year mortality in older cancer patients. Prospective study with 1-year follow-up. Cancer patients aged >60 years. PhA was derived from whole body impedance analysis. The fifth percentile of age-, sex-, and body mass index-stratified reference values were used as cut-off. Quality of life was determined with the European Organization of Research and Treatment in Cancer questionnaire, reflecting both several function scales and symptom severity. Muscle strength was assessed by hand grip strength, knee extension strength, and peak expiratory flow. 433 cancer patients, aged 60-95 years, were recruited. Patients with low PhA (n = 197) exhibited decreased muscle strength compared with patients with normal PhA (hand grip strength: 22 ± 8.6 vs 28.9 ± 8.9 kg, knee extension strength: 20.8 ± 11.8 vs 28.1 ± 14.9 kg, and peak expiratory flow: 301.1 ± 118 vs 401.7 ± 142.6 L/min, P < .001). Physical function, global health status, and role function from the European Organization of Research and Treatment in Cancer questionnaire were reduced, and most symptoms (fatigue, anorexia, pain, and dyspnea) increased in patients with low PhA (P < .001). In a risk-factor adjusted regression analysis, PhA emerged as independent predictor of physical function (ß:-0.538, P = .023), hand grip strength (ß:-4.684, P < .0001), knee extension strength (ß:-4.548, P = .035), and peak expiratory flow (ß:-66.836, P < .0001). Low PhA moreover predicted 1-year mortality in the Cox proportional hazards regression model, whereas grip strength was no longer significant. PhA below the fifth reference percentile is highly predictive of decreased muscle strength, impaired quality of life, and increased mortality in old patients with cancer and should be evaluated in routine assessment. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Teixeira de Carvalho, Fabiana; de Andrade Mesquita, Laiana Sepúlveda; Pereira, Rafael; Neto, Osmar Pinto; Amaro Zangaro, Renato
2017-01-01
Background/Study Context: The aging process is associated with a decline in muscle mass, strength, and conditioning. Two training methods that may be useful to improve muscle function are Pilates and proprioceptive neuromuscular facilitation (PNF). Thus, the present study aimed to compare the influence of training programs using Pilates and PNF methods with elderly women. Sixty healthy elderly women were randomly divided into three groups: Pilates group, PNF group, and control group. Pilates and PNF groups underwent 1-month training programs with Pilates and PNF methods, respectively. The control group received no intervention during the 1 month. The maximal isometric force levels from knee extension and flexion, as well as the electromyography (EMG) signals from quadriceps and biceps femoris, were recorded before and after the 1-month intervention period. A two-way analysis of variance revealed that the Pilates and PNF methods induced similar strength gains from knee flexors and extensors, but Pilates exhibited greater low-gamma drive (i.e., oscillations in 30-60 Hz) in the EMG power spectrum after the training period. These results support use of both Pilates and PNF methods to enhance lower limb muscle strength in older groups, which is very important for gait, postural stability, and performance of daily life activities.
Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F
2015-01-01
Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940
The impact of obesity on skeletal muscle strength and structure through adolescence to old age.
Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys
2016-06-01
Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.
Interfacial and Alloying Effects on Activation of Ethanol from First-Principles
An, Wei; Men, Yong; Wang, Jinguo; ...
2017-02-24
Here, we present a first-principles density-functional theory study of ethanol activation at oxide/Rh(111) interface and the alloying effect on mitigating carbon deposition, which are essential to direct ethanol fuel cell (DEFC) anode reaction and steam reforming of ethanol (SRE) reaction. Our calculated results show that charge can transfer from Rh(111) substrate to MO x chain (e.g., MoO 3 and MnO 2), or from MO x chain (e.g., MgO, SnO 2, ZrO 2, and TiO 2) to Rh(111) substrate. The OH-binding strength is increased exponentially with M δ+ charge ranging from 1.4 to 2.2, which renders MnO 2/Rh(111) and MgO/Rh(111) interfacesmore » weaker OH-binding, and thereby enhanced oxidizing functionality of OH* for promoting ethanol oxidation reaction (EOR) at DEFC anode. For efficient C–C bond breaking, a large number of Rh ensemble sizes are critically needed at the interface of MO x/Rh(111). We found that Rh 1Au 3 near surface alloy has the weakest C* and CO* binding, followed by Rh 1Cu 3 and Rh 1Pd 3 near surface alloys, while Rh 1Ir 3 and Rh 1Ru 3 surface alloys have C* and CO* binding strength similar to that of pure Rh metal. The general implication of this study is that by engineering alloyed structure of weakened C* and CO* binding complemented with metal oxides of weakened OH-binding, high-performance DEFC anode or SRE catalysts can be identified.« less
Zarebska, Aleksandra; Ahmetov, Ildus I; Sawczyn, Stanislaw; Weiner, Alexandra S; Kaczmarczyk, Mariusz; Ficek, Krzysztof; Maciejewska-Karlowska, Agnieszka; Sawczuk, Marek; Leonska-Duniec, Agata; Klocek, Tomasz; Voronina, Elena N; Boyarskikh, Uljana A; Filipenko, Maksim L; Cieszczyk, Pawel
2014-01-01
It has been suggested that DNA hypomethylation because of poorer effectiveness of the 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme induces muscular growth. We hypothesised that the common, functional 1298A>C polymorphism in the MTHFR gene is associated with athletic status. To test this hypothesis, we investigated the distribution of the 1298A>C variant in Polish (n = 302) and Russian (n = 842) athletes divided into four groups: endurance, strength-endurance, sprint-strength and strength-endurance, as well as in 1540 control participants. We found different genotypes (the AC heterozygote advantage) and allele distributions among sprint-strength athletes and strength athletes than the groups of sedentary controls for each nationality. In the combined study, the allelic frequencies for the 1298C variant were 35.6% in sprint-strength athletes (OR 1.18 [1.02-1.36], P = 0.024 vs. controls) and 38.6% in strength athletes (OR 1.34 [1.10-1.64], P = 0.003 vs. controls). The results of the initial and repetition studies as well as the combined analysis suggest that the functional 1298A>C polymorphism in the MTHFR gene is associated with athletic status. The presence of the C allele seems to be beneficial in sprint-strength and strength athletes. It needs to be established whether and to what extent this effect is mediated by alteration in DNA methylation status.
Size dependence of yield strength simulated by a dislocation-density function dynamics approach
NASA Astrophysics Data System (ADS)
Leung, P. S. S.; Leung, H. S.; Cheng, B.; Ngan, A. H. W.
2015-04-01
The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ∼4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ∼4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ∼2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept.
Recent advances and issues in development of silicon carbide composites for fusion applications
NASA Astrophysics Data System (ADS)
Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.
2009-04-01
Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.
Carbon Nano Tube Composites with Chemically Functionalized Plant Oils
NASA Astrophysics Data System (ADS)
Thielemans, Wim; Wool, Richard P.; Blau, Werner; Barron, Valerie
2003-03-01
Carbon Nano Tube Composites with Chemically Functionalized Plant Oil Wim Thielemans, R., P. Wool, V. Barron and W. Blau Multi-Wall Carbon Nano Tubes (MWCNT) made by the Kratchmer-Huffman CCVD process were found to interact and solubilize by slow mechanical stirring, with chemically functionalized plant oils, such as acrylated, epoxidized and maleinated triglycerides (TG) derived from plant oils. The chemical functionality on the TG imparted amphiphilic properties to the oils which allows them to self-assemble on the nanotubes, promoting both dissolution and the ability to make nanocomposites with unusual properties. Once in solution, the MWCT can be processed in a variety of methods, in particular to make composites with enhanced mechanical, fracture and thermal properties. Since the tensile modulus of MWs is about 1 TPa and a vector percolation analysis indicated tensile strengths of 50-100 GPa, we obtain significantly improved properties with even small amounts (1-3the glass transition temperature of the composite by about 20 oC, and the tensile modulus by about 11significant effects on the fracture stress can be obtained due to the both the influence of the strength and length of the MWNT at the crack tip. The ability of the oils to self-assemble on the carbon nanotube surfaces also makes them ideal candidates for self-healing materials. The properties with different functionalized oils will be reported. Supported by EPA, DoE and ISF
Jiménez S, Christian Edgardo; Fernández G, Rubén; Zurita O, Félix; Linares G, Daniel; Farías M, Ariel
2014-04-01
Hip and knee osteoarthritis are important causes of pain and disability among older people. Education and strength training can alleviate symptoms and avoid functional deterioration. To assess muscle strength, fall risk and quality of life of older people with osteoarthritis and the effects of physiotherapy education and strength training on these variables. Thirty participants aged 78 ± 5 years (63% women) were randomly assigned to receive physiotherapy (Controls), physiotherapy plus education (Group 1) and physiotherapy plus strength training (group 2). At baseline and after 16 weeks of intervention, patients were evaluated with the Senior Fitness Test, Timed Up and Go and Quality of Life score short form (SF-36). During the intervention period, Senior Fitness Test and Timed Up and Go scores improved in all groups and SF-36 did not change. The improvement in Senior Fitness Test and Timed Up and Go was more marked in Groups 1 and 2 than in the control group. Education and strength training improve functional tests among older people with osteoarthritis.
Hirani, Vasant; Naganathan, Vasi; Blyth, Fiona; Le Couteur, David G; Seibel, Markus J; Waite, Louise M; Handelsman, David J; Hsu, Ben; Cumming, Robert G
2016-12-01
The objective of this study is to examine associations between Hb levels and sarcopenia, low muscle strength, functional measures, and activities of daily living (ADL) and instrumental ADL (IADL) disabilities in older Australian men. Men aged 70 years and older (2005-2007) from the Concord Health and Ageing in Men Project were assessed at baseline (n = 1,705), 2 years (n = 1,367), and 5 years (n = 958). The main outcome measurements were walking speed, muscle strength, ADL and IADL disabilities, and sarcopenia using the Foundation for the National Institutes of Health criteria (low appendicular lean mass adjusted for body mass index < 0.789 and poor grip strength < 26kg). Analysis was performed using Hb levels as a continuous measure, unadjusted and adjusted by age, income, body mass index, measures of health, estimated glomerular function, inflammatory markers, and medication use. Receiver operating characteristic curve analysis was performed to determine a threshold of Hb for each outcome. In cross-sectional and longitudinal analysis, for every 1g/dL increase in Hb, there was a significant reduction in risk of sarcopenia, slow walking speed, poor grip strength, inability to perform chair stands, and ADL and IADL disabilities in unadjusted, age-adjusted, and multivariate-adjusted analysis. The highest value of the Youden Index for Hb was 14.2g/dL for sarcopenia and grip strength, 14.5g/dL for walking speed, and 14.4g/dL for all other outcomes. Declines in Hb levels over time are associated with poor functional outcomes. The risks and benefits of interventions to increase Hb among older men warrant further investigation to differentiate whether this is an active contributor to age-related debility or a passive biomarker of it. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Total edge irregularity strength of (n,t)-kite graph
NASA Astrophysics Data System (ADS)
Winarsih, Tri; Indriati, Diari
2018-04-01
Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .
Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.
Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H
2004-12-01
To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.
Broersma, M; Koops, E A; Vroomen, P C; Van der Hoeven, J H; Aleman, A; Leenders, K L; Maurits, N M; van Beilen, M
2015-05-01
Therapeutic options are limited in functional neurological paresis disorder. Earlier intervention studies did not control for a placebo effect, hampering assessment of effectivity. A proof-of-principle investigation was conducted into the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS), using a single-blind two-period placebo-controlled cross-over design. Eleven patients received active 15 Hz rTMS over the contralateral motor cortex (hand area), in two periods of 5 days, for 30 min once a day at 80% of resting motor threshold, with a train length of 2 s and an intertrain interval of 4 s. Eight of these eleven patients were also included in the placebo treatment condition. Primary outcome measure was change in muscle strength as measured by dynamometry after treatment. Secondary outcome measure was the subjective change in muscle strength after treatment. In patients who received both treatments, active rTMS induced a significantly larger median increase in objectively measured muscle strength (24%) compared to placebo rTMS (6%; P < 0.04). Subjective ratings showed no difference due to treatment, i.e. patients did not perceive these objectively measured motor improvements (P = 0.40). Our findings suggest that rTMS by itself can potentially improve muscle weakness in functional neurological paresis disorder. Whereas patients' muscle strength increased as measured with dynamometry, patients did not report increased functioning of the affected hand, subjectively. The results may indicate that decreased muscle strength is not the core symptom and that rTMS should be added to behavioral approaches in functional neurological paresis. © 2015 EAN.
Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T
2014-01-01
This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day−1 and 235 mg day−1, respectively), or a placebo, for 10 weeks. During this period the participants’ training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. PMID:25384788
Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs
2015-12-01
It has frequently been reported that balance and lower-extremity muscle strength/power are associated with sports-related and everyday activities. Knowledge about the relationship between balance, strength, and power are important for the identification of at-risk individuals because deficits in these neuromuscular components are associated with an increased risk of sustaining injuries and falls. In addition, this knowledge is of high relevance for the development of specifically tailored health and skill-related exercise programs. The objectives of this systematic literature review and meta-analysis were to characterize and, if possible, quantify associations between variables of balance and lower-extremity muscle strength/power in healthy individuals across the lifespan. A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus up to March 2015 to capture all relevant articles. A systematic approach was used to evaluate the 996 articles identified for initial review. Studies were included only if they investigated healthy individuals aged ≥6 years and tested at least one measure of static steady-state balance (e.g., center of pressure [CoP] displacement during one-legged stance), dynamic steady-state balance (e.g., gait speed), proactive balance (e.g., distance in the functional-reach-test), or reactive balance (e.g., CoP displacement during perturbed one-legged stance), and one measure of maximal strength (e.g., maximum voluntary contraction), explosive force (e.g., rate of force development), or muscle power (e.g., jump height). In total, 37 studies met the inclusionary criteria for review. The included studies were coded for the following criteria: age (i.e., children: 6-12 years, adolescents: 13-18 years, young adults: 19-44 years, middle-aged adults: 45-64 years, old adults: ≥65 years), sex (i.e., female, male), and test modality/outcome (i.e., test for the assessment of balance, strength, and power). Studies with athletes, patients, and/or people with diseases were excluded. Pearson's correlation coefficients were extracted, transformed (i.e., Fisher's z-transformed r z value), aggregated (i.e., weighted mean r z value), back-transformed to r values, classified according to their magnitude (i.e., small: r ≤ 0.69, medium: r ≤ 0.89, large: r ≥ 0.90), and, if possible, statistically compared. Heterogeneity between studies was assessed using I2 and Chi-squared (χ2) statistics. Three studies examined associations between balance and lower-extremity muscle strength/power in children, one study in adolescents, nine studies in young adults, three studies in middle-aged adults, and 23 studies in old adults. Overall, small-sized associations were found between variables of balance and lower-extremity muscle strength/power, irrespective of the age group considered. In addition, small-sized but significantly larger correlation coefficients were found between measures of dynamic steady-state balance and maximal strength in children (r = 0.57) compared with young (r = 0.09, z = 3.30, p = 0.001) and old adults (r = 0.35, z = 2.94, p = 0.002) as well as in old compared with young adults (z = 1.95, p = 0.03). Even though the reported results provided further insight into the associations between measures of balance and lower-extremity muscle strength/power, they did not allow us to deduce cause and effect relations. Further, the investigated associations could be biased by other variables such as joint flexibility, muscle mass, and/or auditory/visual acuity. Our systematic review and meta-analysis showed predominately small-sized correlations between measures of balance and lower-extremity muscle strength/power in children, adolescents, and young, middle-aged, and old adults. This indicates that these neuromuscular components are independent of each other and should therefore be tested and trained complementarily across the lifespan. Significantly larger but still small-sized associations were found between measures of dynamic steady-state balance and maximal strength in children compared with young and old adults as well as in old compared with young adults. These findings imply that age/maturation may have an impact on the association of selected components of balance and lower-extremity muscle strength.
The Kinetic Specificity of Plyometric Training: Verbal Cues Revisited
Louder, Talin; Bressel, Megan; Bressel, Eadric
2015-01-01
Plyometric training is a popular method utilized by strength and conditioning professionals to improve aspects of functional strength. The purpose of this study was to explore the influence of extrinsic verbal cueing on the specificity of jumping movements. Thirteen participants (age: 23.4 ± 1.9 yr, body height: 170.3 ± 15.1 cm, body mass: 70.3 ± 23.8 kg,) performed four types of jumps: a depth jump “as quickly as possible” (DJT), a depth jump “as high as possible” (DJH), a countermovement jump (CMJ), and a squat jump (SJ). Dependent measures, which included measurement of strength and power, were acquired using a force platform. From the results, differences in body-weight normalized peak force (BW) (DJH: 4.3, DJT: 5.6, CMJ: 2.5, SJ: 2.2), time in upward propulsion (s) (DJH: 0.34, DJT: 0.20, CMJ: 0.40, SJ: 0.51), and mean acceleration (m·s-2) (DJH: 26.7, DJT: 36.2, CMJ: 19.8, SJ: 17.3) were observed across all comparisons (p = 0.001 – 0.033). Differences in the body-weight normalized propulsive impulse (BW·s) (DJH: 0.55, DJT: 0.52, CMJ: 0.39, SJ: 0.39) and propulsive power (kW) (DJH: 13.7, DJT: 16.5, CMJ: 11.5, SJ: 12.1) were observed across all comparisons (p = 0.001 – 0.050) except between the CMJ and SJ (p = 0.128 – 0.929). The results highlight key kinetic differences influencing the specificity of plyometric movements and suggest that verbal cues may be used to emphasize the development of reactive strength (e.g. DJT) or high-velocity concentric power (e.g. DJH). PMID:26839620
Studies on Metabolism of 1,4-Dioxane
2010-03-01
altered strength, and stereotypes or bizarre behavior (e.g., self mutilation, walking backwards). f. Study conduct. The study described will be...from dioxane in drinking water that is the foundation of the EPA drinking water risk assessment. V.3.3 Laboratory Animals: V.3.3.1 Genus and Species...stimuli, altered strength, and stereotypes or bizarre behavior (e.g., self mutilation, walking backwards). V.4.1.2.3 Paralytics: N/A V.4.1.3 Literature
Proyer, René T; Gander, Fabian; Wellenzohn, Sara; Ruch, Willibald
2015-01-01
Recent years have seen an increasing interest in research in positive psychology interventions. There is broad evidence for their effectiveness in increasing well-being and ameliorating depression. Intentional activities that focus on those character strengths, which are most typical for a person (i.e., signature strengths, SS) and encourage their usage in a new way have been identified as highly effective. The current study aims at comparing an intervention aimed at using SS with one on using individual low scoring (or lesser) strengths in a randomized placebo-controlled trial. A total of 375 adults were randomly assigned to one of the two intervention conditions [i.e., using five signature vs. five lesser strengths (LS) in a new way] or a placebo control condition (i.e., early memories). We measured happiness and depressive symptoms at five time points (i.e., pre- and post-test, 1-, 3-, and 6-months follow-ups) and character strengths at pre-test. The main findings are that (1) there were increases in happiness for up to 3 months and decreases in depressive symptoms in the short term in both intervention conditions; (2) participants found working with strengths equally rewarding (enjoyment and benefit) in both conditions; (3) those participants that reported generally higher levels of strengths benefitted more from working on LS rather than SS and those with comparatively lower levels of strengths tended to benefit more from working on SS; and (4) deviations from an average profile derived from a large sample of German-speakers completing the Values-in-Action Inventory of Strengths were associated with greater benefit from the interventions in the SS-condition. We conclude that working on character strengths is effective for increasing happiness and discuss how these interventions could be tailored to the individual for promoting their effectiveness.
Acute effect of passive static stretching on lower-body strength in moderately trained men.
Gergley, Jeffrey C
2013-04-01
The purpose of this investigation was conducted to determine the acute effect of passive static stretching (PSS) of the lower-body musculature on lower-body strength in a 1 repetition maximum (1RM) squat exercise in young (18-24 years.) moderately trained men (n = 17). Two supervised warm-up treatments were applied before each performance testing session using a counterbalanced design on nonconsecutive days. The first treatment consisted of an active dynamic warm-up (AD) with resistance machines (i.e., leg extension/leg flexion) and free weights (i.e., barbell squat), whereas the second treatment added PSS of the lower body plus the AD treatment. One repetition maximum was determined using the maximum barbell squat following a progressive loading protocol. Subjects were also asked to subjectively evaluate their lower-body stability during 1RM testing sessions for both the AD and PSS treatments. A significant decrease in 1RM (8.36%) and lower-body stability (22.68%) was observed after the PSS treatment. Plausible explanations for this observation may be related to a more compliant muscle tendon unit and/or altered or impaired neurologic function in the active musculature. It is also possible that strength was impaired by the PSS because of joint instability. The findings of this study suggest that intensive stretching such as lower-body PSS should be avoided before training the lower body or performing the 1RM in the squat exercise in favor of an AD dynamic warm-up using resistance training equipment in the lower-body musculature.
Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.
Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T
2003-02-01
The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.
Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins
Jones, Kelly A.; Kopeikina, Katherine J.; Burette, Alain C.; Copits, Bryan A.; Forrest, Marc P.; Fawcett-Patel, Jessica M.
2017-01-01
Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions. SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for maintaining the correct balance between excitation and inhibition in neuronal dendrites. These findings reveal a new mechanism by which E/I balance is controlled in neurons and may bear relevance to synaptic dysfunction in autism. PMID:29030434
Measurement of the Effective Weak Mixing Angle in p p ¯ → Z / γ * → e + e - Events
Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...
2015-07-22
We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin 2θ ℓ eff which determines the relative strength of weak and electromagnetic interactions, in pp¯→Z/γ*→e +e - events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb -1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin 2θ ℓ eff=0.23147±0.00047 is the most precise measurementmore » from light quark interactions to date, with a precision close to the best LEP and SLD results.« less
Measurement of the Effective Weak Mixing Angle in p p ¯ → Z / γ * → e + e - Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.; Abbott, B.; Acharya, B. S.
2015-07-22
We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin 2θ ℓ eff which determines the relative strength of weak and electromagnetic interactions, in pp¯→Z/γ*→e +e - events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb -1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin 2θ ℓ eff=0.23147±0.00047 is the most precise measurementmore » from light quark interactions to date, with a precision close to the best LEP and SLD results.« less
Ma, Rui; Tang, Songchao; Tan, Honglue; Lin, Wentao; Wang, Yugang; Wei, Jie; Zhao, Liming; Tang, Tingting
2014-01-01
A bioactive composite was prepared by incorporating 40 wt% nano-hydroxyapatite (nHA) into polyetheretherketone (PEEK) through a process of compounding, injection, and molding. The mechanical and surface properties of the nHA/PEEK composite were characterized, and the in vitro osteoblast functions in the composite were investigated. The mechanical properties (elastic modulus and compressive strength) of the nHA/PEEK composite increased significantly, while the tensile strength decreased slightly as compared with PEEK. Further, the addition of nHA into PEEK increased the surface roughness and hydrophilicity of the nHA/PEEK composite. In cell tests, compared with PEEK and ultra-high-molecular-weight polyethylene, it was found that the nHA/PEEK composite could promote the functions of MC3T3-E1 cells, including cell attachment, spreading, proliferation, alkaline phosphatase activity, calcium nodule formation, and expression of osteogenic differentiation-related genes. Incorporation of nHA into PEEK greatly improved the bioperformance of PEEK. The nHA/PEEK composite might be a promising orthopedic implant material. PMID:25170265
Proton Resonance Spectroscopy in CALCIUM-40.
NASA Astrophysics Data System (ADS)
Warthen, Barry Joseph
1987-09-01
The differential cross sections for the ^{39}K(p,p_{ rm o})^{39}K and ^{39}K(p,alpha_ {rm o})^{36}Ar reactions have been measured for E_{ rm p} = 1.90 to 4.02 MeV at laboratory angles theta = 90^ circ, 108^circ, 150^circ and 165^ circ. Data were taken with the Triangle Universities Nuclear Laboratory (TUNL) KN Van de Graaff accelerator and the associated high resolution system. The targets consisted of 1-2 mug/cm^2 of potassium carbonate (K_2CO _3), enriched to 99.97% ^{39}K, evaporated onto gold coated carbon backings. Excitation functions were measured in proton energy steps varying from 100 to 400 eV. The energy region studied corresponds to an excitation energy range in the ^{40}Ca nucleus of E_{rm x} = 10.2 to 12.3 MeV. A multi-level multi-channel R-matrix based computer code was used to fit the experimental excitation functions. Resonance parameters obtained include resonance energy, spin, parity, partial widths, and channel spin and orbital angular momentum mixing ratios. Of the 248 resonances observed in the proton channel, 148 were also observed in the alpha channel. A fit to the observed level density yielded a nuclear temperature of 1.5 MeV. The data were compared with predictions of statistical theories of energy levels for both level spacing and reduced width distributions. The alpha reduced widths agree with the Porter-Thomas distribution and suggest that only 5-10% of the states with alpha widths were not observed. The summed strength in each of the alpha channels represents a significant fraction of the Wigner limit for these channels. The proton channels, on the other hand, generally have much smaller fractions. The two proton s-wave strength functions are equal and thus show no evidence for spin-exchange forces in the nucleon-nucleus interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtrop, M.; Jordan, D.; McIlvain, T.
1998-12-01
The coincidence cross section and the interference structure function, R{sub LT}, were measured for the {sup 12}C(e,e{sup {prime}}p)thinsp{sup 11}B reaction at quasielastic kinematics and central momentum transfer of {vert_bar}{rvec q}{vert_bar}=400thinspMeV/c. The measurement was at an opening angle of {theta}{sub pq}=11{degree}, covering a range in missing energy of E{sub m}=0 to 65 MeV. The R{sub LT} structure function is found to be consistent with zero for E{sub m}{gt}50thinspMeV, confirming an earlier study which indicated that R{sub L} vanishes in this region. The integrated strengths of the p- and s-shell are compared with a distorted wave impulse approximation (DWIA) calculation. The s-shellmore » strength and shape are also compared with a Hartree Fock{endash}random phase approximation (HF-RPA) calculation. The DWIA calculation does not succeed in giving a consistent description of both the cross section data and the extracted R{sub LT} response for either shell. The HF-RPA calculation describes the data more consistently, which may be due to the inclusion of 2-body currents in this calculation. {copyright} {ital 1998} {ital The American Physical Society}« less
Ward, Rachel E; Beauchamp, Marla K; Latham, Nancy K; Leveille, Suzanne G; Percac-Lima, Sanja; Kurlinski, Laura; Ni, Pengsheng; Goldstein, Richard; Jette, Alan M; Bean, Jonathan F
2016-08-01
To identify neuromuscular impairments most predictive of unfavorable mobility outcomes in late life. Longitudinal cohort study. Research clinic. Community-dwelling primary care patients aged ≥65 years (N=391) with self-reported mobility modifications, randomly selected from a research registry. Not applicable. Categories of decline in and persistently poor mobility across baseline, 1 and 2 years of follow-up in the Lower-Extremity Function scales of the Late-Life Function and Disability Instrument. The following categories of impairment were assessed as potential predictors of mobility change: strength (leg strength), speed of movement (leg velocity, reaction time, rapid leg coordination), range of motion (ROM) (knee flexion/knee extension/ankle ROM), asymmetry (asymmetry of leg strength and knee flexion/extension ROM measures), and trunk stability (trunk extensor endurance, kyphosis). The largest effect sizes were found for baseline weaker leg strength (odds ratio [95% confidence interval]: 3.45 [1.72-6.95]), trunk extensor endurance (2.98 [1.56-5.70]), and slower leg velocity (2.35 [1.21-4.58]) predicting a greater likelihood of persistently poor function over 2 years. Baseline weaker leg strength, trunk extensor endurance, and restricted knee flexion motion also predicted a greater likelihood of decline in function (1.72 [1.10-2.70], 1.83 [1.13-2.95], and 2.03 [1.24-3.35], respectively). Older adults exhibiting poor mobility may be prime candidates for rehabilitation focused on improving these impairments. These findings lay the groundwork for developing interventions aimed at optimizing rehabilitative care and disability prevention, and highlight the importance of both well-recognized (leg strength) and novel impairments (leg velocity, trunk extensor muscle endurance). Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Hämäläinen, Anni; Dammhahn, Melanie; Aujard, Fabienne; Kraus, Cornelia
2015-01-01
Muscle strength reflects physical functioning, declines at old age and predicts health and survival in humans and laboratory animals. Age-associated muscle deterioration causes loss of strength and may impair fitness of wild animals. However, the effects of age and life-history characteristics on muscle strength in wild animals are unknown. We investigated environment- and sex-specific patterns of physical functioning by measuring grip strength in wild and captive gray mouse lemurs. We expected more pronounced strength senescence in captivity due to condition-dependent, extrinsic mortality found in nature. Males were predicted to be stronger but potentially experience more severe senescence than females as predicted by life history theory. We found similar senescent declines in captive males and females as well as wild females, whereas wild males showed little decline, presumably due to their early mortality. Captive animals were generally weaker and showed earlier declines than wild animals. Unexpectedly, females tended to be stronger than males, especially in the reproductive season. Universal intrinsic mechanisms (e.g. sarcopenia) likely cause the similar patterns of strength loss across settings. The female advantage in muscle strength merits further study; it may follow higher reproductive investment by males, or be an adaptation associated with female social dominance. Copyright © 2014 Elsevier Inc. All rights reserved.
Fernandes, Shanlley Cristina da Silva; Santos, Rafaella Souza Dos; Giovanetti, Erica Albanez; Taniguchi, Corinne; Silva, Cilene Saghabi de Medeiros; Eid, Raquel Afonso Caserta; Timenetsky, Karina Tavares; Carnieli-Cazati, Denise
2016-01-01
To evaluate the vital capacity after two chest therapy techniques in patients undergoing abdominal surgical. A prospective randomized study carried out with patients admitted to the Intensive Care Unit after abdominal surgery. We checked vital capacity, muscular strength using the Medical Research Council scale, and functionality with the Functional Independence Measure the first time the patient was breathing spontaneously (D1), and also upon discharge from the Intensive Care Unit (Ddis). Between D1 and Ddis, respiratory therapy was carried out according to the randomized group. We included 38 patients, 20 randomized to Positive Intermittent Pressure Group and 18 to Volumetric Incentive Spirometer Group. There was no significant gain related to vital capacity of D1 and Ddis of Positive Intermittent Pressure Group (mean 1,410mL±547.2 versus 1,809mL±692.3; p=0.979), as in the Volumetric Incentive Spirometer Group (1,408.3mL±419.1 versus 1,838.8mL±621.3; p=0.889). We observed a significant improvement in vital capacity in D1 (p<0.001) and Ddis (p<0.001) and in the Functional Independence Measure (p<0.001) after respiratory therapy. The vital capacity improvement was not associated with gain of muscle strength. Chest therapy, with positive pressure and volumetric incentive spirometer, was effective in improving vital capacity of patients submitted to abdominal surgery. Avaliar a capacidade vital comparando duas técnicas de fisioterapia respiratória em pacientes submetidos à cirurgia abdominal. Estudo prospectivo e randomizado realizado com pacientes admitidos em Unidade de Terapia Intensiva após cirurgia abdominal. Verificamos a capacidade vital, a força muscular por meio da escala do Medical Research Council e funcionalidade pela Medida de Independência Funcional no primeiro momento em que o paciente encontrava-se em respiração espontânea (D1) e na alta da Unidade de Terapia Intensiva (Dalta). Entre D1 e Dalta, foi realizada a fisioterapia respiratória, conforme o grupo randomizado. Foram incluídos 38 pacientes, sendo 20 randomizados para Grupo Pressão Positiva Intermitente e 18 para o Grupo Incentivador Inspiratório a Volume. A capacidade vital entre o D1 e Dalta do Grupo Pressão Positiva Intermitente não teve ganho significativo (média de 1.410mL±547,2 versus 1.809mL±692,3; p=0,979), assim como no Grupo Incentivador Inspiratório a Volume (1.408,3mL±419,1 versus 1.838,8mL±621,3; p=0,889). Houve melhora significativa da capacidade vital no D1 (p<0,001) e na Dalta (p<0,001) e da Medida de Independência Funcional (p<0,001) após a fisioterapia respiratória. A melhora da capacidade vital não apresentou relação com o ganho da força muscular. A fisioterapia respiratória, por meio de pressão positiva ou de incentivador inspiratório a volume, foi eficaz na melhora da capacidade vital em pacientes submetidos à cirurgia abdominal.
[Health-related strength and power training in seniors: Purpose and recommendations].
Donath, Lars; Faude, Oliver; Bopp, Micha; Zahner, Lukas
2015-05-01
The proportion of older people in western societies rapidly increases. Aging-induced disease conditions accompanied with declines in cardiocirculatory and neuromuscular performance constitute a major individual and economic health burden. Besides decreasing vascular and cardiac function during the process of aging, a loss of skeletal muscle mass, muscle structure and function seem to mainly account for decreasing maximal strength, strength development and strength endurance. These findings adversely interfer with static and dynamic postural control and may lead to an increased risk of falling with impairments of autonomy and quality of life. Traditional strength training recommendations basing on health-related exercise prescriptions for elderly people have been proven to counteract or at least attenuate aging-induced declines of neuromuscular muscular function. Multimodal and combined strength and balance training deliver additional improvements of neuromuscular capacity. Recent evidence additionally underpin the need of trunk muscle training and claimed for regimes considering explosive and high-velocity strength training in seniors. High quality RCTs revealed notable strength training effects on mobility, autonomy, quality of life and the reduction of the risk of falling (up to 50%). Available evidence also indicates that various strength training regimes elicit preventive and therapeutic effects on osteoporosis, diabetes type 2 and other chronic diseases, with effect sizes comparable to medication intake. Thus, health care providers, health insurances, Employers' Liability Insurance Associations and politicians should promote infrastructural developments that enable feasible and cost-effective access to health-related fitness centers or other sport facilities (e. g. sport clubs). These environmental requirements should be embedded in multi-centric education programs and campaigns that might enable regularly conducted strength and endurance training perceived as beneficial and valuable from an individual health care perspective.
Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders
Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.
2009-01-01
Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalley, John F.
In this study, we demonstrate how small and rapid temperature perturbations (produced by the indirect laser-induced temperature jump (ILIT) technique) of solid metal electrode|electrolyte solution interfaces may be used to determine the potential of zero (total) charge (E pzc) and its temperature derivativemore » $$\\left(\\frac{dEpzc}{dT}\\right)$$ of Au(111) electrode surfaces modified by alkanethiol self-assembled monolayers in contact with high ionic strength (i.e., 1.0 M) aqueous electrolyte solutions. The E pzc’s measured for two different types of SAMs (made from either HS(CH 2) n-1CH 3 (5 ≤ n ≤ 12, E pzc = -(0.99 ± 0.12) V vs SSCE) or HS(CH 2) nOH (3 ≤ n ≤ 16, E pzc = (0.46 ± 0.22) V vs SSCE)) are considerably different than those measured previously at much lower electrolyte solution ionic strengths. For mixed monolayers made from both HS(CH 2) n-1CH 3 and HS(CH 2) nFc (where Fc refers to ferrocene), the difference in Epzc decreases as a function of the surface concentration of the Fc moiety (i.e., [Fc]), and it completely disappears at a surprisingly small [Fc] (~4.0 × 10 –11 mol cm –2). These observations for the Au(111)|hydrophobic (neat and mixed) SAM|aqueous electrolyte solution interfaces, along with the surface potentials (g Sml(dip)) evaluated for the contacting electrolyte solution surfaces of these interfaces, are consistent with a structure for the water molecule components of these surfaces where there is a net orientation of the dipoles of these molecules. Accordingly, the negative (oxygen) ends of these molecules point toward the SAM surface. The positive values of g Sml(dip) evaluated for hydrophilic SAM (e.g., made from HS(CH 2) nOH)|aqueous electrolyte solution interfaces) also indicate that the structure of these interfaces is similar to that of the hydrophobic interfaces. However, g Sml(dip) decreases with increasing ionic strength for the hydrophilic interfaces, while it increases with increasing ionic strength for the hydrophobic interfaces. The data (and calculations) reported in the present work and other studies of hydrophobic (and hydrophilic)|aqueous solution interfaces are as yet insufficient to support a complete explanation for the effects of ionic strength observed in the present study. Nevertheless, an analysis based upon the value of $$\\left(\\frac{dEpzc}{dT}\\right)$$ (= (0.51 ± 0.12) mV/K, essentially the same for SAMs made from both HS(CH 2) n-1CH 3 and HS(CH 2) nOH), determined in the present study provides a further indication that upon formation of the SAM there is a partial charge transfer of electrons from the relevant gold atoms on the Au(111) surface to the sulfur atoms of the alkanethiols.« less
Li, Danni; Misialek, Jeffrey R; Huang, Fangying; Windham, B Gwen; Yu, Fang; Alonso, Alvaro
2017-10-19
Plasma metabolites such as phosphatidylcholines (PCs) and sphingomyelins (SMs) are associated with in age-related cognitive decline. However, their relations to age-related physical function decline remain largely unknown. We examined the cross-sectional relations of 12 plasma metabolites (including 4 PCs and 4 SMs) with physical function in 383 older adults in the Atherosclerosis Risk in Communities study at the fifth exam (2011-13, mean age [standard deviation (SD)]: 78.0 [5.5], 54.4% women, 28.3% African Americans). Physical function was assessed using grip strength, Short Physical Performance Battery (SPPB), and 4-meter walking speed. Individual metabolites were log-transformed and standardized. Multivariable linear regression was performed to account for demographics, APOE genotype, cardiovascular risk factors, comorbidities, use of antihypertensive and lipid-lowering medications, depressive symptoms, and cognition. Lower concentrations of asymmetric dimethylarginine (ADMA) and higher concentrations of SM (OH) C22:1, SM(OH) C22:2, and SM(OH) C24:1 were associated with physical function measures. In particular, SM (OH) C22:1 and SM (OH) C24:1 were associated with all 3 measures of physical function: β-coefficients (95% Confidence Interval) with grip strength were 0.89 kg (0.00, 1.78) and 0.86 kg (0.10, 1.61) per 1-SD higher concentration, respectively; with SPPB score, were 0.61 (0.34, 0.88) and 0.41 (0.19, 0.63) per 1-SD difference, respectively; with 4-meter walking speed were 0.035 m/s (0.013, 0.056) and 0.035 m/s (0.028, 0.047), respectively. Plasma SM(OH)s may be independently associated with physical function in older adults. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Häkkinen, K; Mero, A; Kauhanen, H
1989-03-01
Three prebubescent athlete groups of endurance runners (E; n = 4), sprinters (S; n = 4) and weightlifters (WL; n = 4) and one control group (C; n = 6) as well as one junior but postpubescent weightlifter group (JWL; n = 6) volunteered as subjects in order to investigate specific effects of endurance, sprint and strength training on physical performance capacity during a 1 year follow-up period. The prepubescent E-group had higher (p less than 0.05) VO2 max (66.5 +/- 2.9 ml x kg1 x min-1) already at the beginning of the study than the other three groups. The prepubescent WL-group demonstrated greater (p less than 0.05) maximal muscular strength than the E-group and the WL-group increased its strength greatly by 21.4% (p less than 0.05) during the follow-up. No significant differences were observed in physical performance capacity between the prepubescent WL- and S-groups. Both groups demonstrated a slightly (ns.) better force-time curve recorded from the leg extensor muscles than the E-group and significant (p less than 0.05) increases occurred in these two groups in dynamic explosive performance during the follow-up. The postpubescent JWL-group demonstrated much greater (p less than 0.001) muscular mass and maximal strength than the prepubescent groups. No significant changes occurred in explosive types of performances in these athletes but significant (p less than 0.05) increase took place in the maximal neural activation and strength of the leg extensor muscles during the 1 year.(ABSTRACT TRUNCATED AT 250 WORDS)
Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed
2016-10-01
The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functional studies in 79-year-olds. II. Upper extremity function.
Lundgren-Lindquist, B; Sperling, L
1983-01-01
As part of the Gerontological and Geriatric Population Study of 79-year-old people in Göteborg, a representative subsample comprising 112 women and 93 men took part in a study of upper extremity function. Thirty-eight per cent of the women and 37% of the men had disorders in the upper extremities. The investigation included tests of co-ordination, static strength in the key-grip and the transversal volar grip, power capacity in opening jars and a bottle, basal movements in the upper extremities in personal hygiene and dressing activities, function in the kitchen e.g. reaching shelves, manual tasks including tests of pronation and supination of the forearm. In the key-grip as well as in the transversal volar grip men showed a generally larger decrease in strength with age than women compared to 70-year-olds in a previous population study. Significant correlations were found between strength in the key-grip and the performance time in the test of co-ordination. Women produced about 66% of the muscular force of the men when opening jars. Significant correlations were found between strength in the transversal volar grip and the maximal torque for opening the jars. Female and male subjects who were not capable of handling the electric plug in the manual ability test had significantly weaker strength in the key-grip. The importance of designing products and adapting the environment so as to correspond to the functional capacity of the elderly, is emphasized.
Full counting statistics of a charge pump in the Coulomb blockade regime
NASA Astrophysics Data System (ADS)
Andreev, A. V.; Mishchenko, E. G.
2001-12-01
We study full charge counting statistics (FCCS) of a charge pump based on a nearly open single electron transistor. The problem is mapped onto an exactly soluble problem of a nonequilibrium g=1/2 Luttinger liquid with an impurity. We obtain an analytic expression for the generating function of the transmitted charge for an arbitrary pumping strength. Although this model contains fractionally charged excitations only integer transmitted charges can be observed. In the weak pumping limit FCCS correspond to a Poissonian transmission of particles with charge e*=e/2 from which all events with odd numbers of transferred particles are excluded.
Phonon Spectrum in Hydroxyapatite: Calculations and EPR Study at Low Temperatures
NASA Astrophysics Data System (ADS)
Biktagirov, Timur; Gafurov, Marat; Iskhakova, Kamila; Mamin, Georgy; Orlinskii, Sergei
2016-12-01
Density functional theory-based calculations within the framework of the plane-wave pseudopotential approach are carried out to define the phonon spectrum of hydroxyapatite Ca_{10}(PO4)6(OH)2 (HAp). It allows to describe the temperature dependence of the electronic spin-lattice relaxation time T_{1e} of the radiation-induced stable radical NO3^{2-} in HAp, which was measured in X-band (9 GHz, magnetic field strength of 0.34 T) in the temperature range T = (10-300) K. It is shown that the temperature behavior of T_{1e} at T> 20 K can be fitted via two-phonon Raman type processes with the Debye temperature Θ D ≈ 280 {K} evaluated from the phonon spectrum.
De Souza, Eduardo O; Lowery, Ryan P; Wilson, Jacob M; Sharp, Matthew H; Mobley, Christopher Brooks; Fox, Carlton D; Lopez, Hector L; Shields, Kevin A; Rauch, Jacob T; Healy, James C; Thompson, Richard M; Ormes, Jacob A; Joy, Jordan M; Roberts, Michael D
2016-01-01
The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.
Cegielski, Jessica; Brook, Matthew S; Quinlan, Jonathan I; Wilkinson, Daniel J; Smith, Kenneth; Atherton, Philip J; Phillips, Bethan E
2017-01-01
Developing alternative exercise programmes that can alleviate certain barriers to exercise such as psychological, environmental or socio-economical barriers, but provide similar physiological benefits e.g. increases in muscle mass and strength, is of grave importance. This pilot study aimed to assess the efficacy of an unsupervised, 4-week, whole-body home-based exercise training (HBET) programme, incorporated into daily living activities, on skeletal muscle mass, power and strength. Twelve healthy older volunteers (63±3 years, 7 men: 5 women, BMI: 29±1 kg/m²) carried out the 4-week "lifestyle-integrated" HBET of 8 exercises, 3x12 repetitions each, every day. Before and after HBET, a number of physical function tests were carried out: unilateral leg extension 1-RM (one- repetition maximum), MVC (maximal voluntary contraction) leg extension, lower leg muscle power (via Nottingham Power Rig), handgrip strength and SPPBT (short physical performance battery test). A D 3 -Creatine method was used for assessment of whole-body skeletal muscle mass, and ultrasound was used to measure the quadriceps cross-sectional area (CSA) and vastus lateralis muscle thickness. Four weeks HBET elicited significant (p<0.05) improvements in leg muscle power (276.7±38.5 vs. 323.4±43.4 W), maximal voluntary contraction (60°: 154.2±18.4 vs. 168.8±15.2 Nm, 90°: 152.1±10.5 vs. 159.1±11.4 Nm) and quadriceps CSA (57.5±5.4 vs. 59.0±5.3 cm 2 ), with a trend for an increase in leg strength (1-RM: 45.7±5.9 vs. 49.6±6.0 kg, P=0.08). This was despite there being no significant differences in whole-body skeletal muscle mass, as assessed via D 3 -Creatine. This study demonstrates that increases in multiple aspects of muscle function can be achieved in older adults with just 4-weeks of "lifestyle-integrated" HBET, with a cost-effective means. This training mode may prove to be a beneficial alternative for maintaining and/or improving muscle mass and function in older adults.
Relationship Between Renal Function and Physical Performance in Elderly Hospitalized Patients
Lattanzio, Fabrizia; Abbatecola, Angela Marie; Volpato, Stefano; Pedone, Claudio; Pranno, Luigi; Laino, Irma; Garasto, Sabrina; Corica, Francesco; Passarino, Giuseppe; Antonelli Incalzi, Raffaele
2012-01-01
Abstract Chronic kidney disease (CKD) is increasingly recognized as a cause of worsening physical functioning in older patients. The Short Physical Performance Battery (SPPB) is highly reliable in older populations, but no data on older hospitalized patients with different degrees of kidney function are available. We aimed at testing the association between estimated glomerular filtration rate (eGFR) and SPPB, either global score (range 0–12) or its individual components (muscle strength, balance, and walking speed, each ranging from 0 to 4), in a sample of older hospitalized patients. Our series consisted of 486 patients aged 65 or more consecutively enrolled in 11 acute care medical wards participating to a multicenter observational study. eGFR was obtained by the Chronic Kidney Disease Epidemiological Collaboration (CKD-EPI) equation. Physical performance was objectively measured by the SPPB. The relationship between eGFR and SPPB was investigated by multiple linear regression analysis. Physically impaired patients (SPPB total score<5) were older, had lower serum albumin and Mini-Mental State Examination (MMSE) scores as well as higher overall co-morbidity, prevalence of stroke, cancer, and anemia compared to those with intermediate (SPPB=5–8) and good physical performance (SPPB=9–12). Fully adjusted multivariate models showed that eGFR (modeled as 10 mL/min per 1.73 m2 intervals) was independently associated with the SPPB total score (B=0.49; 95% confidence interval [CI]=0.18–0.66; p=0.003), balance (B=0.30; 95% CI=0.10–0.49; p=0.005), and muscle strength (B=0.06; 95% CI=0.01–0.10; p=0.043), but not with walking speed (B=−0.04; 95% CI=−0.09–0.11; p=0.107). In conclusion, reduced renal function is associated with poorer physical performance in older hospitalized patients. SPPB is worthy of testing to monitor changes in physical performance in elderly CKD patients. PMID:22950422
Decay Pattern of Pygmy States Observed in Neutron-Rich Ne26
NASA Astrophysics Data System (ADS)
Gibelin, J.; Beaumel, D.; Motobayashi, T.; Blumenfeld, Y.; Aoi, N.; Baba, H.; Elekes, Z.; Fortier, S.; Frascaria, N.; Fukuda, N.; Gomi, T.; Ishikawa, K.; Kondo, Y.; Kubo, T.; Lima, V.; Nakamura, T.; Saito, A.; Satou, Y.; Scarpaci, J.-A.; Takeshita, E.; Takeuchi, S.; Teranishi, T.; Togano, Y.; Vinodkumar, A. M.; Yanagisawa, Y.; Yoshida, K.
2008-11-01
Coulomb excitation of the exotic neutron-rich nucleus Ne26 on a Pb208 target was measured at 58MeV/u in order to search for low-lying E1 strength above the neutron emission threshold. This radioactive beam experiment was carried out at the RIKEN Accelerator Research Facility. Using the invariant mass method in the Ne25+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV excitation energy. By performing a multipole decomposition of the differential cross section, a reduced dipole transition probability of B(E1)=0.49±0.16e2fm2 is deduced, corresponding to 4.9±1.6% of the Thomas-Reiche-Kuhn sum rule. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is measured. The extracted decay pattern is not consistent with several mean-field theory descriptions of the pygmy states.
NASA Astrophysics Data System (ADS)
Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.
2013-10-01
Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.
Biaxial flexural strength of CAD/CAM ceramics.
Buso, L; Oliveira-Júnior, O B; Hiroshi Fujiy, F; Leão Lombardo, G H; Ramalho Sarmento, H; Campos, F; Assunção Souza, R O
2011-06-01
Aim of the study was to evaluate the biaxial flexural strength of ceramics processed using the Cerec inLab system. The hypothesis was that the flexural strength would be influenced by the type of ceramic. Ten samples (ISO 6872) of each ceramic (N.=50/n.=10) were made using Cerec inLab (software Cerec 3D) (Ø:15 mm, thickness: 1.2 mm). Three silica-based ceramics (Vita Mark II [VM], ProCad [PC] and e-max CAD ECAD]) and two yttria-stabilized tetragonal-zirconia-polycrystalline ceramics (Y-TZP) (e-max ZirCad [ZrCAD] and Vita In-Ceram 2000 YZ Cubes [VYZ]) were tested. The samples were finished with wet silicone carbide papers up to 1 200-grit and polished in a polishing machine with diamond paste (3 µm). The samples were then submitted to biaxial flexural strength testing in a universal testing machine (EMIC), 1 mm/min. The data (MPa) were analyzed using the Kruskal-Wallis and Dunn (5%) tests. Scanning electronic microscopy (SEM) was performed on a representative sample from each group. The values (median, mean±sd) obtained for the experimental groups were: VM (101.7, 102.1±13.65 MPa), PC (165.2, 160±34.7 MPa), ECAD (437.2, 416.1±50.1 MPa), ZrCAD (804.2, 800.8±64.47 MPa) and VYZ (792.7, 807±100.7 MPa). The type of ceramic influenced the flexural strength values (P=0.0001). The ceramics ECADa, e-max ZrCADa and VYZa presented similar flexural strength values which were significantly higher than the other groups (PCb and VM IIb), which were similar statistically between them (Dunn's test). The hypothesis was accepted. The polycrystalline ceramics (Y-TZP) should be material chosen for make FPDs because of their higher flexural strength values.
Nindl, Bradley C; Alvar, Brent A; R Dudley, Jason; Favre, Mike W; Martin, Gerard J; Sharp, Marilyn A; Warr, Brad J; Stephenson, Mark D; Kraemer, William J
2015-11-01
The National Strength and Conditioning Association's tactical strength and conditioning program sponsored the second Blue Ribbon Panel on military physical readiness: military physical performance testing, April 18-19, 2013, Norfolk, VA. This meeting brought together a total of 20 subject matter experts (SMEs) from the U.S. Air Force, Army, Marine Corps, Navy, and academia representing practitioners, operators, researchers, and policy advisors to discuss the current state of physical performance testing across the Armed Services. The SME panel initially rated 9 common military tasks (jumping over obstacles, moving with agility, carrying heavy loads, dragging heavy loads, running long distances, moving quickly over short distances, climbing over obstacles, lifting heavy objects, loading equipment) by the degree to which health-related fitness components (e.g., aerobic fitness, muscular strength, muscular endurance, flexibility, and body composition) and skill-related fitness components (e.g., muscular power, agility, balance, coordination, speed, and reaction time) were required to accomplish these tasks. A scale from 1 to 10 (10 being highest) was used. Muscular strength, power, and endurance received the highest rating scores. Panel consensus concluded that (a) selected fitness components (particularly for skill-related fitness components) are currently not being assessed by the military; (b) field-expedient options to measure both health-based and skill-based fitness components are currently available; and (c) 95% of the panel concurred that all services should consider a tier II test focused on both health-related and skill-related fitness components based on occupational, functional, and tactical military performance requirements.
Duysen, Ellen G; Stribley, Judith A; Fry, Debra L; Hinrichs, Steven H; Lockridge, Oksana
2002-07-30
Acetylcholinesterase (AChE, EC3.1.1.7) functions in nerve impulse transmission, and possibly as a cell adhesion factor during neurite outgrowth. These functions predicted that a mouse with zero AChE activity would be unable to live. It was a surprise to find that AChE -/- mice were born alive and survived an average of 14 days. The emaciated appearance of AChE -/- mice suggested an inability to obtain sufficient nutrition and experiments were undertaken to increase caloric intake. Pregnant and lactating dams (+/-) were fed 11% high fat chow supplemented with liquid Ensure. AChE -/- pups were weaned early, on day 15, and fed liquid Ensure. Although nullizygous animals showed slow but steady weight gain with survival over 1 year (average 100 days), they remained small at all ages compared to littermates. They demonstrated delays in temperature regulation (day 22 vs. 15), eye opening (day 13 vs. 12), righting reflex (day 18 vs. 12), descent of testes (week 7-8 vs. 4), and estrous (week 15-16 vs. 6-7). Significant physical findings in adult AChE -/- mice included body tremors, abnormal gait and posture, absent grip strength, inability to eat solid food, pinpoint pupils, decreased pain response, vocalization, and early death caused by seizures or gastrointestinal tract ileus. Behavioral deficits included urination and defecation in the nest, lack of aggression, reduced pain perception, and sexual dysfunction. These findings support the classical role for AChE in nerve impulse conduction and further suggest that AChE is essential for timely physical development and higher brain function. Copyright 2002 Elsevier Science B.V.
Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log
NASA Astrophysics Data System (ADS)
Li, Shiyong; Yee, Ho-Ung
2018-03-01
We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).
Razavi, Sonia M; Gonzalez, Marcial; Cuitiño, Alberto M
2015-04-30
We propose a general framework for determining optimal relationships for tensile strength of doubly convex tablets under diametrical compression. This approach is based on the observation that tensile strength is directly proportional to the breaking force and inversely proportional to a non-linear function of geometric parameters and materials properties. This generalization reduces to the analytical expression commonly used for flat faced tablets, i.e., Hertz solution, and to the empirical relationship currently used in the pharmaceutical industry for convex-faced tablets, i.e., Pitt's equation. Under proper parametrization, optimal tensile strength relationship can be determined from experimental results by minimizing a figure of merit of choice. This optimization is performed under the first-order approximation that a flat faced tablet and a doubly curved tablet have the same tensile strength if they have the same relative density and are made of the same powder, under equivalent manufacturing conditions. Furthermore, we provide a set of recommendations and best practices for assessing the performance of optimal tensile strength relationships in general. Based on these guidelines, we identify two new models, namely the general and mechanistic models, which are effective and predictive alternatives to the tensile strength relationship currently used in the pharmaceutical industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Kabir, Kamaluddeen; Deeni, Yusuf Y; Hapca, Simona M; Moore, Luke; Spiers, Andrew J
2018-02-01
Bacterial biosurfactants have a wide range of biological functions and biotechnological applications. Previous analyses had suggested a limit to their reduction of aqueous liquid surface tensions (γMin), and here we confirm this in an analysis of 25 Pseudomonas spp. strains isolated from soil which produce high-strength surfactants that reduce surface tensions to 25.2 ± 0.1-26.5 ± 0.2 mN m-1 (the surface tension of sterile growth medium and pure water was 52.9 ± 0.4 mN m-1 and 72.1 ± 1.2 mN m-1, respectively). Comparisons of culture supernatants produced using different growth media and semi-purified samples indicate that the limit of 24.2-24.7 mN m-1 is not greatly influenced by culture conditions, pH or NaCl concentrations. We have used foam, emulsion and oil-displacement behavioural assays as a simple and cost-effective proxy for in-depth biochemical characterisation, and these suggest that there is significant structural diversity amongst these surfactants that may reflect different biological functions and offer new biotechnological opportunities. Finally, we obtained a draft genome for the strain producing the highest strength surfactant, and identified a cluster of non-ribosomal protein synthase genes that may produce a cyclic lipopeptide (CLP)-like surfactant. Further investigation of this group of related bacteria recovered from the same site will allow a better understanding of the significance of the great variety of surfactants produced by bacterial communities found in soil and elsewhere. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Schumann, M; Pelttari, P; Doma, K; Karavirta, L; Häkkinen, K
2016-12-01
This study examined neuromuscular adaptations in recreational endurance runners during 24 weeks of same-session combined endurance and strength training (E+S, n=13) vs. endurance training only (E, n=14). Endurance training was similar in the 2 groups (4-6x/week). Additional maximal and explosive strength training was performed in E+S always after incremental endurance running sessions (35-45 min, 65-85% HR max ). Maximal dynamic leg press strength remained statistically unaltered in E+S but decreased in E at week 24 (-5±5%, p=0.014, btw-groups at week 12 and 24, p=0.014 and 0.011). Isometric leg press and unilateral knee extension force, EMG of knee extensors and voluntary activation remained statistically unaltered in E+S and E. The changes in muscle cross-sectional (CSA) differed between the 2 groups after 12 (E+S+6±8%, E -5±6%, p<0.001) and 24 (E+S+7±7%, E -6±5%, p<0.001) weeks. 1 000 m running time determined during an incremental field test decreased in E+S and E after 12 (-7±3%, p<0.001 and -8±5%, p=0.001) and 24 (-9±5%, p=0.001 and -13±5%, p<0.001) weeks. Strength training performed always after an endurance running session did not lead to increased maximal strength, CSA, EMG or voluntary activation. This possibly contributed to the finding of no endurance performance benefits in E+S compared to E. © Georg Thieme Verlag KG Stuttgart · New York.
Effects of processing induced defects on laminate response - Interlaminar tensile strength
NASA Technical Reports Server (NTRS)
Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.
1991-01-01
Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2015-04-01
To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.
Ferrauti, Alexander; Bergermann, Matthias; Fernandez-Fernandez, Jaime
2010-10-01
The purpose of this study was to investigate the effects of a concurrent strength and endurance training program on running performance and running economy of middle-aged runners during their marathon preparation. Twenty-two (8 women and 14 men) recreational runners (mean ± SD: age 40.0 ± 11.7 years; body mass index 22.6 ± 2.1 kg·m⁻²) were separated into 2 groups (n = 11; combined endurance running and strength training program [ES]: 9 men, 2 women and endurance running [E]: 7 men, and 4 women). Both completed an 8-week intervention period that consisted of either endurance training (E: 276 ± 108 minute running per week) or a combined endurance and strength training program (ES: 240 ± 121-minute running plus 2 strength training sessions per week [120 minutes]). Strength training was focused on trunk (strength endurance program) and leg muscles (high-intensity program). Before and after the intervention, subjects completed an incremental treadmill run and maximal isometric strength tests. The initial values for VO2peak (ES: 52.0 ± 6.1 vs. E: 51.1 ± 7.5 ml·kg⁻¹·min⁻¹) and anaerobic threshold (ES: 3.5 ± 0.4 vs. E: 3.4 ± 0.5 m·s⁻¹) were identical in both groups. A significant time × intervention effect was found for maximal isometric force of knee extension (ES: from 4.6 ± 1.4 to 6.2 ± 1.0 N·kg⁻¹, p < 0.01), whereas no changes in body mass occurred. No significant differences between the groups and no significant interaction (time × intervention) were found for VO2 (absolute and relative to VO2peak) at defined marathon running velocities (2.4 and 2.8 m·s⁻¹) and submaximal blood lactate thresholds (2.0, 3.0, and 4.0 mmol·L⁻¹). Stride length and stride frequency also remained unchanged. The results suggest no benefits of an 8-week concurrent strength training for running economy and coordination of recreational marathon runners despite a clear improvement in leg strength, maybe because of an insufficient sample size or a short intervention period.
NASA Astrophysics Data System (ADS)
Hamrick, Joseph L., II
Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.
The in situ transverse lamina strength of composite laminates
NASA Technical Reports Server (NTRS)
Flaggs, D. L.
1983-01-01
The objective of the work reported in this presentation is to determine the in situ transverse strength of a lamina within a composite laminate. From a fracture mechanics standpoint, in situ strength may be viewed as constrained cracking that has been shown to be a function of both lamina thickness and the stiffness of adjacent plies that serve to constrain the cracking process. From an engineering point of view, however, constrained cracking can be perceived as an apparent increase in lamina strength. With the growing need to design more highly loaded composite structures, the concept of in situ strength may prove to be a viable means of increasing the design allowables of current and future composite material systems. A simplified one dimensional analytical model is presented that is used to predict the strain at onset of transverse cracking. While it is accurate only for the most constrained cases, the model is important in that the predicted failure strain is seen to be a function of a lamina's thickness d and of the extensional stiffness bE theta of the adjacent laminae that constrain crack propagation in the 90 deg laminae.
Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.
Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth
2016-03-31
Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.
Electron Impact Excitation of the lowest-lying A^1B1 Electronic state of Water
NASA Astrophysics Data System (ADS)
Teubner, P. J. O.; Thorn, P. A.; Brunger, M. J.; Campbell, L.; Kato, H.; Makochekanwa, C.; Hoshino, M.; Tanaka, H.
2006-05-01
We report differential and integral cross sections for excitation of the A^1B1 electronic state of water. The energy range of these measurements is 15--50eV and, where possible, comparison is made to the results of available theory. We additionally report generalised oscillator strengths (at energies 30, 100 and 200eV) and a value of the optical oscillator strength (OOS) for this state. The present OOS is also compared to the results of earlier studies.
Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.
van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B
2018-06-18
Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.
Lee, Sungkyoung; Cappella, Joseph N.
2014-01-01
Findings from previous studies on smoking cues and argument strength in antismoking messages have shown that the presence of smoking cues undermines the persuasiveness of antismoking public service announcements (PSAs) with weak arguments. This study conceptualized smoking cues (i.e., scenes showing smoking-related objects and behaviors) as stimuli motivationally relevant to the former smoker population and examined how smoking cues influence former smokers’ processing of antismoking PSAs. Specifically, by defining smoking cues and the strength of antismoking arguments in terms of resource allocation, this study examined former smokers’ recognition accuracy, memory strength, and memory judgment of visual (i.e., scenes excluding smoking cues) and audio information from antismoking PSAs. In line with previous findings, the results of the study showed that the presence of smoking cues undermined former smokers’ encoding of antismoking arguments, which includes the visual and audio information that compose the main content of antismoking messages. PMID:25477766
2014-01-01
Background Different types of exercises can help manage chronic neck pain. Supervised exercise interventions are widely used, but these protocols require substantial resources. The aim of this trial, which focused on adherence, was to evaluate two home exercise interventions. Methods This parallel group randomized controlled trial included 57 women randomly allocated into two groups – a strength training group (STRENGTH, 34 subjects) and a stretching group (STRETCH, 23 subjects). The interventions focused on the neck and shoulder muscles and lasted for 12 months. The STRENGTH group performed weight training and ended each session with stretching exercises. These stretching exercises constituted the entirety of the STRETCH group’s training session. Both groups were instructed to exercise three times per week. All the participants kept an exercise diary. In addition, all participants were offered support via phone and e-mail. The primary outcomes were pain intensity and function. The trial included a four- to six-month and a twelve-month follow-up. A completer in this study exercised at least 1,5 times per week during eight unbroken weeks. A responder in this study reported clinically significant improvements on pain and function. The statistical analyses used the Mann Whitney U-test, Wilcoxon signed-rank test, and X 2 test. Results At four- to six-months, the numbers of completers were 19 in the STRENGTH group and 17 in the STRETCH group. At twelve months, the corresponding numbers were 11 (STRENGTH) and 10 (STRETCH). At four- to six-months, the proportions of subjects reporting clinically important changes (STRENGTH and STRETCH) were for neck pain: 47% and 41%, shoulder pain: 47% and 47%, function: 37% and 29%. At twelve months, the corresponding numbers were for neck pain: 45% and 40%, shoulder pain: 55% and 50%, function: 55% and 20%. Conclusions No differences in the two primary outcomes between the two interventions were found, a finding that may be due to the insufficient statistical power of the study. Both interventions based on home exercises improved the two primary outcomes, but the adherences were relatively low. Future studies should investigate ways to improve adherence to home exercise treatments. Trial registration ClinicalTrials.gov Id: NCT01876680 PMID:24400934
Chan, B
2015-01-01
Background Functional improvements have been seen in stroke patients who have received an increased intensity of physiotherapy. This requires additional costs in the form of increased physiotherapist time. Objectives The objective of this economic analysis is to determine the cost-effectiveness of increasing the intensity of physiotherapy (duration and/or frequency) during inpatient rehabilitation after stroke, from the perspective of the Ontario Ministry of Health and Long-term Care. Data Sources The inputs for our economic evaluation were extracted from articles published in peer-reviewed journals and from reports from government sources or the Canadian Stroke Network. Where published data were not available, we sought expert opinion and used inputs based on the experts' estimates. Review Methods The primary outcome we considered was cost per quality-adjusted life-year (QALY). We also evaluated functional strength training because of its similarities to physiotherapy. We used a 2-state Markov model to evaluate the cost-effectiveness of functional strength training and increased physiotherapy intensity for stroke inpatient rehabilitation. The model had a lifetime timeframe with a 5% annual discount rate. We then used sensitivity analyses to evaluate uncertainty in the model inputs. Results We found that functional strength training and higher-intensity physiotherapy resulted in lower costs and improved outcomes over a lifetime. However, our sensitivity analyses revealed high levels of uncertainty in the model inputs, and therefore in the results. Limitations There is a high level of uncertainty in this analysis due to the uncertainty in model inputs, with some of the major inputs based on expert panel consensus or expert opinion. In addition, the utility outcomes were based on a clinical study conducted in the United Kingdom (i.e., 1 study only, and not in an Ontario or Canadian setting). Conclusions Functional strength training and higher-intensity physiotherapy may result in lower costs and improved health outcomes. However, these results should be interpreted with caution. PMID:26366241
Relationship between lung function and grip strength in older hospitalized patients: a pilot study
Holmes, Sarah J; Allen, Stephen C; Roberts, Helen C
2017-01-01
Objective Older people with reduced respiratory muscle strength may be misclassified as having COPD on the basis of spirometric results. We aimed to evaluate the relationship between lung function and grip strength in older hospitalized patients without known airways disease. Methods Patients in acute medical wards were recruited who were aged ≥70 years; no history, symptoms, or signs of respiratory disease; Mini Mental State Examination ≥24; willing and able to consent to participate; and able to perform hand grip and forced spirometry. Data including lung function (forced expiratory volume in 1 second [FEV1], forced vital capacity [FVC], FEV1/FVC, peak expiratory flow rate [PEFR], and slow vital capacity [SVC]), grip strength, age, weight, and height were recorded. Data were analyzed using descriptive statistics and linear regression unadjusted and adjusted (for age, height, and weight). Results A total of 50 patients (20 men) were recruited. Stronger grip strength in men was significantly associated with greater FEV1, but this was attenuated by adjustment for age, height, and weight. Significant positive associations were found in women between grip strength and both PEFR and SVC, both of which remained robust to adjustment. Conclusion The association between grip strength and PEFR and SVC may reflect stronger patients generating higher intrathoracic pressure at the start of spirometry and pushing harder against thoracic cage recoil at end-expiration. Conversely, patients with weaker grip strength had lower PEFR and SVC. These patients may be misclassified as having COPD on the basis of spirometric results. PMID:28458532
Microwave spectrum of o-benzyne produced in a discharge nozzle
NASA Astrophysics Data System (ADS)
Kukolich, S. G.; Tanjaroon, C.; McCarthy, M. C.; Thaddeus, P.
2003-08-01
The microwave spectrum for o-benzyne was obtained by passing a dilute (<1%) mixture of benzene in neon through a pulsed-DC discharge nozzle source into a pulsed-beam, Fourier transform spectrometer. Rotational transitions were measured for the normal isotopomer, the two unique single-D isotopomers, and the 13C isotopomer and one of the 13C isotopomers. Benzynes have been known as reactive intermediates in organic reactions for many years, and have recently been implicated in gasoline combustion reactions and antitumor activity of enediynes. Twenty-seven b-type transitions for the normal isotopomer were fit to obtain A=6989.7292(6), B=5706.8062(6), and C=3140.3708(4) MHz, and five centrifugal distortion constants. The inertial defect is Δ=0.069 4 amu Å2, consistent with a planar structure. Hyperfine structure for the D1 (closest to the CtrpbndC bond) and D2 (furthest from the CtrpbndC bond), was analyzed to obtain deuterium quadrupole coupling strengths eQqaa(D1)=185(3) kHz, eQqbb(D1)=-85(2) kHz, eQqaa(D2)=5(13), and eQqbb(D2)=86(13) kHz. The C-D, bond axis quadrupole coupling strengths are compared with values for benzene. Spectra for the 13C6 and one of the 13C1 isotopomers were analyzed to obtain rotational constants. Kraitchman analysis and least-squares fitting provided nearly all of the structural parameters. The preliminary structural analysis yields an acetylenic C≡C bond length of 1.24 Å, in agreement with a recent NMR value. Density functional theory (DFT) calculations were used to obtain structural parameters, and values obtained are in very good agreement with present experimental results.
Alpha-Helical Protein Domains Unify Strength and Robustness through Hierarchical Nanostructures
2009-01-23
backbone atom (hydrogen donor) of peptide i + 4 in the polypeptide chain. Consequently, at each convolution , 3.5 H- bonds are found in a parallel...signaling and deformation behavior of cytoskeletal protein networks in cells (e.g. intermediate filaments vimentin and lamin as well as actin [7, 8... convolution . The Hierarchical Bell model enables one to predict the strength of different hierarchical bond arrangements as a function of the
The Reliability and Validity of the Power-Load-Margin Inventory: A Rasch Analysis.
Hardigan, Patrick C; Cohen, Stanley R; Hagen, Kathleen P
2015-01-01
Margin is a function of the relationship of stress to strength. The greater the margin, the more likely students are able to successfully navigate academic structures. This study examined the psychometric properties of a newly created instrument designed to measure margin - the Power-Load-Margin Inventory (PLMI). The PLMI was created using eight domains: (A) Student's aptitude and ability, (B) Course structure, (C) External motivation, (D) Student health, (E) Instructor style, (F) Internal motivation, (G) Life opportunities, and (H) University support structure. A three-point response scale was used to measure the domains: (1) stress, (2) neither stress nor strength, and (3) strength. The PLMI was administered to 586 medical, dental, and pharmacy students. A Rasch rating scale model was used to examine the psychometric properties of the PLMI. The PLMI demonstrated acceptable psychometric properties for use with pharmacy, dental, and medical students. The PLMI's primary weakness was with the subscales' reliability. We attribute this to the small number of items per subscale.
Vikmoen, Olav; Raastad, Truls; Seynnes, Olivier; Bergstrøm, Kristoffer; Ellefsen, Stian; Rønnestad, Bent R.
2016-01-01
Purpose The purpose of the current study was to investigate the effects of adding strength training to normal endurance training on running performance and running economy in well-trained female athletes. We hypothesized that the added strength training would improve performance and running economy through altered stiffness of the muscle-tendon complex of leg extensors. Methods Nineteen female endurance athletes [maximal oxygen consumption (VO2max): 53±3 ml∙kg-1∙min-1, 5.8 h weekly endurance training] were randomly assigned to either normal endurance training (E, n = 8) or normal endurance training combined with strength training (E+S, n = 11). The strength training consisted of four leg exercises [3 x 4–10 repetition maximum (RM)], twice a week for 11 weeks. Muscle strength, 40 min all-out running distance, running performance determinants and patellar tendon stiffness were measured before and after the intervention. Results E+S increased 1RM in leg exercises (40 ± 15%) and maximal jumping height in counter movement jump (6 ± 6%) and squat jump (9 ± 7%, p < 0.05). This was accompanied by increased muscle fiber cross sectional area of both fiber type I (13 ± 7%) and fiber type II (31 ± 20%) in m. vastus lateralis (p < 0.05), with no change in capillary density in m. vastus lateralis or the stiffness of the patellar tendon. Neither E+S nor E changed running economy, fractional utilization of VO2max or VO2max. There were also no change in running distance during a 40 min all-out running test in neither of the groups. Conclusion Adding heavy strength training to endurance training did not affect 40 min all-out running performance or running economy compared to endurance training only. PMID:26953893
Rejoining of cut wounds by engineered gelatin-keratin glue.
Thirupathi Kumara Raja, S; Thiruselvi, T; Sailakshmi, G; Ganesh, S; Gnanamani, A
2013-08-01
Rejoining of cut tissue ends of a critical site challenges clinicians. The toxicity, antigenicity, low adhesive strength, flexibility, swelling and cost of the currently employed glue demands an alternative. Engineered gelatin-keratin glue (EGK-glue) described in the present study was found to be suitable for wet tissue approximation. EGK-glue was prepared by engineering gelatin with caffeic acid using EDC and conjugating with keratin by periodate oxidation. UV-visible, (1)H NMR and circular dichroism analyses followed by experiments on gelation time, rheology, gel adhesive strength (in vitro), wet tissue approximation (in vivo), H&E staining of tissue sections at scheduled time intervals and tensile strength of the healed skin were carried out to assess the effectiveness of the EGK-glue in comparison with fibrin glue and cyanoacrylate. Results of UV-visible, NMR and CD analyses confirmed the functionalization and secondary structural changes. Increasing concentration of keratin reduces the gelation time (<15s). Lap-shear test demonstrates the maximum adhesive strength of 16.6±1.2kPa. Results of hemocompatibility and cytocompatibility studies suggested the suitability of the glue for clinical applications. Tissue approximation property assessed using the incision wound model (Wistar strain) in comparison with cyanoacrylate and fibrin glue suggested, that EGK-glue explicitly accelerates the rejoining of tissue with a 1.86 fold increase in skin tensile strength after healing. Imparting quinone moiety to gelatin-keratin conjugates through caffeic acid and a weaker oxidizing agent provides an adhesive glue with appreciable strength, and hemocompatible, cytocompatible and biodegradable properties, which, rejoin the cut tissue ends effectively. EGK-glue obtained in the present study finds wide biomedical/clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
[In vitro study on shear bond strength of veneering ceramics to zirconia].
Hu, Xiaoping; Zhu, Hongshui; Zeng, Liwei
2012-12-01
To investigate the shear bond strength between veneering ceramic and zirconia core in different all-ceramic systems. Twenty disk-shaped specimens with 8 mm in diameter and 3 mm in height for each zirconia system (Lava, Cercon, IPS e.max ZirCAD, Procera) were fabricated respectively and divided into four groups: Lava group, Cercon group, IPS e.max ZirCAD group, Procera group. For each group, 10 specimens were sintered with 1 mm corresponding veneering ceramic, while the other were sintered with 2 mm corresponding veneering ceramic respectively. The shear bond strength and fracture mode of specimens were observed and determined. The values of shear bond strength for Lava, Cercon, IPS e.max ZirCAD and Procera were (13.82 +/- 3.71), (13.24 +/- 2.09), (6.37 +/- 4.15), (5.19 +/- 5.31) MPa in the group of 1 mm thicked veneering ceramics, respectively, while the values in the group of 2mm thicked veneering ceramics were (38.77 +/- 1.69), (21.67 +/- 3.34), (12.70 +/- 4.24), (9.94 +/- 6.67) MPa. The values of Lava and Cercon groups were significantly higher than that of IPS e.max ZirCAD and Procera groups (P < 0.05). And the values of 2 mm thicked veneering ceramic group were significantly higher than that in 1 mm thicked groups (P < 0.05). Adhesive fracture between core and veneering ceramics were observed in the fracture modes of most specimens. The shear bond strength of veneering ceramic to the zirconia framework are different from the zirconia system we chose, and the thickness of veneering ceramic has a great impact on its shear bond strength.
Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field
NASA Astrophysics Data System (ADS)
Sallabi, A. K.; Alkhttab, M.
2014-12-01
Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).
Jenkins, Nathaniel D M; Buckner, Samuel L; Bergstrom, Haley C; Cochrane, Kristen C; Goldsmith, Jacob A; Housh, Terry J; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T
2014-10-01
To quantify the reliability of isometric leg extension torque (LEMVC), rate of torque development (LERTD), isometric handgrip force (HGMVC) and RFD (HGRFD), isokinetic leg extension torque and power at 1.05rad·s(-1) and 3.14rad·s(-1); and explore relationships among strength, power, and balance in older men. Sixteen older men completed 3 isometric handgrips, 3 isometric leg extensions, and 3 isokinetic leg extensions at 1.05rad·s(-1) and 3.14rad·s(-1) during two visits. Intraclass correlation coefficients (ICCs), ICC confidence intervals (95% CI), coefficients of variation (CVs), and Pearson correlation coefficients were calculated. LERTD demonstrated no reliability. The CVs for LERTD and HGRFD were ≤23.26%. HGMVC wasn't related to leg extension torque or power, or balance (r=0.14-0.47; p>0.05). However, moderate to strong relationships were found among isokinetic leg extension torque at 1.05rad·s(-1) and 3.14rad·s(-1), leg extension mean power at 1.05rad·s(-1), and functional reach (r=0.51-0.95; p≤0.05). LERTD and HGRFD weren't reliable and shouldn't be used as outcome variables in older men. Handgrip strength may not be an appropriate surrogate for lower body strength, power, or balance. Instead, perhaps handgrip strength should only be used to describe upper body strength or functionality, which may compliment isokinetic assessments of lower body strength, which were reliable and related to balance. Copyright © 2014 Elsevier Inc. All rights reserved.
Perceived Discrimination and Longitudinal Change in Kidney Function Among Urban Adults.
Beydoun, May A; Poggi-Burke, Angedith; Zonderman, Alan B; Rostant, Ola S; Evans, Michele K; Crews, Deidra C
2017-09-01
Perceived discrimination has been associated with psychosocial distress and adverse health outcomes. We examined associations of perceived discrimination measures with changes in kidney function in a prospective cohort study, the Healthy Aging in Neighborhoods of Diversity across the Life Span. Our study included 1620 participants with preserved baseline kidney function (estimated glomerular filtration rate [eGFR] ≥ 60 mL/min/1.73 m) (662 whites and 958 African Americans, aged 30-64 years). Self-reported perceived racial discrimination and perceived gender discrimination (PGD) and a general measure of experience of discrimination (EOD) ("medium versus low," "high versus low") were examined in relation to baseline, follow-up, and annual rate of change in eGFR using multiple mixed-effects regression (γbase, γrate) and ordinary least square models (γfollow). Perceived gender discrimination "high versus low PGD" was associated with a lower baseline eGFR in all models (γbase = -3.51 (1.34), p = .009 for total sample). Among white women, high EOD was associated with lower baseline eGFR, an effect that was strengthened in the full model (γbase = -5.86 [2.52], p = .020). Overall, "high versus low" PGD was associated with lower follow-up eGFR (γfollow = -3.03 [1.45], p = .036). Among African American women, both perceived racial discrimination and PGD were linked to lower follow-up kidney function, an effect that was attenuated with covariate adjustment, indicating mediation through health-related, psychosocial, and lifestyle factors. In contrast, EOD was not linked to follow-up eGFR in any of the sex by race groups. Perceived racial and gender discrimination are associated with lower kidney function assessed by glomerular filtration rate and the strength of associations differ by sex and race groups. Perceived discrimination deserves further investigation as a psychosocial risk factors for kidney disease.
Jiang, Tao; Khan, Yusuf; Nair, Lakshmi S; Abdel-Fattah, Wafa I; Laurencin, Cato T
2010-06-01
Scaffolds exhibiting biological recognition and specificity play an important role in tissue engineering and regenerative medicine. The bioactivity of scaffolds in turn influences, directs, or manipulates cellular responses. In this study, chitosan/poly(lactic acid-co-glycolic acid) (chitosan/PLAGA) sintered microsphere scaffolds were functionalized via heparin immobilization. Heparin was successfully immobilized on chitosan/PLAGA scaffolds with controllable loading efficiency. Mechanical testing showed that heparinization of chitosan/PLAGA scaffolds did not significantly alter the mechanical properties and porous structures. In addition, the heparinized chitosan/PLAGA scaffolds possessed a compressive modulus of 403.98 +/- 19.53 MPa and a compressive strength of 9.83 +/- 0.94 MPa, which are in the range of human trabecular bone. Furthermore, the heparinized chitosan/PLAGA scaffolds had an interconnected porous structure with a total pore volume of 30.93 +/- 0.90% and a median pore size of 172.33 +/- 5.89 mum. The effect of immobilized heparin on osteoblast-like MC3T3-E1 cell growth was investigated. MC3T3-E1 cells proliferated three dimensionally throughout the porous structure of the scaffolds. Heparinized chitosan/PLAGA scaffolds with low heparin loading (1.7 microg/scaffold) were shown to be capable of stimulating MC3T3-E1 cell proliferation by MTS assay and cell differentiation as evidenced by elevated osteocalcin expression when compared with nonheparinized chitosan/PLAGA scaffold and chitosan/PLAGA scaffold with high heparin loading (14.1 microg/scaffold). This study demonstrated the potential of functionalizing chitosan/PLAGA scaffolds via heparinization with improved cell functions for bone tissue engineering applications.
Neutron Capture Measurements on 97Mo with the DANCE Array
NASA Astrophysics Data System (ADS)
Walker, Carrie L.
Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.
Guinan, Emer M; Doyle, S L; Bennett, A E; O'Neill, L; Gannon, J; Elliott, J A; O'Sullivan, J; Reynolds, J V; Hussey, J
2018-05-01
Preoperative chemo(radio)therapy for oesophageal cancer (OC) may have an attritional impact on body composition and functional status, impacting postoperative outcome. Physical decline with skeletal muscle loss has not been previously characterised in OC and may be amenable to physical rehabilitation. This study characterises skeletal muscle mass and physical performance from diagnosis to post-neoadjuvant therapy in patients undergoing preoperative chemo(radio)therapy for OC. Measures of body composition (axial computerised tomography), muscle strength (handgrip), functional capacity (walking distance), anthropometry (weight, height and waist circumference), physical activity, quality-of-life and nutritional status were captured prospectively. Sarcopenia status was defined as pre-sarcopenic (low muscle mass only), sarcopenic (low muscle mass and low muscle strength or function) or severely sarcopenic (low muscle mass and low muscle strength and low muscle function). Twenty-eight participants were studied at both time points (mean age 62.86 ± 8.18 years, n = 23 male). Lean body mass reduced by 4.9 (95% confidence interval 3.2 to 6.7) kg and mean grip strength reduced by 4.3 (2.5 to 6.1) kg from pre- to post-neoadjuvant therapy. Quality-of-life scores capturing gastrointestinal symptoms improved. Measures of anthropometry, walking distance, physical activity and nutritional status did not change. There was an increase in sarcopenic status from diagnosis (pre-sarcopenic n = 2) to post-treatment (pre-sarcopenic n = 5, severely sarcopenic n = 1). Despite maintenance of body weight, functional capacity and activity habits, participants experience declines in muscle mass and strength. Interventions involving exercise and/or nutritional support to build muscle mass and strength during preoperative therapy, even in patients who are functioning normally, are warranted.
Influence of Ionic Strength on the Deposition of Metal-Phenolic Networks.
Guo, Junling; Richardson, Joseph J; Besford, Quinn A; Christofferson, Andrew J; Dai, Yunlu; Ong, Chien W; Tardy, Blaise L; Liang, Kang; Choi, Gwan H; Cui, Jiwei; Yoo, Pil J; Yarovsky, Irene; Caruso, Frank
2017-10-10
Metal-phenolic networks (MPNs) are a versatile class of self-assembled materials that are able to form functional thin films on various substrates with potential applications in areas including drug delivery and catalysis. Different metal ions (e.g., Fe III , Cu II ) and phenols (e.g., tannic acid, gallic acid) have been investigated for MPN film assembly; however, a mechanistic understanding of the thermodynamics governing MPN formation remains largely unexplored. To date, MPNs have been deposited at low ionic strengths (<5 mM), resulting in films with typical thicknesses of ∼10 nm, and it is still unclear how a bulk complexation reaction results in homogeneous thin films when a substrate is present. Herein we explore the influence of ionic strength (0-2 M NaCl) on the conformation of MPN precursors in solution and how this determines the final thickness and morphology of MPN films. Specifically, the film thickness increases from 10 nm in 0 M NaCl to 12 nm in 0.5 M NaCl and 15 nm in 1 M NaCl, after which the films grow rougher rather than thicker. For example, the root-mean-square roughness values of the films are constant below 1 M NaCl at 1.5 nm; in contrast, the roughness is 3 nm at 1 M NaCl and increases to 5 nm at 2 M NaCl. Small-angle X-ray scattering and molecular dynamics simulations allow for comparisons to be made with chelated metals and polyelectrolyte thin films. For example, at a higher ionic strength (2 M NaCl), sodium ions shield the galloyl groups of tannic acid, allowing them to extend away from the Fe III center and interact with other MPN complexes in solution to form thicker and rougher films. As the properties of films determine their final performance and application, the ability to tune both thickness and roughness using salts may allow for new applications of MPNs.
Raj, Isaac Selva; Bird, Stephen R; Westfold, Ben A; Shield, Anthony J
2017-01-01
Reliable measures of muscle strength and functional capacity in older adults are essential. The aim of this study was to determine whether coefficients of variation (CVs) of individuals obtained at the first session can infer repeatability of performance in a subsequent session. Forty-eight healthy older adults (mean age 68.6 ± 6.1 years; age range 60-80 years) completed two assessment sessions, and on each occasion undertook: dynamometry for isometric and isokinetic quadriceps strength, 6 meter fast walk (6MFWT), timed up and go (TUG), stair climb and descent, and vertical jump. Significant linear relationships were observed between CVs in session 1 and the percentage difference between sessions 1 and 2 for torque at 60, 120, 240 and 360°/s, 6MFWT, TUG, stair climb, and stair descent. The results of this study could be used to establish criteria for determining an acceptably reliable performance in strength and functional tests.
Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N
2018-03-01
DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p < 0.0001) from one another with DXA total body less head being highest at 37.8 (7.3) kg, D3-C muscle mass at 21.1 (4.6) kg, and BIS total body intracellular water at 17.4 (3.5) kg. All mass assessment methods correlated with grip strength and jump power (R = 0.35-0.63, p < 0.0002), but not with gait speed or repeat chair rise. Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.
Abe, Sakiko; Ezaki, Osamu; Suzuki, Motohisa
2016-05-01
Sarcopenia, the loss of skeletal muscle mass, strength, and function, is common in elderly individuals but difficult to treat. A combination of nutrients was investigated to treat sarcopenia in very frail elderly adults. We enrolled 38 elderly nursing home residents (11 men and 27 women with a mean ± SD age of 86.6 ± 4.8 y) in a 3-mo randomized, controlled, single-blind, parallel group trial. The participants were randomly allocated to 3 groups. The first group received a daily l-leucine (1.2 g) and cholecalciferol (20 μg)-enriched supplement with 6 g medium-chain triglycerides (TGs) (MCTs) (LD + MCT); the second group received the same leucine and cholecalciferol-enriched supplement with 6 g long-chain TGs (LD + LCT); and the third group did not receive any supplements (control). The supplement and oils were taken at dinner, and changes in muscle mass, strength, and function were monitored. The increase in body weight in the LD + MCT (1.1 ± 1.0 kg) and LD + LCT (0.8 ± 1.1 kg) groups was greater than that in the control group (-0.5 ± 0.9 kg) (P < 0.05). After 3 mo, participants in the LD + MCT group had a 13.1% increase in right-hand grip strength (1.2 ± 1.0 kg, P < 0.01), a 12.5% increase in walking speed (0.078 ± 0.080 m/s, P < 0.05), a 68.2% increase in a 10-s leg open-and-close test performance (2.31 ± 1.68 n/10 s, P < 0.001), and a 28.2% increase in peak expiratory flow (53 ± 59 L/min, P < 0.01). No significant improvements in muscle mass, strength, or function were observed in the LD + LCT or control groups. The combined supplementation of MCTs (6 g), leucine-rich amino acids, and cholecalciferol at dinner may improve muscle strength and function in frail elderly individuals. This trial was registered at the University Hospital Medical Information Network Clinical Trials Registry as UMIN000017567. © 2016 American Society for Nutrition.
Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T
2014-12-15
This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Ortmann, Frank; Roche, Stephan
2013-02-22
We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.
Ab-initio studies of the electronic and optical properties of Al2O3:Ti3+ laser crystals
NASA Astrophysics Data System (ADS)
Brik, M. G.
2018-03-01
The structural and electronic properties of pure and Ti3+-doped α-Al2O3 were calculated in the present paper by using the first-principles methods. Special attention has been paid to the location of the Ti3+ states (3d1 electron configuration) in the band gap; the lowest 3d states are at about 4.78 eV above the top of the valence band. The crystal field strength 10Dq at the Ti3+ site was estimated from the density of states diagrams to be about 17,700 cm-1. The structural optimization of the unit cell was also performed at elevated hydrostatic pressure in the range from 0 to 25 GPa. By application of the Murnaghan equation to the obtained results, the bulk modulus of α-Al2O3 was estimated to be 225.69 GPa. In addition, from the analysis of the Ti3+3d density of states the distance dependence of the crystal field strength was found to be described by the following function: 10Dq=61.744/R4.671, where R is expressed in Å and 10Dq in eV.
Di Monaco, Marco; Castiglioni, Carlotta; De Toma, Elena; Gardin, Luisa; Giordano, Silvia; Tappero, Rosa
2015-02-01
The objective of this study was to investigate the contribution of handgrip strength in predicting the functional outcome after hip fracture in women.We prospectively investigated white women (N = 193 of 207) who were consecutively admitted to a rehabilitation hospital after a hip fracture. We measured handgrip strength with a Jamar dynamometer (Lafayette Instrument Co, Lafayette, IN), on admission to rehabilitation. Ability to function in activities of daily living was assessed by the Barthel index both on discharge from rehabilitation and at a 6-month follow-up.We found significant correlations between handgrip strength measured before rehabilitation and Barthel index scores assessed both on discharge from rehabilitation (ρ = 0.52, P < 0.001) and after 6 months (ρ = 0.49, P < 0.001). Significant associations between handgrip strength and Barthel index scores persisted after adjustment for age, comorbidities, pressure ulcers, medications in use, concomitant infections, body mass index, hip-fracture type, and Barthel index scores assessed both preinjury and on admission to rehabilitation (P = 0.001). Further adjustments for both Barthel index scores and Timed Up-and-Go test assessed at rehabilitation ending did not erase the significant association between handgrip strength and the Barthel index scores at the 6-month evaluation (P = 0.007). To define successful rehabilitation, we categorized the Barthel index scores as either high (85 or higher) or low (<85). The adjusted odds ratio for 1 SD increase in grip strength was 1.73 (95% confidence interval [CI] 1.05-2.84, P = 0.032) for having a high Barthel index score at the end of inpatient rehabilitation and 2.24 (95% CI 1.06-5.18) for having a high Barthel index score at the 6-month follow-up.Handgrip strength assessed before rehabilitation independently predicted the functional outcome both after inpatient rehabilitation and at a 6-month follow-up in hip-fracture women.
Joint awareness after total knee arthroplasty is affected by pain and quadriceps strength.
Hiyama, Y; Wada, O; Nakakita, S; Mizuno, K
2016-06-01
There is a growing interest in the use of patient-reported outcomes to provide a more patient-centered view on treatment. Forgetting the artificial joint can be regarded as the goal in joint arthroplasty. The goals of the study were to describe changes in joint awareness in the artificial joint after total knee arthroplasty (TKA), and to determine which factors among pain, knee range of motion (ROM), quadriceps strength, and functional ability affect joint awareness after TKA. Patients undergoing TKA demonstrate changes in joint awareness and joint awareness is associated with pain, knee ROM, quadriceps strength, and functional ability. This prospective cohort study comprised 63 individuals undergoing TKA, evaluated at 1, 6, and 12 months postoperatively. Outcomes included joint awareness assessed using the Forgotten Joint Score (FJS), pain score, knee ROM, quadriceps strength, and functional ability. Fifty-eight individuals completed all postoperative assessments. All measures except for knee extension ROM improved from 1 to 6 months. However, there were no differences in any measures from 6 to 12 months. FJS was affected most greatly by pain at 1 month and by quadriceps strength at 6 and 12 months. Patients following TKA demonstrate improvements in joint awareness and function within 6 months after surgery, but reach a plateau from 6 to 12 months. Quadriceps strength could contribute to this plateau of joint awareness. Prospective cohort study, IV. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
1983-10-01
failure envelopes compound the problems relating to the distribution of normal stress. Any given linear approximation of a curvilin- ear envelope will be...EEEEEEEEEEEEEE *mmmmmmumlll -. °. - t. - ji 11--1 i 1I -. E ’ ’" 1.25E MICROCOP REOUIO _ET HRNATIONA BUEUIFSANAD16- 11111 44 i , ... . , . ro. ’ . * * . .. U...Solution of cementing agents such as calcite and carbonates results in subse- quent strength losses. Oxidation to form new chemical compounds within
UV absorption spectrum of allene radical cations in solid argon
NASA Astrophysics Data System (ADS)
Chin, Chih-Hao; Lin, Meng-Yeh; Huang, Tzu-Ping; Wu, Yu-Jong
2018-05-01
Electron bombardment during deposition of an Ar matrix containing a small proportion of allene generated allene cations. Further irradiation of the matrix sample at 385 nm destroyed the allene cations and formed propyne cations in solid Ar. Both cations were identified according to previously reported IR absorption bands. Using a similar technique, we recorded the ultraviolet absorption spectrum of allene cations in solid Ar. The vibrationally resolved progression recorded in the range of 266-237 nm with intervals of about 800 cm-1 was assigned to the A2E ← X2E transition of allene cations, and the broad continuum absorption recorded in the region of 229-214 nm was assigned to their B2A1 ← X2E transition. These assignments were made based on the observed photolytic behavior of the progressions and the vertical excitation energies and oscillator strengths calculated using time-dependent density functional theory.
Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.
Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S
2017-07-01
What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P < 0.05], whereas FLH showed good reliability in chow (ICC = 0.7; P < 0.05) but not in HFD mice after 10 weeks (ICC < 0.5). Our data demonstrate that non-invasive muscle function tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
P/M Processing of Rare Earth Modified High Strength Steels.
1980-12-01
AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Transition Probabilities for Hydrogen-Like Atoms
NASA Astrophysics Data System (ADS)
Jitrik, Oliverio; Bunge, Carlos F.
2004-12-01
E1, M1, E2, M2, E3, and M3 transition probabilities for hydrogen-like atoms are calculated with point-nucleus Dirac eigenfunctions for Z=1-118 and up to large quantum numbers l=25 and n=26, increasing existing data more than a thousandfold. A critical evaluation of the accuracy shows a higher reliability with respect to previous works. Tables for hydrogen containing a subset of the results are given explicitly, listing the states involved in each transition, wavelength, term energies, statistical weights, transition probabilities, oscillator strengths, and line strengths. The complete results, including 1 863 574 distinct transition probabilities, lifetimes, and branching fractions are available at http://www.fisica.unam.mx/research/tables/spectra/1el
Physical Function, Hyperuricemia, and Gout in Older Adults.
Burke, Bridget Teevan; Köttgen, Anna; Law, Andrew; Windham, Beverly Gwen; Segev, Dorry; Baer, Alan N; Coresh, Josef; McAdams-DeMarco, Mara A
2015-12-01
Gout prevalence is high in older adults and those affected are at risk of physical disability, yet it is unclear whether they have worse physical function. We studied gout, hyperuricemia, and physical function in 5,819 older adults (age ≥65 years) attending the 2011-2013 Atherosclerosis Risk in Communities Study visit, a prospective US population-based cohort. Differences in lower extremity function (Short Physical Performance Battery [SPPB] and 4-meter walking speed) and upper extremity function (grip strength) by gout status and by hyperuricemia prevalence were estimated in adjusted ordinal logistic regression (SPPB) and linear regression (walking speed and grip strength) models. Lower scores or times signify worse function. The prevalence of poor physical performance (first quartile) by gout and hyperuricemia was estimated using adjusted modified Poisson regression. Ten percent of participants reported a history of gout and 21% had hyperuricemia. There was no difference in grip strength by history of gout (P = 0.77). Participants with gout performed worse on the SPPB test; they had 0.77 times (95% confidence interval [95% CI] 0.65, 0.90, P = 0.001) the prevalence odds of a 1-unit increase in SPPB score and were 1.18 times (95% CI 1.07, 1.32, P = 0.002) more likely to have poor SPPB performance. Participants with a history of gout had slower walking speed (mean difference -0.03; 95% CI -0.05, -0.01, P < 0.001) and were 1.19 times (95% CI 1.06, 1.34, P = 0.003) more likely to have poor walking speed. Similarly, SPPB score and walking speed, but not grip strength, were worse in participants with hyperuricemia. Older adults with gout and hyperuricemia are more likely to have worse lower extremity, but not upper extremity, function. © 2015, American College of Rheumatology.
Origin of tensile strength of a woven sample cut in bias directions
Pan, Ning; Kovar, Radko; Dolatabadi, Mehdi Kamali; Wang, Ping; Zhang, Diantang; Sun, Ying; Chen, Li
2015-01-01
Textile fabrics are highly anisotropic, so that their mechanical properties including strengths are a function of direction. An extreme case is when a woven fabric sample is cut in such a way where the bias angle and hence the tension loading direction is around 45° relative to the principal directions. Then, once loaded, no yarn in the sample is held at both ends, so the yarns have to build up their internal tension entirely via yarn–yarn friction at the interlacing points. The overall fabric strength in such a sample is a result of contributions from the yarns being pulled out and those broken during the process, and thus becomes a function of the bias direction angle θ, sample width W and length L, along with other factors known to affect fabric strength tested in principal directions. Furthermore, in such a bias sample when the major parameters, e.g. the sample width W, change, not only the resultant strengths differ, but also the strength generating mechanisms (or failure types) vary. This is an interesting problem and is analysed in this study. More specifically, the issues examined in this paper include the exact mechanisms and details of how each interlacing point imparts the frictional constraint for a yarn to acquire tension to the level of its strength when both yarn ends were not actively held by the testing grips; the theoretical expression of the critical yarn length for a yarn to be able to break rather than be pulled out, as a function of the related factors; and the general relations between the tensile strength of such a bias sample and its structural properties. At the end, theoretical predictions are compared with our experimental data. PMID:26064655
TH-CD-BRA-12: Impact of a Magnetic Field On the Response From a Plastic Scintillation Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Therriault-Proulx, F; Wen, Z; Ibbott, G
Purpose: To study the effect of a strong magnetic field on the scintillation and the stem effect from a plastic scintillation detector (PSD) and evaluate its accuracy to measure dose. Methods: A plastic scintillation detector and a bare plastic fiber were placed inside a magnet of adjustable field strength (B=0−1.5T) and irradiated by a 6-MV photon beam (Elekta Versa HD LINAC). The PSD was built in-house using a scintillating fiber (BCF-60, 3-mm long × 1-mm diameter) coupled to an optical fiber similar to the bare fiber (PMMA, 12-m long, 1-mm diameter). Light output spectra were acquired with a spectrometer. Intensitymore » and shape of the output spectra were compared as a function of the magnetic field strength. The bare fiber was used to study the behavior of the stem effect (composed of Cerenkov and fluorescence). The spectrometry setup allowed to perform a previously demonstrated hyperspectral stem-effect removal and calculated dose was studied as a function of the magnetic field strength. Results: Signal intensities were shown to increase with the magnetic field strength by up to 19% and 79% at 1.5T in comparison to the irradiation without a magnetic field, for respectively the PSD and the bare fiber. The light produced by Cerenkov effect in the optical fiber was shown to be the major component affected by the magnetic field. Effect of the magnetic field on the electrons trajectory may explain this behavior. Finally, accounting for the stem effect using the hyperspectral approach led to accuracy in dose measurement within 2.6%. Interestingly, variations in accuracy were negligible for values over 0.3T. Conclusion: Dependence of PSDs to magnetic field is mainly due to the Cerenkov light. When accounting for it, PSDs become a candidate of choice for both quality assurance and in vivo dosimetry of therapy under strong magnetic fields (e.g. for MRI-Linacs).« less
NASA Astrophysics Data System (ADS)
Safronova, Ulyana; Safronova, Alla; Beiersdorfer, Peter
2013-05-01
Excitation energies, oscillator strengths, transition probabilities, and lifetimes are calculated for (5s2 + 5p2 + 5d2 + 5 s 5 d + 5 s 5 g + 5 p 5 f) - (5 s 5 p + 5 s 5 f + 5 p 5 d + 5 p 5 g) electric dipole transitions in Sm-like ions with nuclear charge Z ranging from 74 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate coupling coefficients, and the second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are included in the second-order E1 matrix elements to achieve agreement between length-form and velocity-form amplitudes. The resulting transition energies and transition probabilities, and lifetimes for Sm-like W12+ are compared with results obtained by the relativistic Hartree-Fock approximation (COWAN code) to estimate contribution of the 4 f -core-excited states. Trends of excitation energies and oscillator strengths as function of nuclear charge Z are shown graphically for selected states and transitions. This work provides a number of yet unmeasured properti. This research was sponsored by the grant DE-FG02-08ER54951.
Shoulder functional ratio in elite junior tennis players.
Saccol, Michele Forgiarini; Gracitelli, Guilherme Conforto; da Silva, Rogério Teixeira; Laurino, Cristiano Frota de Souza; Fleury, Anna Maria; Andrade, Marília dos Santos; da Silva, Antonio Carlos
2010-02-01
To evaluate shoulder rotation strength and compare the functional ratio between shoulders of elite junior tennis players. This cross-sectional study evaluated muscular rotation performance of 40 junior tennis players (26 male and 14 female) with an isokinetic dynamometer. Strength variables of external (ER) and internal rotators (IR) in concentric and eccentric modes were considered. For the peak torque functional ratio, the eccentric strength of the ER and the concentric strength of the IR were calculated. All variables related to IR were significantly higher on the dominant compared to the non-dominant side in males and females (p<0.05), but only boys exhibited this dominance effect in ER (p<0.05 and p<0.001). Regarding functional ratios, they were significantly lower for the dominant shoulder (p<0.001) and below 1.00 for both groups, indicating that the eccentric strength of the ER was not greater than the concentric strength of the IR. Elite junior tennis players without shoulder injury have shoulder rotation muscle strength imbalances that alter the normal functional ratio between rotator cuff muscles. Although these differences do not seem to affect the athletic performance, detection and prevention with exercise programs at an early age are recommended. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients.
Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano
2009-05-06
despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. We enrolled 20 obese (O) females (age: 29.1 +/- 6.5 years; BMI: 38.1 +/- 3.1), 6 PWS females (age: 27.2 +/- 4.9 years; BMI: 45.8 +/- 4.4) and 14 healthy normal-weight (H) females (age: 30.1 +/- 4.7 years; BMI: 21 +/- 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60 degrees /s, 180 degrees /s, 240 degrees /s was measured with a Cybex Norm dynamometer. the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments.
Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients
Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano
2009-01-01
Background despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. Methods We enrolled 20 obese (O) females (age: 29.1 ± 6.5 years; BMI: 38.1 ± 3.1), 6 PWS females (age: 27.2 ± 4.9 years; BMI: 45.8 ± 4.4) and 14 healthy normal-weight (H) females (age: 30.1 ± 4.7 years; BMI: 21 ± 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60°/s, 180°/s, 240°/s was measured with a Cybex Norm dynamometer. Results the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. Conclusion the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments. PMID:19419559
Izawa, Kazuhiro P; Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi
2017-11-27
Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m²; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength ( r = -0.38, p = 0.01) and with knee extensor muscle strength ( r = -0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation.
Large energy storage efficiency of the dielectric layer of graphene nanocapacitors.
Bezryadin, A; Belkin, A; Ilin, E; Pak, M; Colla, Eugene V; Hubler, A
2017-12-08
Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al 2 O 3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm -1 (i.e., 1 GV m -1 ), which is much larger than the table value of the Al 2 O 3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.
Phosphate Removal by Anion Binding on Functionalized Nanoporous Sorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Wiacek, Robert J.; Pattamakomsan, Kanda
2010-03-26
Phosphate was captured from aqueous solutions by cationic metal-EDA complexes anchored inside mesoporous silica MCM-41 supports (Cu(II)-EDA-SAMMS and Fe(III)-EDA-SAMMS). Fe-EDA-SAMMS was more effective at capturing phosphate than the Cu-EDA-SAMMS and was further studied for matrix effects (e.g., pH, ionic strength, and competing anions) and sorption performance (e.g., capacity and rate). The adsorption of phosphate was highly pH dependent; it increased with increasing pH from 1.0 to 6.5, and decreased above pH 6.5. The adsorption was affected by high ionic strength (0.1 M of NaCl). In the presence of 1000-fold molar excess of chloride and nitrate anions, phosphate removal by Fe-EDA-SAMMSmore » was not affected. Slight, moderate and large impacts were seen with bicarbonate, sulfate and citrate anions, respectively. The phosphate adsorption data on Fe-EDA-SAMMS agreed well with the Langmuir model with the estimated maximum capacity of 43.3 mg/g. The material displayed rapid sorption rate (99% of phosphate removal within 1 min) and lowering the phosphate content to ~ 10 µg/L of phosphorus, which is lower than the EPA’s established freshwater contaminant level for phosphorous (20 µg/L).« less
Large energy storage efficiency of the dielectric layer of graphene nanocapacitors
NASA Astrophysics Data System (ADS)
Bezryadin, A.; Belkin, A.; Ilin, E.; Pak, M.; Colla, Eugene V.; Hubler, A.
2017-12-01
Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al2O3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm-1 (i.e., 1 GV m-1), which is much larger than the table value of the Al2O3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.
Quadrupole decay strength of the M1 scissors mode
NASA Astrophysics Data System (ADS)
Beck, T.; Beller, J.; Derya, V.; Gayer, U.; Isaak, J.; Löher, B.; Mertes, L.; Pietralla, N.; Ries, P.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Weller, H. R.; Werner, V.; Zweidinger, M.
2015-10-01
The E2/M1 multipole mixing ratio δ1→2 of the 1sc +→21+ transition of Gd was determined using results from high-statistics photon scattering. This provides a possibility for a new approach on the search of Jsc + members of the rotational band built on the scissors mode. By application of Alaga's rule, which is justifiable as 156Gd is a well-deformed rotor with good K quantum number, a transition strength of B (E 2 ;2sc +→01+)=0.034 (13 ) W.u. is estimated.
The prevalence of malnutrition and fat-soluble vitamin deficiencies in chronic pancreatitis.
Duggan, Sinead N; Smyth, Niamh D; O'Sullivan, Maria; Feehan, Sinead; Ridgway, Paul F; Conlon, Kevin C
2014-06-01
Patients with chronic pancreatitis are at risk of malnutrition and nutrient deficiency due to malabsorption, pain, and poor diet. We sought to examine fat-soluble vitamin levels and malnutrition parameters in patients with chronic pancreatitis. In a prospective controlled cohort study, 128 subjects (62 chronic pancreatitis patients and 66 age-/sex-matched controls) were recruited. Body mass index (BMI), handgrip strength (measure of functional capacity), fat stores (triceps skin fold), muscle stores (mid-arm muscle circumference), exocrine function, and serum levels of fat-soluble vitamins (A, D, E) were measured. Half of patients in the chronic pancreatitis group were overweight or obese, although the mean BMI was lower in patients than in controls (P = .007). Handgrip strength (P = .048), fat stores (P = .000), and muscle stores (P = .001) were lower in patients than in controls. Of the patients, 14.5% and 24.2% were deficient in vitamins A and E, respectively. Nineteen percent of patients had excess serum vitamin A levels. Despite the prevalence of overweight and obesity, patients had lower muscle stores, strength, and abnormal vitamin levels. Detailed nutrition assessment including anthropometry and vitamin status is warranted in chronic pancreatitis.
Hand dysfunction in type 2 diabetes mellitus: Systematic review with meta-analysis.
Gundmi, Shubha; Maiya, Arun G; Bhat, Anil K; Ravishankar, N; Hande, Manjunatha H; Rajagopal, K V
2018-03-01
People with type 2 diabetes mellitus frequently show complications in feet and hands. However, the literature has mostly focused on foot complications. The disease can affect the strength and dexterity of the hands, thereby reducing function. This systematic review and meta-analysis focused on identifying the existing evidence on how type 2 diabetes mellitus affects hand strength, dexterity and function. We searched MEDLINE via PubMed, CINHAL, Scopus and Web of Science, and the Cochrane central register of controlled trials for reports of studies of grip and pinch strength as well as hand dexterity and function evaluated by questionnaires comparing patients with type 2 diabetes mellitus and healthy controls that were published between 1990 and 2017. Data are reported as standardized mean difference (SMD) or mean difference (MD) and 95% confidence intervals (CIs). Among 2077 records retrieved, only 7 full-text articles were available for meta-analysis. For both the dominant and non-dominant hand, type 2 diabetes mellitus negatively affected grip strength (SMD: -1.03; 95% CI: -2.24 to 0.18 and -1.37, -3.07 to 0.33) and pinch strength (-1.09, -2.56 to 0.38 and -1.12, -2.73 to 0.49), although not significantly. Dexterity of the dominant hand did not differ between diabetes and control groups but was poorer for the non-dominant hand, although not significantly. Hand function was worse for diabetes than control groups in 2 studies (MD: -8.7; 95% CI: -16.88 to -1.52 and 4.69, 2.03 to 7.35). This systematic review with meta-analysis suggested reduced hand function, specifically grip and pinch strength, for people with type 2 diabetes mellitus versus healthy controls. However, the sample size for all studies was low. Hence, we need studies with adequate sample size and randomized controlled trials to provide statistically significant results. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Uzunovic, Slavoljub; Kostic, Radmila; Zivkovic, Dobrica
2010-09-01
This study aimed to determine the effects of two different programs of modern sports dancing on coordination, strength, and speed in 60 beginner-level female dancers, aged 13 and 14 yrs. The subjects were divided into two experimental groups (E1 and E2), each numbering 30 subjects, drawn from local dance clubs. In order to determine motor coordination, strength, and speed, we used 15 measurements. The groups were tested before and after the experimental programs. Both experimental programs lasted for 18 wks, with training sessions twice a week for 60 minutes. The subjects from the E1 group trained according to a new experimental program of disco dance (DD) modern sports dance, and the E2 group trained according to the classic DD program of the same kind for beginner selections. The obtained results were assessed by statistical analysis: a paired-samples t-test and MANCOVA/ANCOVA. The results indicated that following the experimental programs, both groups showed a statistically significant improvement in the evaluated skills, but the changes among the E1 group subjects were more pronounced. The basic assumption of this research was confirmed, that the new experimental DD program has a significant influence on coordination, strength, and speed. In relation to these changes, the application of the new DD program was recommended for beginner dancers.
de Sousa, Davide G; Harvey, Lisa A; Dorsch, Simone; Leung, Joan; Harris, Whitney
2016-10-01
Does 4 weeks of active functional electrical stimulation (FES) cycling in addition to usual care improve mobility and strength more than usual care alone in people with a sub-acute acquired brain injury caused by stroke or trauma? Multi centre, randomised, controlled trial. Forty patients from three Sydney hospitals with recently acquired brain injury and a mean composite strength score in the affected lower limb of 7 (SD 5) out of 20 points. Participants in the experimental group received an incremental, progressive, FES cycling program five times a week over a 4-week period. All participants received usual care. Outcome measures were taken at baseline and at 4 weeks. Primary outcomes were mobility and strength of the knee extensors of the affected lower limb. Mobility was measured with three mobility items of the Functional Independence Measure and strength was measured with a hand-held dynamometer. Secondary outcomes were strength of the knee extensors of the unaffected lower limb, strength of key muscles of the affected lower limb and spasticity of the affected plantar flexors. All but one participant completed the study. The mean between-group differences for mobility and strength of the knee extensors of the affected lower limb were -0.3/21 points (95% CI -3.2 to 2.7) and 7.5 Nm (95% CI -5.1 to 20.2), where positive values favoured the experimental group. The only secondary outcome that suggested a possible treatment effect was strength of key muscles of the affected lower limb with a mean between-group difference of 3.0/20 points (95% CI 1.3 to 4.8). Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear. ACTRN12612001163897. [de Sousa DG, Harvey LA, Dorsch S, Leung J, Harris W (2016) Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear: a randomised controlled trial.Journal of Physiotherapy62: 203-208]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
E 3 and M 2 transition strengths in Bi20983
NASA Astrophysics Data System (ADS)
Roberts, O. J.; NiÅ£ǎ, C. R.; Bruce, A. M.; Mǎrginean, N.; Bucurescu, D.; Deleanu, D.; Filipescu, D.; Florea, N. M.; Gheorghe, I.; GhiÅ£ǎ, D.; Glodariu, T.; Lica, R.; Mǎrginean, R.; Mihai, C.; Negret, A.; Sava, T.; Stroe, L.; Şuvǎilǎ, R.; Toma, S.; Alharbi, T.; Alexander, T.; Aydin, S.; Brown, B. A.; Browne, F.; Carroll, R. J.; Mulholland, K.; Podolyák, Zs.; Regan, P. H.; Smith, J. F.; Smolen, M.; Townsley, C. M.
2016-01-01
The 1 i13/2→1 h9/2 (M 2 ) and 3 s1/2→2 f7/2 (E 3 ) reduced proton transition probabilities in Bi20983 have been determined from the direct half-life measurements of the 13/21+ and 1/21+ states using the Romanian array for γ -ray SPectroscopy in HEavy ion REactions (RoSPHERE). The 13/21+ and 1/21+ states were found to have T1/2=0.120 (15 ) ns and T1/2=9.02 (24 ) ns respectively. Angular distribution measurements were used to determine an E 3 /M 2 mixing ratio of δ =-0.184 (13 ) for the 1609 keV γ -ray transition deexciting the 13/21+ state. This value for δ was combined with the measured half-life to give reduced transition probabilities of B (E 3 ,13/21+→9/21-) =12 (2 ) ×103 e2fm6 and B (M 2 ,13/21+→9/21-) =38 (5 ) μN2fm2 . These values are in good agreement with calculations within the finite Fermi system. The extracted value of B (E 3 ,1/21+→7/21-) =6.3 (2 ) ×103 e2fm6 can be explained by a small (˜6 % ) admixture in the wave function of the 1/21+ state.
Outcomes of total hip arthroplasty: a study of patients one year postsurgery.
Trudelle-Jackson, Elaine; Emerson, Roger; Smith, Sue
2002-06-01
Ex post facto research using prospective analysis of differences between the involved hip and uninvolved hip. To assess outcomes of total hip arthroplasty (THA) by comparing range of motion (ROM), muscle strength, and postural stability in the surgical hip to those of the uninvolved hip 1 year postsurgery. An additional objective was to assess degree of relationship among ROM, strength, and postural stability impairments to a measure of self-assessed function. Most patients who have THA receive physical therapy that consists mainly of self-care instructions and an exercise protocol that emphasizes mobility during the acute phase of recovery. But, outcomes of THA 1 year postsurgery indicate that current physical therapy programs used during the acute phase of recovery do not effectively restore physical and functional performance. Subjects consisted of 11 women and 4 men (mean age +/- standard deviation = 62 +/- 8 years) with unilateral THA performed 1 year prior to data collection. Assessment variables consisted of self-assessment of function and measures of postural stability, muscle strength, and hip ROM. The 12-Item Hip Questionnaire was used for self-assessment of function. Three separate repeated measures MANOVA were used to compare the involved side to the uninvolved side in measures of postural stability, strength, and ROM. The Spearman's rho was used to assess degree of association between the subjects' score of self-assessed function and impairments in strength and postural stability. Measures of postural stability were significantly lower (P < or = 0.01) on the side of the replaced hip. Differences in strength values between the involved and uninvolved sides were not statistically significant. Correlations between scores of self-assessed function and hip abductor and knee extensor strength were statistically significant (r = 0.56, P < or = 0.03). Self-assessed function was not significantly correlated to postural stability impairments. The brief postsurgical rehabilitation program received by patients with THA may not be sufficient. A second phase of rehabilitation implemented 4 months or more after surgery that emphasizes weight bearing and postural stability may be advisable.
SPH calculations of asteroid disruptions: The role of pressure dependent failure models
NASA Astrophysics Data System (ADS)
Jutzi, Martin
2015-03-01
We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz and Asphaug, 1999). However, for many cases (e.g. initially partly or fully damaged targets and rubble-pile structures) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold
Furlong, Jonathan; Rynders, Corey A; Sutherlin, Mark; Patrie, James; Katch, Frank I; Hertel, Jay; Weltman, Arthur
2014-01-01
StemSport (SS; StemTech International, Inc. San Clemente, CA) contains a proprietary blend of the botanical Aphanizomenon flos-aquae and several herbal antioxidant and anti-inflammatory substances. SS has been purported to accelerate tissue repair and restore muscle function following resistance exercise. Here, we examine the effects of SS supplementation on strength adaptations resulting from a 12-week resistance training program in healthy young adults. Twenty-four young adults (16 males, 8 females, mean age = 20.5 ± 1.9 years, mass = 70.9 ± 11.9 kg, stature = 176.6 ± 9.9 cm) completed the twelve week training program. The study design was a double-blind, placebo controlled parallel group trial. Subjects either received placebo or StemSport supplement (SS; mg/day) during the training. 1-RM bench press, 1-RM leg press, vertical jump height, balance (star excursion and center of mass excursion), isokinetic strength (elbow and knee flexion/extension) and perception of recovery were measured at baseline and following the 12-week training intervention. Resistance training increased 1-RM strength (p < 0.008), vertical jump height (p < 0.03), and isokinetic strength (p < 0.05) in both SS and placebo groups. No significant group-by-time interactions were observed (all p-values >0.10). These data suggest that compared to placebo, the SS herbal/botanical supplement did not enhance training induced adaptations to strength, balance, and muscle function above strength training alone.
Electron work function-a promising guiding parameter for material design.
Lu, Hao; Liu, Ziran; Yan, Xianguo; Li, Dongyang; Parent, Leo; Tian, Harry
2016-04-14
Using nickel added X70 steel as a sample material, we demonstrate that electron work function (EWF), which largely reflects the electron behavior of materials, could be used as a guide parameter for material modification or design. Adding Ni having a higher electron work function to X70 steel brings more "free" electrons to the steel, leading to increased overall work function, accompanied with enhanced e(-)-nuclei interactions or higher atomic bond strength. Young's modulus and hardness increase correspondingly. However, the free electron density and work function decrease as the Ni content is continuously increased, accompanied with the formation of a second phase, FeNi3, which is softer with a lower work function. The decrease in the overall work function corresponds to deterioration of the mechanical strength of the steel. It is expected that EWF, a simple but fundamental parameter, may lead to new methodologies or supplementary approaches for metallic materials design or tailoring on a feasible electronic base.
Fish-oil supplementation enhances the effects of strength training in elderly women.
Rodacki, Cintia L N; Rodacki, André L F; Pereira, Gleber; Naliwaiko, Katya; Coelho, Isabela; Pequito, Daniele; Fernandes, Luiz Cléudio
2012-02-01
Muscle force and functional capacity generally decrease with aging in the older population, although this effect can be reversed, attenuated, or both through strength training. Fish oil (FO), which is rich in n-3 (omega-3) PUFAs, has been shown to play a role in the plasma membrane and cell function of muscles, which may enhance the benefits of training. The effect of strength training and FO supplementation on the neuromuscular system of the elderly has not been investigated. The objective was to investigate the chronic effect of FO supplementation and strength training on the neuromuscular system (muscle strength and functional capacity) of older women. Forty-five women (aged 64 ± 1.4 y) were randomly assigned to 3 groups. One group performed strength training only (ST group) for 90 d, whereas the others performed the same strength-training program and received FO supplementation (2 g/d) for 90 d (ST90 group) or for 150 d (ST150 group; supplemented 60 d before training). Muscle strength and functional capacity were assessed before and after the training period. No differences in the pretraining period were found between groups for any of the variables. The peak torque and rate of torque development for all muscles (knee flexor and extensor, plantar and dorsiflexor) increased from pre- to posttraining in all groups. However, the effect was greater in the ST90 and ST150 groups than in the ST group. The activation level and electromechanical delay of the muscles changed from pre- to posttraining only for the ST90 and ST150 groups. Chair-rising performance in the FO groups was higher than in the ST group. Strength training increased muscle strength in elderly women. The inclusion of FO supplementation caused greater improvements in muscle strength and functional capacity.
Anton, Stephen D; Manini, Todd M; Milsom, Vanessa A; Dubyak, Pamela; Cesari, Matteo; Cheng, Jing; Daniels, Michael J; Marsiske, Michael; Pahor, Marco; Leeuwenburgh, Christiaan; Perri, Michael G
2011-01-01
Obesity and a sedentary lifestyle are associated with physical impairments and biologic changes in older adults. Weight loss combined with exercise may reduce inflammation and improve physical functioning in overweight, sedentary, older adults. This study tested whether a weight loss program combined with moderate exercise could improve physical function in obese, older adult women. Participants (N = 34) were generally healthy, obese, older adult women (age range 55-79 years) with mild to moderate physical impairments (ie, functional limitations). Participants were randomly assigned to one of two groups for 24 weeks: (i) weight loss plus exercise (WL+E; n = 17; mean age = 63.7 years [4.5]) or (ii) educational control (n = 17; mean age = 63.7 [6.7]). In the WL+E group, participants attended a group-based weight management session plus three supervised exercise sessions within their community each week. During exercise sessions, participants engaged in brisk walking and lower-body resistance training of moderate intensity. Participants in the educational control group attended monthly health education lectures on topics relevant to older adults. Outcomes were: (i) body weight, (ii) walking speed (assessed by 400-meter walk test), (iii) the Short Physical Performance Battery (SPPB), and (iv) knee extension isokinetic strength. Participants randomized to the WL+E group lost significantly more weight than participants in the educational control group (5.95 [0.992] vs 0.23 [0.99] kg; P < 0.01). Additionally, the walking speed of participants in the WL+E group significantly increased compared with that of the control group (reduction in time on the 400-meter walk test = 44 seconds; P < 0.05). Scores on the SPPB improved in both the intervention and educational control groups from pre- to post-test (P < 0.05), with significant differences between groups (P = 0.02). Knee extension strength was maintained in both groups. Our findings suggest that a lifestyle-based weight loss program consisting of moderate caloric restriction plus moderate exercise can produce significant weight loss and improve physical function while maintaining muscle strength in obese, older adult women with mild to moderate physical impairments.
Anton, Stephen D; Manini, Todd M; Milsom, Vanessa A; Dubyak, Pamela; Cesari, Matteo; Cheng, Jing; Daniels, Michael J; Marsiske, Michael; Pahor, Marco; Leeuwenburgh, Christiaan; Perri, Michael G
2011-01-01
Background: Obesity and a sedentary lifestyle are associated with physical impairments and biologic changes in older adults. Weight loss combined with exercise may reduce inflammation and improve physical functioning in overweight, sedentary, older adults. This study tested whether a weight loss program combined with moderate exercise could improve physical function in obese, older adult women. Methods: Participants (N = 34) were generally healthy, obese, older adult women (age range 55–79 years) with mild to moderate physical impairments (ie, functional limitations). Participants were randomly assigned to one of two groups for 24 weeks: (i) weight loss plus exercise (WL+E; n = 17; mean age = 63.7 years [4.5]) or (ii) educational control (n = 17; mean age = 63.7 [6.7]). In the WL+E group, participants attended a group-based weight management session plus three supervised exercise sessions within their community each week. During exercise sessions, participants engaged in brisk walking and lower-body resistance training of moderate intensity. Participants in the educational control group attended monthly health education lectures on topics relevant to older adults. Outcomes were: (i) body weight, (ii) walking speed (assessed by 400-meter walk test), (iii) the Short Physical Performance Battery (SPPB), and (iv) knee extension isokinetic strength. Results: Participants randomized to the WL+E group lost significantly more weight than participants in the educational control group (5.95 [0.992] vs 0.23 [0.99] kg; P < 0.01). Additionally, the walking speed of participants in the WL+E group significantly increased compared with that of the control group (reduction in time on the 400-meter walk test = 44 seconds; P < 0.05). Scores on the SPPB improved in both the intervention and educational control groups from pre- to post-test (P < 0.05), with significant differences between groups (P = 0.02). Knee extension strength was maintained in both groups. Conclusion: Our findings suggest that a lifestyle-based weight loss program consisting of moderate caloric restriction plus moderate exercise can produce significant weight loss and improve physical function while maintaining muscle strength in obese, older adult women with mild to moderate physical impairments. PMID:21753869
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr
2017-10-01
This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.
Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Kimura, Y.; Hirota, N.
We performed a molecular dynamics (MD) simulation for a system of 5 solute molecules in 495 solvent molecules interacting through the Lennard-Jones (LJ) 12-6 potential, in order to study solvent density effects on the diffusion coefficients in supercritical fluids. The effects of the size of the solute and the strength of the solute-solvent attractive interaction on the diffusion coefficient of the solute were examined. The diffusion coefficients of the solute molecules were calculated at T = 1.5 (in the LJ reduced unit), slightly above the critical temperature, from rho = 0.1 to rho = 0.95, where rho is the number density in the LJ reduced unit. The memory function in the generalized Langevin equation was calculated, in order to know the molecular origin of the friction on a solute. The memory function is separated into fast and slow components. The former arises from the solute-solvent repulsive interaction, and is interpreted as collisional Enskog-like friction. The interaction strength dependence of the collisional friction is larger in the low- and medium-density regions, which is consistent with the 'clustering' picture, i.e., the local density enhancement due to the solute-solvent attractive interaction. However, the slow component of the memory function suppresses the effect of the local density on the diffusion coefficients, and as a result the effect of the attractive interaction is smaller on the diffusion coefficients than on the local density. Nonetheless, the solvent density dependence of the effect of the attraction on the diffusion coefficient varies with the local density, and it is concluded that the local density is the principal factor that determines the interaction strength dependence of the diffusion coefficient in the low- and medium-density regions (p < 0.6).
Brainard, Benjamin M; Meredith, Craig P; Callan, Mary Beth; Budsberg, Steven C; Shofer, Francis S; Driessen, Bernd; Otto, Cynthia M
2007-03-01
To determine the effects of nonsteroidal anti-inflammatory drugs of various cyclooxygenase selectivities on hemostasis and prostaglandin expression in dogs. 8 client-owned dogs with clinical signs of osteoarthritis. Dogs received aspirin (5 mg/kg, PO, q 12 h), carprofen (4 mg/kg, PO, q 24 h), deracoxib (2 mg/kg, PO, q 24 h), and meloxicam (0.1 mg/kg, PO, q 24 h) for 10 days each, with an interval of at least 14 days between treatments. On days 0 and 10, blood was collected for platelet aggregation assays, thrombelastography, and measurement of lipopolysaccharide-stimulated prostaglandin E(2), platelet thromboxane B(2) (TXB(2)), and free serum TXB(2) and 6-keto-prostaglandin F (PGF)-1alpha concentrations. Platelet aggregation decreased after treatment with aspirin and carprofen, whereas significant changes from baseline were not detected for the other drugs tested. Thrombelastograms obtained after treatment with carprofen revealed decreased maximum amplitude and alpha-angle, suggesting hypocoagulability. Maximum amplitude and coagulation index increased after treatment with deracoxib. Plasma concentrations of prostaglandin E(2) decreased after treatment with carprofen or deracoxib, and platelet TXB(2) production increased after treatment with aspirin. Serum concentrations of the prostacyclin metabolite 6-keto-PGF-1alpha did not change significantly after treatment with any of the drugs, although the ratio of free TXB(2) to 6-keto-PGF-1alpha decreased slightly after treatment with carprofen and increased slightly after treatment with deracoxib. At the dosages tested, treatment with meloxicam affected platelet function minimally in dogs with osteoarthritis. Treatment with carprofen decreased clot strength and platelet aggregation. Clot strength was increased after treatment with deracoxib.
Dorgo, Sandor; Edupuganti, Pradeep; Smith, Darla R; Ortiz, Melchor
2012-06-01
In this study, we compared hamstring (H) and quadriceps (Q) strength changes in men and women, as well as changes in conventional and functional H:Q ratios following an identical 12-week resistance training program. An isokinetic dynamometer was used to assess 14 male and 14 female participants before and after the intervention, and conventional and functional H:Q ratios were calculated. Hamstring strength improved similarly in men and women, but improvement in quadriceps strength was significantly greater in men, while women showed only modest improvements. For the conventional and functional H:Q ratios, women showed significantly greater improvements than men. Both men and women were able to exceed the commonly recommended 0.6 conventional and 1.0 functional H:Q ratios after the 12-week lower-body resistance training program.
Kaltsatou, Antonia; Mameletzi, Dimitra; Douka, Stella
2011-04-01
The purpose of the present study was to evaluate the influence of a mixed exercise program, including Greek traditional dances and upper body training, in physical function, strength and psychological condition of breast cancer survivors. Twenty-seven women (N = 27), who had been diagnosed and surgically treated for breast cancer, volunteered to participate in this study. The experimental group consisted of 14 women with mean age 56.6 (4.2) years. They attended supervised Greek traditional dance courses and upper body training (1 h, 3 sessions/week) for 24 weeks. The control group consisted of 13 sedentary women with mean age 57.1 (4.1) years. Blood pressure, heart rate, physical function (6-min walking test), handgrip strength, arm volume and psychological condition (Life Satisfaction Inventory and Beck Depression Inventory) were evaluated before and after the exercise program. The results showed significant increases of 19.9% for physical function, 24.3% for right handgrip strength, 26.1% for left handgrip strength, 36.3% for life satisfaction and also a decrease of 35% for depressive symptoms in the experimental group after the training program. Significant reductions of 9% for left hand and 13.7% for right hand arm volume were also found in the experimental group. Consequently, aerobic exercise with Greek traditional dances and upper body training could be an alternative choice of physical activity for breast cancer survivors, thus promoting benefits in physical function, strength and psychological condition. Copyright © 2010 Elsevier Ltd. All rights reserved.
Acute Inhalation Toxicity and Blood Absorption of 3-Nitro-1,2,4-Triazol-5-One (NTO) in Rats
2013-09-16
strength, and stereotypes or bizarre behavior (e.g., self mutilation, walking backwards). In addition, rats exposed via the inhalation route of...species due to an historical and extensive database. V.3.3. Laboratory animals V.3.3.1 . Genus and Species: Rattus norvegicus V.3.3.2. Strain/Stock...or sensory stimuli, altered strength , and stereotypes or bizarre behavior (e.g., self mutilation, walking backwards). Observation and body weight
Muscle morphology and performance in master athletes: A systematic review and meta-analyses.
Mckendry, James; Breen, Leigh; Shad, Brandon J; Greig, Carolyn A
2018-04-30
The extent to which chronic exercise training preserves age-related decrements in physical function, muscle strength, mass and morphology is unclear. Our aim was to conduct a systematic review of the literature to determine to what extent chronically trained master athletes (strength/power and endurance) preserve levels of physical function, muscle strength, muscle mass and morphology in older age, compared with older and younger controls and young trained individuals. The systematic data search included Medline, EMBASE, SPORTDiscus, CINAHL and Web of Science databases. i) master athletes mean exercise training duration ≥20 years ii) master athletes mean age of cohort >59 years) iii) at least one measurement of muscle mass/volume/fibre-type morphology and/or strength/physical function. Fifty-five eligible studies were identified. Meta-analyses were carried out on maximal aerobic capacity, maximal voluntary contraction and body composition. Master endurance athletes (42.0 ± 6.6 ml kg -1 min - 1) exhibited VO 2max values comparable with young healthy controls (43.1 ± 6.8 ml kg -1 min -1 , P = .84), greater than older controls (27.1 ± 4.3 ml kg -1 min -1 , P < 0.01) and master strength/power athletes (26.5 ± 2.3 mlkg -1 min -1 , P < 0.01), and lower than young endurance trained individuals (60.0 ± 5.4 ml kg -1 min -1 , P < 0.01). Master strength/power athletes (0.60 (0.28-0.93) P < 0.01) and young controls (0.71 (0.06-1.36) P < 0.05) were significantly stronger compared with the other groups. Body fat% was greater in master endurance athletes than young endurance trained (-4.44% (-8.44 to -0.43) P < 0.05) but lower compared with older controls (7.11% (5.70-8.52) P < 0.01). Despite advancing age, this review suggests that chronic exercise training preserves physical function, muscular strength and body fat levels similar to that of young, healthy individuals in an exercise mode-specific manner. Copyright © 2018 Elsevier B.V. All rights reserved.
Polarized photon scattering off 52Cr: Determining the parity of J =1 states
NASA Astrophysics Data System (ADS)
Krishichayan, Bhike, Megha; Tornow, W.; Rusev, G.; Tonchev, A. P.; Tsoneva, N.; Lenske, H.
2015-04-01
The photoresponse of 52Cr has been investigated in the energy range of 5.0-9.5 MeV using the photon scattering technique at the HI γ S facility of TUNL to complement previous work with unpolarized bremsstrahlung photon beams at the Darmstadt linear electron accelerator. The unambiguous parity determinations of the observed J =1 states provides the basis needed to better understand the structure of E 1 and M 1 excitations. Theoretical calculations using the quasiparticle phonon model incorporating self-consistent energy-density functional theory were performed to investigate the fragmentation pattern of the dipole strength below and around the neutron-emission threshold. These results compare very well with the experimental values.
Villiger, Michael; Liviero, Jasmin; Awai, Lea; Stoop, Rahel; Pyk, Pawel; Clijsen, Ron; Curt, Armin; Eng, Kynan; Bolliger, Marc
2017-01-01
Key factors positively influencing rehabilitation and functional recovery after spinal cord injury (SCI) include training variety, intensive movement repetition, and motivating training tasks. Systems supporting these aspects may provide profound gains in rehabilitation, independent of the subject's treatment location. In the present study, we test the hypotheses that virtual reality (VR)-augmented training at home (i.e., unsupervised) is feasible with subjects with an incomplete SCI (iSCI) and that it improves motor functions such as lower limb muscle strength, balance, and functional mobility. In the study, 12 chronic iSCI subjects used a home-based, mobile version of a lower limb VR training system. The system included motivating training scenarios and combined action observation and execution. Virtual representations of the legs and feet were controlled via movement sensors. The subjects performed home-based training over 4 weeks, with 16-20 sessions of 30-45 min each. The outcome measures assessed were the Lower Extremity Motor Score (LEMS), Berg Balance Scale (BBS), Timed Up and Go (TUG), Spinal Cord Independence Measure mobility, Walking Index for Spinal Cord Injury II, and 10 m and 6 min walking tests. Two pre-treatment assessment time points were chosen for outcome stability: 4 weeks before treatment and immediately before treatment. At post-assessment (i.e., immediately after treatment), high motivation and positive changes were reported by the subjects (adapted Patients' Global Impression of Change). Significant improvements were shown in lower limb muscle strength (LEMS, P = 0.008), balance (BBS, P = 0.008), and functional mobility (TUG, P = 0.007). At follow-up assessment (i.e., 2-3 months after treatment), functional mobility (TUG) remained significantly improved ( P = 0.005) in contrast to the other outcome measures. In summary, unsupervised exercises at home with the VR training system led to beneficial functional training effects in subjects with chronic iSCI, suggesting that it may be useful as a neurorehabilitation tool. Canton of Zurich ethics committee (EK-24/2009, PB_2016-00545), ClinicalTrials.gov: NCT02149186. Registered 24 April 2014.
Effect of Molecular Flexibility upon Ice Adhesion Shear Strength
NASA Technical Reports Server (NTRS)
Smith, Joseph G.; Wohl, Christopher J.; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin
2016-01-01
Ice formation on aircraft surfaces effects aircraft performance by increasing weight and drag leading to loss of lift. Current active alleviation strategies involve pneumatic boots, heated surfaces, and usage of glycol based de-icing fluids. Mitigation or reduction of in-flight icing by means of a passive approach may enable retention of aircraft capabilities, i.e., no reduction in lift, while reducing the aircraft weight and mechanical complexity. Under a NASA Aeronautics Research Institute Seedling activity, the effect of end group functionality and chain length upon ice adhesion shear strength (IASS) was evaluated with the results indicating that chemical functionality and chain length (i.e. molecular flexibility) affected IASS. Based on experimental and modeling results, diamine monomers incorporating molecular flexibility as either a side chain or in between diamine functionalities were prepared, incorporated into epoxy resins that were subsequently used to fabricate coatings on aluminum substrates, and tested in a simulated icing environment. The IASS was found to be lower when molecular flexibility was incorporated in the polymer chain as opposed to a side chain.
Rafiq, Rachida; Prins, Hendrik J; Boersma, Wim G; Daniels, Johannes Ma; den Heijer, Martin; Lips, Paul; de Jongh, Renate T
2017-01-01
Although vitamin D is well known for its function in calcium homeostasis and bone mineralization, several studies have shown positive effects on muscle strength and physical function. In addition, vitamin D has been associated with pulmonary function and the incidence of airway infections. As vitamin D deficiency is highly prevalent in chronic obstructive pulmonary disease (COPD) patients, supplementation might have a beneficial effect in these patients. To assess the effect of vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients. Secondary outcomes are pulmonary function, handgrip strength, exacerbation rate, and quality of life. We performed a randomized, double-blind, placebo-controlled pilot trial. Participants were randomly allocated to receive 1,200 IU vitamin D3 per day (n=24) or placebo (n=26) during 6 months. Study visits were conducted at baseline, and at 3 and 6 months after randomization. During the visits, blood was collected, respiratory muscle strength was measured (maximum inspiratory and expiratory pressure), physical performance and 6-minute walking tests were performed, and handgrip strength and pulmonary function were assessed. In addition, participants kept a diary card in which they registered respiratory symptoms. At baseline, the mean (standard deviation [SD]) serum 25-hydroxyvitamin D (25(OH)D) concentration (nmol/L) was 42.3 (15.2) in the vitamin D group and 40.6 (17.0) in the placebo group. Participants with vitamin D supplementation had a larger increase in serum 25(OH)D compared to the placebo group after 6 months (mean difference (SD): +52.8 (29.8) vs +12.3 (25.1), P <0.001). Primary outcomes, respiratory muscle strength and physical performance, did not differ between the groups after 6 months. In addition, no differences were found in the 6-minute walking test results, handgrip strength, pulmonary function, exacerbation rate, or quality of life. Vitamin D supplementation did not affect (respiratory) muscle strength or physical performance in this pilot trial in vitamin D-deficient COPD patients.
Carbon-based nanomaterials: multifunctional materials for biomedical engineering.
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali
2013-04-23
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzhioev, Alan A., E-mail: dzhioev@theor.jinr.ru; Vdovin, A. I., E-mail: vdovin@theor.jinr.ru; Stoyanov, Ch., E-mail: stoyanov@inrne.bas.bg
We combine the thermal QRPA approach with the Skyrme energy density functional theory (Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment. For a sample nucleus, {sup 56}Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the strength function of GT{sub +} transitions which dominate electron capture at E{sub e} ≤ 30 MeV. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. Finite-temperature cross sections are calculated and the results are comparedwith those of the other model calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appalakondaiah, S.; Vaitheeswaran, G., E-mail: gvaithee@gmail.com; Lebègue, S.
The effects of pressure on the structural and vibrational properties of the layered molecular crystal 1,1-diamino-2,2-dinitroethelene (FOX-7) are explored by first principles calculations. We observe significant changes in the calculated structural properties with different corrections for treating van der Waals interactions to Density Functional Theory (DFT), as compared with standard DFT functionals. In particular, the calculated ground state lattice parameters, volume and bulk modulus obtained with Grimme's scheme, are found to agree well with experiments. The calculated vibrational frequencies demonstrate the dependence of the intra and inter-molecular interactions on FOX-7 under pressure. In addition, we also found a significant incrementmore » in the N–H...O hydrogen bond strength under compression. This is explained by the change in bond lengths between nitrogen, hydrogen, and oxygen atoms, as well as calculated IR spectra under pressure. Finally, the computed band gap is about 2.3 eV with generalized gradient approximation, and is enhanced to 5.1 eV with the GW approximation, which reveals the importance of performing quasiparticle calculations in high energy density materials.« less
Groen, W; van der Net, J; Bos, K; Abad, A; Bergstrom, B-M; Blanchette, V S; Feldman, B M; Funk, S; Helders, P; Hilliard, P; Manco-Johnson, M; Petrini, P; Zourikian, N; Fischer, K
2011-09-01
Joint physical examination is an important outcome in haemophilia; however its relationship with functional ability is not well established in children with intensive replacement therapy. Boys aged 4-16 years were recruited from two European and three North American treatment centres. Joint physical structure and function was measured with the Haemophilia Joint Health Score (HJHS) while functional ability was measured with the revised Childhood Health Assessment Questionnaire (CHAQ₃₈. Two haemophilia-specific domains were created by selecting items of the CHAQ₃₈ that cover haemophilia-specific problems. Associations between CHAQ, HJHS, cumulative number of haemarthroses and age were assessed. A total of 226 subjects - mean 10.8 years old (SD 3.8) - participated; the majority (68%) had severe haemophilia. Most severe patients (91%) were on prophylactic treatment. Lifetime number of haemarthroses [median=5; interquartile range (IQR)=1-12] and total HJHS (median = 5; IQR=1-12) correlated strongly (ρ = 0.51). Total HJHS did not correlate with age and only weakly (ρ=-0.19) with functional ability scores (median=0; IQR=-0.06-0). Overall, haemarthroses were reported most frequently in the ankles. Detailed analysis of ankle joint health scores revealed moderate associations (ρ=0.3-0.5) of strength, gait and atrophy with lower extremity tasks (e.g. stair climbing). In this population, HJHS summating six joints did not perform as well as individual joint scores, however, certain elements of ankle impairment, specifically muscle strength, atrophy and gait associated significantly with functional loss in lower extremity activities. Mild abnormalities in ankle assessment by HJHS may lead to functional loss. Therefore, ankle joints may warrant special attention in the follow up of these children. © 2011 Blackwell Publishing Ltd.
Physical function in older men with hyperkyphosis.
Katzman, Wendy B; Harrison, Stephanie L; Fink, Howard A; Marshall, Lynn M; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M; Kado, Deborah M
2015-05-01
Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71-98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5-1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...
47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...
47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...
Identification of discrete functional subregions of the human periaqueductal gray
Satpute, Ajay B.; Wager, Tor D.; Cohen-Adad, Julien; Bianciardi, Marta; Choi, Ji-Kyung; Buhle, Jason T.; Wald, Lawrence L.; Barrett, Lisa Feldman
2013-01-01
The midbrain periaqueductal gray (PAG) region is organized into distinct subregions that coordinate survival-related responses during threat and stress [Bandler R, Keay KA, Floyd N, Price J (2000) Brain Res 53 (1):95–104]. To examine PAG function in humans, researchers have relied primarily on functional MRI (fMRI), but technological and methodological limitations have prevented researchers from localizing responses to different PAG subregions. We used high-field strength (7-T) fMRI techniques to image the PAG at high resolution (0.75 mm isotropic), which was critical for dissociating the PAG from the greater signal variability in the aqueduct. Activation while participants were exposed to emotionally aversive images segregated into subregions of the PAG along both dorsal/ventral and rostral/caudal axes. In the rostral PAG, activity was localized to lateral and dorsomedial subregions. In caudal PAG, activity was localized to the ventrolateral region. This shifting pattern of activity from dorsal to ventral PAG along the rostrocaudal axis mirrors structural and functional neurobiological observations in nonhuman animals. Activity in lateral and ventrolateral subregions also grouped with distinct emotional experiences (e.g., anger and sadness) in a factor analysis, suggesting that each subregion participates in distinct functional circuitry. This study establishes the use of high-field strength fMRI as a promising technique for revealing the functional architecture of the PAG. The techniques developed here also may be extended to investigate the functional roles of other brainstem nuclei. PMID:24082116
Hand grip strength and dexterity function in children aged 6-12 years: A cross-sectional study.
Omar, Mohammed T A; Alghadir, Ahmad H; Zafar, Hamayun; Al Baker, Shaheerah
Cross-sectional and clinical measurement. Assessment of hand function considers an essential part in clinical practice. To develop normative values of hand grip strength and dexterity function for 6-12-year-old children in Saudi Arabia. Grip strength and dexterity function was measured in 525 children using Grip Track hand dynamometer (JTECH Medical, Midvale, UT, USA) and 9-hole pegboard test respectively. The grip strength and dexterity function was improved as age progressed regardless of gender. Across all age groups, the hand grip strength of boys was significantly higher than girls for dominant hand (31.75 ± 10.33 vs 28.24 ± 9.35; P < .001) and nondominant hand (31.01 ± 10.27 vs 27.27 ± 9.30; P < .001). The girls performed slightly faster than boys for dominant hand (19.70 vs 20.68; P < .05) and nondominant hand (21.79 vs 23.46; P < .05). In general, girls completed a 9-HPT faster than boys in the 2 of 7 age groups: 11 years (9-HPT scores = 2.10 seconds; P < .01) and 12 years (9-HPT scores = 1.93 seconds; P < .01). The overall patterns of hand grip strength and dexterity function observed in the present study are similar to the previous studies that established acceleration of grip strength with advanced age, and faster performance scores in older children than younger children in both genders. Norms of hand grip strength and dexterity enable therapists to identify some developmental characteristics of hand function among Saudi children, determine the presence of impairment, and compare scores from children in different clinical settings. Not applicable. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
1976-05-01
attached to the wing or under the fuselage.__ DD ’JO77,S 1473 EDITION OF NOV 61 IS OBSOLETE UNICLASSIFILEDV~D.n SEUIYC ASIIAINOFTI -E %inDI I...cruciform fins. 61 7 Shock shape deduced from flow field properties. (a) M D 1. 5. 62 7 Continued. (b) MW = 2.0 63 7 Concluded. (c) M. = 2.5. 64 8 Flow...equation (14) h panel span, figure 2 K constant associated with line source strength function f(•), equation (I-8) SKd constant associated with line
The superconducting state parameters of glassy superconductors
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2011-11-01
We present theoretical investigations of the superconducting state parameters (SSPs), i.e. the electron-phonon coupling strength, λ, Coulomb pseudopotential, μ*, transition temperature, Tc, isotope effect exponent, α, and effective interaction strength, N0V, of glassy superconductors by employing Ashcroft's well know empty core model potential for the first time using five screening functions proposed by Hartree (H), Taylor, Ichimaru-Utsumi (IU), Farid et al and Sarkar et al. The Tc obtained from the H and IU screening functions is found to be in excellent agreement with available experimental data. Also, the present results confirm the superconducting phase in bulk metallic glass superconductors. A strong dependency of the SSPs of the glassy superconductors on the 'Z' valence is found.
Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan
2015-12-17
The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.
A Scale to Characterize the Strength and Impacts of Atmospheric Rivers
NASA Astrophysics Data System (ADS)
Ralph, F. M.; Rutz, J. J.; Cordeira, J. M.; Dettinger, M. D.; Anderson, M.; Schick, L. J.; Smallcomb, C.; Reynolds, D.
2017-12-01
A scale has been developed to categorize atmospheric river (AR) strength and duration. It is based on the maximum instantaneous vertically intergated water vapor transport (IVT) and the duration of the event at a given point (i.e., the duration of IVT ≥250 kg m-1 s-1, which is a minimal threshold of weak AR conditions). The AR Scale is intuitive, with 5 categories (AR Cats 1-5) arising as a function of maximum IVT intensity and duration of at least minimal AR conditions. These categories provide a wide range of users with a baseline for gauging the potential impacts, both beneficial and hazardous, associated with an AR at their location. It also provides a basis for reporting the occurance of past ARs and of tracking their frequency of occurence over time. This presentation will focus on describing the AR Scale, use and interpretation of this scale, and the spatiotemporal distribution of AR Cat 1-5 events in the Western U.S. during the cool season (October - April) during 1980-2017.
Aguiló-Aguayo, Ingrid; Suarez, Manuel; Plaza, Lucia; Hossain, Mohammad B; Brunton, Nigel; Lyng, James G; Rai, Dilip K
2015-07-01
The effect of pulsed electric field (PEF) treatment variables (electric field strength and treatment time) on the glucosinolate content of broccoli flowers and stalks was evaluated. Samples were subjected to electric field strengths from 1 to 4 kV cm(-1) and treatment times from 50 to 1000 µs at 5 Hz. Data fitted significantly (P < 0.0014) the proposed second-order response functions. The results showed that PEF combined treatment conditions of 4 kV cm(-1) for 525 and 1000 µs were optimal to maximize glucosinolate levels in broccoli flowers (ranging from 187.1 to 212.5%) and stalks (ranging from 110.6 to 203.0%) respectively. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values, with low average mean deviations (E%) ranging from 0.59 to 8.80%. The use of PEF processing at moderate conditions could be a suitable method to stimulate production of broccoli with high health-promoting glucosinolate content. © 2014 Society of Chemical Industry.
Yoon, Dong Hyun; Kang, Dongheon; Kim, Hee-Jae; Kim, Jin-Soo; Song, Han Sol; Song, Wook
2017-05-01
The effectiveness of resistance training in improving cognitive function in older adults is well demonstrated. In particular, unconventional high-speed resistance training can improve muscle power development. In the present study, the effectiveness of 12 weeks of elastic band-based high-speed power training (HSPT) was examined. Participants were randomly assigned into a HSPT group (n = 14, age 75.0 ± 0.9 years), a low-speed strength training (LSST) group (n = 9, age 76.0 ± 1.3 years) and a control group (CON; n = 7, age 78.0 ± 1.0 years). A 1-h exercise program was provided twice a week for 12 weeks for the HSPT and LSST groups, and balance and tone exercises were carried out by the CON group. Significant increases in levels of cognitive function, physical function, and muscle strength were observed in both the HSPT and LSST groups. In cognitive function, significant improvements in the Mini-Mental State Examination and Montreal Cognitive Assessment were seen in both the HSPT and LSST groups compared with the CON group. In physical functions, Short Physical Performance Battery scores were increased significantly in the HSPT and LSST groups compared with the CON group. In the 12 weeks of elastic band-based training, the HSPT group showed greater improvements in older women with mild cognitive impairment than the LSST group, although both regimens were effective in improving cognitive function, physical function and muscle strength. We conclude that elastic band-based HSPT, as compared with LSST, is more efficient in helping older women with mild cognitive impairment to improve cognitive function, physical performance and muscle strength. Geriatr Gerontol Int 2017; 17: 765-772. © 2016 Japan Geriatrics Society.
Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi
2017-01-01
Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m2; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength (r = −0.38, p = 0.01) and with knee extensor muscle strength (r = −0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation. PMID:29186880
Firth, Joseph; Stubbs, Brendon; Vancampfort, Davy; Firth, Josh A; Large, Matthew; Rosenbaum, Simon; Hallgren, Mats; Ward, Philip B; Sarris, Jerome; Yung, Alison R
2018-06-06
Handgrip strength may provide an easily-administered marker of cognitive functional status. However, further population-scale research examining relationships between grip strength and cognitive performance across multiple domains is needed. Additionally, relationships between grip strength and cognitive functioning in people with schizophrenia, who frequently experience cognitive deficits, has yet to be explored. Baseline data from the UK Biobank (2007-2010) was analyzed; including 475397 individuals from the general population, and 1162 individuals with schizophrenia. Linear mixed models and generalized linear mixed models were used to assess the relationship between grip strength and 5 cognitive domains (visual memory, reaction time, reasoning, prospective memory, and number memory), controlling for age, gender, bodyweight, education, and geographical region. In the general population, maximal grip strength was positively and significantly related to visual memory (coefficient [coeff] = -0.1601, standard error [SE] = 0.003), reaction time (coeff = -0.0346, SE = 0.0004), reasoning (coeff = 0.2304, SE = 0.0079), number memory (coeff = 0.1616, SE = 0.0092), and prospective memory (coeff = 0.3486, SE = 0.0092: all P < .001). In the schizophrenia sample, grip strength was strongly related to visual memory (coeff = -0.155, SE = 0.042, P < .001) and reaction time (coeff = -0.049, SE = 0.009, P < .001), while prospective memory approached statistical significance (coeff = 0.233, SE = 0.132, P = .078), and no statistically significant association was found with number memory and reasoning (P > .1). Grip strength is significantly associated with cognitive functioning in the general population and individuals with schizophrenia, particularly for working memory and processing speed. Future research should establish directionality, examine if grip strength also predicts functional and physical health outcomes in schizophrenia, and determine whether interventions which improve muscular strength impact on cognitive and real-world functioning.
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2016-02-01
Isovector and isoscalar dipole excitations in 9Be and 10Be are investigated in the framework of antisymmetrized molecular dynamics, in which angular-momentum and parity projections are performed. In the present method, 1p-1h excitation modes built on the ground state and a large amplitude α -cluster mode are taken into account. The isovector giant dipole resonance (GDR) in E >20 MeV shows the two-peak structure, which is understood from the dipole excitation in the 2 α core part with the prolate deformation. Because of valence neutron modes against the 2 α core, low-energy E 1 resonances appear in E <20 MeV, exhausting about 20 % of the Thomas-Reiche-Kuhn sum rule and 10 % of the calculated energy-weighted sum. The dipole resonance at E ˜15 MeV in 10Be can be interpreted as the parity partner of the ground state having a 6He+α structure and has remarkable E 1 strength because of the coherent contribution of two valence neutrons. The isoscalar dipole strength for some low-energy resonances is significantly enhanced by the coupling with the α -cluster mode. For the E 1 strength of 9Be, the calculation overestimates the energy-weighted sum (EWS) in the low-energy (E <20 MeV) and GDR (20
Zare, Samane; Nemati, Mehdi; Zheng, Yuqing
2018-01-01
Systematic review of research examining consumer preference for the main electronic cigarette (e-cigarette) attributes namely flavor, nicotine strength, and type. A systematic search of peer-reviewed articles resulted in a pool of 12,933 articles. We included only articles that meet all the selection criteria: (1) peer-reviewed, (2) written in English, and (3) addressed consumer preference for one or more of the e-cigarette attributes including flavor, strength, and type. 66 articles met the inclusion criteria for this review. Consumers preferred flavored e-cigarettes, and such preference varied with age groups and smoking status. We also found that several flavors were associated with decreased harm perception while tobacco flavor was associated with increased harm perception. In addition, some flavor chemicals and sweeteners used in e-cigarettes could be of toxicological concern. Finally, consumer preference for nicotine strength and types depended on smoking status, e-cigarette use history, and gender. Adolescents could consider flavor the most important factor trying e-cigarettes and were more likely to initiate vaping through flavored e-cigarettes. Young adults overall preferred sweet, menthol, and cherry flavors, while non-smokers in particular preferred coffee and menthol flavors. Adults in general also preferred sweet flavors (though smokers like tobacco flavor the most) and disliked flavors that elicit bitterness or harshness. In terms of whether flavored e-cigarettes assisted quitting smoking, we found inconclusive evidence. E-cigarette users likely initiated use with a cigarette like product and transitioned to an advanced system with more features. Non-smokers and inexperienced e-cigarettes users tended to prefer no nicotine or low nicotine e-cigarettes while smokers and experienced e-cigarettes users preferred medium and high nicotine e-cigarettes. Weak evidence exists regarding a positive interaction between menthol flavor and nicotine strength.
Gothe, Neha P; McAuley, Edward
2016-03-01
Despite yoga's popularity, few clinical trials have employed rigorous methodology to systematically explore its functional benefits compared with more established forms of exercise. The objective of this study was to compare the functional benefits of yoga with the conventional stretching-strengthening exercises recommended for adults. Sedentary healthy adults (N = 118; M age = 62.0) participated in an 8-week (three times a week for 1 hour) randomized controlled trial, which consisted of a Hatha yoga group (n = 61) and a stretching-strengthening exercise group (n = 57). Standardized functional fitness tests assessing balance, strength, flexibility, and mobility were administered at baseline and postintervention. A repeated measures multivariate analysis of variance showed a significant time effect for measures of balance [F(3,18) = 4.88, p < .01, partial η(2) = .45], strength [F(2,19) = 15.37, p < .001, partial η(2) = .62], flexibility [F(4,17) = 8.86, p < .001, partial η(2) = .68], and mobility [F(2,19) = 8.54, p < .002, partial η(2) = .47]. Both groups showed significant improvements on measures of balance (left-right leg and four square step); strength (chair stands and arm curls); flexibility (back scratch and sit-and-reach); and mobility (gait speed and 8-feet up and go), with partial η(2) ranging from .05 to .47. These data suggest that regular yoga practice is just as effective as stretching-strengthening exercises in improving functional fitness. To our knowledge, this is the first study to examine functional benefits of yoga in comparison with stretching-strengthening exercises in sedentary, healthy, community-dwelling older adults. These findings have clinical implications as yoga is a more amenable form of exercise than strengthening exercises as it requires minimal equipment and can be adapted for individuals with lower levels of functioning or disabilities. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lienhard, K; Lauermann, S P; Schneider, D; Item-Glatthorn, J F; Casartelli, N C; Maffiuletti, N A
2013-12-01
Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P < 0.05). Uninvolved quadriceps strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P < 0.05), except for WOMAC function/isokinetic peak torque (P > 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E
2012-02-01
We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.
Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo
2012-01-01
Design spaces for multiple dose strengths of tablets were constructed using a Bayesian estimation method with one set of design of experiments (DoE) of only the highest dose-strength tablet. The lubricant blending process for theophylline tablets with dose strengths of 100, 50, and 25 mg is used as a model manufacturing process in order to construct design spaces. The DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) for theophylline 100-mg tablet. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) of the 100-mg tablet were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. Three experiments under an optimal condition and two experiments under other conditions were performed using 50- and 25-mg tablets, respectively. The response surfaces of the highest-strength tablet were corrected to those of the lower-strength tablets by Bayesian estimation using the manufacturing data of the lower-strength tablets. Experiments under three additional sets of conditions of lower-strength tablets showed that the corrected design space made it possible to predict the quality of lower-strength tablets more precisely than the design space of the highest-strength tablet. This approach is useful for constructing design spaces of tablets with multiple strengths.
NASA Technical Reports Server (NTRS)
James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.
1997-01-01
The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.
Silva, João Renato; Rebelo, António; Marques, Franklim; Pereira, Laura; Seabra, André; Ascensão, António; Magalhães, José
2014-04-01
This study aimed to analyze changes in performance, muscle function, and stress-related biochemical markers in professional soccer players (n = 14) at 4 timepoints (3 for performance and 4 for stress-related biochemical markers) during the soccer season [Formula: see text] preseason (E1), midseason (E2), end of the season (E3) [Formula: see text] and after the end of the recovery period (E4). Performance in 5- and 30-m sprints, countermovement jump, and agility, and maximal isokinetic knee extension and knee flexion strength were measured (E1 to E3). We observed increased in-season levels of myoglobin (E2 > E1 and E4; p < 0.05), a higher testosterone/cortisol ratio (T/C), and increased levels of creatine kinase (CK), C-reactive protein, superoxide dismutase (SOD), protein sulfhydryls (-SH), and malondialdehyde (E2 and E3 > E1 and E4; p < 0.05). Lower cortisol concentrations (E3 < E1 and E4; p < 0.05) and glutathione reductase activity (E3 < E2 and E4; p < 0.05) were observed at the end of the season. T/C, CK, SOD, -SH, and malondialdehyde decreased during the off-season, and cortisol and glutathione reductase increased (E3 < E4; p < 0.05). Agility increased in E2 and E3 (p < 0.01). Significant correlations were found during the season between hormonal and muscle function parameters (r = 0.56-0.86; p < 0.05). In addition, in E2, significant associations were observed between match-accumulated time (MATE2; minutes played by each player during the competition period), performance, and hormonal and redox parameters (r = 0.456-0.615; p < 0.05). In conclusion, this study shows that soccer players face significant changes in biomarkers of physiologic strain (muscle damage and oxidative stress-related markers) during the season, but values return to normal during the off-season. Additionally, MAT influences physical, hormonal, and oxidative stress-related parameters in professional soccer players.
Hand involvement in children with Charcot-Marie-Tooth disease type 1A.
Burns, Joshua; Bray, Paula; Cross, Lauren A; North, Kathryn N; Ryan, Monique M; Ouvrier, Robert A
2008-12-01
Charcot-Marie-Tooth disease type 1A (CMT1A), a demyelinating neuropathy characterised by progressive length-dependent muscle weakness and atrophy, is thought to affect the foot and leg first followed some time later by hand weakness and dysfunction. We aimed to characterise hand strength, function and disease-related symptoms in children with CMT1A. Intrinsic and extrinsic hand strength was measured by hand-held dynamometry, function by nine-hole peg test, and disease-related symptoms by interview and examination in 84 affected children aged 2-16 years. Hand weakness and dysfunction was present from the earliest stages of the disease. While hand strength and function measures tended to increase with age throughout childhood, at no point did they reach normal values. Day-to-day hand problems such as poor handwriting, weakness, pain and sensory symptoms also worsened with age. The hand is affected at all ages in children with CMT1A, but may be under-recognised in its early stages, potentially delaying therapy.
The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.
Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R
2016-01-01
The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease.
Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Delecluse, Christophe; Roth, Stephen M; Metter, E Jeffrey; Ferrucci, Luigi; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston P; Thomis, Martine A
2011-01-01
Muscle strength is important in functional activities of daily living and the prevention of common pathologies. We describe the two-staged fine mapping of a previously identified linkage peak for knee strength on chr12q12-14. First, 209 tagSNPs in/around 74 prioritized genes were genotyped in 500 Caucasian brothers from the Leuven Genes for Muscular Strength study (LGfMS). Combined linkage and family-based association analyses identified activin receptor 1B (ACVR1B) and inhibin β C (INHBC), part of the transforming growth factor β pathway regulating myostatin – a negative regulator of muscle mass – signaling, for follow-up. Second, 33 SNPs, selected in these genes based on their likelihood to functionally affect gene expression/function, were genotyped in an extended sample of 536 LGfMS siblings. Strong associations between ACVR1B genotypes and knee muscle strength (P-values up to 0.00002) were present. Of particular interest was the association with rs2854464, located in a putative miR-24-binding site, as miR-24 was implicated in the inhibition of skeletal muscle differentiation. Rs2854464 AA individuals were ∼2% stronger than G-allele carriers. The strength increasing effect of the A-allele was also observed in an independent replication sample (n=266) selected from the Baltimore Longitudinal Study of Aging and a Flemish Policy Research Centre Sport, Physical Activity and Health study. However, no genotype-related difference in ACVR1B mRNA expression in quadriceps muscle was observed. In conclusion, we applied a two-stage fine mapping approach, and are the first to identify and partially replicate genetic variants in the ACVR1B gene that account for genetic variation in human muscle strength. PMID:21063444
MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data.
Aine, C J; Sanfratello, L; Ranken, D; Best, E; MacArthur, J A; Wallace, T; Gilliam, K; Donahue, C H; Montaño, R; Bryant, J E; Scott, A; Stephen, J M
2012-04-01
MEG and EEG measure electrophysiological activity in the brain with exquisite temporal resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures (fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is becoming more widely recognized (e.g., Human Connectome Project). However, the available analysis methods for solving the inverse problem for MEG and EEG have not been compared and standardized to the extent that they have for fMRI/PET. A number of factors, including the non-uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis techniques which have not been tested on consistent datasets, making direct comparisons of techniques challenging (or impossible). Since each of the methods is known to have their own set of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are announcing the establishment of a website containing an extensive series of realistic simulated data for testing purposes ( http://cobre.mrn.org/megsim/ ). Here, we present: 1) a brief overview of the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3) cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment of analyses including independent component analysis (ICA), Granger Causality/Directed transfer function, and single-trial analysis.
MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data
Aine, C. J.; Sanfratello, L.; Ranken, D.; Best, E.; MacArthur, J. A.; Wallace, T.; Gilliam, K.; Donahue, C. H.; Montaño, R.; Bryant, J. E.; Scott, A.; Stephen, J. M.
2012-01-01
MEG and EEG measure electrophysiological activity in the brain with exquisite temporal resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures (fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is becoming more widely recognized (e.g., Human Connectome Project). However, the available analysis methods for solving the inverse problem for MEG and EEG have not been compared and standardized to the extent that they have for fMRI/PET. A number of factors, including the non-uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis techniques which have not been tested on consistent datasets, making direct comparisons of techniques challenging (or impossible). Since each of the methods is known to have their own set of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are announcing the establishment of a website containing an extensive series of realistic simulated data for testing purposes (http://cobre.mrn.org/megsim/). Here, we present: 1) a brief overview of the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3) cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment of analyses including independent component analysis (ICA), Granger Causality/Directed transfer function, and single-trial analysis. PMID:22068921
2014-01-01
Background StemSport (SS; StemTech International, Inc. San Clemente, CA) contains a proprietary blend of the botanical Aphanizomenon flos-aquae and several herbal antioxidant and anti-inflammatory substances. SS has been purported to accelerate tissue repair and restore muscle function following resistance exercise. Here, we examine the effects of SS supplementation on strength adaptations resulting from a 12-week resistance training program in healthy young adults. Methods Twenty-four young adults (16 males, 8 females, mean age = 20.5 ± 1.9 years, mass = 70.9 ± 11.9 kg, stature = 176.6 ± 9.9 cm) completed the twelve week training program. The study design was a double-blind, placebo controlled parallel group trial. Subjects either received placebo or StemSport supplement (SS; mg/day) during the training. 1-RM bench press, 1-RM leg press, vertical jump height, balance (star excursion and center of mass excursion), isokinetic strength (elbow and knee flexion/extension) and perception of recovery were measured at baseline and following the 12-week training intervention. Results Resistance training increased 1-RM strength (p < 0.008), vertical jump height (p < 0.03), and isokinetic strength (p < 0.05) in both SS and placebo groups. No significant group-by-time interactions were observed (all p-values >0.10). Conclusions These data suggest that compared to placebo, the SS herbal/botanical supplement did not enhance training induced adaptations to strength, balance, and muscle function above strength training alone. PMID:24910543
NASA Astrophysics Data System (ADS)
Bentotoche, M. S.; Inal, M. K.; Benmouna, M.
2018-02-01
A new asymmetry parameter characterizing the differences between the polarized π and σ gain components of the soft-x-ray J = 0-1 lasing line of neon-like ions is calculated in the case of Ge22+ assuming an electron distribution which is a weighted sum of an isotropic Maxwellian and a monoenergetic beam. Using a quasi steady-state collisional-radiative model, we determine in the weak amplification regime the relative populations of the upper M = 0 and lower M=0,+/- 1 magnetic sublevels of the lasing line as a function of electron density from 1020 to 2× {10}21 cm-3. This model includes inelastic and elastic collisional transitions, as well as spontaneous radiative decay between all the 337 M-sublevels arising from the 75 lowest-lying Ge22+ J-levels. The computations were performed for a temperature {T}{{e}} of the Maxwellian component between 1.2× {10}6 and 8× {10}6 K, a kinetic energy E 0 and a fraction f of the beam component in the ranges 1.5{--}20 {keV} and 0.1 % {--}10 % , respectively. The basic atomic data, such as level energies, radiative decay probabilities and inelastic collision strengths, were calculated with the flexible atomic code. However, some modifications of this code were made to get the collision strengths for transitions between M-sublevels due to impact with isotropic electrons as well as due to impact with an electron beam in the case of de-excitation. We find that the newly introduced asymmetry parameter may become significant under certain conditions of electron distribution corresponding to relatively low {T}{{e}} (1.2× {10}6{--}2.5× {10}6 K) and E 0 (3-6 keV). The results reported here may be useful in the evaluation of the polarization degree of the J = 0-1 x-ray laser output from a germanium plasma in the presence of fast directional electrons.
QPM Analysis of 205Tl Nuclear Excitations below the Giant Dipole Resonance
NASA Astrophysics Data System (ADS)
Benouaret, N.; Beller, J.; Isaak, J.; Kelley, J. H.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.
2015-05-01
We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus 205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations (N=0,1,2), only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.
Quadratic stark effect in the fullerene C60 at low symmetry orientation in the field
NASA Astrophysics Data System (ADS)
Tuchin, A. V.; Bityutskaya, L. A.; Bormontov, E. N.
2014-08-01
Results of numeric simulation of the influence of the electric field E = 0 - 1 V/Å on the electronic structure of the neutral fullerene C60 taking into account orientational deformation of its carbon cage at arbitrary orientations in the electric field including low symmetry orientations are presented. Splitting of the frontier t 1 u - and h u -levels of the molecule due to the quadratic Stark effect has been investigated. Dependencies of the effective electron work function and the energy gap between the lowest unoccupied and highest occupied molecular orbitals on the strengths of the electric field have been determined.
Pomidori, Luca; Lamberti, Nicola; Malagoni, Anna Maria; Manfredini, Fabio; Pozzato, Enrico; Felisatti, Michele; Catizone, Luigi; Barillà, Antonio; Zuccalà, Alessandro; Tripepi, Giovanni; Mallamaci, Francesca; Zoccali, Carmine; Cogo, Annalisa
2016-12-01
Skeletal muscle atrophy and dysfunction with associated weakness may involve the respiratory muscles of dialysis patients. We evaluated the effect of moderate-intensity exercise on lung function and respiratory muscle strength. Fifty-nine patients (25 F, aged 65 ± 13 years) from two centers participating in the multicenter randomized clinical trial EXerCise Introduction To Enhance Performance in Dialysis (EXCITE) were studied. Subjects were randomized into a prescribed exercise group (E), wherein subjects performed two 10-min walking sessions every second day at an intensity below the self-selected speed, or a control group (C) with usual care. Physical performance was assessed by the 6-min walk test (6MWT). Patient lung function and respiratory muscle strength were evaluated by spirometry and maximal inspiratory pressure (MIP), respectively. Forty-two patients (14 F) completed the study. At baseline, the groups did not differ in any parameters. In total, 7 patients (4 in E; 3 in C) showed an obstructive pattern. The pulmonary function parameters were significantly correlated with 6MWT but not with any biochemical measurements. Group E safely performed the exercise program. At follow-up, the spirometry parameters did not change in either group. A deterioration of MIP (-7 %; p = 0.008) was observed in group C, but not in group E (+3.3 %, p = ns). In E, an increase of 6MWT was also found (+12 vs. 0 % in C; p = 0.038). In dialysis patients, a minimal dose of structured exercise improved physical capacity and maintained a stable respiratory muscle function, in contrast to the control group where it worsened.
Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6.
Yu, Xiaojuan; Hou, Hua; Wang, Baoshan
2017-04-15
Developing the environment-friendly insulation gases to replace sulfur hexafluoride (SF 6 ) has attracted considerable experimental and theoretical attentions but without success. A computational methodology was presented herein for prediction on dielectric strength and boiling point of arbitrary gaseous molecules in the purpose of molecular design and screening. New structure-activity relationship (SAR) models have been established by combining the density-dependent properties of the electrostatic potential surface, including surface area and the statistical variance of the surface potentials, with the molecular properties including polarizability, electronegativity, and hardness. All the descriptors in the SAR models were calculated using density functional theory. The substitution effect of SF 6 by various functional groups was studied systematically. It was found that CF 3 is the most effective functional group to improve the dielectric strength due to the large surface area and polarizability. However, all the substitutes exhibit higher boiling points than SF 6 because the molecular hardness decreases. The balance between E r and T b could be achieved by minimizing the local polarity of the molecules. SF 5 CN and SF 5 CFO were found to be the potent candidates to replace SF 6 in view of their large dielectric strengths and low boiling points. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.
Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep
2016-01-01
In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.
Arezzo di Trifiletti, Adriana; Misino, Paola; Giannantoni, Patrizia; Giannantoni, Barbara; Cascino, Antonia; Fazi, Lucia; Rossi Fanelli, Filippo; Laviano, Alessandro
2013-08-01
In hospitalized patients, lack of appetite, i.e., disease-associated anorexia, is the main factor determining insufficient food intake and weight loss, which in turn increase morbidity and mortality. Controversies exist on which tool should be preferred when diagnosing anorexia. Aim of the study was to evaluate in hospitalized medical patients, the performance of 4 different tools [i.e., self-assessment of appetite, FAACT-ESPEN score, visual analog scale (VAS), and the Anorexia Questionnaire (AQ)] in assessing disease-associated anorexia and predicting nutritional and clinical variables. Hospitalized patients consecutively admitted to the Internal Medicine ward at our institution were considered. After informed consent was obtained, patients were asked to self-assess their appetite vs the previous month. The VAS, the FAACT-ESPEN score and the Anorexia Questionnaire were also submitted. Food intake immediately following the interview was recorded. Nutritional (i.e., body weight, height), functional (i.e., handgrip strength) and clinical variables (i.e., length of stay) were registered upon admission and before discharge. We studied 105 patients (74M:31F; 66.2 ± 16.3 yrs). The prevalence of anorexia as assessed by patients' self assessment, FAACT-ESPEN score, and the Anorexia Questionnaire was 23%, 10% and 48%, respectively. VAS did not show any correlation with food intake. Anorexic patients as identified by the self assessment of appetite showed reduced food intake and weaker handgrip strength than non-anorexic. The FAACT-ESPEN score correlated with body weight, food intake and handgrip strength, but was not related with length of stay. Anorexic patients as identified by the Anorexia Questionnaire showed reduced food intake, lower body weight, weaker handgrip strength and longer hospital stay than non-anorexic patients. The prevalence of anorexia significantly varies according to the diagnostic tool used. Except for VAS, all the tested tools identify patients with impaired nutritional and functional variables. However, only the Anorexia Questionnaire identifies patients with longer hospital stay. Our results suggest that in clinical practice, modification of appetite reflects different underlying mechanisms whose impacts on clinical outcome measures may differ. Therefore, an ideal anorexia assessment tool does not appear to exist, but it should be chosen according to the outcome measures to be assessed (i.e., Anorexia Questionnaire to predict length of stay). Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Whole-body vibration does not influence knee joint neuromuscular function or proprioception.
Hannah, R; Minshull, C; Folland, J P
2013-02-01
This study examined the acute effects of whole-body vibration (WBV) on knee joint position sense and indices of neuromuscular function, specifically strength, electromechanical delay and the rate of force development. Electromyography and electrically evoked contractions were used to investigate neural and contractile responses to WBV. Fourteen healthy males completed two treatment conditions on separate occasions: (1) 5 × 1 min of unilateral isometric squat exercise on a synchronous vibrating platform [30 Hz, 4 mm peak-to-peak amplitude] (WBV) and (2) a control condition (CON) of the same exercise without WBV. Knee joint position sense (joint angle replication task) and quadriceps neuromuscular function were assessed pre-, immediately-post and 1 h post-exercise. During maximum voluntary knee extensions, the peak force (PF(V)), electromechanical delay (EMD(V)), rate of force development (RFD(V)) and EMG of the quadriceps were measured. Twitch contractions of the knee extensors were electrically evoked to assess EMD(E) and RFD(E). The results showed no influence of WBV on knee joint position, EMD(V), PF(V) and RFD(V) during the initial 50, 100 or 150 ms of contraction. Similarly, electrically evoked neuromuscular function and neural activation remained unchanged following the vibration exercise. A single session of unilateral WBV did not influence any indices of thigh muscle neuromuscular performance or knee joint proprioception. © 2011 John Wiley & Sons A/S.
Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S
2017-07-01
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities. © 2016 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Franke, Warren D.; Margrett, Jennifer A.; Heinz, Melinda; Martin, Peter
2012-01-01
This study assessed the association between perceived health, fatigue, positive and negative affect, handgrip strength, objectively measured physical activity, body mass index, and self-reported functional limitations, assessed 6 months later, among 11 centenarians (age = 102 plus or minus 1). Activities of daily living, assessed 6 months prior to…
The transcription factor DREAM represses A20 and mediates inflammation
Tiruppathi, Chinnaswamy; Soni, Dheeraj; Wang, Dong-Mei; Xue, Jiaping; Singh, Vandana; Thippegowda, Prabhakar B.; Cheppudira, Bopaiah P.; Mishra, Rakesh K.; DebRoy, Auditi; Qian, Zhijian; Bachmaier, Kurt; Zhao, Youyang; Christman, John W.; Vogel, Stephen M.; Ma, Averil; Malik, Asrar B.
2014-01-01
Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/−) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inflammatory stimuli. These studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-κB signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy in diseases such as acute lung injury associated with unconstrained NF-κB activity. PMID:24487321
NASA Astrophysics Data System (ADS)
Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.
2010-12-01
In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.
An examination of athletes' self-efficacy and strength training effort during an entire off-season.
Gilson, Todd A; Cisco Reyes, G F; Curnock, Lindsey E
2012-02-01
Over the past 30-plus years in which self-efficacy (or confidence at a task) has been researched, findings have shown that in almost every domain of human functioning, self-efficacy positively relates to effort, persistence, and other adaptive behaviors. However, in the past decade, new research postulating that too much self-efficacy can lead to complacency and a subsequent downturn in behavior or performance has also experienced resurgence in the literature. Therefore, the purpose of this study was to test these opposing viewpoints regarding self-efficacy and effort for Division I athletes in a strength and conditioning domain over off-season training, a procedure yet to be undertaken. Subjects (N = 99), from 4 different sports (M(ag)e = 20.0 years, SD = 1.2 years), completed self-efficacy and effort measures at 4 distinct time points during off-season training. In addition, strength and conditioning coaches also rated each subject's effort--at each time point--so that a more valid measure of this construct could be attained. Results were analyzed using a multilevel approach and revealed that self-efficacy was positively, and significantly, related to the current effort that athletes exerted in strength training sessions. Consequently, practitioners are advised to structure strength and conditioning training sessions and the overall environment in ways that will positively impact the 4 proven sources of self-efficacy.
Rogerson, Shane; Riches, Christopher J; Jennings, Carl; Weatherby, Robert P; Meir, Rudi A; Marshall-Gradisnik, Sonya M
2007-05-01
Tribulus terrestris is an herbal nutritional supplement that is promoted to produce large gains in strength and lean muscle mass in 5-28 days (15, 18). Although some manufacturers claim T. terrestris will not lead to a positive drug test, others have suggested that T. terrestris may increase the urinary testosterone/epitestosterone (T/E) ratio, which may place athletes at risk of a positive drug test. The purpose of the study was to determine the effect of T. terrestris on strength, fat free mass, and the urinary T/E ratio during 5 weeks of preseason training in elite rugby league players. Twenty-two Australian elite male rugby league players (mean +/- SD; age = 19.8 +/- 2.9 years; weight = 88.0 +/- 9.5 kg) were match-paired and randomly assigned in a double-blind manner to either a T. terrestris (n = 11) or placebo (n = 11) group. All subjects performed structured heavy resistance training as part of the club's preseason preparations. A T. terrestris extract (450 mg.d(-1)) or placebo capsules were consumed once daily for 5 weeks. Muscular strength, body composition, and the urinary T/E ratio were monitored prior to and after supplementation. After 5 weeks of training, strength and fat free mass increased significantly without any between-group differences. No between-group differences were noted in the urinary T/E ratio. It was concluded that T. terrestris did not produce the large gains in strength or lean muscle mass that many manufacturers claim can be experienced within 5-28 days. Furthermore, T. terrestris did not alter the urinary T/E ratio and would not place an athlete at risk of testing positive based on the World Anti-Doping Agency's urinary T/E ratio limit of 4:1.
Does on-water resisted rowing increase or maintain lower-body strength?
Lawton, Trent W; Cronin, John B; McGuigan, Michael R
2013-07-01
Over the past 30 years, endurance volumes have increased by >20% among the rowing elite; therefore, informed decisions about the value of weight training over other possible activities in periodized training plans for rowing need to be made. The purpose of this study was to quantify the changes in lower-body strength development after two 14-week phases of intensive resisted on-water rowing, either incorporating weight training or rowing alone. Ten elite women performed 2 resisted rowing ("towing ropes," e.g., 8 × 3 minutes) plus 6 endurance (e.g., 16-28 km at 70-80% maximum heart rate) and 2 rate-regulated races (e.g., 8,000 m at 24 strokes per minute) on-water each week. After a 4-week washout phase, the 14-week phase was repeated with the addition of 2 weight-training sessions (e.g., 3-4 sets × 6-15 reps). Percent (±SD) and standardized differences in effects (effect size [ES] ± 90% confidence limit) for 5-repetition leg pressing and isometric pulling strength were calculated from data ratio scaled for body mass, log transformed and adjusted for pretest scores. Resisted rowing alone did not increase leg pressing (-1.0 ± 5.3%, p = 0.51) or isometric pulling (5.3 ± 13.4%, p = 0.28) strength. In contrast, after weight training, a moderately greater increase in leg pressing strength was observed (ES = 0.72 ± 0.49, p = 0.03), although differences in isometric pulling strength were unclear (ES = 0.56 ± 1.69, p = 0.52). In conclusion, intensive on-water training including resisted rowing maintained but did not increase lower-body strength. Elite rowers or coaches might consider the incorporation of high-intensity nonfatiguing weight training concurrent to endurance exercise if increases in lower-body strength without changes in body mass are desired.
Merrill, Jeffrey C; Pinsky, Ilana; Killeya-Jones, Ley A; Sloboda, Zili; Dilascio, Tracey
2006-01-01
Background The only national drug abuse prevention delivery system that supports the rapid diffusion of new prevention strategies and includes uniform training and credentialing of instructors who are monitored for quality implementation of prevention programming is the Drug Abuse Resistance Education network (D.A.R.E.) linking community law enforcement to schools. Analysis of the organizational structure and function of D.A.R.E. provides an understanding of the essential parameters of this successful delivery system that can be used in the development of other types of national infrastructures for community-based prevention services. Information regarding organizational structure and function around funding issues, training, quality control and community relationships was gathered through telephone surveys with 50 state D.A.R.E. coordinators (including two major cities), focus groups with local D.A.R.E. officers and mentors, and interviews with national D.A.R.E. office staff. Results The surveys helped identify several strengths inherent in the D.A.R.E. program necessary for building a prevention infrastructure, including a well-defined organizational focus (D.A.R.E. America), uniform training and means for rapid dissemination (through its organized training structure), continuing education mechanisms (through the state and national conference and website), mechanisms for program monitoring and fidelity of implementation (formal and informal), branding and, for several states, predictable and consistent financing. Weaknesses of the program as currently structured include unstable funding and the failure to incorporate components for the continual upgrading of curricula reflecting research evidence and "principles of prevention". Conclusion The D.A.R.E. organization and service delivery network provides a framework for the rapid dissemination of evidence-based prevention strategies. The major strength of D.A.R.E. is its natural affiliation to local law enforcement agencies through state coordinators. Through these affiliations, it has been possible for D.A.R.E. to become established nationally within a few years and internationally within a decade. Understanding how this structure developed and currently functions provides insights into how other such delivery systems could be developed. PMID:16956400
Merrill, Jeffrey C; Pinsky, Ilana; Killeya-Jones, Ley A; Sloboda, Zili; Dilascio, Tracey
2006-09-06
The only national drug abuse prevention delivery system that supports the rapid diffusion of new prevention strategies and includes uniform training and credentialing of instructors who are monitored for quality implementation of prevention programming is the Drug Abuse Resistance Education network (D.A.R.E.) linking community law enforcement to schools. Analysis of the organizational structure and function of D.A.R.E. provides an understanding of the essential parameters of this successful delivery system that can be used in the development of other types of national infrastructures for community-based prevention services. Information regarding organizational structure and function around funding issues, training, quality control and community relationships was gathered through telephone surveys with 50 state D.A.R.E. coordinators (including two major cities), focus groups with local D.A.R.E. officers and mentors, and interviews with national D.A.R.E. office staff. The surveys helped identify several strengths inherent in the D.A.R.E. program necessary for building a prevention infrastructure, including a well-defined organizational focus (D.A.R.E. America), uniform training and means for rapid dissemination (through its organized training structure), continuing education mechanisms (through the state and national conference and website), mechanisms for program monitoring and fidelity of implementation (formal and informal), branding and, for several states, predictable and consistent financing. Weaknesses of the program as currently structured include unstable funding and the failure to incorporate components for the continual upgrading of curricula reflecting research evidence and "principles of prevention". The D.A.R.E. organization and service delivery network provides a framework for the rapid dissemination of evidence-based prevention strategies. The major strength of D.A.R.E. is its natural affiliation to local law enforcement agencies through state coordinators. Through these affiliations, it has been possible for D.A.R.E. to become established nationally within a few years and internationally within a decade. Understanding how this structure developed and currently functions provides insights into how other such delivery systems could be developed.
Kinetic Theory and Fast Wind Observations of the Electron Strahl
NASA Astrophysics Data System (ADS)
Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan
2017-10-01
Measurements of the electron velocity distribution function (eVDF) in the solar wind exhibit a high-energy, field-aligned beam of electrons, known as the ``strahl''. We develop a kinetic model for the strahl population, based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature, and the strength of the magnetic field decline as power-laws of the distance along a magnetic flux tube. We compare our model with the eVDF measured by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width of the strahl for the Wind data at 1 AU, in particular, the scaling of the width with particle energy and background density.
van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette
2016-01-01
Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770
NASA Astrophysics Data System (ADS)
Iwamoto, C.; Utsunomiya, H.; Tamii, A.; Akimune, H.; Nakada, H.; Shima, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Shimbara, Y.; Nagashima, M.; Suzuki, T.; Fujita, H.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Bilgier, B.; Kozer, H. C.; Lui, Y.-W.; Hatanaka, K.
2012-06-01
A high-resolution measurement of inelastic proton scattering off Zr90 near 0° was performed at 295 MeV with a focus on a pronounced strength previously reported in the low-energy tail of giant dipole resonance. A forest of fine structure was observed in the excitation energy region 7-12 MeV. A multipole decomposition analysis of the angular distribution for the forest was carried out using the ECIS95 distorted-wave Born approximation code with the Hartree-Fock plus random-phase approximation model of E1 and M1 transition densities and inclusion of E1 Coulomb excitation. The analysis separated pygmy dipole and M1 resonances in the forest at EPDR=9.15±0.18MeV with ΓPDR=2.91±0.64MeV and at EM1=9.53±0.06MeV with ΓM1=2.70±0.17MeV in the Lorentzian function, respectively. The B(E1)↑ value for pygmy dipole resonance over 7-11 MeV is 0.75±0.08e2fm2, which corresponds to 2.1±0.2% of the Thomas-Reiche-Kuhn sum rule.
Criticality in the quantum kicked rotor with a smooth potential.
Dutta, Rina; Shukla, Pragya
2008-09-01
We investigate the possibility of an Anderson-type transition in the quantum kicked rotor with a smooth potential due to dynamical localization of the wave functions. Our results show the typical characteristics of a critical behavior, i.e., multifractal eigenfunctions and a scale-invariant level statistics at a critical kicking strength which classically corresponds to a mixed regime. This indicates the existence of a localization to delocalization transition in the quantum kicked rotor. Our study also reveals the possibility of other types of transition in the quantum kicked rotor, with a kicking strength well within the strongly chaotic regime. These transitions, driven by the breaking of exact symmetries, e.g., time reversal and parity, are similar to weak-localization transitions in disordered metals.
Liu, Chiung-Ju; Marie, Deana; Fredrick, Aaron; Bertram, Jessica; Utley, Kristen; Fess, Elaine Ewing
2017-08-01
Hand function is critical for independence in activities of daily living for older adults. The purpose of this study was to examine how grip strength, arm curl strength, and manual dexterous coordination contributed to time-based versus self-report assessment of hand function in community-dwelling older adults. Adults aged ≥60 years without low vision or neurological disorders were recruited. Purdue Pegboard Test, Jamar hand dynamometer, 30-second arm curl test, Jebsen-Taylor Hand Function Test, and the Late-Life Function and Disability Instrument were administered to assess manual dexterous coordination, grip strength, arm curl strength, time-based hand function, and self-report of hand function, respectively. Eighty-four adults (mean age = 72 years) completed the study. Hierarchical multiple regressions show that older adults with better arm curl strength (β = -.25, p < .01) and manual dexterous coordination (β = -.52, p < .01) performed better on the time-based hand function test. In comparison, older adults with better grip strength (β = .40, p < .01), arm curl strength (β = .23, p < .05), and manual dexterous coordination (β = .23, p < .05) were associated with better self-report of upper extremity function. The relationship between grip strength and hand function may be test-specific. Grip strength becomes a significant factor when the test requires grip strength to successfully complete the test tasks. Arm curl strength independently contributed to hand function in both time-based and self-report assessments, indicating that strength of extrinsic muscles of the hand are essential for hand function.
Bennett, Raffeal; Olesik, Susan V
2018-01-25
The value of exploring selectivity and solvent strength ternary gradients in enhanced fluidity liquid chromatography (EFLC) is demonstrated for the separation of inulin-type fructans from chicory. Commercial binary pump systems for supercritical fluid chromatography only allow for the implementation of ternary solvent strength gradients which can be restrictive for the separation of polar polymeric analytes. In this work, a custom system was designed to extend the capability of EFLC to allow tuning of selectivity or solvent strength in ternary gradients. Gradient profiles were evaluated using the Berridge function (RF 1 ), normalized resolution product (NRP), and gradient peak capacity (P c ). Selectivity gradients provided the separation of more analytes over time. The RF 1 function showed favor to selectivity gradients with comparable P c to that of solvent strength gradients. NRP did not strongly correlate with P c or RF 1 score. EFLC with the hydrophilic interaction chromatography, HILIC, separation mode was successfully employed to separate up to 47 fructan analytes in less than 25 min using a selectivity gradient. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, K.; Jönsson, P.; Gaigalas, G.; Radžiūtė, L.; Rynkun, P.; Del Zanna, G.; Chen, C. Y.
2018-04-01
The fully relativistic multiconfiguration Dirac–Hartree–Fock method is used to compute excitation energies and lifetimes for the 143 lowest states of the 3{s}23{p}3, 3s3p 4, 3{s}23{p}23d, 3s3p 33d, 3p 5, 3{s}23p3{d}2 configurations in P-like ions from Cr X to Zn XVI. Multipole (E1, M1, E2, M2) transition rates, line strengths, oscillator strengths, and branching fractions among these states are also given. Valence–valence and core–valence electron correlation effects are systematically accounted for using large basis function expansions. Computed excitation energies are compared with the NIST ASD and CHIANTI compiled values and previous calculations. The mean average absolute difference, removing obvious outliers, between computed and observed energies for the 41 lowest identified levels in Fe XII, is only 0.057%, implying that the computed energies are accurate enough to aid identification of new emission lines from the Sun and other astrophysical sources. The amount of energy and transition data of high accuracy are significantly increased for several P-like ions of astrophysics interest, where experimental data are still very scarce.
Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N
2013-10-01
Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.
Resonant Spin-Flavor Conversion of Supernova Neutrinos
NASA Astrophysics Data System (ADS)
Ando, Shin'ichiro; Sato, K.
2003-07-01
We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.
Androulakis-Korakakis, Patroklos; Langdown, Louis; Lewis, Adam; Fisher, James P; Gentil, Paulo; Paoli, Antonio; Steele, James
2018-02-01
Androulakis-Korakakis, P, Langdown, L, Lewis, A, Fisher, JP, Gentil, P, Paoli, A, and Steele, J. Effects of exercise modality during additional "high-intensity interval training" on aerobic fitness and strength in powerlifting and strongman athletes. J Strength Cond Res 32(2): 450-457, 2018-Powerlifters and strongman athletes have a necessity for optimal levels of muscular strength while maintaining sufficient aerobic capacity to perform and recover between events. High-intensity interval training (HIIT) has been popularized for its efficacy in improving both aerobic fitness and strength but never assessed within the aforementioned population group. This study looked to compare the effect of exercise modality, e.g., a traditional aerobic mode (AM) and strength mode (SM), during HIIT on aerobic fitness and strength. Sixteen well resistance-trained male participants, currently competing in powerlifting and strongman events, completed 8 weeks of approximately effort- and volume-matched HIIT in 2 groups: AM (cycling, n = 8) and SM (resistance training, n = 8). Aerobic fitness was measured as predicted V[Combining Dot Above]O2max using the YMCA 3 minutes step test and strength as predicted 1 repetition maximum from a 4-6RM test using a leg extension. Both groups showed significant improvements in both strength and aerobic fitness. There was a significant between-group difference for aerobic fitness improvements favoring the AM group (p ≤ 0.05). There was no between-group difference for change in strength. Magnitude of change using within-group effect size for aerobic fitness and strength was considered large for each group (aerobic fitness, AM = 2.6, SM = 2.0; strength, AM = 1.9, SM = 1.9). In conclusion, our results support enhanced strength and aerobic fitness irrespective of exercise modality (e.g., traditional aerobic and resistance training). However, powerlifters and strongman athletes wishing to enhance their aerobic fitness should consider HIIT using an aerobic HIIT mode.
Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B
2014-11-07
Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sakai, Kotomi; Nakayama, Enri; Tohara, Haruka; Kodama, Keiji; Takehisa, Takahiro; Takehisa, Yozo; Ueda, Koichiro
2017-01-01
Objective The objective of this study was to clarify the relationship between tongue strength, lip strength, and nutrition-related sarcopenia (NRS). Patients and methods A total of 201 older inpatients aged ≥65 years (70 men, median age: 84 years, interquartile range: 79–89 years) consecutively admitted for rehabilitation were included in this cross-sectional study. The main factors evaluated were the presence of NRS diagnosed by malnutrition using the Mini-Nutrition Assessment – Short Form, sarcopenia based on the criteria of the Asian Working Group for Sarcopenia, tongue strength, and lip strength. Other factors such as age, sex, comorbidity, physical function, cognitive function, and oral intake level were also assessed. Results In all, 78 (38.8%) patients were allocated to the NRS group, and 123 (61.2%) patients were allocated to the non-NRS group. The median tongue strength and lip strength (interquartile range) were significantly lower in the NRS group (tongue: 22.9 kPa [17.7–27.7 kPa] and lip: 7.2 N [5.6–9.8 N]) compared with the non-NRS group (tongue: 29.7 kPa [24.8–35.1 kPa] and lip: 9.9 N [8.4–12.3 N], P<0.001 for both). Multivariable logistic regression analysis showed that NRS was independently associated with tongue strength (odds ratio [OR] =0.93, 95% confidence interval [CI] 0.87–0.98, P=0.012) and lip strength (OR =0.76, 95% CI 0.66–0.88, P<0.001), even after adjusting for age, sex, comorbidity, physical function, cognitive function, and oral intake level. Conclusion The likelihood of occurrence of NRS decreased when tongue strength or lip strength increased. Tongue strength and lip strength may be important factors for preventing and improving NRS, regardless of the presence of low oral intake level in older rehabilitation inpatients. PMID:28814847
[Methodological aspects of functional neuroimaging at high field strength: a critical review].
Scheef, L; Landsberg, M W; Boecker, H
2007-09-01
The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.
Hsieh, Yu-Wei; Wu, Ching-Yi; Wang, Wei-En; Lin, Keh-Chung; Chang, Ku-Chou; Chen, Chih-Chi; Liu, Chien-Ting
2017-02-01
To investigate the treatment effects of bilateral robotic priming combined with the task-oriented approach on motor impairment, disability, daily function, and quality of life in patients with subacute stroke. A randomized controlled trial. Occupational therapy clinics in medical centers. Thirty-one subacute stroke patients were recruited. Participants were randomly assigned to receive bilateral priming combined with the task-oriented approach (i.e., primed group) or to the task-oriented approach alone (i.e., unprimed group) for 90 minutes/day, 5 days/week for 4 weeks. The primed group began with the bilateral priming technique by using a bimanual robot-aided device. Motor impairments were assessed by the Fugal-Meyer Assessment, grip strength, and the Box and Block Test. Disability and daily function were measured by the modified Rankin Scale, the Functional Independence Measure, and actigraphy. Quality of life was examined by the Stroke Impact Scale. The primed and unprimed groups improved significantly on most outcomes over time. The primed group demonstrated significantly better improvement on the Stroke Impact Scale strength subscale ( p = 0.012) and a trend for greater improvement on the modified Rankin Scale ( p = 0.065) than the unprimed group. Bilateral priming combined with the task-oriented approach elicited more improvements in self-reported strength and disability degrees than the task-oriented approach by itself. Further large-scale research with at least 31 participants in each intervention group is suggested to confirm the study findings.
Hayashi, Satoko; Tsubomoto, Yutaka; Nakanishi, Waro
2018-02-17
The nature of the E-E' bonds (E, E' = S and Se) in glutathione disulfide ( 1 ) and derivatives 2 - 3 , respectively, was elucidated by applying quantum theory of atoms-in-molecules (QTAIM) dual functional analysis (QTAIM-DFA), to clarify the basic contribution of E-E' in the biological redox process, such as the glutathione peroxidase process. Five most stable conformers a - e were obtained, after applying the Monte-Carlo method then structural optimizations. In QTAIM-DFA, total electron energy densities H b ( r c ) are plotted versus H b ( r c ) - V b ( r c )/2 at bond critical points (BCPs), where V b ( r c ) are potential energy densities at BCPs. Data from the fully optimized structures correspond to the static nature. Those containing perturbed structures around the fully optimized one in the plot represent the dynamic nature of interactions. The behavior of E-E' was examined carefully. Whereas E-E' in 1a - 3e were all predicted to have the weak covalent nature of the shared shell interactions, two different types of S-S were detected in 1 , depending on the conformational properties. Contributions from the intramolecular non-covalent interactions to stabilize the conformers were evaluated. An inverse relationship was observed between the stability of a conformer and the strength of E-E' in the conformer, of which reason was discussed.
Hand grip strength and cognitive function among elderly cancer survivors.
Yang, Lin; Koyanagi, Ai; Smith, Lee; Hu, Liang; Colditz, Graham A; Toriola, Adetunji T; López Sánchez, Guillermo Felipe; Vancampfort, Davy; Hamer, Mark; Stubbs, Brendon; Waldhör, Thomas
2018-01-01
We evaluated the associations of handgrip strength and cognitive function in cancer survivors ≥ 60 years old using data from the National Health and Nutrition Examination Survey (NHANES). Data in two waves of NHANES (2011-2014) were aggregated. Handgrip strength in kilogram (kg) was defined as the maximum value achieved using either hand. Two cognitive function tests were conducted among adults 60 years and older. The Animal Fluency Test (AFT) examines categorical verbal fluency (a component of executive function), and the Digital Symbol Substitution test (DSST) assesses processing speed, sustained attention, and working memory. Survey analysis procedures were used to account for the complex sampling design of the NHANES. Multiple linear regression models were used to estimate associations of handgrip strength with cognitive test scores, adjusting for confounders (age, gender, race/ethnicity, education, marital status, smoking status, depressive symptoms and leisure time physical activity). Among 383 cancer survivors (58.5% women, mean age = 70.9 years, mean BMI = 29.3 kg/m2), prevalent cancer types were breast (22.9%), prostate (16.4%), colon (6.9%) and cervix (6.2%). In women, each increase in kg of handgrip strength was associated with 0.20 (95% CI: 0.08 to 0.33) higher score on AFT and 0.83 (95% CI: 0.30 to 1.35) higher score on DSST. In men, we observed an inverted U-shape association where cognitive function peaked at handgrip strength of 40-42 kg. Handgrip strength, a modifiable factor, appears to be associated with aspects of cognitive functions in cancer survivors. Prospective studies are needed to address their causal relationship.
Strength of a Ceramic Sectored Flexure Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Duffy, Stephen F; Baker, E. H.
2008-01-01
A new test specimen, defined here as the "sectored flexure strength specimen", was developed to measure the strength of ceramic tubes specifically for circumstances when flaws located at the tube's outer diameter are the strength-limiter and subjected to axial tension. The understanding of such strength-limitation is relevant for when ceramic tubes are subjected to bending or when the internal temperature is hotter than the tube's exterior (e.g., heat exchangers). The specimen is both economically and statistically attractive because eight specimens (eight in the case of this project - but the user is not necessarily limited to eight) were extracted outmore » of each length of tube. An analytic expression for maximum or failure stress, and relationships portraying effective area and effective volume as a function of Weibull modulus were developed. Lastly, it was proven from the testing of two ceramics that the sectored flexure specimen was very effective at producing failures caused by strength-limiting flaws located on the tube's original outer diameter. Keywords: ceramics, strength, sectored flexure specimen, effective area, effective volume, finite-element analysis, Weibull distribution, and fractography.« less
Blood flow restricted resistance training in older adults at risk of mobility limitations.
Cook, Summer B; LaRoche, Dain P; Villa, Michelle R; Barile, Hannah; Manini, Todd M
2017-12-01
High-load resistance training (HL) may be contraindicated in older adults due to pre-existing health conditions (e.g. osteoarthritis). Low-load blood flow restricted (BFR) resistance training offers an alternative to HL with potentially similar strength improvement. To compare muscle strength, cross-sectional area (CSA), physical function, and quality of life (QOL) following 12-weeks of HL or BFR training in older adults at risk of mobility limitations. Thirty-six males and females (mean: 75.6years 95% confidence interval: [73.4-78.5], 1.67m [1.64-1.70], 74.3kg [69.8-78.8]) were randomly assigned to HL (70% of one repetition maximum [1-RM]) or low-load BFR (30% 1-RM coupled with a vascular restriction) exercise for the knee extensors and flexors twice per week for 12weeks. A control (CON) group performed light upper body resistance and flexibility training. Muscle strength, CSA of the quadriceps, 400-m walking speed, Short Physical Performance Battery (SPPB), and QOL were assessed before, midway and after training. Within 6-weeks of HL training, increases in all strength measures and CSA were evident and the gains were significantly greater than the CON group (P<0.05). The BFR group had strength increases in leg extension and leg press 1-RM tests, but were significantly lower in leg extension isometric maximum voluntary contraction (MVC) and leg extension 1-RM than the HL group (P<0.01). At 12-weeks HL and BFR training did not differ in MVC (P=0.14). Walking speed increased 4% among all training groups (P<0.01) and no changes were observed for overall SPPB score and QOL (P>0.05). Both training programs resulted in muscle CSA improvements and HL training had more pronounced strength gains than BFR training after 6-weeks and were more similar to BFR after 12-weeks of training. These changes in both groups did not transfer to improvements in QOL, SPPB, and walking speed. Since both programs result in strength and CSA gains, albeit at different rates, future research should consider using a combination of HL and BFR training in older adults with profound muscle weakness and mobility limitations. Copyright © 2017 Elsevier Inc. All rights reserved.
Are Systemic Manifestations Ascribable to COPD in Smokers? A Structural Equation Modeling Approach.
Boyer, Laurent; Bastuji-Garin, Sylvie; Chouaid, Christos; Housset, Bruno; Le Corvoisier, Philippe; Derumeaux, Geneviève; Boczkowski, Jorge; Maitre, Bernard; Adnot, Serge; Audureau, Etienne
2018-06-05
Whether the systemic manifestations observed in Chronic Obstructive Pulmonary Disease (COPD) are ascribable to lung dysfunction or direct effects of smoking is in debate. Structural Equations Modeling (SEM), a causal-oriented statistical approach, could help unraveling the pathways involved, by enabling estimation of direct and indirect associations between variables. The objectives of the study was to investigate the relative impact of smoking and COPD on systemic manifestations, inflammation and telomere length. In 292 individuals (103 women; 97 smokers with COPD, 96 smokers without COPD, 99 non-smokers), we used SEM to explore the pathways between smoking (pack-years), lung disease (FEV 1 , K CO ), and the following parameters: arterial stiffness (aortic pulse wave velocity, PWV), bone mineral density (BMD), appendicular skeletal muscle mass (ASMM), grip strength, insulin resistance (HOMA-IR), creatinine clearance (eGFR), blood leukocyte telomere length and inflammatory markers (Luminex assay). All models were adjusted on age and gender. Latent variables were created for systemic inflammation (inflammatory markers) and musculoskeletal parameters (ASMM, grip strength, BMD). SEM showed that most effects of smoking were indirectly mediated by lung dysfunction: e.g. via FEV 1 on musculoskeletal factor, eGFR, HOMA-IR, PWV, telomere length, CRP, white blood cells count (WBC) and inflammation factor, and via K CO on musculoskeletal factor, eGFR and PWV. Direct effects of smoking were limited to CRP and WBC. Models had excellent fit. In conclusion, SEM highlighted the major role of COPD in the occurrence of systemic manifestations while smoking effects were mostly mediated by lung function.
Scholtes, Vanessa A; Dallmeijer, Annet J; Rameckers, Eugene A; Verschuren, Olaf; Tempelaars, Els; Hensen, Maartje; Becher, Jules G
2008-01-01
Background Until recently, strength training in children with cerebral palsy (CP) was considered to be inappropriate, because it could lead to increased spasticity or abnormal movement patterns. However, the results of recent studies suggest that progressive strength training can lead to increased strength and improved function, but low methodological quality and incomplete reporting on the training protocols hampers adequate interpretation of the results. This paper describes the design and training protocol of a randomized controlled trial to assess the effects of a school-based progressive functional strength training program for children with CP. Methods/Results Fifty-one children with Gross Motor Function Classification Systems levels I to III, aged of 6 to 13 years, were recruited. Using stratified randomization, each child was assigned to an intervention group (strength training) or a control group (usual care). The strength training was given in groups of 4–5 children, 3 times a week, for a period of 12 weeks. Each training session focussed on four exercises out of a 5-exercise circuit. The training load was gradually increased based on the child's maximum level of strength, as determined by the 8 Repetition Maximum (8 RM). To evaluate the effectiveness of the training, all children were evaluated before, during, directly after, and 6 weeks after the intervention period. Primary outcomes in this study were gross motor function (measured with the Gross Motor Function Measure and functional muscle strength tests) and walking ability (measured with the 10-meter, the 1-minute and the timed stair test). Secondary outcomes were lower limb muscle strength (measured with a 6 RM test, isometric strength tests, and a sprint capacity test), mobility (measured with a mobility questionnaire), and sport activities (measured with the Children's Assessment of Participation and Enjoyment). Spasticity and range of motion were assessed to evaluate any adverse events. Conclusion Randomized clinical trials are considered to present the highest level of evidence. Nevertheless, it is of utmost importance to report on the design, the applied evaluation methods, and all elements of the intervention, to ensure adequate interpretation of the results and to facilitate implementation of the intervention in clinical practice if the results are positive. Trial Registration Trial Register NTR1403 PMID:18842125
Influence of complex configurations on properties of pygmy dipole resonances
NASA Astrophysics Data System (ADS)
Arsenyev, N. N.; Severyukhin, A. P.; Voronov, V. V.; Van Giai, Nguyen
2018-05-01
Starting from the quasiparticle random phase approximation based on the Skyrme interaction SLy5, we study the effects of phonon-phonon coupling (PPC) on the low-energy electric dipole responses in some spherical nuclei. The inclusion of the PPC results in the formation of low-energy 1‑ states. There is an impact of the PPC effect on low-energy E1 strength. The PPC effect on the electric dipole polarizability is discussed. We predict a strong increase of the summed E1 strength below 10 MeV, with increasing neutron number from 48Ca till 58Ca.
Lacroix, André; Kressig, Reto W; Muehlbauer, Thomas; Gschwind, Yves J; Pfenninger, Barbara; Bruegger, Othmar; Granacher, Urs
2016-01-01
Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Sixty-six older adults (men: 25, women: 41; age 73 ± 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group × time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. © 2015 The Author(s) Published by S. Karger AG, Basel.
Exercise training, vascular function, and functional capacity in middle-aged subjects.
Maiorana, A; O'Driscoll, G; Dembo, L; Goodman, C; Taylor, R; Green, D
2001-12-01
The aim of this study was to investigate the effect of 8 wk of exercise training on functional capacity, muscular strength, body composition, and vascular function in sedentary but healthy subjects by using a randomized, crossover protocol. After familiarization sessions, 19 subjects aged 47 +/- 2 yr (mean +/- SE) undertook a randomized, crossover design study of the effect of 8 wk of supervised circuit training consisting of combined aerobic and resistance exercise. Peak oxygen uptake (.VO(2peak)), sum of 7 maximal voluntary contractions and the sum of 8 skinfolds and 5 segment girths were determined at entry, crossover, and 16 wk. Endothelium-dependent and -independent vascular function were determined by forearm strain-gauge plethysmography and intrabrachial infusions of acetylcholine (ACh) and sodium nitroprusside (SNP) in 16 subjects. Training did not alter ACh or SNP responses. .VO(2peak), (28.6 +/- 1.1 to 32.6 +/- 1.3 mL.kg(-1).min(-1), P < 0.001), exercise test duration (17.4 +/- 1.1 to 22.1 +/- 1.2 min, P < 0.001), and muscular strength (465 +/- 27 to 535 +/- 27 kg, P < 0.001) significantly increased after the exercise program, whereas skinfolds decreased (144 +/- 10 vs 134 +/- 9 mm, P < 0.001). These results suggest that moderate intensity circuit training designed to minimize the involvement of the arms improves functional capacity, body composition, and strength in healthy, middle-aged subjects without significantly influencing upper limb vascular function. This finding contrasts with previous studies in subjects with type 2 diabetes and heart failure that employed an identical training program.
NASA Astrophysics Data System (ADS)
Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.
2017-11-01
Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.
Personality Typology in Relation to Muscle Strength
Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi
2011-01-01
Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (E<45), and “low conscientiousness” (C<45) have been associated with multiple risky health behaviors but have not been investigated with regards to muscle strength. Purpose The purpose of this study is to investigate associations between individual and combined typologies consisting of high N, low E, and low C and muscle strength, and whether physical activity and body mass index act as mediators. Method This cross-sectional study includes 1,220 participants from the Baltimore Longitudinal Study of Aging. Results High N was found among 18%, low E among 31%, and low C among 26% of the sample. High levels of N, particularly when combined with either low E or low C, were associated with lower muscle strength compared with having only one or none of these personality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452
Chairside CAD/CAM materials. Part 2: Flexural strength testing.
Wendler, Michael; Belli, Renan; Petschelt, Anselm; Mevec, Daniel; Harrer, Walter; Lube, Tanja; Danzer, Robert; Lohbauer, Ulrich
2017-01-01
Strength is one of the preferred parameters used in dentistry for determining clinical indication of dental restoratives. However, small dimensions of CAD/CAM blocks limit reliable measurements with standardized uniaxial bending tests. The objective of this study was to introduce the ball-on-three-ball (B3B) biaxial strength test for dental for small CAD/CAM block in the context of the size effect on strength predicted by the Weibull theory. Eight representative chairside CAD/CAM materials ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Specimens were prepared with highly polished surfaces in rectangular plate (12×12×1.2mm 3 ) or round disc (Ø=12mm, thickness=1.2mm) geometries. Specimens were tested using the B3B assembly and the biaxial strength was determined using calculations derived from finite element analyses of the respective stress fields. Size effects on strength were determined based on results from 4-point-bending specimens. A good agreement was found between the biaxial strength results for the different geometries (plates vs. discs) using the B3B test. Strength values ranged from 110.9MPa (Vitablocs Mark II) to 1303.21MPa (e.max ZirCAD). The strength dependency on specimen size was demonstrated through the calculated effective volume/surface. The B3B test has shown to be a reliable and simple method for determining the biaxial strength restorative materials supplied as small CAD/CAM blocks. A flexible solution was made available for the B3B test in the rectangular plate geometry. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.
2018-06-01
Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.
Tear Strength and Tensile Strength of Model Filled Elastomers.
1980-04-10
X4PWQ Approved for public release; distribution unlimited 17. DISTRIUUTIO" STATEMENT (of Cho abm ,.. uo lm 8016401 Stock ". If 1eral b Rd~M) 0S...5011 Eisenhower Ave. Rm 8N4-2 Alexandria, VA 22333Naval Sea Sytems Command 1 Washington, D.C. 20362 Att : Mr. R. Beauregard SEA 64E Commander 1Naval
NASA Astrophysics Data System (ADS)
Setiawan, D.; Kraka, E.; Cremer, D.
2014-10-01
The nature of the E⋯E‧ pnicogen bond (E = N, P, As) in dimers such as H2FP⋯PH2F (1) and H3N⋯PHNO2 (2) can be described using vibrational spectroscopy in form of the calculated infrared and depolarized Raman scattering spectra. Utilizing the six calculated intermonomer frequencies, the corresponding local mode E⋯E‧ stretching frequency and force constant are obtained, where the latter provides a unique measure of the E⋯E‧ bond strength. Pnicogen bonding in 1 is relative strong (bond strength order n = 0.151) and covalent whereas pnicogen bonding in 2 is electrostatic (n = 0.047) because of a different bonding mechanism.
Solutions to inverse plume in a crosswind problem using a predictor - corrector method
NASA Astrophysics Data System (ADS)
Vanderveer, Joseph; Jaluria, Yogesh
2013-11-01
Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.
Progressive resistance strength training for improving physical function in older adults
Liu, Chiung-ju; Latham, Nancy K
2014-01-01
Background Muscle weakness in old age is associated with physical function decline. Progressive resistance strength training (PRT) exercises are designed to increase strength. Objectives To assess the effects of PRT on older people and identify adverse events. Search methods We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialized Register (to March 2007), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2007, Issue 2), MEDLINE (1966 to May 01, 2008), EMBASE (1980 to February 06 2007), CINAHL (1982 to July 01 2007) and two other electronic databases. We also searched reference lists of articles, reviewed conference abstracts and contacted authors. Selection criteria Randomised controlled trials reporting physical outcomes of PRT for older people were included. Data collection and analysis Two review authors independently selected trials, assessed trial quality and extracted data. Data were pooled where appropriate. Main results One hundred and twenty one trials with 6700 participants were included. In most trials, PRT was performed two to three times per week and at a high intensity. PRT resulted in a small but significant improvement in physical ability (33 trials, 2172 participants; SMD 0.14, 95% CI 0.05 to 0.22). Functional limitation measures also showed improvements: e.g. there was a modest improvement in gait speed (24 trials, 1179 participants, MD 0.08 m/s, 95% CI 0.04 to 0.12); and a moderate to large effect for getting out of a chair (11 trials, 384 participants, SMD -0.94, 95% CI -1.49 to -0.38). PRT had a large positive effect on muscle strength (73 trials, 3059 participants, SMD 0.84, 95% CI 0.67 to 1.00). Participants with osteoarthritis reported a reduction in pain following PRT (6 trials, 503 participants, SMD -0.30, 95% CI -0.48 to -0.13). There was no evidence from 10 other trials (587 participants) that PRT had an effect on bodily pain. Adverse events were poorly recorded but adverse events related to musculoskeletal complaints, such as joint pain and muscle soreness, were reported in many of the studies that prospectively defined and monitored these events. Serious adverse events were rare, and no serious events were reported to be directly related to the exercise programme. Authors' conclusions This review provides evidence that PRT is an effective intervention for improving physical functioning in older people, including improving strength and the performance of some simple and complex activities. However, some caution is needed with transferring these exercises for use with clinical populations because adverse events are not adequately reported. PMID:19588334
NASA Astrophysics Data System (ADS)
Wen, Minru; Wang, Chong-Yu
2018-01-01
The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.
Strength and Endurance Training Prescription in Healthy and Frail Elderly
Cadore, Eduardo Lusa; Pinto, Ronei Silveira; Bottaro, Martim; Izquierdo, Mikel
2014-01-01
Aging is associated with declines in the neuromuscular and cardiovascular systems, resulting in an impaired capacity to perform daily activities. Frailty is an age-associated biological syndrome characterized by decreases in the biological functional reserve and resistance to stressors due to changes in several physiological systems, which puts older individuals at special risk of disability. To counteract the neuromuscular and cardiovascular declines associated with aging, as well as to prevent and treat the frailty syndrome, the strength and endurance training seems to be an effective strategy to improve muscle hypertrophy, strength and power output, as well as endurance performance. The first purpose of this review was discuss the neuromuscular adaptations to strength training, as well as the cardiovascular adaptations to endurance training in healthy and frail elderly subjects. In addition, the second purpose of this study was investigate the concurrent training adaptations in the elderly. Based on the results found, the combination of strength and endurance training (i.e., concurrent training) performed at moderate volume and moderate to high intensity in elderly populations is the most effective way to improve both neuromuscular and cardiorespiratory functions. Moreover, exercise interventions that include muscle power training should be prescribed to frail elderly in order to improve the overall physical status of this population and prevent disability. PMID:24900941
Depressive symptoms, handgrip strength, and weight status in US older adults.
Smith, Lee; White, Stephanie; Stubbs, Brendon; Hu, Liang; Veronese, Nicola; Vancampfort, Davy; Hamer, Mark; Gardner, Benjamin; Yang, Lin
2018-06-05
Handgrip strength is a valid indicator of broader physical functioning. Handgrip strength and weight status have been independently associated with depressive symptoms in older adults, but no study has yet investigated the relationships between all three in older US adults. This study investigated the relationship between physical function and depressive symptoms by weight status in older US adults. Cross-sectional data were analysed from the National Health and Nutrition Examination Survey waves 2011 to 2012 and 2013 to 2014. Physical function was assessed using a grip strength dynamometer. Depressive symptoms were assessed using the self-reported Patient Health Questionnaire-9. Weight status was assessed using Body Mass Index (BMI) and participants were categorised as normal weight (< 25 kg/m 2 ), overweight (25 to < 30 kg/m 2 ), and obese (≥ 30.0 kg/m 2 ). Associations between depressive symptoms and hand grip strength were estimated by gender-specific multiple linear regressions and BMI stratified multivariable linear regression. A total of 2,812 adults (54% female, mean age 69.2 years, mean BMI 29.2 kg/m 2 ) were included. Women with moderate to severe depressive symptoms had 1.60 kg (95% CI: 0.91 to 2.30) lower hand grip strength compared to women with minimal or no depressive symptoms. No such association was observed in men. Among those with obesity, men (-3.72 kg, 95% CI: -7.00 to -0.43) and women (-1.83 kg, 95% CI: -2.87 to -0.78) with moderate to severe depressive symptoms both had lower handgrip strength. Among older US adults, women and people who are obese and depressed are at the greatest risk of decline in physical function. Copyright © 2018 Elsevier B.V. All rights reserved.
2012-01-01
Background Enzyme replacement therapy (ERT) in adults with Pompe disease, a progressive neuromuscular disorder, is of promising but variable efficacy. We investigated whether it alters the course of disease, and also identified potential prognostic factors. Methods Patients in this open-label single-center study were treated biweekly with 20 mg/kg alglucosidase alfa. Muscle strength, muscle function, and pulmonary function were assessed every 3–6 months and analyzed using repeated-measures ANOVA. Results Sixty-nine patients (median age 52.1 years) were followed for a median of 23 months. Muscle strength increased after start of ERT (manual muscle testing 1.4 percentage points per year (pp/y); hand-held dynamometry 4.0 pp/y; both p < 0.001). Forced vital capacity (FVC) remained stable when measured in upright, but declined in supine position (−1.1 pp/y; p = 0.03). Muscle function did not improve in all patients (quick motor function test 0.7 pp/y; p = 0.14), but increased significantly in wheelchair-independent patients and those with mild and moderate muscle weakness. Relative to the pre-treatment period (49 patients with 14 months pre-ERT and 22 months ERT median follow-up), ERT affected muscle strength positively (manual muscle testing +3.3 pp/y, p < 0.001 and hand-held dynamometry +7.9 pp/y, p < 0.001). Its effect on upright FVC was +1.8 pp/y (p = 0.08) and on supine FVC +0.8 (p = 0.38). Favorable prognostic factors were female gender for muscle strength, and younger age and better clinical status for supine FVC. Conclusions We conclude that ERT positively alters the natural course of Pompe disease in adult patients; muscle strength increased and upright FVC stabilized. Functional outcome is probably best when ERT intervention is timely. PMID:23013746
NASA Astrophysics Data System (ADS)
Aggarwal, Kanti M.; Keenan, Francis P.
2013-04-01
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.
Nilsen, Tormod S; Raastad, Truls; Skovlund, Eva; Courneya, Kerry S; Langberg, Carl W; Lilleby, Wolfgang; Fosså, Sophie D; Thorsen, Lene
2015-11-01
Androgen deprivation therapy (ADT) increases survival rates in prostate cancer (PCa) patients with locally advanced disease, but is associated with side effects that may impair daily function. Strength training may counteract several side effects of ADT, such as changes in body composition and physical functioning, which in turn may affect health-related quality of life (HRQOL). However, additional randomised controlled trials are needed to expand this knowledge. Fifty-eight PCa patients on ADT were randomised to either 16 weeks of high-load strength training (n = 28) or usual care (n = 30). The primary outcome was change in total lean body mass (LBM) assessed by dual x-ray absorptiometry (DXA). Secondary outcomes were changes in regional LBM, fat mass, and areal bone mineral density (aBMD) measured by DXA; physical functioning assessed by 1-repetition maximum (1RM) tests, sit-to-stand test, stair climbing test and Shuttle walk test; and HRQOL as measured by the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. No statistically significant effect of high-load strength training was demonstrated on total LBM (p = 0.16), but significant effects were found on LBM in the lower and upper extremities (0.49 kg, p < 0.01 and 0.15 kg, p < 0.05, respectively). Compared to usual care, high-load strength training showed no effect on fat mass, aBMD or HRQOL, but beneficial effects were observed in all 1RM tests, sit-to-stand test and stair climbing tests. Adherence to the training program was 88% for lower body exercises and 84% for upper body exercises. In summary, high-load strength training improved LBM in extremities and physical functioning, but had no effect on fat mass, aBMD, or HRQOL in PCa patients on ADT.
Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism.
Kauwe, Grant; Tsurudome, Kazuya; Penney, Jay; Mori, Megumi; Gray, Lindsay; Calderon, Mario R; Elazouzzi, Fatima; Chicoine, Nicole; Sonenberg, Nahum; Haghighi, A Pejmun
2016-12-21
While beneficial effects of fasting on organismal function and health are well appreciated, we know little about the molecular details of how fasting influences synaptic function and plasticity. Our genetic and electrophysiological experiments demonstrate that acute fasting blocks retrograde synaptic enhancement that is normally triggered as a result of reduction in postsynaptic receptor function at the Drosophila larval neuromuscular junction (NMJ). This negative regulation critically depends on transcriptional enhancement of eukaryotic initiation factor 4E binding protein (4E-BP) under the control of the transcription factor Forkhead box O (Foxo). Furthermore, our findings indicate that postsynaptic 4E-BP exerts a constitutive negative input, which is counteracted by a positive regulatory input from the Target of Rapamycin (TOR). This combinatorial retrograde signaling plays a key role in regulating synaptic strength. Our results provide a mechanistic insight into how cellular stress and nutritional scarcity could acutely influence synaptic homeostasis and functional stability in neural circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
Justice, Jamie N; Pierpoint, Lauren A; Mani, Diba; Schwartz, Robert S; Enoka, Roger M
2014-06-01
Advancing age is accompanied by changes in metabolic characteristics, such as reduced insulin sensitivity and low levels of vitamin D, which may exacerbate age-related declines in physical function. The aim of the present study was to determine the associations between insulin-glucose dynamics, vitamin D metabolites, and performance on a battery of motor tasks in healthy, non-diabetic older adults. Sixty-nine community-dwelling men and women (65-90 years) were recruited. Insulin-glucose dynamics were determined by an intravenous glucose tolerance test, and vitamin D metabolites were measured. Motor function was characterized by the time to walk 500 m, chair-rise time, lower body strength, dorsiflexor steadiness and endurance time, and muscle coactivation. Significant unadjusted correlations were found between insulin-glucose dynamics and 1,25-dihydroxyvitamin D [1,25(OH)2D] with walk time, strength, steadiness, endurance time, and muscle activation (p < 0.05). A significant amount of the variance in walking endurance was explained by the sex of the individual, 1,25(OH)2D, and fasting blood insulin (R (2) = 0.36, p < 0.001). Strength could be partially explained by age, body fatness, and fasting glucose (R (2) = 0.55, p < 0.001). Poor motor function in non-diabetic older men and women was associated with indices of insulin-glucose dynamics and the bio-active vitamin D metabolite 1,25(OH)2D. Walking endurance and strength were explained by 1,25(OH)2D and fasting blood glucose and insulin, even after adjusting for age, sex, and body fat. Motor function in a relatively small sample of non-diabetic older men and women was associated with metabolic factors that increase in prevalence with aging.
Fong, Shirley S M; Ng, Shamay S M; Liu, Karen P Y; Pang, Marco Y C; Lee, H W; Chung, Joanne W Y; Lam, Priscillia L; Guo, X
2014-01-01
Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = -0.575, P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly.
Fong, Shirley S. M.; Ng, Shamay S. M.; Liu, Karen P. Y.; Pang, Marco Y. C.; Lee, H. W.; Chung, Joanne W. Y.; Lam, Priscillia L.; Guo, X.
2014-01-01
Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = −0.575, P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly. PMID:25530782
Loyd, Brian J; Jennings, Jason M; Judd, Dana L; Kim, Raymond H; Wolfe, Pamela; Dennis, Douglas A; Stevens-Lapsley, Jennifer E
2017-09-01
Total knee arthroplasty (TKA) is associated with declines in hip abductor (HA) muscle strength; however, a longitudinal analysis demonstrating the influence of TKA on trajectories of HA strength change has not been conducted. The purpose of this study was to quantify changes in HA strength from pre-TKA through 3 months post-TKA and to characterize the relationship between HA strength changes and physical performance. This study is a post hoc analysis of a randomized controlled trial. Data from 162 participants (89 women, mean age = 63 y) were used for analysis. Data were collected by masked assessors preoperatively and at 1 and 3 months following surgery. Outcomes included: Timed "Up and Go" test (TUG), Stair Climbing Test (SCT), Six-Minute Walk Test (6MWT), and walking speed. Paired t tests were used for between- and within-limb comparisons of HA strength. Multivariable regression was used to determine contributions of independent variables, HA and knee extensor strength, to the dependent variables of TUG, SCT, 6MWT, and walking speed at each time point. Hip abductor strength was significantly lower in the surgical limb pre-TKA (mean = 0.015; 95% CI = 0.010-0.020), 1 month post-TKA (0.028; 0.023-0.034), and 3 months post-TKA (0.02; 0.014-0.025) compared with the nonsurgical limb. Hip abductor strength declined from pre-TKA to 1 month post-TKA (18%), but not at the 3-month time point (0%). Hip abductor strength independently contributed to performance-based outcomes pre-TKA; however, this contribution was not observed post-TKA. The post hoc analysis prevents examining all outcomes likely to be influenced by HA strength. Surgical limb HA strength is impaired prior to TKA, and worsens following surgery. Furthermore, HA strength contributes to performance-based outcomes, supporting the hypothesis that HA strength influences functional recovery. © 2017 American Physical Therapy Association
The relationships of character strengths with coping, work-related stress, and job satisfaction.
Harzer, Claudia; Ruch, Willibald
2015-01-01
Personality traits have often been highlighted to relate to how people cope with stressful events. The present paper focuses on character strengths as positive personality traits and examines two basic assumptions that were derived from a core characteristic of character strengths (i.e., to determine how individuals deal with adversities): (1) character strengths correlate with coping and (2) buffer the effects of work-related stress on job satisfaction. Two different samples (i.e., a mixed sample representing various occupations [N = 214] and a nurses sample [N = 175]) filled in measures for character strengths, coping, work-related stress, and job satisfaction. As expected, intellectual, emotional, and interpersonal strengths were related to coping. Interpersonal strengths played a greater role for coping among nurses, as interactions with others are an essential part of their workday. Furthermore, intellectual strengths partially mediated the negative effect of work-related stress on job satisfaction. These findings open a new field for research on the role of personality in coping with work-related stress. Character strengths are trainable personal characteristics, and therefore valuable resources to improve coping with work-related stress and to decrease the negative effects of stress. Further research is needed to investigate this assumed causality.
The relationships of character strengths with coping, work-related stress, and job satisfaction
Harzer, Claudia; Ruch, Willibald
2015-01-01
Personality traits have often been highlighted to relate to how people cope with stressful events. The present paper focuses on character strengths as positive personality traits and examines two basic assumptions that were derived from a core characteristic of character strengths (i.e., to determine how individuals deal with adversities): (1) character strengths correlate with coping and (2) buffer the effects of work-related stress on job satisfaction. Two different samples (i.e., a mixed sample representing various occupations [N = 214] and a nurses sample [N = 175]) filled in measures for character strengths, coping, work-related stress, and job satisfaction. As expected, intellectual, emotional, and interpersonal strengths were related to coping. Interpersonal strengths played a greater role for coping among nurses, as interactions with others are an essential part of their workday. Furthermore, intellectual strengths partially mediated the negative effect of work-related stress on job satisfaction. These findings open a new field for research on the role of personality in coping with work-related stress. Character strengths are trainable personal characteristics, and therefore valuable resources to improve coping with work-related stress and to decrease the negative effects of stress. Further research is needed to investigate this assumed causality. PMID:25767452
NASA Astrophysics Data System (ADS)
Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia
2015-02-01
The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation-deprotonation behavior was determined by continuous acid-base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m2/g and large numbers of surface hydroxyl functional groups (i.e. tbnd Si-OH, tbnd Fe-OH, and tbnd Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K1, log K2) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation-deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.
Sugimoto, Dai; Bowen, Samantha L; Meehan, William P; Stracciolini, Andrea
2016-08-01
To synthesize existing research evidence and examine effects of neuromuscular training on general strength, maximal strength, and functional mobility tasks in children and young adults with Down syndrome. PubMed and EBSCO were used as a data source. To attain the aim of this study, literature search was performed under following inclusion criteria: (1) included participants with Down syndrome, (2) implemented a neuromuscular training intervention and measured outcome variables of general strength, maximal strength, and functional mobility tasks, (3) had a group of participants whose mean ages were under 30 years old, (4) employed a prospective controlled design, and (5) used mean and standard deviations to express the outcome variables. Effect size was calculated from each study based on pre- and post-testing value differences in general strength, maximal strength, and functional mobility tasks between control and intervention groups. The effect size was further classified in to one of the following categories: small, moderate, and large effects. Seven studies met inclusion criteria. Analysis indicated large to moderate effects on general strength, moderate to small effects on maximal strength, and small effect on functional mobility tasks by neuromuscular training. Although there were limited studies, the results showed that neuromuscular training could be used as an effective intervention in children and young adults with Down syndrome. Synthesis of seven reviewed studies indicated that neuromuscular training could be beneficial to optimize general and maximal muscular strength development in children and young adults with Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Zheng-Lin; Mei, Dong-Cheng
2010-05-01
We investigate the effects of the noise parameters and immunization strength β on the dynamical properties of a tumor growth system with both immunization and colored cross-correlated noises. The analytical expressions for the associated relaxation time TC and the normalized correlation function C(s) are derived by means of the projection operator method. The results indicate that: (i) TC as a function of the multiplicative noise intensity α shows resonance-like behavior, i.e. the curves of TC versus α exhibit a single-peak structure and its peak position changes with increasing correlation strength between noises λ, the autocorrelation time of multiplicative noise τ1, the autocorrelation time of additive noise τ2 and the cross-correlation time τ3. This behavior can be understood in terms of the noise-enhanced stability effect and the influence of the memory effects on it. (ii) The increasing λ, τ1, τ2 and the additive noise intensity D slow down the fluctuation decay of the tumor population, whereas the increasing τ3 and β speed it up. (iii) C(s) increases as λ, τ1, τ2 and β increase, while it decreases with τ3 increasing. Our study shows that the effects of some noise parameters on tumor growth can be modified due to the presence of the immunization effect.
Qu, Jing; Ouyang, Liangqi; Kuo, Chin-chen; Martin, David C.
2015-01-01
Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this study the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7 ± 0.3 MPa was determined. The addition of 5 mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4 ± 0.6 MPa. PMID:26607768
NASA Astrophysics Data System (ADS)
Paul, Ganesh C.; Saha, Arijit
2017-01-01
We theoretically investigate the phenomena of adiabatic quantum charge pumping through a normal-insulator-superconductor-insulator-normal (NISIN) setup of silicene within the scattering matrix formalism. Assuming a thin barrier limit, we consider the strength of the two barriers (χ1 and χ2) as the two pumping parameters in the adiabatic regime. Within this geometry, we obtain crossed Andreev reflection (CAR) with probability unity in the χ1-χ2 plane without concomitant transmission or elastic co-tunneling. Tunability of the band gap at the Dirac point by applying an external electric field perpendicular to the silicene sheet and variation of the chemical potential at the normal silicene region, open up the possibility of achieving either a perfect CAR or transmission process through our setup. This resonant behavior is periodic with the barrier strengths. We analyze the behavior of the pumped charge through the NISIN structure as a function of the pumping strength and angles of the incident electrons. We show that large (Q ˜2 e ) pumped charge can be obtained through our geometry when the pumping contour encloses either the CAR or transmission resonance in the pumping parameter space. We discuss possible experimental feasibility of our theoretical predictions.
Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel
Sekhri, Sahil; Garg, Sandeep
2016-01-01
Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165
Pincivero, D M; Lephart, S M; Karunakara, R G
1997-09-01
The ability to maximally generate active muscle tension during resistance training has been established to be a primary determinant for strength development. The influence of intrasession rest intervals may have a profound effect on strength gains subsequent to short-term high intensity training. The purpose of this study was to examine the effects of rest interval on strength and functional performance after four weeks of isokinetic training. Fifteen healthy college aged individuals were randomly assigned to either a short rest interval group (group 1, n = 8) or a long rest interval group (group 2, n = 7). Subjects were evaluated for quadriceps and hamstring isokinetic strength at 60 (five repetitions) and 180 (30 repetitions) degrees/second and functional performance with the single leg hop for distance test. One leg of each subject was randomly assigned to a four week, three days/week isokinetic strength training programme for concentric knee extension and flexion performed at 90 degrees/second. Subjects in group 1 received a 40 second rest interval in between exercise sets, whereas subjects in group 2 received a 160 second rest period. A two factor analysis of variance for the pre-test--post-test gain scores (%) showed significantly greater improvements for isokinetic hamstring total work and average power at 180 degrees/second for the trained limb of subjects in group 2 than their contralateral non-trained limb and the subjects in group 1. Significantly greater improvements for the single leg hop for distance were also found for the trained limbs of subjects in both groups as compared with the non-trained limbs. The findings indicate that a relatively longer intrasession rest period resulted in a greater improvement in hamstring muscle strength during short term high intensity training.
The strength and rheology of methane clathrate hydrate
Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.
2003-01-01
Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.
Mirror therapy in children with hemiplegia: a pilot study.
Gygax, Marine Jequier; Schneider, Patrick; Newman, Christopher John
2011-05-01
Mirror therapy, which provides the visual illusion of a functional paretic limb by using the mirror reflection of the non-paretic arm, is used in the rehabilitation of hemiparesis after stroke in adults. We tested the effectiveness and feasibility of mirror therapy in children with hemiplegia by performing a pilot crossover study in ten participants (aged 6-14 y; five males, five females; Manual Ability Classification System levels: one at level I, two at level II, four at level III, three at level IV) randomly assigned to 15 minutes of daily bimanual training with and without a mirror for 3 weeks. Assessments of maximal grasp and pinch strengths, and upper limb function measured by the Shriner's Hospital Upper Extremity Evaluation were performed at weeks 0 (baseline), 3, 6 (intervention), and 9 (wash-out). Testing of grasp strength behind the mirror improved performance by 15% (p=0.004). Training with the mirror significantly improved grasp strength (with mirror +20.4%, p=0.033; without +5.9%, p>0.1) and upper limb dynamic position (with mirror +4.6%, p=0.044; without +1.2%, p>0.1), while training without a mirror significantly improved pinch strength (with mirror +6.9%, p>0.1; without +21.9%, p=0.026). This preliminary study demonstrates the feasibility of mirror therapy in children with hemiplegia and that it may improve strength and dynamic function of the paretic arm. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Farrokh, André; Schaefer, Fritz; Degenhardt, Friedrich; Maass, Nicolai
2018-05-01
This study was conducted to provide evidence that elastograms of two different devices and different manufacturers using the same technical approach provide the same diagnoses. A total of 110 breast lesions were prospectively analysed by two experts in ultrasound, using the strain elastography function from two different manufacturers (Hitachi HI-RTE, Hitachi Medical Systems, Wiesbaden, Germany; and Siemens eSie Touch, Siemens Medical Systems, Erlangen, Germany). Results were compared with the histopathologic results. Applying the Bowker test of symmetry, no statistically significant difference between the two elastography functions of these two devices was found (p = 0.120). The Cohen's kappa of k = 0.591 showed moderate strength of agreement between the two elastograms. The two examiners yielded moderate strength of agreement analysing the elastograms (Hitachi HI-RTE, k = 0.478; Siemens eSie Touch, k = 0.441). In conclusion, evidence is provided that elastograms of the same lesion generated by two different ultrasound devices equipped with a strain elastography function do not significantly differ. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Kirschner, J; Schorling, D; Hauschke, D; Rensing-Zimmermann, C; Wein, U; Grieben, U; Schottmann, G; Schara, U; Konrad, K; Müller-Felber, W; Thiele, S; Wilichowski, E; Hobbiebrunken, E; Stettner, G M; Korinthenberg, R
2014-02-01
In preclinical studies growth hormone and its primary mediator IGF-1 have shown potential to increase muscle mass and strength. A single patient with spinal muscular atrophy reported benefit after compassionate use of growth hormone. Therefore we evaluated the efficacy and safety of growth hormone treatment for spinal muscular atrophy in a multicenter, randomised, double-blind, placebo-controlled, crossover pilot trial. Patients (n = 19) with type II/III spinal muscular atrophy were randomised to receive either somatropin (0.03 mg/kg/day) or placebo subcutaneously for 3 months, followed by a 2-month wash-out phase before 3 months of treatment with the contrary remedy. Changes in upper limb muscle strength (megascore for elbow flexion and hand-grip in Newton) were assessed by hand-held myometry as the primary measure of outcome. Secondary outcome measures included lower limb muscle strength, motor function using the Hammersmith Functional Motor Scale and other functional tests for motor function and pulmonary function. Somatropin treatment did not significantly affect upper limb muscle strength (point estimate mean: 0.08 N, 95% confidence interval (CI:-3.79;3.95, p = 0.965), lower limb muscle strength (point estimate mean: 2.23 N, CI:-2.19;6.63, p = 0.302) or muscle and pulmonary function. Side effects occurring during somatropin treatment corresponded with well-known side effects of growth hormone substitution in patients with growth hormone deficiency. In this pilot study, growth hormone treatment did not improve muscle strength or function in patients with spinal muscular atrophy type II/III. Copyright © 2013 Elsevier B.V. All rights reserved.
Multiple Chirality in Nuclear Rotation: A Microscopic View
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, P. W.
Covariant density functional theory and three-dimensional tilted axis cranking are used to investigate multiple chirality in nuclear rotation for the first time in a fully self-consistent and microscopic way. Two distinct sets of chiral solutions with negative and positive parities, respectively, are found in the nucleus 106Rh. The negative-parity solutions reproduce well the corresponding experimental spectrum as well as the B(M1)/B(E2) ratios of the transition strengths. Finally, this indicates that a predicted positive-parity chiral band should also exist. Therefore, it provides a further strong hint that multiple chirality is realized in nuclei.
Multiple Chirality in Nuclear Rotation: A Microscopic View
Zhao, P. W.
2017-10-10
Covariant density functional theory and three-dimensional tilted axis cranking are used to investigate multiple chirality in nuclear rotation for the first time in a fully self-consistent and microscopic way. Two distinct sets of chiral solutions with negative and positive parities, respectively, are found in the nucleus 106Rh. The negative-parity solutions reproduce well the corresponding experimental spectrum as well as the B(M1)/B(E2) ratios of the transition strengths. Finally, this indicates that a predicted positive-parity chiral band should also exist. Therefore, it provides a further strong hint that multiple chirality is realized in nuclei.
2012-01-01
Background Falls are the leading cause of unintentional injury and injury-related death among older people. In addition to physical activity, vitamin D also may affect balance and neuromuscular function. Low serum 25-hydroksivitamin D level increases the risk of bone loss, falls and fractures. Thus, an appropriate exercise program and sufficient vitamin D intake may significantly improve not only functional balance, but also balance confidence. Balance represents a complex motor skill determined by reaction time, muscle strength, and speed and coordination of movement. Methods/Design A 2-year randomized double-blind placebo-controlled vitamin D and open exercise trial of 409 home-dwelling women 70 to 80 years of age comprising four study arms: 1) exercise + vitamin D (800 IU/d), 2) exercise + placebo, 3) no exercise + vitamin D (800 IU/d), 4) no exercise + placebo. In addition to monthly fall diaries, general health status, life style, bone health, physical functioning, and vitamin D metabolism will be assessed. The primary outcomes are the rate of falls and fall-related injuries. Secondary outcomes include changes in neuromuscular functioning (e.g. body balance, muscle strength), ADL- and mobility functions, bone density and structure, cardiovascular risk factors, quality of life and fear of falling. Discussion The successful completion of this trial will provide evidence on the effectiveness of exercise and vitamin D for falls reduction. Trial Registration ClinicalTrial.gov -register (NCT00986466). PMID:22448872
Revealing the Coulomb interaction strength in a cuprate superconductor
Yang, S. -L.; Sobota, J. A.; He, Y.; ...
2017-12-08
Here, we study optimally doped Bi 2 Sr 2 Ca 0.92 Y 0.08 Cu 2 O 8 + δ (Bi2212) using angle-resolved two-photon photoemission spectroscopy. Three spectral features are resolved near 1.5, 2.7, and 3.6 eV above the Fermi level. By tuning the photon energy, we determine that the 2.7-eV feature arises predominantly from unoccupied states. The 1.5- and 3.6-eV features reflect unoccupied states whose spectral intensities are strongly modulated by the corresponding occupied states. These unoccupied states are thus consistent with the prediction from a cluster perturbation theory based on the single-band Hubbard model. Through this comparison, amore » Coulomb interaction strength U of 2.7 eV is extracted. Our study complements equilibrium photoemission spectroscopy and provides a direct spectroscopic measurement of the unoccupied states in cuprates. The determined Coulomb U indicates that the charge-transfer gap of optimally doped Bi2212 is 1.1 eV.« less
Shin, Yun-A; Suk, Min-Hwa; Jang, Hee-Seung; Choi, Hye-Jung
2017-01-01
The purpose of this study was to investigate the short-term of Theracurmin dose and exercise type on pain, walking ability, and muscle function in patients with knee osteoarthritis. Twenty-five patients with knee osteoarthritis randomly selected to Theracurmin intake (T) group and Theracurmin in combined with exercise (T+E) group. T group (n= 13) was taken orally a capsule of 700 mg, 3 times per day, (total 2,100 mg, 35 mg/kg-body weight). T+E group (n= 12) performed aerobic training of 30-min walking and weight training for increasing leg muscular strength. After treatment, the number of steps, muscle mass, range of motion of knee, and the muscle strength in flexion and extension significantly increased. The percent body fat, visual analogue scale, The Western Ontario and McMaster score, centers of pressure with closed eye, 10-m walking ability, stair ascending speed were significantly decreased after treatment. Although no difference observed between the T and T+E groups, the 4-week intake of Theracurmin with and without exercise appeared to be effective in reducing the pain and enhancing muscular and balancing function. Therefore, Theracurmin intake for early symptoms and additional exercise as symptoms alleviate might be an effective way of delaying and managing osteoarthritis, and additional studies investigating the effects of Theracurmin and exercise on osteoarthritis could be beneficial. PMID:29326901
Effects of Trail Information on Physical Activity Enjoyment
Erik Rosegard
2004-01-01
Moderate physical activity (PA) improves physical fitness measures (i.e., aerobic capacity, agility, flexibility, body composition, and muscular endurance and strength). In addition to numerous physiological benefits, PA has been shown to increase cognitive and emotional functioning. These benefits lead to improved immune response and have been associated with...
Nemati, Mehdi; Zheng, Yuqing
2018-01-01
Objective Systematic review of research examining consumer preference for the main electronic cigarette (e-cigarette) attributes namely flavor, nicotine strength, and type. Method A systematic search of peer-reviewed articles resulted in a pool of 12,933 articles. We included only articles that meet all the selection criteria: (1) peer-reviewed, (2) written in English, and (3) addressed consumer preference for one or more of the e-cigarette attributes including flavor, strength, and type. Results 66 articles met the inclusion criteria for this review. Consumers preferred flavored e-cigarettes, and such preference varied with age groups and smoking status. We also found that several flavors were associated with decreased harm perception while tobacco flavor was associated with increased harm perception. In addition, some flavor chemicals and sweeteners used in e-cigarettes could be of toxicological concern. Finally, consumer preference for nicotine strength and types depended on smoking status, e-cigarette use history, and gender. Conclusion Adolescents could consider flavor the most important factor trying e-cigarettes and were more likely to initiate vaping through flavored e-cigarettes. Young adults overall preferred sweet, menthol, and cherry flavors, while non-smokers in particular preferred coffee and menthol flavors. Adults in general also preferred sweet flavors (though smokers like tobacco flavor the most) and disliked flavors that elicit bitterness or harshness. In terms of whether flavored e-cigarettes assisted quitting smoking, we found inconclusive evidence. E-cigarette users likely initiated use with a cigarette like product and transitioned to an advanced system with more features. Non-smokers and inexperienced e-cigarettes users tended to prefer no nicotine or low nicotine e-cigarettes while smokers and experienced e-cigarettes users preferred medium and high nicotine e-cigarettes. Weak evidence exists regarding a positive interaction between menthol flavor and nicotine strength. PMID:29543907
Decoherence, matter effect, and neutrino hierarchy signature in long baseline experiments
NASA Astrophysics Data System (ADS)
Coelho, João A. B.; Mann, W. Anthony
2017-11-01
Environmental decoherence of oscillating neutrinos of strength Γ =(2.3 ±1.1 )×10-23 GeV can explain how maximal θ23 mixing observed at 295 km by T2K appears to be nonmaximal at longer baselines. As shown recently by R. Oliveira, the Mikheyev-Smirnov-Wolfenstein matter effect for neutrinos is altered by decoherence: in normal (inverted) mass hierarchy, a resonant enhancement of νμ(ν¯ μ)→νe(ν¯ e) occurs for 6
Respiratory muscle adaptations: a comparison between bodybuilders and endurance athletes.
Hackett, D A; Johnson, N; Chow, C
2013-04-01
The purpose of this study was to compare the respiratory muscle and lung function measures of bodybuilders (BB) and endurance athletes (EA). Forty-two male subjects (22 BB and 20 EA) aged 20-35 years underwent respiratory muscle strength measurements (MIP and MEP), lung function testing (FEV1, FVC, FEV1/FVC%, IC, ERV, FRC, RV, and TLC), hydrostatic weighing and VO2max testing. One-repetition maximum (1RM) for bench press, squat and deadlift was performed by BB. BB had significantly greater MIP and MEP compared to EA by 43% and 53% respectively (P<0.01). Moderate correlation was found for MEP and 1RM bench press (P<0.01), and weak correlations found for the squat and deadlift (P<0.01). Fat-free mass was significantly greater for BB compared with EA (P<0.01), while VO2max was significantly greater for EA compared with BB (P<0.01). No differences in lung function indices were observed between groups. When compared to EA, BB exhibited significantly greater respiratory muscle strength. The maximal load lifted for bench press predicted expiratory muscle strength gain. Lung function measures did not differ between the groups.
Soldier Performance as a Function of Stress and Load: A Review
1990-01-01
1985) increasing load obstacle course decreased weight performance Ikai & Steinhaus shouting forearm flex strength increased (1961) gun shot increased...performance. Capacity represents relatively fil1 ed physiological limits of behavior, while performance is a function of psychological factors (Ikai & Steinhaus ...3), 513-524. Ikai, M., & Steinhaus , A. H. (1961). Some factors modifying the expression of human strength. Journal of ADnlied Physiology, 15, 157-163
Lee, Suhyun; Kim, Yumi; Lee, Byoung-Hee
2016-12-01
In the present study, we aimed to investigate the effect of virtual reality-based bilateral upper extremity training (VRBT) on paretic upper limb function and muscle strength in patients with stroke. Eighteen stroke survivors were assigned to either the VRBT group (n = 10) or the bilateral upper limb training group (BT, n = 8). Patients in the VRBT group performed bilateral upper extremity exercises in a virtual reality environment, whereas those in the BT group performed conventional bilateral upper extremity exercises. All training was conducted for 30 minutes day -1 , 3 days a week, for a period of 6 weeks. Patients were assessed for upper extremity function and hand strength. Compared with the BT group, the VRBT group exhibited significant improvements in upper extremity function and muscle strength (p < 0.05) after the 6-week training programme. The Box and Block test results revealed that upper extremity function and elbow flexion in hand strength were significantly improved in terms of group, time and interaction effect of group by time. Furthermore, the VRBT group demonstrated significant improvements in upper extremity function, as measured by the Jebsen Hand Function Test and Grooved Pegboard test, and in the hand strength test, as measured by elbow extension, grip, palmar pinch, lateral pinch and tip pinch, in both time and the interaction effect of group by time. These results suggest that VRBT is a feasible and beneficial means of improving upper extremity function and muscle strength in individuals following stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Moura, Bruno Monteiro de; Sakugawa, Raphael Luiz; Orssatto, Lucas Bet da Rosa; de Lima, Luis Antonio Pereira; Pinto, Ronei Silveira; Walker, Simon; Diefenthaeler, Fernando
2017-12-06
While it is accepted that resistance training can improve functional capacity in older individuals, the neuromuscular source of this improvement has yet to be identified. This study investigated the link between improved neuromuscular performance and functional capacity after a 12-week resistance training period in untrained healthy older individuals. Fifteen older men and women (60-71 years) adhered to a 4-week control period, followed by 12 weeks of non-linear resistance training for the lower limbs. Maximum dynamic leg press strength (1-RM), maximum isometric knee extension torque and rate of torque development (RTD) were evaluated at - 4, 0, 4, 8, and 12 weeks, and muscle activity was assessed at 0, 4, 8, and 12 weeks. Functional capacity tests (chair rise, stair ascent and descent, and timed up and go) were performed at - 4, 0, and 12 weeks. No changes occurred during the control period, but the group increased their 1-RM strength (from 142 ± 53 to 198 ± 43 kg, p = 0.001), which was accompanied by an increase in vastus lateralis activation (p = 0.008) during the intervention. Increase was observed at all RTD time intervals at week 8 (p < 0.05). Significant improvements in all the functional capacity tests were observed at week 12 (p < 0.05). Despite the expected increase in strength, RTD, muscle activity, and functional capacity, there was no significant relationship between the changes in neuromuscular performance and functional capacity. While resistance training elicits various positive improvements in healthy older individuals, actual strength gain did not influence the gain in functional capacity. The present study highlights the exact cause that improved the functional capabilities during resistance training are currently unknown.
Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.
Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong
2014-07-01
The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This exploratory study demonstrates a disruption of intrinsic functional connectivity without long-term exposure to antipsychotic medications in chronic schizophrenia. Furthermore, this disruption was connection-distance dependent, thus raising the possibility for differential neural pathways in neurocognitive impairment and psychiatric symptoms in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
Alfieri, Fábio Marcon; Riberto, Marcelo; Gatz, Lucila Silveira; Ribeiro, Carla Paschoal Corsi; Lopes, José Augusto Fernandes; Santarém, José Maria; Battistella, Linamara Rizzo
2010-01-01
It is well documented that aging impairs balance and functional mobility. The objective of this study was to compare the efficacy of multisensory versus strength exercises on these parameters. We performed a simple blinded randomized controlled trial with 46 community-dwelling elderly allocated to strength ([GST], N = 23, 70.2-years-old ± 4.8 years) or multisensory ([GMS], N = 23, 68.8-years-old ± 5.9 years) exercises twice a week for 12 weeks. Subjects were evaluated by blinded raters using the timed ‘up and go’ test (TUG), the Guralnik test battery, and a force platform. By the end of the treatment, the GMS group showed a significant improvement in TUG (9.1 ± 1.9 seconds (s) to 8.0 ± 1.0 s, P = 0.002); Guralnik test battery (10.6 ± 1.2 to 11.3 ± 0.8 P = 0.009); lateromedial (6.1 ± 11.7 cm to 3.1 ± 1.6 cm, P = 0.02) and anteroposterior displacement (4.7 ± 4.2 cm to 3.4 ± 1.0 cm, P = 0.03), which were not observed in the GST group. These results reproduce previous findings in the literature and mean that the stimulus to sensibility results in better achievements for the control of balance and dynamic activities. Multisensory exercises were shown to be more efficacious than strength exercises to improve functional mobility. PMID:20711437
[Chlorine coatings on skin surfaces. II. Parameters influencing the coating strength].
Gottardi, W; Karl, A
1991-05-01
Although active chlorine compounds have been used for more than 140 years (Semmelweis, 1848) as a skin disinfectant the phenomenon of the "chlorine covers" not earlier than 1988 has been described for the first time (Hyg. + Med. 13 (1988) 157). It deals with a chemical alteration of the uppermost skin layer which comes apparent in an oxydizing action against aqueous iodide. Its origin is chlorine covalently bound in the form of N-Cl functions to the protein matrix of the horny skin. Since the chlorine covers exhibit a persistant disinfecting activity which might be important for practice, the factors influencing their strength have been established. The most important are: the kind of the chlorine system, the concentration (oxydation capacity), pH, temperature and the volume of the used solution, the time of action, the application technique and the state of the skin. Variations of the latter can be observed at different skin areas of one and the same person as well as at the same areas of different persons, and result in differences of the cover strength up to 100%. The stability on dry skin is very good, showing a decomposition rate of approximately 1.2% per hour. However on skin surfaces moistened by sweat (e.g. hands covered by surgeons gloves) the chlorine cover is disingrated much more faster (decomposition rate: 40-50% per hour). Washing with soap as well as the action of alcohols cause virtually no decrease in the cover strength, while wetting by solutions of reducing agents (e.g. thiosulfate, cysteine, iodide) provokes a fast decomposition suitable for removing the chlorine covers.(ABSTRACT TRUNCATED AT 250 WORDS)
Exploring the Relationship between Physiological Measures of Cochlear and Brainstem Function
Dhar, S.; Abel, R.; Hornickel, J.; Nicol, T.; Skoe, E.; Zhao, W.; Kraus, N.
2009-01-01
Objective Otoacoustic emissions and the speech-evoked auditory brainstem response are objective indices of peripheral auditory physiology and are used clinically for assessing hearing function. While each measure has been extensively explored, their interdependence and the relationships between them remain relatively unexplored. Methods Distortion product otoacoustic emissions (DPOAE) and speech-evoked auditory brainstem responses (sABR) were recorded from 28 normal-hearing adults. Through correlational analyses, DPOAE characteristics were compared to measures of sABR timing and frequency encoding. Data were organized into two DPOAE (Strength and Structure) and five brainstem (Onset, Spectrotemporal, Harmonics, Envelope Boundary, Pitch) composite measures. Results DPOAE Strength shows significant relationships with sABR Spectrotemporal and Harmonics measures. DPOAE Structure shows significant relationships with sABR Envelope Boundary. Neither DPOAE Strength nor Structure is related to sABR Pitch. Conclusions The results of the present study show that certain aspects of the speech-evoked auditory brainstem responses are related to, or covary with, cochlear function as measured by distortion product otoacoustic emissions. Significance These results form a foundation for future work in clinical populations. Analyzing cochlear and brainstem function in parallel in different clinical populations will provide a more sensitive clinical battery for identifying the locus of different disorders (e.g., language based learning impairments, hearing impairment). PMID:19346159
Precision measurement of the electromagnetic dipole strengths in Be11
NASA Astrophysics Data System (ADS)
Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finlay, A.; Garnsworthy, A. B.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Quaglioni, S.; Svensson, C. E.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.
2014-05-01
The electromagnetic dipole strength in Be11 between the bound states has been measured using low-energy projectile Coulomb excitation at bombarding energies of 1.73 and 2.09 MeV/nucleon on a Pt196 target. An electric dipole transition probability B(E1;1/2-→1/2+)=0.102(2) e2fm was determined using the semi-classical code Gosia, and a value of 0.098(4) e2fm was determined using the Extended Continuum Discretized Coupled Channels method with the quantum mechanical code FRESCO. These extracted B(E1) values are consistent with the average value determined by a model-dependent analysis of intermediate energy Coulomb excitation measurements and are approximately 14% lower than that determined by a lifetime measurement. The much-improved precisions of 2% and 4% in the measured B(E1) values between the bound states deduced using Gosia and the Extended Continuum Discretized Coupled Channels method, respectively, compared to the previous accuracy of ˜10% will help in our understanding of and better improve the realistic inter-nucleon interactions.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-10-18
To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-01-01
AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249
Elasticity and Strength of Biomacromolecular Crystals: Lysozyme
NASA Technical Reports Server (NTRS)
Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.
2003-01-01
The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.
Mohanty, Jyotirmayee; Nau, Werner M
2004-01-01
The photophysical properties of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) were determined in 15 solvents, two supramolecular hosts (cucurbit[7]uril and beta-cyclodextrin) as well as in the gas phase. The oscillator strength and radiative decay rate of DBO as a function of refractive index i.e. polarizability have been analyzed. The oscillator strength increases by a factor of 10 upon going from the gas phase to the most polarizable carbon disulfide, while the corresponding radiative decay rates increase by a factor of 40. There is a good empirical correlation between the oscillator strength of the weakly allowed n,pi* transition of DBO and the reciprocal bulk polarizability, which can be employed to assess the polarizability of unknown microheterogeneous environments. A satisfactory correlation between the radiative decay rate and the square of the refractive index is also found, as previously documented for chromophores with allowed transitions. However, the correlation improves significantly when the oscillator strength is included in the correlation, which demonstrates the importance of this factor in the Strickler-Berg equation for chromophores with forbidden or weakly allowed transitions, for which the oscillator strength may be strongly solvent dependent. The radiative decay rate of DBO in two supramolecular assemblies has been determined, confirming the very low polarizability inside the cucurbituril cavity, in between perfluorohexane and the gas phase. The fluorescence quantum yield of DBO in the gas phase has been remeasured (5.1 +/- 0.5%) and was found to fall one full order of magnitude below a previously reported value.
Vertical detachment energies of anionic thymidine: Microhydration effects.
Kim, Sunghwan; Schaefer, Henry F
2010-10-14
Density functional theory has been employed to investigate microhydration effects on the vertical detachment energy (VDE) of the thymidine anion by considering the various structures of its monohydrates. Structures were located using a random searching procedure. Among 14 distinct structures of the anionic thymidine monohydrate, the low-energy structures, in general, have the water molecule bound to the thymine base unit. The negative charge developed on the thymine moiety increases the strength of the intermolecular hydrogen bonding between the water and base units. The computed VDE values of the thymidine monohydrate anions are predicted to range from 0.67 to 1.60 eV and the lowest-energy structure has a VDE of 1.32 eV. The VDEs of the monohydrates of the thymidine anion, where the N(1)[Single Bond]H hydrogen of thymine has been replaced by a 2(')-deoxyribose ring, are greater by ∼0.30 eV, compared to those of the monohydrates of the thymine anion. The results of the present study are in excellent agreement with the accompanying experimental results of Bowen and co-workers [J. Chem. Phys. 133, 144304 (2010)].
Moghaddas, Mohammad Javad; Hossainipour, Zahra; Majidinia, Sara; Ojrati, Najmeh
2017-01-01
Aim The aim of the present study was to determine the shear bond strength of self-adhesive resin cements to enamel and dentin with and without surface treatments, and compare them with conventional resin cement as the control group. Methods In this experimental study, buccal and lingual surface of the thirty sound human premolars were polished in order to obtain a flat surface of enamel (E) in buccal, and dentin (D) in lingual. Sixty feldspathic ceramic blocks (2×3×3 mm) were prepared and randomly divided into six groups (n=10). Each block was cemented to the prepared surface (30 enamel and 30 dentin surface) according to different protocol: E1 and D1; RelyX ARC as control group, E2, D2; RelyX Unicem, E3, D3; acid etching +RelyX Unicem. The specimens were termocycled and subjected to shear forces by a universal testing machine at a cross head speed of 0.5 mm/min. The mode of fracture were evaluated by stereomicroscope. Data were analyzed with descriptive statistical methods using SPSS version 15. One-way ANOVA, and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at α=0.05. Results Statistical analysis showed no significant differences within the enamel subgroups, but there were significant differences within the dentinal subgroups, and statistically significant differences were found between the groups D1and D3 (p=0.02). Comparison between similar enamel and dentinal subgroups showed that there was a significant difference just between the subgroups E3 and D3 (p=0.01). Conclusion Elective etching of enamel did not lead to significant increase in the shear bond strength of RelyX Unicem in comparison to RelyX ARC. On the other hand, elective etching of dentin reduces the bond strength of RelyX Unicem with the dentin. PMID:28979732
Moghaddas, Mohammad Javad; Hossainipour, Zahra; Majidinia, Sara; Ojrati, Najmeh
2017-08-01
The aim of the present study was to determine the shear bond strength of self-adhesive resin cements to enamel and dentin with and without surface treatments, and compare them with conventional resin cement as the control group. In this experimental study, buccal and lingual surface of the thirty sound human premolars were polished in order to obtain a flat surface of enamel (E) in buccal, and dentin (D) in lingual. Sixty feldspathic ceramic blocks (2×3×3 mm) were prepared and randomly divided into six groups (n=10). Each block was cemented to the prepared surface (30 enamel and 30 dentin surface) according to different protocol: E1 and D1; RelyX ARC as control group, E2, D2; RelyX Unicem, E3, D3; acid etching +RelyX Unicem. The specimens were termocycled and subjected to shear forces by a universal testing machine at a cross head speed of 0.5 mm/min. The mode of fracture were evaluated by stereomicroscope. Data were analyzed with descriptive statistical methods using SPSS version 15. One-way ANOVA, and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at α=0.05. Statistical analysis showed no significant differences within the enamel subgroups, but there were significant differences within the dentinal subgroups, and statistically significant differences were found between the groups D1and D3 (p=0.02). Comparison between similar enamel and dentinal subgroups showed that there was a significant difference just between the subgroups E3 and D3 (p=0.01). Elective etching of enamel did not lead to significant increase in the shear bond strength of RelyX Unicem in comparison to RelyX ARC. On the other hand, elective etching of dentin reduces the bond strength of RelyX Unicem with the dentin.
RELAX: detecting relaxed selection in a phylogenetic framework.
Wertheim, Joel O; Murrell, Ben; Smith, Martin D; Kosakovsky Pond, Sergei L; Scheffler, Konrad
2015-03-01
Relaxation of selective strength, manifested as a reduction in the efficiency or intensity of natural selection, can drive evolutionary innovation and presage lineage extinction or loss of function. Mechanisms through which selection can be relaxed range from the removal of an existing selective constraint to a reduction in effective population size. Standard methods for estimating the strength and extent of purifying or positive selection from molecular sequence data are not suitable for detecting relaxed selection, because they lack power and can mistake an increase in the intensity of positive selection for relaxation of both purifying and positive selection. Here, we present a general hypothesis testing framework (RELAX) for detecting relaxed selection in a codon-based phylogenetic framework. Given two subsets of branches in a phylogeny, RELAX can determine whether selective strength was relaxed or intensified in one of these subsets relative to the other. We establish the validity of our test via simulations and show that it can distinguish between increased positive selection and a relaxation of selective strength. We also demonstrate the power of RELAX in a variety of biological scenarios where relaxation of selection has been hypothesized or demonstrated previously. We find that obligate and facultative γ-proteobacteria endosymbionts of insects are under relaxed selection compared with their free-living relatives and obligate endosymbionts are under relaxed selection compared with facultative endosymbionts. Selective strength is also relaxed in asexual Daphnia pulex lineages, compared with sexual lineages. Endogenous, nonfunctional, bornavirus-like elements are found to be under relaxed selection compared with exogenous Borna viruses. Finally, selection on the short-wavelength sensitive, SWS1, opsin genes in echolocating and nonecholocating bats is relaxed only in lineages in which this gene underwent pseudogenization; however, selection on the functional medium/long-wavelength sensitive opsin, M/LWS1, is found to be relaxed in all echolocating bats compared with nonecholocating bats. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
U.S. EPA, Pesticide Product Label, BARRAGE INDUSTRIAL STRENGTH BOWL CLEANSE, 08/20/1974
2011-04-14
... VIJI") "'f ';1,',111"1 nll!1) III(, h,,, p"J"'ilrl .l 1""1 l'I,lul, e,f' ','IVIC" !, t,;~, iif.',lJ.-li(' f~"~; l'_,I;J~e [._.If 1:u:..kdl.1) .trlc1 t'n·JJrl..ifHTH;lltd~ nl !Ird' ndl1<.~' V,'ln ...
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to conduct the run, liter/min. B=acid density (a function of acid strength and temperature), g/cc. C=acid strength, decimal fraction. K1/4=conversion factor, 0.0808 (Mg-min-cc)/(g-hr-liter) [0.0891 (ton...
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... to conduct the run, liter/min. B=acid density (a function of acid strength and temperature), g/cc. C=acid strength, decimal fraction. K1/4=conversion factor, 0.0808 (Mg-min-cc)/(g-hr-liter) [0.0891 (ton...
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to conduct the run, liter/min. B=acid density (a function of acid strength and temperature), g/cc. C=acid strength, decimal fraction. K1/4=conversion factor, 0.0808 (Mg-min-cc)/(g-hr-liter) [0.0891 (ton...
Guo, LanJun; Li, Yan; Han, Ruquan; Gelb, Adrian W
2018-01-01
Motor evoked potentials (MEPs) are commonly used during surgery for spinal cord tumor resection. However, it can be difficult to record reliable MEPs from the muscles of the lower extremities during surgery in patients with preoperative weakness due to spinal cord compression. In this study, motor function of patients' lower extremities and their association with intraoperative MEP recording were compared. Patients undergoing thoracic spinal cord tumor resection were studied. Patients' motor function was checked immediately before the surgical procedure. MEP responses were recorded from the tibialis anterior and foot muscles, and the hand muscles were used as control. Electrical current with train of eight pulses, 200 to 500 V was delivered through 2 corkscrews placed at C3' and C4' sites. Anesthesia was maintained by total intravenous anesthesia using a combination of propofol and remifentanil after induction with intravenous propofol, remifentanil, and rocuronium. Rocuronium was not repeated. Bispectral Index was maintained between 40 to 50. From 178 lower limbs of 89 patients, myogenic MEPs could be recorded from 100% (105/105) of the patients with 5 of 5 motor strength in lower extremity; 90% (36/40) from the patients with 4/5 motor strength; only 25% (5/20) with 3/5; and 12.5% (1/8) with 2/5 motor strength; none (0/5) were able to be recorded if the motor strength was 1/5. The ability to record myogenic MEPs is closely associated with the patient's motor function. They are difficult to obtain if motor function is 3/5 motor strength in the lower extremity. They are almost impossible to record if motor function is worse than 3/5.
Buford, Thomas W; Fillingim, Roger B; Manini, Todd M; Sibille, Kimberly T; Vincent, Kevin R; Wu, Samuel S
2015-07-01
As the U.S. population ages, efficacious interventions are needed to manage pain and maintain physical function among older adults with osteoarthritis (OA). Skeletal muscle weakness is a primary contributory factor to pain and functional decline among persons with OA, thus interventions are needed that improve muscle strength. High-load resistance exercise is the best-known method of improving muscle strength; however high-compressive loads commonly induce significant joint pain among persons with OA. Thus interventions with low-compressive loads are needed which improve muscle strength while limiting joint stress. This study is investigating the potential of an innovative training paradigm, known as Kaatsu, for this purpose. Kaatsu involves performing low-load exercise while externally-applied compression partially restricts blood flow to the active skeletal muscle. The objective of this randomized, single-masked pilot trial is to evaluate the efficacy and feasibility of chronic Kaatsu training for improving skeletal muscle strength and physical function among older adults. Participants aged ≥ 60 years with physical limitations and symptomatic knee OA will be randomly assigned to engage in a 3-month intervention of either (1) center-based, moderate-load resistance training, or (2) Kaatsu training matched for overall workload. Study dependent outcomes include the change in 1) knee extensor strength, 2) objective measures of physical function, and 3) subjective measures of physical function and pain. This study will provide novel information regarding the therapeutic potential of Kaatsu training while also informing about the long-term clinical viability of the paradigm by evaluating participant safety, discomfort, and willingness to continually engage in the intervention. Copyright © 2015 Elsevier Inc. All rights reserved.
Sekir, Ufuk; Yildiz, Yavuz; Hazneci, Bulent; Ors, Fatih; Aydin, Taner
2007-05-01
The purpose of this study was to investigate the effects of isokinetic exercise on strength, joint position sense and functionality in recreational athletes with functional ankle instability (FAI). Strength, proprioception and balance of 24 recreational athletes with unilateral FAI were evaluated by using isokinetic muscle strength measurement, ankle joint position sense and one leg standing test. The functional ability was evaluated using five different tests. These were; single limb hopping course (SLHC), one legged and triple legged hop for distance (OLHD-TLHD), and six and cross six meter hop for time (SMHT-CSMHT). Isokinetic peak torque of the ankle invertor and evertor muscles were assessed eccentrically and concentrically at test speeds of 120 degrees /s. Isokinetic exercise protocol was carried out at an angular velocity of 120 degrees /s. The exercise session was repeated three times a week and lasted after 6 weeks. At baseline, concentric invertor strength was found to be significantly lower in the functionally unstable ankles compared to the opposite healthy ankles (p < 0.001). This difference was not present after executing the 6 weeks exercise sessions (p > 0.05). Ankle joint position sense in the injured ankles declined significantly from 2.35 +/- 1.16 to 1.33 +/- 0.62 degrees for 10 degrees of inversion angle (p < 0.001) and from 3.10 +/- 2.16 to 2.19 +/- 0.98 degrees for 20 degrees of inversion angle (p < 0.05) following the isokinetic exercise. One leg standing test score decreased significantly from 15.17 +/- 8.50 to 11.79 +/- 7.81 in the injured ankles (p < 0.001). Following the isokinetic exercise protocol, all of the worsened functional test scores in the injured ankles as compared to the opposite healthy ankles displayed a significant improvement (p < 0.01 for OLHD and CSMHT, p < 0.001 for SLHC, TLHD, and SMHT). These results substantiate the deficits of strength, proprioception, balance and functionality in recreational athletes with FAI. The isokinetic exercise program used in this study had a positive effect on these parameters.
Electric Monopole Transition Strengths in the Stable Nickel Isotopes
NASA Astrophysics Data System (ADS)
Evitts, Lee John
A series of measurements of stable nickel isotopes were performed at the Australian National University in Canberra. Excited states in 58,60,62Ni were populated via inelastic scattering of proton beams delivered by the 14UD Pelletron accelerator. Multiple setups were used in order to determine the structure of low-lying states. The CAESAR array of Compton-suppressed HPGe detectors was used to measure the (E2/M1) mixing ratio of transitions from angular distributions of gamma rays. The Super-e spectrometer was used to measure conversion coefficients for a number of J to J transitions. The data obtained from both devices was combined with previously measured parent lifetimes and branching ratios to determine E0 transition strengths between J-pi transitions. The E0 transition strength for the second 0+ to first 0+ transitions in 60,62Ni have been measured for the first time through internal conversion electron detection. The experimental value of 132(+59,-70) for 62Ni agrees within 2 sigma of the previous result obtained from internal pair formation. However it is likely that the previous experimental results used an outdated theoretical model for internal pair formation emission. This work also represents the first measurements of E0 transition strengths between 2+ states in Ni isotopes. There is generally large E0 strength between the 2+ states, particularly in the second 2+ to first 2+ transition, however there is also a large uncertainty in the measurements owing to the difficulties involved in measuring conversion coefficients. In 62Ni, the E0 transition strength of 172(+62,-77) for the second 2+ to first 2+ transition gives further weight to the argument against the spherical vibrator model, as an E0 transition is forbidden if there is a change of only one phonon. The large measurement also indicates the presence of shape coexistence, complementing the recent experimental work carried out in the neutron-rich Ni isotopes.
Kliziene, Irina; Sipaviciene, Saule; Vilkiene, Jovita; Astrauskiene, Audrone; Cibulskas, Gintautas; Klizas, Sarunas; Cizauskas, Ginas
2017-01-01
To evaluate the effects of Pilates exercises designed to improve isometric trunk extension and flexion strength of muscles in women with chronic low back pain (cLBP). Female volunteers with cLBP were divided into an experimental group (EG; n = 27) and a control group (CG; n = 27). Pilates exercises were performed twice per week by the EG; the duration of each session was 60 min. The program lasted for 16 weeks; thus patients underwent a total of 32 exercise sessions. The maximum isometric waist bending strength of the EG had improved significantly (p = 0.001) after 16 weeks of the Pilates program. The results of trunk flexion muscle endurance tests significantly depended on the trunk extension muscle endurance before the intervention, and at 1 month (r = 0.723, p < 0.001) and 2 months (r = 0.779, p < 0.001) after the Pilates exercise program. At the end of the 16-week exercise program, cLBP intensity decreased by 2.01 ± 0.8 (p < 0.05) in the EG, and this reduction persisted for 1 month after completion of the program. At 1 and 2 months after cessation of the Pilates exercise program the pain intensified and the functional state deteriorated much faster than the maximum trunk muscle strength. Therefore, it can be concluded that, to decrease pain and improve functional condition, regular exercise (and not only improved strength and endurance) is required. We established that, although the 16-week lumbar stabilization exercise program increased isometric trunk extension and flexion strength and this increase in strength persisted for 2 months, decreased LBP and improved functional condition endured for only 1 month. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lepton flavorful fifth force and depth-dependent neutrino matter interactions
NASA Astrophysics Data System (ADS)
Wise, Mark B.; Zhang, Yue
2018-06-01
We consider a fifth force to be an interaction that couples to matter with a strength that grows with the number of atoms. In addition to competing with the strength of gravity a fifth force can give rise to violations of the equivalence principle. Current long range constraints on the strength and range of fifth forces are very impressive. Amongst possible fifth forces are those that couple to lepton flavorful charges L e - L μ or L e - L τ . They have the property that their range and strength are also constrained by neutrino interactions with matter. In this brief note we review the existing constraints on the allowed parameter space in gauged U{(1)}_{L_e-{L}_{μ },{L}_{τ }} . We find two regions where neutrino oscillation experiments are at the frontier of probing such a new force. In particular, there is an allowed range of parameter space where neutrino matter interactions relevant for long baseline oscillation experiments depend on the depth of the neutrino beam below the surface of the earth.
Polymerisation characteristics of resin composites polymerised with different curing units.
Danesh, Gholamreza; Davids, Hendrick; Reinhardt, Klaus-Jürgen; Ott, Klaus; Schäfer, Edgar
2004-08-01
The aim of this study was to compare the plasma arc light source Apollo 95E and the conventional halogen lamp Elipar Visio regarding a number of polymerisation characteristics of different resin composites. Four different resin composites (Arabesk Top, Herculite XRV, Pertac II, Tetric) were irradiated using the Apollo 95E unit for one, two or three cycles of 3 s and using the Elipar Visio unit for 40 s. The investigated polymerisation characteristics were: flexural strength and modulus of elasticity, bond strength to dentine, depth of polymerisation, and quantity of remaining double bonds. The data were treated statistically by analysis of variance and by Scheffé test. The modulus of elasticity and the flexural strength resulting from curing with Apollo 95E for 1 x 3 s were equal to or less than those resulting from curing with Elipar Visio. The bond strength to dentine and the depth of polymerisation with Apollo 95E used for 1 x 3 s were equal to or less than that obtained with the conventional lamp, depending on the resin composite. Irradiation of Herculite XRV resulted in a higher quantity of remaining double bonds than did Elipar Visio. In general, two or three curing cycles of 3 s with Apollo 95E were necessary to produce mechanical properties not significantly worse than with 40 s of conventional curing. The efficiency of plasma arc curing with Apollo 95E strongly depends on the resin composite. For most resin composites tested, plasma arc curing for 3 s resulted in inferior mechanical properties as compared to conventional curing.
NASA Astrophysics Data System (ADS)
Shubhra, Quazi T. H.; Alam, A. K. M. M.
2011-11-01
Silk is a strong natural proteinous fiber and E-glass is a very strong synthetic fiber. Compression molding method was used to fabricate B. mori silk fiber reinforced polypropylene (PP) matrix composites. The tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of prepared composites were 55.1 MPa, 780 MPa, 56.3 MPa, 3450 MPa and 17 kJ/m 2, respectively. Synthetic E-glass fiber reinforced PP based composites were fabricated in the same way and TS, TM, BS, BM, IS of E-glass fiber reinforced polypropylene composites were found to be 128.7 MPa, 4350 MPa, 141.6 MPa, 6300 MPa and 19 kJ/m 2, respectively. Gamma radiation is high energy ionizing radiation and was applied to increase the mechanical properties of the composites. Application of gamma ray increases the mechanical properties of silk/PP composites to a greater extent than that of E-glass/PP composites.
Englund, Davis A; Sharp, Rick L; Selsby, Joshua T; Ganesan, Shanthi S; Franke, Warren D
2017-05-01
The purpose of this study was to compare the effects of high and low velocity knee extension training on changes in muscle strength and mobility status in high-functioning older adults. Twenty-six (16 female, 10 male) older adults (mean age of 65) were randomized to either 6weeks of low velocity resistance training (LVRT) performed at 75°/s or high velocity resistance training (HVRT) performed at 240°/s. Both groups performed 3 sets of knee extension exercises at maximal effort, 3 times a week. Muscle strength was assessed through a range of testing velocities on an isokinetic dynamometer. Mobility status was assessed with the short physical performance battery (SPPB) and myosin heavy chain (MyHC) transcript levels were quantified via qRT-PCR. From baseline to post-training, there were several significant (P<0.05) differences in muscle strength and functional characteristics in LVRT (n=13) and HVRT (n=13) groups. From baseline to post-training, MyHC-α mRNA and MyHC-IIa mRNA showed a significant (P<0.05) increase within HVRT but MyHC-IIx mRNA did not change significantly. Our results demonstrate HVRT provides a greater number of muscular enhancements when compared to LVRT, particularly under conditions of high velocity muscle contraction. HVRT is emerging as the optimal training stimulus for the older adult. The present study demonstrates, in addition to increased strength and functional outcomes, HVRT elicits a potentially therapeutic (i.e., slow to fast) transcriptional response in MyHC. Copyright © 2017 Elsevier Inc. All rights reserved.
Law, Jessica Ka Yan; Susloparova, Anna; Vu, Xuan Thang; Zhou, Xiao; Hempel, Felix; Qu, Bin; Hoth, Markus; Ingebrandt, Sven
2015-05-15
Cytotoxic T lymphocytes (CTLs) play an important role in the immune system by recognizing and eliminating pathogen-infected and tumorigenic cells. In order to achieve their function, T cells have to migrate throughout the whole body and identify the respective targets. In conventional immunology studies, interactions between CTLs and targets are usually investigated using tedious and time-consuming immunofluorescence imaging. However, there is currently no straightforward measurement tool available to examine the interaction strengths. In the present study, adhesion strengths and migration of single human CD8(+) T cells on pre-coated field-effect transistor (FET) devices (i.e. fibronectin, anti-CD3 antibody, and anti-LFA-1 antibody) were measured using impedance spectroscopy. Adhesion strengths to different protein and antibody coatings were compared. By fitting the data to an electronically equivalent circuit model, cell-related parameters (cell membrane capacitance referring to cell morphology and seal resistance referring to adhesion strength) were obtained. This electronically-assessed adhesion strength provides a novel, fast, and important index describing the interaction efficiency. Furthermore, the size of our detection transistor gates as well as their sensitivity reaches down to single cell resolution. Real-time motions of individually migrating T cells can be traced using our FET devices. The in-house fabricated FETs used in the present study are providing a novel and very efficient insight to individual cell interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Atomic and electronic basis for the serrations of refractory high-entropy alloys
NASA Astrophysics Data System (ADS)
Wang, William Yi; Shang, Shun Li; Wang, Yi; Han, Fengbo; Darling, Kristopher A.; Wu, Yidong; Xie, Xie; Senkov, Oleg N.; Li, Jinshan; Hui, Xi Dong; Dahmen, Karin A.; Liaw, Peter K.; Kecskes, Laszlo J.; Liu, Zi-Kui
2017-06-01
Refractory high-entropy alloys present attractive mechanical properties, i.e., high yield strength and fracture toughness, making them potential candidates for structural applications. Understandings of atomic and electronic interactions are important to reveal the origins for the formation of high-entropy alloys and their structure-dominated mechanical properties, thus enabling the development of a predictive approach for rapidly designing advanced materials. Here, we report the atomic and electronic basis for the valence-electron-concentration-categorized principles and the observed serration behavior in high-entropy alloys and high-entropy metallic glass, including MoNbTaW, MoNbVW, MoTaVW, HfNbTiZr, and Vitreloy-1 MG (Zr41Ti14Cu12.5Ni10Be22.5). We find that the yield strengths of high-entropy alloys and high-entropy metallic glass are a power-law function of the electron-work function, which is dominated by local atomic arrangements. Further, a reliance on the bonding-charge density provides a groundbreaking insight into the nature of loosely bonded spots in materials. The presence of strongly bonded clusters and weakly bonded glue atoms imply a serrated deformation of high-entropy alloys, resulting in intermittent avalanches of defects movement.
NASA Astrophysics Data System (ADS)
V. R., Arun prakash; Rajadurai, A.
2016-10-01
In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.
Mirror therapy in children with hemiparesis: a randomized observer-blinded trial.
Bruchez, Roselyn; Jequier Gygax, Marine; Roches, Sylvie; Fluss, Joel; Jacquier, David; Ballabeni, Pierluigi; Grunt, Sebastian; Newman, Christopher J
2016-09-01
To determine the efficacy of mirror therapy in children with hemiparesis. The design was an observer-blinded parallel-group randomized controlled trial (International Standard Randomised Controlled Trial Number 48748291). Randomization was computer-generated, 1:1 allocation to mirror therapy or comparison groups. The settings were home-based intervention and tertiary centre assessments. Participants were 90 children with hemiparesis aged 7 to 17 years. Intervention was 15 minutes per day of simultaneous arm training, 5 days a week, for 5 weeks. The mirror therapy group used a mirror; those in the comparison group looked at their paretic limb. Assessments comprised measures of upper limb strength, function (Melbourne Assessment 2), daily performance (ABILHAND-Kids), and sensory function at weeks 0 (T0 ), 5 (T1 ), and 10 (T2 ). There were no significant differences in outcomes and their progression over time between the mirror therapy and comparison groups. Post-hoc intention-to-treat analyses showed significant improvements in both groups for grasp strength (T0 -T1 +12.6%), pinch strength (T0 -T2 +9.1%), upper limb function in terms of accuracy (T0 -T2 +2.7%) and fluency (T0 -T2 +5.0%), as well as daily performance (T0 -T2 +16.6%). Per protocol analyses showed additional improvements in dexterity (T0 -T2 +4.0%). The use of the mirror illusion during therapy had no significant effect on treatment outcomes. However, 5 weeks of daily simultaneous arm training significantly improved paretic upper limb strength, function, and daily use. © 2016 Mac Keith Press.
Handgrip strength is associated with improved spirometry in adolescents
Standl, Marie; Berdel, Dietrich; von Berg, Andrea; Bauer, Carl-Peter; Schikowski, Tamara; Koletzko, Sibylle; Lehmann, Irina; Krämer, Ursula; Heinrich, Joachim; Schulz, Holger
2018-01-01
Introduction Pulmonary rehabilitation, including aerobic exercise and strength training, improves function, such as spirometric indices, in lung disease. However, we found spirometry did not correlate with physical activity (PA) in healthy adolescents (Smith ERJ: 42(4), 2016). To address whether muscle strength did, we measured these adolescents’ handgrip strength and correlated it with spirometry. Methods In 1846 non-smoking, non-asthmatic Germans (age 15.2 years, 47% male), we modeled spirometric indices as functions of handgrip strength by linear regression in each sex, corrected for factors including age, height, and lean body mass. Results Handgrip averaged 35.4 (SD 7.3) kg in boys, 26.6 (4.2) in girls. Spirometric volumes and flows increased linearly with handgrip. In boys each kg handgrip was associated with about 28 mL greater FEV1 and FVC; 60 mL/sec faster PEF; and 38 mL/sec faster FEF2575. Effects were 10–30% smaller in girls (all p<0.0001) and stable when Z-scores for spirometry and grip were modeled, after further correction for environment and/or other exposures, and consistent across stages of puberty. Conclusions Grip strength was associated with spirometry in a cohort of healthy adolescents whose PA was not. Thus, research into PA’s relationship with lung function should consider strength as well as total PA. Strength training may benefit healthy lungs; interventions are needed to prove causality. PMID:29641533
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Cox, Sharon; Kośmider, Leon; McRobbie, Hayden; Goniewicz, Maciej; Kimber, Catherine; Doig, Mira; Dawkins, Lynne
2016-09-20
Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs) or user behaviour (increasing the wattage) can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids) undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein). A counterbalanced repeated measures design. Non-tobacco smoking vapers; have used an e-cigarette for ≥3 months; currently using nicotine strength e-liquid ≥12mg/mL and a second or third generation device. This study will measure puffing patterns in vapers whilst they use high and low strength nicotine e-liquid under fixed and user-defined settings, each for a week. The 4 counterbalanced conditions are: i) low strength (6mg/mL), fixed settings; ii) low strength user-defined settings; iii) high strength (18mg/mL) fixed settings; iv) high strength user-defined settings. Biomarkers of exposure to toxicants and carcinogens will be measured in urine. In the second phase of this study, toxicant yields will be measured in aerosol generated using a smoking machine operated to replicate the puffing behaviours of each participant. i) Puffing patterns (mean puff number, puff duration, inter-puff interval and mL of liquid consumed) and user behaviour (changes to device settings: voltage and air-flow) associated with using high and low strength nicotine e-liquid. ii) Toxicant/carcinogen exposure associated with the puffing patterns/device settings used by our participants. i) Subjective effects. ii) comparisons with toxicant exposure from tobacco smoke (using documented evidence) and with recommended safety limits. Twenty participants. The findings will have important implications for public health messaging regarding the relative risks and subjective effects associated with using high and low strength nicotine e-liquid, and for policy makers regarding regulations on nicotine concentrations in e-liquids.
Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.
Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A
2018-05-01
To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
McMahon, Siobhan K; Lewis, Beth; Oakes, J Michael; Wyman, Jean F; Guan, Weihua; Rothman, Alexander J
2017-01-01
Background Little is known about which behavior change strategies motivate older adults to increase their physical activity. Purpose The purpose of this study was to assess the relative effects of two sets of behavior change strategies to motivate increased physical activity among older adults: interpersonal and intrapersonal. Methods Community-dwelling older adults (N=102, Mean age = 79) were randomized in a 2×2 factorial experiment to receive interpersonal (e.g., social support, friendly social comparison; No, Yes) and/or intrapersonal (e.g., goal-setting, barriers management; No, Yes) behavior change strategies, combined with an evidence-based, physical activity protocol (Otago exercise program) and a physical activity monitor (Fitbit One™). Results Based on monitor data, participants who received interpersonal strategies, compared to those who did not, increased their average minutes of total physical activity (light, moderate, vigorous) per week, immediately (p = .006) and 6-months (p = .048) post-intervention. Similar, increases were observed on measures of functional strength and balance, immediately (p = .012) and 6 months (p = .003) post-intervention. The intrapersonal strategies did not elicit a significant increase in physical activity or functional strength and balance. Conclusions Findings suggest a set of interpersonally oriented behavior change strategies combined with an evidence-based physical activity protocol can elicit modest, but statistically and clinically significant, increases in older adults’ physical activity and functional strength and balance. Future research should replicate these findings and investigate the sustained quantity of physical activity elicited by these strategies and their impact on older adults’ quality of life and falls. PMID:28188585
Verlaan, Sjors; Aspray, Terry J; Bauer, Juergen M; Cederholm, Tommy; Hemsworth, Jaimie; Hill, Tom R; McPhee, Jamie S; Piasecki, Mathew; Seal, Chris; Sieber, Cornel C; Ter Borg, Sovianne; Wijers, Sander L; Brandt, Kirsten
2017-02-01
Sarcopenia, the age-related decrease in muscle mass, strength, and function, is a main cause of reduced mobility, increased falls, fractures and nursing home admissions. Cross-sectional and prospective studies indicate that sarcopenia may be influenced in part by reversible factors like nutritional intake. The aim of this study was to compare functional and nutritional status, body composition, and quality of life of older adults between age and sex-matched older adults with and without sarcopenia. In a multi-centre setting, non-sarcopenic older adults (n = 66, mean ± SD: 71 ± 4 y), i.e. Short Physical Performance Battery (SPPB): 11-12 and normal skeletal muscle mass index, were recruited to match 1:1 by age and sex to previously recruited adults with sarcopenia: SPPB 4-9 and low skeletal muscle mass index. Health-related quality of life, self-reported physical activity levels and dietary intakes were measured using the EQ-5D scale and index, Physical Activity Scale for the Elderly (PASE), and 3-day prospective diet records, respectively. Concentrations of 25-OH-vitamin D, α-tocopherol (adjusted for cholesterol), folate, and vitamin B-12 were assessed in serum samples. In addition to the defined components of sarcopenia, i.e. muscle mass, strength and function, reported physical activity levels and health-related quality of life were lower in the sarcopenic adults (p < 0.001). For similar energy intakes (mean ± SD: sarcopenic, 1710 ± 418; non-sarcopenic, 1745 ± 513, p = 0.50), the sarcopenic group consumed less protein/kg (-6%), vitamin D (-38%), vitamin B-12 (-22%), magnesium (-6%), phosphorus (-5%), and selenium (-2%) (all p < 0.05) compared to the non-sarcopenic controls. The serum concentration of vitamin B-12 was 15% lower in the sarcopenic group (p = 0.015), and all other nutrient concentrations were similar between groups. In non-malnourished older adults with and without sarcopenia, we observed that sarcopenia substantially impacted self-reported quality of life and physical activity levels. Differences in nutrient concentrations and dietary intakes were identified, which might be related to the differences in muscle mass, strength and function between the two groups. This study provides information to help strengthen the characterization of this geriatric syndrome sarcopenia and indicates potential target areas for nutritional interventions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Olds, Margie; McNair, Peter; Nordez, Antoine; Cornu, Christophe
2011-01-01
Active muscle stiffness might protect the unstable shoulder from recurrent dislocation. To compare strength and active stiffness in participants with unilateral anterior shoulder instability and to examine the relationship between active stiffness and functional ability. Cross-sectional study. University research laboratory. Participants included 16 males (age range, 16-40 years; height = 179.4 ± 6.1 cm; mass = 79.1 ± 6.8 kg) with 2 or more episodes of unilateral traumatic anterior shoulder instability. Active stiffness and maximal voluntary strength were measured bilaterally in participants. In addition, quality of life, function, and perceived instability were measured using the Western Ontario Stability Index, American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, and Single Alpha Numeric Evaluation, respectively. We found less horizontal adduction strength (t(15) = -4.092, P = .001) and less stiffness at 30% (t(14) = -3.796, P = .002) and 50% (t(12) = -2.341, P = .04) maximal voluntary strength in the unstable than stable shoulder. Active stiffness was not correlated with quality of life, function, or perceived instability (r range, 0.0-0.25; P > .05). The observed reduction in stiffness in the unstable shoulder warrants inclusion of exercises in the rehabilitation program to protect the joint from perturbations that might lead to dislocation. The lack of association between active stiffness and quality of life, function, or perceived instability might indicate that stiffness plays a less direct role in shoulder stability.
Influence of vacancy defect on surface feature and adsorption of Cs on GaN(0001) surface.
Ji, Yanjun; Du, Yujie; Wang, Meishan
2014-01-01
The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at B(Ga) site on N vacancy defect surface. The E(ads) of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable.
Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface
Ji, Yanjun; Du, Yujie; Wang, Meishan
2014-01-01
The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at BGa site on N vacancy defect surface. The E ads of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable. PMID:25126599
Hess, Thomas M; O'Brien, Erica L; Voss, Peggy; Kornadt, Anna E; Rothermund, Klaus; Fung, Helene H; Popham, Lauren E
2017-08-01
Subjective age has been shown to reliably predict a variety of psychological and physical health outcomes, yet our understanding of its determinants is still quite limited. Using data from the Aging as Future project, the authors examined the degree to which views of aging influence subjective age and how this influence varies across cultures and domains of everyday functioning. Using data from 1,877 adults aged from 30 to 95 years of age collected in China, Germany, and the United States, they assessed how general attitudes about aging and perceptions of oneself as an older adult influenced subjective age estimates in 8 different domains of functioning. More positive attitudes about aging were associated with older subjective ages, whereas more positive views of self in old age were associated with younger subjective age. It is hypothesized that these effects are reflective of social-comparison processes and self-protective mechanisms. These influences varied considerably over contexts, with views of aging having a greater impact in domains associated with stronger negative stereotypes of aging (e.g., health) compared to those with more positive ones (e.g., family). Culture also moderated the impact of aging views in terms of the strength of prediction, direction of effect, and age of greatest influence, presumably due to cultural differences in the salience and strength of aging-related belief systems across contexts. The results illustrate the contextual sensitivity of subjective age and highlight the role played by an individual's views of old age-both in general and regarding oneself-in determining their own experience of aging. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
“Nutraceuticals” in relation to human skeletal muscle and exercise
Deane, Colleen S.; Wilkinson, Daniel J.; Phillips, Bethan E.; Smith, Kenneth; Etheridge, Timothy
2017-01-01
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and “nutraceutical” compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. PMID:28143855
Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G
2012-04-01
Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.
Behm, David G; Faigenbaum, Avery D; Falk, Baraket; Klentrou, Panagiota
2008-06-01
Many position stands and review papers have refuted the myths associated with resistance training (RT) in children and adolescents. With proper training methods, RT for children and adolescents can be relatively safe and improve overall health. The objective of this position paper and review is to highlight research and provide recommendations in aspects of RT that have not been extensively reported in the pediatric literature. In addition to the well-documented increases in muscular strength and endurance, RT has been used to improve function in pediatric patients with cystic fibrosis and cerebral palsy, as well as pediatric burn victims. Increases in children's muscular strength have been attributed primarily to neurological adaptations due to the disproportionately higher increase in muscle strength than in muscle size. Although most studies using anthropometric measures have not shown significant muscle hypertrophy in children, more sensitive measures such as magnetic resonance imaging and ultrasound have suggested hypertrophy may occur. There is no minimum age for RT for children. However, the training and instruction must be appropriate for children and adolescents, involving a proper warm-up, cool-down, and appropriate choice of exercises. It is recommended that low- to moderate-intensity resistance exercise should be done 2-3 times/week on non-consecutive days, with 1-2 sets initially, progressing to 4 sets of 8-15 repetitions for 8-12 exercises. These exercises can include more advanced movements such as Olympic-style lifting, plyometrics, and balance training, which can enhance strength, power, co-ordination, and balance. However, specific guidelines for these more advanced techniques need to be established for youth. In conclusion, an RT program that is within a child's or adolescent's capacity and involves gradual progression under qualified instruction and supervision with appropriately sized equipment can involve more advanced or intense RT exercises, which can lead to functional (i.e., muscular strength, endurance, power, balance, and co-ordination) and health benefits.
Taylor, J David
2008-09-01
Previous research indicates that the Internet, electronic mail (e-mail), and printed materials can be used to deliver interventions to improve physical activity in people with type 2 diabetes. However, no studies have been conducted investigating the effect of e-mail or print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. The purpose of this clinical trial was to investigate the impact of e-mail vs. print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. Nineteen participants with type 2 diabetes were allocated to either a group that was delivered a prescribed exercise program using e-mail (e-mail group, n = 10) or a group that was delivered the same prescribed exercise program in print form (print group, n = 9). Chest press and leg press estimated one-repetition maximum (1-RM) scores as well as estimated peak oxygen uptake ([latin capital V with dot above]O2peak) were measured at baseline and follow-up. Intention-to-treat analysis indicated significant improvements in chest press (mean = 7.00 kg, p = 0.001, effect size = 2.22) and leg press (mean = 19.32 kg, p = 0.002, effect size = 1.98) 1-RM scores and [latin capital V with dot above]O2peak (mean = 9.38 mL of oxygen uptake per kilogram of body mass per minute, p = 0.01, effect size = 1.45) within the e-mail group. Within the print group, significant improvements in chest press (mean = 9.13 kg, p = 0.01, effect size = 1.49) and leg press (mean = 16.68 kg, p = 0.01, effect size = 1.31) 1-RM scores and [latin capital V with dot above]O2peak (mean = 5.14 ml of oxygen uptake per kilogram of body mass per minute, p = 0.03, effect size = 1.14) were found. No significant between-group differences in improvements were found. Clinicians can deliver a prescribed exercise program, either by e-mail or in print form, to significantly improve muscular strength and aerobic capacity in people with type 2 diabetes, and expect similar outcomes.
Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.
Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L
2012-01-01
Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Willems, Sara M; Wright, Daniel J; Day, Felix R; Trajanoska, Katerina; Joshi, Peter K; Morris, John A; Matteini, Amy M; Garton, Fleur C; Grarup, Niels; Oskolkov, Nikolay; Thalamuthu, Anbupalam; Mangino, Massimo; Liu, Jun; Demirkan, Ayse; Lek, Monkol; Xu, Liwen; Wang, Guan; Oldmeadow, Christopher; Gaulton, Kyle J; Lotta, Luca A; Miyamoto-Mikami, Eri; Rivas, Manuel A; White, Tom; Loh, Po-Ru; Aadahl, Mette; Amin, Najaf; Attia, John R; Austin, Krista; Benyamin, Beben; Brage, Søren; Cheng, Yu-Ching; Cięszczyk, Paweł; Derave, Wim; Eriksson, Karl-Fredrik; Eynon, Nir; Linneberg, Allan; Lucia, Alejandro; Massidda, Myosotis; Mitchell, Braxton D; Miyachi, Motohiko; Murakami, Haruka; Padmanabhan, Sandosh; Pandey, Ashutosh; Papadimitriou, Ioannis; Rajpal, Deepak K; Sale, Craig; Schnurr, Theresia M; Sessa, Francesco; Shrine, Nick; Tobin, Martin D; Varley, Ian; Wain, Louise V; Wray, Naomi R; Lindgren, Cecilia M; MacArthur, Daniel G; Waterworth, Dawn M; McCarthy, Mark I; Pedersen, Oluf; Khaw, Kay-Tee; Kiel, Douglas P; Pitsiladis, Yannis; Fuku, Noriyuki; Franks, Paul W; North, Kathryn N; van Duijn, Cornelia M; Mather, Karen A; Hansen, Torben; Hansson, Ola; Spector, Tim; Murabito, Joanne M; Richards, J Brent; Rivadeneira, Fernando; Langenberg, Claudia; Perry, John R B; Wareham, Nick J; Scott, Robert A
2017-07-12
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10 -8 ) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.
Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes.
Kuamit, Thanawit; Ratanasak, Manussada; Rungnim, Chompoonut; Parasuk, Vudhichai
2017-11-25
Effects of size, shape, and pyrene doping on electronic properties of graphene nanoflakes (GNFs) were theoretically investigated using density functional theory method with PBE, B3PW91, and M06-2X functionals and cc-pVDZ basis set. Two shapes of zigzag GNFs, hexagonal (HGN) and rhomboidal (RGN), were considered. The energy band gap of GNF depends on shape and decreases with size. The HGN has larger band gap energy (1.23-3.96 eV) than the RGN (0.13-2.12 eV). The doping of pyrene and pyrene derivatives on both HGN and RGN was also studied. The adsorption energy of pyrene and pyrene derivatives on GNF does not depend on the shape of GNFs with energies between 21 and 27 kcal mol -1 . The substituent on pyrene enhances the binding to GNF but the strength does not depend on electron withdrawing or donating capability. The doping by pyrene and pyrene derivatives also shifts the HOMO and LUMO energies of GNFs. Both positive (destabilizing) and negative (stabilizing) shifts on HOMO and LUMO of GNFs were seen. The direction and magnitude of the shift do not follow the electron withdrawing and donating capability of pyrene substituents. However, only a slight shift was observed for doped RGN. A shift of 0.19 eV was noticed for HOMO of HGN doped with 1-aminopyrene (pyNH 2 ) and of 0.04 eV for LUMO of HGN doped with 1-pyrenecarboxylic acid (pyCOOH). Graphical Abstract HOMO and LUMO Energies of pyrene/pyrene derivatives doped Graphene Nanoflakes.
Martin, Liz; Baker, Richard; Harvey, Adrienne
2010-11-01
This systematic review focused on the common conventional physiotherapy interventions used with children with cerebral palsy (CP), aged 4 to 18 years, and critically appraised the recent evidence of each of these interventions using the Oxford Centre for Evidence-Based Medicine Levels of Evidence. The search strategy yielded 34 articles after inclusion and exclusion criteria were applied. The investigated physiotherapy interventions included strength and functional training, weight-supported treadmill training (WBSTT), and neurodevelopmental treatment (NDT). A category of treatment dosage was also included. Strength training was the most studied intervention with significant improvements found in the strength of selected muscle groups using dynamometry, with fewer studies showing significant improvement in function. Functional training showed improvements in gross motor function, endurance, and temperospatial measures, such as gait speed and stride length. Nonsignificant trends of improvement on the Gross Motor Function Measure (GMFM) and gait velocity were found for WBSTT by a few studies with low levels of evidence (case series). Of three studies that evaluated NDT, one high-level evidence study, i.e., randomized controlled trial (RCT) found significant improvements on the GMFM. All studies reviewing treatment dosage had high levels of evidence (RCTs), yet found no significant differences for different intensities of treatment. These results indicate that the levels of evidence for physiotherapy interventions, particularly strengthening and to a lesser extent functional training, in school-aged children with CP has improved; however, further high-level evidence is needed for other interventions.
Skinner, Tina L; Peeters, Gmme Geeske; Croci, Ilaria; Bell, Katherine R; Burton, Nicola W; Chambers, Suzanne K; Bolam, Kate A
2016-09-01
It is well established that exercise is beneficial for prostate cancer survivors. The challenge for health professionals is to create effective strategies to encourage survivors to exercise in the community. Many community exercise programs are brief in duration (e.g. <5 exercise sessions); whilst evidence for the efficacy of exercise within the literature are derived from exercise programs ≥8 weeks in duration, it is unknown if health benefits can be obtained from a shorter program. This study examined the effect of a four-session individualized and supervised exercise program on the physical and psychosocial health of prostate cancer survivors. Fifty-one prostate cancer survivors (mean age 69±7 years) were prescribed 1 h, individualized, supervised exercise sessions once weekly for 4 weeks. Participants were encouraged to increase their physical activity levels outside of the exercise sessions. Objective measures of muscular strength, exercise capacity, physical function and flexibility; and self-reported general, disease-specific and psychosocial health were assessed at baseline and following the intervention. Improvements were observed in muscle strength (leg press 17.6 percent; P < 0.001), exercise capacity (400-m walk 9.3 percent; P < 0.001), physical function (repeated chair stands 20.1 percent, usual gait speed 19.3 percent, timed up-and-go 15.0 percent; P < 0.001), flexibility (chair sit and reach +2.9 cm; P < 0.001) and positive well-being (P = 0.014) following the exercise program. A four-session exercise program significantly improved the muscular strength, exercise capacity, physical function and positive well-being of prostate cancer survivors. This short-duration exercise program is safe and feasible for prostate cancer survivors and a randomized controlled trial is now required to determine whether a similar individualized exercise regimen improves physical health and mental well-being over the short, medium and long term. © 2016 John Wiley & Sons Australia, Ltd.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636
Holviala, Jarkko H S; Sallinen, Janne M; Kraemer, William J; Alen, Markku J; Häkkinen, Keijo K T
2006-05-01
Progressive strength training can lead to substantial increases in maximal strength and mass of trained muscles, even in older women and men, but little information is available about the effects of strength training on functional capabilities and balance. Thus, the effects of 21 weeks of heavy resistance training--including lower loads performed with high movement velocities--twice a week on isometric maximal force (ISOmax) and force-time curve (force produced in 500 milliseconds, F0-500) and dynamic 1 repetition maximum (1RM) strength of the leg extensors, 10-m walking time (10WALK) and dynamic balance test (DYN.D) were investigated in 26 middle-aged (MI; 52.8 +/- 2.4 years) and 22 older women (O; 63.8 +/- 3.8 years). 1RM, ISOmax, and F0-500 increased significantly in MI by 28 +/- 10%, 20 +/- 19%, 31 +/- 34%, and in O by 27 +/- 8%, 20 +/- 16%, 18 +/- 45%, respectively. 10WALK (MI and O, p < 0.001) shortened and DYN.D improved (MI and O, p < 0.001). The present strength-training protocol led to large increases in maximal and explosive strength characteristics of leg extensors and in walking speed, as well to an improvement in the present dynamic balance test performance in both age groups. Although training-induced increase in explosive strength is an important factor for aging women, there are other factors that contribute to improvements in dynamic balance capacity. This study indicates that total body heavy resistance training, including explosive dynamic training, may be applied in rehabilitation or preventive exercise protocols in aging women to improve dynamic balance capabilities.
Defining donor and acceptor strength in conjugated copolymers
NASA Astrophysics Data System (ADS)
Hedström, Svante; Wang, Ergang; Persson, Petter
2017-03-01
The progress in efficiency of organic photovoltaic devices is largely driven by the development of new donor-acceptor (D-A) copolymers. The number of possible D-A combinations escalates rapidly with the ever-increasing number of donor and acceptor units, and the design process often involves a trial-and-error approach. We here present a computationally efficient methodology for the prediction of optical and electronic properties of D-A copolymers based on density functional theory calculations of donor- and acceptor-only homopolymers. Ten donors and eight acceptors are studied, as well as all of their 80 D-A copolymer combinations, showing absorption energies of 1.3-2.3 eV, and absorption strengths varying by up to a factor of 2.5. Focus lies on exhibited trends in frontier orbital energies, optical band gaps, and absorption intensities, as well as their relation to the molecular structure. Based on the results, we define the concept of donor and acceptor strength, and calculate this quantity for all investigated units. The light-harvesting capabilities of the 80 D-A copolymers were also assessed. This gives a valuable theoretical guideline to the design of D-A copolymers with the potential to reduce the synthesis efforts in the development of new polymers.
McKnight, Patrick E.; Kasle, Shelley; Going, Scott; Villaneuva, Isidro; Cornett, Michelle; Farr, Josh; Wright, Jill; Streeter, Clara; Zautra, Alex
2010-01-01
Objective To assess the relative effectiveness of combining self-management and strength-training for improving functional outcomes in early knee osteoarthritis patients. Methods A randomized intervention trial lasting 24 months conducted at an academic medical center. Community dwelling middle-aged adults (N=273), aged 34 to 65 with knee osteoarthritis, pain and self-reported physical disability completed a strength-training program, a self-management program, or a combined program. Outcomes included five physical function tests (leg press, range of motion, work capacity, balance, and stair climbing) and two self-reported measures of pain and disability. Results A total of 201 (73.6 %) participants completed the 2-year trial. Overall compliance was modest - strength-training (55.8 %), self-management (69.1 %), and combined (59.6 %) programs. The three groups showed a significant and large increase from pre- to post-treatment in all physical functioning measures including leg press (d =.85), range of motion (d=1.00), work capacity (d=.60), balance (d=.59), and stair climbing (d=.59). Additionally, all three groups showed decreased self-reported pain (d=-.51) and disability (d=-.55). There were no significant differences among groups. Conclusions Middle-aged, sedentary persons with mild early knee osteoarthritis benefited from strength-training, self-management, and the combination. These results suggest that both strength-training and self-management are suitable treatments for early onset of knee osteoarthritis in middle-aged adults. Self-management alone may offer the least burdensome treatment for early osteoarthritis. PMID:20191490
Rimmer, James H; Herman, Cassandra; Wingo, Brooks; Fontaine, Kevin; Mehta, Tapan
2018-03-14
Hybrid research designs targeting adults with neurologic disability are critical for improving the efficiency of models that can identify, track and intervene on identified health issues. Our Russian doll framework encompasses three study phases. Phase 1 involves prospectively following a cohort of participants with disability to examine the relationships between rates of health and functional deficits (e.g., pain, fatigue, deconditioning), functional measures (e.g., cardiorespiratory endurance, strength, balance), and environmental and sociocultural factors. In Phase 2, eligible participants with neurologic disability from Phase 1 (in our example, individuals with multiple sclerosis) are screened and randomized to a clinical exercise efficacy trial. In Phase 3, study participants are enrolled in a home-based teleexercise trial to test the feasibility and replicability of delivering the clinical exercise study in the home. This unique three-in-one Russian doll framework serves as a foundation for informing and guiding researchers and clinicians in treating certain health and functional deficits in people with neurologic disability using exercise as a primary treatment modality in both the clinical and home settings. It offers a unique perspective for understanding the critical issues of functioning, health maintenance and quality of life for people with neurologic disability across a longitudinal framework. Study 2 ClinicalTrials.gov identifier NCT02533882 (retroactively registered 03/06/2015). Study 3 ClinicalTrials.gov identifier NCT03108950 (retroactively registered 04/05/2017).
Sakai, Kotomi; Nakayama, Enri; Tohara, Haruka; Maeda, Tomomi; Sugimoto, Motonobu; Takehisa, Takahiro; Takehisa, Yozo; Ueda, Koichiro
2017-04-01
The aim of this cross-sectional study was to investigate whether tongue strength observed in older adult inpatients of a rehabilitation hospital is associated with muscle function, nutritional status, and dysphagia. A total of 174 older adult inpatients aged 65 years and older in rehabilitation (64 men, 110 women; median age, 84 years; interquartile range, 80-89 years) who were suspected of having reduced tongue strength due to sarcopenia were included in this study. Isometric tongue strength was measured using a device fitted with a disposable oral balloon probe. We evaluated age, muscle function as assessed by the Barthel index and grip strength, nutritional status as measured by the Mini Nutritional Assessment-short form (MNA-SF), body mass index, serum albumin, controlling nutritional status, and calf circumference and arm muscle area to assess muscle mass. In addition, the functional oral intake scale (FOIS) was used as an index of dysphagia. Multivariate linear regression analysis revealed that isometric tongue strength was independently associated with grip strength (coefficient = 0.33, 95 % confidence interval (CI) 0.12-0.54, p = 0.002), MNA-SF (coefficient = 0.74, 95 % CI 0.12-1.35, p = 0.019), and FOIS (coefficient = 0.02, 95 % CI 0.00-0.15, p = 0.047). To maintain and improve tongue strength in association with sarcopenic dysphagia, exercise therapy and nutritional therapy interventions, as well as direct interventions to address tongue strength, may be effective in dysphagia rehabilitation in older adult inpatients.
Framework for the quantitative weight-of-evidence analysis of 'omics data for regulatory purposes.
Bridges, Jim; Sauer, Ursula G; Buesen, Roland; Deferme, Lize; Tollefsen, Knut E; Tralau, Tewes; van Ravenzwaay, Ben; Poole, Alan; Pemberton, Mark
2017-12-01
A framework for the quantitative weight-of-evidence (QWoE) analysis of 'omics data for regulatory purposes is presented. The QWoE framework encompasses seven steps to evaluate 'omics data (also together with non-'omics data): (1) Hypothesis formulation, identification and weighting of lines of evidence (LoEs). LoEs conjoin different (types of) studies that are used to critically test the hypothesis. As an essential component of the QWoE framework, step 1 includes the development of templates for scoring sheets that predefine scoring criteria with scores of 0-4 to enable a quantitative determination of study quality and data relevance; (2) literature searches and categorisation of studies into the pre-defined LoEs; (3) and (4) quantitative assessment of study quality and data relevance using the respective pre-defined scoring sheets for each study; (5) evaluation of LoE-specific strength of evidence based upon the study quality and study relevance scores of the studies conjoined in the respective LoE; (6) integration of the strength of evidence from the individual LoEs to determine the overall strength of evidence; (7) characterisation of uncertainties and conclusion on the QWoE. To put the QWoE framework in practice, case studies are recommended to confirm the relevance of its different steps, or to adapt them as necessary. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Effects of Self-Monitoring, Likability and Argument Strength on Persuasion.
ERIC Educational Resources Information Center
Harnish, Richard J.
Recently, there has been a renewed interest in the functional theories of attitudes. These theories assume that there are certain individualistic needs that are being met by one's attitudes, and that these attitudes allow the individual to implement certain plans to attain certain goals. This study examined whether source characteristics (i.e.,…
The Influence of Oropalatal Dimensions on the Measurement of Tongue Strength.
Pitts, Laura L; Stierwalt, Julie A G; Hageman, Carlin F; LaPointe, Leonard L
2017-12-01
Tongue strength is routinely evaluated in clinical swallowing evaluations since lingual weakness is an established contributor to dysphagia. Tongue strength may be clinically quantified by the maximum isometric tongue pressure (MIP) generated by the tongue against the palate; however, wide ranges in normal performance remain to be fully explained. Although orthodontic theory has long suggested a relation between lingual function and oral cavity dimensions, little attention has been given to the potential influence of oral and palatal structure(s) on healthy variance in MIP generation. Therefore, anterior and posterior tongue strength measures and oropalatal dimensions were obtained across 147 healthy adults (aged 18-88 years). Age was confirmed as a significant, independent predictor explaining approximately 10.2% of the variance in anterior tongue strength, but not a significant predictor of posterior tongue strength. However, oropalatal dimensions predicted anterior tongue strength with over three times the predictive power of age alone (p < .001). Significant models for anterior tongue strength (R 2 = .457) and posterior tongue strength (R 2 = .283) included a combination of demographic predictors (i.e., age and/or gender) and oropalatal dimensions. Palatal width, estimated tongue volume, and gender were significant predictors of posterior tongue strength (p < .001). Therefore, oropalatal dimensions may warrant consideration when accurately differentiating between pathological lingual weakness and healthy individual difference.
Myklebust, G; Bahr, R; Nilstad, A; Steffen, K
2017-05-01
The aim of the study was to describe objective and self-reported knee function for athletes who have returned to elite handball and football play after an ACL injury, comparing these to non-injured players at the same level. A total of 414 handball and 444 football players completed baseline tests from 2007 through 2014, examining lower extremity strength, dynamic balance, knee laxity, and knee function (KOOS questionnaire). Measures were compared between injured and non-injured legs and between injured legs and legs of controls. Eighty (9.3%) of the 858 players reported a previous ACL injury, 1-6 years post-injury (3.5±2.5 years), 49 handball (61.3%) and 31 football players (38.7%). We found no difference in strength or dynamic balance between previously ACL-injured (N=80) and non-injured players legs (N=1556). However, lower quadriceps (6.3%, 95% CI: 3.2-9.2) and hamstrings muscle strength (6.1%, 95% CI: 3.3-8.1) were observed in previously ACL-injured legs compared to the non-injured contralateral side (N=80). ACL-injured knees displayed greater joint laxity than the contralateral knee (N=80, 17%, 95% CI: 8-26) and healthy knees (N=1556, 23%, 95% CI: 14-33). KOOS scores were significantly lower for injured knees compared to knees of non-injured players. ACL-injured players who have successfully returned to elite sport have comparable strength and balance measures as their non-injured teammates. Subjective perception of knee function is strongly affected by injury history, with clinically relevant lower scores for the KOOS subscores Pain, Function, Sport, and Quality Of Life. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Eriksen, Christian Skou; Garde, Ellen; Reislev, Nina Linde; Wimmelmann, Cathrine Lawaetz; Bieler, Theresa; Ziegler, Andreas Kraag; Gylling, Anne Theil; Dideriksen, Kasper Juel; Siebner, Hartwig Roman; Mortensen, Erik Lykke; Kjaer, Michael
2016-01-01
Introduction Physical and cognitive function decline with age, accelerating during the 6th decade. Loss of muscle power (force×velocity product) is a dominant physical determinant for loss of functional ability, especially if the lower extremities are affected. Muscle strength training is known to maintain or even improve muscle power as well as physical function in older adults, but the optimal type of training for beneficial long-term training effects over several years is unknown. Moreover, the impact of muscle strength training on cognitive function and brain structure remains speculative. The primary aim of this randomised controlled trial is to compare the efficacy of two different 1 year strength training regimens on immediate and long-lasting improvements in muscle power in retirement-age individuals. Secondary aims are to evaluate the effect on muscle strength, muscle mass, physical and cognitive function, mental well-being, health-related quality of life and brain morphology. Methods and analysis The study includes 450 home-dwelling men and women (62–70 years). Participants are randomly allocated to (1) 1 year of supervised, centre-based heavy resistance training, (2) home-based moderate intensity resistance training or (3) habitual physical activity (control). Changes in primary (leg extensor power) and secondary outcomes are analysed according to the intention to treat principle and per protocol at 1, 2, 4, 7 and 10 years. Ethics and dissemination The study is expected to generate new insights into training-induced promotion of functional ability and independency after retirement and will help to formulate national recommendations regarding physical activity schemes for the growing population of older individuals in western societies. Results will be published in scientific peer-reviewed journals, in PhD theses and at public meetings. The study is approved by the Regional Ethical Committee (Capital Region, Copenhagen, Denmark, number H-3-2014-017). Trial registration number NCT02123641. PMID:27913559
In vitro evaluation of five core materials.
Gu, Steven; Rasimick, Brian J; Deutsch, Allan S; Musikant, Barry L
2007-01-01
This in vitro study determined the fracture strength of five core materials supported by two different endodontic dowels. Diametral tensile strength and microhardness of the three resin composite core materials used in this study were also tested. The fracture strength study used one lanthanide-reinforced flowable resin composite (Ti-Core Auto E), one titanium- and lanthanide-reinforced composite (Ti-Core), one lanthanide-reinforced composite (Ti-Core Natural), and two metal-reinforced glass ionomer core materials (Ketac Silver and GC Miracle Mix). Two types of dowels were used: a multitiered, split-shank threaded dowel with a flange (#1 Flexi-Flange) and one without a flange design (#1 Flexi-Post). The specimens were divided into ten groups. Each tooth/dowel and core specimen was placed in a special jig at 45 degrees and subjected to a load by a universal testing machine. The diametral tensile strength and the microhardness of the three resin composite core materials were measured by a universal testing machine and Barcol hardness tester, respectively. All test groups contained ten specimens. The fracture strength value of the resin composite core materials was significantly larger ( p < 0.0001) than those for the metal-reinforced glass-ionomer core materials. Analysis of variance (ANOVA) also showed that the Flexi-Flange dowel interacted with Ti-Core and Ti-Core Auto E to significantly ( p < 0.0013) increase the fracture strength relative to the Flexi-Post. One-way ANOVA revealed that there were no significant differences between them in terms of diametral tensile strength. The Barcol hardness values of the composite core materials were statistically different ( p < 0.0001), with the Ti-Core the highest, followed by Ti-Core Natural, then Ti-Core Auto E. Resin composite core material performed better than glass ionomer material in this in vitro study. The flowable composite core material performed about the same in terms of fracture strength and diametral tensile strength compared with nonflowable composites. Combined with certain core materials, the flange design increased the fracture strength of the tooth/dowel and core combination.
Payette, Hélène; Boutier, Véronique; Coulombe, Carole; Gray-Donald, Katherine
2002-08-01
To evaluate the impact of nutritional supplementation on nutritional status, muscle strength, perceived health, and functional status in a population of community-living, frail, undernourished elderly people. A 16-week intervention study in which subjects were randomized to an experimental or a control group and visited in their home on a monthly basis. Outcome variables were measured at the start and end of the study at subjects' homes by a dietitian blinded to treatment assignment. 83 elderly people (experimental group: n=42; control group: n=41; mean age=80+/-7 years) receiving community home-care services and at high risk for undernutrition. Provision of a nutrient-dense protein-energy liquid supplement and encouragement to improve intake from other foods. Anthropometric indexes, handgrip strength, isometric elbow flexion and leg extension strength, lower extremity function, perceived health, and functional status. Study groups were compared on an "intention to treat" basis using analysis of variance for repeated measures and unpaired and paired t tests and their nonparametric equivalents where appropriate. Total energy intake (1,772 vs 1,440 kcal; P<.001) and weight gain (1.62 vs 0.04 kg; P<.001) were higher in the supplemented group. No significant changes were observed with respect to other anthropometric indexes, muscle strength, or functional variables; however, beneficial effects were observed in emotional role functioning (P<0.01) and number of days spent in bed (P=.04). Nutrition intervention is feasible in free-living, frail, undernourished elderly people and results in significant improvement of nutritional status with respect to energy and nutrient intake and weight gain. Weight loss can be stopped and in some cases reversed; however, increased physical activity may also be required to improve health and functional status.
47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... For equipment operating on frequencies below 890 MHz, an open field test is normally required, with... either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurements required: Field strength of...
Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.
Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P
2015-08-01
Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.
2012-01-01
2 Recombinant M13 phages Clone ID pIII pVIII E4-A1 STIHGST EEEE E4-A2 ATFNTMT EEEE E4-S7 SSSSSSS EEEE E4- T7 TTTTTTT EEEE E4-H7 HHHHHHH EEEE...higher binding strength, with A1 and H7 motifs 0 5E+10 1E+11 1.5E+11 2E+11 E4-W E4-A1 E4- T7 E4-H7 Phage Clones ECS Transactions, 41 (41) 55-64...prepared through conventional approaches. 5 Compared to other bio-templates used, the advantages of M13 phages exist not only in their well-understood
Beenakker, Karel G M; Ling, Carolina H; Meskers, Carel G M; de Craen, Anton J M; Stijnen, Theo; Westendorp, Rudi G J; Maier, Andrea B
2010-10-01
There is growing recognition of the serious consequences of sarcopenia on the functionality and autonomy in old age. Recently, the age-related changes in several inflammatory mediators have been implicated in the pathogenesis of sarcopenia. The purposes of this systematic review were two-fold: (1) to describe the patterns of muscle strength loss with age in the general population, and (2) to quantify the loss of muscle strength in rheumatoid arthritis as representative for an underlying inflammatory state. Handgrip strength was used as a proxy for overall muscle strength. Results from 114 studies (involving 90,520 subjects) and 71 studies (involving 10,529 subjects) were combined in a meta-analysis for the general and rheumatoid arthritis population respectively and standardized at an equal sex distribution. For the general population we showed that between the ages of 25 years and 95 years mean handgrip strength declined from 45.5 kg to 23.2 kg for males and from 27.1 kg to 12.8 kg for females. We noted a steeper handgrip strength decline after 50 years of age (rate of 0.37 kg/year). In the rheumatoid arthritis population handgrip strength was not associated with chronological age between the ages of 35 years and 65 years and was as low as 20.2 kg in male and 15.1 in female. Rheumatoid arthritis disease duration was inversely associated with handgrip strength. This meta-analysis shows distinct patterns of age-related decrease of handgrip strength in the general population. Handgrip strength is strongly associated with the presence and duration of an inflammatory state as rheumatoid arthritis. The putative link between age-related inflammation and sarcopenia mandates further study as it represents a potential target for intervention to maintain functional independence in old age. Copyright © 2010 Elsevier B.V. All rights reserved.
Optical transfer function of NTS-1 retroreflector array
NASA Technical Reports Server (NTRS)
Arnold, D. A.
1974-01-01
An optical transfer function was computed for the retroreflector array carried by the NTS-1 satellite. Range corrections are presented for extrapolating laser range measurements to the center of mass of the satellite. The gain function of the array was computed for use in estimating laser-echo signal strengths.
Multi-configuration Dirac-Hartree-Fock (MCDHF) calculations for Ni XXV
NASA Astrophysics Data System (ADS)
Singh, Narendra; Aggarwal, Sunny
2018-03-01
We present accurate 165 fine-structure energy levels related to the configurations 1s22s2, 1s22p2, 1s2nƖn‧l‧ (n = 2, n‧ = 2, 3, 4, 5, Ɩ = s,p Ɩ‧ = s, p, d, f, g) of Ni XXV which may be useful ion for astrophysical and fusion plasma. For the calculations of energy levels and radiative rates, we have used the multiconfiguration Dirac-Hartree-Fock (MCDHF) method employed in GRASP2K code. The calculations are carried out in the active space approximation with the inclusion of the Breit interaction, the finite nuclear size effect, and quantum electrodynamic corrections. The transition wavelengths, transition probabilities, line strengths, and absorption oscillator strengths are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), magnetic quadrupole (M2) transitions from the ground state. We have compared our calculated results with available theoretical and experimental data and good agreement is achieved. We predict new energy levels, oscillator strengths, line strengths and transition probabilities, where no other experimental or theoretical results are available. The present complete set of results should be of great help in line identification and the interpretation of spectra, as well as in the modelling and diagnostics of astrophysical and fusion plasmas.
Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials.
Peumans, Marleen; Valjakova, Emilija Bajraktarova; De Munck, Jan; Mishevska, Cece Bajraktarova; Van Meerbeek, Bart
To evaluate the influence of different surface treatments of six novel CAD/CAM materials on the bonding effectiveness of two luting composites. Six different CAD/CAM materials were tested: four ceramics - Vita Mark II; IPS Empress CAD and IPS e.max CAD; Celtra Duo - one hybrid ceramic, Vita Enamic, and one composite CAD/CAM block, Lava Ultimate. A total of 60 blocks (10 per material) received various mechanical surface treatments: 1. 600-grit SiC paper; 2. sandblasting with 30-μm Al2O3; 3. tribochemical silica coating (CoJet). Subsequent chemical surface treatments involved either no further treatment (control), HF acid etching (HF), silanization (S, or HF acid etching followed by silanization (HF+S). Two specimens with the same surface treatment were bonded together using two dual-curing luting composites: Clearfil Esthetic Cement (self-etching) or Panavia SA Cement (self-adhesive). After 1 week of water storage, the microtensile bond strength of the sectioned microspecimens was measured and the failure mode was evaluated. The bonding performance of the six CAD/CAM materials was significantly influenced by surface treatment (linear mixed models, p < 0.05). The luting cement had a significant influence on bond strength for Celtra Duo and Lava Ultimate (linear mixed models, p < 0.05). Mechanical surface treatment significantly influenced the bond strength for Celtra Duo (p = 0.0117), IPS e.max CAD (p = 0.0115), and Lava Ultimate (p < 0.0001). Different chemical surface treatments resulted in the highest bond strengths for the six CAD/CAM materials: Vita Mark II and IPS Empress CAD: S, HF+S; Celtra Duo: HF, HF+S; IPS e.max CAD: HF+S; Vita Enamic: HF+S, S. For Lava Ultimate, the highest bond strengths were obtained with HF, S, HF+S. Failure analysis showed a relation between bond strength and failure type: more mixed failures were observed with higher bond strengths. Mainly adhesive failures were noticed if no further surface treatment was done. The percentage of adhesive failures was higher for CAD/CAM materials with higher flexural strength (Celtra Duo, IPS e.max CAD, and Lava Ultimate). The bond strength of luting composites to novel CAD/CAM materials is influenced by surface treatment. For each luting composite, an adhesive cementation protocol can be specified in order to obtain the highest bond to the individual CAD/CAM materials.
Cohesive Strength of Gas-hydrate-bearing Marine Sediments
NASA Astrophysics Data System (ADS)
Cook, A. E.; Goldberg, D.
2005-12-01
We examine the relationship between gas hydrate saturation and the cohesive strength of marine sediments in a variety of continental margin settings. The cohesive strength (cohesion) is a fundamental physical property controlling sediment resistance to compressive failure. The cohesion (Co), is typically defined by the uncompressive rock strength and the friction angle, but it can also be related to the dynamic Young's modulus (ED), where: Co = 1.5*10-3 ED. The dynamic Young's modulus is computed using in situ Vp, Vs, and bulk density borehole logs. The Co profiles are compared to estimates of the in situ hydrate saturation, Sh, calculated using electrical resistivity logs and the modified Archie formula: Sh = 1 - (aRw/RΦm)1/n. We will present results of these comparisons from data collected during Ocean Drilling Program Legs at Cascadia margin (204 & 168) and Blake Ridge (164), the JIP gas hydrate drilling project in the Gulf of Mexico, and Malik permafrost wells. In general, at all the sites investigated, Co steadily increases downhole as sediments compact due to overburden. In marine sediments, cohesion ranges from 500-2000kPa above the BSR, with a baseline gradient usually between 5 and 10 kPa/m. Preliminary results show at Cascadia margin that sediments with Sh > 15%, Co increases dramatically, at least 200kPa greater than the general trend of the downhole gradient. This suggests that Co is affected directly by Sh, and may be related to the rate of change in Sh (e.g. gradual or sharp) as a function of depth. Further study on the relationship between Co and Sh may provide information on the growth habit of gas hydrates in sediment pore spaces.
Jones, Thomas W; Howatson, Glyn; Russell, Mark; French, Duncan N
2016-03-01
The present study examined functional strength and endocrine responses to varying ratios of strength and endurance training in a concurrent training regimen. Thirty resistance trained men completed 6 weeks of 3 d·wk of (a) strength training (ST), (b) concurrent strength and endurance training ratio 3:1 (CT3), (c) concurrent strength and endurance training ratio 1:1 (CT1), or (d) no training (CON). Strength training was conducted using whole-body multijoint exercises, whereas endurance training consisted of treadmill running. Assessments of maximal strength, lower-body power, and endocrine factors were conducted pretraining and after 3 and 6 weeks. After the intervention, ST and CT3 elicited similar increases in lower-body strength; furthermore, ST resulted in greater increases than CT1 and CON (all p ≤ 0.05). All training conditions resulted in similar increases in upper-body strength after training. The ST group observed greater increases in lower-body power than all other conditions (all p ≤ 0.05). After the final training session, CT1 elicited greater increases in cortisol than ST (p = 0.008). When implemented as part of a concurrent training regimen, higher volumes of endurance training result in the inhibition of lower-body strength, whereas low volumes do not. Lower-body power was attenuated by high and low frequencies of endurance training. Higher frequencies of endurance training resulted in increased cortisol responses to training. These data suggest that if strength development is the primary focus of a training intervention, frequency of endurance training should remain low.
Impact of molecular flexibility on binding strength and self-sorting of chiral π-surfaces.
Safont-Sempere, Marina M; Osswald, Peter; Stolte, Matthias; Grüne, Matthias; Renz, Manuel; Kaupp, Martin; Radacki, Krzysztof; Braunschweig, Holger; Würthner, Frank
2011-06-22
In this work, we have explored for the first time the influence of conformational flexibility of π-core on chiral self-sorting properties of perylene bisimides (PBIs) that are currently one of the most prominent classes of functional dyes. For this purpose, two series of chiral macrocyclic PBIs 3a-c and 4a-c comprising oligoethylene glycol bridges of different lengths at the 1,7 bay positions were synthesized and their atropo-enantiomers (P and M enantiomers) were resolved. Single crystal analysis of atropo-enantiomerically pure (P)-3a not only confirmed the structural integrity of the ethylene glycol bridged macrocycle but also illustrated the formation of π-stacked dimers with left-handed supramolecular helicity. Our detailed studies with the series of highly soluble chiral PBIs 4a-c by 1- and 2-D (1)H NMR techniques, and temperature- and concentration-dependent UV/vis absorption and circular dichroism (CD) spectroscopy revealed that in π-π-stacking dimerization of these PBIs chiral self-recognition (i.e., PP and MM homodimer formation) prevails over self-discrimination (i.e., PM heterodimer formation). Our studies clearly showed that with increasing conformational flexibility of PBI cores imparted by longer bridging units, the binding strength for the dimerization process increases, however, the efficiency for chiral self-recognition decreases. These results are rationalized in terms of an induced-fit mechanism facilitating more planarized π-scaffolds of PBIs containing longer bridging units upon π-π-stacking.
Deontic introduction: A theory of inference from is to ought.
Elqayam, Shira; Thompson, Valerie A; Wilkinson, Meredith R; Evans, Jonathan St B T; Over, David E
2015-09-01
Humans have a unique ability to generate novel norms. Faced with the knowledge that there are hungry children in Somalia, we easily and naturally infer that we ought to donate to famine relief charities. Although a contentious and lively issue in metaethics, such inference from "is" to "ought" has not been systematically studied in the psychology of reasoning. We propose that deontic introduction is the result of a rich chain of pragmatic inference, most of it implicit; specifically, when an action is causally linked to a valenced goal, valence transfers to the action and bridges into a deontic conclusion. Participants in 5 experiments were presented with utility conditionals in which an action results in a benefit, a cost, or neutral outcome (e.g., "If Lisa buys the booklet, she will pass the exam") and asked to evaluate how strongly deontic conclusions (e.g., "Lisa should buy the booklet") follow from the premises. Findings show that the direction of the conclusions was determined by outcome valence (Experiments 1a and 1b), whereas their strength was determined by the strength of the causal link between action and outcome (Experiments 1, 2a, and 2b). We also found that deontic introduction is defeasible and can be suppressed by additional premises that interfere with any of the links in the implicit chain of inference (Experiments 2a, 2b, and 3). We propose that deontic introduction is a species-specific generative capacity whose function is to regulate future behavior. (c) 2015 APA, all rights reserved).
Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L
2017-02-01
This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.
A precision structured smart hydrogel for sensing applications
NASA Astrophysics Data System (ADS)
Menges, J.; Kleinschmidt, P.; Bart, H.-J.; Oesterschulze, E.
2017-10-01
We report on a macroinitiator based smart hydrogel film applied on a microcantilever for sensing applications. The studied hydrogel features a comparatively wide dynamic range for changes in the electrolyte's ionic strength. Furthermore, it offers a simple spin coating process for thin film deposition as well as the capability to obtain high aspect ratio microstructures by reactive ion etching. This makes the hydrogel compatible to microelectromechanical system integration. As a proof of concept, we study the response of hydrogel functionalized cantilevers in aqueous sodium chloride solutions of varying ionic strength. In contrast to the majority of hydrogel materials reported in the literature, we found that our hydrogel still responds in high ionic strength environments. This may be of future interest for sensing e.g., in sea water or physiological environments like urine.
[Effects of different mechanical stretch conditions on differentiation of rat tendon stem cells].
Li, Pao; Gao, Shang; Zhou, Mei; Tang, Hong; Mu, Miduo; Zhang, Jiqiang; Tang, Kanglai
2017-04-01
To investigate the effects of different mechanical stretch conditions on the differentiation of rat tendon stem cells (TSCs), to find the best uniaxial cyclic stretching for TSCs tenogenic differentiation, osteogenic differentiation, and adipogenic differentiation. TSCs were isolated from the Achilles tendons of 8-week-old male Sprague Dawley rats by enzymatic digestion method and cultured. The TSCs at passage 3 were randomly divided into 5 groups: group A (stretch strength of 4% and frequency of 1 Hz), group B (stretch strength of 4% and frequency of 2 Hz), group C (stretch strength of 8% and frequency of 1 Hz), group D (stretch strength of 8% and frequency of 2 Hz), and group E (static culture). At 12, 24, and 48 hours after mechanical stretch, the mRNA expressions of the tenogenic differentiation related genes [Scleraxis (SCX) and Tenascin C (TNC)], the osteogenic differentiation related genes [runt related transcription factor 2 (RUNX2) and distal-less homeobox 5 (DLX5)], and the adipogenic differentiation related genes [CCAAT-enhancer-binding protein-α (CEBPα) and lipoprteinlipase (LPL)] were detected by real-time fluorescent quantitative PCR and the protein expressions of TNC, CEBPα, and RUNX2 were detected by Western blot. The mRNA expressions of SCX and TNC in group B were significantly higher than those in groups A, C, D, and E at 24 hours after mechanical stretch ( P <0.05). The mRNA expressions of CEBPα and LPL in group D were significantly higher than those in groups A, B, C, and E at 48 hours after mechanical stretch ( P <0.05). The mRNA expressions of RUNX2 and DLX5 in group C were significantly higher than those in groups A, B, D, and E at 24 hours after mechanical stretch ( P <0.05). Western blot detection showed that higher protein expression of TNC in group B than group E at each time point after mechanical stretch ( P <0.05), and the protein expression of CEBPα was significantly inhibited when compared with group E at 24 hours after mechanical stretch ( P <0.05). At 24 hours after mechanical stretch, the protein expression of RUNX2 in group C was significantly higher than that in group E ( P <0.05); and the protein expression of TNC was significantly lower than that in group E at 24 and 48 hours after mechanical stretch ( P <0.05). At 48 hours after mechanical stretch, the protein expression of CEBPα was significantly increased and the protein expression of TNC was significantly decreased in group D when compared with group E ( P <0.05), but no significant difference was found in the protein expression of RUNX2 between groups D and E ( P >0.05). The mechanical strain could promote differentiation of TSCs, and different parameter of stretch will lead to different differentiation. The best stretch condition for tenogenic differentiation is 4% strength and 2 Hz frequency for 24 hours; the best stretch condition for osteogenic differentiation is 8% strength and 1 Hz frequency for 24 hours; and the best stretch condition for adipogenic differentiation is 8% strength and 2 Hz frequency for 48 hours.
Côté, Julie N
2012-01-01
The objective of this paper is to critically review recent literature on physical and functional sex/gender (s/g) differences, with focus on physical determinants associated with neck/shoulder musculoskeletal injuries. It is well known that there are s/g differences in anthropometrical and functional body characteristics (e.g. size and strength). However, s/g differences may be wrongly attributed if data analysis does not include appropriate corrections (e.g. by strength for endurance). Recent literature on motor control shows that there may indeed be s/g differences in muscle coordination and movement strategies during upper limb tasks that are not currently explained by methodological inadequacies. Moreover, recent studies have shown differences between men and women in sensory hypersensitivity characteristics associated with neck/shoulder injuries. Taken together, the literature points to the importance of accounting for possible s/g differences at all levels of the biopsychosocial system in order to better understand sex- and gender-specific issues relevant to workplace health. This article critically reviews recent literature and a conceptual model highlighting s/g differences in physical and functional characteristics related to neck/shoulder musculoskeletal disorders (NSMSD). Findings have implications on understanding how personal factors may affect NSMSD risk. With better understanding, practitioners can make more appropriate decisions to prevent work-related NSMSD.
Management of birth brachial plexus palsy.
O'Brien, Donncha F; Park, T S; Noetzel, Michael J; Weatherly, Trisha
2006-02-01
The indications for surgical repair of congenital brachial plexus palsy are controversial. Our objective was to determine the results of early brachial plexus surgery following obstetric-induced brachial plexus palsy. We performed a retrospective analysis of the outcome of 58 cases of brachial plexus surgery. The indication for operation consisted of the presence of less than antigravity strength in the biceps, triceps, and deltoid muscle groups at 6 months of age. Data gathered prospectively, previously, showed the likelihood of improvement with less than antigravity strength in these cases to be poor. Follow-up data were obtained on 52 of the 58 cases. Overall mean follow-up was 2 years. Twelve patients had more than 3 years follow-up (mean 5.5 years, range 3-11.5 years). Significant improvement was seen in all injury patterns i.e., C5-C6, C5-C7, and C5-C8, T1. Greater than antigravity strength in the biceps, triceps, and deltoid muscle groups was seen in the majority of cases at follow-up. Repair of obstetrical brachial plexus palsy in children at 6 months of age that is based on less than antigravity strength in the biceps, triceps, and deltoid muscle groups produces improvement in functional capabilities. Children with obstetrical brachial plexus palsy should be referred soon after birth to a center that specializes in the treatment of this type of palsy.
Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
He, Guo; Liu, Ping; Tan, Qingbiao
2012-01-01
A kind of porous metal-entangled titanium wire material has been investigated in terms of the pore structure (size and distribution), the strength, the elastic modulus, and the mechanical behavior under uniaxial tensile loading. Its functions and potentials for surgical application have been explained. In particular, its advantages over competitors (e.g., conventional porous titanium) have been reviewed. In the study, a group of entangled titanium wire materials with non-woven structure were fabricated by using 12-180 MPa forming pressure, which have porosity in a range of 48%-82%. The pores in the materials are irregular in shape, which have a nearly half-normal distribution in size range. The yield strength, ultimate tensile strength, and elastic modulus are 75 MPa, 108 MPa, and 1.05 GPa, respectively, when its porosity is 44.7%. The mechanical properties decrease significantly as the porosity increases. When the porosity is 57.9%, these values become 24 MPa, 47.5 MPa, and 0.33 GPa, respectively. The low elastic modulus is due to the structural flexibility of the entangled titanium wire materials. For practical reference, a group of detailed data of the porous structure and the mechanical properties are reported. This kind of material is very promising for implant applications because of their very good toughness, perfect flexibility, high strength, adequate elastic modulus, and low cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
Magni, Nicoló Edoardo; McNair, Peter John; Rice, David Andrew
2017-06-13
Hand osteoarthritis is a common condition characterised by joint pain and muscle weakness. These factors are thought to contribute to ongoing disability. Some evidence exists that resistance training decreases pain, improves muscle strength, and enhances function in people with knee and hip osteoarthritis. However, there is currently a lack of consensus regarding its effectiveness in people with hand osteoarthritis. Therefore, the aim of this systematic review and meta-analysis was to establish whether resistance training in people with hand osteoarthritis increases grip strength, decreases joint pain, and improves hand function. Seven databases were searched from 1975 until July 1, 2016. Randomised controlled trials were included. The Cochrane Risk of Bias Tool was used to assess studies' methodological quality. The Grade of Recommendations Assessment, Development, and Evaluation system was adopted to rate overall quality of evidence. Suitable studies were pooled using a random-effects meta-analysis. Five studies were included with a total of 350 participants. The majority of the training programs did not meet recommended intensity, frequency, or progression criteria for muscle strengthening. There was moderate-quality evidence that resistance training does not improve grip strength (mean difference = 1.35; 95% confidence interval (CI) = -0.84, 3.54; I 2 = 50%; p = 0.23 ). Low-quality evidence showed significant improvements in joint pain (standardised mean difference (SMD) = -0.23; 95% CI = -0.42, -0.04; I 2 = 0%; p = 0.02) which were not clinically relevant. Low-quality evidence demonstrated no improvements in hand function following resistance training (SMD = -0.1; 95% CI = -0.33, 0.13; I 2 = 28%; p = 0.39). There is no evidence that resistance training has a significant effect on grip strength or hand function in people with hand osteoarthritis. Low-quality evidence suggests it has a small, clinically unimportant pain-relieving effect. Future studies should investigate resistance training regimes with adequate intensity, frequency, and progressions to achieve gains in muscle strength.
Reference values for developing responsive functional outcome measures across the lifespan.
McKay, Marnee J; Baldwin, Jennifer N; Ferreira, Paulo; Simic, Milena; Vanicek, Natalie; Burns, Joshua
2017-04-18
To generate a reference dataset of commonly performed functional outcome measures in 1,000 children and adults and investigate the influence of demographic, anthropometric, strength, and flexibility characteristics. Twelve functional outcome measures were collected from 1,000 healthy individuals aged 3-101 years: 6-minute walk test, 30-second chair stand test, timed stairs test, long jump, vertical jump, choice stepping reaction time, balance (Star Excursion Balance Test, tandem stance eyes open and closed, single-leg stance eyes closed), and dexterity (9-hole peg test, Functional Dexterity Test). Correlation and multiple regression analyses were performed to identify factors independently associated with each measure. Age- and sex-stratified reference values for functional outcome measures were generated. Functional performance increased through childhood and adolescence, plateaued during adulthood, and declined in older adulthood. While balance did not differ between the sexes, male participants generally performed better at gross motor tasks while female participants performed better at dexterous tasks. Height was the most consistent correlate of functional performance in children, while lower limb muscle strength was a major determinant in adolescents and adults. In older adults, age, lower limb strength, and joint flexibility explained up to 63% of the variance in functional measures. These normative reference values provide a framework to accurately track functional decline associated with neuromuscular disorders and assist development and validation of responsive outcome measures for therapeutic trials. © 2017 American Academy of Neurology.
Hand Strength, Handwriting, and Functional Skills in Children With Autism.
Alaniz, Michele L; Galit, Eleanor; Necesito, Corina Isabel; Rosario, Emily R
2015-01-01
To establish hand strength development trends in children with autism and to investigate correlations between grip and pinch strength, components of handwriting, and functional activities in children with and without autism. Fifty-one children were divided into two groups: typically developing children and children on the autism spectrum. Each child completed testing for pinch and grip strength, handwriting legibility, pencil control, and independence in functional activities. The children with autism followed the same strength development trends as the typically developing children. Grip strength correlated with pencil control in both groups and with handwriting legibility in the typically developing children but not in the children with autism. Grip and pinch strength correlated with independence with functional activities in both groups. This study provides evidence that grip and pinch strength are important components in developing pencil control, handwriting legibility, and independence with functional fine motor tasks. Copyright © 2015 by the American Occupational Therapy Association, Inc.
Multivisceral Transplantation Rehabilitation Program-Case Report.
Loschi, T M; Cinacchi, M P R G; Baccan, M D T A; Marques, F; Pedroso, P T; Meira Filho, S P; Scacchetti, T; Pavão, D N
2018-04-01
Multivisceral transplantation is the treatment for multiple abdominal organ failure. The patient experiences reduced food intake and absorption of nutrients, contributing to weight loss and decreased muscle mass, reducing functional capacity. A physical and nutritional rehabilitation program based on adequate caloric intake associated with supervised physical exercise seems to support a gain of muscle mass, re-establishing its capacity and functional independence. A rehabilitation program was carried out, consisting of low-intensity aerobic exercise on treadmill, exercises of global strengthening (50% of 1 maximum repetition [1RM], with progressive increase), and nutritional monitoring (oral hypercaloric diet, hyperproteic supplementation daily and after exercise). Initial and final evaluation included weight, muscle mass index, brachial circumference (BC), tricipital cutaneous fold (TCF), hand grip strength (HGS), 6-minute walk test (6MWT), 1RM, vital capacity (VC), and respiratory muscle strength. After the program, functional capacity was evaluated through the 6MWT (92%), 1RM test, VC (55%), respiratory muscle strength, HGS at 5 kg, weight gain (4.75%), increase of BC in 2 cm, and TCF in 2 mm. The program contributed to functional independence, improved quality of life, and social reintegration, suggesting the importance of a supervised physical activity program associated with adequate nutritional intake after multivisceral transplantation. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Department of Physics, Sophia University, Tokyo 102-8554; Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA
2015-02-14
The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Πmore » transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)« less
Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship
Jandačka, Daniel; Beremlijski, Petr
2011-01-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484
Determination of strength exercise intensities based on the load-power-velocity relationship.
Jandačka, Daniel; Beremlijski, Petr
2011-06-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.
Dias, Caroline Pieta; Toscan, Rafael; de Camargo, Mainara; Pereira, Evelyn Possobom; Griebler, Nathália; Baroni, Bruno Manfredini; Tiggemann, Carlos Leandro
2015-10-01
The aim of the study was to assess the effect of eccentric training using a constant load with longer exposure time at the eccentric phase on knee extensor muscle strength and functional capacity of elderly subjects in comparison with a conventional resistance training program. Twenty-six healthy elderly women (age = 67 ± 6 years) were randomly assigned to an eccentric-focused training group (ETG; n = 13) or a conventional training group (CTG; n = 13). Subjects underwent 12 weeks of resistance training twice a week. For the ETG, concentric and eccentric phases were performed using 1.5 and 4.5 s, respectively, while for CTG, each phase lasted 1.5 s. Maximum dynamic strength was assessed by the one-repetition maximum (1RM) test in the leg press and knee extension exercises, and for functional capacity, subjects performed specific tests (6-m walk test, timed up-and-go test, stair-climbing test, and chair-rising test). Both groups improved knee extension 1RM (24-26 %; p = 0.021), timed up-and-go test (11-16 %; p < 0.001), 6-m walk test (9-12 %; p = 0.004), stair-climbing test (8-13 %; p = 0.007), and chair-rising test (15-16 %; p < 0.001), but there was no significant difference between groups. In conclusion, the strategy of increasing the exposure time at the eccentric phase of movement using the same training volume and intensity does not promote different adaptations in strength or functional capacity compared to conventional resistance training in elderly woman.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Ingham Institute, Liverpool, Aus
Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0Tmore » MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research Council (AUS), National Institute of Health (NIH), and Cancer Institute NSW.« less
NASA Astrophysics Data System (ADS)
Kang, Sin-Bi; Lim, Jong-Wook; Lee, Sunghun; Kim, Jang-Joo; Kim, Han-Ki
2012-08-01
We report on Ge-doped In2O3(IGO) films prepared by co-sputtering GeO2 and In2O3 targets for anode of phosphorescent organic light-emitting diodes (POLEDs). Under optimized annealing conditions, the IGO film exhibited a low sheet resistance of 14.0 Ω/square, a high optical transmittance of 86.9% and a work function of 5.2 eV, comparable to conventional Sn-doped In2O3 (ITO) films. Due to the higher Lewis acid strength of the Ge4+ ion (3.06) than that of Sn3+(1.62), the IGO film showed higher transparency in the near infrared and higher carrier mobility of 39.16 cm2 V-1 s-1 than the ITO films. In addition, the strongly preferred (2 2 2) orientation of the IGO grains, caused by Zone II grain growth during rapid thermal annealing, increased the carrier mobility and improved the surface morphology of the IGO film. POLEDs fabricated on IGO anodes showed identical current density-voltage-luminance curves and efficiencies to POLEDs with ITO electrodes due to the low sheet resistance and high transmittance of the IGO anode.
Biotic indices for assessing the status of coastal waters: a review of strengths and weaknesses.
Martínez-Crego, Begoña; Alcoverro, Teresa; Romero, Javier
2010-05-01
Biotic indices have become key assessment tools in most recent national and trans-national policies aimed at improving the quality of coastal waters and the integrity of their associated ecosystems. In this study we analyzed 90 published biotic indices, classified them into four types, and analyzed the strengths and weaknesses of each type in relation to the requirements of these policies. We identified three main type-specific weaknesses. First, the problems of applicability, due to practical and conceptual difficulties, which affect most indices related to ecosystem function. Second, the failure of many indices based on structural attributes of the community (e.g. taxonomic composition) to link deterioration with causative stressors, or to provide an early-detection capacity. Third, the poor relevance to the ecological integrity of indices based on attributes at the sub-individual level (e.g. multi-biomarkers). Additionally, most indices still fail on two further aspects: the broad-scale applicability and the definition of reference conditions. Nowadays, the most promising approach seems to be the aggregation of indices with complementary strengths, and obtained from different biological communities.
Petr, Jan; Teste, Bruno; Descroix, Stéphanie; Siaugue, Jean-Michel; Gareil, Pierre; Varenne, Anne
2010-08-01
The use of nanoparticles (NPs) in immunodiagnostics is a challenging task for many reasons, including the need for miniaturization. In view of the development of an assay dedicated to an original, miniaturized and fully automated immunodiagnostics which aims to mimic in vivo interactions, magnetic zwitterionic bifunctional amino/polyethyleneoxide maghemite core/silica shell NPs functionalized with allergenic alpha-lactalbumin were characterized by CE. Proper analytical performances were obtained through semi-permanent capillary coating with didodecyldimethylammonium bromide (DDAB) or permanent capillary wall modification by hydroxypropylcellulose. The influence of experimental conditions (e.g. buffer component nature, pH, ionic strength, and electric field strength) on sample stability, electrophoretic mobility, and dispersion was investigated using either DDAB- or hydroxypropylcellulose-coated capillaries. Adsorption to the capillary wall and aggregation phenomena were evaluated according to the CE conditions. The proper choice of experimental conditions, i.e. separation under -10 kV in a 25 mM ionic strength MES/NaOH (pH 6.0) with a DDAB-coated capillary, allowed the separation of the grafted and the non-grafted NPs.
Analysis of factors related to arm weakness in patients with breast cancer-related lymphedema.
Lee, Daegu; Hwang, Ji Hye; Chu, Inho; Chang, Hyun Ju; Shim, Young Hun; Kim, Jung Hyun
2015-08-01
The aim of this study was to evaluate the ratio of significant weakness in the affected arm of breast cancer-related lymphedema patients to their unaffected side. Another purpose was to identify factors related to arm weakness and physical function in patients with breast cancer-related lymphedema. Consecutive patients (n = 80) attended a single evaluation session following their outpatient lymphedema clinic visit. Possible independent factors (i.e., lymphedema, pain, psychological, educational, and behavioral) were evaluated. Handgrip strength was used to assess upper extremity muscle strength and the disabilities of arm, shoulder, and hand (DASH) questionnaire was used to assess upper extremity physical function. Multivariate logistic regression was performed using factors that had significant differences between the handgrip weakness and non-weakness groups. Out of the 80 patients with breast cancer-related lymphedema, 29 patients (36.3 %) had significant weakness in the affected arm. Weakness of the arm with lymphedema was not related to lymphedema itself, but was related to the fear of using the affected limb (odds ratio = 1.76, 95 % confidence interval = 1.30-2.37). Fears of using the affected limb and depression significantly contributed to the variance in DASH scores. Appropriate physical and psychological interventions, including providing accurate information and reassurance of physical activity safety, are necessary to prevent arm weakness and physical dysfunction in patients with breast cancer-related lymphedema.