Sample records for e10 billiards branes

  1. E11, brane dynamics and duality symmetries

    NASA Astrophysics Data System (ADS)

    West, Peter

    2018-05-01

    Following arXiv:hep-th/0412336 we use the nonlinear realisation of the semi-direct product of E11 and its vector representation to construct brane dynamics. The brane moves through a space-time which arises in the nonlinear realisation from the vector representation and it contains the usual embedding coordinates as well as the worldvolume fields. The resulting equations of motion are first order in derivatives and can be thought of as duality relations. Each brane carries the full E11 symmetry and so the Cremmer-Julia duality symmetries. We apply this theory to find the dynamics of the IIA and IIB strings, the M2 and M5 branes, the IIB D3 brane as well as the one and two branes in seven dimensions.

  2. The Spectrum of the Billiard Laplacian of a Family of Random Billiards

    NASA Astrophysics Data System (ADS)

    Feres, Renato; Zhang, Hong-Kun

    2010-12-01

    Random billiards are billiard dynamical systems for which the reflection law giving the post-collision direction of a billiard particle as a function of the pre-collision direction is specified by a Markov (scattering) operator P. Billiards with microstructure are random billiards whose Markov operator is derived from a "microscopic surface structure" on the boundary of the billiard table. The microstructure in turn is defined in terms of what we call a billiard cellQ, the shape of which completely determines the operator P. This operator, defined on an appropriate Hilbert space, is bounded self-adjoint and, for the examples considered here, a Hilbert-Schmidt operator. A central problem in the statistical theory of such random billiards is to relate the geometric characteristics of Q and the spectrum of P. We show, for a particular family of billiard cell shapes parametrized by a scale invariant curvature K (Fig. 2), that the billiard Laplacian P- I is closely related to the ordinary spherical Laplacian, and indicate, by partly analytical and partly numerical means, how this provides asymptotic information about the spectrum of P for small values of K. It is shown, in particular, that the second moment of scattering about the incidence angle closely approximates the spectral gap of P.

  3. Indication for quantum Darwinism in electron billiards

    NASA Astrophysics Data System (ADS)

    Brunner, R.; Akis, R.; Meisels, R.; Kuchar, F.; Ferry, D. K.

    2010-02-01

    In this paper, we investigate the dynamics in electron billiards by using classical and quantum mechanical calculations. We report on the existence of pointer states in single-dot and double-dot electron billiards. Additionally, we show that the two types of pointer states have the propensity to create offspring, i.e. they can be observed in the individual modes propagating between the external reservoirs. This can be understood as an indication that quantum Darwinism is present in the electron billiards.

  4. Microorganism billiards in closed plane curves.

    PubMed

    Krieger, Madison S

    2016-12-01

    Recent experiments have shown that many species of microorganisms leave a solid surface at a fixed angle determined by steric interactions and near-field hydrodynamics. This angle is completely independent of the incoming angle. For several collisions in a closed body this determines a unique type of billiard system, an aspecular billiard in which the outgoing angle is fixed for all collisions. We analyze such a system using numerical simulation of this billiard for varying tables and outgoing angles, and also utilize the theory of one-dimensional maps and wavefront dynamics. When applicable we cite results from and compare our system to similar billiard systems in the literature. We focus on examples from three broad classes: the ellipse, the Bunimovich billiards, and the Sinai billiards. The effect of a noisy outgoing angle is also discussed.

  5. Fermi acceleration in time-dependent billiards: theory of the velocity diffusion in conformally breathing fully chaotic billiards

    NASA Astrophysics Data System (ADS)

    Batistić, Benjamin; Robnik, Marko

    2011-09-01

    We study aspects of the Fermi acceleration (the unbounded growth of the energy) in a certain class of time-dependent 2D billiards. Specifically, we look at the conformally breathing billiards (periodic oscillation of the boundary which preserves the shape of the billiard at all times), which are fully chaotic as static (frozen) billiards, and we show that for large velocities around v0 and for not too long times, we observe just normal diffusion of the velocity as a function of the physical (continuous) time, around v0. However, the diffusion is not homogeneous, as the diffusion constant D depends on v0 as a power law D∝1/v30. Taking this into account, we show that to the leading order the average velocity v(n) as a function of the number of collisions n obeys a power law v∝n1/6 thus, the Fermi acceleration exponent is β = 1/6, which is in excellent agreement with the numerical calculations of the fully chaotic oval billiard, the Sinai billiard and the cardioid billiard. The error of the velocity estimates is of the order 1/v2. Thus, the higher the velocity, the better our analytic approximation. Moreover, we derive the underlying universal equation of the velocity dynamics of the time-dependent conformally breathing billiards, correct up to and including the order 1/v in the regime of the large velocity of the particle v. This universal equation does not depend on the dynamical properties of the system (integrability, ergodicity, chaoticity). We present the results of the numerical simulations for three billiards in complete agreement with the theory. We believe that this is a first step towards theoretical understanding of the power law growth and the Fermi acceleration exponents in 2D billiards, although our theory is so far specialized to the conformally breathing fully chaotic billiards.

  6. Brane - Anti-Brane Democracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajaraman, Arvind

    2003-06-02

    We suggest a duality invariant formula for the entropy and temperature of nonextreme black holes in supersymmetric string theory. The entropy is given in terms of the duality invariant parameter of the deviation from extremality and 56 SU(8) covariant central charges. It interpolates between the entropies of Schwarzschild solution and extremal solutions with various amount of unbroken supersymmetries and therefore serves for classification of black holes in supersymmetric string theories. We introduce the second auxiliary 56 via E(7) symmetric constraint. The symmetric and antisymmetric combinations of these two multiplets are related via moduli to the corresponding two fundamental representations ofmore » E(7): brane and anti-brane ''numbers.'' Using the CPT as well as C symmetry of the entropy formula and duality one can explain the mysterious simplicity of the non-extreme black hole area formula in terms of branes and anti-branes.« less

  7. Gerbes, M5-Brane Anomalies and E8 Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Jurco, Branislav

    2004-10-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.

  8. Duality of caustics in Minkowski billiards

    NASA Astrophysics Data System (ADS)

    Artstein-Avidan, S.; Florentin, D. I.; Ostrover, Y.; Rosen, D.

    2018-04-01

    In this paper we study convex caustics in Minkowski billiards. We show that for the Euclidean billiard dynamics in a planar smooth, centrally symmetric, strictly convex body K, for every convex caustic which K possesses, the ‘dual’ billiard dynamics in which the table is the Euclidean unit ball and the geometry that governs the motion is induced by the body K, possesses a dual convex caustic. Such a pair of caustics are dual in a strong sense, and in particular they have the same perimeter, Lazutkin parameter (both measured with respect to the corresponding geometries), and rotation number. We show moreover that for general Minkowski billiards this phenomenon fails, and one can construct a smooth caustic in a Minkowski billiard table which possesses no dual convex caustic.

  9. Thermodynamics of a time-dependent and dissipative oval billiard: A heat transfer and billiard approach.

    PubMed

    Leonel, Edson D; Galia, Marcus Vinícius Camillo; Barreiro, Luiz Antonio; Oliveira, Diego F M

    2016-12-01

    We study some statistical properties for the behavior of the average squared velocity-hence the temperature-for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the collisions of the particles with the boundary of the billiard are inelastic, leading the average squared velocity to reach a steady-state dynamics for large enough time. The description of the stationary state is made by using two different approaches: (i) heat transfer motivated by the Fourier law and (ii) billiard dynamics using either numerical simulations and theoretical description.

  10. M5-brane and D-brane scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Heydeman, Matthew; Schwarz, John H.; Wen, Congkao

    2017-12-01

    We present tree-level n-particle on-shell scattering amplitudes of various brane theories with 16 conserved supercharges. These include the world-volume theory of a probe D3-brane or D5-brane in 10D Minkowski spacetime as well as a probe M5-brane in 11D Minkowski spacetime, which describes self interactions of an abelian tensor supermultiplet with 6D (2, 0) supersymmetry. Twistor-string-like formulas are proposed for tree-level scattering amplitudes of all multiplicities for each of these theories. The R symmetry of the D3-brane theory is shown to be SU(4) × U(1), and the U(1) factor implies that its amplitudes are helicity conserving. Each of 6D theories (D5-brane and M5-brane) reduces to the D3-brane theory by dimensional reduction. As special cases of the general M5-brane amplitudes, we present compact formulas for examples involving only the self-dual B field with n = 4, 6, 8.

  11. Quantum mushroom billiards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Alex H.; Betcke, Timo; School of Mathematics, University of Manchester, Manchester, M13 9PL

    2007-12-15

    We report the first large-scale statistical study of very high-lying eigenmodes (quantum states) of the mushroom billiard proposed by L. A. Bunimovich [Chaos 11, 802 (2001)]. The phase space of this mixed system is unusual in that it has a single regular region and a single chaotic region, and no KAM hierarchy. We verify Percival's conjecture to high accuracy (1.7%). We propose a model for dynamical tunneling and show that it predicts well the chaotic components of predominantly regular modes. Our model explains our observed density of such superpositions dying as E{sup -1/3} (E is the eigenvalue). We compare eigenvaluemore » spacing distributions against Random Matrix Theory expectations, using 16 000 odd modes (an order of magnitude more than any existing study). We outline new variants of mesh-free boundary collocation methods which enable us to achieve high accuracy and high mode numbers ({approx}10{sup 5}) orders of magnitude faster than with competing methods.« less

  12. Ergodicity of the generalized lemon billiards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingyu; Mohr, Luke; Zhang, Hong-Kun, E-mail: hongkun@math.umass.edu

    2013-12-15

    In this paper, we study a two-parameter family of convex billiard tables, by taking the intersection of two round disks (with different radii) in the plane. These tables give a generalization of the one-parameter family of lemon-shaped billiards. Initially, there is only one ergodic table among all lemon tables. In our generalized family, we observe numerically the prevalence of ergodicity among the some perturbations of that table. Moreover, numerical estimates of the mixing rate of the billiard dynamics on some ergodic tables are also provided.

  13. Mechanisms of chaos in billiards: dispersing, defocusing and nothing else

    NASA Astrophysics Data System (ADS)

    Bunimovich, Leonid A.

    2018-02-01

    We explain and justify that the only mechanisms of chaotic dynamics for billiards are dispersing and defocusing. We also introduce boomerang billiards which dynamics demonstrate that two rather broadly accepted views about some features of nonlinear dynamics are actually wrong. Namely correlations in billiards having focusing components of the boundary can decay exponentially, and continuous time correlations for a billiard flow may decay faster than discrete time correlations for a billiard map.

  14. M2- and M5-branes in E11 current algebra formulation of M-theory

    NASA Astrophysics Data System (ADS)

    Shiba, Shotaro; Sugawara, Hirotaka

    2018-03-01

    Equations of motion for M2- and M5-branes are written down in the E11 current algebra formulation of M-theory. These branes correspond to currents of the second and the fifth rank antisymmetric tensors in the E11 representation, whereas the electric and magnetic fields (coupled to M2- and M5-branes) correspond to currents of the third and the sixth rank antisymmetric tensors, respectively. We show that these equations of motion have solutions in terms of the coordinates on M2- and M5-branes. We also discuss the geometric equations, and show that there are static solutions when M2- or M5-brane exists alone and also when M5-brane wraps around M2-brane. This situation is realized because our Einstein-like equation contains an extra term which can be interpreted as gravitational energy contributing to the curvature, thus avoiding the usual intersection rule.

  15. Constraining brane tension using rotation curves of galaxies

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel A.; Rodríguez-Meza, Mario A.

    2018-04-01

    We present in this work a study of brane theory phenomenology focusing on the brane tension parameter, which is the main observable of the theory. We show the modifications steaming from the presence of branes in the rotation curves of spiral galaxies for three well known dark matter density profiles: Pseudo isothermal, Navarro-Frenk-White and Burkert dark matter density profiles. We estimate the brane tension parameter using a sample of high resolution observed rotation curves of low surface brightness spiral galaxies and a synthetic rotation curve for the three density profiles. Also, the fittings using the brane theory model of the rotation curves are compared with standard Newtonian models. We found that Navarro-Frenk-White model prefers lower values of the brane tension parameter, on the average λ ∼ 0.73 × 10‑3eV4, therefore showing clear brane effects. Burkert case does prefer higher values of the tension parameter, on the average λ ∼ 0.93 eV4 ‑ 46 eV4, i.e., negligible brane effects. Whereas pseudo isothermal is an intermediate case. Due to the low densities found in the galactic medium it is almost impossible to find evidence of the presence of extra dimensions. In this context, we found that our results show weaker bounds to the brane tension values in comparison with other bounds found previously, as the lower value found for dwarf stars composed of a polytropic equation of state, λ ≈ 104 MeV4.

  16. On Another Edge of Defocusing: Hyperbolicity of Asymmetric Lemon Billiards

    NASA Astrophysics Data System (ADS)

    Bunimovich, Leonid; Zhang, Hong-Kun; Zhang, Pengfei

    2016-02-01

    Defocusing mechanism provides a way to construct chaotic (hyperbolic) billiards with focusing components by separating all regular components of the boundary of a billiard table sufficiently far away from each focusing component. If all focusing components of the boundary of the billiard table are circular arcs, then the above separation requirement reduces to that all circles obtained by completion of focusing components are contained in the billiard table. In the present paper we demonstrate that a class of convex tables— asymmetric lemons, whose boundary consists of two circular arcs, generate hyperbolic billiards. This result is quite surprising because the focusing components of the asymmetric lemon table are extremely close to each other, and because these tables are perturbations of the first convex ergodic billiard constructed more than 40 years ago.

  17. Periodic Orbits and Semiclassical Form Factor in Barrier Billiards

    NASA Astrophysics Data System (ADS)

    Giraud, O.

    2005-11-01

    Using heuristic arguments based on the trace formulas, we analytically calculate the semiclassical two-point correlation form factor for a family of rectangular billiards with a barrier of height irrational with respect to the side of the billiard and located at any rational position p/q from the side. To do this, we first obtain the asymptotic density of lengths for each family of periodic orbits by a Siegel-Veech formula. The result obtained for these pseudo-integrable, non-Veech billiards is different but not far from the value of 1/2 expected for semi-Poisson statistics and from values of obtained previously in the case of Veech billiards.

  18. BILLIARDS: Baseline Instrumented Lithology Lander, Inspector and Asteroid Redirection Demonstration System

    NASA Technical Reports Server (NTRS)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent

    2015-01-01

    BILLIARDS Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System Proposed demonstration mission for Billiard-Ball concept Select asteroid pair with natural close approach to minimize cost and complexity Primary Objectives Rendezvous with a small (10m), near Earth (alpha) asteroid Maneuver the alpha asteroid to a collision with a 100m (beta) asteroid Produce a detectable deflection or disruption of the beta asteroid Secondary objectives Contribute knowledge of asteroid composition and characteristics Contribute knowledge of small-body formation Opportunity for international collaboration

  19. A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokicheva, V V

    2015-10-31

    A new class of integrable billiard systems, called generalized billiards, is discovered. These are billiards in domains formed by gluing classical billiard domains along pieces of their boundaries. (A classical billiard domain is a part of the plane bounded by arcs of confocal quadrics.) On the basis of the Fomenko-Zieschang theory of invariants of integrable systems, a full topological classification of generalized billiards is obtained, up to Liouville equivalence. Bibliography: 18 titles.

  20. Brane-World Gravity.

    PubMed

    Maartens, Roy; Koyama, Kazuya

    2010-01-01

    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+ d -dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

  1. Classification of billiard motions in domains bounded by confocal parabolas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokicheva, V V

    2014-08-01

    We consider the billiard dynamical system in a domain bounded by confocal parabolas. We describe such domains in which the billiard problem can be correctly stated. In each such domain we prove the integrability for the system, analyse the arising Liouville foliation, and calculate the invariant of Liouville equivalence--the so-called marked molecule. It turns out that billiard systems in certain parabolic domains have the same closures of solutions (integral trajectories) as the systems of Goryachev-Chaplygin-Sretenskii and Joukowski at suitable energy levels. We also describe the billiard motion in noncompact domains bounded by confocal parabolas, namely, we describe the topology of themore » Liouville foliation in terms of rough molecules. Bibliography: 16 titles.« less

  2. Gutkin billiard tables in higher dimensions and rigidity

    NASA Astrophysics Data System (ADS)

    Bialy, Misha

    2018-05-01

    Gutkin found a remarkable class of convex billiard tables in a plane that has a constant angle invariant curve. In this paper we prove that in dimension 3 only a round sphere has such a property. For dimensions greater than 3, a hypersurface with a Gutkin property different from a round sphere, if it exists, must be of constant width and, moreover, it must have very special geometric properties. In the 2D case we prove a rigidity result for Gutkin billiard tables. This is done with the help of a new generating function introduced recently for billiards in our joint paper with Mironov. In the present paper a formula for the generating function in higher dimensions is found.

  3. The behaviour of resonances in Hecke triangular billiards under deformation

    NASA Astrophysics Data System (ADS)

    Howard, P. J.; O'Mahony, P. F.

    2007-08-01

    The right-hand boundary of Artin's billiard on the Poincaré half-plane is continuously deformed to generate a class of chaotic billiards which includes fundamental domains of the Hecke groups Γ(2, n) at certain values of the deformation parameter. The quantum scattering problem in these open chaotic billiards is described and the distributions of both real and imaginary parts of the resonant eigenvalues are investigated. The transitions to arithmetic chaos in the cases n ∈ {4, 6} are closely examined and the explicit analytic form for the scattering matrix is given together with the Fourier coefficients for the scattered wavefunction. The n = 4 and 6 cases have an additional set of regular equally spaced resonances compared to Artin's billiard (n = 3). For a general deformation, a numerical procedure is presented which generates the resonance eigenvalues and the evolution of the eigenvalues is followed as the boundary is varied continuously which leads to dramatic changes in their distribution. For deformations away from the non-generic arithmetic cases, including that of the tiling Hecke triangular billiard n = 5, the distributions of the positions and widths of the resonances are consistent with the predictions of a random matrix theory.

  4. Quantum and wave dynamical chaos in superconducting microwave billiards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, B., E-mail: dietz@ikp.tu-darmstadt.de; Richter, A., E-mail: richter@ikp.tu-darmstadt.de

    2015-09-15

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that weremore » performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.« less

  5. Quantum and wave dynamical chaos in superconducting microwave billiards.

    PubMed

    Dietz, B; Richter, A

    2015-09-01

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  6. Nontrivial paths and periodic orbits of the T-fractal billiard table

    NASA Astrophysics Data System (ADS)

    Lapidus, Michel L.; Miller, Robyn L.; Niemeyer, Robert G.

    2016-07-01

    We introduce and prove numerous new results about the orbits of the T-fractal billiard. Specifically, in section 3, we give a variety of sufficient conditions for the existence of a sequence of compatible periodic orbits. In section 4, we examine the limiting behavior of particular sequences of compatible periodic orbits. Additionally, sufficient conditions for the existence of particular nontrivial paths are given in section 4. The proofs of two results of Lapidus and Niemeyer (2013 The current state of fractal billiards Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics (Contemporary Mathematics vol 601) ed D Carfi et al (Providence, RI: American Mathematical Society) pp 251-88 (e-print: arXiv:math.DS.1210.0282v2, 2013) appear here for the first time, as well. In section 5, an orbit with an irrational initial direction reaches an elusive point in a way that yields a nontrivial path of finite length, yet, by our convention, constitutes a singular orbit of the fractal billiard table. The existence of such an orbit seems to indicate that the classification of orbits may not be so straightforward. A discussion of our results and directions for future research is then given in section 6.

  7. Counting supersymmetric branes

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Axel

    2011-10-01

    Maximal supergravity solutions are revisited and classified, with particular emphasis on objects of co-dimension at most two. This class of solutions includes branes whose tension scales with xxxx. We present a group theory derivation of the counting of these objects based on the corresponding tensor hierarchies derived from E 11 and discrete T- and U-duality transformations. This provides a rationale for the wrapping rules that were recently discussed for σ ≤ 3 in the literature and extends them. Explicit supergravity solutions that give rise to co-dimension two branes are constructed and analysed.

  8. Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry.

    PubMed

    Sakatani, Yuho; Uehara, Shozo

    2016-11-04

    We propose a novel approach to the brane worldvolume theory based on the geometry of extended field theories: double field theory and exceptional field theory. We demonstrate the effectiveness of this approach by showing that one can reproduce the conventional bosonic string and membrane actions, and the M5-brane action in the weak-field approximation. At a glance, the proposed 5-brane action without approximation looks different from the known M5-brane actions, but it is consistent with the known nonlinear self-duality relation, and it may provide a new formulation of a single M5-brane action. Actions for exotic branes are also discussed.

  9. Brane Craft

    NASA Technical Reports Server (NTRS)

    Janson, Siegfried

    2017-01-01

    A Brane Craft is a membrane spacecraft with solar cells, command and control electronics, communications systems, antennas, propulsion systems, attitude and proximity sensors, and shape control actuators as thin film structures manufactured on 10 micron thick plastic sheets. This revolutionary spacecraft design can have a thickness of tens of microns with a surface area of square meters to maximize area-to-mass ratios for exceptionally low-mass spacecraft. Communications satellites, solar power satellites, solar electric propulsion stages, and solar sails can benefit from Brane Craft design. It also enables new missions that require low-mass spacecraft with exceptionally high delta-V. Active removal of orbital debris from Earth orbit is the target application for this study.

  10. A nodal domain theorem for integrable billiards in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samajdar, Rhine; Jain, Sudhir R., E-mail: srjain@barc.gov.in

    Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a familymore » are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.« less

  11. Highly symmetric D-brane-anti-D-brane effective actions

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2017-09-01

    The entire S-matrix elements of four, five and six point functions of D-brane-anti D-brane system are explored. To deal with symmetries of string amplitudes as well as their all order α ' corrections we first address a four point function of one closed string Ramond-Ramond (RR) and two real tachyons on the world volume of brane-anti brane system. We then focus on symmetries of string theory as well as universal tachyon expansion to achieve both string and effective field theory of an RR and three tachyons where the complete algebraic analysis for the whole S-matrix < {V}_{C^{-1}}{V}_{T^{-1}}{V}_{T^0}{V}_{T^0}> was also revealed. Lastly, we employ all the conformal field theory techniques to < {V}_{C^{-1}}{V}_{T^{-1}}{V}_{T^0}{V}_{T^0}{V}_{T^0}> , working out with symmetries of theory and find out the expansion for the amplitude to be able to precisely discover all order singularity structures of D-brane-anti-D-brane effective actions of string theory. Various remarks about the so called generalized Veneziano amplitude and new string couplings are elaborated as well.

  12. Landau-Ginzburg to Calabi-Yau dictionary for D-branes

    NASA Astrophysics Data System (ADS)

    Aspinwall, Paul S.

    2007-08-01

    Based on the work by Orlov (e-print arXiv:math.AG/0503632), we give a precise recipe for mapping between B-type D-branes in a Landau-Ginzburg orbifold model (or Gepner model) and the corresponding large radius Calabi-Yau manifold. The D-branes in Landau-Ginzburg theories correspond to matrix factorizations and the D-branes on the Calabi-Yau manifolds are objects in the derived category. We give several examples including branes on quotient singularities associated with weighted projective spaces. We are able to confirm several conjectures and statements in the literature.

  13. Doorway states and billiards

    NASA Astrophysics Data System (ADS)

    Franco-Villafañe, J. A.; Flores, J.; Mateos, J. L.; Méndez-Sánchez, R. A.; Novaro, O.; Seligman, T. H.

    2010-12-01

    Whenever a distinct state is immersed in a sea of complicated and dense states, the strength of the distinct state, which we refer to as a doorway, is distributed in their neighboring states. We analyze this mechanism for 2-D billiards with different geometries. One of them is symmetric and integrable, another is symmetric but chaotic, and the third has a capricious form. The fact that the doorway-state mechanism is valid for such highly diverse cases, proves that it is robust.

  14. Doorway states and billiards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Villafane, J. A.; Mendez-Sanchez, R. A.; Flores, J.

    2010-12-23

    Whenever a distinct state is immersed in a sea of complicated and dense states, the strength of the distinct state, which we refer to as a doorway, is distributed in their neighboring states. We analyze this mechanism for 2-D billiards with different geometries. One of them is symmetric and integrable, another is symmetric but chaotic, and the third has a capricious form. The fact that the doorway-state mechanism is valid for such highly diverse cases, proves that it is robust.

  15. Linear and nonlinear stability of periodic orbits in annular billiards.

    PubMed

    Dettmann, Carl P; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  16. Linear and nonlinear stability of periodic orbits in annular billiards

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  17. Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards.

    PubMed

    Yu, Pei; Li, Zi-Yuan; Xu, Hong-Ya; Huang, Liang; Dietz, Barbara; Grebogi, Celso; Lai, Ying-Cheng

    2016-12-01

    A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrödinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.

  18. Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Li, Zi-Yuan; Xu, Hong-Ya; Huang, Liang; Dietz, Barbara; Grebogi, Celso; Lai, Ying-Cheng

    2016-12-01

    A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrödinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.

  19. Spacelike brane actions.

    PubMed

    Hashimoto, Koji; Ho, Pei-Ming; Wang, John E

    2003-04-11

    We derive effective actions for "spacelike branes" (S-branes) and find a solution describing the formation of fundamental strings in the rolling tachyon background. The S-brane action is a Dirac-Born-Infeld action for Euclidean world volumes defined in the context of time-dependent tachyon condensation of non-BPS (Bogomol'nyi-Prasad-Sommerfield) branes. It includes gauge fields and, in particular, a scalar field associated with translation along the time direction. We show that the BIon spike solutions constructed in this system correspond to the production of a confined electric flux tube (a fundamental string) at late time of the rolling tachyon.

  20. Shannon entropy and avoided crossings in closed and open quantum billiards

    NASA Astrophysics Data System (ADS)

    Park, Kyu-Won; Moon, Songky; Shin, Younghoon; Kim, Jinuk; Jeong, Kabgyun; An, Kyungwon

    2018-06-01

    The relation between Shannon entropy and avoided crossings is investigated in dielectric microcavities. The Shannon entropy of the probability density for eigenfunctions in an open elliptic billiard as well as a closed quadrupole billiard increases as the center of the avoided crossing is approached. These results are opposite to those of atomic physics for electrons. It is found that the collective Lamb shift of the open quantum system and the symmetry breaking in the closed chaotic quantum system have equivalent effects on the Shannon entropy.

  1. Brane Physics in M-theory

    NASA Astrophysics Data System (ADS)

    Argurio, Riccardo

    1998-07-01

    The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th/9701042, hep-th/9704190, hep-th/9710027 and hep-th/9801053.

  2. Statistics of resonances for a class of billiards on the Poincaré half-plane

    NASA Astrophysics Data System (ADS)

    Howard, P. J.; Mota-Furtado, F.; O'Mahony, P. F.; Uski, V.

    2005-12-01

    The lower boundary of Artin's billiard on the Poincaré half-plane is continuously deformed to generate a class of billiards with classical dynamics varying from fully integrable to completely chaotic. The quantum scattering problem in these open billiards is described and the statistics of both real and imaginary parts of the resonant momenta are investigated. The evolution of the resonance positions is followed as the boundary is varied which leads to large changes in their distribution. The transition to arithmetic chaos in Artin's billiard, which is responsible for the Poissonian level-spacing statistics of the bound states in the continuum (cusp forms) at the same time as the formation of a set of resonances all with width \\frac{1}{4} and real parts determined by the zeros of Riemann's zeta function, is closely examined. Regimes are found which obey the universal predictions of random matrix theory (RMT) as well as exhibiting non-universal long-range correlations. The Brody parameter is used to describe the transitions between different regimes.

  3. Giant graviton interactions and M2-branes ending on multiple M5-branes

    NASA Astrophysics Data System (ADS)

    Hirano, Shinji; Sato, Yuki

    2018-05-01

    We study splitting and joining interactions of giant gravitons with angular momenta N 1/2 ≪ J ≪ N in the type IIB string theory on AdS 5 × S 5 by describing them as instantons in the tiny graviton matrix model introduced by Sheikh-Jabbari. At large J the instanton equation can be mapped to the four-dimensional Laplace equation and the Coulomb potential for m point charges in an n-sheeted Riemann space corresponds to the m-to- n interaction process of giant gravitons. These instantons provide the holographic dual of correlators of all semi-heavy operators and the instanton amplitudes exactly agree with the pp-wave limit of Schur polynomial correlators in N = 4 SYM computed by Corley, Jevicki and Ramgoolam. By making a slight change of variables the same instanton equation is mathematically transformed into the Basu-Harvey equation which describes the system of M2-branes ending on M5-branes. As it turns out, the solutions to the sourceless Laplace equation on an n-sheeted Riemann space correspond to n M5-branes connected by M2-branes and we find general solutions representing M2-branes ending on multiple M5-branes. Among other solutions, the n = 3 case describes an M2-branes junction ending on three M5-branes. The effective theory on the moduli space of our solutions might shed light on the low energy effective theory of multiple M5-branes.

  4. Constraints on brane-world inflation from the CMB power spectrum: revisited

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Mayukh R.; Mathews, Grant J.

    2018-03-01

    We analyze the Randal Sundrum brane-world inflation scenario in the context of the latest CMB constraints from Planck. We summarize constraints on the most popular classes of models and explore some more realistic inflaton effective potentials. The constraint on standard inflationary parameters changes in the brane-world scenario. We confirm that in general the brane-world scenario increases the tensor-to-scalar ratio, thus making this paradigm less consistent with the Planck constraints. Indeed, when BICEP2/Keck constraints are included, all monomial potentials in the brane-world scenario become disfavored compared to the standard scenario. However, for natural inflation the brane-world scenario could fit the constraints better due to larger allowed values of e-foldings N before the end of inflation in the brane-world.

  5. Fractional-wrapped branes with rotation, linear motion and background fields

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Elham; Kamani, Davoud

    2017-09-01

    We obtain two boundary states corresponding to the two folds of a fractional-wrapped Dp-brane, i.e. the twisted version under the orbifold C2 /Z2 and the untwisted version. The brane has rotation and linear motion, in the presence of the following background fields: the Kalb-Ramond tensor, a U (1) internal gauge potential and a tachyon field. The rotation and linear motion are inside the volume of the brane. The brane lives in the d-dimensional spacetime, with the orbifold-toroidal structure Tn ×R 1 , d - n - 5 ×C2 /Z2 in the twisted sector. Using these boundary states we calculate the interaction amplitude of two parallel fractional Dp-branes with the foregoing setup. Various properties of this amplitude such as the long-range behavior will be analyzed.

  6. D=10 Chiral Tensionless Super p-BRANES

    NASA Astrophysics Data System (ADS)

    Bozhilov, P.

    We consider a model for tensionless (null) super-p-branes with N chiral supersymmetries in ten-dimensional flat space-time. After establishing the symmetries of the action, we give the general solution of the classical equations of motion in a particular gauge. In the case of a null superstring (p=1) we find the general solution in an arbitrary gauge. Then, using a harmonic superspace approach, the initial algebra of first- and second-class constraints is converted into an algebra of Lorentz-covariant, BFV-irreducible, first-class constraints only. The corresponding BRST charge is as for a first rank dynamical system.

  7. Extended generalized geometry and a DBI-type effective action for branes ending on branes

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-08-01

    Starting from the Nambu-Goto bosonic membrane action, we develop a geometric description suitable for p-brane backgrounds. With tools of generalized geometry we derive the pertinent generalization of the string open-closed relations to the p-brane case. Nambu-Poisson structures are used in this context to generalize the concept of semi-classical noncommutativity of D-branes governed by a Poisson tensor. We find a natural description of the correspondence of recently proposed commutative and noncommutative versions of an effective action for p-branes ending on a p '-brane. We calculate the power series expansion of the action in background independent gauge. Leading terms in the double scaling limit are given by a generalization of a (semi-classical) matrix model.

  8. Spherical D-brane by tachyon condensation

    NASA Astrophysics Data System (ADS)

    Asakawa, Tsuguhiko; Matsuura, So

    2018-03-01

    We find a novel tachyon condensation which provides a D-brane system with spherical worldvolume in the flat spacetime. The tachyon profile is a deformation of a known D0-brane solution on non-BPS D3-branes in type IIA superstring theory, which realizes a bound state of a spherical D2-brane and a D0-brane. The D0-brane is resolved into the sphere as a U(1) monopole flux of the unit magnetic charge. We show that the system has the correct tension and the RR-coupling. Although the low-energy effective action of the system is the same as that of the dual description of the fuzzy sphere solution of multiple D0-branes, our system cannot be equivalent to the fuzzy sphere. The use of projective modules in describing the tachyon condensation is emphasized.

  9. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    PubMed

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  10. Nodal portraits of quantum billiards: Domains, lines, and statistics

    NASA Astrophysics Data System (ADS)

    Jain, Sudhir Ranjan; Samajdar, Rhine

    2017-10-01

    This is a comprehensive review of the nodal domains and lines of quantum billiards, emphasizing a quantitative comparison of theoretical findings to experiments. The nodal statistics are shown to distinguish not only between regular and chaotic classical dynamics but also between different geometric shapes of the billiard system itself. How a random superposition of plane waves can model chaotic eigenfunctions is discussed and the connections of the complex morphology of the nodal lines thereof to percolation theory and Schramm-Loewner evolution are highlighted. Various approaches to counting the nodal domains—using trace formulas, graph theory, and difference equations—are also illustrated with examples. The nodal patterns addressed pertain to waves on vibrating plates and membranes, acoustic and electromagnetic modes, wave functions of a "particle in a box" as well as to percolating clusters, and domains in ferromagnets, thus underlining the diversity and far-reaching implications of the problem.

  11. Brane boxes, anomalies, bending, and tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, R.G.; Rozali, M.

    1999-01-01

    Certain classes of chiral four-dimensional gauge theories may be obtained as the world volume theories of D5-branes are suspended between networks of NS5-branes, the so-called brane box models. In this paper, we derive the stringy consistency conditions placed on these models, and show that they are equivalent to an anomaly cancellation of the gauge theories. We derive these conditions in the orbifold theories which are {ital T} dual to the elliptic brane box models. Specifically, we show that the expression for tadpoles for unphysical twisted Ramond-Ramond 4-form fields in the orbifold theory are proportional to the gauge anomalies of themore » brane box theory. Thus string consistency is equivalent to world volume gauge anomaly cancellation. Furthermore, we find additional cylinder amplitudes which give the {beta} functions of the gauge theory. We show how these correspond to bending of the NS-branes in the brane box theory. {copyright} {ital 1998} {ital The American Physical Society}« less

  12. Gauge field localization on brane worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, Rommel; Rodriguez, R. Omar; Melfo, Alejandra

    2010-04-15

    We consider the effects of spacetime curvature and brane thickness on the localization of gauge fields on a brane via kinetic terms induced by localized fermions. We find that in a warped geometry with an infinitely thin brane, both the infrared and the ultraviolet behavior of the electromagnetic propagator are affected, providing a more stringent bound on the brane's tension than that coming from the requirement of four-dimensional gravity on the brane. On the other hand, for a thick wall in a flat spacetime, where the fermions are localized by means of a Yukawa coupling, we find that four-dimensional electromagnetismmore » is recovered in a region bounded from above by the same critical distance appearing in the thin case, but also from below by a new scale related to the brane's thickness and the electromagnetic couplings. This imposes very stringent bounds on the brane's thickness which seem to invalidate the localization mechanism for this case.« less

  13. Charged chiral fermions from M5-branes

    NASA Astrophysics Data System (ADS)

    Lambert, Neil; Owen, Miles

    2018-04-01

    We study M5-branes wrapped on a multi-centred Taub-NUT space. Reducing to String Theory on the S 1 fibration leads to D4-branes intersecting with D6-branes. D-braneology shows that there are additional charged chiral fermions from the open strings which stretch between the D4-branes and D6-branes. From the M-theory point of view the appearance of these charged states is mysterious as the M5-branes are wrapped on a smooth manifold. In this paper we show how these states arise in the M5-brane worldvolume theory and argue that are governed by a WZWN-like model where the topological term is five-dimensional.

  14. Microstates of D1-D5(-P) black holes, as interacting D-branes

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Shiba, Shotaro

    2015-07-01

    In our previous study (Morita et al., 2014 [1]), we figured out that the thermodynamics of the near extremal black p-branes can be explained as the collective motions of gravitationally interacting elementary p-branes (the p-soup proposal). We test this proposal in the near-extremal D1-D5 and D1-D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves). It may imply that the microscopic origins of these intersecting black branes and the black p-brane are explained in the unified picture. We also argue the relation between the p-soup proposal and the conformal field theory calculations of the D1-D5(-P) black holes in superstring theory.

  15. Constrained Quantum Mechanics: Chaos in Non-Planar Billiards

    ERIC Educational Resources Information Center

    Salazar, R.; Tellez, G.

    2012-01-01

    We illustrate some of the techniques to identify chaos signatures at the quantum level using as guiding examples some systems where a particle is constrained to move on a radial symmetric, but non-planar, surface. In particular, two systems are studied: the case of a cone with an arbitrary contour or "dunce hat billiard" and the rectangular…

  16. Realization of discrete quantum billiards in a two-dimensional optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimer, Dmitry O.; Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, D-01187 Dresden; Khomeriki, Ramaz

    2011-10-15

    We propose a method for optical visualization of the Bose-Hubbard model with two interacting bosons in the form of two-dimensional (2D) optical lattices consisting of optical waveguides, where the waveguides at the diagonal are characterized by different refractive indices than others elsewhere, modeling the boson-boson interaction. We study the light intensity distribution function averaged over the direction of propagation for both ordered and disordered cases, exploring the sensitivity of the averaged picture with respect to the beam injection position. For our finite systems, the resulting patterns are reminiscent the ones set in billiards, and therefore we introduce a definition ofmore » discrete quantum billiards and discuss the possible relevance to its well-established continuous counterpart.« less

  17. Bulk axions, brane back-reaction and fluxes

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-02-01

    Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires an understanding of the dynamics that stabilizes the geometry of the extra dimensions. Rugby ball solutions provide simple examples of extra-dimensional configurations for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources. The effects of brane back-reaction can be computed explicitly for these systems, allowing the calculation of the shape of the low-energy pGB potential, V 4 D ( φ), as a function of the perturbing brane properties, as well as the response of both the extra dimensional and on-brane geometries to this stabilization. If the φ-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to φ. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. The mass of the low-energy pseudo-Goldstone mode is of order m a ˜ ( μ/ F)2 m KK (where μ is the energy scale associated with the brane symmetry breaking and F < M p is the extra-dimensional axion decay constant). In principle this can be larger or smaller than the Kaluza-Klein scale, m KK, but when it is larger axion properties cannot be computed purely within a 4D approximation (as they usually are). We briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings

  18. T-branes through 3d mirror symmetry

    NASA Astrophysics Data System (ADS)

    Collinucci, Andrés; Giacomelli, Simone; Savelli, Raffaele; Valandro, Roberto

    2016-07-01

    T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce super-symmetry from {N} = 4 to {N} = 2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of {N} = 2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their {N} = 4 counterparts.

  19. Brane f(R) gravity cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcerzak, Adam; DaPbrowski, Mariusz P.

    2010-06-15

    By the application of the generalized Israel junction conditions we derive cosmological equations for the fourth-order f(R) brane gravity and study their cosmological solutions. We show that there exists a nonstatic solution which describes a four-dimensional de Sitter (dS{sub 4}) brane embedded in a five-dimensional anti-de Sitter (AdS{sub 5}) bulk for a vanishing Weyl tensor contribution. On the other hand, for the case of a nonvanishing Weyl tensor contribution, there exists a static brane solution only. We claim that in order to get some more general nonstatic f(R) brane configurations, one needs to admit a dynamical matter energy-momentum tensor inmore » the bulk rather than just a bulk cosmological constant.« less

  20. Newton’s cradle in billiards and croquet

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2016-11-01

    When an object collides head-on and in line with two balls in contact, the outcome is not generally easy to predict. We consider three simple examples. One is Newton’s cradle with only three balls. Another is a billiard cue colliding with the two balls. The third is a croquet shot where a mallet collides with the two balls. The outcome in each case is different since it depends on the mass of the colliding object.

  1. Fermion localization on a split brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  2. Inflation versus collapse in brane matter

    NASA Astrophysics Data System (ADS)

    Zheltukhin, A. A.

    2017-11-01

    Mapping of fundamental branes to their worldsheet (ws) multiplets originating from spontaneous breaking of the Poincaré symmetry is studied. The interaction Lagrangian for fields of the Nambu-Goldstone multiplet is shown to encode R2 gravity on the ws. The power law kp ˜ Tp 3-p 2(p+1) for the SO(D - p - 1) gauge coupling kp as the function of the p-brane tension Tp is assumed. It points to the presence of asymptotic freedom and confinement phases in brane matter. Their connection with collapse and inflation of the branes is discussed.

  3. Exceptional M-brane sigma models and η-symbols

    NASA Astrophysics Data System (ADS)

    Sakatani, Yuho; Uehara, Shozo

    2018-03-01

    We develop the M-brane actions proposed in Y. Sakatani and S. Uehara, arXiv:1607.04265, by using η-symbols determined in Y. Sakatani and S. Uehara, arXiv:1708.06342. Introducing η-forms that are defined with the η-symbols, we present U-duality-covariant M-brane actions which describe the known brane worldvolume theories for Mp-branes with p=0,2,5. We show that the self-duality relation known in the double sigma model is naturally generalized to M-branes. In particular, for an M5-brane, the self-duality relation is nontrivially realized, where the Hodge star operator is defined with the familiar M5-brane metric while the η-form contains the self-dual three-form field strength. The action for a Kaluza-Klein monopole is also partially reproduced. Moreover, we explain how to treat type IIB branes in our general formalism. As a demonstration, we reproduce the known action for a (p,q)-string.

  4. Induced gravity on intersecting brane worlds. II. Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, Olindo; Koyama, Kazuya; Tasinato, Gianmassimo

    2008-12-15

    We explore cosmology of intersecting brane worlds with induced gravity on the branes. We find the cosmological equations that control the evolution of a moving codimension-one brane and a codimension-two brane that sits at the intersection. We study the Friedmann equation at the intersection, finding new contributions from the six-dimensional bulk. These higher dimensional contributions allow us to find new examples of self-accelerating configurations for the codimension-two brane at the intersection and we discuss their features.

  5. Carroll limit of non-BPS Dp-brane

    NASA Astrophysics Data System (ADS)

    Klusoň, J.

    2017-05-01

    We find Carroll non-BPS Dp-brane action by performing Carroll limit of a canonical form of unstable Dp-brane action. We analyze different Carroll limits and discuss solutions of the equations of motion of Carroll non-BPS Dp-brane at the tachyon vacuum.

  6. Supersymmetric Localization and Probe Branes in the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Robinson, Brandon

    In this thesis, a precise, rigorous test of probe brane holography will be constructed. Since its discovery, the AdS/CFT correspondence has provided a window into the strongly coupled dynamics of supersymmetric gauge theories. The ability to include degrees of freedom that provide analogs for the physics of heavy quarks via the probe brane paradigm has further expanded the utility of the duality. The deformation away from a strictly conformal theory by the addition of flavor degrees of freedom induces a Landau pole outside of the 't Hooft limit where Nc → infinity and Nf/Nc " 1, which invites questions about the utility of the probe brane paradigm. Following from the recent application equivariant localization to massive supersymmetric gauge theories on curved backgrounds, a precise question can be formulated to compare, e.g., the free energy of a supersymmetric probe brane embedding and that of the localized dual field theory. This thesis will apply those concepts to the D3/D7 probe brane system dual to Nf N = 2 fundamental hypermultiplets on an S4 and the D3/D5 probe brane system dual to Nf N = 2 fundamental hypermultiplets living on a co-dimension one defect- an equatorial S3 ⊂ S4. In that framework, exact matching to the localization results are found.

  7. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard.

    PubMed

    Gao, T; Estrecho, E; Bliokh, K Y; Liew, T C H; Fraser, M D; Brodbeck, S; Kamp, M; Schneider, C; Höfling, S; Yamamoto, Y; Nori, F; Kivshar, Y S; Truscott, A G; Dall, R G; Ostrovskaya, E A

    2015-10-22

    Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard--a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices.

  8. Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.; Parameswaran, S.; Salvio, A.; Williams, M.

    2013-02-01

    We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753, to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry-breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  9. Escape of black holes from the brane.

    PubMed

    Flachi, Antonino; Tanaka, Takahiro

    2005-10-14

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the "black hole plus brane" system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.

  10. Ghosts in the self-accelerating brane universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Kazuya; Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth, PO1 2EG

    2005-12-15

    We study the spectrum of gravitational perturbations about a vacuum de Sitter brane with the induced 4D Einstein-Hilbert term, in a 5D Minkowski spacetime (DGP model). We consider solutions that include a self-accelerating universe, where the accelerating expansion of the universe is realized without introducing a cosmological constant on the brane. The mass of the discrete mode for the spin-2 graviton is calculated for various Hr{sub c}, where H is the Hubble parameter and r{sub c} is the crossover scale determined by the ratio between the 5D Newton constant and the 4D Newton constant. We show that, if we introducemore » a positive cosmological constant on the brane (Hr{sub c}>1), the spin-2 graviton has mass in the range 0brane fluctuation mode with mass m{sup 2}=2H{sup 2}. Although the brane fluctuation mode is healthy, the spin-2 graviton has a helicity-0 excitation that is a ghost. If we allow a negative cosmological constant on the brane, the brane fluctuation mode becomes a ghost for 1/21/2. In a self-accelerating universe Hr{sub c}=1, the spin-2 graviton has mass m{sup 2}=2H{sup 2}, which coincides with the mass of the brane fluctuation mode. Then there arises a mixing between the brane fluctuation mode and the spin-2 graviton. We argue that this mixing presumably gives a ghost in the self-accelerating universe by continuity across Hr{sub c}=1, although a careful calculation of the effective action is required to verify this rigorously.« less

  11. Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Miyaji, Tomoyuki

    2017-02-01

    We study a billiard problem in nonlinear and nonequilibrium systems. This is motivated by the motions of a traveling spot in a reaction-diffusion system (RDS) in a rectangular domain. We consider a four-dimensional dynamical system, defined by ordinary differential equations. This was first derived by S.-I. Ei et al. (2006), based on a reduced system on the center manifold in a neighborhood of a pitchfork bifurcation of a stationary spot for the RDS. In contrast to the classical billiard problem, this defines a dynamical system that is dissipative rather than conservative, and has an attractor. According to previous numerical studies, the attractor of the system changes depending on parameters such as the aspect ratio of the domain. It may be periodic, quasi-periodic, or chaotic. In this paper, we elucidate that it results from parameters crossing Arnold tongues and that the organizing center is a Hopf-Hopf bifurcation of the trivial equilibrium.

  12. Equivariant branes and equivariant homological mirror symmetry

    NASA Astrophysics Data System (ADS)

    Ashwinkumar, Meer; Tan, Meng-Chwan

    2018-03-01

    We describe supersymmetric A-branes and B-branes in open N =(2 ,2 ) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description as branes in gauged Landau-Ginzburg models with neutral matter. We then study correlation functions in the topological A-twisted version of the GNLSM and identify their values with open Hamiltonian Gromov-Witten invariants. Supersymmetry breaking can occur in the A-twisted GNLSM due to nonperturbative open symplectic vortices, and we canonically Becchi-Rouet-Stora-Tyutin quantize the mirror theory to analyze this phenomenon.

  13. New interpretation of matter-antimatter asymmetry based on branes and possible observational consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Ronggen; Li Tong; Li Xueqian

    2007-11-15

    Motivated by the alpha-magnetic-spectrometer (AMS) project, we assume that after the big bang or inflation epoch, antimatter was repelled onto one brane which is separated from our brane where all the observational matter resides. It is suggested that CP may be spontaneously broken, the two branes would correspond to ground states for matter and antimatter, respectively. Generally a complex scalar field which is responsible for the spontaneous CP violation, exists in the space between the branes. The matter and antimatter on the two branes attract each other via gravitational force, meanwhile the scalar field causes a Casimir effect to resultmore » in a repulsive force against the gravitation. We find that the Casimir force is much stronger than the gravitational force, as long as the separation of the two branes is small. Thus at early epoch after the big bang, the two branes were closer and then have been separated by the Casimir repulsive force from each other. The trend will continue until the separation is sufficiently large and then the gravitational force observed in our four-space would obviously deviate from the Newton's universal gravitational law. We suppose that there is a potential barrier at the brane boundary, which is similar to the surface tension for a water membrane. The barrier prevents the matter (antimatter) particles from entering the space between two branes and jump from one brane to another. However, by the quantum tunneling, a sizable antimatter flux may come to our brane and be observed by the AMS. In this work by considering two possible models, i.e. the naive flat space-time and Randall-Sundrum models, and using the observational data on the visible matter in our universe as inputs, we derive the antimatter flux which comes to our detector in the nonrelativistic approximation and make a rough numerical estimate of possible numbers of antihelium at AMS.« less

  14. Analysis of resonant population transfer in time-dependent elliptical quantum billiards

    NASA Astrophysics Data System (ADS)

    Liss, Jakob; Liebchen, Benno; Schmelcher, Peter

    2013-01-01

    A Fermi golden rule for population transfer between instantaneous eigenstates of elliptical quantum billiards with oscillating boundaries is derived. Thereby the occurrence of both the recently observed resonant population transfer between instantaneous eigenstates and the empirical criterion stating that these transitions occur when the driving frequency matches the mean difference of the latter [Lenz , New J. Phys.NJOPFM1367-263010.1088/1367-2630/13/10/103019 13, 103019 (2011)] is explained. As a second main result a criterion judging which resonances are resolvable in a corresponding experiment of certain duration is provided. Our analysis is complemented by numerical simulations for three different driving laws. The corresponding resonance spectra are in agreement with the predictions of both criteria.

  15. Vacuum Polarization in AN Anti-De Sitter Space as AN Origin for a Cosmological Constant in a Brane World

    NASA Astrophysics Data System (ADS)

    Li, Li-Xin

    We show that the vacuum polarization of quantum fields in an anti-de Sitter space can naturally give rise to a small but nonzero cosmological constant in a brane world living in it. To explain the extremely small ratio of mass density in the cosmological constant to the Planck mass density in our universe (≈10-123) as suggested by cosmological observations, all we need is a four-dimensional brane world (our universe) living in a five-dimensional anti-de Sitter space with a curvature radius r0 10-3 cm and a fundamental Planck energy MP 109 GeV, and a scalar field with a mass m ˜ r-10 ˜ 10-2 eV. Probing gravity down to a scale 10-3 cm, which is attainable in the near future, will provide a test of the model.

  16. Formulation of D-brane Dynamics

    NASA Astrophysics Data System (ADS)

    Evans, Thomas

    2012-03-01

    It is the purpose of this paper (within the context of STS rules & guidelines ``research report'') to formulate a statistical-mechanical form of D-brane dynamics. We consider first the path integral formulation of quantum mechanics, and extend this to a path-integral formulation of D-brane mechanics, summing over all the possible path integral sectors of R-R, NS charged states. We then investigate this generalization utilizing a path-integral formulation summing over all the possible path integral sectors of R-R charged states, calculated from the mean probability tree-level amplitude of type I, IIA, and IIB strings, serving as a generalization of all strings described by D-branes. We utilize this generalization to study black holes in regimes where the initial D-brane system is legitimate, and further this generalization to look at information loss near regions of nonlocality on a non-ordinary event horizon. We see here that in these specific regimes, we can calculate a path integral formulation, as describing D0-brane mechanics, tracing the dissipation of entropy throughout the event horizon. This is used to study the information paradox, and to propose a resolution between the phenomena and the correct and expected quantum mechanical description. This is done as our path integral throughout entropy entering the event horizon effectively and correctly encodes the initial state in subtle correlations in the Hawking radiation.

  17. k-essence in the DGP brane-world cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-Lopez, Mariam; Chimento, Luis P.

    We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or quiescent singularities. The latter correspond to a type of sudden singularity.

  18. On asymptotic behavior of anisotropic branes with induced gravity inspired by L(R) term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir

    2010-12-01

    The DGP brane-world scenario provides the accelerated expansion of the universe at late-time by large-distance modification of general relativity without any need for dark energy. Using the method in reference [33], we investigate the asymptotic behavior of homogeneous and anisotropic cosmologies on a generalization of DGP scenario where the effective theory of gravity induced on the brane is given by a L(R) term. We show that for a constant induced curvature term on the brane all Bianchi models except type IX isotropize, like general relativity, if the effective energy density and E{sub ab} term satisfy some energy conditions. Finally, wemore » compare the result of the model with the result of anisotropic DGP branes and general relativity.« less

  19. Cosmology from quantum potential in a system of oscillating branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza

    2016-11-01

    Recently, some authors proposed a new mechanism which gets rid of the Big Bang singularity and shows that the age of the universe is infinite. In this paper, we will confirm their results and predict that the universe may expand and contract many N fundamental strings decay to N M0-anti-M0-branes. Then, M0-branes join each other and build a M8-anti-M8 system. This system is unstable, broken and two anti-M4-branes, a compactified M4-brane, a M3-brane in addition to one M0-brane are produced. The M3-brane wraps around the compactified M4-brane and both of them oscillate between two anti-M4-branes. Our universe is located on the M3-brane and interacts with other branes by exchanging the M0-brane and some scalars in transverse directions. By wrapping of M3-brane, the contraction epoch of universe starts and some higher order of derivatives of scalar fields in the relevant action of branes are produced which are responsible for generating the generalized uncertainty principle (GUP). By oscillating the compactified M4-M3-brane and approaching one of anti-M4-branes, one end of M3-brane glues to the anti-M4-brane and other end remains sticking and wrapping around M4-brane. Then, by getting away of the M4-M3 system, M4 rolls, wrapped M3 opens and expansion epoch of universe begins. By closing the M4 to anti-M4, the mass of some scalars become negative and they make a transition to tachyonic phase. To remove these states, M4 rebounds, rolls and M3 wraps around it again. At this stage, expansion branch ends and universe enters a contraction epoch again. This process is repeated many times and universe expands and contracts due to oscillation of branes. We obtain the scale factor of universe in this system and find that its values only at t →-∞ shrinks to zero. Thus, in our method, the Big Bang is replaced by the fundamental string and the age of universe is predicted to be infinite. Also, when tachyonic states disappear at the beginning of expansion branch, some extra

  20. The Einstein equations on the 3-brane world

    NASA Astrophysics Data System (ADS)

    Shiromizu, Tetsuya; Maeda, Kei-Ichi; Sasaki, Misao

    2000-07-01

    We carefully investigate the gravitational equations of the brane world, in which all the matter forces except gravity are confined on the 3-brane in a 5-dimensional spacetime with Z2 symmetry. We derive the effective gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy limit. From our general argument we conclude that the first Randall-Sundrum-type theory predicts that the brane with a negative tension is an antigravity world and hence should be excluded from the physical point of view. Their second-type theory where the brane has a positive tension provides the correct signature of gravity. In this latter case, if the bulk spacetime is exactly anti-de Sitter spacetime, generically the matter on the brane is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti-de Sitter spacetime in the bulk, the situation will be relaxed and the Bianchi identities give just the relation between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well defined, such as in the case of the matter dominated by the potential energy of the scalar field.

  1. Negative branes, supergroups and the signature of spacetime

    NASA Astrophysics Data System (ADS)

    Dijkgraaf, Robbert; Heidenreich, Ben; Jefferson, Patrick; Vafa, Cumrun

    2018-02-01

    We study the realization of supergroup gauge theories using negative branes in string theory. We show that negative branes are intimately connected with the possibility of timelike compactification and exotic spacetime signatures previously studied by Hull. Isolated negative branes dynamically generate a change in spacetime signature near their worldvolumes, and are related by string dualities to a smooth M-theory geometry with closed timelike curves. Using negative D3-branes, we show that SU(0| N) supergroup theories are holographically dual to an exotic variant of type IIB string theory on {dS}_{3,2}× {\\overline{S}}^5 , for which the emergent dimensions are timelike. Using branes, mirror symmetry and Nekrasov's instanton calculus, all of which agree, we derive the Seiberg-Witten curve for N=2 SU( N | M ) gauge theories. Together with our exploration of holography and string dualities for negative branes, this suggests that supergroup gauge theories may be non-perturbatively well-defined objects, though several puzzles remain.

  2. Brane surgery: energy conditions, traversable wormholes, and voids

    NASA Astrophysics Data System (ADS)

    Barceló1, C.; Visser, M.

    2000-09-01

    Branes are ubiquitous elements of any low-energy limit of string theory. We point out that negative tension branes violate all the standard energy conditions of the higher-dimensional spacetime they are embedded in; this opens the door to very peculiar solutions of the higher-dimensional Einstein equations. Building upon the (/3+1)-dimensional implementation of fundamental string theory, we illustrate the possibilities by considering a toy model consisting of a (/2+1)-dimensional brane propagating through our observable (/3+1)-dimensional universe. Developing a notion of ``brane surgery'', based on the Israel-Lanczos-Sen ``thin shell'' formalism of general relativity, we analyze the dynamics and find traversable wormholes, closed baby universes, voids (holes in the spacetime manifold), and an evasion (not a violation) of both the singularity theorems and the positive mass theorem. These features appear generic to any brane model that permits negative tension branes: This includes the Randall-Sundrum models and their variants.

  3. Holographic cosmology from a system of M2–M5 branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir; Research Institute for Astronomy and Astrophysics of Maragha; Faizal, Mir, E-mail: f2mir@uwaterloo.ca

    In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open amore » bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.« less

  4. 6D thick branes from interacting scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Singleton, Douglas

    2008-02-15

    A thick brane in six dimensions is constructed using two scalar fields. The field equations for 6D gravity plus the scalar fields are solved numerically. This thick brane solution shares some features with previously studied analytic solutions, but has the advantage that the energy-momentum tensor which forms the thick brane comes from the scalar fields rather than being put in by hand. Additionally the scalar fields which form the brane also provide a universal, nongravitational trapping mechanism for test fields of various spins.

  5. Deriving all p-brane superalgebras via integrability

    NASA Astrophysics Data System (ADS)

    Grasso, D. T.; McArthur, I. N.

    2018-03-01

    In previous work we demonstrated that the enlarged super-Poincare algebras which underlie p-brane and D-brane actions in superstring theory can be directly determined based on the integrability of supersymmetry transformations assigned to fields appearing in Wess-Zumino terms. In that work we derived p-brane superalgebras for p = 2 and 3. Here we extend our previous results and give a compact expression for superalgebras for all valid p.

  6. AdS5 solutions from M5-branes on Riemann surface and D6-branes sources

    DOE PAGES

    Bah, Ibrahima

    2015-09-24

    Here, we describe the gravity duals of four-dimensional N = 1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS 5 factor, generically preserves two U(1)s, with generators (J +, J –), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N = 1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We usemore » this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural (p, q) label associated to the circle dual to the killing vector pJ + + qJ – which shrinks near the source. In the generic case the world volume of the D6-branes is AdS 5 × S 2 and they locally preserve N = 2 supersymmetry. When p = –q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS 5 factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS 5 and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS 5 and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.« less

  7. Tachyon Condensation and Brane Annihilation in Bose-Einstein Condensates: Spontaneous Symmetry Breaking in Restricted Lower-Dimensional Subspace

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2013-05-01

    In brane cosmology, the Big Bang is hypothesized to occur by the annihilation of the brane-anti-brane pair in a collision, where the branes are three-dimensional objects in a higher-dimensional Universe. Spontaneous symmetry breaking accompanied by the formation of lower-dimensional topological defects, e.g. cosmic strings, is triggered by the so-called `tachyon condensation', where the existence of tachyons is attributable to the instability of the brane-anti-brane system. Here, we discuss the closest analogue of the tachyon condensation in atomic Bose-Einstein condensates. We consider annihilation of domain walls, namely branes, in strongly segregated two-component condensates, where one component is sandwiched by two domains of the other component. In this system, the process of the brane annihilation can be projected effectively as ferromagnetic ordering dynamics onto a two-dimensional space. Based on this correspondence, three-dimensional formation of vortices from a domain-wall annihilation is considered to be a kink formation due to spontaneous symmetry breaking in the two-dimensional space. We also discuss a mechanism to create a `vorton' when the sandwiched component has a vortex string bridged between the branes. We hope that this study motivates experimental researches to realize this exotic phenomenon of spontaneous symmetry breaking in superfluid systems.

  8. First experimental test of a trace formula for billiard systems showing mixed dynamics.

    PubMed

    Dembowski, C; Gräf, H D; Heine, A; Hesse, T; Rehfeld, H; Richter, A

    2001-04-09

    In general, trace formulas relate the density of states for a given quantum mechanical system to the properties of the periodic orbits of its classical counterpart. Here we report for the first time on a semiclassical description of microwave spectra taken from superconducting billiards of the Limaçon family showing mixed dynamics in terms of a generalized trace formula derived by Ullmo et al. [Phys. Rev. E 54, 136 (1996)]. This expression not only describes mixed-typed behavior but also the limiting cases of fully regular and fully chaotic systems and thus presents a continuous interpolation between the Berry-Tabor and Gutzwiller formulas.

  9. Limit Theorems for Dispersing Billiards with Cusps

    NASA Astrophysics Data System (ADS)

    Bálint, P.; Chernov, N.; Dolgopyat, D.

    2011-12-01

    Dispersing billiards with cusps are deterministic dynamical systems with a mild degree of chaos, exhibiting "intermittent" behavior that alternates between regular and chaotic patterns. Their statistical properties are therefore weak and delicate. They are characterized by a slow (power-law) decay of correlations, and as a result the classical central limit theorem fails. We prove that a non-classical central limit theorem holds, with a scaling factor of {sqrt{nlog n}} replacing the standard {sqrt{n}} . We also derive the respective Weak Invariance Principle, and we identify the class of observables for which the classical CLT still holds.

  10. On D-brane -anti D-brane effective actions and their all order bulk singularity structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatefi, Ehsan; Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna

    All four point functions of brane anti brane system including their correct all order α{sup ′} corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR,more » gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s{sup ′}+t{sup ′})-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α{sup ′} corrections in the presence of brane anti brane system where various remarks will be also pointed out.« less

  11. Criticality for charged black branes

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.

    2017-09-01

    We show that the inclusion of higher curvature terms in the gravitational action can lead to phase transitions and critical behaviour for charged black branes. The higher curvature terms considered here belong to the recently constructed generalized quasi-topological class [arXiv:1703.01631], which possess a number of interesting properties, such as being ghost-free on constant curvature backgrounds and non-trivial in four dimensions. We show that critical behaviour is a generic feature of the black branes in all dimensions d ≥ 4, and contextualize the results with a review of the properties of black branes in Lovelock and quasi-topological gravity, where critical behaviour is not possible. These results may have interesting implications for the CFTs dual to this class of theories.

  12. Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard

    PubMed Central

    Estrecho, E.; Gao, T.; Brodbeck, S.; Kamp, M.; Schneider, C.; Höfling, S.; Truscott, A. G.; Ostrovskaya, E. A.

    2016-01-01

    Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles—exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities. PMID:27886222

  13. Spectral Properties of Dirac Billiards at the van Hove Singularities.

    PubMed

    Dietz, B; Klaus, T; Miski-Oglu, M; Richter, A; Wunderle, M; Bouazza, C

    2016-01-15

    We study distributions of the ratios of level spacings of rectangular and Africa-shaped superconducting microwave resonators containing circular scatterers on a triangular grid, so-called Dirac billiards (DBs). The high-precision measurements allowed the determination of, respectively, all 1651 and 1823 eigenfrequencies in the first two bands. The resonance densities are similar to that of graphene. They exhibit two sharp peaks at the van Hove singularities which separate the band structure into regions with a linear and a quadratic dispersion relation, respectively. In the vicinity of the van Hove singularities we observe rapid changes in, e.g., the wave function structure. Accordingly, we question whether the spectral properties are there still determined by the shapes of the DBs. The commonly used statistical measures are no longer applicable; however, we demonstrate in this Letter that the ratio distributions provide suitable measures.

  14. Born-Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between

  15. Brane-world motion in compact dimensions

    NASA Astrophysics Data System (ADS)

    Greene, Brian; Levin, Janna; Parikh, Maulik

    2011-08-01

    The topology of extra dimensions can break global Lorentz invariance, singling out a globally preferred frame even in flat spacetime. Through experiments that probe global topology, an observer can determine her state of motion with respect to the preferred frame. This scenario is realized if we live on a brane universe moving through a flat space with compact extra dimensions. We identify three experimental effects due to the motion of our universe that one could potentially detect using gravitational probes. One of these relates to the peculiar properties of the twin paradox in multiply-connected spacetimes. Another relies on the fact that the Kaluza-Klein modes of any bulk field are sensitive to boundary conditions. A third concerns the modification to the Newtonian potential on a moving brane. Remarkably, we find that even small extra dimensions are detectable by brane observers if the brane is moving sufficiently fast. Communicated by P R L V Moniz

  16. Non-conservation of global charges in the Brane Universe and baryogenesis

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gabadadze, Gregory

    1999-08-01

    We argue that global charges, such as baryon or lepton number, are not conserved in theories with the Standard Model fields localized on the brane which propagates in higher-dimensional space-time. The global-charge non-conservation is due to quantum fluctuations of the brane surface. These fluctuations create ``baby branes'' that can capture some global charges and carry them away into the bulk of higher-dimensional space. Such processes are exponentially suppressed at low-energies, but can be significant at high enough temperatures or energies. These effects can lead to a new, intrinsically high-dimensional mechanism of baryogenesis. Baryon asymmetry might be produced due either to ``evaporation'' into the baby branes, or creation of the baryon number excess in collisions of two Brane Universes. As an example we discuss a possible cosmological scenario within the recently proposed ``Brane Inflation'' framework. Inflation is driven by displaced branes which slowly fall on top of each other. When the branes collide inflation stops and the Brane Universe reheats. During this non-equilibrium collision baryon number can be transported from one brane to another one. This results in the baryon number excess in our Universe which exactly equals to the hidden ``baryon number'' deficit in the other Brane Universe. © 1999

  17. Lattice black branes: sphere packing in general relativity

    NASA Astrophysics Data System (ADS)

    Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson

    2018-05-01

    We perturbatively construct asymptotically R^{1,3}× T^2 black branes with multiple inhomogeneous directions and show that some of them are thermodynamically preferred over uniform branes in both the microcanonical and canonical ensembles. This demonstrates that, unlike five-dimensional black strings, the instability of some unstable black branes has a plausible endpoint that does not require a violation of cosmic censorship.

  18. Finite temperature corrections to tachyon mass in intersecting D-branes

    NASA Astrophysics Data System (ADS)

    Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu

    2017-04-01

    We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in [1]. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in [2]. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in [1] as well as those for intersecting D2 branes.

  19. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near-Earth Asteroid Disruption

    NASA Technical Reports Server (NTRS)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent William

    2015-01-01

    small (less than 10m), NEA (hereinafter "Alpha"), (2) maneuver Alpha to a collision with a approx. 100 m NEA (hereinafter "Beta"), and (3) produce a detectable deflection or disruption of Beta. In addition to these primary objectives, the BILLIARDS project will contribute to the scientific understanding of the physical properties and collision dynamics of asteroids, and provide opportunities for international collaboration.

  20. Brane junctions in the Randall-Sundrum scenario

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Shirman, Yuri

    2000-01-01

    We present static solutions to Einstein's equations corresponding to branes at various angles intersecting in a single 3-brane. Such configurations may be useful for building models with localized gravity via the Randall-Sundrum mechanism. We find that such solutions may exist only if the mechanical forces acting on the junction exactly cancel. In addition to this constraint there are further conditions that the parameters of the theory have to satisfy. We find that at least one of these involves only the brane tensions and cosmological constants, and thus cannot have a dynamical origin. We present these conditions in detail for two simple examples. We discuss the nature of the cosmological constant problem in the framework of these scenarios, and outline the desired features of the brane configurations which may bring us closer towards a resolution of the cosmological constant problem.

  1. Emergence and oscillation of cosmic space by joining M1-branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    2016-05-01

    Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises; how could this model explain the oscillation of the universe between contraction and expansion branches? We try to address this issue in the framework of a BIonic system. In this model, M0-branes join to each other and give rise to a pair of M1-anti- M1-branes. The fields which live on these branes play the roles of massive gravitons that cause the emergence of a wormhole between them and formation of a BIon system. This wormhole dissolves into M1-branes and causes a divergence between the number of degrees of freedom on the boundary surface of M1 and the bulk leading to an expansion of M1-branes. When M1-branes become close to each other, the square energy of their system becomes negative and some tachyonic states emerge. To remove these states, M1-branes become compact, the sign of compacted gravity changes, causing anti-gravity to arise: in this case, branes get away from each other. By articulating M1-BIons, an M3-brane and an anti- M3-brane are created and connected by three wormholes forming an M3-BIon. This new system behaves like the initial system and by closing branes to each other, they become compact and, by getting away from each other, they open. Our universe is located on one of these M3-branes and, by compactifying the M3-brane, it contracts and, by opening it, it expands.

  2. d-Brane Instantons in Type II Orientifolds

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Cvetič, Mirjam; Kachru, Shamit; Weigand, Timo

    2009-11-01

    We review recent progress in determining the effects of d-brane instantons in [Formula: see text] supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract d-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function, and higher fermionic F-terms, and we briefly discuss the implications of background fluxes for the instanton sector. We then summarize the concrete consequences of stringy d-brane instantons for the construction of semirealistic models of particle physics or supersymmetry breaking in compact and noncompact geometries.

  3. Entropy of N=2 black holes and their M-brane description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrndt, K.; Mohaupt, T.

    1997-08-01

    In this paper we discuss the M-brane description for an N=2 black hole. This solution is a result of the compactification of M-5-brane configurations over a Calabi-Yau threefold with arbitrary intersection numbers C{sub ABC}. In analogy with the D-brane description where one counts open string states we count here open M-2-branes which end on the M-5-brane. {copyright} {ital 1997} {ital The American Physical Society}

  4. Microstates of black holes in expanding universe from interacting branes

    NASA Astrophysics Data System (ADS)

    Shiba, Shotaro

    2017-05-01

    Thermodynamics of the near extremal black p-branes can be described by collective motions of gravitationally interacting branes. This proposal is called the p-soup model. In this paper, we check this proposal in the case of black brane system which is asymptotically Friedmann-Lemaître-Robertson-Walker universe in an infinite distance. As a result, we can show that the gravitationally interacting branes explain free energy, entropy, temperature and other physical quantities in these systems. This implies that the microstates of this kind of brane system can be also understood in the p-soup model.

  5. Periodic arrays of M2-branes

    NASA Astrophysics Data System (ADS)

    Jeon, Imtak; Lambert, Neil; Richmond, Paul

    2012-11-01

    We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms of fermions, seven transverse scalars, a non-dynamical gauge field and an additional scalar `dual gluon'. Upon further T-duality on a transverse torus we obtain a non-manifest- Lorentz-invariant description of five-dimensional maximally supersymmetric Yang-Mills. Here the additional scalar field can be thought of as the components of a two-form along the torus. This action can be viewed as an M-theory description of M5-branes on {{{T}}^3}.

  6. Playing relativistic billiards beyond graphene

    NASA Astrophysics Data System (ADS)

    Sadurní, E.; Seligman, T. H.; Mortessagne, F.

    2010-05-01

    The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.

  7. Moving branes in the presence of background tachyon fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Z., E-mail: z.rezaei@aut.ac.ir; Kamani, D., E-mail: kamani@aut.ac.ir

    2011-12-15

    We compute the boundary state associated with a moving Dp-brane in the presence of the open string tachyon field as a background field. The effect of the tachyon condensation on the boundary state is discussed. It leads to a boundary state associated with a lower-dimensional moving D-brane or a stationary instantonic D-brane. The former originates from condensation along the spatial directions and the latter comes from the temporal direction of the D-brane worldvolume. Using the boundary state, we also study the interaction amplitude between two arbitrary Dp{sub 1}- and Dp{sub 2}-branes. The long-range behavior of the amplitude is investigated, demonstratingmore » an obvious deviation from the conventional form, due to the presence of the background tachyon field.« less

  8. Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya

    2014-06-01

    We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.

  9. Large dimensions and small curvatures from supersymmetric brane back-reaction

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-04-01

    We compute the back-reaction of pairs of codimension-two branes within an explicit flux-stabilized compactification, to trace how its properties depend on the parameters that define the brane-bulk couplings. Both brane tension and magnetic couplings to the stabilizing flux play an important role in the resulting dynamics, with the magnetic coupling allowing some of the flux to be localized on the branes (thus changing the flux-quantization conditions). We find that back-reaction lifts the classical flat directions of the bulk supergravity, and we calculate both the scalar potential and changes to the extra-dimensional and on-brane geometries that result, as functions of the assumed brane couplings. When linearized about simple rugby-ball geometries the resulting solutions allow a systematic exploration of the system's response. Several of the systems we explore have remarkable properties. Among these are a propensity for the extra dimensions to stabilize at exponentially large sizes, providing a mechanism for generating extremely large volumes. In some circumstances the brane-dilaton coupling allows the bulk dilaton to adjust to suppress the on-brane curvature parametrically below the change in brane tension, potentially providing a mechanism for reducing the vacuum energy. We explore the stability of this suppression to quantum effects in the case where their strength is controlled by the value of the field along the classical flat direction, and find it can (but need not) be stable.

  10. Simple inflationary models in Gauss-Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-06-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.

  11. Lovelock branes

    NASA Astrophysics Data System (ADS)

    Kastor, David; Ray, Sourya; Traschen, Jennie

    2017-10-01

    We study the problem of finding brane-like solutions to Lovelock gravity, adopting a general approach to establish conditions that a lower dimensional base metric must satisfy in order that a solution to a given Lovelock theory can be constructed in one higher dimension. We find that for Lovelock theories with generic values of the coupling constants, the Lovelock tensors (higher curvature generalizations of the Einstein tensor) of the base metric must all be proportional to the metric. Hence, allowed base metrics form a subclass of Einstein metrics. This subclass includes so-called ‘universal metrics’, which have been previously investigated as solutions to quantum-corrected field equations. For specially tuned values of the Lovelock couplings, we find that the Lovelock tensors of the base metric need to satisfy fewer constraints. For example, for Lovelock theories with a unique vacuum there is only a single such constraint, a case previously identified in the literature, and brane solutions can be straightforwardly constructed.

  12. Strong coupling in F-theory and geometrically non-Higgsable seven-branes

    NASA Astrophysics Data System (ADS)

    Halverson, James

    2017-06-01

    Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O (1) in the vicinity of the brane; that it sources nilpotent SL (2 , Z) monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU (3) and SU (2) seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany-Witten moves on (p , q) string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres-Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.

  13. Deterministic diffusion in flower-shaped billiards.

    PubMed

    Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre

    2002-08-01

    We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.

  14. Gauge Field Localization on Deformed Branes

    NASA Astrophysics Data System (ADS)

    Tofighi, A.; Moazzen, M.; Farokhtabar, A.

    2016-02-01

    In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.

  15. Linear Sigma Model Toolshed for D-brane Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellerman, Simeon

    Building on earlier work, we construct linear sigma models for strings on curved spaces in the presence of branes. Our models include an extremely general class of brane-worldvolume gauge field configurations. We explain in an accessible manner the mathematical ideas which suggest appropriate worldsheet interactions for generating a given open string background. This construction provides an explanation for the appearance of the derived category in D-brane physic complementary to that of recent work of Douglas.

  16. Emergence and expansion of cosmic space as due to M0-branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Setare, Mohammad Reza; Capozziello, Salvatore

    2015-12-01

    Recently, Padmanabhan (arXiv:1206.4916 [hep-th]) discussed that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region causes the accelerated expansion of the universe. The main question arising is: what is the origin of this inequality between the surface degrees of freedom and the bulk degrees of freedom? We answer this question in M-theory. In our model, first M0-branes are compactified on one circle and N D0-branes are created. Then N D0-branes join each other, grow, and form one D5-branes. Next, the D5-brane is compactified on two circles and our universe's D3-brane, two D1-branes and some extra energies are produced. After that, one of the D1-branes, which is closer to the universe's brane, gives its energy into it, and this leads to an increase in the difference between the numbers of degrees of freedom and the occurring inflation era. With the disappearance of this D1-brane, the number of degrees of freedom of boundary surface and bulk region become equal and inflation ends. At this stage, extra energies that are produced due to the compactification cause an expansion of the universe and deceleration epoch. Finally, another D1-brane dissolves in our universe's brane, leads to an inequality between degrees of freedom, and there occurs a new phase of acceleration.

  17. Level statistics of a noncompact cosmological billiard

    NASA Astrophysics Data System (ADS)

    Csordas, Andras; Graham, Robert; Szepfalusy, Peter

    1991-08-01

    A noncompact chaotic billiard on a two-dimensional space of constant negative curvature, the infinite equilateral triangle describing anisotropy oscillations in the very early universe, is studied quantum-mechanically. A Weyl formula with a logarithmic correction term is derived for the smoothed number of states function. For one symmetry class of the eigenfunctions, the level spacing distribution, the spectral rigidity Delta3, and the Sigma2 statistics are determined numerically using the finite matrix approximation. Systematic deviations are found both from the Gaussian orthogonal ensemble (GOE) and the Poissonian ensemble. However, good agreement with the GOE is found if the fundamental triangle is deformed in such a way that it no longer tiles the space.

  18. Entanglement branes in a two-dimensional string theory

    DOE PAGES

    Donnelly, William; Wong, Gabriel

    2017-09-20

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  19. Five-brane actions in double field theory

    NASA Astrophysics Data System (ADS)

    Blair, Chris D. A.; Musaev, Edvard T.

    2018-03-01

    We construct an action for NSNS 5-branes which is manifestly covariant under O( d, d). This is done by doubling d of the spacetime coordinates which appear in the worldvolume action. By formulating the DBI part of the action in a manner similar to a "gauged sigma model", only half the doubled coordinates genuinely appear. Our approach allows one to describe the full T-duality orbit of the IIB NS5 brane, the IIA KKM and their exotic relations in one formalism. Furthermore, by using ideas from double field theory, our action can be said to describe various aspects of non-geometric five-branes.

  20. Study of Strongly Coupled Systems via Probe Brane Constructions

    NASA Astrophysics Data System (ADS)

    Chang, Han-Chih

    In this thesis, we present our study towards better understanding of the strongly coupled systems with extra matter content in the fundamental representation of some prescribed global symmetry group in the quenched approximation, with the toolkit of holography via a probe brane construction. Specically, for the defect conformal systems, we unearth and quantify the phase trasition diagram, and novel supersymmetric vacua in the top-down model of the D3/D5 probe brane system. For further quantify various non-Fermi quantum liquid phases realized through the holographical probe brane construction, we then propose and verify the method to include the backreaction of entanglement entropy due to the probe branes at the leading order, which can potentially be used to detect topological phase transitions. We will recapitulate the main results of our works, in collaboration with Prof. Andreas Karch, published in the following journals: "Minimal Submanifolds asymptotic to AdS4 xS2 in AdS5xS5', JHEP, vol.1404, p.037, 2014; "The Novel Solutions of Finite-Density D3/D5 Probe Brane System and Their Implications for Stability'', JHEP, vol.1210, p.060, 2014; "Entanglement Entropy for Probe Branes'', JHEP, vol.1401, p.180, 2014.

  1. Deformation of N = 4 SYM with varying couplings via fluxes and intersecting branes

    NASA Astrophysics Data System (ADS)

    Choi, Jaewang; Fernández-Melgarejo, José J.; Sugimoto, Shigeki

    2018-03-01

    We study deformations of N = 4 supersymmetric Yang-Mills theory with space-time dependent couplings by embedding probe D3-branes in supergravity backgrounds with non-trivial fluxes. The effective action on the world-volume of the D3-branes is analyzed and a map between the deformation parameters and the fluxes is obtained. As an explicit example, we consider D3-branes in a background corresponding to ( p, q) 5-branes intersecting them and show that the effective theory on the D3-branes precisely agrees with the supersymmetric Janus configuration found by Gaiotto and Witten in [1]. D3-branes in an intersecting D3-brane background is also analyzed and the D3-brane effective action reproduces one of the supersymmetric configurations with ISO(1 , 1) × SO(2) × SO(4) symmetry found in our previous paper [2].

  2. Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Parsiya, A.; Atazadeh, K.

    2016-03-01

    We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.

  3. Teleparallel dark energy in a system of D0-branes

    NASA Astrophysics Data System (ADS)

    Sharma, Umesh Kumar; Sepehri, Alireza; Pradhan, Anirudh

    A new model which allows a non-minimal coupling between gravity and quintessence in the configuration of teleparallel gravity was recently proposed by Geng et al. [“Teleparallel” dark energy, Phys. Lett. B 704 (2011) 384-387] and they named it teleparallel dark energy. Now the main problem which arises is to know what is the source of this dark energy? The answer of this question is given by us in M-theory. This type of dark energy may be produced at three stages in our model. First, one six-dimensional universe is formed by combining and expanding D0-branes. We know that this universe-brane is polarized on two circles and our four-dimensional cosmos and two D1-branes are yielded. At third stage, two D1-branes glued to each other and one D2-brane is formed. This D2 connects our universe with another universe, gives its energy to them and causes the production of dark energy. Thus, the D2-brane is unstable and dissolves in our four-dimensional universes and supplies the needed teleparallel dark energy for expansion. These calculations are extended to M-theory and shown that the amount of teleparallel dark energy which is produced by compactification of universe-branes in M-theory is more than string theory.

  4. Running with rugby balls: bulk renormalization of codimension-2 branes

    NASA Astrophysics Data System (ADS)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  5. Embedding of the brane into six dimensions

    NASA Astrophysics Data System (ADS)

    Gogberashvili, Merab

    2002-10-01

    Embedding of the brane metric into Euclidean (2+4)-space is found. Brane geometry can be visualized as the surface of the hypersphere in six dimensions which ``radius'' is governed by the cosmological constant. Minkowski space in this picture is placed on the intersection of this surface with the plane formed by the extra space-like and time-like coordinates.

  6. Lepton flavour violation in RS models with a brane- or nearly brane-localized Higgs

    NASA Astrophysics Data System (ADS)

    Beneke, M.; Moch, P.; Rohrwild, J.

    2016-05-01

    We perform a comprehensive study of charged lepton flavour violation in Randall-Sundrum (RS) models in a fully 5D quantum-field-theoretical framework. We consider the RS model with minimal field content and a ;custodially protected; extension as well as three implementations of the IR-brane localized Higgs field, including the non-decoupling effect of the KK excitations of a narrow bulk Higgs. Our calculation provides the first complete result for the flavour-violating electromagnetic dipole operator in Randall-Sundrum models. It contains three contributions with different dependence on the magnitude of the anarchic 5D Yukawa matrix, which can all be important in certain parameter regions. We study the typical range for the branching fractions of μ → eγ, μ → 3 e, μN → eN as well as τ → μγ, τ → 3 μ and the electron electric dipole moment by a numerical scan in both the minimal and the custodial RS model. The combination of μ → eγ and μN → eN currently provides the most stringent constraint on the parameter space of the model. A typical lower limit on the KK scale T is around 2 TeV in the minimal model (up to 4 TeV in the bulk Higgs case with large Yukawa couplings), and around 4 TeV in the custodially protected model, which corresponds to a mass of about 10 TeV for the first KK excitations, far beyond the lower limit from the non-observation of direct production at the LHC.

  7. Global embeddings for branes at toric singularities

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Berglund, Per; Braun, Volker; García-Etxebarria, Iñaki

    2012-10-01

    We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) ( dP 0)3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.

  8. Bulk renormalization and particle spectrum in codimension-two brane worlds

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2013-04-01

    We study the Casimir energy due to bulk loops of matter fields in codimension-two brane worlds and discuss how effective field theory methods allow us to use this result to renormalize the bulk and brane operators. In the calculation we explicitly sum over the Kaluza-Klein (KK) states with a new convenient method, which is based on a combined use of zeta function and dimensional regularization. Among the general class of models we consider we include a supersymmetric example, 6D gauged chiral supergravity. Although much of our discussion is more general, we treat in some detail a class of compactifications, where the extra dimensions parametrize a rugby ball shaped space with size stabilized by a bulk magnetic flux. The rugby ball geometry requires two branes, which can host the Standard Model fields and carry both tension and magnetic flux (of the bulk gauge field), the leading terms in a derivative expansion. The brane properties have an impact on the KK spectrum and therefore on the Casimir energy as well as on the renormalization of the brane operators. A very interesting feature is that when the two branes carry exactly the same amount of flux, one half of the bulk supersymmetries survives after the compactification, even if the brane tensions are large. We also discuss the implications of these calculations for the natural value of the cosmological constant when the bulk has two large extra dimensions and the bulk supersymmetry is partially preserved (or completely broken).

  9. Black branes in a box: hydrodynamics, stability, and criticality

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Martınez, Marina

    2012-07-01

    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.

  10. Effective monopoles within thick branes

    NASA Astrophysics Data System (ADS)

    Hoff da Silva, J. M.; da Rocha, Roldão

    2012-10-01

    The monopole mass is revealed to be considerably modified in the thick braneworld paradigm, and depends on the position of the monopole in the brane as well. Accordingly, the monopole radius continuously increases, leading to an unacceptable setting that can be circumvented when the brane thickness has an upper limit. Despite such peculiar behavior, the accrued quantum corrections —involving the classical monopole solution— are shown to be still under control. We analyze the monopole's peculiarities also taking into account the localization of the gauge fields. Furthermore, some additional analysis in the thick braneworld context and the similar behavior evinced by the topological string are investigated.

  11. A compact codimension-two braneworld with precisely one brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerblom, Nikolas; Cornelissen, Gunther; Department of Mathematics, Utrecht University

    Building on earlier work on football-shaped extra dimensions, we construct a compact codimension-two braneworld with precisely one brane. The two extra dimensions topologically represent a 2-torus which is stabilized by a bulk cosmological constant and magnetic flux. The torus has positive constant curvature almost everywhere, except for a single conical singularity at the location of the brane. In contradistinction to the football-shaped case, there is no fine-tuning required for the brane tension. We also present some plausibility arguments why the model should not suffer from serious stability issues.

  12. Bouncing droplets on a billiard table.

    PubMed

    Shirokoff, David

    2013-03-01

    In a set of experiments, Couder et al. demonstrate that an oscillating fluid bed may propagate a bouncing droplet through the guidance of the surface waves. I present a dynamical systems model, in the form of an iterative map, for a droplet on an oscillating bath. I examine the droplet bifurcation from bouncing to walking, and prescribe general requirements for the surface wave to support stable walking states. I show that in addition to walking, there is a region of large forcing that may support the chaotic motion of the droplet. Using the map, I then investigate the droplet trajectories in a square (billiard ball) domain. I show that in large domains, the long time trajectories are either non-periodic dense curves or approach a quasiperiodic orbit. In contrast, in small domains, at low forcing, trajectories tend to approach an array of circular attracting sets. As the forcing increases, the attracting sets break down and the droplet travels throughout space.

  13. Central Charges of Liouville and Toda Theories from M5-Branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alday, Luis F.; Tachikawa, Yuji; Benini, Francesco

    We show that the central charge of the Liouville and Toda theories of type A, D, and E can be reproduced by equivariantly integrating the anomaly eight-form of the corresponding six-dimensional N=(0,2) theories, which describe the low-energy dynamics of M5-branes.

  14. CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P

    2004-09-29

    A new model for the origin of dark energy is proposed based on the Casimir effect in a supersymmetry-breaking brane-world. Supersymmetry is assumed to be preserved in the bulk while broken on a 3-brane. Due to the boundary conditions imposed on the compactified extra dimensions, there is an effective Casimir energy induced on the brane. The net Casimir energy contributed from the graviton and the gravitino modes as a result of supersymmetry-breaking on the brane is identified as the observed dark energy, which in our construction is a cosmological constant. We show that the smallness of the cosmological constant, whichmore » results from the huge contrast in the extra-dimensional volumes between that associated with the 3-brane and that of the bulk, is attainable under very relaxed condition.« less

  15. Gravitational baryogenesis in DGP brane cosmology

    NASA Astrophysics Data System (ADS)

    Atazadeh, K.

    2018-06-01

    We consider the imbalance of matter and antimatter by using a gravitational baryogenesis mechanism in the background of Dvali-Gabadadze-Porrati (DGP) brane cosmology. By taking into account a flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric in the DGP brane model, we find that for a radiation dominated universe, w=1/3, the ratio of baryon number density to entropy from the gravitational baryogenesis is not zero, contrary to ordinary general relativity. Also, we study the ratio of baryon number density to entropy against the observational constraints in DGP cosmology.

  16. Brane universes with Gauss-Bonnet-induced-gravity

    NASA Astrophysics Data System (ADS)

    Brown, Richard A.

    2007-04-01

    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a “dark energy” field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density “Big-Bang” and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.

  17. Effect of bulk Lorentz violation on anisotropic brane cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir

    2012-04-01

    The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early timemore » behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.« less

  18. Kaluza-Klein two-brane-worlds cosmology at low energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feranie, S.; Arianto; Zen, Freddy P.

    2010-04-15

    We study two (4+n)-dimensional branes embedded in (5+n)-dimensional spacetime. Using the gradient expansion approximation, we find that the effective theory is described by (4+n)-dimensional scalar-tensor gravity with a specific coupling function. Based on this theory we investigate the Kaluza-Klein two-brane-worlds cosmology at low energy, in both the static and the nonstatic internal dimensions. In the case of the static internal dimensions, the effective gravitational constant in the induced Friedmann equation depends on the equations of state of the brane matter, and the dark radiation term naturally appears. In the nonstatic case we take a relation between the external and internalmore » scale factors of the form b(t)=a{sup {gamma}(t)} in which the brane world evolves with two scale factors. In this case, the induced Friedmann equation on the brane is modified in the effective gravitational constant and the term proportional to a{sup -4{beta}.} For dark radiation, we find {gamma}=-2/(1+n). Finally, we discuss the issue of conformal frames which naturally arises with scalar-tensor theories. We find that the static internal dimensions in the Jordan frame may become nonstatic in the Einstein frame.« less

  19. Interaction of moving branes with background massless and tachyon fields in superstring theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Z., E-mail: z.rezaei@aut.ac.ir; Kamani, D., E-mail: kamani@aut.ac.ir

    2012-02-15

    Using the boundary state formalism, we study a moving Dp-brane in a partially compact space-time in the presence of background fields: the Kalb-Ramond field B{sub {mu}{nu}}, a U(1) gauge field A{sub {alpha}}, and the tachyon field. The boundary state enables us to obtain the interaction amplitude of two branes with the above back-ground fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields, compactification of some space-time directions, motion of the branes, and the arbitrariness of the dimensions of the branes, the system is rather general. Due to the tachyon fields and velocitiesmore » of the branes, the behavior of the interaction amplitude reveals obvious differences from the conventional behavior.« less

  20. Cosmic space and Pauli exclusion principle in a system of M0-branes

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Saridakis, Emmanuel N.; Bamba, Kazuharu; Sepehri, Alireza; Rahaman, Farook; Ali, Ahmed Farag; Pincak, Richard; Pradhan, Anirudh

    An emergence of cosmic space has been suggested by Padmanabhan [Emergence and expansion of cosmic space as due to the quest for holographic equipartition, arXiv:hep-th/1206.4916] where he proposed that the expansion of the universe originates from a difference between the number of degrees of freedom on a holographic surface and the one in the emerged bulk. Now, a natural question that arises is how this proposal would explain the production of fermions and an emergence of the Pauli exclusion principle during the evolution of the universe? We try to address this issue in a system of M0-branes. In this model, there is a high symmetry and the system is composed of M0-branes to which only scalar fields are attached that represent scalar modes of the graviton. Then, when M0-branes join each other and hence form M1-branes, this symmetry is broken and gauge fields are formed. Therefore, these M1-branes interact with the anti-M1-branes and the force between them leads to a break of a symmetry such as the lower and upper parts of these branes are not the same. In these conditions, gauge fields which are localized on M1-branes and scalars which are attached to them symmetrically, decay to fermions with upper and lower spins which attach to the upper and lower parts of the M1-branes anti-symmetrically. The curvature produced by the coupling of identical spins has the opposite sign of the curvature produced by non-identical spins which lead to an attractive force between anti-parallel spins and a repelling force between parallel spins and hence an emergence of the Pauli exclusion principle. By approaching M1-branes to each other, the difference between curvatures of parallel spins and curvatures of anti-parallel spins increases, which leads to an inequality between the number of degrees of freedom on the surface and the one in the emerged bulk and hence lead to an occurrence of the cosmic expansion. By approaching M1-branes to each other, the square of the energy of the

  1. High-energy effective theory for matter on close Randall-Sundrum branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rham, Claudia de; Webster, Samuel

    2005-09-15

    Extending the analysis of C. de Rham and S. Webster [Phys. Rev. D 71, 124025 (2005)], we obtain a formal expression for the coupling between brane matter and the radion in a Randall-Sundrum braneworld. This effective theory is correct to all orders in derivatives of the radion in the limit of small brane separation, and, in particular, contains no higher than second derivatives. In the case of cosmological symmetry the theory can be obtained in closed form and reproduces the five-dimensional behavior. Perturbations in the tensor and scalar sectors are then studied. When the branes are moving, the effective Newtonianmore » constant on the brane is shown to depend both on the distance between the branes and on their velocity. In the small-distance limit, we compute the exact dependence between the four-dimensional and the five-dimensional Newtonian constants.« less

  2. Thick de Sitter brane solutions in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhunushaliev, Vladimir; Department of Physics and Microelectronic Engineering, Kyrgyz-Russian Slavic University, Bishkek, Kievskaya Str. 44, 720021, Kyrgyz Republic; Folomeev, Vladimir

    2009-01-15

    We present thick de Sitter brane solutions which are supported by two interacting phantom scalar fields in five-, six-, and seven-dimensional spacetime. It is shown that for all cases regular solutions with anti-de Sitter asymptotic (5D problem) and a flat asymptotic far from the brane (6D and 7D cases) exist. We also discuss the stability of our solutions.

  3. Intersecting flavor branes

    NASA Astrophysics Data System (ADS)

    Pomoni, Elli; Rastelli, Leonardo

    2012-10-01

    We consider an instance of the AdS/CFT duality where the bulk theory contains an open string tachyon, and study the instability from the viewpoint of the boundary field theory. We focus on the specific example of the AdS5 × S 5 background with two probe D7 branes intersecting at general angles. For generic angles supersymmetry is completely broken and there is an open string tachyon between the branes. The field theory action for this system is obtained by coupling to {N}=4 super Yang-Mills two {N}=2 hyper multiplets in the fundamental representation of the SU( N) gauge group, but with different choices of embedding of the two {N}=2 subalgebras into {N}=4 . On the field theory side we find a one-loop Coleman-Weinberg instability in the effective potential for the fundamental scalars. We identify a mesonic operator as the dual of the open string tachyon. By AdS/CFT, we predict the tachyon mass for small 't Hooft coupling (large bulk curvature) and confirm that it violates the AdS stability bound.

  4. Transport in the barrier billiard

    NASA Astrophysics Data System (ADS)

    Saberi Fathi, S. M.; Ettoumi, W.; Courbage, M.

    2016-06-01

    We investigate transport properties of an ensemble of particles moving inside an infinite periodic horizontal planar barrier billiard. A particle moves among bars and elastically reflects on them. The motion is a uniform translation along the bars' axis. When the tangent of the incidence angle, α , is fixed and rational, the second moment of the displacement along the orthogonal axis at time n , , is either bounded or asymptotic to K n2 , when n →∞ . For irrational α , the collision map is ergodic and has a family of weakly mixing observables, the transport is not ballistic, and autocorrelation functions decay only in time average, but may not decay for a family of irrational α 's. An exhaustive numerical computation shows that the transport may be superdiffusive or subdiffusive with various rates or bounded strongly depending on the values of α . The variety of transport behaviors sounds reminiscent of well-known behavior of conservative systems. Considering then an ensemble of particles with nonfixed α , the system is nonergodic and certainly not mixing and has anomalous diffusion with self-similar space-time properties. However, we verified that such a system decomposes into ergodic subdynamics breaking self-similarity.

  5. Rotation in a gravitational billiard

    NASA Astrophysics Data System (ADS)

    Peraza-Mues, G. G.; Carvente, Osvaldo; Moukarzel, Cristian F.

    Gravitational billiards composed of a viscoelastic frictional disk bouncing on a vibrating wedge have been studied previously, but only from the point of view of their translational behavior. In this work, the average rotational velocity of the disk is studied under various circumstances. First, an experimental realization is briefly presented, which shows sustained rotation when the wedge is tilted. Next, this phenomenon is scrutinized in close detail using a precise numerical implementation of frictional forces. We show that the bouncing disk acquires a spontaneous rotational velocity whenever the wedge angle is not bisected by the direction of gravity. Our molecular dynamics (MD) results are well reproduced by event-driven (ED) simulations. When the wedge aperture angle θW>π/2, the average tangential velocity Rω¯ of the disk scales with the typical wedge vibration velocity vb, and is in general a nonmonotonic function of the overall tilt angle θT of the wedge. The present work focuses on wedges with θW=2π/3, which are relevant for the problem of spontaneous rotation in vibrated disk packings. This study makes part of the PhD Thesis of G. G. Peraza-Mues.

  6. Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking

    NASA Astrophysics Data System (ADS)

    Sperling, Marcus; Steinacker, Harold C.

    2018-04-01

    We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.

  7. Brane decay and an initial spacelike singularity.

    PubMed

    Kawai, Shinsuke; Keski-Vakkuri, Esko; Leigh, Robert G; Nowling, Sean

    2006-01-27

    We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic nonsingular initial condition.

  8. The strong energy condition and the S-brane singularity problem

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2003-06-01

    Recently it has been argued that, because tachyonic matter satisfies the Strong Energy Condition [SEC], there is little hope of avoiding the singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and Wohlfarth have suggested an ingenious way of circumventing the SEC in such situations, and other suggestions for actually violating it in the S-Brane context have recently been proposed. Of course, the natural context for discussions of [effective or actual] violations of the SEC is the theory of asymptotically deSitter spacetimes, which tend to be less singular than ordinary FRW spacetimes. However, while violating or circumventing the SEC is necessary if singularities are to be avoided, it is not at all clear that it is sufficient. That is, we can ask: would an asymptotically deSitter S-brane spacetime be non-singular? We show that this is difficult to achieve; this result is in the spirit of the recently proved "S-brane singularity theorem". Essentially our results suggest that circumventing or violating the SEC may not suffice to solve the S-Brane singularity problem, though we do propose two ways of avoiding this conclusion.

  9. REVIEWS OF TOPICAL PROBLEMS: Cosmological branes and macroscopic extra dimensions

    NASA Astrophysics Data System (ADS)

    Barvinsky, Andrei O.

    2005-06-01

    The idea of adding extra dimensions to the physical world — thus making the observable universe a timelike surface (or brane) embedded in a higher-dimensional space-time — is briefly reviewed, which is believed to hold serious promise for solving fundamental problems concerning the hierarchy of physical interactions and the cosmological constant. Brane localization of massless gravitons is discussed as a mechanism leading to the effective four-dimensional Einstein gravity theory on the brane in the low-energy limit. It is shown that this mechanism is a corollary of the AdS/CFT correspondence principle well-known from string theory. Inflation and other cosmological evolution scenarios induced by the local and nonlocal structures of the effective action of the gravitational brane are considered, as are the effects that enable the developing gravitational-wave astronomy to be used in the search for extra dimensions. Finally, a new approach to the cosmological constant and cosmological acceleration problems is discussed, which involves variable local and nonlocal gravitational 'constants' arising in the infrared modifications of the Einstein theory that incorporate brane-induced gravity models and models of massive gravitons.

  10. Vacuum thin shells in Einstein–Gauss–Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Ramirez, Marcos A.

    2018-04-01

    In this paper we construct new solutions of the Einstein–Gauss–Bonnet field equations in an isotropic Shiromizu–Maeda–Sasaki brane-world setting which represent a couple of Z 2-symmetric vacuum thin shells splitting from the central brane, and explore the main properties of the dynamics of the system. The matching of the separating vacuum shells with the brane-world is as smooth as possible and all matter fields are restricted to the brane. We prove the existence of these solutions, derive the criteria for their existence, analyse some fundamental aspects or their evolution and demonstrate the possibility of constructing cosmological examples that exhibit this feature at early times. We also comment on the possible implications for cosmology and the relation of this system with the thermodynamic instability of highly symmetric vacuum solutions of Lovelock theory.

  11. Cosmic superstrings: Observable remnants of brane inflation

    NASA Astrophysics Data System (ADS)

    Wyman, Mark Charles

    Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).

  12. Asymmetric Wormholes via Electrically Charged Lightlike Branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E.; Kaganovich, A.; Nissimov, E.

    2010-06-17

    We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exteriormore » Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.« less

  13. Enhanced peculiar velocities in brane-induced gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyman, Mark; Khoury, Justin

    The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the {Lambda}CDM paradigm. The recent estimates of the large-scale bulk flow by Watkins et al. are inconsistent at the nearly 3{sigma} level with {Lambda}CDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the bullet cluster (1E0657-57) is unlikely at a 6.5-5.8{sigma} level, with an estimated probability between 3.3x10{sup -11} and 3.6x10{sup -9} in {Lambda}CDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravitymore » becomes higher-dimensional at ultralarge distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2{sigma} level with bulk flow observations. The occurrence of the bullet cluster in these theories is {approx_equal}10{sup 4} times more probable than in {Lambda}CDM cosmology.« less

  14. Enhanced peculiar velocities in brane-induced gravity

    NASA Astrophysics Data System (ADS)

    Wyman, Mark; Khoury, Justin

    2010-08-01

    The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the ΛCDM paradigm. The recent estimates of the large-scale bulk flow by Watkins et al. are inconsistent at the nearly 3σ level with ΛCDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the bullet cluster (1E0657-57) is unlikely at a 6.5-5.8σ level, with an estimated probability between 3.3×10-11 and 3.6×10-9 in ΛCDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravity becomes higher-dimensional at ultralarge distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2σ level with bulk flow observations. The occurrence of the bullet cluster in these theories is ≈104 times more probable than in ΛCDM cosmology.

  15. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near Earth Asteroid Disruption

    NASA Technical Reports Server (NTRS)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent W.

    2015-01-01

    Currently, no planetary defense demonstration mission has ever been flown. While Nuclear Explosive Devices (NEDs) have significantly more energy than a kinetic impactor launched directly from Earth, they present safety and political complications, and therefore may only be used when absolutely necessary. The Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System (BILLIARDS) is a demonstration mission for planetary defense, which is capable of delivering comparable energy to the lower range of NED capabilities in the form of a safer kinetic impactor. A small asteroid (<10m) is captured by a spacecraft, which greatly increases the mass available as a kinetic impactor, without the need to bring all of the mass out of Earth's gravity well. The small asteroid is then deflected onto a collision course with a larger (approx. 100m) asteroid. This collision will deflect or disrupt the larger asteroid. To reduce the cost and complexity, an asteroid pair which has a natural close approach is selected.

  16. Tachyon and quintessence in brane worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chimento, Luis P.; Forte, Monica; Richarte, Martin G.

    2009-04-15

    Using tachyon or quintessence fields along with a barotropic fluid on the brane we examine the different cosmological stages in a Friedmann-Robertson-Walker universe, from the first radiation scenario to the later era dominated by cosmic string networks. We introduce a new algorithm to generalize previous works on exact solutions and apply it to study tachyon and quintessence fields localized on the brane. We also explore the low and high energy regimes of the solutions. Besides, we show that the tachyon and quintessence fields are driven by an inverse power law potential. Finally, we find several simple exacts solutions for tachyonmore » and/or quintessence fields.« less

  17. Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields

    NASA Astrophysics Data System (ADS)

    Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs

    2015-12-01

    We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.

  18. Dirac relaxation of the Israel junction conditions: Unified Randall-Sundrum brane theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Aharon; Gurwich, Ilya

    2006-08-15

    Following Dirac's brane variation prescription, the brane must not be deformed during the variation process, or else the linearity of the variation may be lost. Alternatively, the variation of the brane is done, in a special Dirac frame, by varying the bulk coordinate system itself. Imposing appropriate Dirac-style boundary conditions on the constrained 'sandwiched' gravitational action, we show how Israel junction conditions get relaxed, but remarkably, all solutions of the original Israel equations are still respected. The Israel junction conditions are traded, in the Z{sub 2}-symmetric case, for a generalized Regge-Teitelboim type equation (plus a local conservation law), and inmore » the generic Z{sub 2}-asymmetric case, for a pair of coupled Regge-Teitelboim equations. The Randall-Sundrum model and its derivatives, such as the Dvali-Gabadadze-Porrati and the Collins-Holdom models, get generalized accordingly. Furthermore, Randall-Sundrum and Regge-Teitelboim brane theories appear now to be two different faces of the one and the same unified brane theory. Within the framework of unified brane cosmology, we examine the dark matter/energy interpretation of the effective energy/momentum deviations from general relativity.« less

  19. D-brane disformal coupling and thermal dark matter

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne

    2017-11-01

    Conformal and disformal couplings between a scalar field and matter occur naturally in general scalar-tensor theories. In D-brane models of cosmology and particle physics, these couplings originate from the D-brane action describing the dynamics of its transverse (the scalar) and longitudinal (matter) fluctuations, which are thus coupled. During the post-inflationary regime and before the onset of big bang nucleosynthesis (BBN), these couplings can modify the expansion rate felt by matter, changing the predictions for the thermal relic abundance of dark matter particles and thus the annihilation rate required to satisfy the dark matter content today. We study the D-brane-like conformal and disformal couplings effect on the expansion rate of the Universe prior to BBN and its impact on the dark matter relic abundance and annihilation rate. For a purely disformal coupling, the expansion rate is always enhanced with respect to the standard one. This gives rise to larger cross sections when compared to the standard thermal prediction for a range of dark matter masses, which will be probed by future experiments. In a D-brane-like scenario, the scale at which the expansion rate enhancement occurs depends on the string coupling and the string scale.

  20. Extensive numerical study of a D-brane, anti-D-brane system in AdS 5 /CFT 4

    NASA Astrophysics Data System (ADS)

    Hegedűs, Árpád

    2015-04-01

    In this paper the hybrid-NLIE approach of [38] is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L = 1 case is also commented in the paper.

  1. Black holes radiate mainly on the brane.

    PubMed

    Emparan, R; Horowitz, G T; Myers, R C

    2000-07-17

    We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.

  2. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  3. Holographic butterfly velocities in brane geometry and Einstein-Gauss-Bonnet gravity with matters

    NASA Astrophysics Data System (ADS)

    Huang, Wung-Hong

    2018-03-01

    In the first part of the paper we generalize the butterfly velocity formula to anisotropic spacetime. We apply the formula to evaluate the butterfly velocities in M-branes, D-branes, and strings backgrounds. We show that the butterfly velocities in M2-branes, M5-branes and the intersection M 2 ⊥ M 5 equal to those in fundamental strings, D4-branes and the intersection F 1 ⊥ D 4 backgrounds, respectively. These observations lead us to conjecture that the butterfly velocity is generally invariant under a double-dimensional reduction. In the second part of the paper, we study the butterfly velocity for Einstein-Gauss-Bonnet gravity with arbitrary matter fields. A general formula is obtained. We use this formula to compute the butterfly velocities in different backgrounds and discuss the associated properties.

  4. Instantons in Script N = 2 magnetized D-brane worlds

    NASA Astrophysics Data System (ADS)

    Billò, Marco; Frau, Marialuisa; Pesando, Igor; Di Vecchia, Paolo; Lerda, Alberto; Marotta, Raffaele

    2007-10-01

    In a toroidal orbifold of type IIB string theory we study instanton effects in Script N = 2 super Yang-Mills theories engineered with systems of wrapped magnetized D9 branes and Euclidean D5 branes. We analyze the various open string sectors in this brane system and study the 1-loop amplitudes described by annulus diagrams with mixed boundary conditions, explaining their rôle in the stringy instanton calculus. We show in particular that the non-holomorphic terms in these annulus amplitudes precisely reconstruct the appropriate Kähler metric factors that are needed to write the instanton correlators in terms of purely holomorphic variables. We also explicitly derive the correct holomorphic structure of the instanton induced low energy effective action in the Coulomb branch.

  5. On the decay of correlations in Sinai billiards with infinite horizon

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Per; Artuso, Roberto

    1996-02-01

    We compute the decay of the autocorrelation function of the observable | vx| in the Sinai billiard and of the observable vx in the associated Lorentz gas with an approximation due to Baladi, Eckmann and Ruelle. We consider the standard configuration where the disk is centered inside a unit square. The asymptotic decay is found to be C( t) ∼ c( R)/ t. An explicit expression is given for the prefactor c( R) as a function of the radius of the scatterer. For the small scatterer case we also present expressions for the preasymptotic regime. Our findings are supported by numerical computations.

  6. 5-brane webs for 5d N = 1 G 2 gauge theories

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirotaka; Kim, Sung-Soo; Lee, Kimyeong; Yagi, Futoshi

    2018-03-01

    We propose 5-brane webs for 5d N = 1 G 2 gauge theories. From a Higgsing of the SO(7) gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure G 2 gauge theory using an O5-plane or an \\tilde{O5} -plane. Adding flavors to the 5-brane web for the pure G 2 gauge theory is also discussed. Based on the obtained 5-brane webs, we compute the partition functions for the 5d G 2 gauge theories using the recently suggested topological vertex formulation with an O5-plane, and we find agreement with known results.

  7. Hair-brane ideas on the horizon

    DOE PAGES

    Martinec, Emil J.; Niehoff, Ben E.

    2015-11-27

    We continue an examination of the microstate geometries program begun in arXiv:1409.6017, focussing on the role of branes that wrap the cycles which degenerate when a throat in the geometry deepens and a horizon forms. An associated quiver quantum mechanical model of minimally wrapped branes exhibits a non-negligible fraction of the gravitational entropy, which scales correctly as a function of the charges. The results suggest a picture of AdS3/CFT2 duality wherein the long string that accounts for BTZ black hole entropy in the CFT description, can also be seen to inhabit the horizon of BPS black holes on the gravitymore » side.« less

  8. Relativistic elasticity of stationary fluid branes

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  9. M2-brane surface operators and gauge theory dualities in Toda

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Le Floch, Bruno

    2016-04-01

    We give a microscopic two dimensional {N} = (2, 2) gauge theory description of arbitrary M2-branes ending on N f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional {N} = 2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation {R} of SU( N f ), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including {N} = (2, 2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

  10. D-brane solutions under market panic

    NASA Astrophysics Data System (ADS)

    Pincak, Richard

    The relativistic quantum mechanic approach is used to develop stock market dynamics. The relativistic is conceptional here as the meaning of big external volatility or volatility shock on a financial market. We used a differential geometry approach with the parallel transport of prices to obtain a direct shift of the stock price movement. The prices are represented here as electrons with different spin orientation. Up and down orientations of the spin particle are likened here to an increase or a decrease of stock prices. The parallel transport of stock prices is enriched by Riemann curvature, which describes some arbitrage opportunities in the market. To solve the stock-price dynamics, we used the Dirac equation for bispinors on the spherical brane-world. We found out that when a spherical brane is abbreviated to the disk on the equator, we converge to the ideal behavior of financial market where Black-Scholes as well as semi-classical equations are sufficient. Full spherical brane-world scenarios can describe non-equilibrium market behavior where all arbitrage opportunities as well as transaction costs are taken into account. Real application of the model to the option pricing was done. The model developed in this paper brings quantitative different results of option pricing dynamics in the case of nonzero Riemann curvature.

  11. Dark SU (N ) glueball stars on fluid branes

    NASA Astrophysics Data System (ADS)

    da Rocha, Roldão

    2017-06-01

    The glueball dark matter, in the pure SU (N ) Yang-Mills theory, engenders dark SU (N ) stars that comprise self-gravitating compact configurations of scalar glueball fields. Corrections to the highest frequency of gravitational wave radiation emitted by dark SU (N ) star mergers on a fluid brane with variable tension, implemented by the minimal geometric deformation, are derived, and their consequences are analyzed. Hence, dark SU (N ) star mergers on a fluid braneworld are shown to be better detectable by the LIGO and the eLISA experiments.

  12. Superradiant instabilities of rotating black branes and strings

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Yoshida, Shijun

    2005-07-01

    Black branes and strings are generally unstable against a certain sector of gravitational perturbations. This is known as the Gregory-Laflamme instability. It has been recently argued [1], [2] that there exists another general instability affecting many rotating extended black objects. This instability is in a sense universal, in that it is triggered by any massless field, and not just gravitational perturbations. Here we investigate this novel mechanism in detail. For this instability to work, two ingredients are necessary: (i) an ergo-region, which gives rise to superradiant amplification of waves, and (ii) ``bound'' states in the effective potential governing the evolution of the particular mode under study. We show that the black brane Kerr4×Rp is unstable against this mechanism, and we present numerical results for instability timescales for this case. On the other hand, and quite surprisingly, black branes of the form Kerrd×Rp are all stable against this mechanism for d > 4. This is quite an unexpected result, and it stems from the fact that there are no stable circular orbits in higher dimensional black hole spacetimes, or in a wave picture, that there are no bound states in the effective potential. We also show that it is quite easy to simulate this instability in the laboratory with acoustic black branes.

  13. Minimal left-right symmetric intersecting D-brane model

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Antoniadis, Ignatios; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R.

    2017-01-01

    We investigate left-right symmetric extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. The left-handed and right-handed fermions transform as doublets under S p (1 )L and S p (1 )R, and so their masses must be generated by the introduction of Higgs fields in a bifundamental (2 ,2 ) representation under the two S p (1 ) gauge groups. For such D-brane configurations the left-right symmetry must be broken by Higgs fields in the doublet representation of S p (1 )R and therefore Majorana mass terms are suppressed by some higher physics scale. The left-handed and right-handed neutrinos pair up to form Dirac fermions which control the decay widths of the right-handed W' boson to yield comparable branching fractions into dilepton and dijet channels. Using the most recent searches at LHC13 Run II with 2016 data we constrain the (gR,mW') parameter space. Our analysis indicates that independent of the coupling strength gR, gauge bosons with masses mW'≳3.5 TeV are not ruled out. As the LHC is just beginning to probe the TeV scale, significant room for W' discovery remains.

  14. Comments on SUSY Inflation Models on the Brane

    NASA Astrophysics Data System (ADS)

    Lee, Lu-Yun; Cheung, Kingman; Lin, Chia-Min

    In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns = 0.96.

  15. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can bemore » interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.« less

  16. Spherically symmetric solutions and gravitational collapse in brane-worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe; Sepangi, Hamid R., E-mail: heydarifard@qom.ac.ir, E-mail: hr-sepangi@sbu.ac.ir

    2009-02-15

    We consider spherically symmetric solutions within the context of brane-world theory without mirror symmetry or any form of junction conditions. For a constant curvature bulk, we obtain the modified Tolman-Oppenheimer-Volkoff (TOV) interior solutions in two cases where one is matched to a schwarzschild-de Sitter exterior while the other is consistent with an exterior solution whose structure can be used to explain the galaxy rotation curves without postulating dark matter. We also find the upper bound to the mass of a static brane-world star and show that the influence of the bulk effects on the interior solutions is small. Finally, wemore » investigate the gravitational collapse on the brane and show that the exterior of a collapsing star can be static in this scenario.« less

  17. Generalized Israel junction conditions for a fourth-order brane world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcerzak, Adam; Dabrowski, Mariusz P.

    2008-01-15

    We discuss a general fourth-order theory of gravity on the brane. In general, the formulation of the junction conditions (except for Euler characteristics such as Gauss-Bonnet term) leads to the higher powers of the delta function and requires regularization. We suggest the way to avoid such a problem by imposing the metric and its first derivative to be regular at the brane, while the second derivative to have a kink, the third derivative of the metric to have a step function discontinuity, and no sooner as the fourth derivative of the metric to give the delta function contribution to themore » field equations. Alternatively, we discuss the reduction of the fourth-order gravity to the second-order theory by introducing an extra tensor field. We formulate the appropriate junction conditions on the brane. We prove the equivalence of both theories. In particular, we prove the equivalence of the junction conditions with different assumptions related to the continuity of the metric along the brane.« less

  18. Brane Inflation, Solitons and Cosmological Solutions: I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.

    2005-01-25

    In this paper we study various cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes. In M-theory, these solutions exist only if we incorporate higher derivative corrections from the curvatures as well as G-fluxes. We take these corrections into account and study a number of toy cosmologies, including one with a novel background for the D3/D7 system whose supergravity solution can be completely determined. Our new background preserves all the good properties of the original model and opens up avenues to investigate cosmological effects from wrapped branes and brane-antibrane annihilation, to name a few. We alsomore » discuss in some detail semilocal defects with higher global symmetries, for example exceptional ones, that occur in a slightly different regime of our D3/D7 model. We show that the D3/D7 system does have the required ingredients to realize these configurations as non-topological solitons of the theory. These constructions also allow us to give a physical meaning to the existence of certain underlying homogeneous quaternionic Kahler manifolds.« less

  19. Flowing to higher dimensions: a new strongly-coupled phase on M2 branes

    DOE PAGES

    Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.

    2015-11-24

    We describe a one-parameter family of new holographic RG flows that start from AdS 4 × S 7 and go to AdS 5ˆ×B6, where B6 is conformal to a Kahler manifold and AdS 5ˆ is Poincaré AdS 5 with one spatial direction compactified and fibered over B6. The new solutions “flow up dimensions,” going from the (2 + 1)-dimensional conformal field theory on M2 branes in the UV to a (3 + 1)-dimensional field theory on intersecting M5 branes in the infra-red. The M2 branes completely polarize into M5 branes along the flow and the Poincare sections of the AdSmore » 5ˆ are the (3 + 1)-dimensional common intersection of the M5 branes. The emergence of the extra dimension in the infra-red suggests a new strongly-coupled phase of the M2 brane and ABJM theories in which charged solitons are becoming massless. The flow solution is first analyzed by finding a four-dimensional N=2 supersymmetric flow in N=8 gauged supergravity. This is then generalized to a one parameter family of non-supersymmetric flows. The infra-red limit of the solutions appears to be quite singular in four dimensions but the uplift to eleven-dimensional supergravity is remarkable and regular (up to orbifolding). Our construction is a non-trivial application of the recently derived uplift formulae for fluxes, going well beyond the earlier constructions of stationary points solutions. As a result, the eleven-dimensional supersymmetry is also analyzed and shows how, for the supersymmetric flow, the M2-brane supersymmetry in the UV is polarized entirely into M5-brane supersymmetry in the infra-red.« less

  20. Flowing to higher dimensions: a new strongly-coupled phase on M2 branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.

    We describe a one-parameter family of new holographic RG flows that start from AdS 4 × S 7 and go to AdS 5ˆ×B6, where B6 is conformal to a Kahler manifold and AdS 5ˆ is Poincaré AdS 5 with one spatial direction compactified and fibered over B6. The new solutions “flow up dimensions,” going from the (2 + 1)-dimensional conformal field theory on M2 branes in the UV to a (3 + 1)-dimensional field theory on intersecting M5 branes in the infra-red. The M2 branes completely polarize into M5 branes along the flow and the Poincare sections of the AdSmore » 5ˆ are the (3 + 1)-dimensional common intersection of the M5 branes. The emergence of the extra dimension in the infra-red suggests a new strongly-coupled phase of the M2 brane and ABJM theories in which charged solitons are becoming massless. The flow solution is first analyzed by finding a four-dimensional N=2 supersymmetric flow in N=8 gauged supergravity. This is then generalized to a one parameter family of non-supersymmetric flows. The infra-red limit of the solutions appears to be quite singular in four dimensions but the uplift to eleven-dimensional supergravity is remarkable and regular (up to orbifolding). Our construction is a non-trivial application of the recently derived uplift formulae for fluxes, going well beyond the earlier constructions of stationary points solutions. As a result, the eleven-dimensional supersymmetry is also analyzed and shows how, for the supersymmetric flow, the M2-brane supersymmetry in the UV is polarized entirely into M5-brane supersymmetry in the infra-red.« less

  1. Diffusion constant of slowly rotating black three-brane

    NASA Astrophysics Data System (ADS)

    Amoozad, Z.; Sadeghi, J.

    2018-01-01

    In this paper, we take the slowly rotating black three-brane background and perturb it by introducing a vector gauge field. We find the components of the gauge field through Maxwell equations and Bianchi identities. Using currents and some ansatz we find Fick's first law at long wavelength regime. An interesting result for this non-trivial supergravity background is that the diffusion constant on the stretched horizon which emerges from Fick's first law is a complex constant. The pure imaginary part of the diffusion constant appears because the black three-brane has angular momentum. By taking the static limit of the corresponding black brane the well known diffusion constant will be recovered. On the other hand, from the point of view of the Fick's second law, we have the dispersion relation ω = - iDq2 and we found a damping of hydrodynamical flow in the holographically dual theory. Existence of imaginary term in the diffusion constant introduces an oscillating propagation of the gauge field in the dual field theory.

  2. B-branes and supersymmetric quivers in 2d

    NASA Astrophysics Data System (ADS)

    Closset, Cyril; Guo, Jirui; Sharpe, Eric

    2018-02-01

    We study 2d N = (0, 2) supersymmetric quiver gauge theories that describe the low-energy dynamics of D1-branes at Calabi-Yau fourfold (CY4) singularities. On general grounds, the holomorphic sector of these theories — matter content and (classical) superpotential interactions — should be fully captured by the topological B-model on the CY4. By studying a number of examples, we confirm this expectation and flesh out the dictionary between B-brane category and supersymmetric quiver: the matter content of the supersymmetric quiver is encoded in morphisms between B-branes (that is, Ext groups of coherent sheaves), while the superpotential interactions are encoded in the A ∞ algebra satisfied by the morphisms. This provides us with a derivation of the supersymmetric quiver directly from the CY4 geometry. We also suggest a relation between triality of N = (0 ,2) gauge theories and certain mutations of exceptional collections of sheaves. 0d N = 1 supersymmetric quivers, corresponding to D-instantons probing CY5 singularities, can be discussed similarly.

  3. Elliptic genus of E-strings

    NASA Astrophysics Data System (ADS)

    Kim, Joonho; Kim, Seok; Lee, Kimyeong; Park, Jaemo; Vafa, Cumrun

    2017-09-01

    We study a family of 2d N=(0, 4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2K3.

  4. Holographic entanglement entropy and entanglement thermodynamics of 'black' non-susy D3 brane

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aranya; Roy, Shibaji

    2018-06-01

    Like BPS D3 brane, the non-supersymmetric (non-susy) D3 brane of type IIB string theory is also known to have a decoupling limit and leads to a non-supersymmetric AdS/CFT correspondence. The throat geometry in this case represents a QFT which is neither conformal nor supersymmetric. The 'black' version of the non-susy D3 brane in the decoupling limit describes a QFT at finite temperature. Here we first compute the entanglement entropy for small subsystem of such QFT from the decoupled geometry of 'black' non-susy D3 brane using holographic technique. Then we study the entanglement thermodynamics for the weakly excited states of this QFT from the asymptotically AdS geometry of the decoupled 'black' non-susy D3 brane. We observe that for small subsystem this background indeed satisfies a first law like relation with a universal (entanglement) temperature inversely proportional to the size of the subsystem and an (entanglement) pressure normal to the entangling surface. Finally we show how the entanglement entropy makes a cross-over to the thermal entropy at high temperature.

  5. Micro-orbits in a many-brane model and deviations from Newton's 1/r^2 law

    NASA Astrophysics Data System (ADS)

    Donini, A.; Marimón, S. G.

    2016-12-01

    We consider a five-dimensional model with geometry M = M_4 × S_1, with compactification radius R. The Standard Model particles are localized on a brane located at y=0, with identical branes localized at different points in the extra dimension. Objects located on our brane can orbit around objects located on a brane at a distance d=y/R, with an orbit and a period significantly different from the standard Newtonian ones. We study the kinematical properties of the orbits, finding that it is possible to distinguish one motion from the other in a large region of the initial conditions parameter space. This is a warm-up to study if a SM-like mass distribution on one (or more) distant brane(s) may represent a possible dark matter candidate. After using the same technique to the study of orbits of objects lying on the same brane (d=0), we apply this method to the detection of generic deviations from the inverse-square Newton law. We propose a possible experimental setup to look for departures from Newtonian motion in the micro-world, finding that an order of magnitude improvement on present bounds can be attained at the 95% CL under reasonable assumptions.

  6. The (2, 0) superalgebra, null M-branes and Hitchin's system

    NASA Astrophysics Data System (ADS)

    Kucharski, P.; Lambert, N.; Owen, M.

    2017-10-01

    We present an interacting system of equations with sixteen supersymmetries and an SO(2) × SO(6) R-symmetry where the fields depend on two space and one null dimensions that is derived from a representation of the six-dimensional (2, 0) superalgebra. The system can be viewed as two M5-branes compactified on {S}-^1× T^2 or equivalently as M2-branes on R+× R^2 , where ± refer to null directions. We show that for a particular choice of fields the dynamics can be reduced to motion on the moduli space of solutions to the Hitchin system. We argue that this provides a description of intersecting null M2-branes and is also related by U-duality to a DLCQ description of four-dimensional maximally supersymmetric Yang-Mills.

  7. Standard 4D gravity on a brane in six-dimensional flux compactifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo

    We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane.more » To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account.« less

  8. Black branes as piezoelectrics.

    PubMed

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  9. Corrections to Newton’s law of gravitation - application to hybrid Bloch brane

    NASA Astrophysics Data System (ADS)

    Almeida, C. A. S.; Veras, D. F. S.; Dantas, D. M.

    2018-02-01

    We present in this work, the calculations of corrections in the Newton’s law of gravitation due to Kaluza-Klein gravitons in five-dimensional warped thick braneworld scenarios. We consider here a recently proposed model, namely, the hybrid Bloch brane. This model couples two scalar fields to gravity and is engendered from a domain wall-like defect. Also, two other models the so-called asymmetric hybrid brane and compact brane are considered. Such models are deformations of the ϕ 4 and sine-Gordon topological defects, respectively. Therefore we consider the branes engendered by such defects and we also compute the corrections in their cases. In order to attain the mass spectrum and its corresponding eigenfunctions which are the essential quantities for computing the correction to the Newtonian potential, we develop a suitable numerical technique. The calculation of slight deviations in the gravitational potential may be used as a selection tool for braneworld scenarios matching with future experimental measurements in high energy collisions

  10. jsc2017e137344 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) tries his hand at a game of billiards Dec. 11 during a break in pre-launch tr

    NASA Image and Video Library

    2017-12-11

    jsc2017e137344 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) tries his hand at a game of billiards Dec. 11 during a break in pre-launch training. Shkaplerov, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.

  11. Cosmic microwave background radiation anisotropies in brane worlds.

    PubMed

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  12. Naked shell singularities on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seahra, Sanjeev S.

    By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less

  13. Linearized Israel matching conditions for cosmological perturbations in a moving brane background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucher, Martin; DAMTP, University of Cambridge, Cambridge CB3 0WA; Carvalho, Carla

    2005-04-15

    In the Randall-Sundrum cosmological models, a (3+1)-dimensional brane subject to a Z{sub 2} orbifold symmetry is embedded in a (4+1)-dimensional bulk spacetime empty except for a negative cosmological constant. The unperturbed braneworld cosmological solutions, subject to homogeneity and isotropy in the three transverse spatial dimensions, are most simply presented by means of a moving brane description. Owing to a generalization of Birkhoff's theorem, as long as there are no perturbations violating the three-dimensional spatial homogeneity and isotropy, the bulk spacetime remains stationary and trivial. For the spatially flat case, the bulk spacetime is described by one of three bulk solutions:more » a pure AdS{sup 5} solution, an AdS{sup 5}-Schwarzschild black hole solution, or an AdS{sup 5}-Schwarzschild naked singularity solution. The brane moves on the boundary of one of these simple bulk spacetimes, its trajectory determined by the evolution of the stress-energy localized on the brane. We derive here the form of the Israel matching conditions for the linearized cosmological perturbations in this moving brane picture. These Israel matching conditions must be satisfied in any gauge. However, they are not sufficient to determine how to describe in a specific gauge the reflection of the bulk gravitational waves off the brane boundary. In this paper we adopt a fully covariant Lorentz gauge condition in the bulk and find the supplementary gauge conditions that must be imposed on the boundary to ensure that the reflected waves do not violate the Lorentz gauge condition. Compared to the form obtained from Gaussian normal coordinates, the form of the Israel matching conditions obtained here is more complex. However, the propagation of the bulk gravitons is simpler because the coordinates used for the background exploit fully the symmetry of the bulk background solution.« less

  14. Holographic dark energy in braneworld models with moving branes and the w = -1 crossing

    NASA Astrophysics Data System (ADS)

    Saridakis, E. N.

    2008-04-01

    We apply the bulk holographic dark energy in general 5D two-brane models. We extract the Friedmann equation on the physical brane and we show that in the general moving-brane case the effective 4D holographic dark energy behaves as a quintom for a large parameter-space area of a simple solution subclass. We find that wΛ was larger than -1 in the past while its present value is wΛ0≈-1.05, and the phantom bound wΛ = -1 was crossed at zp≈0.41, a result in agreement with observations. Such a behavior arises naturally, without the inclusion of special fields or potential terms, but a fine-tuning between the 4D Planck mass and the brane tension has to be imposed.

  15. 1/2-BPS D-branes from covariant open superstring in AdS4 × CP3 background

    NASA Astrophysics Data System (ADS)

    Park, Jaemo; Shin, Hyeonjoon

    2018-05-01

    We consider the open superstring action in the AdS4 × CP 3 background and investigate the suitable boundary conditions for the open superstring describing the 1/2-BPS D-branes by imposing the κ-symmetry of the action. This results in the classification of 1/2-BPS D-branes from covariant open superstring. It is shown that the 1/2-BPS D-brane configurations are restricted considerably by the Kähler structure on CP 3. We just consider D-branes without worldvolume fluxes.

  16. The evolution of Brown-York quasilocal energy as due to evolution of Lovelock gravity in a system of M0-branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    Recently, it has been suggested in [S. Chakraborty and N. Dadhich, Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons, J. High Energ. Phys. 12 (2015) 003.] that the Brown-York mechanism can be used to measure the quasilocal energy in Lovelock gravity. We have used this method in a system of M0-branes and show that the Brown-York energy evolves in the process of birth and growth of Lovelock gravity. This can help us to predict phenomenological events which are emerged as due to dynamical structure of Lovelock gravity in our universe. In this model, first, M0-branes join each other and form an M3-brane and an anti-M3-branes connected by an M2-brane. This system is named BIon. Universes and anti-universes live on M3-branes and M2 plays the role of wormhole between them. By passing time, M2 dissolves in M3’s and nonlinear massive gravities like Lovelock massive gravity emerges and grows. By closing M3-branes, BIon evolves and wormhole between branes makes a transition to black hole. During this stage, Brown-York energy increases and shrinks to large values at the colliding points of branes. By approaching M3-branes towards each other, the square energy of their system becomes negative and some tachyonic states are produced. To remove these states, M3-branes compact, the sign of compacted gravity changes, anti-gravity is created which leads to getting away of branes from each other. Also, the Lovelock gravity disappears and its energy forms a new M2 between M3-branes. By getting away of branes from each other, Brown-York energy decreases and shrinks to zero.

  17. Dualities of deformed N=2 SCFTs from link monodromy on D3-brane states

    NASA Astrophysics Data System (ADS)

    Grassi, Antonella; Halverson, James; Ruehle, Fabian; Shaneson, Julius L.

    2017-09-01

    We study D3-brane theories that are dually described as deformations of two different N=2 superconformal theories with massless monopoles and dyons. These arise at the self-intersection of a seven-brane in F-theory, which cuts out a link on a small three-sphere surrounding the self-intersection. The spectrum is studied by taking small loops in the three-sphere, yielding a link-induced monodromy action on string junction D3-brane states, and subsequently quotienting by the monodromy. This reduces the differing flavor algebras of the N=2 theories to the same flavor algebra, as required by duality, and projects out charged states, yielding an N=1 superconformal theory on the D3-brane. In one, a deformation of a rank one Argyres-Douglas theory retains its SU(2) flavor symmetry and exhibits a charge neutral flavor triplet that is comprised of electron, dyon, and monopole string junctions. From duality we argue that the monodromy projection should also be imposed away from the conformal point, in which case the D3-brane field theory appears to exhibit confinement of electrons, dyons, and monopoles. We will address the mathematical counterparts in a companion paper.

  18. Cosmological dynamics of brane f(R) gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghani, Zahra; Sepangi, Hamid Reza; Shahidi, Shahab, E-mail: z_haghani@sbu.ac.ir, E-mail: hr-sepangi@sbu.ac.ir, E-mail: s_shahidi@sbu.ac.ir

    2012-02-01

    The cosmological dynamics of a brane world scenario where the bulk action is taken as a generic function of the Ricci scalar is considered in a framework where the use of the Z{sub 2} symmetry and Israel junction conditions are relaxed. The corresponding cosmological solutions for some specific forms of f(R) are obtained and shown to be in the form of exponential as well as power law for a vacuum brane space-time. It is shown that the existence of matter dominated epoch for a bulk action in the form of a power law for R can only be obtained inmore » the presence of ordinary matter. Using phase space analysis, we show that the universe must start from an unstable matter dominated epoch and eventually falls into a stable accelerated expanding phase.« less

  19. On the universality of thermodynamics and η/s ratio for the charged Lovelock black branes

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Frassino, Antonia M.; Tuveri, Matteo

    2016-05-01

    We investigate general features of charged Lovelock black branes by giving a detailed description of geometrical, thermodynamic and holographic properties of charged Gauss-Bonnet (GB) black branes in five dimensions. We show that when expressed in terms of effective physical parameters, the thermodynamic behaviour of charged GB black branes is completely indistinguishable from that of charged Einstein black branes. Moreover, the extremal, near-horizon limit of the two classes of branes is exactly the same as they allow for the same AdS2 × R 3, near-horizon, exact solution. This implies that, although in the UV the associated dual QFTs are different, they flow in the IR to the same fixed point. The calculation of the shear viscosity to entropy ratio η/s confirms these results. Despite the GB dual plasma has in general a non-universal temperature-dependent η/s, it flows monotonically to the universal value 1 /4 π in the IR. For negative (positive) GB coupling constant, η/s is an increasing (decreasing) function of the temperature and the flow respects (violates) the KSS bound.

  20. Inflationary solutions in the brane world and their geometrical interpretation

    NASA Astrophysics Data System (ADS)

    Khoury, Justin; Steinhardt, Paul J.; Waldram, Daniel

    2001-05-01

    We consider the cosmology of a pair of domain walls bounding a five-dimensional bulk space-time with a negative cosmological constant, in which the distance between the branes is not fixed in time. Although there are strong arguments to suggest that this distance should be stabilized in the present epoch, no such constraints exist for the early universe and thus non-static solutions might provide relevant inflationary scenarios. We find the general solution for the standard ansatz where the bulk is foliated by planar-symmetric hypersurfaces. We show that in all cases the bulk geometry is that of anti-de Sitter (AdS5) space. We then present a geometrical interpretation for the solutions as embeddings of two de Sitter (dS4) surfaces in AdS5, which provide a simple interpretation of the physical properties of the solutions. A notable feature explained in the analysis is that two-way communication between branes expanding away from one another is possible for a finite amount of time, after which communication can proceed in one direction only. The geometrical picture also shows that our class of solutions (and related solutions in the literature) is not completely general, contrary to some claims. We then derive the most general solution for two walls in AdS5. This includes novel cosmologies where the brane tensions are not constrained to have opposite signs. The construction naturally generalizes to arbitrary FRW cosmologies on the branes.

  1. jsc2017e137338 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) tries his hand at a game of billiards Dec. 11 during a break in pre-launch tr

    NASA Image and Video Library

    2017-12-11

    jsc2017e137338 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) tries his hand at a game of billiards Dec. 11 during a break in pre-launch training while backup crewmember Jeanette Epps of NASA looks on. Kanai, Scott Tingle of NASA and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.

  2. Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?

    NASA Astrophysics Data System (ADS)

    Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.

    2008-07-01

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.

  3. Coupling-induced bipartite pointer states in arrays of electron billiards: quantum Darwinism in action?

    PubMed

    Brunner, R; Akis, R; Ferry, D K; Kuchar, F; Meisels, R

    2008-07-11

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create "offspring" indicates that quantum Darwinism is in action.

  4. Gravity and antigravity in a brane world with metastable gravitons

    NASA Astrophysics Data System (ADS)

    Gregory, R.; Rubakov, V. A.; Sibiryakov, S. M.

    2000-09-01

    In the framework of a five-dimensional three-brane model with quasi-localized gravitons we evaluate metric perturbations induced on the positive tension brane by matter residing thereon. We find that at intermediate distances, the effective four-dimensional theory coincides, up to small corrections, with General Relativity. This is in accord with Csaki, Erlich and Hollowood and in contrast to Dvali, Gabadadze and Porrati. We show, however, that at ultra-large distances this effective four-dimensional theory becomes dramatically different: conventional tensor gravity changes into scalar anti-gravity.

  5. Path integral formulation of the Hodge duality on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai

    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.

  6. Brane inflation and cosmic string tension in superstring theory

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Tye, S.-H. Henry

    2005-03-01

    In a simple reanalysis of the KKLMMT scenario, we argue that the slow roll condition in the D3-overline {D}3 -brane inflationary scenario in superstring theory requires no more than a moderate tuning. The cosmic string tension is very sensitive to the conformal coupling: with less fine-tuning, the cosmic string tension (as well as the ratio of tensor to scalar perturbation mode) increases rapidly and can easily saturate the present observational bound. In a multi-throat brane inflationary scenario, this feature substantially improves the chance of detecting and measuring the properties of the cosmic strings as a window to the superstring theory and our pre-inflationary universe.

  7. Casimir energies and special dimensions in a toy model for branes

    NASA Astrophysics Data System (ADS)

    Cohen, Isaac

    1988-12-01

    We consider a generalization to branes of the old action for the strings without reparamentrization invariance. These actions admit natural supplementary mass-shell conditions. By regularizing the Casimir energies we calculate the special dimensions at which these toy branes show vector massless states in its spectrum. They all turn out to be non-integers. On sabbatical leave from Departamento de Física, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 66961, Caracas 1061A, Venezuela.

  8. Phases of QCD3 from non-SUSY Seiberg duality and brane dynamics

    NASA Astrophysics Data System (ADS)

    Armoni, Adi; Niarchos, Vasilis

    2018-05-01

    We consider a nonsupersymmetric USp Yang-Mills Chern-Simons gauge theory coupled to fundamental flavors. The theory is realised in type-IIB string theory via an embedding in a Hanany-Witten brane configuration which includes an orientifold and antibranes. We argue that the theory admits a magnetic Seiberg dual. Using the magnetic dual we identify dynamics in field theory and brane physics that correspond to various phases, obtaining a better understanding of three-dimensional bosonization and dynamical breaking of flavor symmetry in USp QCD3 theory. In field theory both phases correspond to magnetic "squark" condensation. In string theory, they correspond to open string tachyon condensation and brane reconnection. We also discuss other phases where the magnetic `squark' is massive. Finally, we briefly comment on the case of unitary gauge groups.

  9. Lifshitz black branes and DC transport coefficients in massive Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Mei; Papantonopoulos, Eleftherios; Wu, Jian-Pin; Zhou, Zhenhua

    2018-03-01

    We construct analytical Lifshitz massive black brane solutions in massive Einstein-Maxwell-dilaton gravity theory. We also study the thermodynamics of these black brane solutions and obtain the thermodynamical stability conditions. On the dual nonrelativistic boundary field theory with Lifshitz symmetry, we analytically compute the DC transport coefficients, including the electric conductivity, thermoelectric conductivity, and thermal conductivity. The novel property of our model is that the massive term supports the Lifshitz black brane solutions with z ≠1 in such a way that the DC transport coefficients in the dual field theory are finite. We also find that the Wiedemann-Franz law in this dual boundary field theory is violated, which indicates that it may involve strong interactions.

  10. Black hole as a point radiator and recoil effect on the brane world.

    PubMed

    Frolov, Valeri; Stojković, Dejan

    2002-10-07

    A small black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We construct a field theory model in which such a black hole is described as a massive scalar particle with internal degrees of freedom. In this model, the probability of transition between the different internal levels is identical to the probability of thermal emission calculated for the Schwarzschild black hole. The discussed recoil effect implies that the thermal emission of the black holes, which might be created by interaction of high energy particles in colliders, could be terminated and the energy nonconservation can be observed in the brane experiments.

  11. Multiresonance modes in sine–Gordon brane models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, W.T., E-mail: wilamicruz@gmail.com; Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br; Dantas, D.M., E-mail: davi@fisica.ufc.br

    2016-12-15

    In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge fieldmore » is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.« less

  12. Fine-tuning with brane-localized flux in 6D supergravity

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Schneider, Robert

    2016-02-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].

  13. Brane-world extra dimensions in light of GW170817

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Bolis, Nadia; Vagnozzi, Sunny

    2018-03-01

    The search for extra dimensions is a challenging endeavor to probe physics beyond the Standard Model. The joint detection of gravitational waves (GW) and electromagnetic (EM) signals from the merging of a binary system of compact objects like neutron stars can help constrain the geometry of extra dimensions beyond our 3 +1 spacetime ones. A theoretically well-motivated possibility is that our observable Universe is a 3 +1 -dimensional hypersurface, or brane, embedded in a higher 4 +1 -dimensional anti-de Sitter (AdS5 ) spacetime, in which gravity is the only force which propagates through the infinite bulk space, while other forces are confined to the brane. In these types of brane-world models, GW and EM signals between two points on the brane would, in general, travel different paths. This would result in a time lag between the detection of GW and EM signals emitted simultaneously from the same source. We consider the recent near-simultaneous detection of the GW event GW170817 from the LIGO/Virgo collaboration, and its EM counterpart, the short gamma-ray burst GRB170817A detected by the Fermi Gamma-ray Burst Monitor and the International Gamma-Ray Astrophysics Laboratory Anti-Coincidence Shield spectrometer. Assuming the standard Λ -cold dark matter scenario and performing a likelihood analysis which takes into account astrophysical uncertainties associated to the measured time lag, we set an upper limit of ℓ≲0.535 Mpc at 68% confidence level on the AdS5 radius of curvature ℓ. Although the bound is not competitive with current Solar System constraints, it is the first time that data from a multimessenger GW-EM measurement is used to constrain extra-dimensional models. Thus, our work provides a proof of principle for the possibility of using multimessenger astronomy for probing the geometry of our space-time.

  14. Codimension-2 Brane Black Holes

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Arias, Cesar; Ordenes, Ariel; Guzman, Francisco

    2012-03-01

    We analyze the geometry associated to a six dimensional solution of the Einstein's equations. It describes a Schwarzschild de-Sitter black hole on a 3-brane, surrounded by a two dimensional compact bulk. A four dimensional effective cosmological constant and a Planck mass are matched to their six dimensional counterpart. Deviation from Newton's law are computed in both of the solutions found. To learn about the geometry of the bulk, we study the geodesics in this sector. At least, in our opinion, there are some features of these solutions that makes worth to pursue this analysis. The singularity associated to the warped bulk is controlled by the mass M of the black hole. It vanishes if we set M=0. In the same context, it makes an interesting problem to study the Gregory-Laflamme instability in this context [1]. Another feature is the rugby ball type of geometry exhibited by these solutions [2]. They end up in two conical singularities at its respective poles. The branes are located precisely at the poles. Besides, a Wick's rotation generates a connection between different solutions. [4pt] [1] R. Gregory and R. Laflamme, Phys. Rev Lett., 70,2837 (1993)[0pt] [2] S. M. Carroll and M. M. Guica, arXiv:hep-th/0302067

  15. Strings, boundary fermions and coincident D-branes

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2007-01-01

    This thesis describes an attempt to write down covariant actions for coincident D-branes using so-called boundary fermions instead of matrices to describe the non-abelian fields. These fermions can be thought of as Chan-Paton degrees of freedom for the open string. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry when formulated on superspace. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, a Penrose limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.

  16. Towards realistic string vacua from branes at singularities

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Maharana, Anshuman; Quevedo, Fernando

    2009-05-01

    We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo n (dPn) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.

  17. Induced matter brane gravity and Einstein static universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu

    We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less

  18. Asymptotic M5-brane entropy from S-duality

    NASA Astrophysics Data System (ADS)

    Kim, Seok; Nahmgoong, June

    2017-12-01

    We study M5-branes compactified on S 1 from the D0-D4 Witten index in the Coulomb phase. We first show that the prepotential of this index is S-dual, up to a simple anomalous part. This is an extension of the well-known S-duality of the 4d N=4 theory to the 6d (2, 0) theory on finite T 2. Using this anomalous S-duality, we find that the asymptotic free energy scales like N 3 when various temperature-like parameters are large. This shows that the number of 5d Kaluza-Klein fields for light D0-brane bound states is proportional to N 3. We also compute some part of the asymptotic free energy from 6d chiral anomalies, which precisely agrees with our D0-D4 calculus.

  19. Rotating a curvaton brane in a warped throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Piao, Yun-Song; Cai, Yi-Fu, E-mail: zhangjun408@mails.gucas.ac.cn, E-mail: caiyf@ihep.ac.cn, E-mail: yspiao@gucas.ac.cn

    2010-05-01

    In this paper we study a curvaton model obtained by considering a probe anti-D3-brane with angular motion at the bottom of a KS throat with approximate isometries. We calculate the spectrum of curvature perturbations and the non-Gaussianities of this model. Specifically, we consider the limit of relativistic rotation of the curvaton brane which leads to a small sound speed, and thus it can be viewed as an implementation of the DBI-curvaton mechanism. We find that the primordial power spectrum is nearly scale-invariant while the non-Gaussianity of local type is sizable and that of equilateral type is usually large and negative.more » Moreover, we study both the theoretical and observational constraints on this model, and find that there exists a sizable allowed region for the phase space of this model.« less

  20. Isolated Minkowski vacua, and stability analysis for an extended brane in the rugby ball

    NASA Astrophysics Data System (ADS)

    Himmetoǧlu, Burak; Peloso, Marco

    2007-06-01

    We study a recently proposed model, where a codimension one brane is wrapped around the axis of symmetry of an internal two-dimensional space compactified by a flux. This construction is free from the problems which plague delta-like, codimension two branes, where only tension can be present. In contrast, arbitrary fields can be localized on this extended brane, and their gravitational interaction is standard 4d gravity at large distances. In the first part of this work, we study the de Sitter (dS) vacua of the model. The landscape of these vacua is characterized by discrete points labeled by two integer numbers, related to the flux responsible for the compactification and to the current of a brane field. A Minkowski external space emerges only for a special ratio between these two integers, and it is therefore (topologically) isolated from the nearby dS solutions. In the second part, we show that the Minkowski vacua are stable under the most generic axially-symmetric perturbations, and we argue that this is sufficient to ensure the overall stability.

  1. Fermion localization and resonances on a de Sitter thick brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yuxiao; Yang Jie; Zhao Zhenhua

    2009-09-15

    In C. A. S. Almeida, R. Casana, M. M. Ferreira, Jr., and A. R. Gomes, Phys. Rev. D 79, 125022 (2009), the simplest Yukawa coupling {eta}{psi}{phi}{chi}{psi} was considered for a two-scalar-generated Bloch brane model. Fermionic resonances for both chiralities were obtained, and their appearance is related to branes with internal structure. Inspired on this result, we investigate the localization and resonance spectrum of fermions on a one-scalar-generated de Sitter thick brane with a class of scalar-fermion couplings {eta}{psi}{phi}{sup k}{psi} with positive odd integer k. A set of massive fermionic resonances for both chiralities is obtained when provided large coupling constantmore » {eta}. We find that the masses and lifetimes of left and right chiral resonances are almost the same, which demonstrates that it is possible to compose massive Dirac fermions from the left and right chiral resonances. The resonance with lower mass has longer lifetime. For a same set of parameters, the number of resonances increases with k and the lifetime of the lower level resonance for larger k is much longer than the one for smaller k.« less

  2. Cosmography of f(R)-brane cosmology

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Capozziello, Salvatore; Cardone, Vincenzo F.

    2010-11-01

    Cosmography is a useful tool to constrain cosmological models, in particular, dark energy models. In the case of modified theories of gravity, where the equations of motion are generally quite complicated, cosmography can contribute to select realistic models without imposing arbitrary choices a priori. Indeed, its reliability is based on the assumptions that the universe is homogeneous and isotropic on large scale and luminosity distance can be “tracked” by the derivative series of the scale factor a(t). We apply this approach to induced gravity brane-world models where an f(R) term is present in the brane effective action. The virtue of the model is to self-accelerate the normal and healthy Dvali-Gabadadze-Porrati branch once the f(R) term deviates from the Hilbert-Einstein action. We show that the model, coming from a fundamental theory, is consistent with the ΛCDM scenario at low redshift. We finally estimate the cosmographic parameters fitting the Union2 Type Ia Supernovae data set and the distance priors from baryon acoustic oscillations and then provide constraints on the present day values of f(R) and its second and third derivatives.

  3. Black hole thermalization, D0 brane dynamics, and emergent spacetime

    NASA Astrophysics Data System (ADS)

    Riggins, Paul; Sahakian, Vatche

    2012-08-01

    When matter falls past the horizon of a large black hole, the expectation from string theory is that the configuration thermalizes and the information in the probe is rather quickly scrambled away. The traditional view of a classical unique spacetime near a black hole horizon conflicts with this picture. The question then arises as to what spacetime does the probe actually see as it crosses a horizon, and how does the background geometry imprint its signature onto the thermal properties of the probe. In this work, we explore these questions through an extensive series of numerical simulations of D0 branes. We determine that the D0 branes quickly settle into an incompressible symmetric state—thermalized within a few oscillations through a process driven entirely by internal nonlinear dynamics. Surprisingly, thermal background fluctuations play no role in this mechanism. Signatures of the background fields in this thermal state arise either through fluxes, i.e. black hole hair; or if the probe expands to the size of the horizon—which we see evidence of. We determine simple scaling relations for the D0 branes’ equilibrium size, time to thermalize, lifetime, and temperature in terms of their number, initial energy, and the background fields. Our results are consistent with the conjecture that black holes are the fastest scramblers as seen by matrix theory.

  4. Brane-world black hole solutions via a confining potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, M.; Sepangi, H. R.; Razmi, H.

    2007-09-15

    Using a confining potential, we consider spherically symmetric vacuum (static black hole) solutions in a brane-world scenario. Working with a constant curvature bulk, two interesting cases/solutions are studied. A Schwarzschild-de Sitter black hole solution similar to the standard solution in the presence of a cosmological constant is obtained which confirms the idea that an extra term in the field equations on the brane can play the role of a positive cosmological constant and may be used to account for the accelerated expansion of the universe. The other solution is one in which we can have a proper potential to explainmore » the galaxy rotation curves without assuming the existence of dark matter and without working with new modified theories (modified Newtonian dynamics)« less

  5. Hamiltonian analysis of non-relativistic non-BPS Dp-brane

    NASA Astrophysics Data System (ADS)

    Klusoň, J.

    2017-07-01

    We perform Hamiltonian analysis of non-relativistic non-BPS Dp-brane. We find the constraint structure of this theory and determine corresponding equations of motion. We further discuss property of this theory at the tachyon vacuum.

  6. Cosmology of a Friedmann-Lamaître-Robertson-Walker 3-brane, late-time cosmic acceleration, and the cosmic coincidence.

    PubMed

    Doolin, Ciaran; Neupane, Ishwaree P

    2013-04-05

    A late epoch cosmic acceleration may be naturally entangled with cosmic coincidence--the observation that at the onset of acceleration the vacuum energy density fraction nearly coincides with the matter density fraction. In this Letter we show that this is indeed the case with the cosmology of a Friedmann-Lamaître-Robertson-Walker (FLRW) 3-brane in a five-dimensional anti-de Sitter spacetime. We derive the four-dimensional effective action on a FLRW 3-brane, from which we obtain a mass-reduction formula, namely, M(P)(2) = ρ(b)/|Λ(5)|, where M(P) is the effective (normalized) Planck mass, Λ(5) is the five-dimensional cosmological constant, and ρ(b) is the sum of the 3-brane tension V and the matter density ρ. Although the range of variation in ρ(b) is strongly constrained, the big bang nucleosynthesis bound on the time variation of the effective Newton constant G(N) = (8πM(P)(2))(-1) is satisfied when the ratio V/ρ ≳ O(10(2)) on cosmological scales. The same bound leads to an effective equation of state close to -1 at late epochs in accordance with astrophysical and cosmological observations.

  7. Large scale structure formation of the normal branch in the DGP brane world model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yong-Seon

    2008-06-15

    In this paper, we study the large scale structure formation of the normal branch in the DGP model (Dvail, Gabadadze, and Porrati brane world model) by applying the scaling method developed by Sawicki, Song, and Hu for solving the coupled perturbed equations of motion of on-brane and off-brane. There is a detectable departure of perturbed gravitational potential from the cold dark matter model with vacuum energy even at the minimal deviation of the effective equation of state w{sub eff} below -1. The modified perturbed gravitational potential weakens the integrated Sachs-Wolfe effect which is strengthened in the self-accelerating branch DGP model.more » Additionally, we discuss the validity of the scaling solution in the de Sitter limit at late times.« less

  8. Supersymmetric M3-branes and G2 manifolds

    NASA Astrophysics Data System (ADS)

    Cvetič, M.; Gibbons, G. W.; Lü, H.; Pope, C. N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G2 holonomy on R4×S 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G2 metric, and λ={-1,1} are related to this by an S3 automorphism of the SU(2) 3 isometry group that acts on the S3× S3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.

  9. Casimir force in brane worlds: Coinciding results from Green's and zeta function approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linares, Roman; Morales-Tecotl, Hugo A.; Pedraza, Omar

    2010-06-15

    Casimir force encodes the structure of the field modes as vacuum fluctuations and so it is sensitive to the extra dimensions of brane worlds. Now, in flat spacetimes of arbitrary dimension the two standard approaches to the Casimir force, Green's function, and zeta function yield the same result, but for brane world models this was only assumed. In this work we show that both approaches yield the same Casimir force in the case of universal extra dimensions and Randall-Sundrum scenarios with one and two branes added by p compact dimensions. Essentially, the details of the mode eigenfunctions that enter themore » Casimir force in the Green's function approach get removed due to their orthogonality relations with a measure involving the right hypervolume of the plates, and this leaves just the contribution coming from the zeta function approach. The present analysis corrects previous results showing a difference between the two approaches for the single brane Randall-Sundrum; this was due to an erroneous hypervolume of the plates introduced by the authors when using the Green's function. For all the models we discuss here, the resulting Casimir force can be neatly expressed in terms of two four-dimensional Casimir force contributions: one for the massless mode and the other for a tower of massive modes associated with the extra dimensions.« less

  10. Toward a proof of Montonen-Olive duality via multiple M2-branes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-04-01

    We derive 4-dimensional Script N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N))2n. The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  11. Hydrogen-like spectrum of spontaneously created brane universes with de-Sitter ground state

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon

    2018-05-01

    Unification of Randall-Sundrum and Regge-Teitelboim brane cosmologies gives birth to a serendipitous Higgs-deSitter interplay. A localized Dvali-Gabadadze-Porrati scalar field, governed by a particular (analytically derived) double-well quartic potential, becomes a mandatory ingredient for supporting a deSitter brane universe. When upgraded to a general Higgs potential, the brane surface tension gets quantized, resembling a Hydrogen atom spectrum, with deSitter universe serving as the ground state. This reflects the local/global structure of the Euclidean manifold: From finite energy density no-boundary initial conditions, via a novel acceleration divide filter, to exact matching conditions at the exclusive nucleation point. Imaginary time periodicity comes as a bonus, with the associated Hawking temperature vanishing at the continuum limit. Upon spontaneous creation, while a finite number of levels describe universes dominated by a residual dark energy combined with damped matter oscillations, an infinite tower of excited levels undergo a Big Crunch.

  12. Laplace-Beltrami operator and exact solutions for branes

    NASA Astrophysics Data System (ADS)

    Zheltukhin, A. A.

    2013-02-01

    Proposed is a new approach to finding exact solutions of nonlinear p-brane equations in D-dimensional Minkowski space based on the use of various initial value constraints. It is shown that the constraints Δx→=0 and Δx→=-Λ(t,σr)x→ give two sets of exact solutions.

  13. Supersymmetric attractors, topological strings, and the M5-brane CFT

    NASA Astrophysics Data System (ADS)

    Guica, Monica M.

    One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand

  14. Interaction of the branes in the presence of the background fields: The dynamical, nonintersecting, perpendicular, wrapped-fractional configuration

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Elham; Kamani, Davoud

    2017-05-01

    We shall obtain the interaction of the Dp1- and Dp2-branes in the toroidal-orbifold space-time Tn × ℝ1,d-n-5 × ℂ2/ℤ 2. The configuration of the branes is nonintersecting, perpendicular, moving-rotating, wrapped-fractional with background fields. For this, we calculate the bosonic boundary state corresponding to a dynamical fractional-wrapped Dp-brane in the presence of the Kalb-Ramond field, a U1 gauge potential and an open string tachyon field. The long-range behavior of the interaction amplitude will be extracted.

  15. p-brane actions and higher Roytenberg brackets

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2013-02-01

    Motivated by the quest to understand the analog of non-geometric flux compactification in the context of M-theory, we study higher dimensional analogs of generalized Poisson sigma models and corresponding dual string and p-brane models. We find that higher generalizations of the algebraic structures due to Dorfman, Roytenberg and Courant play an important role and establish their relation to Nambu-Poisson structures.

  16. String inspired brane world cosmology.

    PubMed

    Germani, Cristiano; Sopuerta, Carlos F

    2002-06-10

    We consider brane world scenarios including the leading correction to the Einstein-Hilbert action suggested by superstring theory, the Gauss-Bonnet term. We obtain and study the complete set of equations governing the cosmological dynamics. We find they have the same form as those in Randall-Sundrum scenarios but with time-varying four-dimensional gravitational and cosmological constants. By studying the bulk geometry we show that this variation is produced by bulk curvature terms parametrized by the mass of a black hole. Finally, we show there is a coupling between these curvature terms and matter that can be relevant for early universe cosmology.

  17. On Closed Timelike Curves and Warped Brane World Models

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan

    2013-09-01

    At first glance, it seems possible to construct in general relativity theory causality violating solutions. The most striking one is the Gott spacetime. Two cosmic strings, approaching each other with high velocity, could produce closed timelike curves. It was quickly recognized that this solution violates physical boundary conditions. The effective one particle generator becomes hyperbolic, so the center of mass is tachyonic. On a 5-dimensional warped spacetime, it seems possible to get an elliptic generator, so no obstruction is encountered and the velocity of the center of mass of the effective particle has an overlap with the Gott region. So a CTC could, in principle, be constructed. However, from the effective 4D field equations on the brane, which are influenced by the projection of the bulk Weyl tensor on the brane, it follows that no asymptotic conical space time is found, so no angle deficit as in the 4D counterpart model. This could also explain why we do not observe cosmic strings.

  18. Dynamically SUSY breaking SQCD on F-theory seven-branes

    NASA Astrophysics Data System (ADS)

    Buchbinder, Evgeny I.

    2008-09-01

    We study how dynamically breaking SQCD can be obtained on two intersecting seven-branes in F-theory. In the mechanism which we present in this paper one of the seven-branes is responsible for producing the low-energy gauge group and the other one is for generating vector bundle moduli. The fundamental matter charged under the gauge group is localized on the intersection. The mass of the matter fields is controlled by the vector bundle moduli. The analysis of under what conditions a sufficient number of the fundamental flavors becomes light turns out to be equivalent to the analysis of non-perturbative superpotentials for vector bundle moduli in Heterotic M-theory. We give an example in which we present an explicit equation in the moduli space whose zero locus corresponds to the fundamental fields becoming light. This allows us to provide a local F-theory realization of massive Script N = 1, SU(Nc) SQCD in the free magnetic range which dynamically breaks supersymmetry.

  19. Gravitational field of static p -branes in linearized ghost-free gravity

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.; Zelnikov, Andrei

    2018-04-01

    We study the gravitational field of static p -branes in D -dimensional Minkowski space in the framework of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by the nonlocal form factors exp (-□/μ2) and exp (□2/μ4) , where μ-1 is the scale of nonlocality. We show that the singular behavior of the gravitational field of p -branes in general relativity is cured by short-range modifications introduced by the nonlocalities, and we derive exact expressions of the regularized gravitational fields, whose geometry can be written as a warped metric. For large distances compared to the scale of nonlocality, μ r →∞ , our solutions approach those found in linearized general relativity.

  20. Bulk scalar field in brane-worlds with induced gravity inspired by the L(R) term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, M.; Sepangi, H.R., E-mail: heydarifard@qom.ac.ir, E-mail: hr-sepangi@sbu.ac.ir

    2009-01-15

    We obtain the effective field equations in a brane-world scenario within the framework of a DGP model where the action on the brane is an arbitrary function of the Ricci scalar, L(R), and the bulk action includes a scalar field in the matter Lagrangian. We obtain the Friedmann equations and acceleration conditions in the presence of the bulk scalar field for the R{sup n} term in four-dimensional gravity.

  1. Error of semiclassical eigenvalues in the semiclassical limit - an asymptotic analysis of the Sinai billiard

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Per

    1999-10-01

    We estimate the error in the semiclassical trace formula for the Sinai billiard under the assumption that the largest source of error is due to penumbra diffraction: namely, diffraction effects for trajectories passing within a distance Ricons/Journals/Common/cdot" ALT="cdot" ALIGN="TOP"/>O((kR)-2/3) to the disc and trajectories being scattered in very forward directions. Here k is the momentum and R the radius of the scatterer. The semiclassical error is estimated by perturbing the Berry-Keating formula. The analysis necessitates an asymptotic analysis of very long periodic orbits. This is obtained within an approximation originally due to Baladi, Eckmann and Ruelle. We find that the average error, for sufficiently large values of kR, will exceed the mean level spacing.

  2. Black branes and black strings in the astrophysical and cosmological context

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Chopovsky, Alexey; Zhuk, Alexander

    2018-03-01

    We consider Kaluza-Klein models where internal spaces are compact flat or curved Einstein spaces. This background is perturbed by a compact gravitating body with the dust-like equation of state (EoS) in the external/our space and an arbitrary EoS parameter Ω in the internal space. Without imposing any restrictions on the form of the perturbed metric and the distribution of the perturbed energy densities, we perform the general analysis of the Einstein and conservation equations in the weak-field limit. All conclusions follow from this analysis. For example, we demonstrate that the perturbed model is static and perturbed metric preserves the block-diagonal form. In a particular case Ω = - 1 / 2, the found solution corresponds to the weak-field limit of the black strings/branes. The black strings/branes are compact gravitating objects which have the topology (four-dimensional Schwarzschild spacetime) × (d-dimensional internal space) with d ≥ 1. We present the arguments in favour of these objects. First, they satisfy the gravitational tests for the parameterized post-Newtonian parameter γ at the same level of accuracy as General Relativity. Second, they are preferable from the thermodynamical point of view. Third, averaging over the Universe, they do not destroy the stabilization of the internal space. These are the astrophysical and cosmological aspects of the black strings/branes.

  3. Super-Luminal Effects for Finsler Branes as a Way to Preserve the Paradigm of Relativity Theories

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2013-06-01

    Using Finsler brane solutions [see details and methods in: S. Vacaru, Class. Quant. Grav. 28:215001, 2011], we show that neutrinos may surpass the speed of light in vacuum which can be explained by trapping effects from gravity theories on eight dimensional (co) tangent bundles on Lorentzian manifolds to spacetimes in general and special relativity. In nonholonomic variables, the bulk gravity is described by Finsler modifications depending on velocity/momentum coordinates. Possible super-luminal phenomena are determined by the width of locally anisotropic brane (spacetime) and induced by generating functions and integration functions and constants in coefficients of metrics and nonlinear connections. We conclude that Finsler brane gravity trapping mechanism may explain neutrino super-luminal effects and almost preserve the paradigm of Einstein relativity as the standard one for particle physics and gravity.

  4. Large-scale structure in brane-induced gravity. I. Perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoccimarro, Roman

    2009-11-15

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less

  5. Transition from Poissonian to Gaussian-orthogonal-ensemble level statistics in a modified Artin's billiard

    NASA Astrophysics Data System (ADS)

    Csordás, A.; Graham, R.; Szépfalusy, P.; Vattay, G.

    1994-01-01

    One wall of an Artin's billiard on the Poincaré half-plane is replaced by a one-parameter (cp) family of nongeodetic walls. A brief description of the classical phase space of this system is given. In the quantum domain, the continuous and gradual transition from the Poisson-like to Gaussian-orthogonal-ensemble (GOE) level statistics due to the small perturbations breaking the symmetry responsible for the ``arithmetic chaos'' at cp=1 is studied. Another GOE-->Poisson transition due to the mixed phase space for large perturbations is also investigated. A satisfactory description of the intermediate level statistics by the Brody distribution was found in both cases. The study supports the existence of a scaling region around cp=1. A finite-size scaling relation for the Brody parameter as a function of 1-cp and the number of levels considered can be established.

  6. Warped AdS 6 × S 2 in Type IIB supergravity III. Global solutions with seven-branes

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Gutperle, Michael; Uhlemann, Christoph F.

    2017-11-01

    We extend our previous construction of global solutions to Type IIB super-gravity that are invariant under the superalgebra F(4) and are realized on a spacetime of the form AdS 6 × S 2 warped over a Riemann surface Σ by allowing the supergravity fields to have non-trivial SL(2, ℝ) monodromy at isolated punctures on Σ. We obtain explicit solutions for the case where Σ is a disc, and the monodromy generators are parabolic elements of SL(2, ℝ) physically corresponding to the monodromy allowed in Type IIB string theory. On the boundary of Σ the solutions exhibit singularities at isolated points which correspond to semi-infinite five-branes, as is familiar from the global solutions without monodromy. In the interior of Σ, the solutions are everywhere regular, except at the punctures where SL(2, ℝ) monodromy resides and which physically correspond to the locations of [ p, q] seven-branes. The solutions have a compelling physical interpretation corresponding to fully localized five-brane intersections with additional seven-branes, and provide candidate holographic duals to the five-dimensional superconformal field theories realized on such intersections.

  7. Aksz Construction of Topological Open p-BRANE Action and Nambu Brackets

    NASA Astrophysics Data System (ADS)

    Bouwknegt, Peter; Jurčo, Branislav

    2013-04-01

    We review the AKSZ construction as applied to the topological open membranes and Poisson sigma models. We describe a generalization to open topological p-branes. Also, we propose a related (not necessarily BV) Nambu-Poisson sigma model.

  8. Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term

    NASA Astrophysics Data System (ADS)

    Debnath, P. S.; Beesham, A.; Paul, B. C.

    2018-06-01

    Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.

  9. Brane world in non-Riemannian geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, R.; Falciano, F. T.

    2011-03-15

    We carefully investigate the modified Einstein's field equation in a 4-dimensional (3-brane) arbitrary manifold embedded in a 5-dimensional non-Riemannian bulk spacetime with a noncompact extra dimension. In this context the Israel-Darmois matching conditions are extended assuming that the torsion in the bulk is continuous. The discontinuity in the torsion first derivatives are related to the matter distribution through the field equation. In addition, we develop a model that describes a flat FLRW model embedded in a 5-dimensional de Sitter or anti-de Sitter, where a 5-dimensional cosmological constant emerges from the torsion.

  10. Branes and the Kraft-Procesi transition: classical case

    NASA Astrophysics Data System (ADS)

    Cabrera, Santiago; Hanany, Amihay

    2018-04-01

    Moduli spaces of a large set of 3 d N=4 effective gauge theories are known to be closures of nilpotent orbits. This set of theories has recently acquired a special status, due to Namikawa's theorem. As a consequence of this theorem, closures of nilpotent orbits are the simplest non-trivial moduli spaces that can be found in three dimensional theories with eight supercharges. In the early 80's mathematicians Hanspeter Kraft and Claudio Procesi characterized an inclusion relation between nilpotent orbit closures of the same classical Lie algebra. We recently [1] showed a physical realization of their work in terms of the motion of D3-branes on the Type IIB superstring embedding of the effective gauge theories. This analysis is restricted to A-type Lie algebras. The present note expands our previous discussion to the remaining classical cases: orthogonal and symplectic algebras. In order to do so we introduce O3-planes in the superstring description. We also find a brane realization for the mathematical map between two partitions of the same integer number known as collapse. Another result is that basic Kraft-Procesi transitions turn out to be described by the moduli space of orthosymplectic quivers with varying boundary conditions.

  11. Modeling and Simulation of the Dynamics of Dissipative, Inelastic Spheres with Applications to Planetary Rovers and Gravitational Billiards

    NASA Astrophysics Data System (ADS)

    Hartl, Alexandre E.

    This dissertation provides a thorough treatment on the dynamic modeling and simulation of spherical objects, and its applications to planetary rovers and gravitational billiards. First, the equations governing the motion of a wind-driven spherical rover are developed, and a numerical procedure for their implementation is shown. Dynamic simulations (considering the Earth and Mars atmospheres) for several terrain types and conditions illustrate how a rover may maneuver across flat terrain, channels and craters. The effects of aerodynamic forces on the rover's motion is studied. The results show the wind force may both push and hinder the rover's motion while sliding, rolling and bouncing. The rover will periodically transition between these modes of movement when the rover impacts sloped surfaces. Combinations of rolling and bouncing may be a more effective means of transport for a rover traveling through a channel when compared to rolling alone. The aerodynamic effects, of drag and the Magnus force, are contributing factors to the possible capture of the rover by a crater. Next, a strategy is formulated for creating randomized Martian rock fields based on statistical models, where the rover's interactions with these fields are analyzed. Novel procedures for creating randomized Martian rock fields are presented, where optimization techniques allow terrain generation to coincide with the rover's motion. Efficient collision detection routines reduce the number of tests of potential collisions between the rover and the terrain while establishing new contact constraints. The procedures allow for the exploration of large regions of terrain while minimizing computational costs. Simulations demonstrate that bouncing is the rover's dominant mode of travel through the rock fields. Monte-Carlo simulations illustrate how the rover's down-range position depends on the rover design and atmospheric conditions. Moreover, the simulations verify the rover's capacity for long distance

  12. Towards a systematic construction of realistic D-brane models on a del Pezzo singularity

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew J.; Krippendorf, Sven; Quevedo, Fernando

    2011-10-01

    A systematic approach is followed in order to identify realistic D-brane models at toric del Pezzo singularities. Requiring quark and lepton spectrum and Yukawas from D3 branes and massless hypercharge, we are led to Pati-Salam extensions of the Standard Model. Hierarchies of masses, flavour mixings and control of couplings select higher order del Pezzo singularities, minimising the Higgs sector prefers toric del Pezzos with dP 3 providing the most successful compromise. Then a supersymmetric local string model is presented with the following properties at low energies: (i) the MSSM spectrum plus a local B - L gauge field or additional Higgs fields depending on the breaking pattern, (ii) a realistic hierarchy of quark and lepton masses and (iii) realistic flavour mixing between quark and lepton families with computable CKM and PMNS matrices, and CP violation consistent with observations. In this construction, kinetic terms are diagonal and under calculational control suppressing standard FCNC contributions. Proton decay operators of dimension 4, 5, 6 are suppressed, and gauge couplings can unify depending on the breaking scales from string scales at energies in the range 1012-1016 GeV, consistent with TeV soft-masses from moduli mediated supersymmetry breaking. The GUT scale model corresponds to D3 branes at dP 3 with two copies of the Pati-Salam gauge symmetry SU(4) × SU(2) R × SU(2) L . D-brane instantons generate a non-vanishing μ-term. Right handed sneutrinos can break the B - L symmetry and induce a see-saw mechanism of neutrino masses and R-parity violating operators with observable low-energy implications.

  13. D-brane instantons and the effective field theory of flux compactifications

    NASA Astrophysics Data System (ADS)

    Uranga, Angel M.

    2009-01-01

    We provide a description of the effects of fluxes on euclidean D-brane instantons purely in terms of the 4d effective action. The effect corresponds to the dressing of the effective non-perturbative 4d effective vertex with 4d flux superpotential interactions, generated when the moduli fields made massive by the flux are integrated out. The description in terms of effective field theory allows a unified description of non-perturbative effects in all flux compactifications of a given underlying fluxless model, globally in the moduli space of the latter. It also allows us to describe explicitly the effects on D-brane instantons of fluxes with no microscopic description, like non-geometric fluxes. At the more formal level, the description has interesting connections with the bulk-boundary map of open-closed two-dimensional topological string theory, and with the Script N = 1 special geometry.

  14. Brane with variable tension as a possible solution to the problem of the late cosmic acceleration

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel A.; Hernandez-Almada, A.; Magaña, Juan; Amante, Mario H.; Motta, V.; Martínez-Robles, C.

    2018-05-01

    Braneworld models have been proposed as a possible solution to the problem of the accelerated expansion of the Universe. The idea is to dispense the dark energy (DE) and drive the late-time cosmic acceleration with a five-dimensional geometry. We investigate a brane model with variable brane tension as a function of redshift called chrono-brane. We propose the polynomial λ =(1 +z )n function inspired in tracker-scalar-field potentials. To constrain the n exponent we use the latest observational Hubble data from cosmic chronometers, Type Ia Supernovae from the full joint-light-analysis sample, baryon acoustic oscillations and the posterior distance from the cosmic microwave background of Planck 2015 measurements. A joint analysis of these data estimates n ≃6.19 ±0.12 which generates a DE-like (cosmological-constantlike at late times) term, in the Friedmann equation arising from the extra dimensions. This model is consistent with these data and can drive the Universe to an accelerated phase at late times.

  15. Mass hierarchy, mass gap and corrections to Newton's law on thick branes with Poincaré symmetry

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo; Kanakoglou, Konstantinos; Nucamendi, Ulises; Quiros, Israel

    2014-01-01

    We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schrödinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with , in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza-Klein (KK) excitations and to analytically compute the corrections to Newton's law in the thin brane limit. In the first case we consider a novel solution with a mass gap in the spectrum of KK fluctuations with two bound states—the massless 4D graviton free of tachyonic instabilities and a massive KK excitation—as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the thin Randall-Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved with positive branes as in the Lykken-Randall (LR) model and the model is completely free of naked singularities. We also show that the scalar-tensor system is stable under scalar perturbations with no scalar modes localized on the braneworld

  16. Differential cross sections in a thick brane world scenario

    NASA Astrophysics Data System (ADS)

    Pedraza, Omar; Arceo, R.; López, L. A.; Cerón, V. E.

    2018-04-01

    The elastic differential cross section is calculated at low energies for the elements He and Ne using an effective 4D electromagnetic potential coming from the contribution of the massive Kaluza-Klein modes of the 5D vector field in a thick brane scenario. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model.

  17. Grand unified brane world scenario

    NASA Astrophysics Data System (ADS)

    Arai, Masato; Blaschke, Filip; Eto, Minoru; Sakai, Norisuke

    2017-12-01

    We present a field theoretical model unifying grand unified theory (GUT) and brane world scenario. As a concrete example, we consider S U (5 ) GUT in 4 +1 dimensions where our 3 +1 dimensional spacetime spontaneously arises on five domain walls. A field-dependent gauge kinetic term is used to localize massless non-Abelian gauge fields on the domain walls and to assure the charge universality of matter fields. We find the domain walls with the symmetry breaking S U (5 )→S U (3 )×S U (2 )×U (1 ) as a global minimum and all the undesirable moduli are stabilized with the mass scale of MGUT. Profiles of massless standard model particles are determined as a consequence of wall dynamics. The proton decay can be exponentially suppressed.

  18. The effect of the Gauss-Bonnet term on Hawking radiation from arbitrary dimensional black brane

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Mei; Saavedra, Joel; Övgün, Ali

    2017-09-01

    We investigate the probabilities of the tunneling and the radiation spectra of massive spin-1 particles from arbitrary dimensional Gauss-Bonnet-Axions (GBA) Anti-de Sitter (AdS) black branes, via using the WKB approximation to the Proca spin-1 field equation. The tunneling probabilities and Hawking temperature of the arbitrary dimensional GBA AdS black brane is calculated via the Hamilton-Jacobi approach. We also compute the Hawking temperature via the Parikh-Wilczek tunneling approach. The results obtained from the two methods are consistent. In our setup, the Gauss-Bonnet (GB) coupling affects the Hawking temperature if and only if the momentum of the axion fields is non-vanishing.

  19. Explicit construction of BRST charge of noncommutative D-brane system

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Tae

    2006-01-01

    In the BRST BFV scheme for noncommutative D-branes with constant NS B-field, introducing ghost degrees of freedom we construct the gauge-fixed Hamiltonian and corresponding effective Lagrangian invariant under nilpotent BRST charge. It is also shown that the presence of auxiliary variables introduced via the improved Dirac formalism plays a crucial role in the construction of the BRST invariant Lagrangian.

  20. Delocalizing entanglement of anisotropic black branes

    NASA Astrophysics Data System (ADS)

    Jahnke, Viktor

    2018-01-01

    We study the mutual information between pairs of regions on the two asymptotic boundaries of maximally extended anisotropic black branes. This quantity characterizes the local pattern of entanglement of the thermofield double states which are dual to these geometries. We analyze the disruption of the mutual information in anisotropic shock wave geometries and show that the entanglement velocity plays an important role in this phenomenon. Moreover, we compute several chaos-related properties of this system, such as the entanglement velocity, the butterfly velocity, and the scrambling time. We find that the butterfly velocity and the entanglement velocity violate the upper bounds proposed in [1-3], but remain bounded by their corresponding values in the infrared effective theory.

  1. Characteristics of level-spacing statistics in chaotic graphene billiards.

    PubMed

    Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2011-03-01

    A fundamental result in nonrelativistic quantum nonlinear dynamics is that the spectral statistics of quantum systems that possess no geometric symmetry, but whose classical dynamics are chaotic, are described by those of the Gaussian orthogonal ensemble (GOE) or the Gaussian unitary ensemble (GUE), in the presence or absence of time-reversal symmetry, respectively. For massless spin-half particles such as neutrinos in relativistic quantum mechanics in a chaotic billiard, the seminal work of Berry and Mondragon established the GUE nature of the level-spacing statistics, due to the combination of the chirality of Dirac particles and the confinement, which breaks the time-reversal symmetry. A question is whether the GOE or the GUE statistics can be observed in experimentally accessible, relativistic quantum systems. We demonstrate, using graphene confinements in which the quasiparticle motions are governed by the Dirac equation in the low-energy regime, that the level-spacing statistics are persistently those of GOE random matrices. We present extensive numerical evidence obtained from the tight-binding approach and a physical explanation for the GOE statistics. We also find that the presence of a weak magnetic field switches the statistics to those of GUE. For a strong magnetic field, Landau levels become influential, causing the level-spacing distribution to deviate markedly from the random-matrix predictions. Issues addressed also include the effects of a number of realistic factors on level-spacing statistics such as next nearest-neighbor interactions, different lattice orientations, enhanced hopping energy for atoms on the boundary, and staggered potential due to graphene-substrate interactions.

  2. (Compactified) black branes in four dimensional f(R)-gravity

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2018-02-01

    A new family of analytical solutions in a four dimensional static spacetime is presented for f (R) -gravity. In contrast to General Relativity, we find that a non trivial black brane/string solution is supported in vacuum power law f (R) -gravity for appropriate values of the parameters characterizing the model and when axisymmetry is introduced in the line element. For the aforementioned solution, we perform a brief investigation over its basic thermodynamic quantities.

  3. Weak gravity conjecture as a razor criterium for exotic D-brane instantons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2017-01-01

    We discuss implications of weak gravity conjecture (WGC) for exotic D-brane instantons. In particular, WGC leads to indirect stringent bounds on non-perturbative superpotentials generated by exotic instantons with many implications for phenomenology: R-parity violating processes, neutrino mass, μ-problem, neutron-antineutron transitions and collider physics.

  4. Lab-on-a-brane: nanofibrous polymer membranes to recreate organ-capillary interfaces

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim I.; Thomas, Vinoy; Sethu, Palaniappan

    2016-03-01

    Drug discovery is a complex and time consuming process involving significant basic research and preclinical evaluation prior to testing in patients. Preclinical studies rely extensively on animal models which often fail in human trials. Biomimetic microphysiological systems (MPS) using human cells can be a promising alternative to animal models; where critical interactions between different organ systems are recreated to provide physiologically relevant in vitro human models. Central here are blood-vessel networks, the interface controlling transport of cellular and biomolecular components between the circulating fluid and underlying tissue. Here we present a novel lab-on-a-brane (or lab-on-a-membrane) nanofluidics MPS that combines the elegance of lab-on-a-chip with the more realistic morphology of 3D fibrous tissue-engineering constructs. Our blood-vessel lab-on-a-brane effectively simulates in vivo vessel-tissue interface for evaluating transendothelial transport in various pharmacokinetic and nanomedicine applications. Attributes of our platform include (a) nanoporous barrier interface enabling transmembrane molecular transport, (b) transformation of substrate into nanofibrous 3D tissue matrix, (c) invertible-sandwich architecture, and (d) simple co-culture mechanism for endothelial and smooth muscle layers to accurately mimic arterial anatomy. Structural, mechanical, and transport characterization using scanning electron microscopy, stress/strain analysis, infrared spectroscopy, immunofluorescence, and FITC-Dextran hydraulic permeability confirm viability of this in vitro system. Thus, our lab-on-a-brane provides an effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in preclinical testing, costs from false starts, and time-to-market. Furthermore, it can be configured in multiple simultaneous arrays for personalized and precision medicine applications and for

  5. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.

    PubMed

    Li, Baowen; Wang, Jiao; Wang, Lei; Zhang, Gang

    2005-03-01

    We study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is sigma(2)(t)=2Dt(alpha) (01) implies an anomalous heat conduction with a divergent thermal conductivity (beta>0), and more interestingly, a subdiffusion (alpha<1) implies an anomalous heat conduction with a convergent thermal conductivity (beta<0), consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our theoretical prediction.

  6. Towards an M5-brane model I: A 6d superconformal field theory

    NASA Astrophysics Data System (ADS)

    Sämann, Christian; Schmidt, Lennart

    2018-04-01

    We present an action for a six-dimensional superconformal field theory containing a non-abelian tensor multiplet. All of the ingredients of this action have been available in the literature. We bring these pieces together by choosing the string Lie 2-algebra as a gauge structure, which we motivated in previous work. The kinematical data contains a connection on a categorified principal bundle, which is the appropriate mathematical description of the parallel transport of self-dual strings. Our action can be written down for each of the simply laced Dynkin diagrams, and each case reduces to a four-dimensional supersymmetric Yang-Mills theory with corresponding gauge Lie algebra. Our action also reduces nicely to an M2-brane model which is a deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) model. While this action is certainly not the desired M5-brane model, we regard it as a key stepping stone towards a potential construction of the (2, 0)-theory.

  7. Exciting gauge field and gravitons in brane-antibrane annihilation.

    PubMed

    Mazumdar, Anupam; Stoica, Horace

    2009-03-06

    In this Letter we point out the inevitability of an explosive production of gauge field and gravity wave during an open string tachyon condensation in a cosmological setting, in an effective field theory model. We will be particularly studying a toy model of brane-antibrane inflation in a warped throat where inflation ends via tachyon condensation. We point out that a tachyonic instability helps fragmenting the homogeneous tachyon and excites gauge field and contributes to the stress-energy tensor which also feeds into the gravity waves.

  8. Solutions on a brane in a bulk spacetime with Kalb–Ramond field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sumanta, E-mail: sumanta@iucaa.in; SenGupta, Soumitra, E-mail: tpssg@iacs.res.in

    Effective gravitational field equations on a brane have been derived, when the bulk spacetime is endowed with the second rank antisymmetric Kalb–Ramond field. Since both the graviton and the Kalb–Ramond field are closed string excitations, they can propagate in the bulk. After deriving the effective gravitational field equations on the brane, we solve them for a static spherically symmetric solution. It turns out that the solution so obtained represents a black hole or naked singularity depending on the parameter space of the model. The stability of this model is also discussed. Cosmological solutions to the gravitational field equations have beenmore » obtained, where the Kalb–Ramond field is found to behave as normal pressure free matter. For certain specific choices of the parameters in the cosmological solution, the solution exhibits a transition in the behaviour of the scale factor and hence a transition in the expansion history of the universe. The possibility of accelerated expansion of the universe in this scenario is also discussed.« less

  9. Hierarchies from D-brane instantons in globally defined calabi-yau orientifolds

    DOE PAGES

    Cvetič, Mirjam; Weigand, Timo

    2008-06-01

    We construct the first globally consistent semi-realistic Type I string vacua on an elliptically fibered manifold where the zero modes of the Euclidean D1-instanton sector allow for the generation of non-perturbative Majorana masses of an intermediate scale. In another class of global models, a D1-brane instanton can generate a Polonyi-type superpotential breaking supersymmetry at an exponentially suppressed scale.

  10. Global D-brane models with stabilised moduli and light axions

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele

    2014-03-01

    We review recent attempts to try to combine global issues of string compactifications, like moduli stabilisation, with local issues, like semi-realistic D-brane constructions. We list the main problems encountered, and outline a possible solution which allows globally consistent embeddings of chiral models. We also argue that this stabilisation mechanism leads to an axiverse. We finally illustrate our general claims in a concrete example where the Calabi-Yau manifold is explicitly described by toric geometry.

  11. E(lementary)-strings in six-dimensional heterotic F-theory

    NASA Astrophysics Data System (ADS)

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-09-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small instantons generate most of known six-dimensional superconformal theories, their affinizations and little string theories. Taking account of global structure of compact internal geometry, we also show that special combinations of E-strings play an important role in constructing six-dimensional theories of D- and E-types. We check global consistency conditions from anomaly cancellation conditions, both from five-branes and strings, and show that they are given in terms of elementary E-string combinations.

  12. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    NASA Astrophysics Data System (ADS)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  13. Dark solitons, D-branes and noncommutative tachyon field theory

    NASA Astrophysics Data System (ADS)

    Giaccari, Stefano; Nian, Jun

    2017-11-01

    In this paper we discuss the boson/vortex duality by mapping the (3+1)D Gross-Pitaevskii theory into an effective string theory in the presence of boundaries. Via the effective string theory, we find the Seiberg-Witten map between the commutative and the noncommutative tachyon field theories, and consequently identify their soliton solutions with D-branes in the effective string theory. We perform various checks of the duality map and the identification of soliton solutions. This new insight between the Gross-Pitaevskii theory and the effective string theory explains the similarity of these two systems at quantitative level.

  14. Witten Effect and Fractional Charges on the Domain Wall and the D-Brane-Like Dot

    NASA Astrophysics Data System (ADS)

    Kanazawa, I.; Maeda, R.

    2018-04-01

    We have discussed the anomalous excitations such as dyons, Majorana fermions, and quark-like fermions on the domain wall in topological materials and the D-brane-like dot, and the relation to low-energy hadrons in QCD, from the viewpoint of a field-theoretical formula.

  15. On the localisation of four-dimensional brane-world black holes: II. The general case

    NASA Astrophysics Data System (ADS)

    Kanti, P.; Pappas, N.; Pappas, T.

    2016-01-01

    We perform a comprehensive analysis of a number of scalar field theories in an attempt to find analytically five-dimensional, localised-on-the-brane, black-hole solutions. Extending a previous analysis, we assume a generalised Vaidya ansatz for the five-dimensional metric tensor that allows for a time-dependent, non-trivial profile of the mass function in terms of the bulk coordinate and a deviation from the over-restricting Schwarzschild-type solution on the brane. In order to support such a solution, we study a variety of theories including single or multiple scalar fields, with canonical or non-canonical kinetic terms, minimally or non-minimally coupled to gravity. We demonstrate that for such a metric ansatz and for a carefully chosen energy-momentum tensor which is non-isotropic in five dimensions, solutions that have the form of a Schwarzschild-(anti)de Sitter or Reissner-Nordstrom type of solution do emerge. However, the resulting profile of the mass function along the bulk coordinate, when allowed, is not the correct one for eliminating bulk singularities.

  16. Complex Chern-Simons from M5-branes on the squashed three-sphere

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Jafferis, Daniel L.

    2017-11-01

    We derive an equivalence between the (2,0) superconformal M5-brane field theory dimensionally reduced on a squashed three-sphere, and Chern-Simons theory with complex gauge group. In the reduction, the massless fermions obtain an action which is second order in derivatives and are reinterpreted as ghosts for gauge fixing the emergent non-compact gauge symmetry. A squashing parameter in the geometry controls the imaginary part of the complex Chern-Simons level.

  17. D2-brane as the wormhole and the number of the universes

    NASA Astrophysics Data System (ADS)

    Gusin, Paweł

    2016-02-01

    We construct wormhole-like solutions in type IIA string theory. These solutions represent wormholes in four dimensions and are given by the D2-branes within appropriated backgrounds fields. We present the conditions on these fields which lead to the four-dimensional wormholes. In the special case, we show how the particular solution in type IIA theory leads to the dynamic wormhole. We also speculate about the number of universes and the cosmological constant.

  18. Towards multi-field D-brane inflation in a warped throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Heng-Yu; Gong, Jinn-Ouk; Koyama, Kazuya

    2010-11-01

    We study the inflationary dynamics in a model of slow-roll inflation in warped throat. Inflation is realized by the motion of a D-brane along the radial direction of the throat, and at later stages instabilities develop in the angular directions. We closely investigate both the single field potential relevant for the slow-roll phase, and the full multi-field one including the angular modes which becomes important at later stages. We study the main features of the instability process, discussing its possible consequences and identifying the vacua towards which the angular modes are driven.

  19. Lab-on-a-brane: A novel physiologically relevant planar arterial model to study transendothelial transport

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim Ismail

    The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false

  20. 76 FR 52215 - Airworthiness Directives; General Electric Company CF34-10E2A1; CF34-10E5; CF34-10E5A1; CF34-10E6...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ...; CF34-10E7; and CF34- 10E7-B Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... cracked at the attachment lugs. We are issuing this AD to prevent high-cycle fatigue cracking of the fan..., uncontained failure of the engine, and damage to the airplane. DATES: This AD is effective September 26, 2011...

  1. Effect of the chameleon scalar field on brane cosmological evolution

    NASA Astrophysics Data System (ADS)

    Bisabr, Y.; Ahmadi, F.

    2017-11-01

    We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.

  2. On the effective field theory of intersecting D3-branes

    NASA Astrophysics Data System (ADS)

    Abbaspur, Reza

    2018-05-01

    We study the effective field theory of two intersecting D3-branes with one common dimension along the lines recently proposed in ref. [1]. We introduce a systematic way of deriving the classical effective action to arbitrary orders in perturbation theory. Using a proper renormalization prescription to handle logarithmic divergencies arising at all orders in the perturbation series, we recover the first order renormalization group equation of ref. [1] plus an infinite set of higher order equations. We show the consistency of the higher order equations with the first order one and hence interpret the first order result as an exact RG flow equation in the classical theory.

  3. Sharp predictions from eternal inflation patches in D-brane inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertog, Thomas; Janssen, Oliver, E-mail: thomas.hertog@fys.kuleuven.be, E-mail: opj202@nyu.edu

    We numerically generate the six-dimensional landscape of D3-brane inflation and identify patches of eternal inflation near sufficiently flat inflection points of the potential. We show that reasonable measures that select patches of eternal inflation in the landscape yield sharp predictions for the spectral properties of primordial perturbations on observable scales. These include a scalar tilt of .936, a running of the scalar tilt −.00103, undetectably small tensors and non-Gaussianity, and no observable spatial curvature. Our results explicitly demonstrate that precision cosmology probes the combination of the statistical properties of the string landscape and the measure implied by the universe's quantummore » state.« less

  4. G. E. M. Jauncey and the Compton Effect

    NASA Astrophysics Data System (ADS)

    Jenkin, John

    In late 1922 Arthur Holly Compton (1892-1962) discovered that an X-ray quantum of radiation undergoes a discrete change in wavelength when it experiences a billiard-ball collision with a single atomic electron, a phenomenon that became known as the Compton effect and for which he shared the Nobel Prize in Physics for 1927. But for more than five years before he made his discovery, Compton had analyzed X-ray scattering in terms of classical electrodynamics. I suggest that his colleague at Washington University in St. Louis, G. E. M. Jauncey (1888-1947), helped materially to persuade him to embrace the quantum interpretation of his X-ray scattering experiments.

  5. Constraining the cosmology of the phantom brane using distance measures

    NASA Astrophysics Data System (ADS)

    Alam, Ujjaini; Bag, Satadru; Sahni, Varun

    2017-01-01

    The phantom brane has several important distinctive features: (i) Its equation of state is phantomlike, but there is no future "big rip" singularity, and (ii) the effective cosmological constant on the brane is dynamically screened, because of which the expansion rate is smaller than that in Λ CDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures such as type-Ia supernovae (SNeIa), baryon acoustic oscillations (BAO), and the compressed cosmic microwave background (CMB) data. We find that the simplest braneworld models provide a good fit to the data. For instance, BAO +SNeIa data can be accommodated by the braneworld for a large region in parameter space 0 ≤Ωℓ≲0.3 at 1 σ . The Hubble parameter can be as high as H0≲78 km s-1 Mpc-1 , and the effective equation of state at present can show phantomlike behavior with w0≲-1.2 at 1 σ . We note a correlation between H0 and w0, with higher values of H0 leading to a lower, and more phantomlike, value of w0. Inclusion of CMB data provides tighter constraints Ωℓ≲0.1 . (Here Ωℓ encodes the ratio of the five- and four-dimensional Planck mass.) The Hubble parameter in this case is more tightly constrained to H0≲71 km s-1 Mpc-1 , and the effective equation of state to w0≲-1.1 . Interestingly, we find that the Universe is allowed to be closed or open, with -0.5 ≲Ωκ≲0.5 , even on including the compressed CMB data. There appears to be some tension in the low and high-z BAO data which may either be resolved by future data, or act as a pointer to interesting new cosmology.

  6. Complex marginal deformations of D3-brane geometries, their Penrose limits and giant gravitons

    NASA Astrophysics Data System (ADS)

    Avramis, Spyros D.; Sfetsos, Konstadinos; Zoakos, Dimitrios

    2007-12-01

    We apply the Lunin-Maldacena construction of gravity duals to β-deformed gauge theories to a class of type IIB backgrounds with U(1 global symmetry, which include the multicenter D3-brane backgrounds dual to the Coulomb branch of N=4 super-Yang-Mills and the rotating D3-brane backgrounds dual to the theory at finite temperature and chemical potential. After a general discussion, we present the full form of the deformed metrics for three special cases, which can be used for the study of various aspects of the marginally-deformed gauge theories. We also construct the Penrose limits of the solutions dual to the Coulomb branch along a certain set of geodesics and, for the resulting PP-wave metrics, we examine the effect of β-deformations on the giant graviton states. We find that giant gravitons exist only up to a critical value of the σ-deformation parameter, are not degenerate in energy with the point graviton, and remain perturbatively stable. Finally, we probe the σ-deformed multicenter solutions by examining the static heavy-quark potential by means of Wilson loops. We find situations that give rise to complete screening as well as linear confinement, with the latter arising is an intriguing way reminiscent of phase transitions in statistical systems.

  7. The point of E 8 in F-theory GUTs

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.; Tavanfar, Alireza; Vafa, Cumrun

    2010-08-01

    We show that in F-theory GUTs, a natural explanation of flavor hierarchies in the quark and lepton sector requires a single point of E 8 enhancement in the internal geometry, from which all Yukawa couplings originate. The monodromy group acting on the seven-brane configuration plays a key role in this analysis. Moreover, the E 8 structure automatically leads to the existence of the additional fields and interactions needed for minimal gauge mediated supersymmetry breaking, and almost nothing else. Surprisingly, we find that in all but one Dirac neutrino scenario the messenger fields in the gauge mediated supersymmetry breaking sector transform as vector-like pairs in the 10 oplus overline {10} of SU(5). We also classify dark matter candidates available from this enhancement point, and rule out both annihilating and decaying dark matter scenarios as explanations for the recent experiments PAMELA, ATIC and FERMI. In F-theory GUT models, a 10-100 MeV mass gravitino remains as the prime candidate for dark matter, thus suggesting an astrophysical origin for recent experimental signals.

  8. Entanglement asymmetry for boosted black branes and the bound

    NASA Astrophysics Data System (ADS)

    Mishra, Rohit; Singh, Harvendra

    2017-06-01

    We study the effects of asymmetry in the entanglement thermodynamics of CFT subsystems. It is found that “boosted” Dp-brane backgrounds give rise to the first law of the entanglement thermodynamics where the CFT pressure asymmetry plays a decisive role in the entanglement. Two different strip like subsystems, one parallel to the boost and the other perpendicular, are studied in the perturbative regime Tthermal ≪ TE. We mainly seek to quantify this entanglement asymmetry as a ratio of the first-order entanglement entropies of the excitations. We discuss the AdS-wave backgrounds at zero temperature having maximum asymmetry from where a bound on entanglement asymmetry is obtained. The entanglement asymmetry reduces as we switch on finite temperature in the CFT while it is maximum at zero temperature.

  9. From the currency rate quotations onto strings and brane world scenarios

    NASA Astrophysics Data System (ADS)

    Horváth, D.; Pincak, R.

    2012-11-01

    In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.

  10. Black hole formation due to collapsing dark matter in a presence of dark energy in the brane-world scenario

    NASA Astrophysics Data System (ADS)

    Shah, Hasrat Hussain

    In the last three to four decades, various programs have been studied in order to investigate the final fate of gravitational collapse of massive astronomical objects. In the theoretical context, Black Holes (BHs) are the consequence of final stage of the gravitational collapse. In this work, we investigated the gravitational collapse process of a spherically symmetric star constituted of dark matter (DM), ρM, and Dark Energy (DE), ρ in the context of the brane-world scenario. In our model, we discussed the anisotropy of the pressure in a fluid with Equation of State (EoS) pt = kρ and pr = lρ, (l + 2k < ‑1). We briefly discussed various cases of gravitational collapse and it is found that BH can be formed by the gravitational collapse in brane-world regime while in some cases there is only a naked singularity at their end state.

  11. 76 FR 27282 - Airworthiness Directives; General Electric Company CF34-10E2A1; CF34-10E5, CF34-10E5A1; CF34-10E6...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... methods: Federal eRulemaking Portal: Go to http://www.regulations.gov . Follow the instructions for... Investigation of a General Electric Company (GE) CF34-10E turbofan engine experiencing high fan frame vibrations... likely to exist or develop in other products of the same type design. Proposed AD Requirements This...

  12. Axionic black branes in the k -essence sector of the Horndeski model

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Hassaine, Mokhtar; Oliva, Julio; Rinaldi, Massimiliano

    2017-12-01

    We construct new black brane solutions in the context of Horndeski gravity, in particular, in its K-essence sector. These models are supported by axion scalar fields that depend only on the horizon coordinates. The dynamics of these fields is determined by a K-essence term that includes the standard kinetic term X and a correction of the form Xk. We find both neutral and charged exact and analytic solutions in D -dimensions, which are asymptotically anti-de Sitter. Then, we describe in detail the thermodynamical properties of the four-dimensional solutions and we compute the dual holographic DC conductivity.

  13. Solitons on Noncommutative Torus as Elliptic Calogero-Gaudin Models, Branes and Laughlin Wave Functions

    NASA Astrophysics Data System (ADS)

    Hou, Bo-Yu; Peng, Dan-Tao; Shi, Kang-Jie; Yue, Rui-Hong

    For the noncommutative torus T, in the case of the noncommutative parameter θ = (Z)/(n), we construct the basis of Hilbert space Hn in terms of θ functions of the positions zi of n solitons. The wrapping around the torus generates the algebra An, which is the Zn × Zn Heisenberg group on θ functions. We find the generators g of a local elliptic su(n), which transform covariantly by the global gauge transformation of An. By acting on Hn we establish the isomorphism of An and g. We embed this g into the L-matrix of the elliptic Gaudin and Calogero-Moser models to give the dynamics. The moment map of this twisted cotangent sunT) bundle is matched to the D-equation with the Fayet-Illiopoulos source term, so the dynamics of the noncommutative solitons become that of the brane. The geometric configuration (k, u) of the spectral curve det|L(u) - k| = 0 describes the brane configuration, with the dynamical variables zi of the noncommutative solitons as the moduli T⊗ n/Sn. Furthermore, in the noncommutative Chern-Simons theory for the quantum Hall effect, the constrain equation with quasiparticle source is identified also with the moment map equation of the noncommutative sunT cotangent bundle with marked points. The eigenfunction of the Gaudin differential L-operators as the Laughlin wave function is solved by Bethe ansatz.

  14. Algorithmic universality in F-theory compactifications

    NASA Astrophysics Data System (ADS)

    Halverson, James; Long, Cody; Sung, Benjamin

    2017-12-01

    We study universality of geometric gauge sectors in the string landscape in the context of F-theory compactifications. A finite time construction algorithm is presented for 4/3 ×2.96 ×10755 F-theory geometries that are connected by a network of topological transitions in a connected moduli space. High probability geometric assumptions uncover universal structures in the ensemble without explicitly constructing it. For example, non-Higgsable clusters of seven-branes with intricate gauge sectors occur with a probability above 1 - 1.01 ×10-755 , and the geometric gauge group rank is above 160 with probability 0.999995. In the latter case there are at least 10 E8 factors, the structure of which fixes the gauge groups on certain nearby seven-branes. Visible sectors may arise from E6 or S U (3 ) seven-branes, which occur in certain random samples with probability ≃1 /200 .

  15. 46 CFR 10.412 - Distance and e-learning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Distance and e-learning. 10.412 Section 10.412 Shipping... CREDENTIAL Training Courses and Programs § 10.412 Distance and e-learning. The Coast Guard may allow the training of mariners by means of distance learning and e-learning in accordance with the standards of...

  16. Ramond and Neveu-Schwarz paraspinning strings in presence of D-branes

    NASA Astrophysics Data System (ADS)

    Hamam, D.; Belaloui, N.

    2018-03-01

    We investigate the theory of an open parafermionic string between two parallel Dp-, Dq-branes in Ramond and Neveu-Schwarz sectors. Trilinear commutation relations between the string variables are postulated and the corresponding ones in terms of modes are derived. The analysis of the spectrum shows that one can again have a free tachyon Neveu-Schwarz model for some values of the order of the paraquantization associated to some values of p and q. The consistency of this model requires the calculation of the partition function and its confrontation with the results of the degeneracies. A perfect agreement between the two results is obtained and the closure of the Virasoro superalgebra is confirmed.

  17. Anisotropy of cosmic rays of energy 10 (15) eV to 10 (17) eV observed at Akeno

    NASA Technical Reports Server (NTRS)

    Kifune, T.; Nishijima, K.; Hara, T.; Hatano, Y.; Hayashida, N.; Honda, M.; Kamata, K.; Matsubara, Y.; Nagano, M.; Tanahashi, G.

    1985-01-01

    Anisotropy of cosmic rays is studied with extensive air showers (EAS) data by muon trigger. The present results support those obtained by electron trigger which suggest the significant anisotropy of second harmonics with phase around 100 deg in right ascension for showers of 10 to the 16th power - 10 to the 17th power eV, and predominant arrival direction of 230 deg in right ascension for muon-rich showers. It seems that the phase of the first harmonics in the energy range below 10 to the 11th power eV is about 300 deg in right ascension and the second harmonics near 6 x 10 to the 14th power eV is statistically significant with an amplitude of 0.39 + or - 0.13% in direction of 83 + or - 10 deg in right ascension.

  18. Estimation of composition of cosmic rays with E sub zero approximately equals 10(17) - 10(18) eV

    NASA Technical Reports Server (NTRS)

    Glushkov, A. V.; Efimov, N. N.; Efremov, N. N.; Makarov, I. T.; Pravdin, M. I.; Dedenko, L. I.

    1985-01-01

    Fluctuations of the shower maximum depth obtained from analysis of electron and muon fluctuations and the extensive air showers (EAS) Cerenkov light on the Yakutsk array data and data of other arrays are considered. On the basis of these the estimation of composition of primaries with E sub 0 = 5.10 to the 17th power eV is received. Estimation of gamma-quanta flux with E sub 0 10 to the 17th power eV is given on the poor-muon showers.

  19. Identification of market trends with string and D2-brane maps

    NASA Astrophysics Data System (ADS)

    Bartoš, Erik; Pinčák, Richard

    2017-08-01

    The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.

  20. On classical de Sitter and Minkowski solutions with intersecting branes

    NASA Astrophysics Data System (ADS)

    Andriot, David

    2018-03-01

    Motivated by the connection of string theory to cosmology or particle physics, we study solutions of type II supergravities having a four-dimensional de Sitter or Minkowski space-time, with intersecting D p -branes and orientifold O p -planes. Only few such solutions are known, and we aim at a better characterisation. Modulo a few restrictions, we prove that there exists no classical de Sitter solution for any combination of D 3/ O 3 and D 7/ O 7, while we derive interesting constraints for intersecting D 5/ O 5 or D 6/ O 6, or combinations of D 4/ O 4 and D 8/ O 8. Concerning classical Minkowski solutions, we understand some typical features, and propose a solution ansatz. Overall, a central information appears to be the way intersecting D p / O p overlap each other, a point we focus on.

  1. Coenzyme Q10 and vitamin E deficiency in Friedreich's ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy.

    PubMed

    Cooper, J M; Korlipara, L V P; Hart, P E; Bradley, J L; Schapira, A H V

    2008-12-01

    A pilot study of high dose coenzyme Q(10) (CoQ(10))/vitamin E therapy in Friedreich's ataxia (FRDA) patients resulted in significant clinical improvements in most patients. This study investigated the potential for this treatment to modify clinical progression in FRDA in a randomized double blind trial. Fifty FRDA patients were randomly divided into high or low dose CoQ(10)/ vitamin E groups. The change in International Co-operative Ataxia Ratings Scale (ICARS) was assessed over 2 years as the primary end-point. A post hoc analysis was made using cross-sectional data. At baseline serum CoQ(10) and vitamin E levels were significantly decreased in the FRDA patients (P < 0.001). During the trial CoQ(10) and vitamin E levels significantly increased in both groups (P < 0.01). The primary and secondary end-points were not significantly different between the therapy groups. When compared to cross-sectional data 49% of all patients demonstrated improved ICARS scores. This responder group had significantly lower baseline serum CoQ(10) levels. A high proportion of FRDA patients have a decreased serum CoQ(10) level which was the best predictor of a positive clinical response to CoQ(10)/vitamin E therapy. Low and high dose CoQ(10)/vitamin E therapies were equally effective in improving ICARS scores.

  2. Emergent dimensions and branes from large-N confinement

    NASA Astrophysics Data System (ADS)

    Cherman, Aleksey; Poppitz, Erich

    2016-12-01

    N =1 S U (N ) super-Yang-Mills theory on R3×S1 is believed to have a smooth dependence on the circle size L . Making L small leads to calculable nonperturbative color confinement, mass gap, and string tensions. For finite N , the small-L low-energy dynamics is described by a three-dimensional effective theory. The large-N limit, however, reveals surprises: the infrared dual description is in terms of a theory with an emergent fourth dimension, curiously reminiscent of T-duality in string theory. Here, however, the emergent dimension is a lattice, with momenta related to the S1-winding of the gauge field holonomy, which takes values in ZN. Furthermore, the low-energy description is given by a nontrivial gapless theory, with a space-like z =2 Lifshitz scale invariance and operators that pick up anomalous dimensions as L is increased. Supersymmetry-breaking deformations leave the long-distance theory scale-invariant, but change the Lifshitz scaling exponent to z =1 , and lead to an emergent Lorentz symmetry at small L . Adding a small number of fundamental fermion fields leads to matter localized on three-dimensional branes in the emergent four-dimensional theory.

  3. Reflections on the Hyperbolic Plane

    NASA Astrophysics Data System (ADS)

    Lecian, Orchidea Maria

    2013-12-01

    The most general solution to the Einstein equations in 4 = 3 + 1 dimensions in the asymptotic limit close to the cosmological singularity under the BKL (Belinskii-Khalatnikov-Lifshitz) hypothesis can be visualized by the behavior of a billiard ball in a triangular domain on the Upper Poincaré Half Plane (UPHP). The billiard system (named "big billiard") can be schematized by dividing the successions of trajectories according to Poincaré return map on the sides of the billiard table, according to the paradigms implemented by the BKL investigation and by the CB-LKSKS (Chernoff-Barrow-Lifshitz-Khalatnikov-Sinai-Khanin-Shchur) one. Different maps are obtained, according to different symmetry-quotienting mechanisms used to analyze the dynamics. In the inhomogeneous case, new structures have been uncovered, such that, in this framework, the billiard table (named "small billiard") consists of 1/6 of the previous one. The connections between the symmetry-quotienting mechanisms are further investigated on the UPHP. The relation between the complete billiard and the small billiard are also further explained according to the role of Weyl reflections. The quantum properties of the system are sketched as well, and the physical interpretation of the wave function is further developed. In particular, a physical interpretation for the symmetry-quotienting maps is proposed.

  4. Contractions of AdS brane algebra and superGalileon Lagrangians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamimura, Kiyoshi; Onda, Seiji

    2013-06-15

    We examine AdS Galileon Lagrangians using the method of nonlinear realization. By contractions (1) flat curvature limit, (2) non-relativistic brane algebra limit, and (3) (1) + (2) limits we obtain DBI, Newton-Hoock, and Galilean Galileons, respectively. We make clear how these Lagrangians appear as invariant 4-forms and/or pseudo-invariant Wess-Zumino (WZ) terms using Maurer-Cartan (MC) equations on the coset G/SO(3, 1). We show the equations of motion are written in terms of the MC forms only and explain why the inverse Higgs condition is obtained as the equation of motion for all cases. The supersymmetric extension is also examined using amore » supercoset SU(2, 2 Double-Vertical-Line 1)/(SO(3, 1) Multiplication-Sign U(1)) and five WZ forms are constructed. They are reduced to the corresponding five Galileon WZ forms in the bosonic limit and are candidates for supersymmetric Galileon action.« less

  5. Cosmic rays: the spectrum and chemical composition from 10{sup 10} to 10{sup 20} eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peixoto, C.J. Todero; De Souza, Vitor; Biermann, Peter L., E-mail: toderocj@usp.br, E-mail: vitor@ifsc.usp.br, E-mail: plbiermann@mpifr-bonn.mpg.de

    2015-07-01

    The production of energetic particles in the universe remains one of the great mysteries of modern science. The mechanisms of acceleration in astrophysical sources and the details about the propagation through the galactic and extragalactic media are still to be defined. In recent years, the cosmic ray flux has been measured with high precision in the energy range from 10{sup 10} to 10{sup 20.5} eV by several experiments using different techniques. In some energy ranges, it has been possible to determine the flux of individual elements (hydrogen to iron nuclei). This paper explores an astrophysical scenario in which only ourmore » Galaxy and the radio galaxy Cen A produce all particles measured on Earth in the energy range from 10{sup 10} to 10{sup 20.5} eV . Data from AMS-02, CREAM, KASCADE, KASCADE-Grande and the Pierre Auger Observatories are considered. The model developed here is compared to the total and if available to the individual particle flux of the experiments considered.The flux of each element as determined by AMS-02, CREAM, KASCADE and KASCADE-Grande and the mass sensitivity parameter X{sub max} measured by the Pierre Auger Observatory above 10 eV are also explored within the framework of the model. The transition from 10{sup 16} to 10{sup 18} eV is carefully analyzed. It is shown that the flux measured in this energy range suggest the existence of an extra component of cosmic rays yet to be understood.« less

  6. Brane SUSY breaking and the gravitino mass

    NASA Astrophysics Data System (ADS)

    Kitazawa, Noriaki

    2018-04-01

    Supergravity models with spontaneously broken supersymmetry have been widely investigated over the years, together with some notable non-linear limits. Although in these models the gravitino becomes naturally massive absorbing the degrees of freedom of a Nambu-Goldstone fermion, there are cases in which the naive counting of degrees of freedom does not apply, in particular because of the absence of explicit gravitino mass terms in unitary gauge. The corresponding models require non-trivial de Sitter-like backgrounds, and it becomes of interest to clarify the fate of their Nambu-Goldstone modes. We elaborate on the fact that these non-trivial backgrounds can accommodate, consistently, gravitino fields carrying a number of degrees of freedom that is intermediate between those of massless and massive fields in a flat spacetime. For instance, in a simple supergravity model of this type with de Sitter background, the overall degrees of freedom of gravitino are as many as for a massive spin-3/2 field in flat spacetime, while the gravitino remains massless in the sense that it undergoes null-cone propagation in the stereographic picture. On the other hand, in the ten-dimensional USp(32) Type I Sugimoto model with "brane SUSY breaking", which requires a more complicated background, the degrees of freedom of gravitino are half as many of those of a massive one, and yet it somehow behaves again as a massless one.

  7. GUT Model Hierarchies from Intersecting Branes

    NASA Astrophysics Data System (ADS)

    Kokorelis, Christos

    2002-08-01

    By employing D6-branes intersecting at angles in D = 4 type I strings, we construct the first examples of three generation string GUT models (PS-A class), that contain at low energy exactly the standard model spectrum with no extra matter and/or extra gauge group factors. They are based on the group SU(4)C × SU(2)L × SU(2)R. The models are non-supersymmetric, even though SUSY is unbroken in the bulk. Baryon number is gauged and its anomalies are cancelled through a generalized Green-Schwarz mechanism. We also discuss models (PS-B class) which at low energy have the standard model augmented by an anomaly free U(1) symmetry and show that multibrane wrappings correspond to a trivial redefinition of the surviving global U(1) at low energies. There are no colour triplet couplings to mediate proton decay and proton is stable. The models are compatible with a low string scale of energy less that 650 GeV and are directly testable at present or future accelerators as they predict the existence of light left handed weak fermion doublets at energies between 90 and 246 GeV. The neutrinos get a mass through an unconventional see-saw mechanism. The mass relation me = md at the GUT scale is recovered. Imposing supersymmetry at particular intersections generates non-zero Majorana masses for right handed neutrinos as well providing the necessary singlets needed to break the surviving anomaly free U(1), thus suggesting a gauge symmetry breaking method that can be applied in general left-right symmetric models.

  8. Composition of primary cosmic rays at energies 10(15) to approximately 10(16) eV

    NASA Technical Reports Server (NTRS)

    Amenomori, M.; Konishi, E.; Hotta, N.; Mizutani, K.; Kasahara, K.; Kobayashi, T.; Mikumo, E.; Sato, K.; Yuda, T.; Mito, I.

    1985-01-01

    The sigma epsilon gamma spectrum in 1 approx. 5 x 1000 TV observed at Mt. Fuji suggests that the flux of primary protons 10 to the 15 approx 10th eV is lower by a factor of 2 approx. 3 than a simple extrapolation from lower energies; the integral proton spectrum tends to be steeper than around to the power V and the spectral index tends to be steeper than Epsilon to the -17th power around 10 to the 14th power eV and the spectral index becomes approx. 2.0 around 10 to the 15th power eV. If the total flux of primary particles has no steepening up to approx 10 to the 15th power eV, than the fraction of primary protons to the total flux should be approx 20% in contrast to approx 45% at lower energies.

  9. Anisotropy of cosmic rays above 10(14) eV

    NASA Technical Reports Server (NTRS)

    Wdowczyk, J.; Wolfendale, A. W.

    1985-01-01

    A survey is made of the anisotropy of cosmic rays at energies above 10 to the 14th power eV. It is concluded that cosmic gamma-rays may have an effect in the range 10 to the 14 power - 10 to the 16th power eV, above which protons dominate. Evidence is presented for an excess in the general direction of the Galactic plane which grows with increasing energy until about 10 to the 19th power eV, indicating a Galactic origin for these particles. At higher energies an Extragalactic origin is indicated.

  10. Vacuum polarization effects on flat branes due to a global monopole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra de Mello, E.R.

    2006-05-15

    In this paper we analyze the vacuum polarization effects associated with a massless scalar field in the higher-dimensional spacetime. Specifically we calculate the renormalized vacuum expectation value of the square of the field, <{phi}{sup 2}(x)>{sub Ren}, induced by a global monopole in the 'braneworld' scenario. In this context the global monopole lives in a n=3-dimensional submanifold of the higher-dimensional (bulk) spacetime, and our universe is represented by a transverse flat (p-1)-dimensional brane. In order to develop this analysis we calculate the general Green function admitting that the scalar field propagates in the bulk. Also a general curvature coupling parameter betweenmore » the field and the geometry is assumed. We explicitly show that the vacuum polarization effects depend crucially on the values attributed to p. We also investigate the general structure of the renormalized vacuum expectation value of the energy-momentum tensor, {sub Ren}, for p=3.« less

  11. A realistic intersecting D6-brane model after the first LHC run

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Nanopoulos, D. V.; Raza, Shabbar; Wang, Xiao-Chuan

    2014-08-01

    With the Higgs boson mass around 125 GeV and the LHC supersymmetry search constraints, we revisit a three-family Pati-Salam model from intersecting D6-branes in Type IIA string theory on the T 6/(ℤ2 × ℤ2) orientifold which has a realistic phenomenology. We systematically scan the parameter space for μ < 0 and μ > 0, and find that the gravitino mass is generically heavier than about 2 TeV for both cases due to the Higgs mass low bound 123 GeV. In particular, we identify a region of parameter space with the electroweak fine-tuning as small as Δ EW ~ 24-32 (3-4%). In the viable parameter space which is consistent with all the current constraints, the mass ranges for gluino, the first two-generation squarks and sleptons are respectively [3, 18] TeV, [3, 16] TeV, and [2, 7] TeV. For the third-generation sfermions, the light stop satisfying 5 σ WMAP bounds via neutralino-stop coannihilation has mass from 0.5 to 1.2 TeV, and the light stau can be as light as 800 GeV. We also show various coannihilation and resonance scenarios through which the observed dark matter relic density is achieved. Interestingly, the certain portions of parameter space has excellent t- b- τ and b- τ Yukawa coupling unification. Three regions of parameter space are highlighted as well where the dominant component of the lightest neutralino is a bino, wino or higgsino. We discuss various scenarios in which such solutions may avoid recent astrophysical bounds in case if they satisfy or above observed relic density bounds. Prospects of finding higgsino-like neutralino in direct and indirect searches are also studied. And we display six tables of benchmark points depicting various interesting features of our model. Note that the lightest neutralino can be heavy up to 2.8 TeV, and there exists a natural region of parameter space from low-energy fine-tuning definition with heavy gluino and first two-generation squarks/sleptons, we point out that the 33 TeV and 100 TeV proton-proton colliders

  12. Heat conduction in a chain of colliding particles with a stiff repulsive potential

    NASA Astrophysics Data System (ADS)

    Gendelman, Oleg V.; Savin, Alexander V.

    2016-11-01

    One-dimensional billiards, i.e., a chain of colliding particles with equal masses, is a well-known example of a completely integrable system. Billiards with different particle masses is generically not integrable, but it still exhibits divergence of a heat conduction coefficient (HCC) in the thermodynamic limit. Traditional billiards models imply instantaneous (zero-time) collisions between the particles. We relax this condition of instantaneous impact and consider heat transport in a chain of stiff colliding particles with the power-law potential of the nearest-neighbor interaction. The instantaneous collisions correspond to the limit of infinite power in the interaction potential; for finite powers, the interactions take nonzero time. This modification of the model leads to a profound physical consequence—the probability of multiple (in particular triple) -particle collisions becomes nonzero. Contrary to the integrable billiards of equal particles, the modified model exhibits saturation of the heat conduction coefficient for a large system size. Moreover, the identification of scattering events with triple-particle collisions leads to a simple definition of the characteristic mean free path and a kinetic description of heat transport. This approach allows us to predict both the temperature and density dependencies for the HCC limit values. The latter dependence is quite counterintuitive—the HCC is inversely proportional to the particle density in the chain. Both predictions are confirmed by direct numerical simulations.

  13. Physicochemical and biological characterization of 1E10 Anti-Idiotype vaccine

    PubMed Central

    2011-01-01

    Background 1E10 monoclonal antibody is a murine anti-idiotypic antibody that mimics N-glycolyl-GM3 gangliosides. This antibody has been tested as an anti-idiotypic cancer vaccine, adjuvated in Al(OH)3, in several clinical trials for melanoma, breast, and lung cancer. During early clinical development this mAb was obtained in vivo from mice ascites fluid. Currently, the production process of 1E10 is being transferred from the in vivo to a bioreactor-based method. Results Here, we present a comprehensive molecular and immunological characterization of 1E10 produced by the two different production processes in order to determine the impact of the manufacturing process in vaccine performance. We observed differences in glycosylation pattern, charge heterogeneity and structural stability between in vivo-produced 1E10 and bioreactor-obtained 1E10. Interestingly, these modifications had no significant impact on the immune responses elicited in two different animal models. Conclusions Changes in 1E10 primary structure like glycosylation; asparagine deamidation and oxidation affected 1E10 structural stability but did not affect the immune response elicited in mice and chickens when compared to 1E10 produced in mice. PMID:22108317

  14. Monte Carlo simulation of EAS generated by 10(14) - 10(16) eV protons

    NASA Technical Reports Server (NTRS)

    Fenyves, E. J.; Yunn, B. C.; Stanev, T.

    1985-01-01

    Detailed Monte Carlo simulations of extensive air showers to be detected by the Homestake Surface Underground Telescope and other similar detectors located at sea level and mountain altitudes have been performed for 10 to the 14th power to 10 to the 16th power eV primary energies. The results of these Monte Carlo calculations will provide an opportunity to compare the experimental data with different models for the composition and spectra of primaries and for the development of air showers. The results obtained for extensive air showers generated by 10 to the 14th power to 10 to the 16th power eV primary protons are reported.

  15. (2,2) and (0,4) supersymmetric boundary conditions in 3d N =4 theories and type IIB branes

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Okazaki, Tadashi

    2017-10-01

    The half-BPS boundary conditions preserving N =(2 ,2 ) and N =(0 ,4 ) supersymmetry in 3d N =4 supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Nahm-like equations arise in the vector multiplet BPS boundary condition preserving N =(0 ,4 ) supersymmetry, and Robin-type boundary conditions appear for the hypermultiplet coupled to the vector multiplet when N =(2 ,2 ) supersymmetry is preserved. The half-BPS boundary conditions are realized in the brane configurations of type IIB string theory.

  16. Scattering by a boundary with complex structure.

    PubMed

    Naplekov, D M; Tur, A V; Yanovsky, V V

    2013-04-01

    The distribution of escape times is usually studied in open billiards theory. In this work, we will concentrate on another important question: The distribution of outgoing rays by exit directions, which we refer to as billiard's indicatrix. It can be obtained analytically and consists of two parts: the symmetric diffuse part and the asymmetric directed part. The criterion for the separation of the indicatrix into these two parts is established. The asymmetry of the directed part of the indicatrix and the influence of the billiard's borders on it is investigated. We also propose a method of the creation of a matte surface model using open billiards with a fully diffuse indicatrix.

  17. Configurational entropy as a tool to select a physical thick brane model

    NASA Astrophysics Data System (ADS)

    Chinaglia, M.; Cruz, W. T.; Correa, R. A. C.; de Paula, W.; Moraes, P. H. R. S.

    2018-04-01

    We analize braneworld scenarios via a configurational entropy (CE) formalism. Braneworld scenarios have drawn attention mainly due to the fact that they can explain the hierarchy problem and unify the fundamental forces through a symmetry breaking procedure. Those scenarios localize matter in a (3 + 1) hypersurface, the brane, which is inserted in a higher dimensional space, the bulk. Novel analytical braneworld models, in which the warp factor depends on a free parameter n, were recently released in the literature. In this article we will provide a way to constrain this parameter through the relation between information and dynamics of a system described by the CE. We demonstrate that in some cases the CE is an important tool in order to provide the most probable physical system among all the possibilities. In addition, we show that the highest CE is correlated to a tachyonic sector of the configuration, where the solutions for the corresponding model are dynamically unstable.

  18. Crystal Structure of Thioesterase SgcE10 Supporting Common Polyene Intermediates in 9- and 10-Membered Enediyne Core Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annaval, Thibault; Rudolf, Jeffrey D.; Chang, Chin-Yuan

    Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Though the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. Here, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesismore » of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/β hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, our findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.« less

  19. Crystal Structure of Thioesterase SgcE10 Supporting Common Polyene Intermediates in 9- and 10-Membered Enediyne Core Biosynthesis

    DOE PAGES

    Annaval, Thibault; Rudolf, Jeffrey D.; Chang, Chin-Yuan; ...

    2017-08-30

    Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Though the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. Here, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesismore » of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/β hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, our findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.« less

  20. 10 CFR Appendixes E-M to Part 52 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false [Reserved] E Appendixes E-M to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Appendixes E-M to Part 52 [Reserved] ...

  1. 10 CFR Appendixes E-M to Part 52 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false [Reserved] E Appendixes E-M to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Appendixes E-M to Part 52 [Reserved] ...

  2. Dengue Type-2 Virus Envelope Protein Made Using Recombinant Baculovirus Protects Mice Against Virus Challenge

    DTIC Science & Technology

    1994-01-01

    Spodoptera frugiperda (Sf9) cells, approximately I mg of recombinant E antigen was made per 10’ cells. This antigen reacted with polyclonal, anti...entry by fusion at acidic pH with host cell mem- in Spodoptera frugiperda (Sf9) cells brane.Ř The E antigen contains both T and B cell epitopes that

  3. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2017-02-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  4. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  5. Quasinormal modes of charged magnetic black branes & chiral magnetic transport

    NASA Astrophysics Data System (ADS)

    Ammon, Martin; Kaminski, Matthias; Koirala, Roshan; Leiber, Julian; Wu, Jackson

    2017-04-01

    We compute quasinormal modes (QNMs) of the metric and gauge field perturbations about black branes electrically and magnetically charged in the Einstein-Maxwell-Chern-Simons theory. By the gauge/gravity correspondence, this theory is dual to a particular class of field theories with a chiral anomaly, in a thermal charged plasma state subjected to a constant external magnetic field, B. The QNMs are dual to the poles of the two-point functions of the energy-momentum and axial current operators, and they encode information about the dissipation and transport of charges in the plasma. Complementary to the gravity calculation, we work out the hydrodynamic description of the dual field theory in the presence of a chiral anomaly, and a constant external B. We find good agreement with the weak field hydrodynamics, which can extend beyond the weak B regime into intermediate regimes. Furthermore, we provide results that can be tested against thermodynamics and hydrodynamics in the strong B regime. We find QNMs exhibiting Landau level behavior, which become long-lived at large B if the anomaly coefficient exceeds a critical magnitude. Chiral transport is analyzed beyond the hydrodynamic approximation for the five (formerly) hydrodynamic modes, including a chiral magnetic wave.

  6. Four-qubit systems and dyonic black Hole-Black branes in superstring theory

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.

    Using dyonic solutions in the type IIA superstring theory on Calabi-Yau (CY) manifolds, we reconsider the study of black objects and quantum information theory using string/string duality in six dimensions. Concretely, we relate four-qubits with a stringy quaternionic moduli space of type IIA compactification associated with a dyonic black solution formed by black holes (BHs) and black 2-branes (B2B) carrying eight electric charges and eight magnetic charges. This connection is made by associating the cohomology classes of the heterotic superstring on T4 to four-qubit states. These states are interpreted in terms of such dyonic charges resulting from the quaternionic symmetric space SO(4,4) SO(4)×SO(4) corresponding to a N = 4 sigma model superpotential in two dimensions. The superpotential is considered as a functional depending on four quaternionic fields mapped to a class of Clifford algebras denoted as Cl0,4. A link between such an algebra and the cohomology classes of T4 in heterotic superstring theory is also given.

  7. Energy-momentum tensor of bouncing gravitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iofa, Mikhail Z.

    2015-07-14

    In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions formore » contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature T{sub R}∼10{sup 6} GeV we estimate the scale of extra dimension μ to be of order 10{sup −9} GeV (μ{sup −1}∼10{sup −5} cm)« less

  8. Energy-momentum tensor of bouncing gravitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iofa, Mikhail Z., E-mail: iofa@theory.sinp.msu.ru

    2015-07-01

    In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions formore » contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature T{sub R}∼ 10{sup 6} GeV we estimate the scale of extra dimension μ to be of order 10{sup −9} GeV (μ{sup −1}∼ 10{sup −5} cm)« less

  9. Comments on new multiple-brane solutions based on Hata-Kojita duality in open string field theory

    NASA Astrophysics Data System (ADS)

    Masuda, Toru

    2014-05-01

    Recently, Hata and Kojita proposed a new energy formula for a class of solutions in Witten's open string field theory based on a novel symmetry of correlation functions they found. Their energy formula can be regarded as a generalization of the conventional energy formula by Murata and Schnabl. Following their proposal, we investigate their new ansatz for the classical solution representing double D-branes. We present a regularized definition of this solution and show that the solution satisfies the equation of motion when it is contracted with the solution itself and when it is contracted with any states in the Fock space. However, the Ellwood invariant and the boundary state of the solution are the same as those for the perturbative vacuum. This result disagrees with an expectation from the Ellwood conjecture.

  10. jsc2014e049621

    NASA Image and Video Library

    2014-05-21

    11-47-48: At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 40/41 backup crewmembers Terry Virts of NASA (left) and Samantha Cristoforetti of the European Space Agency (right) try their hand at a game of billiards May 21 as they head into the homestretch of pre-launch training. Virts, Cristoforetti and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) are backing up the prime crew, Flight Engineer Alexander Gerst of the European Space Agency, Soyuz Commander Max Suraev of Roscosmos and NASA Flight Engineer Reid Wiseman, who will launch on May 29, Kazakh time, on the Soyuz TMA-13M spacecraft from the Baikonur Cosmodrome for a 5 ½ month mission on the International Space Station. NASA/Victor Zelentsov

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanetti, F.M.; Vicentini, E.; Luz, M.G.E. da

    It was proposed about a decade ago [M.G.E. da Luz, A.S. Lupu-Sax, E.J. Heller, Phys. Rev. E 56 (1997) 2496] a simple approach for obtaining scattering states for arbitrary disconnected open or closed boundaries C, with different boundary conditions. Since then, the so called boundary wall method has been successfully used to solve different open boundary problems. However, its applicability to closed shapes has not been fully explored. In this contribution we present a complete account of how to use the boundary wall to the case of billiard systems. We review the general ideas and particularize them to single connectedmore » closed shapes, assuming Dirichlet boundary conditions for the C's. We discuss the mathematical aspects that lead to both the inside and outside solutions. We also present a different way to calculate the exterior scattering S matrix. From it, we revisit the important inside-outside duality for billiards. Finally, we give some numerical examples, illustrating the efficiency and flexibility of the method to treat this type of problem.« less

  12. Properties of 10 (18)-10 (19)eV EAS at far core distance

    NASA Technical Reports Server (NTRS)

    Teshima, M.; Nagano, M.; Hara, T.; Hatano, Y.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.; Matsubara, Y.

    1985-01-01

    The properties of 10 to the 18th power - 10 to the 19th power eV EAS showers such as the electron lateral distribution, the muon lateral distribution ( 1Gev), the ratio of muon density to a electron density, the shower front structure and the transition effects in scintillator of 5cm thickness are investigated with the Akeno 4 sq km/20sq km array at far core distances between 500m and 3000m. The fluctuation of densities and arrival time increase rapidly at core distances greater than 2km.

  13. 10 CFR Appendix E to Part 20 - Nationally Tracked Source Thresholds

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Nationally Tracked Source Thresholds E Appendix E to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. E Appendix E to Part 20— Nationally Tracked Source Thresholds The Terabecquerel (TBq) values are the...

  14. 10 CFR Appendix E to Part 20 - Nationally Tracked Source Thresholds

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Nationally Tracked Source Thresholds E Appendix E to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. E Appendix E to Part 20— Nationally Tracked Source Thresholds The Terabecquerel (TBq) values are the...

  15. 10 CFR Appendix E to Part 20 - Nationally Tracked Source Thresholds

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Nationally Tracked Source Thresholds E Appendix E to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. E Appendix E to Part 20— Nationally Tracked Source Thresholds The Terabecquerel (TBq) values are the...

  16. 10 CFR Appendix E to Part 20 - Nationally Tracked Source Thresholds

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Nationally Tracked Source Thresholds E Appendix E to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. E Appendix E to Part 20— Nationally Tracked Source Thresholds The Terabecquerel (TBq) values are the...

  17. 10 CFR Appendix E to Part 20 - Nationally Tracked Source Thresholds

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Nationally Tracked Source Thresholds E Appendix E to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. E Appendix E to Part 20— Nationally Tracked Source Thresholds The Terabecquerel (TBq) values are the...

  18. Signatures of chaos in the Brillouin zone.

    PubMed

    Barr, Aaron; Barr, Ariel; Porter, Max D; Reichl, Linda E

    2017-10-01

    When the classical dynamics of a particle in a finite two-dimensional billiard undergoes a transition to chaos, the quantum dynamics of the particle also shows manifestations of chaos in the form of scarring of wave functions and changes in energy level spacing distributions. If we "tile" an infinite plane with such billiards, we find that the Bloch states on the lattice undergo avoided crossings, energy level spacing statistics change from Poisson-like to Wigner-like, and energy sheets of the Brillouin zone begin to "mix" as the classical dynamics of the billiard changes from regular to chaotic behavior.

  19. A Deconstruction Lattice Description of the D1/D5 Brane World-Volume Gauge Theory

    DOE PAGES

    Giedt, Joel

    2011-01-01

    I genermore » alize the deconstruction lattice formulation of Endres and Kaplan to two-dimensional super-QCD with eight supercharges, denoted by (4,4), and bifundamental matter. I specialize to a particularly interesting (4,4) gauge theory, with gauge group U ( N c ) × U ( N f ) , and U ( N f ) being weakly gauged. It describes the infrared limit of the D1/D5 brane system, which has been studied extensively as an example of the AdS 3 /CFT 2 correspondence. The construction here preserves two supercharges exactly and has a lattice structure quite similar to that which has previously appeared in the deconstruction approach, that is, site, link, and diagonal fields with both the Bose and Fermi statistics. I remark on possible applications of the lattice theory that would test the AdS 3 /CFT 2 correspondence, particularly one that would exploit the recent worldsheet instanton analysis of Chen and Tong.« less

  20. Polyphenon E 10% ointment: in immunocompetent adults with external genital and perianal warts.

    PubMed

    Hoy, Sheridan M

    2012-08-01

    Polyphenon E 10% ointment, which contains a mixture of green tea catechins, is indicated for the treatment of external genital and perianal warts (Condylomata acuminata) in immunocompetent patients aged ≥18 years. In two double-blind, multinational studies in adults with external genital and perianal warts, polyphenon E 10% ointment for up to 16 weeks was significantly more effective than vehicle with regard to the complete clearance of all warts (i.e. those at baseline and newly appearing during treatment) [primary endpoint]. In gender subgroup analyses, polyphenon E 10% ointment was more effective than vehicle in both men and women in one of two individual studies, and in pooled data from both studies. Polyphenon E 10% ointment was also significantly more effective than vehicle with regard to several secondary endpoints, including the complete clearance of baseline warts and partial clearance of at least 50% of all warts in both studies. Rates of recurrence of any warts or development of new warts were low (<9%) in both treatment arms during a 12-week follow-up period in both studies. Polyphenon E 10% ointment was generally well tolerated in adults with external genital and perianal warts. According to pooled data from the two clinical studies, the majority of adverse events associated with polyphenon E 10% ointment involved application site and local skin reactions at the treatment site.

  1. A discrete classical space-time could require 6 extra-dimensions

    NASA Astrophysics Data System (ADS)

    Guillemant, Philippe; Medale, Marc; Abid, Cherifa

    2018-01-01

    We consider a discrete space-time in which conservation laws are computed in such a way that the density of information is kept bounded. We use a 2D billiard as a toy model to compute the uncertainty propagation in ball positions after every shock and the corresponding loss of phase information. Our main result is the computation of a critical time step above which billiard calculations are no longer deterministic, meaning that a multiverse of distinct billiard histories begins to appear, caused by the lack of information. Then, we highlight unexpected properties of this critical time step and the subsequent exponential evolution of the number of histories with time, to observe that after certain duration all billiard states could become possible final states, independent of initial conditions. We conclude that if our space-time is really a discrete one, one would need to introduce extra-dimensions in order to provide supplementary constraints that specify which history should be played.

  2. Vertex operator algebras of Argyres-Douglas theories from M5-branes

    NASA Astrophysics Data System (ADS)

    Song, Jaewon; Xie, Dan; Yan, Wenbin

    2017-12-01

    We study aspects of the vertex operator algebra (VOA) corresponding to Argyres-Douglas (AD) theories engineered using the 6d N=(2, 0) theory of type J on a punctured sphere. We denote the AD theories as ( J b [ k], Y), where J b [ k] and Y represent an irregular and a regular singularity respectively. We restrict to the `minimal' case where J b [ k] has no associated mass parameters, and the theory does not admit any exactly marginal deformations. The VOA corresponding to the AD theory is conjectured to be the W-algebra W^{k_{2d}}(J, Y ) , where {k}_{2d}=-h+b/b+k with h being the dual Coxeter number of J. We verify this conjecture by showing that the Schur index of the AD theory is identical to the vacuum character of the corresponding VOA, and the Hall-Littlewood index computes the Hilbert series of the Higgs branch. We also find that the Schur and Hall-Littlewood index for the AD theory can be written in a simple closed form for b = h. We also test the conjecture that the associated variety of such VOA is identical to the Higgs branch. The M5-brane construction of these theories and the corresponding TQFT structure of the index play a crucial role in our computations.

  3. NETGEAR ProSAFE M4300 Series 10-GbE Switch Tutorial

    DTIC Science & Technology

    2016-11-01

    ARL-TN-0803 ● NOV 2016 US Army Research Laboratory NETGEAR ProSAFE M4300 Series 10-GbE Switch Tutorial by Benjamin Kenawell...Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other...NETGEAR ProSAFE M4300 Series 10-GbE Switch Tutorial by Benjamin Kenawell Science and Engineering Apprentice Program (SEAP), Adelphi, MD Brian

  4. Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV. [100 eV to 10 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.C.; Reynaud, G.W.; Botto, D.J.

    1979-05-01

    An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references. (JFP)

  5. Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems

    NASA Astrophysics Data System (ADS)

    Bäcker, A.

    Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.

  6. From Planck Constant to Isomorphicity Through Justice Paradox

    NASA Astrophysics Data System (ADS)

    Hidajatullah-Maksoed, Widastra

    2015-05-01

    Robert E. Scott in his ``Chaos theory and the Justice Paradox'', William & Mary Law Review, v 35, I 1, 329 (1993) wrotes''...As we approach the 21-st Century, the signs of social disarray are everywhere. Social critics observe the breakdown of core structure - the nuclear family, schools, neighborhoods & political groups''. For completions for ``soliton'' first coined by Morikazu TODA, comparing the ``Soliton on Scott-Russell aqueduct on the Union Canal near Heriot-WATT University, July 12, 1995 to Michael Stock works: ``a Fine WATT-Balance: Determination of Planck constant & Redefinition of Kilogram'', January 2011, we can concludes the inherencies between `chaos' & `soliton'. Further through ``string theory'' from Michio KAKU sought statements from Peter Mayr: Stringy world brane & Exponential hierarchy'', JHEP 11 (2000): ``if the 5-brane is embedded in flat 10-D space time, the 6-D Planck mass on the brane is infinite'' who also describes the relation of isomorphicity & ``string theory'', from whom denotes the smart city. Replace this text with your abstract body. Incredible acknowledgments to HE. Mr. Drs. P. SWANTORO & HE. Mr. Dr-HC Jakob OETAMA.

  7. Metric 3-Leibniz algebras and M2-branes

    NASA Astrophysics Data System (ADS)

    Méndez-Escobar, Elena

    2010-08-01

    This thesis is concerned with superconformal Chern-Simons theories with matter in 3 dimensions. The interest in these theories is two-fold. On the one hand, it is a new family of theories in which to test the AdS/CFT correspondence and on the other, they are important to study one of the main objects of M-theory (M2-branes). All these theories have something in common: they can be written in terms of 3-Leibniz algebras. Here we study the structure theory of such algebras, paying special attention to a subclass of them that gives rise to maximal supersymmetry and that was the first to appear in this context: 3-Lie algebras. In chapter 2, we review the structure theory of metric Lie algebras and their unitary representations. In chapter 3, we study metric 3-Leibniz algebras and show, by specialising a construction originally due to Faulkner, that they are in one to one correspondence with pairs of real metric Lie algebras and unitary representations of them. We also show a third characterisation for six extreme cases of 3-Leibniz algebras as graded Lie (super)algebras. In chapter 4, we study metric 3-Lie algebras in detail. We prove a structural result and also classify those with a maximally isotropic centre, which is the requirement that ensures unitarity of the corresponding conformal field theory. Finally, in chapter 5, we study the universal structure of superpotentials in this class of superconformal Chern-Simons theories with matter in three dimensions. We provide a uniform formulation for all these theories and establish the connection between the amount of supersymmetry preserved and the gauge Lie algebra and the appropriate unitary representation to be used to write down the Lagrangian. The conditions for supersymmetry enhancement are then expressed equivalently in the language of representation theory of Lie algebras or the language of 3-Leibniz algebras.

  8. Measurement of the total hadronic cross section in e+e- annihilation below 10.56GeV

    NASA Astrophysics Data System (ADS)

    Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Klein, T.; Kubota, Y.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Dytman, S. A.; Love, W.; Savinov, V.; Aquines, O.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Butt, J.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, K.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Potlia, V.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.

    2007-10-01

    Using the CLEO III detector, we measure absolute cross sections for e+e-→hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total root-mean-square uncertainty.

  9. Cosmic rays in the 10(16) to 10(19) eV range from pulsars

    NASA Technical Reports Server (NTRS)

    Wandel, A.; Ellison, D. C.

    1985-01-01

    The flux is calculated of cosmic rays (CRs) produced by a distribution of pulsars that are: (1) born with rapid rotation rates, (2) slow down as they evolve, and (3) produce energetic nuclei with a characteristic energy proportional to their rotation rates. It is found that, for energy independent escape from the disk of the galaxy, the predicted spectrum will be essentially what is observed between approx 10 to the 16th power to 10 to the 19 power eV if the slow down law as inferred for radio pulsars can be extrapolated to young pulsars with shorter periods.

  10. Integration of a vision-based tracking platform, visual instruction, and error analysis models for an efficient billiard training system

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong; Hsiung, Pao-Ann; Wan, Chieh-Hao; Koong, Chorng-Shiuh; Liu, Tang-Kun; Yang, Yuanfan; Lin, Chu-Hsing; Chu, William Cheng-Chung

    2009-02-01

    A billiard ball tracking system is designed to combine with a visual guide interface to instruct users for a reliable strike. The integrated system runs on a PC platform. The system makes use of a vision system for cue ball, object ball and cue stick tracking. A least-squares error calibration process correlates the real-world and the virtual-world pool ball coordinates for a precise guidance line calculation. Users are able to adjust the cue stick on the pool table according to a visual guidance line instruction displayed on a PC monitor. The ideal visual guidance line extended from the cue ball is calculated based on a collision motion analysis. In addition to calculating the ideal visual guide, the factors influencing selection of the best shot among different object balls and pockets are explored. It is found that a tolerance angle around the ideal line for the object ball to roll into a pocket determines the difficulty of a strike. This angle depends in turn on the distance from the pocket to the object, the distance from the object to the cue ball, and the angle between these two vectors. Simulation results for tolerance angles as a function of these quantities are given. A selected object ball was tested extensively with respect to various geometrical parameters with and without using our integrated system. Players with different proficiency levels were selected for the experiment. The results indicate that all players benefit from our proposed visual guidance system in enhancing their skills, while low-skill players show the maximum enhancement in skill with the help of our system. All exhibit enhanced maximum and average hit-in rates. Experimental results on hit-in rates have shown a pattern consistent with that of the analysis. The hit-in rate is thus tightly connected with the analyzed tolerance angles for sinking object balls into a target pocket. These results prove the efficiency of our system, and the analysis results can be used to attain an

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjunath, Naren; Samajdar, Rhine; Jain, Sudhir R., E-mail: srjain@barc.gov.in

    Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.

  12. Chaotic electron transport in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Scannell, William Christian

    The field of quantum chaos investigates the quantum mechanical behavior of classically chaotic systems. This dissertation begins by describing an experiment conducted on an apparatus constructed to represent a three dimensional analog of a classically chaotic system. Patterns of reflected light are shown to produce fractals, and the behavior of the fractal dimension D F is shown to depend on the light's ability to escape the apparatus. The classically chaotic system is then used to investigate the conductance properties of semiconductor heterostructures engineered to produce a conducting plane relatively free of impurities and defects. Introducing walls that inhibit conduction to partition off sections considerably smaller than the mean distance between impurities defines devices called 'billiards'. Cooling to low temperatures enables the electrons traveling through the billiard to maintain quantum mechanical phase. Exposure to a changing electric or magnetic field alters the electron's phase, leading to fluctuations in the conductance through the billiard. Magnetoconductance fluctuations in billiards have previously been shown to be fractal. This behavior has been charted using an empirical parameter, Q, that is a measure of the resolution of the energy levels within the billiard. The relationship with Q is shown to extend beyond the ballistic regime into the 'quasi-ballistic' and 'diffusive' regimes, characterized by having defects within the conduction plane. A model analogous to the classically chaotic system is proposed as the origin of the fractal conductance fluctuations. This model is shown to be consistent with experiment and to account for changes of fine scale features in MCF known to occur when a billiard is brought to room temperature between low temperature measurements. An experiment is conducted in which fractal conductance fluctuations (FCF) are produced by exposing a billiard to a changing electric field. Comparison of DF values of FCF produced by

  13. How changing physical constants and violation of local position invariance may occur?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flambaum, V. V.; Shuryak, E. V.

    2008-04-04

    Light scalar fields very naturally appear in modern cosmological models, affecting such parameters of Standard Model as electromagnetic fine structure constant {alpha}, dimensionless ratios of electron or quark mass to the QCD scale, m{sub e,q}/{lambda}{sub QCD}. Cosmological variations of these scalar fields should occur because of drastic changes of matter composition in Universe: the latest such event is rather recent (redshift z{approx}0.5), from matter to dark energy domination. In a two-brane model (we use as a pedagogical example) these modifications are due to changing distance to 'the second brane', a massive companion of 'our brane'. Back from extra dimensions, massivemore » bodies (stars or galaxies) can also affect physical constants. They have large scalar charge Q{sub d} proportional to number of particles which produces a Coulomb-like scalar field {phi} = Q{sub d}/r. This leads to a variation of the fundamental constants proportional to the gravitational potential, e.g. {delta}{alpha}/{alpha} = k{sub {alpha}}{delta}(GM/rc{sup 2}). We compare different manifestations of this effect, which is usually called violation of local position invariance. The strongest limits k{sub {alpha}}+0.17k{sub e} (-3.5{+-}6)*10{sup -7} are obtained from the measurements of dependence of atomic frequencies on the distance from Sun (the distance varies due to the ellipticity of the Earth's orbit)« less

  14. Branon search in hadronic colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cembranos, J.A.R.; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040 Madrid; Dobado, A.

    2004-11-01

    In the context of the brane-world scenarios with compactified extra dimensions, we study the production of brane fluctuations (branons) in hadron colliders (pp, pp, and e{sup {+-}}p) in terms of the brane tension parameter f, the branon mass M, and the number of branons N. From the absence of monojet events at HERA and Tevatron (run I), we set bounds on these parameters and we also study how such bounds could be improved at Tevatron (run II) and the future LHC. The single-photon channel is also analyzed for the two last colliders.

  15. 10. Historic American Buildings Survey E. W. Russell, Photographer, June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey E. W. Russell, Photographer, June 17, 1937 FIREPLACE AND MANTEL. SOUTH WALL OF SOUTH FRONT ROOM, FIRST STORY. - Wewoka, Riser Mill Road, Sylacauga, Talladega County, AL

  16. 10. Historic American Buildings Survey E. W. Russell, Photographer, August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey E. W. Russell, Photographer, August 4, 1936 INTERIOR VIEW OF WINDOW AND COLUMN UNDER SIDE BALCONY - Government Street Presbyterian Church, Government & Jackson Streets, Mobile, Mobile County, AL

  17. Progress report on a new search for free e/3 quarks in the cores of 10(15) - 10(16) eV air showers

    NASA Technical Reports Server (NTRS)

    Hodson, A. L.; Bull, R. M.; Taylor, R. S.; Belford, C. H.

    1985-01-01

    The Leeds 3 sq m Wilson cloud chamber is being used in a new search for free e/3 quarks close to the axes of 10 to the 15th power - 10 to the 16th power eV air showers. A ratio trigger circuit is used to detect the incidence of air shower cores; the position of the shower center and the axis direction are determined from photographs of current-limited spark chambers. It is thus possible, for the first time, to know where we have looked for quarks in air showers and to select for scanning only those cloud chamber photographs where we have good evidence that the shower axis was close to the chamber. 250 g/sq cm of lead/concrete absorber above the cloud chamber serve to reduce particle densities and make a quark search possible very close to the shower axes. The current status of the search is given.

  18. Distributed SUSY breaking: dark energy, Newton's law and the LHC

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.; Williams, M.

    2014-07-01

    We identify the underlying symmetry mechanism that suppresses the low-energy effective 4D cosmological constant within some 6D supergravity models, generically leading to results suppressed by powers of the KK scale, m {/K K 2}, relative to the much larger size, m 4, associated with mass- m particles localized in these models on codimension-2 branes. These models are examples for which the local conditions for unbroken supersymmetry can be satisfied locally everywhere within the extra dimensions, but are obstructed only by global conditions like flux quantization or by the mutual inconsistency of the boundary conditions required at the various branes. Consequently quantities (like vacuum energies) forbidden by supersymmetry cannot become nonzero until wavelengths of order the KK scale are integrated out, since only such long wavelength modes can see the entire space and so `know' that supersymmetry has broken. We verify these arguments by extending earlier rugby-ball calculations of one-loop vacuum energies within these models to more general pairs of branes within two warped extra dimensions. For the Standard Model confined to one of two otherwise identical branes, the predicted effective 4D vacuum energy density is of order ρ vac ⋍ C( mM g /4 πM p )4 = C(5 .6 × 10-5 eV)4, where M g ≳ 10 TeV (corresponding to extra-dimensional size r ≲ 1 μm) and M p = 2 .44 × 1018 GeV are the 6D and 4D rationalized Planck scales, and m is the heaviest brane-localized particle. (For numerical purposes we take m to be the top-quark mass and take M g as small as possible, consistent with energy-loss bounds from supernovae.) C is a constant depending on the details of the bulk spectrum, which could easily be of order 500 for each of hundreds of fields in the bulk. The value C ˜ 6 × 106 would give the observed Dark Energy density.

  19. 10. Historic American Buildings Survey, N. E. Baldwin, Photographer November ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey, N. E. Baldwin, Photographer November 1939, COOLING ROOM, Gift of New York State Department of Education. - Shaker North Family, Dwelling House, Shaker Road, New Lebanon, Columbia County, NY

  20. The Hardest Straight-in Pool Shot

    ERIC Educational Resources Information Center

    Mabry, Rick

    2010-01-01

    When playing pool or billiards, a player often has the opportunity to make a "straight-in" shot, that is, one in which the cue ball, the object ball, and the target (e.g., a pocket) are collinear. With the distance from the cue ball to the target assumed fixed, the relative difficulty is here explored of shots taken at varying positions of the…

  1. The primary cosmic ray mass composition at energies above 10(14) eV

    NASA Technical Reports Server (NTRS)

    Gawin, J.; Wdowczyk, J.; Kempa, J.

    1985-01-01

    It is shown in this paper that the experimental data on extensive air showers at the energy interval 10 to the 15th power - 10 to the 17th power eV seems to be described best if it is assumed that the Galactic cosmic rays are described by some sort of a two component picture. The first component is of a mixed composition similar to that at lower energies and the second is dominated by protons. Overall spectrum starts to be enriched in protons at energies about 10 to the 15th power eV bu the effective mass of the primaries remains constant up to energies around 10 to the 16th power eV. That results from the fact that composition gradually changes from multi-component to mixture of protons and heavies. That picture receives also some sort of support from recent observations of relatively high number of nergetic protons in JACEE and Concorde experiments.

  2. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  3. Cosmic ray composition between 10 to the 15th power - 10 to the 17th power eV obtained by air shower experiments

    NASA Technical Reports Server (NTRS)

    Muraki, Y.

    1985-01-01

    Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results.

  4. Re-engineering and evaluation of anti-DNA autoantibody 3E10 for therapeutic applications.

    PubMed

    Rattray, Zahra; Dubljevic, Valentina; Rattray, Nicholas J W; Greenwood, Deanne L; Johnson, Caroline H; Campbell, James A; Hansen, James E

    2018-02-12

    A key challenge in the development of novel chemotherapeutics is the design of molecules capable of selective toxicity to cancer cells. Antibodies have greater target specificity compared to small molecule drugs, but most are unable to penetrate cells, and predominantly target extracellular antigens. A nuclear-penetrating anti-DNA autoantibody isolated from the MRL/lpr lupus mouse model, 3E10, preferentially localizes to tumors, inhibits DNA repair, and selectively kills cancer cells with defects in DNA repair. A murine divalent single chain variable fragment of 3E10 with mutations for improved DNA binding affinity, 3E10 (D31N) di-scFv, has previously been produced in P. pastoris and yielded promising pre-clinical findings, but is unsuitable for clinical testing. The present study reports the design, expression and testing of a panel of humanized 3E10 (D31N) di-scFvs, some of which contain CDR substitution. These variants were expressed in a modified CHO system and evaluated for their physicochemical attributes and ability to penetrate nuclei to selectively cause DNA damage accumulation in and kill cancer cells with DNA repair defects. Secondary structure was conserved and most variants retained the key characteristics of the murine 3E10 (D31N) di-scFv produced in P. pastoris. Moreover, several variants with CDR substitutions outperformed the murine prototype. In conclusion, we have designed several humanized variants of 3E10 (D31N) di-scFv that have potential for application as monotherapy or conjugates for targeted nuclear drug delivery. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Young D.; Georgiev, Ivelin S.; Ofek, Gilad

    ABSTRACT Extraordinary antibodies capable of near pan-neutralization of HIV-1 have been identified. One of the broadest is antibody 10E8, which recognizes the membrane-proximal external region (MPER) of the HIV-1 envelope and neutralizes >95% of circulating HIV-1 strains. If delivered passively, 10E8 might serve to prevent or treat HIV-1 infection. Antibody 10E8, however, is markedly less soluble than other antibodies. Here, we describe the use of both structural biology and somatic variation to develop optimized versions of 10E8 with increased solubility. From the structure of 10E8, we identified a prominent hydrophobic patch; reversion of four hydrophobic residues in this patch tomore » their hydrophilic germ line counterparts resulted in an ~10-fold decrease in turbidity. We also used somatic variants of 10E8, identified previously by next-generation sequencing, to optimize heavy and light chains; this process yielded several improved variants. Of these, variant 10E8v4 with 26 changes versus the parent 10E8 was the most soluble, with a paratope we showed crystallographically to be virtually identical to that of 10E8, a potency on a panel of 200 HIV-1 isolates also similar to that of 10E8, and a half-life in rhesus macaques of ~10 days. An anomaly in 10E8v4 size exclusion chromatography that appeared to be related to conformational isomerization was resolved by engineering an interchain disulfide. Thus, by combining a structure-based approach with natural variation in potency and solubility from the 10E8 lineage, we successfully created variants of 10E8 which retained the potency and extraordinary neutralization breadth of the parent 10E8 but with substantially increased solubility. IMPORTANCE Antibody 10E8 could be used to prevent HIV-1 infection, if manufactured and delivered economically. It suffers, however, from issues of solubility, which impede manufacturing. We hypothesized that the physical characteristic of 10E8 could be improved through rational

  6. 10. DETAIL OF LALLY COLUMNS (i.e. STEELENCASED CONCRETE PILES) ALONG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF LALLY COLUMNS (i.e. STEEL-ENCASED CONCRETE PILES) ALONG NORTHEAST ELEVATION, LOOKING EAST-BY-SOUTHEAST - Carter's Bridge, Still Road (Road 211), spanning Choptank River, Sandtown, Kent County, DE

  7. Limits on deeply penetrating particles in the 10(17) eV cosmic ray flux

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, J. W.; Loh, P. R.; Mizumoto, Y.; Sokolsky, P.; Sommers, P.; Steck, D.

    1985-01-01

    Deeply penetrating particles in the 10 to the 17th power eV cosmic ray flux were investigated. No such events were found in 8.2 x 10 to the 6th power sec of running time. Limits were set on the following: quark-matter in the primary cosmic ray flux; long-lived, weakly interacting particles produced in p-air collisions; the astrophysical neutrino flux. In particular, the neutrino flux limit at 10 to the 17th power eV implies that z, the red shift of maximum activity is 10 in the model of Hill and Schramm.

  8. Contrasting Views of Complexity and Their Implications For Network-Centric Infrastructures

    DTIC Science & Technology

    2010-07-04

    problem) can be undecidable. While two gravitationally interacting bodies yield simple orbits, Poincare showed that the motion of even three...statistical me- chanics are valid only when the [billiard] balls are distributed, in their positions and motions , in a helter-skelter, i.e., a disorga- nized...Rube Goldberg, whose famous cartoons depict “ comically involved complicated invention[s], laboriously contrived to perform a simple operation” [68

  9. Singularities and non-hyperbolic manifolds do not coincide

    NASA Astrophysics Data System (ADS)

    Simányi, Nándor

    2013-06-01

    We consider the billiard flow of elastically colliding hard balls on the flat ν-torus (ν ⩾ 2), and prove that no singularity manifold can even locally coincide with a manifold describing future non-hyperbolicity of the trajectories. As a corollary, we obtain the ergodicity (actually the Bernoulli mixing property) of all such systems, i.e. the verification of the Boltzmann-Sinai ergodic hypothesis.

  10. Order and anarchy hand in hand in 5D SO(10)

    NASA Astrophysics Data System (ADS)

    Vicino, D.

    2015-07-01

    A mechanism to generate flavour hierarchy via 5D wave-function localization is revisited in the context of SO(10) grand unified theory. In an extra-dimension compactified on an orbifold, fermions (living in the same 16 representation of SO(10)) result having exponential zero-modes profiles, localized around one of the brane. The breaking of SO(10) down to SU(5) × U(1)x provides the key parameter that distinguishes the profiles of the different SU(5) components inside the same 16 representation. Utilizing a suitable set of scalar fields, a predictive model for fermion masses and mixing is constructed and shown to be viable with the current data through a detailed numerical analysis. The scalar field content of the model is also suitable to solve the doublet-triplet splitting problem through the missing partner mechanism. All the Yukawa couplings in the model are anarchical and of order unity, while the hierarchies among different fermions result only from zero-mode profiles. The naturalness of Anarchical Yukawa couplings is studied, showing a preference for a normal ordered neutrino spectrum; predictions for various observables in the lepton sector are also derived.

  11. Gamma rays of energy or = 10(15) eV from Cyg X-3

    NASA Technical Reports Server (NTRS)

    Kifune, T.; Nishijima, K.; Hara, T.; Hatano, Y.; Hayashida, N.; Honda, M.; Kamata, K.; Matsubara, Y.; Mori, M.; Nagano, M.

    1985-01-01

    The experimental data of extensive air showers observed at Akeno have been analyzed to detect the gamma ray signal from Cyg X-3. After muon poor air showers are selected, the correlation of data acquisition time with 4.8 hours X-ray period is studied, giving the data concentration near the phase 0.6, the time of X-ray maximum. The probability that uniform backgrounds create the distribution is 0.2%. The time averaged integral gamma ray flux is estimated as (1.1 + or - 0.4)x 10 to the -14th power cm(-2) sec(-1) for Eo 10 to the 15th power eV and (8.8 + or - 5.0)x 10 to the 14th power cm(-2) sec(-1) for Eo 6 x 10 to the 14th power eV.

  12. Periodic gamma-ray emissions from Geminga at or = 10(12) eV

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Rawat, H. S.; Sanecha, V. K.; Rannot, R. C.; Sapru, M.; Tickoo, A. K.; Qazi, R. A.; Bhat, C. L.; Razdan, H.; Tonwar, S. C.

    1985-01-01

    Analysis of data from an atmospheric Cerenkov telescope indicated the periodic emission of gamma rays of energy 10 to the 12th power eV, at 60.25 second period, from 2CG 195+4. The gamma ray flux at 99% confidence level is estimated to be 9.5 x 10 to 12 photons/sq cm/s.

  13. Measurement of J/psi production in continuum e(+)e(-) annihilations near square root of s = 10.6 GeV.

    PubMed

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Fan, Q; Gill, M S; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Kirk, A; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; Mass, A; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Camanzi, B; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Dubrovin, M S; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Gaede, F; Johnson, D R; Michael, A K; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; Lepeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Fackler, O; Fujino, D; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Martin, R; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Lin, C S; Moore, T B; Staengle, H; Willocq, S; Wittlin, J; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Britton, D I; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yèche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Manzin, G; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stahl, A; Stelzer, J; Su, D; Sullivan, M K; Talby, M; Tanaka, H A; Trunov, A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Hart, E; Weidemann, A W; Benninger, T; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Lanceri, L; Pompili, A; Vaugin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Orejudos, W; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Neal, H

    2001-10-15

    The production of J/psi mesons in continuum e(+)e(-) annihilations has been studied with the BABAR detector at energies near the Upsilon(4S) resonance. The mesons are distinguished from J/psi production in B decays through their center-of-mass momentum and energy. We measure the cross section e(+)e(-)-->J/psi X to be 2.52+/-0.21+/-0.21 pb. We set a 90% C.L. upper limit on the branching fraction for direct Upsilon(4S)-->J/psi X decays at 4.7 x 10(-4).

  14. 10 Years of the LLAS eLearning Symposium: An Introduction

    ERIC Educational Resources Information Center

    Borthwick, Kate; Corradini, Erika; Dickens, Alison

    2015-01-01

    This e-book is a celebration of and reflection on 10 years of the The Centre for Languages, Linguistics and Area Studies (LLAS) elearning symposium, an event which is run by the Centre for Languages, Linguistics and Area Studies based at the University of Southampton, UK. (LLAS) was founded in 2000 as one of 24 Higher Education Academy subject…

  15. A natural little hierarchy for RS from accidental SUSY

    NASA Astrophysics Data System (ADS)

    Gherghetta, Tony; von Harling, Benedict; Setzer, Nicholas

    2011-07-01

    We use supersymmetry to address the little hierarchy problem in Randall-Sundrum models by naturally generating a hierarchy between the IR scale and the electroweak scale. Supersymmetry is broken on the UV brane which triggers the stabilization of the warped extra dimension at an IR scale of order 10 TeV. The Higgs and top quark live near the IR brane whereas light fermion generations are localized towards the UV brane. Supersymmetry breaking causes the first two sparticle generations to decouple, thereby avoiding the supersymmetric flavour and CP problems, while an accidental R-symmetry protects the gaugino mass. The resulting low-energy sparticle spectrum consists of stops, gauginos and Higgsinos which are sufficient to stabilize the little hierarchy between the IR scale and the electroweak scale. Finally, the supersymmetric little hierarchy problem is ameliorated by introducing a singlet Higgs field on the IR brane.

  16. Cascading gauge theory on dS4 and String Theory landscape

    NASA Astrophysics Data System (ADS)

    Buchel, Alex; Galante, Damián A.

    2014-06-01

    charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0 μ, and the D3 brane charge at the tip of the conifold in broken phase is zero, the charge in the ground state is in fact zero whenever μ3⩽μ. Furthermore, chirally symmetric states of cascading gauge theory on S3 develop symmetry breaking tachyonic instabilities at μ (below the first order chiral symmetry breaking scale μ) ln μ3,tachyon2Λ2/P2g0=0.3297(3) which is again above μ.Our results represented here, together with those reported in [10], point that the singularity of smeared anti-D3 branes at the tip of the conifold is unphysical: had it been otherwise, we should have been able to implement an infrared cutoff in the geometry with a D3

  17. Immune tolerance negatively regulates B cells in knock-in mice expressing broadly neutralizing HIV antibody 4E10.

    PubMed

    Doyle-Cooper, Colleen; Hudson, Krystalyn E; Cooper, Anthony B; Ota, Takayuki; Skog, Patrick; Dawson, Phillip E; Zwick, Michael B; Schief, William R; Burton, Dennis R; Nemazee, David

    2013-09-15

    A major goal of HIV research is to develop vaccines reproducibly eliciting broadly neutralizing Abs (bNAbs); however, this has proved to be challenging. One suggested explanation for this difficulty is that epitopes seen by bNAbs mimic self, leading to immune tolerance. We generated knock-in mice expressing bNAb 4E10, which recognizes the membrane proximal external region of gp41. Unlike b12 knock-in mice, described in the companion article (Ota et al. 2013. J. Immunol. 191: 3179-3185), 4E10HL mice were found to undergo profound negative selection of B cells, indicating that 4E10 is, to a physiologically significant extent, autoreactive. Negative selection occurred by various mechanisms, including receptor editing, clonal deletion, and receptor downregulation. Despite significant deletion, small amounts of IgM and IgG anti-gp41 were found in the sera of 4E10HL mice. On a Rag1⁻/⁻ background, 4E10HL mice had virtually no serum Ig of any kind. These results are consistent with a model in which B cells with 4E10 specificity are counterselected, raising the question of how 4E10 was generated in the patient from whom it was isolated. This represents the second example of a membrane proximal external region-directed bNAb that is apparently autoreactive in a physiological setting. The relative conservation in HIV of the 4E10 epitope might reflect the fact that it is under less intense immunological selection as a result of B cell self-tolerance. The safety and desirability of targeting this epitope by a vaccine is discussed in light of the newly described bNAb 10E8.

  18. Quantum gravity in the Southern Cone Conference. Proceedings. Conference, Bariloche (Argentina), 7 - 10 Jan 1998.

    NASA Astrophysics Data System (ADS)

    1999-04-01

    The following topics are discussed: Black hole formation by canonical dynamics of gravitating shells; canonical quantum gravity; Vassiliev invariants; midisuperspace models; quantum spacetime; large-N limit of superconformal field theories and supergravity; world-volume fields and background coupling of branes; gauge enhancement and chirality changes in nonperturbative orbifold models; chiral p-forms; formally renormalizable gravitationally self-interacting string models; gauge supergravities for all odd dimensions; black hole radiation and S-matrix; primordial black holes; fluctuations in a thermal field and dissipation of a black hole spacetime in far-field limit; adiabatic interpretation of particle creation in a de Sitter universe; nonequilibrium dynamics of quantum fields in inflationary cosmology; magnetic fields in the early Universe; classical regime of a quantum universe obtained through a functional method; decoherence and correlations in semiclassical cosmology; fluid of primordial fluctuations; causal statistical mechanics calculation of initial cosmic entropy and quantum gravity prospects and black hole-D-brane correspondence.

  19. Compound Poisson Law for Hitting Times to Periodic Orbits in Two-Dimensional Hyperbolic Systems

    NASA Astrophysics Data System (ADS)

    Carney, Meagan; Nicol, Matthew; Zhang, Hong-Kun

    2017-11-01

    We show that a compound Poisson distribution holds for scaled exceedances of observables φ uniquely maximized at a periodic point ζ in a variety of two-dimensional hyperbolic dynamical systems with singularities (M,T,μ ), including the billiard maps of Sinai dispersing billiards in both the finite and infinite horizon case. The observable we consider is of form φ (z)=-ln d(z,ζ ) where d is a metric defined in terms of the stable and unstable foliation. The compound Poisson process we obtain is a Pólya-Aeppli distibution of index θ . We calculate θ in terms of the derivative of the map T. Furthermore if we define M_n=\\max {φ ,\\ldots ,φ circ T^n} and u_n (τ ) by \\lim _{n→ ∞} nμ (φ >u_n (τ ) )=τ the maximal process satisfies an extreme value law of form μ (M_n ≤ u_n)=e^{-θ τ }. These results generalize to a broader class of functions maximized at ζ , though the formulas regarding the parameters in the distribution need to be modified.

  20. A measurement of the average longitudinal development profile of cosmic ray air showers between 10 17 and 10 18 eV

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Belov, K.; Bird, D. J.; Boyer, J.; Cao, Z.; Catanese, M.; Chen, G. F.; Clay, R. W.; Covault, C. E.; Dai, H. Y.; Dawson, B. R.; Elbert, J. W.; Fick, B. E.; Fortson, L. F.; Fowler, J. W.; Gibbs, K. G.; Glasmacher, M. A. K.; Green, K. D.; Ho, Y.; Huang, A.; Jui, C. C.; Kidd, M. J.; Kieda, D. B.; Knapp, B. C.; Ko, S.; Larsen, C. G.; Lee, W.; Loh, E. C.; Mannel, E. J.; Matthews, J.; Matthews, J. N.; Newport, B. J.; Nitz, D. F.; Ong, R. A.; Simpson, K. M.; Smith, J. D.; Sinclair, D.; Sokolsky, P.; Song, C.; Tang, J. K. K.; Thomas, S. B.; van der Velde, J. C.; Wiencke, L. R.; Wilkinson, C. R.; Yoshida, S.; Zhang, X. Z.

    2001-10-01

    The average extensive air shower longitudinal development profile is measured. Events between 10 17 and 10 18 eV recorded by the HiRes/MIA hybrid experiment are used for the average profile. Several functional forms are examined using this average profile. The best-fit parameters for the above functions are determined.

  1. The cosmic ray spectrum above 10(17) eV

    NASA Technical Reports Server (NTRS)

    Winn, M. M.; Ulrichs, J.; Horton, L.; Mccusker, C. B. A.; Peak, L. S.

    1986-01-01

    The final analysis of the data obtained by the Sydney University Giant Airshower Recorder (SUGAR) is presented. The data has been reanalysed to take into account the effects of afterpulsing in the photomultiplier tubes. Event data was used to produce a spectrum of equivalent vertical muon number and from this a model dependent primary energy spectrum was obtained. These spectra show good evidence for the Ankle: a flattening at 10(19) eV. There is no sign of the cut-off which would be expected from the effects of the universal black body radiation.

  2. FTIR characterization of animal lung cells: normal and precancerous modified e10 cell line

    NASA Astrophysics Data System (ADS)

    Zezell, D. M.; Pereira, T. M.; Mennecier, G.; Bachmann, L.; Govone, A. B.; Dagli, M. L. Z.

    2012-06-01

    The chemical carcinogens from tobacco are related to over 90% of lung cancers around the world. The risk of death of this kind of cancer is high because the diagnosis usually is made only in advanced stages. Therefore, it is necessary to develop new diagnostic methods for detecting the lung cancer in earlier stages. The Fourier Transform Infrared Spectroscopy (FTIR) can offer high sensibility and accuracy to detect the minimal chemical changes into the biological sample. The aim of this study is to evaluate the differences on infrared spectra between normal lung cells and precancerous lung cells transformed by NNK. Non-cancerous lung cell line e10 (ATCC) and NNK-transformed e10 cell lines were maintained in complete culture medium (1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 [DMEM/Ham's F12], supplemented with 100 ng/ml cholera enterotoxin, 10 lg/ml insulin, 0.5 lg/ml. hydrocortisol, 20 ng/ml epidermal growth factor, and 5% horse serum. The cultures were maintained in alcohol 70%. The infrared spectra were acquired on ATR-FTIR Nicolet 6700 spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 3 spectra recorded, 30 infrared spectra were obtained from each cell line. The second derivate of spectra indicates that there are displacement in 1646 cm-1 (amine I) and 1255 cm-1(DNA), allowing the possibility to differentiate the two king of cells, with accuracy of 89,9%. These preliminary results indicate that ATR-FTIR is useful to differentiate normal e10 lung cells from precancerous e10 transformed by NNK.

  3. Muon groups and primary composition at 10 to the 13th power to 10 to the 15th power eV

    NASA Technical Reports Server (NTRS)

    Budko, E. V.; Chudakov, A. E.; Dogujaev, V. A.; Mihelev, A. R.; Padey, V. A.; Petkov, V. A.; Striganov, P. S.; Suvorova, O. V.; Voevodsky, A. V.

    1985-01-01

    The data on muon groups observed at Baksan underground scintillation telescope is analyzed. In this analysis we compare the experimental data with calulations, based on a superposition model in order to obtain the effective atomic number of primary cosmic rays in the energy range 10 to the 13th power to 10 to the 15th power eV.

  4. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells.

    PubMed

    Grabowska, Magdalena M; Sandhu, Brindar; Day, Mark L

    2012-02-01

    During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG(1), fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. LHC signals from cascade decays of warped vector resonances

    DOE PAGES

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi; ...

    2017-05-15

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with “bulk” standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons intomore » top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a “double” resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.« less

  6. LHC signals from cascade decays of warped vector resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with “bulk” standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons intomore » top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a “double” resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.« less

  7. Deficiency of a Disintegrin and Metalloproteinase 10 (ADAM10) on dendritic cells prevents the development of type 2 immunity and IgE production

    USDA-ARS?s Scientific Manuscript database

    Mice in which dendritic cells (DCs)lack ADAM10 (ADAM10DC-/-) were found to have a dramatic decrease in TH2 immunity and IgE production, as measured by both lung inflammation to house dust mite (HDM) and active systemic anaphylaxis models (ASA). With HDM, the ADAM10DC-/- had significantly less airway...

  8. Si-Ge-Sn alloys with 1.0 eV gap for CPV multijunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roucka, Radek, E-mail: radek@translucentinc.com; Clark, Andrew; Landini, Barbara

    2015-09-28

    Si-Ge-Sn ternary group IV alloys offer an alternative to currently used 1.0 eV gap materials utilized in multijunction solar cells. The advantage of Si-Ge-Sn is the ability to vary both the bandgap and lattice parameter independently. We present current development in fabrication of Si-Ge-Sn alloys with gaps in the 1.0 eV range. Produced material exhibits excellent structural properties, which allow for integration with existing III-V photovoltaic cell concepts. Time dependent room temperature photoluminescence data demonstrate that these materials have long carrier lifetimes. Absorption tunable by compositional changes is observed. As a prototype device set utilizing the 1 eV Si-Ge-Sn junction,more » single junction Si-Ge-Sn device and triple junction device with Si-Ge-Sn subcell have been fabricated. The resulting I-V and external quantum efficiency data show that the Si-Ge-Sn junction is fully functional and the performance is comparable to other 1.0 eV gap materials currently used.« less

  9. Drones of the dwarf honey bee Apis florea are attracted to (2E)-9-oxodecenoic acid and (2E)-10-hydroxydecenoic acid.

    PubMed

    Nagaraja, Narayanappa; Brockmann, Axel

    2009-06-01

    The queen mandibular gland component (2E)-9-oxodecenoic acid (9-ODA) has been suggested to function as the major sex pheromone component in all honey bee species. In contrast to this hypothesis, chemical analyses showed that in the Asian dwarf honey bee species, Apis florea, a different decenoic acid, (2E)-10-hydroxydecenoic acid (10-HDA), is the major component in the mandibular gland secretion. We show here that A. florea drones are attracted to 9-ODA as well as to 10-HDA. However, 10-HDA attracted higher numbers of drones at lower dosages than 9-ODA, and also was more attractive when directly compared to 9-ODA in a dual attraction experiment. We conclude that 10-HDA has to be viewed as the major sex pheromone in A. florea. The result that both pheromone components are capable of attracting drones when presented alone was unexpected with regard to existing sex pheromone attraction experiments in honey bees.

  10. The antioxidant status of coenzyme Q10 and vitamin E in children with type 1 diabetes.

    PubMed

    Alkholy, Usama M; Abdalmonem, Nermin; Zaki, Ahmed; Elkoumi, Mohamed A; Hashim, Mustafa I Abu; Basset, Maha A A; Salah, Hossam E

    2018-02-07

    The purpose of this study was to evaluate the antioxidant status of plasma vitamin E and plasma and intracellular coenzyme Q10 in children with type 1 diabetes. This case-control study was conducted on 72 children with type 1 diabetes and compared to 48 healthy children, who were age, sex, and ethnicity-matched. The diabetic children were divided according to their glycosylated hemoglobin (A1c %) into two groups: poor and good glycemic control groups. All children underwent full history taking, clinical examination, and laboratory measurement of complete blood count, A1c %, plasma cholesterol, triglycerides, and vitamin E levels and coenzyme Q10 levels in plasma, erythrocytes, and platelets. Children with poor glycemic control showed significantly higher plasma vitamin E, coenzyme Q10, triglycerides, low-density lipoproteins, waist circumference/height ratio, cholesterol levels, and lower high-density lipoproteins and platelet coenzyme Q10 redox status in comparison to those with good glycemic control and the control group (p<0.05). Plasma coenzyme Q10 showed a positive correlation with the duration of type 1 diabetes, triglycerides, cholesterol, vitamin E, and A1c %, and negative correlation with the age of the diabetic group (p<0.05). The platelet redox status showed a negative correlation with the A1c % levels (r=-0.31; p=0.022) and the duration of type 1 diabetes (r=-0.35, p=0.012). Patients with type 1 diabetes, especially poorly controlled, had elevation of plasma vitamin E and coenzyme Q10 levels and decreased platelet redox status of coenzyme Q10, which may be an indicator of increased oxidative stress. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  11. Arrival direction distribution of cosmic rays of energy 10 (18) eV

    NASA Technical Reports Server (NTRS)

    Eames, P. V.; Lloyd-Evans, J.; Morello, C.; Reid, R. J. O.; Watson, A. A.

    1985-01-01

    The Haverah Park air-shower experiment recorded over 8500 events with primary energy 10 to the 18th power eV between 1963 and 1983. An analysis of these events for anisotropies in celestial and galactic coordinates is reported. No very striking anisotropies are observed.

  12. Mr Tompkins in Paperback

    NASA Astrophysics Data System (ADS)

    Gamow, George; Penrose, Foreword by Roger

    2012-03-01

    Foreword Roger Penrose; 1. City speed limit; 2. The Professor's lecture on relativity which caused Mr Tompkins's dream; 3. Mr Tompkins takes a holiday; 4. The Professor's lecture on curved space, gravity and the universe; 5. The pulsating universe; 6. Cosmic opera; 7. Quantum billiards; 8. Quantum jungles; 9. Maxwell's demon; 10. The gay tribe of electrons; 10 1/2. A part of the previous lecture which Mr Tompkins slept through; 12. Inside the nucleus; 13. The wood carver; 14. Holes in nothing; 15. Mr Tompkins tastes a Japanese meal.

  13. 10 CFR 140.95 - Appendix E-Form of indemnity agreement with nonprofit educational institutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Atomic Energy Act of 1954, as amended (hereinafter referred to as the Act). Article I As used in... 170(e) of the Atomic Energy Act of 1954, as amended, and (b) the terms of this agreement. Article III... 10 Energy 2 2010-01-01 2010-01-01 false Appendix E-Form of indemnity agreement with nonprofit...

  14. Proposal to search for mu- N -> e- N with a single event sensitivity below 10 -16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, R.M.; Lynch, K.R.; Miller, J.P.

    2008-10-01

    We propose a new experiment, Mu2e, to search for charged lepton flavor violation with unprecedented sensitivity. We will measure the ratio of the coherent neutrinoless conversion in the field of a nucleus of a negatively charged muon into an electron to the muon capture process: R{sub {mu}e} = {mu}{sup -} + A(Z,N) {yields} e{sup -} + A(Z,N)/{mu}{sup -} + A(Z,N) {yields} {nu}{sub {mu}} + A(Z-1, N), with a sensitivity R{sub {mu}e} {le} 6 x 10{sup -17} at 90% CL. This is almost a four order-of-magnitude improvement over the existing limit. The observation of such a process would be unambiguous evidencemore » of physics beyond the Standard Model. Since the discovery of the muon in 1936, physicists have attempted to answer I.I. Rabi's famous question: 'Who ordered that?' Why is there a muon? What role does it play in the larger questions of why there are three families and flavors of quarks, leptons, and neutrinos? We know quarks mix through a mechanism described by the Cabbibo-Kobayashi-Maskawa matrix, which has been studied for forty years. Neutrino mixing has been observed in the last decade, but mixing among the family of charged leptons has never been seen. The current limits are of order 10{sup -11} - 10{sup -13} so the process is rare indeed. Why is such an experiment important and timely? A major motivation for experiments at the Large Hadron Collider (LHC) is the possible observation of supersymmetric particles in the TeV mass range. Many of these supersymmetric models predict a {mu}-e conversion signal at R{sub {mu}e} {approx} 10{sup -15}. We propose to search for {mu}-e conversion at a sensitivity that exceeds this by more than an order of magnitude. The LHC may not be able to conclusively distinguish among supersymmetric models, so Mu2e will provide invaluable information should the LHC observe a signal. In the case where the LHC finds no evidence of supersymmetry, or other beyond-the-standard-model physics, Mu2e will probe for new physics at mass scales

  15. Open strings and electric fields in compact spaces

    NASA Astrophysics Data System (ADS)

    Condeescu, Cezar; Dudas, Emilian; Pradisi, Gianfranco

    2018-05-01

    We analyse open strings with background electric fields in the internal space, T-dual to branes moving with constant velocities in the internal space. We find that the direction of the electric fields inside a two torus, dual to the D-brane velocities, has to be quantised such that the corresponding direction is compact. This implies that D-brane motion in the internal torus is periodic, with a periodicity that can be parametrically large in terms of the internal radii. By S-duality, this is mapped into an internal magnetic field in a three torus, a quantum mechanical analysis of which yields a similar result, i.e. the parallel direction to the magnetic field has to be compact. Furthermore, for the magnetic case, we find the Landau level degeneracy as being given by the greatest common divisor of the flux numbers. We carry on the string quantisation and derive the relevant partition functions for these models. Our analysis includes also the case of oblique electric fields which can arise when several stacks of branes are present. Compact dimensions and/or oblique sectors influence the energy loss of the system through pair-creation and thus can be relevant for inflationary scenarios with branes. Finally, we show that the compact energy loss is always larger than the non-compact one.

  16. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  17. Nambu sigma model and effective membrane actions

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter

    2012-07-01

    We propose an effective action for a p‧-brane with open p-branes ending on it. The action has dual descriptions similar to the commutative and non-commutative ones of the DBI action for D-branes and open strings. The Poisson structure governing the non-commutativity of the D-brane is replaced by a Nambu structure and the open-closed string relations are generalized to the case of p-branes utilizing a novel Nambu sigma model description of p-branes. In the case of an M5-brane our action interpolates between M5-actions already proposed in the literature and matrix-model like actions involving Nambu structures.

  18. EAS development curve at energy of 10(16) - 10(18) eV measured by optical Cerenkov light

    NASA Technical Reports Server (NTRS)

    Hara, T.; Daigo, M.; Honda, M.; Kamata, K.; Kifune, T.; Mizumoto, Y.; Nagano, M.; Ohno, Y.; Tanahasni, G.

    1985-01-01

    The data of optical Cerenkov light from extensive air shower observed at the core distance more than 1 Km at Akeno are reexamined. Applying the new simulated results, the shower development curves for the individual events were constructed. For the showers of 10 to 17th power eV the average depth at the shower maximum is determined to be 660 + or - 40 gcm/2. The shower curve of average development is found to be well described by a Gaisser-Hillas shower development function with above shower maximum depth.

  19. Late time behaviors of an inhomogeneous rolling tachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, O-Kab; Lee, Chong Oh; Basic Science Research Institute, Chonbuk National University, Chonju 561-756

    2006-06-15

    We study an inhomogeneous decay of an unstable D-brane in the context of Dirac-Born-Infeld (DBI)-type effective action. We consider tachyon and electromagnetic fields with dependence of time and one spatial coordinate, and an exact solution is found under an exponentially decreasing tachyon potential, e{sup -|T|/{radical}}{sup (2)}, which is valid for the description of the late time behavior of an unstable D-brane. Though the obtained solution contains both time and spatial dependence, the corresponding momentum density vanishes over the entire spacetime region. The solution is governed by two parameters. One adjusts the distribution of energy density in the inhomogeneous direction, andmore » the other interpolates between the homogeneous rolling tachyon and static configuration. As time evolves, the energy of the unstable D-brane is converted into the electric flux and tachyon matter.« less

  20. Holographic studies of thermal gauge theories with flavour

    NASA Astrophysics Data System (ADS)

    Thomson, Rowan F. M.

    The AdS/CFT correspondence and its extensions to more general gauge/gravity dualities have provided a powerful framework for the study of strongly coupled gauge theories. This thesis explores properties of a large class of thermal strongly coupled gauge theories using the gravity dual. In order to bring the holographic framework closer to Quantum Chromodynamics (QCD), we study theories with matter in the fundamental representation. In particular, we focus on the holographic dual of SU ( N c ) supersymmetric Yang-Mills theory coupled to N f = N c flavours of fundamental matter at finite temperature, which is realised as N f Dq-brane probes in the near horizon (black hole) geometry of N c black Dp-branes. We explore many aspects of these Dp/Dq brane systems, often focussing on the D3/D7 brane system which is dual to a four dimensional gauge theory. We study the thermodynamics of the Dq-brane probes in the black hole geometry. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. At large N c and large 't Hooft coupling, we show that this phase transition is always first order. We calculate the free energy, entropy and energy densities, as well as the speed of sound in these systems. We compute the meson spectrum for brane embeddings outside the horizon and find that tachyonic modes appear where this phase is expected to be unstable from thermodynamic considerations. We study the system at non-zero baryon density n b and find that there is a line of phase transitions for small n b , terminating at a critical point with finite n b . We demonstrate that, to leading order in N f / N c , the viscosity to entropy density ratio in these theories saturates the conjectured universal bound e/ S >= 1/4p. Finally, we compute spectral functions and diffusion constants for

  1. Indoor air pollution (PM2.5) due to secondhand smoke in selected hospitality and entertainment venues of Karachi, Pakistan.

    PubMed

    Nafees, Asaad Ahmed; Taj, Tahir; Kadir, Muhammad Masood; Fatmi, Zafar; Lee, Kiyoung; Sathiakumar, Nalini

    2012-09-01

    To determine particulate matter smaller than 2.5 μm (PM(2.5)) levels at various hospitality and entertainment venues of Karachi, Pakistan. This was a descriptive cross-sectional study conducted at various locations in Karachi, during July 2009. Sampling was performed at 20 enclosed public places, including hospitality (restaurants and cafés) and entertainment (snooker/billiard clubs and gaming zones) venues. PM(2.5) levels were measured using an aerosol monitor. All entertainment venues had higher indoor PM(2.5) levels as compared to the immediate outdoors. The indoor PM(2.5) levels ranged from 25 to 390 μg/m(3) and the outdoor PM(2.5) levels ranged from 18 to 96 μg/m(3). The overall mean indoor PM(2.5) level was 138.8 μg/m(3) (± 112.8). Among the four types of venues, the highest mean indoor PM(2.5) level was reported from snooker/billiard clubs: 264.7 μg/m(3) (± 85.4) and the lowest from restaurants: 66.4 μg/m(3) (± 57.6) while the indoor/outdoor ratio ranged from 0.97 to 10.2, highest being at the snooker/billiard clubs. The smoking density ranged from 0.21 to 0.57, highest being at gaming zones. The indoor PM(2.5) concentration and smoking density were not significantly correlated (Spearman's correlation coefficient = 0.113; p = 0.636). This study demonstrates unacceptably high levels of PM(2.5) exposure associated with secondhand smoke (SHS) at various entertainment venues of Karachi even after 8 years since the promulgation of smoke-free ordinance (2002) in Pakistan; however, better compliance may be evident at hospitality venues. The results of this study call for effective implementation and enforcement of smoke-free environment at public places in the country.

  2. Antioxidant vitamins C, E and coenzyme Q10 vs Dexamethasone: comparisons of their effects in pulmonary contusion model

    PubMed Central

    2012-01-01

    Background The goal of our study is to evaluate the effects of antioxidant vitamins (vitamin C and E), Coenzyme Q10 (CoQ10) and dexamethasone (Dxm) in experimental rat models with pulmonary contusion (PC). Methods Rats were randomly divided into six groups. Except for the control, all subgroups had a moderate pulmonary contusion. Animals in the group I and group II received intraperitoneal saline, group III received 10mg.kg-1 CoQ10 group IV received 100mg.kg-1 vitamin C, group V received 150mg.kg-1 vitamin E, and group VI received 10mg.kg-1 Dxm. Blood gas analysis, serum nitric oxide (NO) and malondialdehyde (MDA) levels as well as superoxide dismutase (SOD) activity assays, bronchoalveolar lavage (BAL) fluid and histopathological examination were performed. Results Administration of CoQ10 resulted in a significant increase in PaO2 values compared with the group I (p = 0.004). Levels of plasma MDA in group II were significantly higher than those in the group I (p = 0.01). Early administration of vitamin C, CoQ10, and Dxm significantly decreased the levels of MDA (p = 0.01). Lung contusion due to blunt trauma significantly decreased SOD activities in rat lung tissue compared with group I (p = 0.01). SOD levels were significantly elevated in animals treated with CoQ10, Vitamin E, or Dxm compared with group II (p = 0.01). Conclusions In our study, CoQ10, vitamin C, vitamin E and Dxm had a protective effect on the biochemical and histopathological outcome of PC after experimental blunt thorax trauma. PMID:23013526

  3. Outstanding junior investigator program. [Final technical report, 8/1/92-10/31/97

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, Lisa; Rosenberg, Leslie

    1999-12-18

    Much of the authors work over the past five years has been aimed at bridging the gap between the exactly supersymmetric world of string theories and the world that is actually observed. Her report discusses the following subjects: (1) supersymmetry breaking; related work on the mass hierarchy and the relation between supersymmetry and grand unified theories; distinguishing between supersymmetric models; and the fundamental question of how gauge theories arise from D-branes.

  4. Thin limit of the 6D Cascading DGP model

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio

    2018-05-01

    A thin limit description of the 6D Cascading DGP model is derived, starting from a configuration where both the codimension-1 and the codimension-2 branes are thick. Postulating that the thicknesses of the two branes obey a hierarchic relation, the thin limit is executed in two steps. First the thin limit of the codimension-1 brane is executed, obtaining a system where a "ribbon" codimension-2 brane is embedded inside a thin codimension-1 brane with induced gravity, and then the thin limit of the ribbon brane is considered. By proposing a geometric ansatz on the limit configuration, the junction conditions which are to hold at the thin codimension-2 brane are derived. The latters are fully non-perturbative and covariant and, together with the Israel junction conditions at the codimension-1 brane and the Einstein equations in the bulk, constitute the looked-for thin limit formulation of the 6D Cascading DGP model. It is commented on how wide is the class of thin source configurations which can be placed on the thin codimension-2 brane.

  5. 40 CFR Table E-1 to Subpart E of... - Summary of Test Requirements for Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53...

  6. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  7. Estimation of refueling emissions based on theoretical model and effects of E10 fuel on refueling and evaporative emissions from gasoline cars.

    PubMed

    Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi; Hata, Hiroo; Tonokura, Kenichi

    2018-05-01

    The effects of Reid vapor pressure (RVP) on refueling emissions and the effects of ethanol 10% (E10) fuel on refueling and evaporative emissions were observed using six cars and seven fuels. The results indicated that refueling emissions can be reproduced by a simple theoretical model in which fuel vapor in the empty space in the tank is pushed out by the refueling process. In this model, the vapor pressures of fuels can be estimated by the Clausius-Clapeyron equation as a function of temperature. We also evaluated E10 fuel in terms of refueling and evaporative emissions, excluding the effect of contamination of ethanol in the canister. E10 fuel had no effect on the refueling emissions in cases without onboard refueling vapor recovery. E10 showed increased permeation emissions in evaporative emissions because of the high permeability of ethanol. And with E10 fuel, breakthrough emissions appeared earlier but broke through slower than normal fuel. Finally, canisters could store more fuel vapor with E10 fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Equilibration of energy in slow–fast systems

    PubMed Central

    Shah, Kushal; Gelfreich, Vassili; Rom-Kedar, Vered

    2017-01-01

    Ergodicity is a fundamental requirement for a dynamical system to reach a state of statistical equilibrium. However, in systems with several characteristic timescales, the ergodicity of the fast subsystem impedes the equilibration of the whole system because of the presence of an adiabatic invariant. In this paper, we show that violation of ergodicity in the fast dynamics can drive the whole system to equilibrium. To show this principle, we investigate the dynamics of springy billiards, which are mechanical systems composed of a small particle bouncing elastically in a bounded domain, where one of the boundary walls has finite mass and is attached to a linear spring. Numerical simulations show that the springy billiard systems approach equilibrium at an exponential rate. However, in the limit of vanishing particle-to-wall mass ratio, the equilibration rates remain strictly positive only when the fast particle dynamics reveal two or more ergodic components for a range of wall positions. For this case, we show that the slow dynamics of the moving wall can be modeled by a random process. Numerical simulations of the corresponding springy billiards and their random models show equilibration with similar positive rates. PMID:29183966

  9. Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis

    PubMed Central

    Mugoni, Vera; Postel, Ruben; Catanzaro, Valeria; De Luca, Elisa; Turco, Emilia; Digilio, Giuseppe; Silengo, Lorenzo; Murphy, Michael P.; Medana, Claudio; Stainier, Didier Y.R.; Bakkers, Jeroen; Santoro, Massimo M.

    2013-01-01

    Summary Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity. PMID:23374346

  10. Radial rescaling approach for the eigenvalue problem of a particle in an arbitrarily shaped box.

    PubMed

    Lijnen, Erwin; Chibotaru, Liviu F; Ceulemans, Arnout

    2008-01-01

    In the present work we introduce a methodology for solving a quantum billiard with Dirichlet boundary conditions. The procedure starts from the exactly known solutions for the particle in a circular disk, which are subsequently radially rescaled in such a way that they obey the new boundary conditions. In this way one constructs a complete basis set which can be used to obtain the eigenstates and eigenenergies of the corresponding quantum billiard to a high level of precision. Test calculations for several regular polygons show the efficiency of the method which often requires one or two basis functions to describe the lowest eigenstates with high accuracy.

  11. Some new surprises in chaos.

    PubMed

    Bunimovich, Leonid A; Vela-Arevalo, Luz V

    2015-09-01

    "Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  12. Geometric metastability, quivers and holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aganagic, Mina; Aganagic, Mina; Beem, Christopher

    2007-09-06

    We use large N duality to study brane/anti-brane configurations on a class of Calabi-Yau manifolds. With only branes present, the Calabi-Yau manifolds in question give rise to N=2 ADE quiver theories deformed by superpotential terms. We show that the large N duality conjecture of hep-th/0610249 reproduces correctly the known qualitative features of the brane/anti-brane physics. In the supersymmetric case, the gauge theories have Seiberg dualities which are represented as flops in the geometry. Moreover, the holographic dual geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case, the large N duality predicts that the brane/anti-brane theoriesmore » also enjoy such dualities, and allows one to pick out the good description at a given energy scale.« less

  13. Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone.

    PubMed

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-01-01

    To increase the production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing Nostoc punctiforme 10S-dioxygenase with the aid of a chaperone. The optimal conditions for 10S-hydroxy-8(E)-octadecenoic acid production by recombinant cells co-expressing chaperone plasmid were pH 9, 35 °C, 15 % (v/v) dimethyl sulfoxide, 40 g cells l -1 , and 10 g oleic acid l -1 . Under these conditions, recombinant cells co-expressing chaperone plasmid produced 7.2 g 10S-hydroxy-8(E)-octadecenoic acid l -1 within 30 min, with a conversion yield of 72 % (w/w) and a volumetric productivity of 14.4 g l -1 h -1 . The activity of recombinant cells expressing 10S-dioxygenase was increased by 200 % with the aid of a chaperone, demonstrating the first biotechnological production of 10S-hydroxy-8(E)-octadecenoic acid using recombinant cells expressing 10S-dioxygenase.

  14. High e+/e– ratio dense pair creation with 10 21W.cm –2 laser irradiating solid targets

    DOE PAGES

    Liang, E.; Clarke, T.; Henderson, A.; ...

    2015-09-14

    In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 10 21 W.cm –2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×10 10 with emerging pair density reaching ~10 15/cm 3 so that the pair skin depth becomes < pair jet transverse size.more » These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.« less

  15. CHARACTERIZATION OF EMISSIONS FROM MALFUNCTIONING VEHICLES FUELED WITH OXYGENATED GASOLINE-ETHANOL (E-10) FUEL-PART II

    EPA Science Inventory

    A 1993 Ford Taurus and a 1995 Chevrolet Achieva were tested using three different fuels: (1) a winter grade (E-10) fuel containing 10% (vol.) 200 proof ethanol, (2) a winter grade (WG) fuel without any oxygen containing compounds, and (3) a summer grade (SG) fuel without oxygen...

  16. CHARACTERIZATION OF EMISSIONS FROM MALFUNCTIONING VEHICLES FUELED WITH OXYGENATED GASOLINE-ETHANOL (E-10) FUEL - PART III

    EPA Science Inventory

    Five vehicles (a 1987 Ford Taurus, a 1996 Chrysler Concord, a 2001 Ford Focus, a 1993 Buick Regal, and a 2001 Dodge Intrepid) were tested using three different fuels: (1) winter grade (E-10) fuel containing 10% (vol.) 200 proof ethanol, (2) winter grade (WG) fuel without any et...

  17. 34 CFR 694.10 - What are the requirements for awards under the program's scholarship component under section 404E...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...'s scholarship component under section 404E of the HEA? 694.10 Section 694.10 Education Regulations... What are the requirements for awards under the program's scholarship component under section 404E of the HEA? (a) Amount of scholarship. (1) Except as provided in paragraph (a)(2) of this section, the...

  18. Particle distributions in approximately 10(13) - 10(16) eV air shower cores at mountain altitude and comparison with Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Ash, A. G.

    1985-01-01

    Photographs of 521 shower cores in an array of current-limited spark (discharge) chambers at Sacramento Peak (2900m above sea level, 730 g /sq cm.), New Mexico, U.S.A., have been analyzed and the results compared with similar data from Leeds (80m above sea level, 1020 g sq cm.). It was found that the central density differential spectrum is consistent with a power law index of -2 up to approx. 1500/sq m where it steepens, and that shower cores become flatter on average with increasing size. Scaling model predictions for proton primaries with a approx E sup -2.71 energy spectrum account well for the altitude dependence of the data at lower densities. However, deviations at higher densities indicate a change in hadron interaction characteristics between approx few x 10 to the 14th power and 10 to the 15th power eV primary energy causing particles close to the shower axis to be spread further out.

  19. About increase of the large transvere momentum processes fraction in hA interactions at energies 5.10(14) - 10(16) eV according to the data on E.A.S. hadrons

    NASA Technical Reports Server (NTRS)

    Danilova, T. V.; Dubovy, A. G.; Erlykin, A. D.; Nesterova, N. M.; Chubenko, A. P.

    1985-01-01

    The lateral distributions of extensive air showers (EAS) hadrons obtained at Tien-Shan array are compared with the simulations. The simulation data have been treated in the same way as experimental data, including the recording method. The comparison shows that the experimental hadron lateral distributions are wider than simulated ones. On the base of this result the conclusion is drawn that the fraction of processes with large p (perpendicular) increases in hadron-air interactions at energies 5 x 10 to the 14 to 10 to the 16 eV compared with accelerator data in p-p interactions at lower energies.

  20. Exploring 0.1-10 eV axions with a new helioscope concept

    NASA Astrophysics Data System (ADS)

    Galán, J.; Dafni, T.; Ferrer-Ribas, E.; Giomataris, I.; Iguaz, F. J.; Irastorza, I. G.; García, J. A.; Garza, J. G.; Luzon, G.; Papaevangelou, T.; Redondo, J.; Tomás, A.

    2015-12-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10-11 GeV-1 for a 5 T, m3 scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0gtrsim 10 meV.

  1. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    PubMed

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  2. 10 Years of the LLAS eLearning Symposium: Case Studies in Good Practice

    ERIC Educational Resources Information Center

    Borthwick, Kate, Ed.; Corradini, Erika, Ed.; Dickens, Alison, Ed.

    2015-01-01

    This e-book is a celebration of and reflection on 10 years of the LLAS elearning symposium, an event which is run by the Centre for Languages, Linguistics and Area Studies (LLAS) based at the University of Southampton, UK. Over the past ten years, the symposium has followed the innovations brought about in the digital realm and has offered a…

  3. Holographic cosmology from BIonic solutions

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2017-02-01

    In this paper, we will use a BIonic solution for analyzing the holographic cosmology. A BIonic solution is a configuration of a D3-brane and an anti-D3-brane connected by a wormhole, and holographic cosmology is a recent proposal to explain cosmic expansion by using the holographic principle. In our model, a BIonic configuration will be produced by the transition of fundamental black strings. The formation of a BIonic configuration will cause inflation. As the D3-brane moves away from the anti-D3-brane, the wormhole will get annihilated, and the inflation will end with the annihilation of this wormhole. However, it is possible for a D3-brane to collide with an anti-D3-brane. Such a collision will occur if the distance between the D3-brane and the anti-D3-brane reduces, and this will create tachyonic states. We will demonstrate that these tachyonic states will lead to the formation of a new wormhole, and this will cause acceleration of the universe before such a collision.

  4. Warm p-soup and near extremal black holes

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Shiba, Shotaro; Wiseman, Toby; Withers, Benjamin

    2014-04-01

    We consider a model of D-dimensional supergravity coupled to elementary p-branes. We use gravitational arguments to deduce the low energy effective theory of N nearly parallel branes. This is a (p + 1)-dimensional scalar field theory, where the scalars represent the positions of the branes in their transverse space. We propose that the same theory in a certain temperature regime describes a ‘soup’ of strongly interacting branes, giving a microscopic description of near extremal black p-branes. We use natural approximations to estimate the energy density of this soup as a function of the physical parameters; N, temperature, brane tension and gravitational coupling. We also characterize the horizon radius, measured in the metric natural to the branes, with the thermal vev of the scalars. For both quantities we find agreement with the corresponding supergravity black brane results. Surprisingly, beyond the physical parameters, we are naturally able to reproduce certain irrational factors such as πs. We comment on how these ideas may explain why black hole thermodynamics arises in gauge theories with holographic duals at finite temperature.

  5. Do alien particles exist, and can they be detected?

    NASA Astrophysics Data System (ADS)

    Gasperini, M.

    2016-07-01

    We may call “alien particles” those particles belonging to the matter/field content of a d-dimensional brane other than the 3-brane (or stack of branes) sweeping the spacetime in which we live. They can appear in our spacetime at the regions of intersection between our and their brane. They can be identified (or not) as alien matter depending on their properties, on the physical laws governing their evolution in the “homeland” brane, and on the details of our detection techniques.

  6. Periodic orbit spectrum in terms of Ruelle-Pollicott resonances

    NASA Astrophysics Data System (ADS)

    Leboeuf, P.

    2004-02-01

    Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g., a trajectory “p” returns to its initial conditions after some fixed time τp. Our aim is to investigate the spectrum {τ1,τ2,…} of periods of the periodic orbits. An explicit formula for the density ρ(τ)=∑pδ(τ-τp) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle-Pollicott resonances). For large periods, corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative formula for ρ(τ) in terms of the zeros and poles of the Ruelle ζ function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also considered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards.

  7. Perturbations and moduli space dynamics of tachyon kinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Li Huiquan

    2008-03-15

    The dynamic process of unstable D-branes decaying into stable ones with one dimension lower can be described by a tachyon field with a Dirac-Born-Infeld effective action. In this paper we investigate the fluctuation modes of the tachyon field around a two-parameter family of static solutions representing an array of brane-antibrane pairs. Besides a pair of zero modes associated with the parameters of the solution, and instabilities associated with annihilation of the brane-antibrane pairs, we find states corresponding to excitations of the tachyon field around the brane and in the bulk. In the limit that the brane thickness tends to zero,more » the support of the eigenmodes is limited to the brane, consistent with the idea that propagating tachyon modes drop out of the spectrum as the tachyon field approaches its ground state. The zero modes, and other low-lying excited states, show a fourfold degeneracy in this limit, which can be identified with some of the massless superstring modes in the brane-antibrane system. Finally, we also discuss the slow motion of the solution corresponding to the decay process in the moduli space, finding a trajectory which oscillates periodically between the unstable D-brane and the brane-antibrane pairs of one dimension lower.« less

  8. Connections between Kac-Moody algebras and M-theory

    NASA Astrophysics Data System (ADS)

    Cook, Paul P.

    2007-11-01

    We investigate some of the motivations and consequences of the conjecture that the Kac-Moody algebra E11 is the symmetry algebra of M-theory, and we develop methods to aid the further investigation of this idea. The definitions required to work with abstract root systems of Lie algebras are given in review leading up to the definition of a Kac-Moody algebra. The motivations for the E11 conjecture are presented and the nonlinear realisation of gravity relevant to the conjecture is described. We give a beginner's guide to producing the algebras of E11, relevant to M-theory, and K27, relevant to the bosonic string theory, along with their l1 representations are constructed. Reference tables of low level roots are produced for both the adjoint and l1 representations of these algebras. In addition a particular group element, having a generic form for all G+++ algebras, is shown to encode all the half-BPS brane solutions of the maximally oxidised supergravities. Special analysis is given to the role of space-time signature in the context of this group element and subsequent to this analysis spacelike brane solutions are derived from the same solution generating group element. Finally the appearance of U-duality charge multiplets from E11 is reviewed. General formulae for finding the content of arbitrary brane charge multiplets are given and the content of the particle and string multiplets in dimensions 4,5,6,7 and 8 is shown to be contained in the l1 representation of E11.

  9. New VLBI Observing System 'OCTAVE-Family' to Support VDIF Specifications with 10 GigE for VERA, JVN, and Japanese e-VLBI (OCTAVE)

    NASA Astrophysics Data System (ADS)

    Oyama, T.; Kono, Y.; Suzuki, S.; Mizuno, S.; Bushimata, T.; Jike, T.; Kawaguchi, N.; Kobayashi, H.; Kimura, M.

    2012-12-01

    The new VLBI observing system (OCTAVE-Family) has been designed and developed based on the VSI-H and VDIF specifications at NAOJ (National Astronomical Observatory of Japan). It consists of 1) a high speed 8-Gsps 3-bit ADC (OCTAD) enabling us to acquire not only wide intermediate frequencies but also radio frequencies up to 50 GHz, 2) a converter (OCTAVIA) between one 10 GigE port and four 2 Gbps input and output ports conformable to VSI-H, 3) new recorders (OCTADISK and OCTADISK2) at rates of 4.5 Gbps and above 8 Gbps, and 4) a high speed software correlator system (OCTACOR) using GICO3 which was developed by NICT. These OCTAVE systems are connected via 10 GigE network with VDIF and VSI specifications. These components are used for VERA, JVN (Japanese VLBI network), and KJJVC (Korea-Japan Joint VLBI Correlator).

  10. Electronic, magnetic, transport, and thermal properties of single-crystalline UF e2A l10

    NASA Astrophysics Data System (ADS)

    Troć, R.; Samsel-Czekała, M.; Talik, E.; Wawryk, R.; Gajek, Z.; Pasturel, M.

    2015-09-01

    The valence and core-level x-ray photoemission spectra (XPS), performed on an UF e2A l10 single crystal, were measured using the Al Kα radiation. The results of valence XPS show practically two separate regions of spectral intensity, one just at the Fermi level (EF) and the other one being a wide content with its maximum at about 0.8 eV below EF. These give rise to two electronic configurations of the 5 f states in the studied aluminide, itinerant and localized ones, i.e., their dual character. In such a situation the corresponding valence spectra, calculated within the local density approximation (LDA), well explain the former configuration, being responsible for a metallic behavior of the studied compound. Moreover, this behavior is confirmed clearly also by our results of magnetotransport measurements. On the other hand, the obtained magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power data support very well the local character of the 5 f2 -electron configuration of the U4 + ion in UF e2A l10 having the orthorhombic and cage-type crystal structure. Based on that configuration, the magnetic and thermal characteristics of the compound were modeled by the effective crystal field (CF) potential in the intermediate coupling scheme using initial parameters obtained by the angular overlap model (AOM). The obtained final CF parameters yielded the CF level scheme, composed of only singlets, proper for orthorhombic symmetry. Such a set of singlets reproduces in a satisfactory way both the strongly anisotropic temperature variations of the magnetic susceptibility, measured along the three main crystallographic directions, as well as the Schottky anomaly, evaluated using specific heat results of isomorphic ThF e2A l10 as a phonon reference. Also, the strongly anisotropic behavior of the Seebeck coefficient and its low temperature maxima observed for the compound studied here have been explained roughly by the CF effect.

  11. Measurement of the cosmic ray spectrum above 4×10 18 eV using inclined events detected with the Pierre Auger Observatory

    DOE PAGES

    Aab, Alexander

    2015-08-26

    A measurement of the cosmic-ray spectrum for energies exceeding 4×10 18 eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10 18 eV, the ``ankle'', the flux can be described by a power law E –γ with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (E s) at which the spectral flux has fallen to one-half ofmore » its extrapolated value in the absence of suppression, we find E s=(5.12±0.25 (stat) +1.0 –1.2 (sys))×10 19 eV.« less

  12. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  13. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  14. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  15. Structural model of the hUbA1-UbcH10 quaternary complex: in silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin.

    PubMed

    Correale, Stefania; de Paola, Ivan; Morgillo, Carmine Marco; Federico, Antonella; Zaccaro, Laura; Pallante, Pierlorenzo; Galeone, Aldo; Fusco, Alfredo; Pedone, Emilia; Luque, F Javier; Catalanotti, Bruno

    2014-01-01

    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.

  16. The E3 ubiquitin ligase mind bomb-2 (MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-dependent NF-κB activation.

    PubMed

    Stempin, Cinthia C; Chi, Liying; Giraldo-Vela, Juan P; High, Anthony A; Häcker, Hans; Redecke, Vanessa

    2011-10-28

    B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway.

  17. High-frequency modes in a two-dimensional rectangular room with windows

    NASA Astrophysics Data System (ADS)

    Shabalina, E. D.; Shirgina, N. V.; Shanin, A. V.

    2010-07-01

    We examine a two-dimensional model problem of architectural acoustics on sound propagation in a rectangular room with windows. It is supposed that the walls are ideally flat and hard; the windows absorb all energy that falls upon them. We search for the modes of such a room having minimal attenuation indices, which have the expressed structure of billiard trajectories. The main attenuation mechanism for such modes is diffraction at the edges of the windows. We construct estimates for the attenuation indices of the given modes based on the solution to the Weinstein problem. We formulate diffraction problems similar to the statement of the Weinstein problem that describe the attenuation of billiard modes in complex situations.

  18. Observation of ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ.

    PubMed

    Ablikim, M; Achasov, M N; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2017-06-02

    Using 4.479×10^{8}  ψ(3686) events collected with the BESIII detector, we search for the decays ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ, where J=0, 1, 2. The decays ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ are observed for the first time. The measured branching fractions are B(ψ(3686)→e^{+}e^{-}χ_{cJ})=(11.7±2.5±1.010^{-4}, (8.6±0.3±0.6)×10^{-4}, (6.9±0.5±0.6)×10^{-4} for J=0, 1, 2, and B(χ_{cJ}→e^{+}e^{-}J/ψ)=(1.51±0.30±0.13)×10^{-4}, (3.73±0.09±0.25)×10^{-3}, (2.48±0.08±0.16)×10^{-3} for J=0, 1, 2, respectively. The ratios of the branching fractions B(ψ(3686)→e^{+}e^{-}χ_{cJ})/B(ψ(3686)→γχ_{cJ}) and B(χ_{cJ}→e^{+}e^{-}J/ψ)/B(χ_{cJ}→γJ/ψ) are also reported. Also, the α values of helicity angular distributions of the e^{+}e^{-} pair are determined for ψ(3686)→e^{+}e^{-}χ_{c1,2} and χ_{c1,2}→e^{+}e^{-}J/ψ.

  19. Study of the decays D0-->pi{-}e{+}nu{e}, D{0}-->K{-}e{+}nu{e}, D{+}-->pi{0}e{+}nu{e}, and D{+}-->K0e{+}nu{e}.

    PubMed

    Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K

    2008-06-27

    By using 1.8x10{6} DDpairs, we have measured B(D{0}-->pi{-}e{+}nu{e})=0.299(11)(9)%, B(D{+}-->pi{0}e{+}nu{e})=0.373(22)(13)%, B(D{0}-->K{-}e{+}nu{e})=3.56(3)(9)%, and B(D{+}-->K{0}e{+}nu{e})=8.53(13)(23)% and have studied the q;{2} dependence of the form factors. By combining our results with recent lattice calculations, we obtain |V{cd}|=0.217(9)(4)(23) and |V{cs}|=1.015(10)(11)(106).

  20. On galactic origin of cosmic rays with energy up to 10(19) eV

    NASA Technical Reports Server (NTRS)

    Efimov, N. N.; Mikhailov, A. A.

    1985-01-01

    The experimental data on ultrahigh energy cosmic ray anisotropy are considered. In supposed models of galactic magnetic field the main characteristics of expected anisotropy are estimated and are compared with the experimental data. It is shown that particles with energy up to 10 to the 19th power eV are of galactic origin.

  1. Electron and muon parameters of EAS and the composition of primary cosmic rays in 10(15) to approximately 10(16) eV

    NASA Technical Reports Server (NTRS)

    Cheung, T.; Mackeown, P. K.

    1985-01-01

    Estimation of the relative intensities of protons and heavy nuclei in primary cosmic rays in the energy region 10 to the 15th power approx. 10 to the 17th power eV, was done by a systematic comparison between all available observed data on various parameters of extensive air showers (EAS) and the results of simulation. The interaction model used is an extrapolation of scaling violation indicated by recent pp collider results. A composition consisting of various percentages of Fe in an otherwise pure proton beam was assumed. Greatest overall consistency between the data and the simulation is found when the Fe fraction is in the region of 25%.

  2. Photodissociation of HCN and HNC isomers in the 7-10 eV energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenel, Aurelie; Roncero, Octavio, E-mail: octavio.roncero@csic.es; Aguado, Alfredo

    2016-04-14

    The ultraviolet photoabsorption spectra of the HCN and HNC isomers have been simulated in the 7-10 eV photon energy range. For this purpose, the three-dimensional adiabatic potential energy surfaces of the 7 lowest electronic states, and the corresponding transition dipole moments, have been calculated, at multireference configuration interaction level. The spectra are calculated with a quantum wave packet method on these adiabatic potential energy surfaces. The spectra for the 3 lower excited states, the dissociative electronic states, correspond essentially to predissociation peaks, most of them through tunneling on the same adiabatic state. The 3 higher electronic states are bound, hereaftermore » electronic bound states, and their spectra consist of delta lines, in the adiabatic approximation. The radiative lifetime towards the ground electronic states of these bound states has been calculated, being longer than 10 ns in all cases, much longer that the characteristic predissociation lifetimes. The spectra of HCN is compared with the available experimental and previous theoretical simulations, while in the case of HNC there are no previous studies to our knowledge. The spectrum for HNC is considerably more intense than that of HCN in the 7-10 eV photon energy range, which points to a higher photodissociation rate for HNC, compared to HCN, in astrophysical environments illuminated by ultraviolet radiation.« less

  3. The thickness of the shower disc as observed in showers produced by primaries above 10 (19)eV

    NASA Technical Reports Server (NTRS)

    Lawrence, M. A.; Watson, A. A.; West, A. A.

    1985-01-01

    The thickness of the shower disk has been measured in showers initiated by primaries of energy to 10 the 19th power eV using the large area water Cerenkov detectors of the Haverah Park array. Results are presented which (1) provide supporting evidence for the accuracy of analysis procedures in giant showers, (2) offer an evaluation of the mini-array technique for the detection of giant showers and (3) extend earlier work on developmental fluctuations above 10 to the 19th power eV.

  4. Additive In Vitro Antiplasmodial Effect of N-Alkyl and N-Benzyl-1,10-Phenanthroline Derivatives and Cysteine Protease Inhibitor E64

    PubMed Central

    Wijayanti, Mahardika Agus; Sholikhah, Eti Nurwening; Hadanu, Ruslin; Jumina, Jumina; Supargiyono, Supargiyono; Mustofa, Mustofa

    2010-01-01

    Potential new targets for antimalarial chemotherapy include parasite proteases, which are required for several cellular functions during the Plasmodium falciparum life cycle. Four new derivatives of N-alkyl and N-benzyl-1,10-phenanthroline have been synthesized. Those are (1)-N-methyl-1,10-phenanthrolinium sulfate, (1)-N-ethyl-1,10-phenanthrolinium sulfate, (1)-N-benzyl-1,10-phenanthrolinium chloride, and (1)-N-benzyl-1,10-phenanthrolinium iodide. Those compounds had potential antiplasmodial activity with IC50 values from 260.42 to 465.38 nM. Cysteine proteinase inhibitor E64 was used to investigate the mechanism of action of N-alkyl and N-benzyl-1,10-phenanthroline derivatives. A modified fixed-ratio isobologram method was used to study the in vitro interactions between the new compounds with either E64 or chloroquine. The interaction between N-alkyl and N-benzyl-1,10-phenanthroline derivatives and E64 was additive as well as their interactions with chloroquine were also additive. Antimalarial mechanism of chloroquine is mainly on the inhibition of hemozoin formation. As the interaction of chloroquine and E64 was additive, the results indicated that these new compounds had a mechanism of action by inhibiting Plasmodium proteases. PMID:22332022

  5. A multi-port 10GbE PCIe NIC featuring UDP offload and GPUDirect capabilities.

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Stanislao Paolucci, Pier; Pastorelli, Elena; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Tosoratto, Laura; Vicini, Piero

    2015-12-01

    NaNet-10 is a four-ports 10GbE PCIe Network Interface Card designed for low-latency real-time operations with GPU systems. To this purpose the design includes an UDP offload module, for fast and clock-cycle deterministic handling of the transport layer protocol, plus a GPUDirect P2P/RDMA engine for low-latency communication with NVIDIA Tesla GPU devices. A dedicated module (Multi-Stream) can optionally process input UDP streams before data is delivered through PCIe DMA to their destination devices, re-organizing data from different streams guaranteeing computational optimization. NaNet-10 is going to be integrated in the NA62 CERN experiment in order to assess the suitability of GPGPU systems as real-time triggers; results and lessons learned while performing this activity will be reported herein.

  6. Deletion of fusion peptide or destabilization of fusion core of HIV gp41 enhances antigenicity and immunogenicity of 4E10 epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Jing; Beijing Key Laboratory for Protein Therapeutics, Beijing 100084; Chen Xi

    2008-11-07

    The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformationmore » as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.« less

  7. Neutron stars in the braneworld within the Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Prasetyo, I.; Husin, I.; Qauli, A. I.; Ramadhan, H. S.; Sulaksono, A.

    2018-01-01

    We propose the disappearance of "the hyperon puzzle" in neutron star (NS) by invoking two new-physics prescriptions: modified gravity theory and braneworld scenario. By assuming that NS lives on a 3-brane within a 5d empty AdS bulk, gravitationally governed by Eddington-inspired Born-Infeld (EiBI) theory, the field equations can be effectively cast into the usual Einstein's with "apparent" anisotropic energy-momentum tensor. Solving the corresponding brane-TOV equations numerically, we study its mass-radius relation. It is known that the appearance of finite brane tension λ reduces the compactness of the star. The compatibility of the braneworld results with observational constraints of NS mass and radius can be restored in our model by varying the EiBI's coupling constant, κ. We found that within the astrophysically-accepted range of parameters (0<κ<6×106m2 and λgg1 MeV4) the NS can have mass ~2.1 Msolar and radius ~10 km.

  8. Design and characterization of the ePix10k: a high dynamic range integrating pixel ASIC for LCLS detectors

    NASA Astrophysics Data System (ADS)

    Caragiulo, P.; Dragone, A.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; Tomada, A.; Hasi, J.; Carini, G.; Kenney, C.; Haller, G.

    2015-05-01

    ePix10k is a variant of a novel class of integrating pixel ASICs architectures optimized for the processing of signals in second generation LINAC Coherent Light Source (LCLS) X-Ray cameras. The ASIC is optimized for high dynamic range application requiring high spatial resolution and fast frame rates. ePix ASICs are based on a common platform composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog to digital converters per column. The ePix10k variant has 100um×100um pixels arranged in a 176×192 matrix, a resolution of 140e- r.m.s. and a signal range of 3.5pC (10k photons at 8keV). In its final version it will be able to sustain a frame rate of 2kHz. A first prototype has been fabricated and characterized. Performance in terms of noise, linearity, uniformity, cross-talk, together with preliminary measurements with bump bonded sensors are reported here.

  9. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. E Appendix E to Subpart B of Part 430—Uniform Test Method...

  10. IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology.

    PubMed

    Van Vaerenbergh, Matthias; De Smet, Lina; Rafei-Shamsabadi, David; Blank, Simon; Spillner, Edzard; Ebo, Didier G; Devreese, Bart; Jakob, Thilo; de Graaf, Dirk C

    2015-02-01

    Api m 10 has recently been established as novel major allergen that is recognized by more than 60% of honeybee venom (HBV) allergic patients. Previous studies suggest Api m 10 protein heterogeneity which may have implications for diagnosis and immunotherapy of HBV allergy. In the present study, RT-PCR revealed the expression of at least nine additional Api m 10 transcript isoforms by the venom glands. Two distinct mechanisms are responsible for the generation of these isoforms: while the previously known variant 2 is produced by an alternative splicing event, novel identified isoforms are intragenic chimeric transcripts. To the best of our knowledge, this is the first report of the identification of chimeric transcripts generated by the honeybee. By a retrospective proteomic analysis we found evidence for the presence of several of these isoforms in the venom proteome. Additionally, we analyzed IgE reactivity to different isoforms by protein array technology using sera from HBV allergic patients, which revealed that IgE recognition of Api m 10 is both isoform- and patient-specific. While it was previously demonstrated that the majority of HBV allergic patients display IgE reactivity to variant 2, our study also shows that some patients lacking IgE antibodies for variant 2 display IgE reactivity to two of the novel identified Api m 10 variants, i.e. variants 3 and 4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Vertex Operator Formulation of Scattering around Black-Hole

    NASA Astrophysics Data System (ADS)

    Park, I. Y.

    We propose a full-fledged open string framework that seems suited to study the black hole information paradox. We set up a configuration to compute the scattering amplitude of a IIB open string around a D5-brane. The D5-brane is situated at the origin of a transverse D3-brane. A string perturbation theory is employed where the geometry of the D5-brane is treated as a potential. We reason that the setup is capable of reconciling the unitary evolution of states and information loss that is measured by an observer on the D3 brane. With the configurations of these kinds, the information loss is an apparent phenomenon: it is just a manifestation of the fact that the D3-observer does not have access to the "hair" of the D5 black brane.

  12. 239Pu(n,γ) from 10 eV to 1.3 MeV

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Kawano, T.; Ullmann, J.; Henderson, R. A.; Wu, C. Y.

    2018-02-01

    The 239Pu(n,γ) cross section has been measured from 10 eV to 1.3 MeV as part of an experimental campaign using the Detector for Advanced Neutron Capture Experiments (DANCE). The work represents a significant advance in experimental technique, with improved systematic uncertainties in key regions in the keV to MeV regime. In general the results of prior work are confirmed with improved uncertainties, particularly at the highest incident neutron energies.

  13. An immunogen containing four tandem 10E8 epitope repeats with exposed key residues induces antibodies that neutralize HIV-1 and activates an ADCC reporter gene

    PubMed Central

    Sun, Zhiwu; Zhu, Yun; Wang, Qian; Ye, Ling; Dai, Yanyan; Su, Shan; Yu, Fei; Ying, Tianlei; Yang, Chinglai; Jiang, Shibo; Lu, Lu

    2016-01-01

    After three decades of intensive research efforts, an effective vaccine against HIV-1 remains to be developed. Several broadly neutralizing antibodies to HIV-1, such as 10E8, recognize the membrane proximal external region (MPER) of the HIV-1 gp41 protein. Thus, the MPER is considered to be a very important target for vaccine design. However, the MPER segment has very weak immunogenicity and tends to insert its epitope residues into the cell membrane, thereby avoiding antibody binding. To address this complication in vaccine development, we herein designed a peptide, designated 10E8-4P, containing four copies of the 10E8 epitope as an immunogen. As predicted by structural simulation, 10E8-4P exhibits a well-arranged tandem helical conformation, with the key residues in the 10E8 epitope oriented at different angles, thus suggesting that some of these key residues may be exposed outside of the lipid membrane. Compared with a peptide containing a single 10E8 epitope (10E8-1P), 10E8-4P not only exhibited better antigenicity but also elicited neutralizing antibody response against HIV-1 pseudoviruses, whereas 10E8-1P could not induce detectable neutralizing antibody response. Importantly, antibodies elicited by 10E8-4P also possessed a strong ability to activate an antibody-dependent cell-mediated cytotoxicity (ADCC) reporter gene, thus suggesting that they may have ADCC activity. Therefore, this strategy shows promise for further optimization and application in future HIV-1 vaccine design. PMID:27329850

  14. G-theory: The generator of M-theory and supersymmetry

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Pincak, Richard

    2018-04-01

    In string theory with ten dimensions, all Dp-branes are constructed from D0-branes whose action has two-dimensional brackets of Lie 2-algebra. Also, in M-theory, with 11 dimensions, all Mp-branes are built from M0-branes whose action contains three-dimensional brackets of Lie 3-algebra. In these theories, the reason for difference between bosons and fermions is unclear and especially in M-theory there is not any stable object like stable M3-branes on which our universe would be formed on it and for this reason it cannot help us to explain cosmological events. For this reason, we construct G-theory with M dimensions whose branes are formed from G0-branes with N-dimensional brackets. In this theory, we assume that at the beginning there is nothing. Then, two energies, which differ in their signs only, emerge and produce 2M degrees of freedom. Each two degrees of freedom create a new dimension and then M dimensions emerge. M-N of these degrees of freedom are removed by symmetrically compacting half of M-N dimensions to produce Lie-N-algebra. In fact, each dimension produces a degree of freedom. Consequently, by compacting M-N dimensions from M dimensions, N dimensions and N degrees of freedom is emerged. These N degrees of freedoms produce Lie-N-algebra. During this compactification, some dimensions take extra i and are different from other dimensions, which are known as time coordinates. By this compactification, two types of branes, Gp and anti-Gp-branes, are produced and rank of tensor fields which live on them changes from zero to dimension of brane. The number of time coordinates, which are produced by negative energy in anti-Gp-branes, is more sensible to number of times in Gp-branes. These branes are compactified anti-symmetrically and then fermionic superpartners of bosonic fields emerge and supersymmetry is born. Some of gauge fields play the role of graviton and gravitino and produce the supergravity. The question may arise that what is the physical reason

  15. Exploring 0.1–10 eV axions with a new helioscope concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galán, J.; Dafni, T.; Iguaz, F.J., E-mail: javier.galan.lacarra@cern.ch, E-mail: Theopisti.Dafni@cern.ch, E-mail: iguaz@unizar.es

    2015-12-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbarmore » to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10{sup −11} GeV{sup −1} for a 5 T, m{sup 3} scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0∼> 10 meV.« less

  16. Book Review:

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth

    2007-06-01

    The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not

  17. Vacuum currents in braneworlds on AdS bulk with compact dimensions

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2015-11-01

    The two-point function and the vacuum expectation value (VEV) of the current density are investigated for a massive charged scalar field with arbitrary curvature coupling in the geometry of a brane on the background of AdS spacetime with partial toroidal compactification. The presence of a gauge field flux, enclosed by compact dimensions, is assumed. On the brane the field obeys Robin boundary condition and along compact dimensions periodicity conditions with general phases are imposed. There is a range in the space of the values for the coefficient in the boundary condition where the Poincaré vacuum is unstable. This range depends on the location of the brane and is different for the regions between the brane and AdS boundary and between the brane and the horizon. In models with compact dimensions the stability condition is less restrictive than that for the AdS bulk with trivial topology. The vacuum charge density and the components of the current along non-compact dimensions vanish. The VEV of the current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It is decomposed into the boundary-free and brane-induced contributions. The asymptotic behavior of the latter is investigated near the brane, near the AdS boundary and near the horizon. It is shown that, in contrast to the VEVs of the field squared an denergy-momentum tensor, the current density is finite on the brane and vanishes for the special case of Dirichlet boundary condition. Both the boundary-free and brane-induced contributions vanish on the AdS boundary. The brane-induced contribution vanishes on the horizon and for points near the horizon the current is dominated by the boundary-free part. In the near-horizon limit, the latter is connected to the corresponding quantity for a massless field in the Minkowski bulk by a simple conformal relation. Depending on the value of the Robin coefficient, the presence of the brane can either

  18. 239Pu(n,γ) from 10 eV to 1.3 MeV

    DOE PAGES

    Mosby, Shea Morgan; Bredeweg, Todd Allen; Couture, Aaron Joseph; ...

    2018-02-01

    In this study, the 239Pu(n,γ) cross section has been measured from 10 eV to 1.3 MeV as part of an experimental campaign using the Detector for Advanced Neutron Capture Experiments (DANCE). The work represents a significant advance in experimental technique, with improved systematic uncertainties in key regions in the keV to MeV regime. In general the results of prior work are confirmed with improved uncertainties, particularly at the highest incident neutron energies.

  19. On the Additive Effects of Stimulus Quality and Word Frequency in Lexical Decision: Evidence for Opposing Interactive Influences Revealed by RT Distributional Analyses

    ERIC Educational Resources Information Center

    Yap, Melvin J.; Balota, David A.; Tse, Chi-Shing; Besner, Derek

    2008-01-01

    The joint effects of stimulus quality and word frequency in lexical decision were examined in 4 experiments as a function of nonword type (legal nonwords, e.g., BRONE, vs. pseudohomophones, e.g., BRANE). When familiarity was a viable dimension for word-nonword discrimination, as when legal nonwords were used, additive effects of stimulus quality…

  20. Wrapping rules (in) string theory

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Riccioni, Fabio

    2018-01-01

    In this paper we show that the number of all 1/2-BPS branes in string theory compactified on a torus can be derived by universal wrapping rules whose formulation we present. These rules even apply to branes in less than ten dimensions whose ten-dimensional origin is an exotic brane. In that case the wrapping rules contain an additional combinatorial factor that is related to the highest dimension in which the ten-dimensional exotic brane, after compactification, can be realized as a standard brane. We show that the wrapping rules also apply to cases with less supersymmetry. As a specific example, we discuss the compactification of IIA/IIB string theory on ( T 4/ ℤ 2) × T n .

  1. Localized gravity in string theory.

    PubMed

    Karch, A; Randall, L

    2001-08-06

    We propose a string realization of the AdS4 brane in AdS5 that is known to localize gravity. Our theory is M D5 branes in the near horizon geometry of N D3 branes, where M and N are appropriately tuned.

  2. An Instrument to Measure Elemental Energy Spectra of Cosmic Ray Nuclei Up to 10(exp 16) eV

    NASA Technical Reports Server (NTRS)

    Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov,S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    A longstanding goal of cosmic ray research is to measure the elemental energy spectra of cosmic rays up to and through the "knee" (approx. equal to 3 x 10 (exp 15) eV. It is not currently feasible to achieve this goal with an ionization calorimeter because the mass required to be deployed in Earth orbit is very large (at least 50 tonnes). An alternative method will be presented. This is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer using silicon microstrip detector technology. The proposed technique can be used over a wide range of energies (10 (exp 11)- 10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a design for a new lightweight instrument with a large aperture (KLEM) will be described.

  3. BPS States, Crystals, and Matrices

    DOE PAGES

    Sułkowski, Piotr

    2011-01-01

    We review free fermion, melting crystal, and matrix model representations of wall-crossing phenomena on local, toric Calabi-Yau manifolds. We consider both unrefined and refined BPS counting of closed BPS states involving D2- and D0-branes bound to a D6-brane, as well as open BPS states involving open D2-branes ending on an additional D4-brane. Appropriate limit of these constructions provides, among the others, matrix model representation of refined and unrefined topological string amplitudes.

  4. Runaway relaxion monodromy

    NASA Astrophysics Data System (ADS)

    McAllister, Liam; Schwaller, Pedro; Servant, Geraldine; Stout, John; Westphal, Alexander

    2018-02-01

    We examine the relaxion mechanism in string theory. An essential feature is that an axion winds over N ≫ 1 fundamental periods. In string theory realizations via axion monodromy, this winding number corresponds to a physical charge carried by branes or fluxes. We show that — in the context of NS5-brane axion monodromy — this charge backreacts on the compact space, ruining the structure of the relaxion action. In particular, the barriers generated by strong gauge dynamics have height ∝ e - N , so the relaxion does not stop when the Higgs acquires a vev. Backreaction of monodromy charge can therefore spoil the relaxion mechanism. We comment on the limitations of technical naturalness arguments in this context.

  5. 40 CFR Table E-1 to Subpart E of... - Summary of Test Requirements for Reference and Class I Equivalent Methods for PM 2.5 and PM 10-2.5

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... accuracy 3. Filter temp. control accuracy, sampling and non-sampling 1. 2 °C2. 2 °C 3. Not more than 5 °C... Reference and Class I Equivalent Methods for PM 2.5 and PM 10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance...

  6. 40 CFR Table E-1 to Subpart E of... - Summary of Test Requirements for Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... accuracy 3. Filter temp. control accuracy, sampling and non-sampling 1. 2 °C2. 2 °C 3. Not more than 5 °C... Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance...

  7. 40 CFR Table E-1 to Subpart E of... - Summary of Test Requirements for Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... accuracy 3. Filter temp. control accuracy, sampling and non-sampling 1. 2 °C2. 2 °C 3. Not more than 5 °C... Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance...

  8. 40 CFR Table E-1 to Subpart E of... - Summary of Test Requirements for Reference and Class I Equivalent Methods for PM 2.5 and PM 10-2.5

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... accuracy 3. Filter temp. control accuracy, sampling and non-sampling 1. 2 °C2. 2 °C 3. Not more than 5 °C... Reference and Class I Equivalent Methods for PM 2.5 and PM 10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance...

  9. Antibacterial activity of a 7,10-dihydroxy-8(E)-octadecenoic acid against food-bourne pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    Microbial conversion of the natural unsaturated fatty acids often generate polyhydroxy fatty acids rendering them to have new properties such as higher viscosity and reactivity. A bacterial strain Pseudomonas aeruginosa (PR3) has been intensively studied to produce a novel 7,10-dihydroxy-8(E)-octad...

  10. EAS spectrum in the primary energy region above 10 to the 15th power eV by the Akeno and Yakutsk array data

    NASA Technical Reports Server (NTRS)

    Krasilnikov, D. D.; Knurenko, S. P.; Krasilnikov, A. D.; Pavlov, V. N.; Sleptsov, I. Y.; Yegorova, V. P.

    1985-01-01

    The extensive air showers spectrum on scintillation desity Rko in primary energy region E sub approx. 10 to the 15th power - 10 to the 20th power eV on the Yakutsk array data and recent results of the Akeno is given.

  11. Inhibition of Adrenergic and Non-Adrenergic Smooth Muscle Contraction in the Human Prostate by the Phosphodiesterase 10-Selective Inhibitor TC-E 5005.

    PubMed

    Hennenberg, Martin; Schott, Melanie; Kan, Aysenur; Keller, Patrick; Tamalunas, Alexander; Ciotkowska, Anna; Rutz, Beata; Wang, Yiming; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Stief, Christian G; Gratzke, Christian

    2016-11-01

    The phosphodiesterase (PDE) 5 inhibitor tadalafil is available for treatment of male lower urinary tract symptoms (LUTS), while the role of other PDE isoforms for prostate smooth muscle tone is still unknown. Here, we examined effects of the PDE10-selective inhibitor TC-E 5005 on smooth muscle contraction in human prostate tissue. Prostate samples were obtained from patients undergoing radical prostatectomy. Expression of PDE10 was addressed by RT-PCR, Western blot, and fluorescence staining with different markers. Effects of TC-E 5005 and tadalafil on contraction, and relaxation of prostate strips were studied via organ bath. PDE10A was detectable by RT-PCR, Western blot, and fluorescence staining in prostate tissues. Colocalization with markers suggested expression of PDE10A in smooth muscle cells and catecholaminergic nerves. Norepinephrine, the α1 -adrenergic agonist phenylephrine, the thromboxane A2 analogue U46619, and endothelins 1-3 induced concentration-dependent contractions of prostate strips, while electric field stimulation (EFS) induced frequence-dependent contractions. Application of TC-E 5005 (500 nM) caused significant inhibition of norepinephrine-, phenylephrine-, and endothelin-3-induced contractions. Inhibition of EFS-induced contractions by TC-E 5005 ranged around 50%, resembling inhibition of EFS-induced contractions by tadalafil (10 μM). The prostacyclin analog treprostinil and the nitric oxide donor DEA NONOate induced relaxations of precontracted prostate strips, which were significantly amplified by TCE 5005. The PDE10-selective inhibitor TC-E 5005 inhibits adrenergic and neurogenic smooth muscle contractions in the human prostate. TC-E 5005 inhibits neurogenic contractions with similar efficacy than tadalafil, so that urodynamic effects in vivo appear possible. Prostate 76:1364-1374, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Microwave fidelity studies by varying antenna coupling

    NASA Astrophysics Data System (ADS)

    Köber, B.; Kuhl, U.; Stöckmann, H.-J.; Gorin, T.; Savin, D. V.; Seligman, T. H.

    2010-09-01

    The fidelity decay in a microwave billiard is considered, where the coupling to an attached antenna is varied. The resulting quantity, coupling fidelity, is experimentally studied for three different terminators of the varied antenna: a hard-wall reflection, an open wall reflection, and a 50Ω load, corresponding to a totally open channel. The model description in terms of an effective Hamiltonian with a complex coupling constant is given. Quantitative agreement is found with the theory obtained from a modified VWZ approach [J. J. M. Verbaarschot , Phys. Rep. 129, 367 (1985)10.1016/0370-1573(85)90070-5].

  13. Core structure of EAS in 10(15) to 10(17) eV

    NASA Technical Reports Server (NTRS)

    Hara, T.; Hatano, Y.; Hayashida, N.; Kifune, T.; Nagano, M.; Tanahashi, G.

    1985-01-01

    With the use of Akeno calorimeter, the attenuation of particles in concrete is analyzed as the function of the shower size of 10 to the 5th power to 10 to the 7th power. The attenuation length does not depend much on the shower size but depends a little on the shower age. The average value is approx. 150 g/sq cm for s = 0.5 to 0.85 and approx. 40 g/sq cm for s = 0.85 to 1.15. These values and their fluctuations are consistent with the equi-intensity curves of extensive air showers (EAS).

  14. Search for rare and forbidden decays D+ --> h+/- e+/- e+.

    PubMed

    He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Asner, D M; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Cravey, M; Cummings, J P; Danko, I; Napolitano, J

    2005-11-25

    Using 0.8 x 10(6) D+ D- pairs collected with the CLEO-c detector at the psi(3770) resonance, we have searched for flavor-changing neutral current and lepton-number-violating decays of D+ mesons to final states with dielectrons. We find no indication of either, obtaining 90% confidence level upper limits of B(D+ --> pi+ e+ e-) < 7.4 x 10(-6), B(D+ --> pi- e+ d+) < 3.6 x 10(-6), B(D+ --> K+ e+ e-) < 6.2 x 10(-6), and B(D+ --> K- e+ e+) < 4.5 x 10(-6).

  15. IL-10 Enhances IgE-Mediated Mast Cell Responses and Is Essential for the Development of Experimental Food Allergy in IL-10-Deficient Mice.

    PubMed

    Polukort, Stephanie H; Rovatti, Jeffrey; Carlson, Logan; Thompson, Chelsea; Ser-Dolansky, Jennifer; Kinney, Shannon R M; Schneider, Sallie S; Mathias, Clinton B

    2016-06-15

    IL-10 is a key pleiotropic cytokine that can both promote and curb Th2-dependent allergic responses. In this study, we demonstrate a novel role for IL-10 in promoting mast cell expansion and the development of IgE-mediated food allergy. Oral OVA challenge in sensitized BALB/c mice resulted in a robust intestinal mast cell response accompanied by allergic diarrhea, mast cell activation, and a predominance of Th2 cytokines, including enhanced IL-10 expression. In contrast, the development of intestinal anaphylaxis, including diarrhea, mast cell activation, and Th2 cytokine production, was significantly attenuated in IL-10(-/-) mice compared with wild-type (WT) controls. IL-10 also directly promoted the expansion, survival, and activation of mast cells; increased FcεRI expression on mast cells; and enhanced the production of mast cell cytokines. IL-10(-/-) mast cells had reduced functional capacity, which could be restored by exogenous IL-10. Similarly, attenuated passive anaphylaxis in IL-10(-/-) mice could be restored by IL-10 administration. The adoptive transfer of WT mast cells restored allergic symptoms in IL-10(-/-) mice, suggesting that the attenuated phenotype observed in these animals is due to a deficiency in IL-10-responding mast cells. Lastly, transfer of WT CD4 T cells also restored allergic diarrhea and intestinal mast cell numbers in IL-10(-/-) mice, suggesting that the regulation of IL-10-mediated intestinal mast cell expansion is T cell dependent. Our observations demonstrate a critical role for IL-10 in driving mucosal mast cell expansion and activation, suggesting that, in its absence, mast cell function is impaired, leading to attenuated food allergy symptoms. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Asymptotically-Equal-To 10 eV ionization shift in Ir K{alpha}{sub 2} from a near-coincident Lu K-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, N. R.; Weber, B. V.; Phipps, D.

    Close to an x-ray filter's K-edge the transmission depends strongly on the photon energy. For a few atom pairs, the K-edge of one is only a few tens of eV higher than a K-line energy of another, so that a small change in the line's energy becomes a measurable change in intensity behind such a matching filter. Lutetium's K-edge is Asymptotically-Equal-To 27 eV above iridium's K{alpha}{sub 2} line, Asymptotically-Equal-To 63.287 keV for cold Ir. A Lu filter reduces this line's intensity by Asymptotically-Equal-To 10 % when it is emitted by a plasma, indicating an ionization shift {Delta}E Asymptotically-Equal-To 10{+-}1 eV.

  17. Observation of 1(-)0(-) final states from psi(2S) decays and e(+)e(-) annihilation.

    PubMed

    Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Rosner, J L; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Wiss, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E

    2005-01-14

    Using CLEO data collected from CESR e(+)e(-) collisions at the psi(2S) resonance and nearby continuum at sqrt[s]=3.67 GeV, we report the first significantly nonzero measurements of light vector-pseudoscalar hadron pair production (including rhopi, omegapi, rhoeta, and K(*0)K0 ) and the pi(+)pi(-)pi(0) final state, both from psi(2S) decays and direct e(+)e(-) annihilation.

  18. Measurement of the cosmic ray spectrum above 4 × 10{sup 18} eV using inclined events detected with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collaboration: Pierre Augur Collaboration

    2015-08-01

    A measurement of the cosmic-ray spectrum for energies exceeding 4×10{sup 18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10{sup 18} eV, the ''ankle'', the flux can be described by a power law E{sup −γ} with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (E{sub s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absencemore » of suppression, we find E{sub s}=(5.12±0.25 (stat){sup +1.0}{sub −1.2} (sys))×10{sup 19} eV.« less

  19. Flowing BIon

    NASA Astrophysics Data System (ADS)

    Grignani, Gianluca; Harmark, Troels; Kift, Callum; Marini, Andrea; Orselli, Marta

    2017-11-01

    In this paper we use the effective blackfold description of branes to extend the study of the thermal BIon, a D-brane, and parallel anti-D-brane connected by a wormhole with F-string charge in hot flat space, by introducing a radial boost along the brane. The boosted system behaves qualitatively differently from both the extremal and the thermal BIon considered previously. Interestingly, we are able to formulate a first law of thermodynamics for the system as a whole, despite the fact that it is not a stationary blackfold. In particular, the global temperature is given by the rest frame temperature times the gamma factor of special relativity which is the inverse transformation compared to the case of stationary blackfolds. In addition we define two new kinds of thermodynamic conjugate variables, the energy flux W and the integrated velocity on the brane. We find that a phase transition occurs by varying the energy flux W . Below a critical value of W the brane separation Δ changes only slightly with W . Instead above the critical value Δ grows exponentially.

  20. Energy spectrum and arrival direction of primary cosmic rays of energy above 10 to the 18th power eV

    NASA Technical Reports Server (NTRS)

    Teshima, M.; Nagano, M.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.; Matsubara, Y.; Mori, M.; Ohoka, H.

    1985-01-01

    The observation of ultra high energy cosmic rays with 20 sq km array has started at Akeno. The preliminary results on energy spectrum and arrival direction of energies above 10 to the 18th eV are prsented with data accumulated for four years with the 1 sq km array, for two years with the 4 sq km array and for a half year with the new array. The energy spectrum is consistent with the previous experiments showing the flattening above 10 to the 18.5 eV.

  1. The sidereal anisotropy of cosmic rays around 3 x 10 (15) eV observed at a middle north latitude

    NASA Technical Reports Server (NTRS)

    Murakami, K.; Kifune, T.; Hayashida, N.

    1985-01-01

    The sidereal time variation of cosmic rays (median primary energy : 3 10 to the 15th power eV) is investigated with air shower observations at Akeno, Japan (900 m a.s.l.) which started in September 1981. Air showers are detected by a coincidence requirement on several muon detectors. The result obtained for three years is suggestive of a big semi-diurnal variation (0.37 % in amplitude). On the other hand, the diurnal variation is rather small than the semi-diurnal one. The feature of the sidereal anisotropy supposed from the present result looks quite different from that below 10 to the 14th power eV.

  2. E-cigarette use and intentions to smoke among 10-11-year-old never-smokers in Wales

    PubMed Central

    Moore, Graham F; Littlecott, Hannah J; Moore, Laurence; Ahmed, Nilufar; Holliday, Jo

    2016-01-01

    Background E-cigarettes are seen by some as offering harm reduction potential, where used effectively as smoking cessation devices. However, there is emerging international evidence of growing use among young people, amid concerns that this may increase tobacco uptake. Few UK studies examine the prevalence of e-cigarette use in non-smoking children or associations with intentions to smoke. Methods A cross-sectional survey of year 6 (10–11-year-old) children in Wales. Approximately 1500 children completed questions on e-cigarette use, parental and peer smoking, and intentions to smoke. Logistic regression analyses among never smoking children, adjusted for school-level clustering, examined associations of smoking norms with e-cigarette use, and of e-cigarette use with intentions to smoke tobacco within the next 2 years. Results Approximately 6% of year 6 children, including 5% of never smokers, reported having used an e-cigarette. By comparison to children whose parents neither smoked nor used e-cigarettes, children were most likely to have used an e-cigarette if parents used both tobacco and e-cigarettes (OR=3.40; 95% CI 1.73 to 6.69). Having used an e-cigarette was associated with intentions to smoke (OR=3.21; 95% CI 1.66 to 6.23). While few children reported that they would smoke in 2 years’ time, children who had used an e-cigarette were less likely to report that they definitely would not smoke tobacco in 2 years’ time and were more likely to say that they might. Conclusions E-cigarettes represent a new form of childhood experimentation with nicotine. Findings are consistent with a hypothesis that children use e-cigarettes to imitate parental and peer smoking behaviours, and that e-cigarette use is associated with weaker antismoking intentions. PMID:25535293

  3. 29 CFR 779.320 - Partial list of establishments whose sales or service may be recognized as retail.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Antique shops. Auto courts. Automobile dealers' establishments. Automobile laundries. Automobile repair shops. Barber shops. Beauty shops. Bicycle shops. Billiard parlors. Book stores. Bowling alleys. Butcher shops. Cafeterias. Cemeteries. China, glassware stores. Cigar stores. Clothing stores. Coal yards...

  4. 29 CFR 779.320 - Partial list of establishments whose sales or service may be recognized as retail.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Antique shops. Auto courts. Automobile dealers' establishments. Automobile laundries. Automobile repair shops. Barber shops. Beauty shops. Bicycle shops. Billiard parlors. Book stores. Bowling alleys. Butcher shops. Cafeterias. Cemeteries. China, glassware stores. Cigar stores. Clothing stores. Coal yards...

  5. 29 CFR 779.320 - Partial list of establishments whose sales or service may be recognized as retail.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Antique shops. Auto courts. Automobile dealers' establishments. Automobile laundries. Automobile repair shops. Barber shops. Beauty shops. Bicycle shops. Billiard parlors. Book stores. Bowling alleys. Butcher shops. Cafeterias. Cemeteries. China, glassware stores. Cigar stores. Clothing stores. Coal yards...

  6. 29 CFR 779.320 - Partial list of establishments whose sales or service may be recognized as retail.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Antique shops. Auto courts. Automobile dealers' establishments. Automobile laundries. Automobile repair shops. Barber shops. Beauty shops. Bicycle shops. Billiard parlors. Book stores. Bowling alleys. Butcher shops. Cafeterias. Cemeteries. China, glassware stores. Cigar stores. Clothing stores. Coal yards...

  7. 29 CFR 779.320 - Partial list of establishments whose sales or service may be recognized as retail.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Antique shops. Auto courts. Automobile dealers' establishments. Automobile laundries. Automobile repair shops. Barber shops. Beauty shops. Bicycle shops. Billiard parlors. Book stores. Bowling alleys. Butcher shops. Cafeterias. Cemeteries. China, glassware stores. Cigar stores. Clothing stores. Coal yards...

  8. 'Footballs', conical singularities, and the Liouville equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redi, Michele

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints.

  9. Generating the curvature perturbation at the end of inflation in string theory.

    PubMed

    Lyth, David H; Riotto, Antonio

    2006-09-22

    In brane inflationary scenarios, the cosmological perturbations are supposed to originate from the vacuum fluctuations of the inflaton field corresponding to the position of the brane. We show that a significant, and possibly dominant, contribution to the curvature perturbation is generated at the end of inflation through the vacuum fluctuations of fields, other than the inflaton, which are light during the inflationary trajectory and become heavy at the brane-antibrane annihilation. These fields appear generically in string compactifications where the background geometry has exact or approximate isometries and parametrize the internal angular directions of the brane.

  10. Singular gauge transformation and the Erler-Maccaferri solution in bosonic open string field theory

    NASA Astrophysics Data System (ADS)

    Miwa, Akitsugu; Sugita, Kazuhiro

    2017-09-01

    We study candidate multiple-brane solutions of bosonic open string field theory. They are constructed by performing a singular gauge transformation n times for the Erler-Maccaferri solution. We check the equation of motion in the strong sense, and find that it is satisfied only when we perform the gauge transformation once. We calculate the energy for that case and obtain a support that the solution is a multiple-brane solution. We also check the tachyon profile for a specific solution that we interpret as describing a D24-brane placed on a D25-brane.

  11. Peroxygenase-Catalyzed Fatty Acid Epoxidation in Cereal Seeds (Sequential Oxidation of Linoleic Acid into 9(S),12(S),13(S)-Trihydroxy-10(E)-Octadecenoic Acid).

    PubMed Central

    Hamberg, M.; Hamberg, G.

    1996-01-01

    Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase. PMID:12226220

  12. Modulus stabilization in a non-flat warped braneworld scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; SenGupta, Soumitra

    2017-05-01

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant.

  13. 3 d printing of 2 d N=(0,2) gauge theories

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Hasan, Azeem

    2018-05-01

    We introduce 3 d printing, a new algorithm for generating 2 d N=(0,2) gauge theories on D1-branes probing singular toric Calabi-Yau 4-folds using 4 d N=1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds as starting points. Equivalently, this method produces brane brick models starting from brane tilings. 3 d printing represents a significant improvement with respect to previously available tools, allowing a straightforward determination of gauge theories for geometries that until now could only be tackled using partial resolution. We investigate the interplay between triality, an IR equivalence between different 2 d N=(0,2) gauge theories, and the freedom in 3 d printing given an underlying Calabi-Yau 4-fold. Finally, we present the first discussion of the consistency and reduction of brane brick models.

  14. The lateral distribution of extensive air showers produced by cosmic rays above 10 19 eV as measured by water-Čerenkov detectors

    NASA Astrophysics Data System (ADS)

    Coy, R. N.; Cunningham, G.; Pryke, C. L.; Watson, A. A.

    1997-03-01

    Measurements of the lateral distribution function (ldf) of Extensive Air Showers (EAS) as recorded by the array of water-Čerenkov detectors at Haverah Park are described, and accurate experimental parameterizations expressing the mean ldf for 2 × 10 17 < E < 4 × 10 18 eV, 50 < r < 700 m, and θ < 45° are given. An extrapolation of these relations to the regime E10 19 eV and r > 700 m is described: extrapolation in this energy domain appears valid, and an approximate correction term is given for the larger core distances. The results of recent Monte Carlo simulations of shower development and detector behavior are compared to the parameterized ldf. The agreement is good increasing confidence that these simulations may be trusted as design tools for the Auger project, a proposed 'next generation' detector system.

  15. Search for the decay KL to pi0 e+ e- and study of the decay KL to e+ e- gamma gamma

    NASA Astrophysics Data System (ADS)

    Mikelsons, Peter L.

    The particle decay KL-->p0e+e- is a probe of direct CP violation, a phenomenon previously only seen in KL-->pp decays. Understanding direct CP violation is an important part of understanding violation of CP symmetry in general. Experimentally, one of the obstacles to studying KL-->p0e+e- is the rare decay KL-->e+e- gg , which can mimic KL-->p0e+e- . A study of KL-->p0e+e- and KL-->e+e- gg was made as part of the KTeV E799 experiment. K-->p0p0Dalitz decays were used for normalization, and a KL flux of (2.65 +/- 0.18) × 1011 decays was measured. We observed 1578 KL-->e+e- gg candidate events, of which 1516.5 +/- 1.8 remain after background subtraction. These events allow measurement of the Bergström, Massó, and Singer KLgg vertex form- factor parameter, aK*=+0.015+/- 0.12stat.+/-0.03sys. , in mild disagreement with the previously fit value of -0.28 +/- 0.08. This form-factor implies a corresponding branching ratio of G(KL-->e+e- g g,E*g>5 MeV)/G(KL-->all ) = (5.82+/-0.15stat.+/-0.31 sys.+/-0.19BR)× 10-7 , in agreement with the QED prediction. The search for KL-->p0e+e- found two candidate events. However, 1.06 +/- 0.41 events were expected from background processes. Therefore, we do not claim observation of KL-->p0e+e- . Instead, with a single-event sensitivity of 1.00 × 10 -10, we set an upper limit on the KL-->p0e+e- branching ratio of 4.86 × 10-10 at the 90% confidence level.

  16. Search for Strange Pentaquark Production in e{sup +}e{sup -} Annihilations at {radical}s=10.5 GeV and in {Upsilon}(4S) Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B

    2004-08-16

    The authors present a preliminary inclusive search for strange pentaquark production in e{sup +}e{sup -} interactions at a center-of-mass energy of 10.58 GeV using 123 fb{sup -1} of data collected with the BABAR detector. They look for the states that have been reported previously: the {Theta}{sup +}(1540), interpreted as a udud{bar s} state; and the {Xi}{sup --}(1860) and {Xi}{sup 0}(1860), candidate dsds{bar u} and uss(u{bar u} + d{bar d}) states, respectively. In addition they search for other members of the antidecuplet and corresponding octet to which these states are thought to belong. They find no evidence for the production ofmore » such states and set preliminary limits on their production cross sections as functions of c.m. momentum. The corresponding limits on the {Theta}{sup +}(1540) and {Xi}{sup --}(1860) rates per e{sup +}e{sup -} --> q{bar q} event are well below the rates measured for ordinary baryons of similar mass.« less

  17. A method to improve observations of gamma-ray sources near 10 (15) eV

    NASA Technical Reports Server (NTRS)

    Sommers, P.; Elbert, J. W.

    1985-01-01

    Now that sources of gamma rays near 10 to the 15th power eV have been identified, there is a need for telescopes which can study in detail the high energy gamma ray emissions from these sources. The capabilities of a Cerenkov detector which can track a source at large zenith angle (small elevation angle) are analyzed. Because the observed showers must then develop far from the detector, the effective detection area is very large. During a single half-hour hot phase of Cygnus X-3, for example, it may be possible to detect 45 signal showers compared with 10 background showers. Time structure within the hot phase may then be discernible. The precise capabilities of the detector depend on its mirror size, angular acceptance, electronic speed, coincidence properties, etc. Calculations are presented for one feasible design using mirrors of an improved Fly's Eye type.

  18. Observations of potential ultra high energy gamma-ray sources above 10(15) eV

    NASA Technical Reports Server (NTRS)

    Lambert, A.; Lloyd-Evans, J.; Perrett, J. C.; Watson, A. A.; West, A. A.

    1985-01-01

    The Haverah Park 50 m water-Cerenkov array has been used to examine a number of periodic sources for ultra high energy gamma-ray emission above 10 to the 15th power eV. The data, recorded between 1 Jan. 1979 and 31 Dec. 1984, feature a modest angular resolution of approx 3 deg with millisecond arrival time resolution post 1982. The sources investigated include the Crab pulsar, Her X-1, Au0115 + 63 and Geminga. All objects have been detected by workers in the TeV region, with varying degrees of confidence.

  19. E-cigarette use and intentions to smoke among 10-11-year-old never-smokers in Wales.

    PubMed

    Moore, Graham F; Littlecott, Hannah J; Moore, Laurence; Ahmed, Nilufar; Holliday, Jo

    2016-03-01

    E-cigarettes are seen by some as offering harm reduction potential, where used effectively as smoking cessation devices. However, there is emerging international evidence of growing use among young people, amid concerns that this may increase tobacco uptake. Few UK studies examine the prevalence of e-cigarette use in non-smoking children or associations with intentions to smoke. A cross-sectional survey of year 6 (10-11-year-old) children in Wales. Approximately 1500 children completed questions on e-cigarette use, parental and peer smoking, and intentions to smoke. Logistic regression analyses among never smoking children, adjusted for school-level clustering, examined associations of smoking norms with e-cigarette use, and of e-cigarette use with intentions to smoke tobacco within the next 2 years. Approximately 6% of year 6 children, including 5% of never smokers, reported having used an e-cigarette. By comparison to children whose parents neither smoked nor used e-cigarettes, children were most likely to have used an e-cigarette if parents used both tobacco and e-cigarettes (OR=3.40; 95% CI 1.73 to 6.69). Having used an e-cigarette was associated with intentions to smoke (OR=3.21; 95% CI 1.66 to 6.23). While few children reported that they would smoke in 2 years' time, children who had used an e-cigarette were less likely to report that they definitely would not smoke tobacco in 2 years' time and were more likely to say that they might. E-cigarettes represent a new form of childhood experimentation with nicotine. Findings are consistent with a hypothesis that children use e-cigarettes to imitate parental and peer smoking behaviours, and that e-cigarette use is associated with weaker antismoking intentions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Holographic self-tuning of the cosmological constant

    NASA Astrophysics Data System (ADS)

    Charmousis, Christos; Kiritsis, Elias; Nitti, Francesco

    2017-09-01

    We propose a brane-world setup based on gauge/gravity duality in which the four-dimensional cosmological constant is set to zero by a dynamical self-adjustment mechanism. The bulk contains Einstein gravity and a scalar field. We study holographic RG flow solutions, with the standard model brane separating an infinite volume UV region and an IR region of finite volume. For generic values of the brane vacuum energy, regular solutions exist such that the four-dimensional brane is flat. Its position in the bulk is determined dynamically by the junction conditions. Analysis of linear fluctuations shows that a regime of 4-dimensional gravity is possible at large distances, due to the presence of an induced gravity term. The graviton acquires an effective mass, and a five-dimensional regime may exist at large and/or small scales. We show that, for a broad choice of potentials, flat-brane solutions are manifestly stable and free of ghosts. We compute the scalar contribution to the force between brane-localized sources and show that, in certain models, the vDVZ discontinuity is absent and the effective interaction at short distances is mediated by two transverse graviton helicities.