Sample records for e2 glycoprotein mutations

  1. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine.

    PubMed

    Risatti, G R; Borca, M V; Kutish, G F; Lu, Z; Holinka, L G; French, R A; Tulman, E R; Rock, D L

    2005-03-01

    To identify genetic determinants of classical swine fever virus (CSFV) virulence and host range, chimeras of the highly pathogenic Brescia strain and the attenuated vaccine strain CS were constructed and evaluated for viral virulence in swine. Upon initial screening, only chimeras 138.8v and 337.14v, the only chimeras containing the E2 glycoprotein of CS, were attenuated in swine despite exhibiting unaltered growth characteristics in primary porcine macrophage cell cultures. Additional viral chimeras were constructed to confirm the role of E2 in virulence. Chimeric virus 319.1v, which contained only the CS E2 glycoprotein in the Brescia background, was markedly attenuated in pigs, exhibiting significantly decreased virus replication in tonsils, a transient viremia, limited generalization of infection, and decreased virus shedding. Chimeras encoding all Brescia structural proteins in a CS genetic background remained attenuated, indicating that additional mutations outside the structural region are important for CS vaccine virus attenuation. These results demonstrate that CS E2 alone is sufficient for attenuating Brescia, indicating a significant role for the CSFV E2 glycoprotein in swine virulence.

  2. Herpes Simplex Virus Type 2 Glycoprotein G-Negative Clinical Isolates Are Generated by Single Frameshift Mutations

    PubMed Central

    Liljeqvist, Jan-Åke; Svennerholm, Bo; Bergström, Tomas

    1999-01-01

    Herpes simplex virus (HSV) codes for several envelope glycoproteins, including glycoprotein G-2 (gG-2) of HSV type 2 (HSV-2), which are dispensable for replication in cell culture. However, clinical isolates which are deficient in such proteins occur rarely. We describe here five clinical HSV-2 isolates which were found to be unreactive to a panel of anti-gG-2 monoclonal antibodies and therefore considered phenotypically gG-2 negative. These isolates were further examined for expression of the secreted amino-terminal and cell-associated carboxy-terminal portions of gG-2 by immunoblotting and radioimmunoprecipitation. The gG-2 gene was completely inactivated in four isolates, with no expression of the two protein products. For one isolate a normally produced secreted portion and a truncated carboxy-terminal portion of gG-2 were detected in virus-infected cell medium. Sequencing of the complete gG-2 gene identified a single insertion or deletion of guanine or cytosine nucleotides in all five strains, resulting in a premature termination codon. The frameshift mutations were localized within runs of five or more guanine or cytosine nucleotides and were dispersed throughout the gene. For the isolate for which a partially inactivated gG-2 gene was detected, the frameshift mutation was localized upstream of but adjacent to the nucleotides coding for the transmembranous region. Thus, this study demonstrates the existence of clinical HSV-2 isolates which do not express an envelope glycoprotein and identifies the underlying molecular mechanism to be a single frameshift mutation. PMID:10559290

  3. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine.

    PubMed

    Risatti, G R; Holinka, L G; Lu, Z; Kutish, G F; Tulman, E R; French, R A; Sur, J H; Rock, D L; Borca, M V

    2005-12-05

    Transposon linker insertion mutagenesis of a full-length infectious clone (IC) (pBIC) of the pathogenic classical swine fever virus (CSFV) strain Brescia was used to identify genetic determinants of CSFV virulence and host range. Here, we characterize a virus mutant, RB-C22v, possessing a 19-residue insertion at the carboxyl terminus of E1 glycoprotein. Although RB-C22v exhibited normal growth characteristics in primary porcine macrophage cell cultures, the major target cell of CSFV in vivo, it was markedly attenuated in swine. All RB-C22v-infected pigs survived infection remaining clinically normal in contrast to the 100% mortality observed for BICv-infected animals. Comparative pathogenesis studies demonstrated a delay in RB-C22v spread to, and decreased replication in the tonsils, a 10(2) to 10(7) log10 reduction in virus titers in lymphoid tissues and blood, and an overall delay in generalization of infection relative to BICv. Notably, RB-C22v-infected animals were protected from clinical disease when challenged with pathogenic BICv at 3, 5, 7, and 21 days post-RB-C22v inoculation. Viremia, viral replication in tissues, and oronasal shedding were reduced in animals challenged at 7 and 21 DPI. Notably BICv-specific RNA was not detected in tonsils of challenged animals. These results indicate that a carboxyl-terminal domain of E1 glycoprotein affects virulence of CSFV in swine, and they demonstrate that mutation of this domain provides the basis for a rationally designed and efficacious live-attenuated CSF vaccine.

  4. Spontaneous Mutation at Amino Acid 544 of the Ebola Virus Glycoprotein Potentiates Virus Entry and Selection in Tissue Culture.

    PubMed

    Ruedas, John B; Ladner, Jason T; Ettinger, Chelsea R; Gummuluru, Suryaram; Palacios, Gustavo; Connor, John H

    2017-08-01

    Ebolaviruses have a surface glycoprotein (GP 1,2 ) that is required for virus attachment and entry into cells. Mutations affecting GP 1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP 1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP 1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP 1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirus IMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544

  5. Spontaneous Mutation at Amino Acid 544 of the Ebola Virus Glycoprotein Potentiates Virus Entry and Selection in Tissue Culture

    PubMed Central

    Ladner, Jason T.; Ettinger, Chelsea R.; Palacios, Gustavo

    2017-01-01

    ABSTRACT Ebolaviruses have a surface glycoprotein (GP1,2) that is required for virus attachment and entry into cells. Mutations affecting GP1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirus. IMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544

  6. A Single Mutation in the E2 Glycoprotein Important for Neurovirulence Influences Binding of Sindbis Virus to Neuroblastoma Cells

    PubMed Central

    Lee, Peiyu; Knight, Ronald; Smit, Jolanda M.; Wilschut, Jan; Griffin, Diane E.

    2002-01-01

    The amino acid at position 55 of the E2 glycoprotein (E255) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E255 = histidine) differs only at this position from virus strain 633 (E255= glutamine), yet TE is considerably more neurovirulent than 633. TE replicates better than 633 in a neuroblastoma cell line (N18), but similarly in BHK cells. Immunofluorescence staining showed that most N18 cells were infected by TE at a multiplicity of infection (MOI) of 50 to 500 and by 633 only at an MOI of 5,000, while both viruses infected essentially 100% of BHK cells at an MOI of 5. When exposed to pH 5, TE and 633 viruses fused to similar extents with liposomes derived from BHK or N18 cell lipids, but fusion with N18-derived liposomes was less extensive (15 to 20%) than fusion with BHK-derived liposomes (∼50%). Binding of TE and 633 to N18, but not BHK, cells was dependent on the medium used for virus binding. Differences between TE and 633 binding to N18 cells were evident in Dulbecco's modified Eagle medium (DMEM), but not in RPMI. In DMEM, the binding efficiency of 633 decreased significantly as the pH was raised from 6.5 to 8.0, while that of TE did not change. The same pattern was observed with RPMI when the ionic strength of RPMI was increased to that of DMEM. TE bound better to heparin-Sepharose than 633, but this difference was not pH dependent. Growth of N18 and BHK cells in sodium chlorate to eliminate all sulfation decreased virus-cell binding, suggesting the involvement of sulfated molecules on the cell surface. Taken together, the presence of glutamine at E255 impairs SV binding to neural cells under conditions characteristic of interstitial fluid. We conclude that mutation to histidine participates in or stabilizes the interaction between the virus and the surface of neural cells, contributing to greater neurovirulence. PMID:12021363

  7. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus

    PubMed Central

    Chi, Xiaojuan; Wang, Song; Ma, Yanmei; Chen, Jilong

    2017-01-01

    The classical swine fever virus (CSFV), circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC) showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA) and translational selection-correlation analysis between the general average hydropathicity (Gravy) and aromaticity (Aroma), and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s). Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV. PMID:28880881

  8. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus.

    PubMed

    Chen, Ye; Li, Xinxin; Chi, Xiaojuan; Wang, Song; Ma, Yanmei; Chen, Jilong

    2017-01-01

    The classical swine fever virus (CSFV), circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC) showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA) and translational selection-correlation analysis between the general average hydropathicity (Gravy) and aromaticity (Aroma), and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s). Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.

  9. Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine.

    PubMed

    Risatti, G R; Holinka, L G; Fernandez Sainz, I; Carrillo, C; Kutish, G F; Lu, Z; Zhu, J; Rock, D L; Borca, M V

    2007-08-01

    We have previously reported [Risatti, G.R., Borca, M.V., Kutish, G.F., Lu, Z., Holinka, L.G., French, R.A., Tulman, E.R., Rock, D.L. 2005a. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J. Virol. 79, 3787-3796] that chimeric virus 319.1v containing the E2 glycoprotein gene from Classical Swine Fever Virus (CSFV) vaccine strain CS with the genetic background of highly virulent CSFV strain Brescia (BICv) was markedly attenuated in pigs. To identify the amino acids mediating 319.1v attenuation a series of chimeric viruses containing CS E2 residues in the context of the Brescia strain were constructed. Chimera 357v, containing CS E2 residues 691 to 881 of CSFV polyprotein was virulent, while chimera 358v, containing CS E2 residues 882 to 1064, differing in thirteen amino acids from BICv, was attenuated in swine. Single or double substitutions of those amino acids in BICv E2 to CS E2 residues did not affect virulence. Groups of amino acids were then substituted in BICv E2 to CS E2 residues. Mutant 32v, with six substitutions between residues 975 and 1059, and mutant 33v, with six substitutions between 955 and 994, induced disease indistinguishable from BICv. Mutant 31v, with seven substitutions between residues 882 and 958, induced a delayed onset of lethal disease. Amino acids abrogating BICv virulence were then determined by progressively introducing six CS residues into 31v. Mutant 39v, containing nine residue substitutions, was virulent. Mutant 40v, containing ten residue substitutions, induced mild disease. Mutant 42v, containing twelve substitutions, and mutant 43v, with an amino acid composition identical to 358v, were attenuated in swine indicating that all substitutions were necessary for attenuation of the highly virulent strain Brescia. Importantly, 358v protected swine from challenge with virulent BICv at 3 and 28 days post-infection.

  10. Incorporation of Hepatitis C Virus E1 and E2 Glycoproteins: The Keystones on a Peculiar Virion

    PubMed Central

    Vieyres, Gabrielle; Dubuisson, Jean; Pietschmann, Thomas

    2014-01-01

    Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response. PMID:24618856

  11. Structure of Hepatitis C virus envelope glycoprotein E1 antigenic site 314–324 in complex with antibody IGH526

    DOE PAGES

    Kong, Leopold; Kadam, Rameshwar U.; Giang, Erick; ...

    2015-06-30

    Hepatitis C virus (HCV) is a positive-strand RNA virus within the Flaviviridae family. The viral “spike” of HCV is formed by two envelope glycoproteins, E1 and E2, which together mediate viral entry by engaging host receptors and undergoing conformational changes to facilitate membrane fusion. While E2 can be readily produced in the absence of E1, E1 cannot be expressed without E2 and few reagents, including monoclonal antibodies, are available for study of this essential HCV glycoprotein. A human MAb to E1, IGH526, was previously reported to cross-neutralize different HCV isolates and, therefore, we sought to further characterize the IGH526 neutralizingmore » epitope to obtain information for vaccine design. Here, we found that MAb IGH526 bound to a discontinuous epitope, but with a major component corresponding to E1 residues 314-324. The crystal structure of IGH526 Fab with this E1 glycopeptide at 1.75Å resolution revealed that the antibody binds to one face of an α-helical peptide. Single mutations on the helix substantially lowered IGH526 binding but did not affect neutralization, indicating either that multiple mutations are required or that additional regions are recognized by the antibody in the context of the membrane-associated envelope oligomer. Finally, molecular dynamics simulations indicate the free peptide is flexible in solution, suggesting that it requires stabilization for use as a candidate vaccine immunogen.« less

  12. Computational Prediction of the Heterodimeric and Higher-Order Structure of gpE1/gpE2 Envelope Glycoproteins Encoded by Hepatitis C Virus

    PubMed Central

    Logan, Michael R.; Hockman, Darren; Koehler Leman, Julia; Law, John Lok Man

    2017-01-01

    ABSTRACT Despite the recent success of newly developed direct-acting antivirals against hepatitis C, the disease continues to be a global health threat due to the lack of diagnosis of most carriers and the high cost of treatment. The heterodimer formed by glycoproteins E1 and E2 within the hepatitis C virus (HCV) lipid envelope is a potential vaccine candidate and antiviral target. While the structure of E1/E2 has not yet been resolved, partial crystal structures of the E1 and E2 ectodomains have been determined. The unresolved parts of the structure are within the realm of what can be modeled with current computational modeling tools. Furthermore, a variety of additional experimental data is available to support computational predictions of E1/E2 structure, such as data from antibody binding studies, cryo-electron microscopy (cryo-EM), mutational analyses, peptide binding analysis, linker-scanning mutagenesis, and nuclear magnetic resonance (NMR) studies. In accordance with these rich experimental data, we have built an in silico model of the full-length E1/E2 heterodimer. Our model supports that E1/E2 assembles into a trimer, which was previously suggested from a study by Falson and coworkers (P. Falson, B. Bartosch, K. Alsaleh, B. A. Tews, A. Loquet, Y. Ciczora, L. Riva, C. Montigny, C. Montpellier, G. Duverlie, E. I. Pecheur, M. le Maire, F. L. Cosset, J. Dubuisson, and F. Penin, J. Virol. 89:10333–10346, 2015, https://doi.org/10.1128/JVI.00991-15). Size exclusion chromatography and Western blotting data obtained by using purified recombinant E1/E2 support our hypothesis. Our model suggests that during virus assembly, the trimer of E1/E2 may be further assembled into a pentamer, with 12 pentamers comprising a single HCV virion. We anticipate that this new model will provide a useful framework for HCV envelope structure and the development of antiviral strategies. IMPORTANCE One hundred fifty million people have been estimated to be infected with hepatitis C

  13. Structures of the Oligosaccharides of the Glycoprotein Coded by Early Region E3 of Adenovirus 2

    PubMed Central

    Kornfeld, Rosalind; Wold, William S. M.

    1981-01-01

    Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-3H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-β-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man9GlcNAc and Man8GlcNAc and small amounts of Man7GlcNAc and Man6GlcNAc. The pulse-chase sample had predominantly Man8GlcNAc and much less Man9GlcNAc, indicating that processing of the Man9GlcNAc to Man8GlcNAc had occurred during the chase period. Thus, Man8GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with α-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man9GlcNAc were identical to those of the lipid-linked Glc3Man9GlcNAc2 donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded glycoprotein. Images PMID:7321093

  14. Structures of the oligosaccharides of the glycoprotein coded by early region E3 of adenovirus 2.

    PubMed

    Kornfeld, R; Wold, W S

    1981-11-01

    Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-(3)H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-beta-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man(9)GlcNAc and Man(8)GlcNAc and small amounts of Man(7)GlcNAc and Man(6)GlcNAc. The pulse-chase sample had predominantly Man(8)GlcNAc and much less Man(9)GlcNAc, indicating that processing of the Man(9)GlcNAc to Man(8)GlcNAc had occurred during the chase period. Thus, Man(8)GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with alpha-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man(9)GlcNAc were identical to those of the lipid-linked Glc(3)Man(9)GlcNAc(2) donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell

  15. Computational Prediction of the Heterodimeric and Higher-Order Structure of gpE1/gpE2 Envelope Glycoproteins Encoded by Hepatitis C Virus.

    PubMed

    Freedman, Holly; Logan, Michael R; Hockman, Darren; Koehler Leman, Julia; Law, John Lok Man; Houghton, Michael

    2017-04-15

    Despite the recent success of newly developed direct-acting antivirals against hepatitis C, the disease continues to be a global health threat due to the lack of diagnosis of most carriers and the high cost of treatment. The heterodimer formed by glycoproteins E1 and E2 within the hepatitis C virus (HCV) lipid envelope is a potential vaccine candidate and antiviral target. While the structure of E1/E2 has not yet been resolved, partial crystal structures of the E1 and E2 ectodomains have been determined. The unresolved parts of the structure are within the realm of what can be modeled with current computational modeling tools. Furthermore, a variety of additional experimental data is available to support computational predictions of E1/E2 structure, such as data from antibody binding studies, cryo-electron microscopy (cryo-EM), mutational analyses, peptide binding analysis, linker-scanning mutagenesis, and nuclear magnetic resonance (NMR) studies. In accordance with these rich experimental data, we have built an in silico model of the full-length E1/E2 heterodimer. Our model supports that E1/E2 assembles into a trimer, which was previously suggested from a study by Falson and coworkers (P. Falson, B. Bartosch, K. Alsaleh, B. A. Tews, A. Loquet, Y. Ciczora, L. Riva, C. Montigny, C. Montpellier, G. Duverlie, E. I. Pecheur, M. le Maire, F. L. Cosset, J. Dubuisson, and F. Penin, J. Virol. 89:10333-10346, 2015, https://doi.org/10.1128/JVI.00991-15). Size exclusion chromatography and Western blotting data obtained by using purified recombinant E1/E2 support our hypothesis. Our model suggests that during virus assembly, the trimer of E1/E2 may be further assembled into a pentamer, with 12 pentamers comprising a single HCV virion. We anticipate that this new model will provide a useful framework for HCV envelope structure and the development of antiviral strategies. IMPORTANCE One hundred fifty million people have been estimated to be infected with hepatitis C virus, and

  16. Substitution of specific cysteine residues in E1 glycoprotein of classical swine fever virus strain Brescia affects formation of E1-E2 heterodimers and alters virulence in swine

    USDA-ARS?s Scientific Manuscript database

    E1, along with E^rns and E2, is one of the three envelope glycoproteins of Classical Swine Fever Virus (CSFV). E1 and E2 are anchored to the virus envelope at their carboxyl termini and E^rns loosely associates with the viral envelope. In infected cells, E2 forms homodimers and heterodimers with E1,...

  17. Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein

    PubMed Central

    Sautto, Giuseppe A; Wisskirchen, Karin; Clementi, Nicola; Castelli, Matteo; Diotti, Roberta A; Graf, Julia; Clementi, Massimo; Burioni, Roberto; Protzer, Ulrike; Mancini, Nicasio

    2016-01-01

    Objective The recent availability of novel antiviral drugs has raised new hope for a more effective treatment of hepatitis C virus (HCV) infection and its severe sequelae. However, in the case of non-responding or relapsing patients, alternative strategies are needed. To this end we have used chimeric antigen receptors (CARs), a very promising approach recently used in several clinical trials to redirect primary human T cells against different tumours. In particular, we designed the first CARs against HCV targeting the HCV/E2 glycoprotein (HCV/E2). Design Anti-HCV/E2 CARs were composed of single-chain variable fragments (scFvs) obtained from a broadly cross-reactive and cross-neutralising human monoclonal antibody (mAb), e137, fused to the intracellular signalling motif of the costimulatory CD28 molecule and the CD3ζ domain. Activity of CAR-grafted T cells was evaluated in vitro against HCV/E2-transfected cells as well as hepatocytes infected with cell culture-derived HCV (HCVcc). Results In this proof-of-concept study, retrovirus-transduced human T cells expressing anti-HCV/E2 CARs were endowed with specific antigen recognition accompanied by degranulation and secretion of proinflammatory and antiviral cytokines, such as interferon γ, interleukin 2 and tumour necrosis factor α. Moreover, CAR-grafted T cells were capable of lysing target cells of both hepatic and non-hepatic origin expressing on their surface the HCV/E2 glycoproteins of the most clinically relevant genotypes, including 1a, 1b, 2a, 3a, 4 and 5. Finally, and more importantly, they were capable of lysing HCVcc-infected hepatocytes. Conclusions Clearance of HCV-infected cells is a major therapeutic goal in chronic HCV infection, and adoptive transfer of anti-HCV/E2 CARs-grafted T cells represents a promising new therapeutic tool. PMID:25661083

  18. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    USDA-ARS?s Scientific Manuscript database

    E2, along with E^rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions including cell attachment, host range susceptibility and virulence in natural hosts. In infected cells, E2 forms homodimers as well as heterodimers with E1, media...

  19. Prediction and identification of potential immunodominant epitopes in glycoproteins B, C, E, G, and I of herpes simplex virus type 2.

    PubMed

    Pan, Mingjie; Wang, Xingsheng; Liao, Jianmin; Yin, Dengke; Li, Suqin; Pan, Ying; Wang, Yao; Xie, Guangyan; Zhang, Shumin; Li, Yuexi

    2012-01-01

    Twenty B candidate epitopes of glycoproteins B (gB2), C (gC2), E (gE2), G (gG2), and I (gI2) of herpes simplex virus type 2 (HSV-2) were predicted using DNAstar, Biosun, and Antheprot methods combined with the polynomial method. Subsequently, the biological functions of the peptides were tested via experiments in vitro. Among the 20 epitope peptides, 17 could react with the antisera to the corresponding parent proteins in the EIA tests. In particular, five peptides, namely, gB2(466-473) (EQDRKPRN), gC2(216-223) (GRTDRPSA), gE2(483-491) (DPPERPDSP), gG2(572-579) (EPPDDDDS), and gI2(286-295) (CRRRYRRPRG) had strong reaction with the antisera. All conjugates of the five peptides with the carrier protein BSA could stimulate mice into producing antibodies. The antisera to these peptides reacted strongly with the corresponding parent glycoproteins during the Western Blot tests, and the peptides reacted strongly with the antibodies against the parent glycoproteins during the EIA tests. The antisera against the five peptides could neutralize HSV-2 infection in vitro, which has not been reported until now. These results suggest that the immunodominant epitopes screened using software algorithms may be used for virus diagnosis and vaccine design against HSV-2.

  20. Arenavirus Stable Signal Peptide Is the Keystone Subunit for Glycoprotein Complex Organization

    PubMed Central

    Bederka, Lydia H.; Bonhomme, Cyrille J.; Ling, Emily L.

    2014-01-01

    ABSTRACT The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. PMID:25352624

  1. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Shimizu, Saki; Mashimo, Tomoji; Takizawa, Akiko; Serikawa, Tadao; Terada, Ryo; Ishihara, Shizuka; Kunisawa, Naofumi; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is a prototype synaptic vesicle protein regulating action potential-dependent neurotransmitters release. SV2A also serves as a specific binding site for certain antiepileptics and is implicated in the treatment of epilepsy. Here, to elucidate the role of SV2A in modulating epileptogenesis, we generated a novel rat model (Sv2aL174Q rat) carrying a Sv2a-targeted missense mutation (L174Q) and analyzed its susceptibilities to kindling development. Although animals homozygous for the Sv2aL174Q mutation exhibited normal appearance and development, they are susceptible to pentylenetetrazole (PTZ) seizures. In addition, development of kindling associated with repeated PTZ treatments or focal stimulation of the amygdala was markedly facilitated by the Sv2aL174Q mutation. Neurochemical studies revealed that the Sv2aL174Q mutation specifically reduced depolarization-induced GABA, but not glutamate, release in the hippocampus without affecting basal release or the SV2A expression level in GABAergic neurons. In addition, the Sv2aL174Q mutation selectively reduced the synaptotagmin1 (Syt1) level among the exocytosis-related proteins examined. The present results demonstrate that dysfunction of SV2A due to the Sv2aL174Q mutation impairs the synaptic GABA release by reducing the Syt1 level and facilitates the kindling development, illustrating the crucial role of SV2A-GABA system in modulating kindling epileptogenesis. PMID:27265781

  2. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    PubMed

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  3. An inter-residue network model to identify mutational-constrained regions on the Ebola coat glycoprotein

    PubMed Central

    Quinlan, Devin S.; Raman, Rahul; Tharakaraman, Kannan; Subramanian, Vidya; del Hierro, Gabriella; Sasisekharan, Ram

    2017-01-01

    Recently, progress has been made in the development of vaccines and monoclonal antibody cocktails that target the Ebola coat glycoprotein (GP). Based on the mutation rates for Ebola virus given its natural sequence evolution, these treatment strategies are likely to impose additional selection pressure to drive acquisition of mutations in GP that escape neutralization. Given the high degree of sequence conservation among GP of Ebola viruses, it would be challenging to determine the propensity of acquiring mutations in response to vaccine or treatment with one or a cocktail of monoclonal antibodies. In this study, we analyzed the mutability of each residue using an approach that captures the structural constraints on mutability based on the extent of its inter-residue interaction network within the three-dimensional structure of the trimeric GP. This analysis showed two distinct clusters of highly networked residues along the GP1-GP2 interface, part of which overlapped with epitope surfaces of known neutralizing antibodies. This network approach also permitted us to identify additional residues in the network of the known hotspot residues of different anti-Ebola antibodies that would impact antibody-epitope interactions. PMID:28397835

  4. Antibodies Targeting Novel Neutralizing Epitopes of Hepatitis C Virus Glycoprotein Preclude Genotype 2 Virus Infection

    PubMed Central

    Rao, Huiying; Jiang, Dong; Wang, Jianghua; Xie, Xingwang; Wei, Lai

    2015-01-01

    Currently, there is no effective vaccine to prevent hepatitis C virus (HCV) infection, partly due to our insufficient understanding of the virus glycoprotein immunology. Most neutralizing antibodies (nAbs) were identified using glycoprotein immunogens, such as recombinant E1E2, HCV pseudoparticles or cell culture derived HCV. However, the fact that in the HCV acute infection phase, only a small proportion of patients are self-resolved accompanied with the emergence of nAbs, indicates the limited immunogenicity of glycoprotein itself to induce effective antibodies against a highly evolved virus. Secondly, in previous reports, the immunogen sequence was mostly the genotype of the 1a H77 strain. Rarely, other genotypes/subtypes have been studied, although theoretically one genotype/subtype immunogen is able to induce cross-genotype neutralizing antibodies. To overcome these drawbacks and find potential novel neutralizing epitopes, 57 overlapping peptides encompassing the full-length glycoprotein E1E2 of subtype 1b were synthesized to immunize BALB/c mice, and the neutralizing reactive of the induced antisera against HCVpp genotypes 1–6 was determined. We defined a domain comprising amino acids (aa) 192–221, 232–251, 262–281 and 292–331 of E1, and 421–543, 564–583, 594–618 and 634–673 of E2, as the neutralizing regions of HCV glycoprotein. Peptides PUHI26 (aa 444–463) and PUHI45 (aa 604–618)-induced antisera displayed the most potent broad neutralizing reactive. Two monoclonal antibodies recognizing the PUHI26 and PUHI45 epitopes efficiently precluded genotype 2 viral (HCVcc JFH and J6 strains) infection, but they did not neutralize other genotypes. Our study mapped a neutralizing epitope region of HCV glycoprotein using a novel immunization strategy, and identified two monoclonal antibodies effective in preventing genotype 2 virus infection. PMID:26406225

  5. Alteration of a Second Putative Fusion Peptide of Structural Glycoprotein E2 of Classical Swine Fever Virus Alters Virus Replication and Virulence in Swine

    PubMed Central

    Holinka, L. G.; Largo, E.; Gladue, D. P.; O'Donnell, V.; Risatti, G. R.; Nieva, J. L.

    2016-01-01

    ABSTRACT E2, the major envelope glycoprotein of classical swine fever virus (CSFV), is involved in several critical virus functions, including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on a Wimley-White interfacial hydrophobicity distribution predicted the involvement of a loop (residues 864 to 881) stabilized by a disulfide bond (869CKWGGNWTCV878, named FPII) in establishing interactions with the host cell membrane. This loop further contains an 872GG873 dipeptide, as well as two aromatic residues (871W and 875W) accessible to solvent. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how amino acid substitutions within FPII may affect replication of BICv in vitro and virus virulence in swine. Recombinant CSFVs containing mutations in different residues of FPII were constructed. A particular construct, harboring amino acid substitutions W871T, W875D, and V878T (FPII.2), demonstrated a significantly decreased ability to replicate in a swine cell line (SK6) and swine macrophage primary cell cultures. Interestingly, mutated virus FPII.2 was completely attenuated in pigs. Also, animals infected with FPII.2 virus were protected against virulent challenge with Brescia virus at 21 days postvaccination. Supporting a role for the E2 the loop from residues 864 to 881 in membrane fusion, only synthetic peptides that were based on the native E2 functional sequence were competent for insertion into model membranes and perturbation of their integrity, and this functionality was lost in synthetic peptides harboring amino acid substitutions W871T, W875D, and V878T in FPII.2. IMPORTANCE This report describes the identification and characterization of a putative fusion peptide (FP) in the major structural protein E2 of classical swine fever virus (CSFV). The FP identification was performed by functional structural analysis of E2

  6. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    USDA-ARS?s Scientific Manuscript database

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  7. Identification of a new mutation in platelet glycoprotein IX (GPIX) in a patient with Bernard-Soulier syndrome.

    PubMed

    Rivera, C E; Villagra, J; Riordan, M; Williams, S; Lindstrom, K J; Rick, M E

    2001-01-01

    We describe a new mutation in glycoprotein IX (GPIX) in a patient with Bernard-Soulier syndrome (BSS). Sequencing of GPIX revealed a homozygous (T-->C) transition at nucleotide 1717 (GenBank/HUMGPIX/M80478), resulting in a Cys(8) (TGT)-->Arg (CGT) replacement in the mature peptide. DNA restriction enzyme analysis using BsaAI revealed that the patient was homozygous and that his parents were heterozygous for the defect. This mutation disrupts a putative disulphide bond between the Cys(8) and Cys(12) that would alter the secondary structure of GPIX and which probably accounts for the absence of the GPIb/IX/V complex from the platelet surface in this patient.

  8. HBV core promoter mutations promote cellular proliferation through E2F1-mediated upregulation of S-phase kinase-associated protein 2 transcription.

    PubMed

    Huang, Yuehua; Tai, Andrew W; Tong, Shuping; Lok, Anna S F

    2013-06-01

    Hepatitis B virus (HBV) core promoter (CP) mutations have been associated with an increased risk of hepatocellular carcinoma (HCC) in clinical studies. We previously reported that a combination of CP mutations seen in HCC patients, expressed in HBx gene, increased SKP2 (S-phase kinase-associated protein 2) expression, thereby promoting cellular proliferation. Here, we investigate the possible mechanisms by which CP mutations upregulate SKP2. We used immunoblotting and ATPlite assay to validate the effect of CP mutations in full-length HBV genome on cell cycle regulator levels and cell proliferation. Activation of SKP2 mRNA was assessed by quantitative real-time PCR in primary human hepatocytes (PHH) and HCC cell lines. Effect of CP mutations on SKP2 promoter activity was determined by luciferase assay. Target regulation of E2F1 on SKP2 was analyzed by siRNAs. CP mutations in full-length HBV genome upregulated SKP2 expression, thereby downregulating cell cycle inhibitors and accelerating cellular proliferation. CP mutations enhanced SKP2 promoter activity but had no effect on SKP2 protein stability. Mapping of the SKP2 promoter identified a region necessary for activation by CP mutations that contains an E2F1 response element. Knocking down E2F1 reduced the effects of CP mutations on SKP2 and cellular proliferation. The effect of CP mutations on E2F1 might be mediated through hyperphosphorylation of RB. HBV CP mutations enhance SKP2 transcription by activating the E2F1 transcription factor and in turn downregulate cell cycle inhibitors, thus providing a potential mechanism for an association between CP mutations and HCC. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. Microfibril-associated glycoproteins MAGP-1 and MAGP-2 in disease.

    PubMed

    Craft, Clarissa S; Broekelmann, Thomas J; Mecham, Robert P

    2018-03-07

    Microfibril-associated glycoproteins 1 and 2 (MAGP-1, MAGP-2) are protein components of extracellular matrix microfibrils. These proteins interact with fibrillin, the core component of microfibrils, and impart unique biological properties that influence microfibril function in vertebrates. MAGPs bind active forms of TGFβ and BMPs and are capable of modulating Notch signaling. Mutations in MAGP-1 or MAGP-2 have been linked to thoracic aneurysms and metabolic disease in humans. MAGP-2 has also been shown to be an important biomarker in several human cancers. Mice lacking MAGP-1 or MAGP-2 have defects in multiple organ systems, which reflects the widespread distribution of microfibrils in vertebrate tissues. This review summarizes our current understanding of the function of the MAGPs and their relationship to human disease. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  10. Recombinant Swinepox Virus Expressing Glycoprotein E2 of Classical Swine Fever Virus Confers Complete Protection in Pigs upon Viral Challenge.

    PubMed

    Lin, Huixing; Ma, Zhe; Chen, Lei; Fan, Hongjie

    2017-01-01

    Classical swine fever (CSF) is a highly contagious and serious viral disease that affects the pig industry worldwide. The glycoprotein E2 of the classical swine fever virus (CSFV) can induce neutralizing antibodies, and it is widely used for novel vaccine development. To explore the development of a vaccine against CSFV infections, the gene of glycoprotein E2 was inserted into the swinepox virus (SPV) genome by homologous recombination. The culture titers of rSPV-E2 remained at about 4.3 × 10 6 TCID 50 for more than 60 passages in PK15 and swine testis cell lines. The rSPV-E2 could not be replicated in Vero, MDBK or other non-porcine cell lines. After two to three passages, the SPV specific gene of rSPV-E2 could not been detected in the non-porcine cell culture. To evaluate the immunogenicity of rSPV-E2, 20 CSFV seronegative minipigs were immunized with rSPV-E2, a commercial C-strain vaccine, wild-type SPV (wtSPV; negative control), or PBS (a no-challenge control). After challenge with CSFV, pigs in the rSPV-E2-immunized group showed significantly shorter fever duration compared with the wtSPV-treated group ( P  < 0.05). E2-specific antibodies in the rSPV-E2-immunized group increased dramatically after vaccination and increased continuously over time. CSFV genomic copies in the serum of rSPV-E2-immunized pigs were significantly less compared with the wtSPV-treated group at all time points after challenge ( P  < 0.01). Significant reduction in gross lung lesion scores, histopathological liver, spleen, lung, and kidney lesion scores were noted in the rSPV-E2-immunized group compared with the wtSPV-treated group ( P  < 0.01). The results suggested that the recombinant rSPV-E2 provided pigs with significant protection from CSFV infections; thus, rSPV-E2 offers proof of principle for the development of a vaccine for the prevention of CSFV infections in pigs.

  11. E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer.

    PubMed

    Lopes-Ramos, Camila M; Barros, Bruna P; Koyama, Fernanda C; Carpinetti, Paola A; Pezuk, Julia; Doimo, Nayara T S; Habr-Gama, Angelita; Perez, Rodrigo O; Parmigiani, Raphael B

    2017-01-01

    Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.

  12. Role of N-linked oligosaccharides in processing and intracellular transport of E2 glycoprotein of rubella virus.

    PubMed Central

    Qiu, Z; Hobman, T C; McDonald, H L; Seto, N O; Gillam, S

    1992-01-01

    The role of N-linked glycosylation in processing and intracellular transport of rubella virus glycoprotein E2 has been studied by expressing glycosylation mutants of E2 in COS cells. A panel of E2 glycosylation mutants were generated by oligonucleotide-directed mutagenesis. Each of the three potential N-linked glycosylation sites was eliminated separately as well as in combination with the other two sites. Expression of the E2 mutant proteins in COS cells indicated that in rubella virus M33 strain, all three sites are used for the addition of N-linked oligosaccharides. Removal of any of the glycosylation sites resulted in slower glycan processing, lower stability, and aberrant disulfide bonding of the mutant proteins, with the severity of defect depending on the number of deleted carbohydrate sites. The mutant proteins were transported to the endoplasmic reticulum and Golgi complex but were not detected on the cell surface. However, the secretion of the anchor-free form of E2 into the medium was not completely blocked by the removal of any one of its glycosylation sites. This effect was dependent on the position of the deleted glycosylation site. Images PMID:1583721

  13. Analysis of Serine Codon Conservation Reveals Diverse Phenotypic Constraints on Hepatitis C Virus Glycoprotein Evolution

    PubMed Central

    Koutsoudakis, George; Urbanowicz, Richard A.; Mirza, Deeman; Ginkel, Corinne; Riebesehl, Nina; Calland, Noémie; Albecka, Anna; Price, Louisa; Hudson, Natalia; Descamps, Véronique; Backx, Matthijs; McClure, C. Patrick; Duverlie, Gilles; Pecheur, Eve-Isabelle; Dubuisson, Jean; Perez-del-Pulgar, Sofia; Forns, Xavier; Steinmann, Eike; Tarr, Alexander W.; Pietschmann, Thomas

    2014-01-01

    Serine is encoded by two divergent codon types, UCN and AGY, which are not interchangeable by a single nucleotide substitution. Switching between codon types therefore occurs via intermediates (threonine or cysteine) or via simultaneous tandem substitutions. Hepatitis C virus (HCV) chronically infects 2 to 3% of the global population. The highly variable glycoproteins E1 and E2 decorate the surface of the viral envelope, facilitate cellular entry, and are targets for host immunity. Comparative sequence analysis of globally sampled E1E2 genes, coupled with phylogenetic analysis, reveals the signatures of multiple archaic codon-switching events at seven highly conserved serine residues. Limited detection of intermediate phenotypes indicates that associated fitness costs restrict their fixation in divergent HCV lineages. Mutational pathways underlying codon switching were probed via reverse genetics, assessing glycoprotein functionality using multiple in vitro systems. These data demonstrate selection against intermediate phenotypes can act at the structural/functional level, with some intermediates displaying impaired virion assembly and/or decreased capacity for target cell entry. These effects act in residue/isolate-specific manner. Selection against intermediates is also provided by humoral targeting, with some intermediates exhibiting increased epitope exposure and enhanced neutralization sensitivity, despite maintaining a capacity for target cell entry. Thus, purifying selection against intermediates limits their frequencies in globally sampled strains, with divergent functional constraints at the protein level restricting the fixation of deleterious mutations. Overall our study provides an experimental framework for identification of barriers limiting viral substitutional evolution and indicates that serine codon-switching represents a genomic “fossil record” of historical purifying selection against E1E2 intermediate phenotypes. PMID:24173227

  14. Structural flexibility of a conserved antigenic region in hepatitis C virus glycoprotein E2 recognized by broadly neutralizing antibodies.

    PubMed

    Meola, Annalisa; Tarr, Alexander W; England, Patrick; Meredith, Luke W; McClure, C Patrick; Foung, Steven K H; McKeating, Jane A; Ball, Jonathan K; Rey, Felix A; Krey, Thomas

    2015-02-01

    Neutralizing antibodies (NAbs) targeting glycoprotein E2 are important for the control of hepatitis C virus (HCV) infection. One conserved antigenic site (amino acids 412 to 423) is disordered in the reported E2 structure, but a synthetic peptide mimicking this site forms a β-hairpin in complex with three independent NAbs. Our structure of the same peptide in complex with NAb 3/11 demonstrates a strikingly different extended conformation. We also show that residues 412 to 423 are essential for virus entry but not for E2 folding. Together with the neutralizing capacity of the 3/11 Fab fragment, this indicates an unexpected structural flexibility within this epitope. NAbs 3/11 and AP33 (recognizing the extended and β-hairpin conformations, respectively) display similar neutralizing activities despite converse binding kinetics. Our results suggest that HCV utilizes conformational flexibility as an immune evasion strategy, contributing to the limited immunogenicity of this epitope in patients, similar to the conformational flexibility described for other enveloped and nonenveloped viruses. Approximately 180 million people worldwide are infected with hepatitis C virus (HCV), and neutralizing antibodies play an important role in controlling the replication of this major human pathogen. We show here that one of the most conserved antigenic sites within the major glycoprotein E2 (amino acids 412 to 423), which is disordered in the recently reported crystal structure of an E2 core fragment, can adopt different conformations in the context of the infectious virus particle. Recombinant Fab fragments recognizing different conformations of this antigenic site have similar neutralization activities in spite of converse kinetic binding parameters. Of note, an antibody response targeting this antigenic region is less frequent than those targeting other more immunogenic regions in E2. Our results suggest that the observed conformational flexibility in this conserved antigenic

  15. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5440 Beta-2-glycoprotein III immunological test system. (a) Identification. A beta-2-glycoprotein III... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein III immunological test system...

  16. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5430 Beta-2-glycoprotein I immunological test system. (a) Identification. A beta-2-glycoprotein I... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein I immunological test system...

  17. The Pseudorabies Virus Glycoprotein gE/gI Complex Suppresses Type I Interferon Production by Plasmacytoid Dendritic Cells

    PubMed Central

    Lamote, Jochen A. S.; Kestens, Manon; Van Waesberghe, Cliff; Delva, Jonas; De Pelsmaeker, Steffi; Devriendt, Bert

    2017-01-01

    ABSTRACT Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries

  18. The Pseudorabies Virus Glycoprotein gE/gI Complex Suppresses Type I Interferon Production by Plasmacytoid Dendritic Cells.

    PubMed

    Lamote, Jochen A S; Kestens, Manon; Van Waesberghe, Cliff; Delva, Jonas; De Pelsmaeker, Steffi; Devriendt, Bert; Favoreel, Herman W

    2017-04-01

    Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The

  19. HCV RNA Genomic sequences and HCV-E2 glycoprotein in sural nerve biopsies from HCV-infected patients with peripheral neuropathy.

    PubMed

    Russi, S; Sansonno, D; Monaco, S; Mariotto, S; Ferrari, S; Pavone, F; Lauletta, G; Dammacco, F

    2018-06-01

    Peripheral neuropathy (PN), the major neurological complication of chronic HCV infection, is frequently associated with mixed cryoglobulinaemia (MC) and small-vessel systemic vasculitis. While humoral and cell-mediated immune mechanisms are suspected to act together in an aberrant immune response that results in peripheral nerve damage, the role of HCV remains largely speculative. The possible demonstration of HCV in peripheral nerve tissue would obviously assume important pathogenic implications. We studied sural nerve biopsies from 11 HCV-positive patients with neuropathic symptoms: five with and six without MC. In situ hybridization (ISH) and immunofluorescence studies were carried out to detect genomic and antigenomic HCV RNA sequences and HCV-encoded E2-glycoprotein, respectively. Epineurial vascular deposits of E2-glycoprotein were found in four (80%) MC and in two (33.3%) non-MC patients, respectively. These findings were enhanced by the perivascular deposition of positive-, though not negative-strand replicative RNA, as also found in the nerve extracts of all patients. Mild inflammatory cell infiltrates with no deposits of immunoglobulins and/or complement proteins were revealed around small vessels, without distinct vasculitis changes between MC and non-MC patients. These results indicate that nerve vascular HCV RNA/E2 deposits associated to perivascular inflammatory infiltrates were similar in chronically HCV-infected patients, regardless of cryoglobulin occurrence. Given the failure to demonstrate HCV productive infection in the examined sural nerve biopsies, nerve damage is likely to result from virus-triggered immune-mediated mechanisms. © 2017 British Neuropathological Society.

  20. Presenilin 1 mutations influence processing and trafficking of the ApoE receptor apoER2.

    PubMed

    Wang, Wei; Moerman-Herzog, Andrea M; Slaton, Arthur; Barger, Steven W

    2017-01-01

    Presenilin (PS)-1 is an intramembrane protease serving as the catalytic component of γ-secretase. Mutations in the PS1 gene are the most common cause of familial Alzheimer's disease (FAD). The low-density lipoprotein (LDL)-receptor family member apoER2 is a γ-secretase substrate that has been associated with AD in several ways, including acting as a receptor for apolipoprotein E (ApoE). ApoER2 is processed by γ-secretase into a C-terminal fragment (γ-CTF) that appears to regulate gene expression. FAD PS1 mutations were tested for effects on apoER2. PS1 mutation R278I showed impaired γ-secretase activity for apoER2 in the basal state or after exposure to Reelin. PS1 M146V mutation permitted accumulation of apoER2 CTFs after Reelin treatment, whereas no difference was seen between wild-type (WT) and M146V in the basal state. PS1 L282V mutation, combined with the γ-secretase inhibitor N-(N-[3,5-Difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butyl ester, greatly reduced the cell-surface levels of apoER2 without affecting total apoER2 levels, suggesting a defect in receptor trafficking. These findings indicate that impaired processing or localization of apoER2 may contribute to the pathogenic effects of FAD mutations in PS1. Published by Elsevier Inc.

  1. Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain α-Helical Bundle†

    PubMed Central

    Harrison, Joseph S.; Koellhoffer, Jayne F.; Chandran, Kartik; Lai, Jonathan R.

    2012-01-01

    Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV is required for fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔGunf H2O, of 33.4 ± 2.5 kcal/mol and melting temperature, Tm, of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH with higher stability under lower pH conditions (Tm values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. Based on these results, we hypothesize that pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism to control conformational preferences such that the six-helix bundle ‘post-fusion’ state is preferred under conditions of appropriately matured endosomes. PMID:22369502

  2. Characterization of monoclonal antibodies directed against the bovine herpesvirus-1 glycoprotein E and use for the differentiation between vaccinated and infected animals.

    PubMed

    Letellier, C; Delangre, A; De Smet, A; Kerkhofs, P

    2001-12-04

    A panel of seven monoclonal antibodies (MAbs) directed against the bovine herpesvirus-1 (BHV-1) glycoprotein E (gE) was obtained. For that purpose, mice were either tolerized to BHV-1 gE-negative virus and then immunized with wild type BHV-1 or immunized with plasmid DNA expressing the gE and gI glycoproteins. The MAbs were characterized by their reactivity with the gE protein or the gE/gI complex and by competition experiments. Results showed that the MAbs were directed against three antigenic domains, two located on the gE glycoprotein and one on the gE/gI complex. Blocking experiments were performed with sera from experimentally vaccinated and infected cattle. A competition was observed between gE-positive bovine sera and six of the seven MAbs. The bovine sera thus recognized two of the three antigenic sites. Field sera were then tested in blocking enzyme-linked immunosorbent assay using one horseradish peroxidase-conjugated MAb. A specificity of 98.2% and a sensitivity of 98.2% compared to the commercially available test were observed.

  3. GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy

    PubMed Central

    Kuschal, Christiane; Botta, Elena; Orioli, Donata; Digiovanna, John J.; Seneca, Sara; Keymolen, Kathelijn; Tamura, Deborah; Heller, Elizabeth; Khan, Sikandar G.; Caligiuri, Giuseppina; Lanzafame, Manuela; Nardo, Tiziana; Ricotti, Roberta; Peverali, Fiorenzo A.; Stephens, Robert; Zhao, Yongmei; Lehmann, Alan R.; Baranello, Laura; Levens, David; Kraemer, Kenneth H.; Stefanini, Miria

    2016-01-01

    The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP. PMID:26996949

  4. Role of Carbohydrate in Glycoprotein Traffic and Secretion

    DTIC Science & Technology

    1988-01-01

    synthesized in normal amounts but accumu- lated intracellularly, with transport to the cell surface being greatly de - layed. Glycoprotein E2 isolated from...UNcLA ,F E 2 Role of Carbohydrate in Glycoprotein Traffic and Secretion JAMES B. PARENT I. Introduction I!. Evidence for Intracellular Transport Signals...Ill. Oligosaccharide Biosynthesis IV. Role of Carbohydrate in Protein Solubility. Structure, and Stability V. Evidence for Carbohydrate Transport

  5. Syncytial Mutations Do Not Impair the Specificity of Entry and Spread of a Glycoprotein D Receptor-Retargeted Herpes Simplex Virus

    PubMed Central

    Okubo, Yu; Wakata, Aika; Suzuki, Takuma; Shibata, Tomoko; Ikeda, Hitomi; Yamaguchi, Miki; Cohen, Justus B.; Glorioso, Joseph C.; Tagaya, Mitsuo; Hamada, Hirofumi; Tahara, Hideaki

    2016-01-01

    ABSTRACT Membrane fusion, which is the key process for both initial cell entry and subsequent lateral spread of herpes simplex virus (HSV), requires the four envelope glycoproteins gB, gD, gH, and gL. Syncytial mutations, predominantly mapped to the gB and gK genes, confer hyperfusogenicity on HSV and cause multinucleated giant cells, termed syncytia. Here we asked whether interaction of gD with a cognate entry receptor remains indispensable for initiating membrane fusion of syncytial strains. To address this question, we took advantage of mutant viruses whose viral entry into cells relies on the uniquely specific interaction of an engineered gD with epidermal growth factor receptor (EGFR). We introduced selected syncytial mutations into gB and/or gK of the EGFR-retargeted HSV and found that these mutations, especially when combined, enabled formation of extensive syncytia by human cancer cell lines that express the target receptor; these syncytia were substantially larger than the plaques formed by the parental retargeted HSV strain. We assessed the EGFR dependence of entry and spread separately by using direct entry and infectious center assays, respectively, and we found that the syncytial mutations did not override the receptor specificity of the retargeted viruses at either stage. We discuss the implications of these results for the development of more effective targeted oncolytic HSV vectors. IMPORTANCE Herpes simplex virus (HSV) is investigated not only as a human pathogen but also as a promising agent for oncolytic virotherapy. We previously showed that both the initial entry and subsequent lateral spread of HSV can be retargeted to cells expressing tumor-associated antigens by single-chain antibodies fused to a receptor-binding-deficient envelope glycoprotein D (gD). Here we introduced syncytial mutations into the gB and/or gK gene of gD-retargeted HSVs to determine whether viral tropism remained dependent on the interaction of gD with the target receptor

  6. Krüppel-like factor 1 mutations and expression of hemoglobins F and A2 in homozygous hemoglobin E syndrome.

    PubMed

    Tepakhan, Wanicha; Yamsri, Supawadee; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan; Fucharoen, Supan

    2015-07-01

    The basis for variability of hemoglobin (Hb) F in homozygous Hb E disease is not well understood. We have examined multiple mutations of the Krüppel-like factor 1 (KLF1) gene; an erythroid specific transcription factor and determined their associations with Hbs F and A2 expression in homozygous Hb E. Four KLF1 mutations including G176AfsX179, T334R, R238H, and -154 (C-T) were screened using specific PCR assays on 461 subjects with homozygous Hb E and 100 normal controls. None of these four mutations were observed in 100 normal controls. Among 461 subjects with homozygous Hb E, 306 had high (≥5 %) and 155 had low (<5 %) Hb F. DNA analysis identified the KLF1 mutations in 35 cases of the former group with high Hb F, including the G176AfsX179 mutation (17/306 = 5.6 %), T334R mutation (9/306 = 2.9 %), -154 (C-T) mutation (7/306 = 2.3 %), and R328H mutation (2/306 = 0.7 %). Only two subjects in the latter group with low Hb F carried the G176AfsX179 and -154 (C-T) mutations. Significant higher Hb A2 level was observed in those of homozygous Hb E with the G176AfsX179 mutation as compared to those without KLF1 mutations. These results indicate that KLF1 is among the genetic factors associated with increased Hbs F and A2, and in combination with other factors could explain the variabilities of these Hb expression in Hb E syndrome.

  7. Effect of human alpha 2HS glycoprotein on mouse macrophage function.

    PubMed Central

    Lewis, J G; André, C M

    1980-01-01

    alpha 2HS glycoprotein was isolated from normal adult serum. The ability of alpha 2HS glycoprotein to promote the endocytosis of radiolabelled DNA and radiolabelled latex particles by mouse macrophages was investigated. The results using both radiolabelled latex particles and radiolabelled DNA show that alpha 2HS glycoprotein enhances the ability of mouse macrophages to take up these radiolabelled substrates as compared to control cells. Images Figure 1 Figure 2 PMID:7439929

  8. A Molecularly Cloned, Live-Attenuated Japanese Encephalitis Vaccine SA14-14-2 Virus: A Conserved Single Amino Acid in the ij Hairpin of the Viral E Glycoprotein Determines Neurovirulence in Mice

    PubMed Central

    Kim, Jin-Kyoung; Yun, Gil-Nam; Lee, Eun-Young; Li, Long; Kuhn, Richard J.; Rossmann, Michael G.; Morrey, John D.; Lee, Young-Min

    2014-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecular basis of its neurovirulence remains unknown. Here, we constructed an infectious cDNA of the most widely used live-attenuated JE vaccine, SA14-14-2, and rescued from the cDNA a molecularly cloned virus, SA14-14-2MCV, which displayed in vitro growth properties and in vivo attenuation phenotypes identical to those of its parent, SA14-14-2. To elucidate the molecular mechanism of neurovirulence, we selected three independent, highly neurovirulent variants (LD50, <1.5 PFU) from SA14-14-2MCV (LD50, >1.5×105 PFU) by serial intracerebral passage in mice. Complete genome sequence comparison revealed a total of eight point mutations, with a common single G1708→A substitution replacing a Gly with Glu at position 244 of the viral E glycoprotein. Using our infectious SA14-14-2 cDNA technology, we showed that this single Gly-to-Glu change at E-244 is sufficient to confer lethal neurovirulence in mice, including rapid development of viral spread and tissue inflammation in the central nervous system. Comprehensive site-directed mutagenesis of E-244, coupled with homology-based structure modeling, demonstrated a novel essential regulatory role in JEV neurovirulence for E-244, within the ij hairpin of the E dimerization domain. In both mouse and human neuronal cells, we further showed that the E-244 mutation altered JEV infectivity in vitro, in direct correlation with the level of neurovirulence in vivo, but had no significant impact on viral RNA replication. Our results provide a crucial step toward developing novel therapeutic and preventive strategies against JEV and possibly other

  9. A rare male patient with classic Rett syndrome caused by MeCP2_e1 mutation.

    PubMed

    Tokaji, Narumi; Ito, Hiromichi; Kohmoto, Tomohiro; Naruto, Takuya; Takahashi, Rizu; Goji, Aya; Mori, Tatsuo; Toda, Yoshihiro; Saito, Masako; Tange, Shoichiro; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2018-03-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder typically affecting females. It is mainly caused by loss-of-function mutations that affect the coding sequence of exon 3 or 4 of methyl-CpG-binding protein 2 (MECP2). Severe neonatal encephalopathy resulting in death before the age of 2 years is the most common phenotype observed in males affected by a pathogenic MECP2 variant. Mutations in MECP2 exon 1 affecting the MeCP2_e1 isoform are relatively rare causes of RTT in females, and only one case of a male patient with MECP2-related severe neonatal encephalopathy caused by a mutation in MECP2 exon 1 has been reported. This is the first reported case of a male with classic RTT caused by a 5-bp duplication in the open-reading frame of MECP2 exon 1 (NM_001110792.1:c.23_27dup) that introduced a premature stop codon [p.(Ser10Argfs*36)] in the MeCP2_e1 isoform, which has been reported in one female patient with classic RTT. Therefore, both males and females displaying at least some type of MeCP2_e1 mutation may exhibit the classic RTT phenotype. © 2018 Wiley Periodicals, Inc.

  10. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization.

    PubMed

    Beavers, David L; Wang, Wei; Ather, Sameer; Voigt, Niels; Garbino, Alejandro; Dixit, Sayali S; Landstrom, Andrew P; Li, Na; Wang, Qiongling; Olivotto, Iacopo; Dobrev, Dobromir; Ackerman, Michael J; Wehrens, Xander H T

    2013-11-19

    This study sought to study the role of junctophilin-2 (JPH2) in atrial fibrillation (AF). JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca(2+) handling and modulation of ryanodine receptor Ca(2+) channels (RyR2). Whereas defective RyR2-mediated Ca(2+) release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudoknock-in (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF than wild type (WT)-PKI mice, whereas A399S-PKI mice expressing a hypertrophic cardiomyopathy-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca(2+) release events. These changes were attributed to reduced binding of E169K-JPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca(2+) spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients and an increased frequency of spontaneous Ca(2+) release events. Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2/RyR2 ratios can promote SR Ca(2+) leak and atrial arrhythmias, representing a potential novel therapeutic target for AF. Copyright © 2013. Published by Elsevier Inc.

  11. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization

    PubMed Central

    Voigt, Niels; Garbino, Alejandro; Dixit, Sayali S.; Landstrom, Andrew P.; Li, Na; Wang, Qiongling; Olivotto, Iacopo; Dobrev, Dobromir; Ackerman, Michael J.; Wehrens, Xander H.T.

    2013-01-01

    Objectives To study the role of junctophilin 2 (JPH2) in atrial fibrillation (AF). Background JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca2+ handling and modulation of ryanodine receptor Ca2+ channels (RyR2). Whereas defective RyR2-mediated Ca2+ release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Methods Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudo-knockin (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. Results PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF compared with wildtype (WT)-PKI mice, while A399S-PKI mice expressing a HCM-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca2+ release events. These changes were attributed to reduced binding of E169KJPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca2+ spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients, and an increased frequency of spontaneous Ca2+ release events. Conclusions Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2:RyR2 ratios can promote SR Ca2+ leak and atrial arrhythmias, representing a potential novel therapeutic target for AF. PMID:23973696

  12. Herpes Simplex Virus Type 2 Glycoprotein G Is Targeted by the Sulfated Oligo- and Polysaccharide Inhibitors of Virus Attachment to Cells▿

    PubMed Central

    Adamiak, Beata; Ekblad, Maria; Bergström, Tomas; Ferro, Vito; Trybala, Edward

    2007-01-01

    Variants of herpes simplex virus type 2 (HSV-2) generated by virus passage in GMK-AH1 cells in the presence of the sulfated oligosaccharide PI-88 were analyzed. Many of these variants were substantially resistant to PI-88 in their initial infection of cells and/or their cell-to-cell spread. The major alteration detected in all variants resistant to PI-88 in the initial infection of cells was a frameshift mutation(s) in the glycoprotein G (gG) gene that resulted in the lack of protein expression. Molecular transfer of the altered gG gene into the wild-type background confirmed that the gG-deficient recombinants were resistant to PI-88. In addition to PI-88, all gG-deficient variants of HSV-2 were resistant to the sulfated polysaccharide heparin. The gG-deficient virions were capable of attaching to cells, and this activity was relatively resistant to PI-88. In addition to having a drug-resistant phenotype, the gG-deficient variants were inefficiently released from infected cells. Purified gG bound to heparin and showed the cell-binding activity which was inhibited by PI-88. Many PI-88 variants produced syncytia in cultured cells and contained alterations in gB, including the syncytium-inducing L792P amino acid substitution. Although this phenotype can enhance the lateral spread of HSV in cells, it conferred no virus resistance to PI-88. Some PI-88 variants also contained occasional alterations in gC, gD, gE, gK, and UL24. In conclusion, we found that glycoprotein gG, a mucin-like component of the HSV-2 envelope, was targeted by sulfated oligo- and polysaccharides. This is a novel finding that suggests the involvement of HSV-2 gG in interactions with sulfated polysaccharides, including cell surface glycosaminoglycans. PMID:17928351

  13. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF.

    PubMed

    Yago, Tadayuki; Lou, Jizhong; Wu, Tao; Yang, Jun; Miner, Jonathan J; Coburn, Leslie; López, José A; Cruz, Miguel A; Dong, Jing-Fei; McIntire, Larry V; McEver, Rodger P; Zhu, Cheng

    2008-09-01

    Arterial blood flow enhances glycoprotein Ibalpha (GPIbalpha) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbalpha/vWF bonds first prolonged ("catch") and then shortened ("slip") bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbalpha dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbalpha-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif-13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbalpha on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding.

  14. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectorsmore » with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.« less

  15. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    PubMed

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  16. Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF

    PubMed Central

    Yago, Tadayuki; Lou, Jizhong; Wu, Tao; Yang, Jun; Miner, Jonathan J.; Coburn, Leslie; López, José A.; Cruz, Miguel A.; Dong, Jing-Fei; McIntire, Larry V.; McEver, Rodger P.; Zhu, Cheng

    2008-01-01

    Arterial blood flow enhances glycoprotein Ibα (GPIbα) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbα/vWF bonds first prolonged (“catch”) and then shortened (“slip”) bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbα dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbα-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif–13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbα on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding. PMID:18725999

  17. Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity.

    PubMed Central

    Dubay, J W; Roberts, S J; Hahn, B H; Hunter, E

    1992-01-01

    Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1. Images PMID:1357190

  18. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    PubMed

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  19. Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue

    PubMed Central

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  20. Apolipoprotein E Likely Contributes to a Maturation Step of Infectious Hepatitis C Virus Particles and Interacts with Viral Envelope Glycoproteins

    PubMed Central

    Lee, Ji-Young; Acosta, Eliana G.; Stoeck, Ina Karen; Long, Gang; Hiet, Marie-Sophie; Mueller, Birthe; Fackler, Oliver T.; Kallis, Stephanie

    2014-01-01

    ABSTRACT The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable

  1. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Beta-2-glycoprotein I immunological test system. 866.5430 Section 866.5430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  2. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Beta-2-glycoprotein I immunological test system. 866.5430 Section 866.5430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  3. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Beta-2-glycoprotein III immunological test system. 866.5440 Section 866.5440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  4. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Beta-2-glycoprotein I immunological test system. 866.5430 Section 866.5430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  5. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Beta-2-glycoprotein III immunological test system. 866.5440 Section 866.5440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  6. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Beta-2-glycoprotein III immunological test system. 866.5440 Section 866.5440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  7. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Beta-2-glycoprotein I immunological test system. 866.5430 Section 866.5430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  8. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Beta-2-glycoprotein III immunological test system. 866.5440 Section 866.5440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  9. The E2 glycoprotein is necessary but not sufficient for the adaptation of classical swine fever virus lapinized vaccine C-strain to the rabbit.

    PubMed

    Li, Yongfeng; Xie, Libao; Zhang, Lingkai; Wang, Xiao; Li, Chao; Han, Yuying; Hu, Shouping; Sun, Yuan; Li, Su; Luo, Yuzi; Liu, Lihong; Munir, Muhammad; Qiu, Hua-Ji

    2018-06-01

    Classical swine fever virus (CSFV) C-strain was developed through hundreds of passages of a highly virulent CSFV in rabbits. To investigate the molecular basis for the adaptation of C-strain to the rabbit (ACR), a panel of chimeric viruses with the exchange of glycoproteins E rns , E1, and/or E2 between C-strain and the highly virulent Shimen strain and a number of mutant viruses with different amino acid substitutions in E2 protein were generated and evaluated in rabbits. Our results demonstrate that Shimen-based chimeras expressing E rns -E1-E2, E rns -E2 or E1-E2 but not E rns -E1, E rns , E1, or E2 of C-strain can replicate in rabbits, indicating that E2 in combination with either E rns or E1 confers the ACR. Notably, E2 and the amino acids P108 and T109 in Domain I of E2 are critical in ACR. Collectively, our data indicate that E2 is crucial in mediating the ACR, which requires synergistic contribution of E rns or E1. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Introduction of translation stop condons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, Kyle A.; Conway, Carla M.; Kurath, Gael

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine.

  11. Interaction of ApoE3 and ApoE4 isoforms with an ITM2b/BRI2 mutation linked to the Alzheimer disease-like Danish dementia: Effects on learning and memory

    PubMed Central

    Biundo, Fabrizio; Ishiwari, Keita; Del Prete, Dolores; D’Adamio, Luciano

    2015-01-01

    Mutations in Amyloid β Precursor Protein (APP) and in genes that regulate APP processing – such as PSEN1/2 and ITM2b/BRI2 – cause familial dementia, such Familial Alzheimer disease (FAD), Familial Danish (FDD) and British (FBD) dementias. The ApoE gene is the major genetic risk factor for sporadic AD. Three major variants of ApoE exist in humans (ApoE2, ApoE3, and ApoE4), with the ApoE4 allele being strongly associated with AD. ITM2b/BRI2 is also a candidate regulatory node genes predicted to mediate the common patterns of gene expression shared by healthy ApoE4 carriers and late-onset AD patients not carrying ApoE4. This evidence provides a direct link between ITM2b/BRI2 and ApoE4. To test whether ApoE4 and pathogenic ITM2b/BRI2 interact to modulate learning and memory, we crossed a mouse carrying the ITM2b/BRI2 mutations that causes FDD knocked-in the endogenous mouse Itm2b/Bri2 gene (FDDKI mice) with human ApoE3 and ApoE4 targeted replacement mice. The resultant ApoE3, FDDKI/ApoE3, ApoE4, FDDKI/ApoE4 male mice were assessed longitudinally for learning and memory at 4, 6, 12, and 16– 17 months of age. The results showed that ApoE4-carrying mice displayed spatial working/short-term memory deficits relative to ApoE3-carrying mice starting in early middle age, while long-term spatial memory of ApoE4 mice was not adversely affected even at 16–17 months, and that the FDD mutation impaired working/short-term spatial memory in ApoE3-carrying mice and produced impaired long-term spatial memory in ApoE4-carrying mice in middle age. The present results suggest that the FDD mutation may differentially affect learning and memory in ApoE4 carriers and non-carriers. PMID:26528887

  12. Interaction of ApoE3 and ApoE4 isoforms with an ITM2b/BRI2 mutation linked to the Alzheimer disease-like Danish dementia: Effects on learning and memory.

    PubMed

    Biundo, Fabrizio; Ishiwari, Keita; Del Prete, Dolores; D'Adamio, Luciano

    2015-12-01

    Mutations in Amyloid β Precursor Protein (APP) and in genes that regulate APP processing--such as PSEN1/2 and ITM2b/BRI2--cause familial dementia, such Familial Alzheimer disease (FAD), Familial Danish (FDD) and British (FBD) dementias. The ApoE gene is the major genetic risk factor for sporadic AD. Three major variants of ApoE exist in humans (ApoE2, ApoE3, and ApoE4), with the ApoE4 allele being strongly associated with AD. ITM2b/BRI2 is also a candidate regulatory node genes predicted to mediate the common patterns of gene expression shared by healthy ApoE4 carriers and late-onset AD patients not carrying ApoE4. This evidence provides a direct link between ITM2b/BRI2 and ApoE4. To test whether ApoE4 and pathogenic ITM2b/BRI2 interact to modulate learning and memory, we crossed a mouse carrying the ITM2b/BRI2 mutations that causes FDD knocked-in the endogenous mouse Itm2b/Bri2 gene (FDDKI mice) with human ApoE3 and ApoE4 targeted replacement mice. The resultant ApoE3, FDDKI/ApoE3, ApoE4, FDDKI/ApoE4 male mice were assessed longitudinally for learning and memory at 4, 6, 12, and 16-17 months of age. The results showed that ApoE4-carrying mice displayed spatial working/short-term memory deficits relative to ApoE3-carrying mice starting in early middle age, while long-term spatial memory of ApoE4 mice was not adversely affected even at 16-17 months, and that the FDD mutation impaired working/short-term spatial memory in ApoE3-carrying mice and produced impaired long-term spatial memory in ApoE4-carrying mice in middle age. The present results suggest that the FDD mutation may differentially affect learning and memory in ApoE4 carriers and non-carriers. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. P-glycoprotein expression in Ehrlich ascites tumour cells after in vitro and in vivo selection with daunorubicin.

    PubMed Central

    Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.

    1998-01-01

    Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176

  14. A familial case of Keratitis-Ichthyosis-Deafness (KID) syndrome with the GJB2 mutation G45E.

    PubMed

    Jonard, Laurence; Feldmann, Delphine; Parsy, Christophe; Freitag, Sylvie; Sinico, Martine; Koval, Céleste; Grati, Mhamed; Couderc, Remy; Denoyelle, Françoise; Bodemer, Christine; Marlin, Sandrine; Hadj-Rabia, Smail

    2008-01-01

    Keratitis-Ichthyosis-Deafness (KID) syndrome (OMIM 148210) is a congenital ectodermal defect. KID consists of an atypical ichthyosiform erythroderma associated with congenital sensorineural deafness. A rare form of the KID syndrome is a fatal course in the first year of life due to severe skin lesion infections and septicaemia. KID appears to be genetically heterogeneous and may be caused by mutations in connexin 26 or connexin 30 genes. GJB2 mutations in the connexin 26 gene are the main cause of the disease. Most of the cases caused by GJB2 mutations are sporadic, but dominant transmission has also been described. To date, the rare lethal form of the disease has been only observed in two Caucasian sporadic patients with the GJB2 mutation, with the p.Gly45Glu (G45E) arising de novo. We have reported an African family with dizygotic twins suffering from a lethal form of KID. The dizygosity of the twins was confirmed by microsatellite markers. The two patients were heterozygous for the G45E mutation of GJB2, whereas the mutation was not detected in the two parents. The unusual transmission of the disease observed in this family could be explained by the occurrence of a somatic or more probably a germinal mosaic in one of the parents.

  15. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance.

    PubMed

    Spanakis, Elias; Milord, Edrice; Gragnoli, Claudia

    2008-12-01

    Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.

  16. Forcible destruction of severely misfolded mammalian glycoproteins by the non-glycoprotein ERAD pathway

    PubMed Central

    Ninagawa, Satoshi; Okada, Tetsuya; Sumitomo, Yoshiki; Horimoto, Satoshi; Sugimoto, Takehiro; Ishikawa, Tokiro; Takeda, Shunichi; Yamamoto, Takashi; Suzuki, Tadashi; Kamiya, Yukiko

    2015-01-01

    Glycoproteins and non-glycoproteins possessing unfolded/misfolded parts in their luminal regions are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L with distinct mechanisms. Two-step mannose trimming from Man9GlcNAc2 is crucial in the ERAD-L of glycoproteins. We recently showed that this process is initiated by EDEM2 and completed by EDEM3/EDEM1. Here, we constructed chicken and human cells simultaneously deficient in EDEM1/2/3 and analyzed the fates of four ERAD-L substrates containing three potential N-glycosylation sites. We found that native but unstable or somewhat unfolded glycoproteins, such as ATF6α, ATF6α(C), CD3-δ–ΔTM, and EMC1, were stabilized in EDEM1/2/3 triple knockout cells. In marked contrast, degradation of severely misfolded glycoproteins, such as null Hong Kong (NHK) and deletion or insertion mutants of ATF6α(C), CD3-δ–ΔTM, and EMC1, was delayed only at early chase periods, but they were eventually degraded as in wild-type cells. Thus, higher eukaryotes are able to extract severely misfolded glycoproteins from glycoprotein ERAD and target them to the non-glycoprotein ERAD pathway to maintain the homeostasis of the ER. PMID:26572623

  17. Plasmin-Cleaved β-2-Glycoprotein 1 Is an Inhibitor of Angiogenesis

    PubMed Central

    Sakai, Taro; Balasubramanian, Krishnakumar; Maiti, Sourindra; Halder, Jyotsna B.; Schroit, Alan J.

    2007-01-01

    β-2-Glycoprotein 1, an abundant plasma glycoprotein, binds anionic cell surfaces and functions as a regulator of thrombosis. Here, we show that cleavage of the kringle domain at Lys317/Thr318 switches its function to a regulator of angiogenesis. In vitro, the cleaved protein specifically inhibited the proliferation and migration of endothelial cells. The protein was without effect on preformed endothelial cell tubes. In vivo, the cleaved protein inhibited neovascularization into subcutaneously implanted Matrigel and Gelfoam sponge implants and the growth of orthotopically injected tumors. Collectively, these data indicate that plasmin-cleaved β-2-glycoprotein 1 is a potent antiangiogenic and antitumor molecule of potential therapeutic significance. PMID:17872974

  18. Introduction of translation stop codons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Kurath, G.

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine. ?? Springer Science+Business Media, Inc. 2006.

  19. IgE sensitization in relation to preschool eczema and filaggrin mutation.

    PubMed

    Johansson, Emma Kristin; Bergström, Anna; Kull, Inger; Lind, Tomas; Söderhäll, Cilla; van Hage, Marianne; Wickman, Magnus; Ballardini, Natalia; Wahlgren, Carl-Fredrik

    2017-12-01

    Eczema (atopic dermatitis) is associated with an increased risk of having IgE antibodies. IgE sensitization can occur through an impaired skin barrier. Filaggrin gene (FLG) mutation is associated with eczema and possibly also with IgE sensitization. We sought to explore the longitudinal relation between preschool eczema (PSE), FLG mutation, or both and IgE sensitization in childhood. A total of 3201 children from the BAMSE (Children Allergy Milieu Stockholm Epidemiology) birth cohort recruited from the general population were included. Regular parental questionnaires identified children with eczema. Blood samples were collected at 4, 8, and 16 years of age for analysis of specific IgE. FLG mutation analysis was performed on 1890 of the children. PSE was associated with IgE sensitization to both food allergens and aeroallergens up to age 16 years (overall adjusted odds ratio, 2.30; 95% CI, 2.00-2.66). This association was even stronger among children with persistent PSE. FLG mutation was associated with IgE sensitization to peanut at age 4 years (adjusted odds ratio, 1.88; 95% CI, 1.03-3.44) but not to other allergens up to age 16 years. FLG mutation and PSE were not effect modifiers for the association between IgE sensitization and PSE or FLG mutation, respectively. Sensitized children with PSE were characterized by means of polysensitization, but no other specific IgE sensitization patterns were found. PSE is associated with IgE sensitization to both food allergens and aeroallergens up to 16 years of age. FLG mutation is associated with IgE sensitization to peanut but not to other allergens. Sensitized children with preceding PSE are more often polysensitized. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    PubMed Central

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  1. New truncation mutation of the NR2E3 gene in a Japanese patient with enhanced S-cone syndrome.

    PubMed

    Kuniyoshi, Kazuki; Hayashi, Takaaki; Sakuramoto, Hiroyuki; Mishima, Hiroshi; Tsuneoka, Hiroshi; Tsunoda, Kazushige; Iwata, Takeshi; Shimomura, Yoshikazu

    2016-11-01

    The enhanced S-cone syndrome (ESCS) is a rare hereditary retinal degeneration that has enhanced short wavelength-sensitive cone (S-cone) functions. The longitudinal clinical course of this disease has been rarely reported, and the genetic aspects of ESCS have not been well investigated in the Japanese population. In this report, we present our clinical and genetic findings for 2 patients with ESCS. The patients were 2 unrelated Japanese men. Standard ophthalmic examinations and mutation screening for the NR2E3 gene were performed. Patient 1 was a 36-year-old man, and his clinical findings were typical of ESCS. His decimal best-corrected visual acuity (BCVA) was 1.0 OD and 0.5 OS after removal of cataracts. Genetic investigations revealed a homozygous truncation frameshift, the p.I307LfsX33 mutation. Patient 2 was an 11-year-old boy when he was first examined by us. His clinical findings were typical of ESCS except for uveitis in the left eye. His decimal BCVA at the age of 39 years was maintained at 1.5 in each eye, although the retinal degeneration and visual field impairments had progressed during the follow-up period. The genetic investigations revealed homozygous mutations of p.R104Q in the NR2E3 gene. The frameshift mutation, p.I307LfsX33, in the NR2E3 gene is a new causative mutation for ESCS. The clinical observations for patient 2 are the longest ever reported. The retinal degeneration caused by this mutation is slowly progressive, and these patients maintained good vision with maintenance of the foveal structure until their late thirties.

  2. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling.

    PubMed

    Schramm, Christine; Fine, Deborah M; Edwards, Michelle A; Reeb, Ashley N; Krenz, Maike

    2012-01-01

    The identification of mutations in PTPN11 (encoding the protein tyrosine phosphatase Shp2) in families with congenital heart disease has facilitated mechanistic studies of various cardiovascular defects. However, the roles of normal and mutant Shp2 in the developing heart are still poorly understood. Furthermore, it remains unclear how Shp2 loss-of-function (LOF) mutations cause LEOPARD Syndrome (also termed Noonan Syndrome with multiple lentigines), which is characterized by congenital heart defects such as pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). In normal hearts, Shp2 controls cardiomyocyte size by regulating signaling through protein kinase B (Akt) and mammalian target of rapamycin (mTOR). We hypothesized that Shp2 LOF mutations dysregulate this pathway, resulting in HCM. For our studies, we chose the Shp2 mutation Q510E, a dominant-negative LOF mutation associated with severe early onset HCM. Newborn mice with cardiomyocyte-specific overexpression of Q510E-Shp2 starting before birth displayed increased cardiomyocyte sizes, heart-to-body weight ratios, interventricular septum thickness, and cardiomyocyte disarray. In 3-mo-old hearts, interstitial fibrosis was detected. Echocardiographically, ventricular walls were thickened and contractile function was depressed. In ventricular tissue samples, signaling through Akt/mTOR was hyperactivated, indicating that the presence of Q510E-Shp2 led to upregulation of this pathway. Importantly, rapamycin treatment started shortly after birth rescued the Q510E-Shp2-induced phenotype in vivo. If rapamycin was started at 6 wk of age, HCM was also ameliorated. We also generated a second mouse model in which cardiomyocyte-specific Q510E-Shp2 overexpression started after birth. In contrast to the first model, these mice did not develop HCM. In summary, our studies establish a role for mTOR signaling in HCM caused by Q510E-Shp2. Q510E-Shp2 overexpression in the cardiomyocyte population alone was sufficient to

  3. In vitro neutralization of HCV by goat antibodies against peptides encompassing regions downstream of HVR-1 of E2 glycoprotein.

    PubMed

    Tabll, Ashraf A; Atef, Khaled; Bader El Din, Noha G; El Abd, Yasmine S; Salem, Ahmed; Sayed, Ahmed A; Dawood, Reham M; Omran, Moataza H; El-Awady, Mostafa K

    2014-01-01

    This article aims at testing several in vitro systems with various viral sources and cell lines for propagation of HCV to evaluate goat antibodies raised against three E2 epitopes in viral neutralization experiments. Four human cell lines (Huh-7, Huh-7.5, HepG2, and CaCo2) were tested using two different HCV viral sources; Genotype 4 infected sera and J6/JFH HCV cc particles. Neutralization capacity of goat Abs against conserved E2 epitopes; p412 (a.a 412-419), p517 (a.a 517-531), and p430 (a.a 430-447) were examined in the above mentioned in vitro systems. Although infection with patients' sera seems to mimic the in vitro situation, it has limited replication rates as compared with HCV cc particularly in Huh7.5 cells. Non-HCV adapted Huh-7 cells were also found susceptible for transfection with J6/JFH virus but at much slower kinetics. The results of the neutralization assay showed that anti p412 and anti p517 were highly neutralizing to HCVcc. Our data demonstrate that antibodies directed against the viral surface glycoprotein E2 reduced the infectivity of the J6/JFH virus and are promising agents for immunotherapy and HCV vaccine development.

  4. Optimization of Unnicked β2-Glycoprotein I and High Avidity Anti-β2-Glycoprotein I Antibodies Isolation

    PubMed Central

    Artenjak, Andrej; Leonardi, Adrijana; Križaj, Igor; Ambrožič, Aleš; Sodin-Semrl, Snezna; Božič, Borut; Čučnik, Saša

    2014-01-01

    Patient biological material for isolation of β2-glycoprotein I (β2GPI) and high avidity IgG anti-β2-glycoprotein I antibodies (HAv anti-β2GPI) dictates its full utilization. The aim of our study was to evaluate/improve procedures for isolation of unnicked β2GPI and HAv aβ2GPI to gain unmodified proteins in higher yields/purity. Isolation of β2GPI from plasma was a stepwise procedure combining nonspecific and specific methods. For isolation of polyclonal HAv aβ2GPI affinity chromatographies with immobilized protein G and human β2GPI were used. The unknown protein found during isolation was identified by liquid chromatography electrospray ionization mass spectrometry and the nonredundant National Center for Biotechnology Information database. The average mass of the isolated unnicked purified β2GPI increased from 6.56 mg to 9.94 mg. In the optimized isolation procedure the high molecular weight protein (proteoglycan 4) was successfully separated from β2GPI in the 1st peaks with size exclusion chromatography. The average efficiency of the isolation procedure for polyclonal HAv anti-β2GPI from different matrixes was 13.8%, as determined by our in-house anti-β2GPI ELISA. We modified the in-house isolation and purification procedures of unnicked β2GPI and HAv anti-β2GPI, improving the purity of antigen and antibodies as well as increasing the number of tests routinely performed with the in-house ELISA by ~50%. PMID:24741579

  5. ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-β bioavailability regulation

    PubMed Central

    Le Goff, Carine; Morice-Picard, Fanny; Dagoneau, Nathalie; Wang, Lauren W; Perrot, Claire; Crow, Yanick J; Bauer, Florence; Flori, Elisabeth; Prost-Squarcioni, Catherine; Krakow, Deborah; Ge, Gaoxiang; Greenspan, Daniel S; Bonnet, Damien; Le Merrer, Martine; Munnich, Arnold; Apte, Suneel S; Cormier-Daire, Valérie

    2009-01-01

    Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats–like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-β–binding protein 1. In addition, we observed a significant increase in total and active TGF-β in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-β signaling and may be the underlying mechanism of geleophysic dysplasia. PMID:18677313

  6. Mutational Analysis of Lassa Virus Glycoprotein Highlights Regions Required for Alpha-Dystroglycan Utilization.

    PubMed

    Acciani, Marissa; Alston, Jacob T; Zhao, Guohui; Reynolds, Hayley; Ali, Afroze M; Xu, Brian; Brindley, Melinda A

    2017-09-15

    Lassa virus (LASV) is an enveloped RNA virus endemic to West Africa and responsible for severe cases of hemorrhagic fever. Virus entry is mediated by the glycoprotein complex consisting of a stable-signal peptide, a receptor-binding subunit, GP1, and a viral-host membrane fusion subunit, GP2. Several cellular receptors can interact with the GP1 subunit and mediate viral entry, including alpha-dystroglycan (αDG) and lysosome-associated membrane protein 1 (LAMP1). In order to define the regions within GP1 that interact with the cellular receptors, we implemented insertional mutagenesis, carbohydrate shielding, and alanine scanning mutagenesis. Eighty GP constructs were engineered and evaluated for GP1-GP2 processing, surface expression, and the ability to mediate cell-to-cell fusion after low-pH exposure. To examine virus-to-cell entry, 49 constructs were incorporated onto vesicular stomatitis virus (VSV) pseudoparticles and transduction efficiencies were monitored in HAP1 and HAP1-ΔDAG1 cells that differentially produce the αDG cell surface receptor. Seven constructs retained efficient transduction in HAP1-ΔDAG1 cells yet poorly transduced HAP1 cells, suggesting that they are involved in αDG utilization. Residues H141, N146, F147, and Y150 cluster at the predicted central core of the trimeric interface and are important for GP-αDG interaction. Additionally, H92A-H93A, 150HA, 172HA, and 230HA displayed reduced transduction in both HAP1 and HAP1-ΔDAG1 cells, despite efficient cell-to-cell fusion activity. These mutations may interfere with interactions with the endosomal receptor LAMP1 or interfere at another stage in entry that is common to both cell lines. Insight gained from these data can aid in the development of more-effective entry inhibitors by blocking receptor interactions. IMPORTANCE Countries in which Lassa virus is endemic, such as Nigeria, Sierra Leone, Guinea, and Liberia, usually experience a seasonal outbreak of the virus from December to March

  7. CSF lamp2 concentrations are decreased in female Parkinson's disease patients with LRRK2 mutations.

    PubMed

    Klaver, Andrea C; Coffey, Mary P; Aasly, Jan O; Loeffler, David A

    2018-03-15

    Lysosome-associated membrane glycoprotein 2 (lamp2) plays critical roles in chaperone-mediated autophagy (CMA) and macroautophagy. Its isoform lamp2a is decreased in Parkinson's disease (PD) substantia nigra. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most known common cause of late-onset PD; although LRRK2 is thought to regulate macroautophagy, the influence of LRRK2 mutations on lamp2 concentrations in the CNS is unknown. To examine this issue we compared lamp2 levels in cerebrospinal fluid (CSF) between sporadic PD (sPD) patients (n = 31), LRRK2 PD patients (n = 20), and healthy control subjects with or without LRRK2 mutations (LRRK2 CTL = 30, CTL = 27). We also examined lamp2's correlations with age, oxidative stress, PD progression, and PD duration. Median lamp2 concentrations (pg/mL) were LRRK2 PD = 127, sPD = 333, CTL = 436, and LRRK2 CTL = 412. Log-transformed lamp2 concentrations, adjusting for gender effects (and excluding male LRRK2 PD patients because of low number), were lower in female LRRK2 PD patients than in LRRK2 CTL (p = 0.002) and CTL (p = 0.005) subjects (p = 0.06 for lamp2 comparison between female LRRK2 PD patients and sPD patients). Lamp2 did not appear to be associated with age, PD progression, or PD duration; however, three of four Spearman rho values for correlations between lamp2 and oxidative stress markers in PD subjects were ≥0.30. These findings suggest that CSF lamp2 concentrations may be decreased in female LRRK2 PD patients compared to healthy individuals with or without LRRK2 mutations. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Can mutational GC-pressure create new linear B-cell epitopes in herpes simplex virus type 1 glycoprotein B?

    PubMed

    Khrustalev, Vladislav Victorovich

    2009-01-01

    We showed that GC-content of nucleotide sequences coding for linear B-cell epitopes of herpes simplex virus type 1 (HSV1) glycoprotein B (gB) is higher than GC-content of sequences coding for epitope-free regions of this glycoprotein (G + C = 73 and 64%, respectively). Linear B-cell epitopes have been predicted in HSV1 gB by BepiPred algorithm ( www.cbs.dtu.dk/services/BepiPred ). Proline is an acrophilic amino acid residue (it is usually situated on the surface of protein globules, and so included in linear B-cell epitopes). Indeed, the level of proline is much higher in predicted epitopes of gB than in epitope-free regions (17.8% versus 1.8%). This amino acid is coded by GC-rich codons (CCX) that can be produced due to nucleotide substitutions caused by mutational GC-pressure. GC-pressure will also lead to disappearance of acrophobic phenylalanine, isoleucine, methionine and tyrosine coded by GC-poor codons. Results of our "in-silico directed mutagenesis" showed that single nonsynonymous substitutions in AT to GC direction in two long epitope-free regions of gB will cause formation of new linear epitopes or elongation of previously existing epitopes flanking these regions in 25% of 539 possible cases. The calculations of GC-content and amino acid content have been performed by CodonChanges algorithm ( www.barkovsky.hotmail.ru ).

  9. Presence of calreticulin mutations in JAK2-negative polycythemia vera.

    PubMed

    Broséus, Julien; Park, Ji-Hye; Carillo, Serge; Hermouet, Sylvie; Girodon, François

    2014-12-18

    Calreticulin (CALR) mutations have been reported in Janus kinase 2 (JAK2)- and myeloproliferative leukemia (MPL)-negative essential thrombocythemia and primary myelofibrosis. In contrast, no CALR mutations have ever been reported in the context of polycythemia vera (PV). Here, we describe 2 JAK2(V617F)-JAK2(exon12)-negative PV patients who presented with a CALR mutation in peripheral granulocytes at the time of diagnosis. In both cases, the CALR mutation was a 52-bp deletion. Single burst-forming units-erythroid (BFU-E) from 1 patient were grown in vitro and genotyped: the same CALR del 52-bp mutation was noted in 31 of the 37 colonies examined; 30 of 31 BFU-E were heterozygous for CALR del 52 bp, and 1 of 31 BFU-E was homozygous for CALR del 52 bp. In summary, although unknown mutations leading to PV cannot be ruled out, our results suggest that CALR mutations can be associated with JAK2-negative PV. © 2014 by The American Society of Hematology.

  10. Dual Split Protein-Based Fusion Assay Reveals that Mutations to Herpes Simplex Virus (HSV) Glycoprotein gB Alter the Kinetics of Cell-Cell Fusion Induced by HSV Entry Glycoproteins

    PubMed Central

    Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R.; Hannah, Brian P.; Matsuda, Zene; Whitbeck, J. Charles; Cohen, Gary H.

    2013-01-01

    Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, “slow and fast,” emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a “hair trigger.” Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion. PMID:23946457

  11. First somatic mutation of E2F1 in a critical DNA binding residue discovered in well-differentiated papillary mesothelioma of the peritoneum

    PubMed Central

    2011-01-01

    Background Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP. Results WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector. Conclusions The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1. PMID:21955916

  12. PDH E1β deficiency with novel mutations in two patients with Leigh syndrome.

    PubMed

    Quintana, E; Mayr, J A; García Silva, M T; Font, A; Tortoledo, M A; Moliner, S; Ozaez, L; Lluch, M; Cabello, A; Ricoy, J R; Koch, J; Ribes, A; Sperl, W; Briones, P

    2009-12-01

    Most cases of pyruvate dehydrogenase complex (PDHc) deficiency are attributable to mutations in the PDHA1 gene which encodes the E(1)α subunit, with few cases of mutations in the genes for E(3), E3BP (E(3) binding protein), E(2) and E(1)-phosphatase being reported. Only seven patients with deficiency of the E(1)β subunit have been described, with mutations in the PDHB gene in six of them. Clinically they presented with a non-specific encephalomyopathy. We report two patients with new mutations in PDHB and Leigh syndrome. Patient 1 was a boy with neonatal onset of hyperlactataemia, corpus callosum hypoplasia and a convulsive encephalopathy. After neurological deterioration, he died at age 5 months. Autopsy revealed the characteristic features of Leigh syndrome. Patient 2, also a boy, presented a milder clinical course. First symptoms were noticed at age 16 months with muscular hypotonia, lactic acidosis and recurrent episodes of somnolence and transient tetraparesis. MRI revealed bilateral signal hyperintensities in the globus pallidus, midbrain and crura cerebri. PDHc and E(1) activities were deficient in fibroblasts in patient 1; in patient 2 PDHc deficiency was found in skeletal muscle. Mutations in PDHA1 were excluded. Sequencing of PDHB revealed a homozygous point mutation (c.302T>C), causing a predicted amino acid change (p.M101T) in patient 1. Patient 2 is compound heterozygote for mutations c.301A>G (p.M101V) and c.313G>A (p.R105Q). All three mutations appear to destabilize the E(1) enzyme with a decrease of both E(1)α and E(1)β subunits in immunoblot analysis. To our knowledge, these patients with novel PDHB mutations are the first reported with Leigh syndrome.

  13. CD4 molecules with a diversity of mutations encompassing the CDR3 region efficiently support human immunodeficiency virus type 1 envelope glycoprotein-mediated cell fusion.

    PubMed Central

    Broder, C C; Berger, E A

    1993-01-01

    The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent

  14. CD4 molecules with a diversity of mutations encompassing the CDR3 region efficiently support human immunodeficiency virus type 1 envelope glycoprotein-mediated cell fusion.

    PubMed

    Broder, C C; Berger, E A

    1993-02-01

    The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent

  15. BRAFV600E mutation in the diagnosis of unicystic ameloblastoma.

    PubMed

    Pereira, Núbia Braga; Pereira, Karuza Maria Alves; Coura, Bruna Pizziolo; Diniz, Marina Gonçalves; de Castro, Wagner Henriques; Gomes, Carolina Cavalieri; Gomez, Ricardo Santiago

    2016-11-01

    Unicystic ameloblastoma, an odontogenic neoplasm, presents clinical and radiographic similarities with dentigerous and radicular cysts, non-neoplastic lesions. It is not always possible to reach a final diagnosis with the incisional biopsy, leading to inappropriate treatment. The BRAFV600E activating mutation has been reported in a high proportion of ameloblastomas. The purpose of the study was to assess the utility of the detection of the BRAFV600E mutation in the differential diagnosis of unicystic ameloblastoma with dentigerous and radicular cysts. Twenty-six archival samples were included, comprising eight unicystic ameloblastomas (UAs), nine dentigerous and nine radicular cysts. The mutation was assessed in all samples by anti-BRAFV600E (clone VE1) immunohistochemistry (IHC) and by TaqMan mutation detection qPCR assay. Sanger sequencing was further carried out when samples showed conflicting results in the IHC and qPCR. Although all UAs (8/8) showed positive uniform BRAFV600E staining along the epithelial lining length, the mutation was not confirmed by qPCR and Sanger sequencing in three samples. Positive staining for the BRAFV600E protein was observed in one dentigerous cyst, but it was not confirmed by the molecular methods. Furthermore, 2/9 dentigerous cysts and 2/9 radicular cysts showed non-specific immunostaining of the epithelium or plasma cells. None of the dentigerous or radicular cysts cases presented the BRAFV600E mutation in the qPCR assay. The BRAFV600E antibody (clone VE1) IHC may show non-specific staining, but molecular assays may be useful for the diagnosis of unicystic ameloblastoma, in conjunction with clinical, radiological and histopathological features. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adoptedmore » a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.« less

  17. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    PubMed

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P < 0.0001) in BRCA2. Of 1104 profiled CRCs from a second cohort (COSMIC), MSH2/MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P < 0.0000001). BRCA2 mutations in MSH2/MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P < 0.0000001). Approximately 15% of EGFR mutations found may be actionable through TKI therapy, including N700D, G719D, T725M, T790M, and E884K. NTRK gene mutations were identified in MSH2/MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  18. A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I.

    PubMed

    Zuiani, Adam; Chen, Kevin; Schwarz, Megan C; White, James P; Luca, Vincent C; Fremont, Daved H; Wang, David; Evans, Matthew J; Diamond, Michael S

    2016-12-01

    While natural hepatitis C virus (HCV) infection results in highly diverse quasispecies of related viruses over time, mutations accumulate more slowly in tissue culture, in part because of the inefficiency of replication in cells. To create a highly diverse population of HCV particles in cell culture and identify novel growth-enhancing mutations, we engineered a library of infectious HCV with all codons represented at most positions in the ectodomain of the E2 gene. We identified many putative growth-adaptive mutations and selected nine highly represented E2 mutants for further study: Q412R, T416R, S449P, T563V, A579R, L619T, V626S, K632T, and L644I. We evaluated these mutants for changes in particle-to-infectious-unit ratio, sensitivity to neutralizing antibody or CD81 large extracellular loop (CD81-LEL) inhibition, entry factor usage, and buoyant density profiles. Q412R, T416R, S449P, T563V, and L619T were neutralized more efficiently by anti-E2 antibodies and T416R, T563V, and L619T by CD81-LEL. Remarkably, all nine variants showed reduced dependence on scavenger receptor class B type I (SR-BI) for infection. This shift from SR-BI usage did not correlate with a change in the buoyant density profiles of the variants, suggesting an altered E2-SR-BI interaction rather than changes in the virus-associated lipoprotein-E2 interaction. Our results demonstrate that residues influencing SR-BI usage are distributed across E2 and support the development of large-scale mutagenesis studies to identify viral variants with unique functional properties. Characterizing variant viruses can reveal new information about the life cycle of HCV and the roles played by different viral genes. However, it is difficult to recapitulate high levels of diversity in the laboratory because of limitations in the HCV culture system. To overcome this limitation, we engineered a library of mutations into the E2 gene in the context of an infectious clone of the virus. We used this library of viruses

  19. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification. Class...

  20. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification. Class...

  1. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification. Class...

  2. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification. Class...

  3. 21 CFR 866.5425 - Alpha-2-glycoproteins immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the alpha-2-glycoproteins (a group of plasma proteins found in the alpha-2 group when subjected to... some cancers and genetically inherited deficiencies of these plasma proteins. (b) Classification. Class...

  4. Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing.

    PubMed

    Byrd, J C; Tarentino, A L; Maley, F; Atkinson, P H; Trimble, R B

    1982-12-25

    Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1

  5. Structure of the buffalo secretory signalling glycoprotein at 2.8 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ethayathulla, Abdul S.; Srivastava, Devendra B.; Kumar, Janesh

    2007-04-01

    The crystal structure of a signalling glycoprotein isolated from buffalo dry secretions (SPB-40) has been determined at 2.8 Å resolution. Two unique residues, Tyr120 and Glu269, found in SPB-40 distort the shape of the sugar-binding groove considerably. The water structure in the groove is also different. The conformations of three flexible loops, His188–His197, Phe202–Arg212 and Tyr244–Pro260, also differ from those found in other structurally similar proteins. The crystal structure of a 40 kDa signalling glycoprotein from buffalo (SPB-40) has been determined at 2.8 Å resolution. SPB-40 acts as a protective signalling factor by binding to viable cells during the earlymore » phase of involution, during which extensive tissue remodelling occurs. It was isolated from the dry secretions of Murrah buffalo. It was purified and crystallized using the hanging-drop vapour-diffusion method with 19% ethanol as the precipitant. The protein was also cloned and its complete nucleotide and amino-acid sequences were determined. When compared with the sequences of other members of the family, the sequence of SPB-40 revealed two very important mutations in the sugar-binding region, in which Tyr120 changed to Trp120 and Glu269 changed to Trp269. The structure showed a significant distortion in the shape of the sugar-binding groove. The water structure in the groove is also drastically altered. The folding of the protein chain in the flexible region comprising segments His188–His197, Phe202–Arg212 and Tyr244–Pro260 shows large variations when compared with other proteins of the family.« less

  6. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    PubMed

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  7. An interactive web-tool for molecular analyses links naturally occurring mutation data with three-dimensional structures of the rhodopsin-like glycoprotein hormone receptors.

    PubMed

    Kleinau, Gunnar; Kreuchwig, Annika; Worth, Catherine L; Krause, Gerd

    2010-06-01

    The collection, description and molecular analysis of naturally occurring (pathogenic) mutations are important for understanding the functional mechanisms and malfunctions of biological units such as proteins. Numerous databases collate a huge amount of functional data or descriptions of mutations, but tools to analyse the molecular effects of genetic variations are as yet poorly provided. The goal of this work was therefore to develop a translational web-application that facilitates the interactive linkage of functional and structural data and which helps improve our understanding of the molecular basis of naturally occurring gain- or loss- of function mutations. Here we focus on the human glycoprotein hormone receptors (GPHRs), for which a huge number of mutations are known to cause diseases. We describe new options for interactive data analyses within three-dimensional structures, which enable the assignment of molecular relationships between structure and function. Strikingly, as the functional data are converted into relational percentage values, the system allows the comparison and classification of data from different GPHR subtypes and different experimental approaches. Our new application has been incorporated into a freely available database and website for the GPHRs (http://www.ssfa-gphr.de), but the principle development would also be applicable to other macromolecules.

  8. Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion

    PubMed Central

    Saw, Wan Ting; Eisenberg, Roselyn J.; Cohen, Gary H.

    2016-01-01

    ABSTRACT Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when

  9. Influence of genetic variations in platelet glycoproteins and eNOS in the development of arterial ischaemia of lower limbs in type 2 diabetes mellitus patients.

    PubMed

    Carvalhais, Virginia; Ruivães, Ema; Pina-Cabral, Luis Bernardo; Mesquita, Bárbara; Oliveira, Flávio; Monteiro, Maria Céu; Criado, Maria Begoña

    2016-12-01

    Endothelial and platelet dysfunction increase the atherothrombotic risk in diabetes mellitus patients. Therefore, arterial ischaemia of lower limbs is an important complication in diabetes mellitus. In the present work, type 2 diabetic patients were classified by a podiatrist into presence or absence of arterial ischaemia of lower limbs. Several polymorphisms in platelet glycoproteins and eNOS genes were evaluated. Our results suggest that the -5CC genotype in Kozak sequence of GPIbα may be associated with a higher risk of developing arterial ischaemia of lower limbs in type 2 diabetes mellitus patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A KCNQ2 E515D mutation associated with benign familial neonatal seizures and continuous spike and waves during slow-wave sleep syndrome in Taiwan.

    PubMed

    Lee, Inn-Chi; Yang, Jiann-Jou; Li, Shuan-Yow

    2017-09-01

    Pediatric epilepsy caused by a KCNQ2 gene mutation usually manifests as benign familial neonatal seizures (BFNS) during the 1 st week of life. However, the exact mechanism, phenotype, and genotype of the KCNQ2 mutation are unclear. We studied the KCNQ2 genotype from 75 nonconsanguineous patients with childhood epilepsy without an identified cause (age range: from 2 days to 18 years) and from 55 healthy adult controls without epilepsy. KCNQ2 mutation variants were transfected into HEK293 cells to investigate what functional changes they induced. Four (5%) of the patients had the E515D KCNQ2 mutation, which the computer-based PolyPhen algorithm predicted to be deleterious. Their seizure outcomes were favorable, but three had an intellectual disability. Two patients with E515D presented with continuous spikes and waves during slow-wave sleep (CSWS), and the other two presented with BFNS. We also analyzed 10 affected family members with the same KCNQ2 mutation: all had epilepsy (8 had BFNS and 2 had CSWS). A functional analysis showed that the recordings of the E515D currents were significantly different (p<0.05), which suggested that channels with KCNQ2 E515D variants are less sensitive to voltage and require stronger depolarization to reach opening probabilities than those with the wild type or N780T (a benign polymorphism). KCNQ2 mutations can cause various phenotypes in children: they lead to BFNS and CSWS. We hypothesize that patients with the KCNQ2 E515D mutation are susceptible to seizures. Copyright © 2016. Published by Elsevier B.V.

  11. The NS1 Glycoprotein Can Generate Dramatic Antibody-Enhanced Dengue Viral Replication in Normal Out-Bred Mice Resulting in Lethal Multi-Organ Disease

    PubMed Central

    Falconar, Andrew K. I.; Martinez, Fernando

    2011-01-01

    Antibody-enhanced replication (AER) of dengue type-2 virus (DENV-2) strains and production of antibody-enhanced disease (AED) was tested in out-bred mice. Polyclonal antibodies (PAbs) generated against the nonstructural-1 (NS1) glycoprotein candidate vaccine of the New Guinea-C (NG-C) or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E) glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD50) of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS), displayed by diffuse alveolar damage (DAD) resulting from i) dramatic interstitial alveolar septa-thickening with mononuclear cells, ii) some hyperplasia of alveolar type-II pneumocytes, iii) copious intra-alveolar protein secretion, iv) some hyaline membrane-covered alveolar walls, and v) DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human “severe dengue” cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines

  12. Generation of a novel live rabies vaccine strain with a high level of safety by introducing attenuating mutations in the nucleoprotein and glycoprotein.

    PubMed

    Nakagawa, Keisuke; Nakagawa, Kento; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Mitake, Hiromichi; Okada, Kazuma; Yamaoka, Satoko; Takashima, Yasuhiro; Masatani, Tatsunori; Okadera, Kota; Ito, Naoto; Mizutani, Tetsuya; Sugiyama, Makoto

    2017-10-09

    The current live rabies vaccine SAG2 is attenuated by only one mutation (Arg-to-Glu) at position 333 in the glycoprotein (G333). This fact generates a potential risk of the emergence of a pathogenic revertant by a back mutation at this position during viral propagation in the body. To circumvent this risk, it is desirable to generate a live vaccine strain highly and stably attenuated by multiple mutations. However, the information on attenuating mutations other than that at G333 is very limited. We previously reported that amino acids at positions 273 and 394 in the nucleoprotein (N273/394) (Leu and His, respectively) of fixed rabies virus Ni-CE are responsible for the attenuated phenotype by enhancing interferon (IFN)/chemokine gene expressions in infected neural cells. In this study, we found that amino acid substitutions at N273/394 (Phe-to-Leu and Tyr-to-His, respectively) attenuated the pathogenicity of the oral live vaccine ERA, which has a virulent-type Arg at G333. Then we generated ERA-N273/394-G333 attenuated by the combination of the above attenuating mutations at G333 and N273/394, and checked its safety. Similar to the ERA-G333, which is attenuated by only the mutation at G333, ERA-N273/394-G333 did not cause any symptoms in adult mice after intracerebral inoculation, indicating a low level of residual pathogenicity of ERA-N273/394-G333. Further examination revealed that infection with ERA-N273/394-G333 induces IFN-β and CXCL10 mRNA expressions more strongly than ERA-G333 infection in a neuroblastoma cell line. Importantly, we found that the ERA-N273/394-G333 stain has a lower risk for emergence of a pathogenic revertant than does the ERA-G333. These results indicate that ERA-N273/394-G333 has a potential to be a promising candidate for a live rabies vaccine strain with a high level of safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muggeridge, Martin I.; Grantham, Michael L.; Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130

    2004-10-25

    Small polykaryocytes resulting from cell fusion are found in herpes simplex virus (HSV) lesions in patients, but their significance for viral spread and pathogenesis is unclear. Although syncytial variants causing extensive fusion in tissue culture can be readily isolated from laboratory strains, they are rarely found in clinical isolates, suggesting that extensive cell fusion may be deleterious in vivo. Syncytial mutations have previously been identified for several laboratory strains, but not for clinical isolates of HSV type 2. To address this deficiency, we studied a recent syncytial clinical isolate, finding it to be a mixture of two syncytial and onemore » nonsyncytial strain. The two syncytial strains have novel mutations in glycoprotein B, and in vitro cell fusion assays confirmed that they are responsible for syncytium formation. This panel of clinical strains may be ideal for examining the effect of increased cell fusion on pathogenesis.« less

  14. Development of Glycoprotein Capture-Based Label-Free Method for the High-throughput Screening of Differential Glycoproteins in Hepatocellular Carcinoma*

    PubMed Central

    Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2011-01-01

    A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers. PMID:21474793

  15. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types

    PubMed Central

    Denolly, Solène; Bourlet, Thomas; Amirache, Fouzia

    2017-01-01

    Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus. PMID:29253880

  16. In Japanese patients with papillary thyroid carcinoma, TERT promoter mutation is associated with poor prognosis, in contrast to BRAF V600E mutation.

    PubMed

    Nasirden, Almira; Saito, Tsuyoshi; Fukumura, Yuki; Hara, Kieko; Akaike, Keisuke; Kurisaki-Arakawa, Aiko; Asahina, Miki; Yamashita, Atsushi; Tomomasa, Ran; Hayashi, Takuo; Arakawa, Atsushi; Yao, Takashi

    2016-12-01

    The prognostic value of BRAF V600E and TERT promoter mutation in papillary thyroid carcinoma (PTC) is controversial. We examined alterations in BRAF V600E and TERT promoter by PCR-direct sequencing in PTC of 144 Japanese patients. Alternative lengthening of telomeres was examined as another mechanism of telomere maintenance by immunohistochemical staining for ATRX and DAXX. Of the clinicopathological characteristics, regional lymph node metastasis, extra-thyroid extension, multifocality/intrathyroidal spread, and advanced stage (III/V) were associated with shorter disease-free survival rate (DFSR). TERT promoter mutation was found in eight patients (6 %), and this was significantly associated with total thyroidectomy, multifocality/intrathyroidal spread, lymph node metastasis and advanced stage. The BRAF V600E mutation was found in 53 patients (38.2 %) but was not associated with any clinicopathological factors. TERT mutations were not correlated with BRAF V600E mutation status. TERT mutation-positive tumors (TERT+) showed lower DFSR than BRAF V600E -mutation-positive tumors (BRAF V600E +), and TERT+/BRAF V600E + tumors showed lower DFSR than BRAF V600E + tumors. No cases showed loss of ATRX/DAXX expression by immunohistochemistry. TERT promoter mutations showed a lower prevalence in our series and appeared to be associated with aggressive behavior. In PTCs, telomerase activation by TERT promoter mutation might be more important than alternative lengthening of telomeres.

  17. CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer.

    PubMed

    Smeby, J; Sveen, A; Merok, M A; Danielsen, S A; Eilertsen, I A; Guren, M G; Dienstmann, R; Nesbakken, A; Lothe, R A

    2018-05-01

    The prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer (CRC) varies with microsatellite instability (MSI) status. The gene expression-based consensus molecular subtypes (CMSs) of CRC define molecularly and clinically distinct subgroups, and represent a novel stratification framework in biomarker analysis. We investigated the prognostic value of these mutations within the CMS groups. Totally 1197 primary tumors from a Norwegian series of CRC stage I-IV were analyzed for MSI and mutation status in hotspots in KRAS (codons 12, 13 and 61) and BRAF (codon 600). A subset was analyzed for gene expression and confident CMS classification was obtained for 317 samples. This cohort was expanded with clinical and molecular data, including CMS classification, from 514 patients in the publically available dataset GSE39582. Gene expression signatures associated with KRAS and BRAFV600E mutations were used to evaluate differential impact of mutations on gene expression among the CMS groups. BRAFV600E and KRAS mutations were both associated with inferior 5-year overall survival (OS) exclusively in MSS tumors (BRAFV600E mutation versus KRAS/BRAF wild-type: Hazard ratio (HR) 2.85, P < 0.001; KRAS mutation versus KRAS/BRAF wild-type: HR 1.30, P = 0.013). BRAFV600E-mutated MSS tumors were strongly enriched and associated with metastatic disease in CMS1, leading to negative prognostic impact in this subtype (OS: BRAFV600E mutation versus wild-type: HR 7.73, P = 0.001). In contrast, the poor prognosis of KRAS mutations was limited to MSS tumors with CMS2/CMS3 epithelial-like gene expression profiles (OS: KRAS mutation versus wild-type: HR 1.51, P = 0.011). The subtype-specific prognostic associations were substantiated by differential effects of BRAFV600E and KRAS mutations on gene expression signatures according to the MSI status and CMS group. BRAFV600E mutations are enriched and associated with metastatic disease in CMS1 MSS tumors, leading

  18. Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066-1087) as the fusion peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmeyer, Matthew L.; Graduate Group Molecular and Cell Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; Soldan, Samantha S.

    The La Crosse Virus (LACV) M segment encodes two glycoproteins (Gn and Gc), and plays a critical role in the neuropathogenesis of LACV infection as the primary determinant of neuroinvasion. A recent study from our group demonstrated that the region comprising the membrane proximal two-thirds of Gc, amino acids 860-1442, is critical in mediating LACV fusion and entry. Furthermore, computational analysis identified structural similarities between a portion of this region, amino acids 970-1350, and the E1 fusion protein of two alphaviruses: Sindbis virus and Semliki Forrest virus (SFV). Within the region 970-1350, a 22-amino-acid hydrophobic segment (1066-1087) is predicted tomore » correlate structurally with the fusion peptides of class II fusion proteins. We performed site-directed mutagenesis of key amino acids in this 22-amino acid segment and determined the functional consequences of these mutations on fusion and entry. Several mutations within this hydrophobic domain affected glycoprotein expression to some extent, but all mutations either shifted the pH threshold of fusion below that of the wild-type protein, reduced fusion efficiency, or abrogated cell-to-cell fusion and pseudotype entry altogether. These results, coupled with the aforementioned computational modeling, suggest that the LACV Gc functions as a class II fusion protein and support a role for the region Gc 1066-1087 as a fusion peptide.« less

  19. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures.

    PubMed

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5-13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known. We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations.

  20. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures

    PubMed Central

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known.     We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  1. Dysfunction of bovine endogenous retrovirus K2 envelope glycoprotein is related to unsuccessful intracellular trafficking.

    PubMed

    Nakaya, Yuki; Miyazawa, Takayuki

    2014-06-01

    Endogenous retroviruses (ERVs) are the remnants of retroviral infection of ancestral germ cells. Mutations introduced into ERVs halt the production of infectious agents, but their effects on the function of retroviral proteins are not fully understood. Retroviral envelope glycoproteins (Envs) are utilized in membrane fusion during viral entry, and we recently identified intact coding sequences for bovine endogenous retrovirus K1 (BERV-K1) and BERV-K2 Envs. Amino acid sequences of BERV-K1 Env (also called Fematrin-1) and BERV-K2 Env are similar, and both viruses are classified in the genus Betaretrovirus. While Fematrin-1 plays an important role in cell-to-cell fusion in bovine placenta, the BERV-K2 envelope gene is marginally expressed in vivo, and its recombinant Env protein is defective in membrane fusion due to inefficient cleavage of surface (SU) and transmembrane subunits. Here, we conducted chimeric analyses of Fematrin-1 and BERV-K2 Envs and revealed that defective maturation of BERV-K2 Env contributed to failed intracellular trafficking. Fluorescence microscopy and flow cytometric analysis suggested that in contrast to Fematrin-1 Env, BERV-K2 Env could not be transported from the endoplasmic reticulum to the trans-Golgi network, where cellular proteases required for processing retroviral Envs are localized. We also identified that one of the responsive regions of this phenomenon resided within a 65-amino-acid region of BERV-K2 SU. This is the first report to identify that retroviral Env SU is involved in the regulation of intracellular trafficking, and it may help to elucidate the maturation process of Fematrin-1 and other related Envs. Retroviruses utilize envelope glycoproteins (Envs) to enter host target cells. Mature retroviral Env is a heterodimer, which consists of surface (SU) and transmembrane (TM) subunits that are generated by the cleavage of an Env precursor protein in the trans-Golgi network. SU and TM mediate the recognition of the entry

  2. Dysfunction of Bovine Endogenous Retrovirus K2 Envelope Glycoprotein Is Related to Unsuccessful Intracellular Trafficking

    PubMed Central

    2014-01-01

    ABSTRACT Endogenous retroviruses (ERVs) are the remnants of retroviral infection of ancestral germ cells. Mutations introduced into ERVs halt the production of infectious agents, but their effects on the function of retroviral proteins are not fully understood. Retroviral envelope glycoproteins (Envs) are utilized in membrane fusion during viral entry, and we recently identified intact coding sequences for bovine endogenous retrovirus K1 (BERV-K1) and BERV-K2 Envs. Amino acid sequences of BERV-K1 Env (also called Fematrin-1) and BERV-K2 Env are similar, and both viruses are classified in the genus Betaretrovirus. While Fematrin-1 plays an important role in cell-to-cell fusion in bovine placenta, the BERV-K2 envelope gene is marginally expressed in vivo, and its recombinant Env protein is defective in membrane fusion due to inefficient cleavage of surface (SU) and transmembrane subunits. Here, we conducted chimeric analyses of Fematrin-1 and BERV-K2 Envs and revealed that defective maturation of BERV-K2 Env contributed to failed intracellular trafficking. Fluorescence microscopy and flow cytometric analysis suggested that in contrast to Fematrin-1 Env, BERV-K2 Env could not be transported from the endoplasmic reticulum to the trans-Golgi network, where cellular proteases required for processing retroviral Envs are localized. We also identified that one of the responsive regions of this phenomenon resided within a 65-amino-acid region of BERV-K2 SU. This is the first report to identify that retroviral Env SU is involved in the regulation of intracellular trafficking, and it may help to elucidate the maturation process of Fematrin-1 and other related Envs. IMPORTANCE Retroviruses utilize envelope glycoproteins (Envs) to enter host target cells. Mature retroviral Env is a heterodimer, which consists of surface (SU) and transmembrane (TM) subunits that are generated by the cleavage of an Env precursor protein in the trans-Golgi network. SU and TM mediate the recognition

  3. Cooperative role of calnexin and TigA in Aspergillus oryzae glycoprotein folding.

    PubMed

    Wang, Ning; Seko, Akira; Takeda, Yoichi; Kikuma, Takashi; Ito, Yukishige

    2015-10-01

    Calnexin (CNX), known as a lectin chaperone located in the endoplasmic reticulum (ER), specifically recognizes G1M9GN2-proteins and facilitates their proper folding with the assistance of ERp57 in mammalian cells. However, it has been left unidentified how CNX works in Aspergillus oryzae, which is a filamentous fungus widely exploited in biotechnology. In this study, we found that a protein disulfide isomerase homolog TigA can bind with A. oryzae CNX (AoCNX), which was revealed to specifically recognize monoglucosylated glycans, similarly to CNX derived from other species, and accelerate the folding of G1M9GN2-ribonuclease (RNase) in vitro. For refolding experiments, a homogeneous monoglucosylated high-mannose-type glycoprotein G1M9GN2-RNase was chemoenzymatically synthesized from G1M9GN-oxazoline and GN-RNase. Denatured G1M9GN2-RNase was refolded with highest efficiency in the presence of both soluble form of AoCNX and TigA. TigA contains two thioredoxin domains with CGHC motif, mutation analysis of which revealed that the one in N-terminal regions is involved in binding to AoCNX, while the other in catalyzing protein refolding. The results suggested that in glycoprotein folding process of A. oryzae, TigA plays a similar role as ERp57 in mammalian cells, as a partner protein of AoCNX. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Determination of the Human Antibody Response to the Neutralization Epitopes Encompassing Amino Acids 313–327 and 432–443 of Hepatitis C Virus E1E2 Glycoproteins

    PubMed Central

    Liu, Ruyu; Rao, Huiying; Wang, Jianghua; Xie, Xingwang; Jiang, Dong; Pan, Xiaoben; Zhao, Ping; Zhang, Henghui; Wei, Lai

    2013-01-01

    It has been reported that monoclonal antibodies (MAbs) to the E1E2 glycoproteins may have the potential to prevent hepatitis C virus (HCV) infection. The protective epitopes targeted by these MAbs have been mapped to the regionsencompassing amino acids 313–327 and 432–443. In this study, we synthesized these two peptides and tested the reactivity of serum samples from 336 patients, 210 of whichwere from Chronic Hepatitis C (CHC) patients infected with diverse HCV genotypes.The remaining 126 samples were isolated from patients who had spontaneously clearedHCV infection.In the chronic HCV-infected group (CHC group), the prevalence of human serum antibodies reactive to epitopes 313–327 and 432–443was 24.29%(51 of 210) and4.76%(10 of 210),respectively. In thespontaneousclearance group (SC group),the prevalence was 0.79%(1 of 126) and 12.70%(16 of 126), respectively.The positive serum samples that contained antibodies reactive to epitope 313–327 neutralizedHCV pseudoparticles (HCVpp) bearing the envelope glycoproteins of genotypes 1a or 1b and/or 4, but genotypes 2a, 3a, 5 and 6 were not neutralized. The neutralizing activity of these serum samples could not be inhibited by peptide 313–327. Six samples (SC17, SC38, SC86, SC92, CHC75 and CHC198) containing antibodies reactive to epitope 432–443 had cross-genotype neutralizing activities. Theneutralizing activityof SC38, SC86, SC92 and CHC75waspartiallyinhibited by peptide 432–443. However,the neutralizing activity of sample SC17 for genotype 4HCVpp and sample CHC198 for genotype 1b HCVppwere notinhibited by the peptide.This study identifies the neutralizing ability of endogenous anti-HCV antibodies and warrants the exploration of antibodies reactive to epitope432–443as sources for future antibody therapies. PMID:23826163

  5. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP).

    PubMed

    Schorderet, Daniel F; Escher, Pascal

    2009-11-01

    NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.

  6. Relationship of body mass index with BRAF (V600E) mutation in papillary thyroid cancer.

    PubMed

    Shi, Rong-Liang; Qu, Ning; Liao, Tian; Wei, Wen-Jun; Lu, Zhong-Wu; Ma, Ben; Wang, Yu-Long; Ji, Qing-Hai

    2016-06-01

    Current evidences suggest an influence of overweight body mass index (BMI) on the carcinogenesis in malignancies. However, the role of BMI is unclear in papillary thyroid cancer (PTC). The aim of the present study is to investigate the relationship between BMI and BRAF (V600E) mutation status in PTC. BRAF (V600E) mutation in 108 patients with PTC was analyzed by Sanger sequencing. The cutoff point of BMI was identified by X-tile for predicting mutation by overweight. Odds ratios (OR) and 95 % confidence interval (CI) of BRAF (V600E) mutation according to BMI and clinicopathologic variables were calculated using logistic regression models. Fifty-one patients were positive for BRAF (V600E) mutation. A positive relationship existed between BRAF (V600E) mutation and BMI (p = 0.039). A 24.3 kg/m(2) was identified as cutoff point for differentiating greater than 52.0 % observed probability of mutation for BRAF (V600E) in entire cohort, which was similar to the midpoint between the upper limit of normal BMI and overweight defined by WHO (≥24 kg/m(2)). Multivariate analysis confirmed the association between BRAF (V600E) mutation with overweight BMI range (OR 7.645, 95 % CI 1.275-45.831, p = 0.026). This study suggests an influence of overweight BMI on the status of BRAF (V600E) in patients with PTC, whereas the underlying mechanism need to be further investigated.

  7. Prevalence of ESR1 E380Q mutation in tumor tissue and plasma from Japanese breast cancer patients.

    PubMed

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Sueta, Aiko; Tomiguchi, Mai; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka

    2017-11-22

    ESR1 mutations have attracted attention as a potentially important marker and treatment target in endocrine therapy-resistant breast cancer patients. The E380Q mutation, which is one of the ESR1 mutations, is associated with estradiol (E2) hypersensitivity, increased DNA binding to the estrogen response element, and E2-independent constitutive trans-activation activity, but its frequency in ESR1 mutations remains unknown. The present study aimed to investigate the E380Q mutation in comparison with the other representative ESR1 mutations. We screened a total of 62 patients (66 tumor tissues and 69 plasma cell-free DNA (cfDNA)) to detect ESR1 mutations (E380Q, Y537S, Y537N, Y537C, and D538G) using droplet-digital polymerase chain reaction. Plasma was collected at more than two points of the clinical course, in whom changes of ESR1 mutations under treatment were investigated. We detected ESR1 mutations in 21% (12/57) of MBCs. The E380Q ESR1 mutation was found in 16% (2/12) and the other ESR1 LBD mutations were five (41.6%) of Y537S, and four each (33.3%) of D538G, Y537N, and Y537C, in 12 ESR1 mutant breast cancer patients. Five tumors had multiple ESR1 mutations: three had double ESR1 mutations; Y537S/E380Q, Y37S/Y537C, and Y537S/D538G, and two had triple ESR1 mutations; Y537S/Y537N/D538G. In plasma cfDNA analysis, the E380Q mutation was not detected, but increases in other ESR1 mutations were detected in 46.2% (6/13) of MBC patients under treatment. We have shown that there are distinct populations of ESR1 mutations in metastatic tissue and plasma. Each ESR1 mutation may have different clinical significance, and it will be necessary to investigate them all.

  8. Antibodies to the Glycoprotein GP2 Subunit Cross-React between Old and New World Arenaviruses.

    PubMed

    Amanat, Fatima; Duehr, James; Oestereich, Lisa; Hastie, Kathryn M; Ollmann Saphire, Erica; Krammer, Florian

    2018-01-01

    Arenaviruses pose a major public health threat and cause numerous infections in humans each year. Although most viruses belonging to this family do not cause disease in humans, some arenaviruses, such as Lassa virus and Machupo virus, are the etiological agents of lethal hemorrhagic fevers. The absence of a currently licensed vaccine and the highly pathogenic nature of these viruses both make the necessity of developing viable vaccines and therapeutics all the more urgent. Arenaviruses have a single glycoprotein on the surface of virions, the glycoprotein complex (GPC), and this protein can be used as a target for vaccine development. Here, we describe immunization strategies to generate monoclonal antibodies (MAbs) that cross-react between the glycoprotein complexes of both Old World and New World arenaviruses. Several monoclonal antibodies isolated from immunized mice were highly cross-reactive, binding a range of Old World arenavirus glycoproteins, including that of Lassa virus. One such monoclonal antibody, KL-AV-2A1, bound to GPCs of both New World and Old World viruses, including Lassa and Machupo viruses. These cross-reactive antibodies bound to epitopes present on the glycoprotein 2 subunit of the glycoprotein complex, which is relatively conserved among arenaviruses. Monoclonal antibodies binding to these epitopes, however, did not inhibit viral entry as they failed to neutralize a replication-competent vesicular stomatitis virus pseudotyped with the Lassa virus glycoprotein complex in vitro In addition, no protection from virus challenge was observed in in vivo mouse models. Even so, these monoclonal antibodies might still prove to be useful in the development of clinical and diagnostic assays. IMPORTANCE Several viruses in the Arenaviridae family infect humans and cause severe hemorrhagic fevers which lead to high case fatality rates. Due to their pathogenicity and geographic tropisms, these viruses remain very understudied. As a result, an effective

  9. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease.

    PubMed

    Dunn, Amy R; Stout, Kristen A; Ozawa, Minagi; Lohr, Kelly M; Hoffman, Carlie A; Bernstein, Alison I; Li, Yingjie; Wang, Minzheng; Sgobio, Carmelo; Sastry, Namratha; Cai, Huaibin; Caudle, W Michael; Miller, Gary W

    2017-03-14

    Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.

  10. Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies

    PubMed Central

    Lech, Patrycja J.; Tobin, Gregory J.; Bushnell, Ruth; Gutschenritter, Emily; Pham, Linh D.; Nace, Rebecca; Verhoeyen, Els; Cosset, François-Loïc; Muller, Claude P.; Russell, Stephen J.; Nara, Peter L.

    2013-01-01

    The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs. PMID:23300970

  11. Restoration of glycoprotein Erns dimerization via pseudoreversion partially restores virulence of classical swine fever virus.

    PubMed

    Tucakov, Anna Katharina; Yavuz, Sabine; Schürmann, Eva-Maria; Mischler, Manjula; Klingebeil, Anne; Meyers, Gregor

    2018-01-01

    The classical swine fever virus (CSFV) represents one of the most important pathogens of swine. The CSFV glycoprotein E rns is an essential structural protein and an important virulence factor. The latter is dependent on the RNase activity of this envelope protein and, most likely, its secretion from the infected cell. A further important feature with regard to its function as a virulence factor is the formation of disulfide-linked E rns homodimers that are found in virus-infected cells and virions. Mutant CSFV lacking cysteine (Cys) 171, the residue responsible for intermolecular disulfide bond formation, were found to be attenuated in pigs (Tews BA, Schürmann EM, Meyers G. J Virol 2009;83:4823-4834). In the course of an animal experiment with such a dimerization-negative CSFV mutant, viruses were reisolated from pigs that contained a mutation of serine (Ser) 209 to Cys. This mutation restored the ability to form disulphide-linked E rns homodimers. In transient expression studies E rns mutants carrying the S209C change were found to form homodimers with about wt efficiency. Also the secretion level of the mutated proteins was equivalent to that of wt E rns . Virus mutants containing the Cys171Ser/Ser209Cys configuration exhibited wt growth rates and increased virulence when compared with the Cys171Ser mutant. These results provide further support for the connection between CSFV virulence and E rns dimerization.

  12. Painful Charcot-Marie-Tooth neuropathy type 2E/1F due to a novel NEFL mutation.

    PubMed

    Doppler, Kathrin; Kunstmann, Erdmute; Krüger, Stefan; Sommer, Claudia

    2017-05-01

    Charcot-Marie-Tooth neuropathy (CMT) 2E/1F is caused by mutations in the neurofilament light-chain polypeptide (NEFL) gene. Giant axons are a histological hallmark frequently seen in nerves of patients with CMT2E. We describe the case of a 43-year-old patient with a painful, predominantly sensory neuropathy. The patient's sural nerve biopsy showed multiple giant axons. Genetic sequencing of the NEFL gene revealed that the patient was heterozygous for an altered sequence of the gene, c.816C>G, p.Asn272Lys, which has not yet been described in CMT2E/1F. In contrast to other cases of CMT2E/1F, where motor symptoms are predominant, pain was the most disabling symptom in this patient. Muscle Nerve 55: 752-755, 2017. © 2016 Wiley Periodicals, Inc.

  13. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity andmore » multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein

  14. NT5E Mutations and Arterial Calcifications

    PubMed Central

    St. Hilaire, Cynthia; Ziegler, Shira G.; Markello, Thomas C.; Brusco, Alfredo; Groden, Catherine; Gill, Fred; Carlson-Donohoe, Hannah; Lederman, Robert J.; Chen, Marcus Y.; Yang, Dan; Siegenthaler, Michael P.; Arduino, Carlo; Mancini, Cecilia; Freudenthal, Bernard; Stanescu, Horia C.; Zdebik, Anselm A.; Chaganti, R. Krishna; Nussbaum, Robert L.; Kleta, Robert; Gahl, William A.; Boehm, Manfred

    2011-01-01

    BACKGROUND Arterial calcifications are associated with increased cardiovascular risk, but the genetic basis of this association is unclear. METHODS We performed clinical, radiographic, and genetic studies in three families with symptomatic arterial calcifications. Single-nucleotide-polymorphism analysis, targeted gene sequencing, quantitative polymerase-chain-reaction assays, Western blotting, enzyme measurements, transduction rescue experiments, and in vitro calcification assays were performed. RESULTS We identified nine persons with calcifications of the lower-extremity arteries and hand and foot joint capsules: all five siblings in one family, three siblings in another, and one patient in a third family. Serum calcium, phosphate, and vitamin D levels were normal. Affected members of Family 1 shared a single 22.4-Mb region of homozygosity on chromosome 6 and had a homozygous nonsense mutation (c.662C→A, p.S221X) in NT5E, encoding CD73, which converts AMP to adenosine. Affected members of Family 2 had a homozygous missense mutation (c.1073G→A, p.C358Y) in NT5E. The proband of Family 3 was a compound heterozygote for c.662C→A and c.1609dupA (p.V537fsX7). All mutations found in the three families result in nonfunctional CD73. Cultured fibroblasts from affected members of Family 1 showed markedly reduced expression of NT5E messenger RNA, CD73 protein, and enzyme activity, as well as increased alkaline phosphatase levels and accumulated calcium phosphate crystals. Genetic rescue experiments normalized the CD73 and alkaline phosphatase activity in patients’ cells, and adenosine treatment reduced the levels of alkaline phosphatase and calcification. CONCLUSIONS We identified mutations in NT5E in members of three families with symptomatic arterial and joint calcifications. This gene encodes CD73, which converts AMP to adenosine, supporting a role for this metabolic pathway in inhibiting ectopic tissue calcification. (Funded by the National Human Genome Research

  15. Development of recombinant canine adenovirus type-2 expressing the Gn glycoprotein of Seoul virus.

    PubMed

    Yuan, Ziguo; Zhang, Xiuxiang; Zhang, Shoufeng; Liu, Ye; Gao, Shengyan; Zhang, Fei; Xu, Huijuan; Wang, Xiaohu; Hu, Rongliang

    2008-05-01

    Seoul virus glycoprotein Gn is a major structural protein and candidate antigen of hantavirus that induces a highly immunogenic response for hantavirus vaccine. In this study, a replication-competent recombinant canine adenovirus type-2 expressing Gn was constructed by the in vitro ligation method. The Gn expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the SV40 early mRNA polyadenylation signal, was cloned into the SspI site of the E3 region which is not essential for proliferation of CAV-2. Expression of Gn was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.

  16. The PB2-K627E mutation attenuates H3N2 swine influenza virus in cultured cells and in mice.

    PubMed

    Gong, Xiao-Qian; Ruan, Bao-Yang; Liu, Xiao-Min; Zhang, Peng; Wang, Xiu-Hui; Wang, Qi; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2018-04-01

    PB2-627K is an important amino acid that determines the virulence of some influenza A viruses. However, it has not been experimentally investigated in the H3N2 swine influenza virus. To explore the potential role of PB2-K627E substitution in H3N2 swine influenza virus, the growth properties and pathogenicity between H3N2 swine influenza virus and its PB2-K627E mutant were compared. For the first time, our results showed that PB2-K627E mutation attenuates H3N2 swine influenza virus in mammalian cells and in mice, suggesting that PB2-627K is required for viral replication and pathogenicity of H3N2 swine influenza virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Clinical utility of TERT promoter mutations and ALK rearrangement in thyroid cancer patients with a high prevalence of the BRAF V600E mutation.

    PubMed

    Bae, Ja Seong; Kim, Yourha; Jeon, Sora; Kim, Se Hee; Kim, Tae Jung; Lee, Sohee; Kim, Min-Hee; Lim, Dong Jun; Lee, Youn Soo; Jung, Chan Kwon

    2016-02-09

    Mutations in the TERT promoter, ALK rearrangement, and the BRAF V600E mutation are associated with aggressive clinicopathologic features in thyroid cancers. However, little is known about the impact of TERT promoter mutations and ALK rearrangement in thyroid cancer patients with a high prevalence of BRAF mutations. We performed Sanger sequencing to detect BRAF V600E and TERT promoter mutations and both immunohistochemistry and fluorescence in situ hybridization to identify ALK rearrangement on 243 thyroid cancers. TERT promoter mutations were not present in 192 well-differentiated thyroid carcinomas (WDTC) without distant metastasis or in 9 medullary carcinomas. However, the mutations did occur in 40 % (12/30) of WDTC with distant metastasis, 29 % (2/7) of poorly differentiated carcinomas and 60 % (3/5) of anaplastic carcinomas. ALK rearrangement was not present in all thyroid cancers. The BRAF V600E mutation was more frequently found in WDTC without distant metastasis than in WDTC with distant metastasis (p = 0.007). In the cohort of WDTC with distant metastasis, patients with wild-type BRAF and TERT promoter had a significantly higher response rate after radioiodine therapy (p = 0.024), whereas the BRAF V600E mutation was significantly correlated with progressive disease (p = 0.025). The TERT promoter mutation is an independent predictor for distant metastasis of WDTC, but ALK testing is not useful for clinical decision-making in Korean patients with a high prevalence of the BRAF V600E mutation. Radioiodine therapy for distant metastasis of WDTC is most effective in patients without BRAF V600E and TERT promoter mutations.

  18. Infectious Hepatitis C Virus Pseudo-particles Containing Functional E1–E2 Envelope Protein Complexes

    PubMed Central

    Bartosch, Birke; Dubuisson, Jean; Cosset, François-Loïc

    2003-01-01

    The study of hepatitis C virus (HCV), a major cause of chronic liver disease, has been hampered by the lack of a cell culture system supporting its replication. Here, we have successfully generated infectious pseudo-particles that were assembled by displaying unmodified and functional HCV glycoproteins onto retroviral and lentiviral core particles. The presence of a green fluorescent protein marker gene packaged within these HCV pseudo-particles allowed reliable and fast determination of infectivity mediated by the HCV glycoproteins. Primary hepatocytes as well as hepato-carcinoma cells were found to be the major targets of infection in vitro. High infectivity of the pseudo-particles required both E1 and E2 HCV glycoproteins, and was neutralized by sera from HCV-infected patients and by some anti-E2 monoclonal antibodies. In addition, these pseudo-particles allowed investigation of the role of putative HCV receptors. Although our results tend to confirm their involvement, they provide evidence that neither LDLr nor CD81 is sufficient to mediate HCV cell entry. Altogether, these studies indicate that these pseudo-particles may mimic the early infection steps of parental HCV and will be suitable for the development of much needed new antiviral therapies. PMID:12615904

  19. PMS2 mutations in childhood cancer.

    PubMed

    De Vos, Michel; Hayward, Bruce E; Charlton, Ruth; Taylor, Graham R; Glaser, Adam W; Picton, Susan; Cole, Trevor R; Maher, Eamonn R; McKeown, Carole M E; Mann, Jill R; Yates, John R; Baralle, Diana; Rankin, Julia; Bonthron, David T; Sheridan, Eamonn

    2006-03-01

    Until recently, the PMS2 DNA mismatch repair gene has only rarely been implicated as a cancer susceptibility locus. New studies have shown, however, that earlier analyses of this gene have had technical limitations and also that the genetic behavior of mutant PMS2 alleles is unusual, in that, unlike MLH1 or MSH2 mutations, PMS2 mutations show low heterozygote penetrance. As a result, a dominantly inherited cancer predisposition has not been a feature reported in families with PMS2 mutations. Such families have instead been ascertained through childhood-onset cancers in homozygotes or through apparently sporadic colorectal cancer in heterozygotes. We present further information on the phenotype associated with homozygous PMS2 deficiency in 13 patients from six families of Pakistani origin living in the United Kingdom. This syndrome is characterized by café-au-lait skin pigmentation and a characteristic tumor spectrum, including leukemias, lymphomas, cerebral malignancies (such as supratentorial primitive neuroectodermal tumors, astrocytomas, and glioblastomas), and colorectal neoplasia with an onset in early adult life. We present evidence for a founder effect in five families, all of which carried the same R802-->X mutation (i.e., arginine-802 to stop) in PMS2. This cancer syndrome can be mistaken for neurofibromatosis type 1, with important management implications including the risk of the disorder occurring in siblings and the likelihood of tumor development in affected individuals.

  20. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.

    PubMed

    Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C

    2015-09-01

    Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. Human Cytochrome P450 2E1 Mutations That Alter Mitochondrial Targeting Efficiency and Susceptibility to Ethanol-induced Toxicity in Cellular Models*

    PubMed Central

    Bansal, Seema; Anandatheerthavarada, Hindupur K.; Prabu, Govindaswamy K.; Milne, Ginger L.; Martin, Martha V.; Guengerich, F. Peter; Avadhani, Narayan G.

    2013-01-01

    Human polymorphisms in the 5′-upstream regulatory regions and also protein coding regions of cytochrome P450 2E1 (CYP2E1) are known to be associated with several diseases, including cancer and alcohol liver toxicity. In this study, we report novel mutations in the N-terminal protein targeting regions of CYP2E1 that markedly affect subcellular localization of the protein. Variant W23R/W30R protein (termed W23/30R) is preferentially targeted to mitochondria but very poorly to the endoplasmic reticulum, whereas the L32N protein is preferentially targeted to the endoplasmic reticulum and poorly to mitochondria. These results explain the physiological significance of bimodal CYP targeting to the endoplasmic reticulum and mitochondria previously described. COS-7 cells and HepG2 cells stably expressing W23/30R mutations showed markedly increased alcohol toxicity in terms of increased production of reactive oxygen species, respiratory dysfunction, and loss of cytochrome c oxidase subunits and activity. Stable cells expressing the L32N variant, on the other hand, were relatively less responsive to alcohol-induced toxicity and mitochondrial dysfunction. These results further support our previous data, based on mutational studies involving altered targeting, indicating that mitochondria-targeted CYP2E1 plays an important role in alcohol liver toxicity. The results also provide an interesting new link to genetic variations affecting subcellular distribution of CYP2E1 with alcohol-induced toxicity. PMID:23471973

  2. Missense mutation (E150K) of rhodopsin in autosomal recessive retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, U.; Oehlmann, R.; Gal, A.

    1994-09-01

    Missense or nonsense mutations of the rhodopsin gene have been implied in the pathogenesis of at least 3 different traits; autosomal dominant retinitis pigmentosa (adRP), congenital stationary night blindness (CSNB), and autosomal recessive retinitis pigmentosa (arRP). For the latter, a single patient has been reported with a nonsense mutation at codon 249 on both alleles. Heterozygous carriers of missense mutations of rhodopsin develop either adRP or CSNB depending on the particular amino acid substitution. Four of the 9 siblings from a consanguineous marriage in southern India were reported the have arRP. Mutational screening and sequencing of the rhodopsin gene revealedmore » a G-to-A transition of the first nucleotide at codon 150 in exon II, which alters glutamate to lysine. The E150K mutation was present in the 4 patients in homozygous form, whereas the parents and 2 of the siblings were heterozygotes. Two-point analysis produced a Zmax=3.46 at theta=0.00. Two unaffected siblings who are heterozygotes for the E150K mutation underwent a thorough ophthalmological and psychophysical examination. No clinical abnormalities were found although these individuals were over forty, whereas the onset of RP in their affected siblings was in the second decade. Collectively, both the genetic and clinical findings strongly suggest that the E150K mutation of rhodopsin is recessive in this family. Glu150 forms part of the CD cytoplasmic loop of rhodopsin, which has been implicated in the binding and activation of transducin. We speculate that E150K leads to RP because the mutant protein may be incapable of activating transducin. It is tempting to speculate that, in addition to mutations in the genes for rhodopsin and the {beta}-subunit of PDE, mutations in the genes for transducin may also result in arRP.« less

  3. Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay.

    PubMed

    Urbanowicz, Richard A; McClure, C Patrick; King, Barnabas; Mason, Christopher P; Ball, Jonathan K; Tarr, Alexander W

    2016-09-01

    Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, preclinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from quasispecies in individual patients were discovered to behave very differently in this entry model. Empirical optimization of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterized as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) was also sensitive to the amount and ratio of plasmids used, and that protocols for optimal production of these pseudoviruses are dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilizing pseudoviruses to conduct empirical optimization of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping.

  4. Glycoprotein production for structure analysis with stable, glycosylation mutant CHO cell lines established by fluorescence-activated cell sorting.

    PubMed

    Wilke, Sonja; Krausze, Joern; Gossen, Manfred; Groebe, Lothar; Jäger, Volker; Gherardi, Ermanno; van den Heuvel, Joop; Büssow, Konrad

    2010-06-01

    Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N-linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence-activated cell sorting (FACS) and site-specific gene excision to establish high-yield glycoprotein expression for structural studies with stable clones derived from the well-established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single-chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome-associated membrane protein 3 (LAMP3d). In both cases, stable GFP-expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.

  5. Identification of broadly reactive epitopes targeting major glycoproteins of Herpes simplex virus (HSV) 1 and 2 - An immunoinformatics analysis.

    PubMed

    Chauhan, Varun; Goyal, Kapil; Singh, Mini P

    2018-07-01

    Infections due to both HSV-1 and HSV-2 constitute an enormous health burden worldwide. Development of vaccine against herpes infections is a WHO supported public health priority. The viral glycoproteins have always been the major hotspots for vaccine designing. The present study was aimed to identify the conserved T and B cell epitopes in the major glycoproteins of both HSV-1 and HSV-2 via rigorous computational approaches. Identification of promiscuous T cell epitopes is of utmost importance in vaccine designing as such epitopes are capable of binding to several allelic forms of HLA and could generate effective immune response in the host. The criteria designed for identification of T and B cell epitopes was that it should be conserved in both HSV-1 and 2, promiscuous, have high affinity towards HLA alleles, should be located on the surface of glycoproteins and not be present in the glycosylation sites. This study led to the identification of 17 HLA Class II and 26 HLA Class I T cell epitopes, 9 linear and some conformational B cell epitopes. The identified T cell epitopes were further subjected to molecular docking analysis to analyze their binding patterns. Altogether we have identified 4 most promising regions in glycoproteins (2-gB, 1-gD, 1-gH) of HSV-1 and 2 which are promiscuous to HLA Class II alleles and have overlapping HLA Class I and B cell epitopes, which could be very useful in generating both arms of immune response in the host i.e. adaptive as well as humoral immunity. Further the authors propose the cross-validation of the identified epitopes in experimental settings for confirming their immunogenicity to support the present findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Khosravian, N.; Kamaraj, B.; Neyts, E. C.; Bogaerts, A.

    2016-02-01

    This study reports on the possible effects of OH radical impact on the transmembrane domain 6 of P-glycoprotein, TM6, which plays a crucial role in drug binding in human cells. For the first time, we employ molecular dynamics (MD) simulations based on the self-consistent charge density functional tight binding (SCC-DFTB) method to elucidate the potential sites of fragmentation and mutation in this domain upon impact of OH radicals, and to obtain fundamental information about the underlying reaction mechanisms. Furthermore, we apply non-reactive MD simulations to investigate the long-term effect of this mutation, with possible implications for drug binding. Our simulations indicate that the interaction of OH radicals with TM6 might lead to the breaking of C-C and C-N peptide bonds, which eventually cause fragmentation of TM6. Moreover, according to our simulations, the OH radicals can yield mutation in the aromatic ring of phenylalanine in TM6, which in turn affects its structure. As TM6 plays an important role in the binding of a range of cytotoxic drugs with P-glycoprotein, any changes in its structure are likely to affect the response of the tumor cell in chemotherapy. This is crucial for cancer therapies based on reactive oxygen species, such as plasma treatment.

  7. The prostaglandin E2 receptor PTGER2 and prostaglandin F2α receptor PTGFR mediate oviductal glycoprotein 1 expression in bovine oviductal epithelial cells.

    PubMed

    Zhang, Nan; Mao, Wei; Zhang, Ying; Huang, Na; Liu, Bo; Gao, Long; Zhang, Shuangyi; Cao, Jinshan

    2018-04-13

    Oviductal glycoprotein 1 (OVGP1), an oviductin, is involved in the maintenance of sperm viability and motility and contributes to sperm capacitation in the oviduct. In this study, the regulatory effects exerted by prostaglandin E 2 (PGE 2 ) and F 2α (PGF 2α ) on OVGP1 expression via their corresponding receptors in bovine oviductal epithelial cells (BOECs) were investigated. BOECs were cultured in vitro, and their expression of receptors of PGE 2 (PTGER1, PTGER2, PTGER3, and PTGER4) and PGF 2α (PTGFR) was measured using RT-qPCR. Ca 2+ concentration was determined with a fluorescence-based method and cAMP was quantified by enzyme-linked immunosorbent assays to verify activation of PTGER2 and PTGFR by their corresponding agonists in these cells. OVGP1 mRNA and protein expression was measured using RT-qPCR and western blotting, respectively, following PTGER2 and PTGFR agonist-induced activation. PTGER1, PTGER2, PTGER4, and PTGFR were found to be present in BOECs; however, PTGER3 expression was not detected. OVGP1 expression was significantly promoted by 10 -6 M butaprost (a PTGER2 agonist) and decreased by 10 -6 M fluprostenol (a PTGFR agonist). In addition, 3 μM H-89 (a PKA inhibitor) and 3 μM U0126 (an ERK inhibitor) effectively inhibited PGE 2 -induced upregulation of OVGP1, and 5 μM chelerythrine chloride (a PKC inhibitor) and 3 μM U0126 negated OVGP1 downregulation by PGF 2α . In conclusion, this study demonstrates that OVGP1 expression in BOECs is enhanced by PGE 2 via PTGER2-cAMP-PKA signaling, and reduced by PGF 2α through the PTGFR-Ca 2+ -PKC pathway.

  8. Clinical significance of the BRAFV600E mutation in Asian patients with colorectal cancer.

    PubMed

    Cheng, Hou-Hsuan; Lin, Jen-Kou; Chen, Wei-Shone; Jiang, Jeng-Kai; Yang, Shung-Haur; Chang, Shih-Ching

    2018-06-04

    To investigate the clinicopathological features and prognostic significance of the BRAFV600E mutation in Asian patients with colorectal cancer. We retrospectively reviewed the medical records of 1969 patients with colorectal cancer admitted to Taipei Veterans General Hospital for surgical treatment between 2000 and 2013. The measured endpoint was overall survival after surgery. The prognostic value of the BRAFV600E mutation was analyzed using the log-rank test and Cox regression analysis. The BRAFV600E mutation was detected in 106 (5.4%) patients and associated with female gender, abnormal cancer antigen (CA)19-9 at diagnosis, microsatellite status, right-sided primary tumors, mucinous histology, poor differentiation, and lymphovascular invasion. Metastatic patterns were more common in non-regional lymph node metastasis (20.8 vs. 7.4%, p = 0.06) and peritoneal seeding (41. vs. 21.2%, p = 0.04). Mutations were not prognostic in the overall survival of the entire study group but only in specific patients: age < 65, normal carcinoembryonic antigen at diagnosis, and stage IV disease. The BRAFV600E mutation was associated with distinct clinicopathological features and metastatic patterns. The overall survival rate was lower in selected colorectal patients with the BRAFV600E mutation.

  9. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution.

    PubMed

    Zhao, Yongchao; Zheng, Hao; Xu, Anying; Yan, Donghua; Jiang, Zijian; Qi, Qi; Sun, Jingchen

    2016-08-24

    Analysis of codon usage bias is an extremely versatile method using in furthering understanding of the genetic and evolutionary paths of species. Codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) has remained largely unexplored at present. Hence, the codon usage bias of NPV envelope glycoprotein was analyzed here to reveal the genetic and evolutionary relationships between different viral species in baculovirus genus. A total of 9236 codons from 18 different species of NPV of the baculovirus genera were used to perform this analysis. Glycoprotein of NPV exhibits weaker codon usage bias. Neutrality plot analysis and correlation analysis of effective number of codons (ENC) values indicate that natural selection is the main factor influencing codon usage bias, and that the impact of mutation pressure is relatively smaller. Another cluster analysis shows that the kinship or evolutionary relationships of these viral species can be divided into two broad categories despite all of these 18 species are from the same baculovirus genus. There are many elements that can affect codon bias, such as the composition of amino acids, mutation pressure, natural selection, gene expression level, and etc. In the meantime, cluster analysis also illustrates that codon usage bias of virus envelope glycoprotein can serve as an effective means of evolutionary classification in baculovirus genus.

  10. MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders.

    PubMed

    Ma, Wanlong; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; Uyeji, Jennifer; Albitar, Maher

    2011-03-01

    Mutations in the thrombopoietin receptor gene (myeloproliferative leukemia, MPL) have been reported in patients with JAK2 V617F-negative chronic myeloproliferative disorders (MPDs). We evaluated the prevalence of MPL mutations relative to JAK2 mutations in patients with suspected MPDs. A total of 2790 patient samples submitted for JAK2 mutation analysis were tested using real-time polymerase chain reaction and bidirectional sequencing of plasma RNA. JAK2 V617F-negative samples were tested for JAK2 exons 12 to 14 mutations, and those with negative results were then tested for mutations in MPL exons 10 and 11. Of the 2790 patients, 529 (18.96%) had V617F, 12 (0.43%) had small insertions or deletions in exon 12, and 7 (0.25%) had other JAK2 mutations in exons 12 to 14. Of the 2242 JAK2 mutation-negative patients, 68 (3.03%) had MPL mutations. W515L was the predominant MPL mutation (n=46; 68%), and 10 (15%) patients had other W515 variants. The remaining MPL mutations (n=12, 17%) were detected at other locations in exons 10 and 11 and included 3 insertion/deletion mutations. The S505N mutation, associated with familial MPD, was detected in 3 patients. Overall, for every 100 V617F mutations in patients with suspected MPDs, there were 12.9 MPL mutations, 2.3 JAK2 exon 12 mutations, and 1.3 JAK2 exons 13 to 14 mutations. These findings suggest that MPL mutation screening should be performed before JAK2 exons 12 to 14 testing in JAK2 V617F-negative patients with suspected MPDs.

  11. Relationship between SU Subdomains That Regulate the Receptor-Mediated Transition from the Native (Fusion-Inhibited) to the Fusion-Active Conformation of the Murine Leukemia Virus Glycoprotein

    PubMed Central

    Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc

    2002-01-01

    Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All

  12. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    PubMed

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    PubMed Central

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  14. A Cryptochrome 2 mutation yields advanced sleep phase in humans.

    PubMed

    Hirano, Arisa; Shi, Guangsen; Jones, Christopher R; Lipzen, Anna; Pennacchio, Len A; Xu, Ying; Hallows, William C; McMahon, Thomas; Yamazaki, Maya; Ptáček, Louis J; Fu, Ying-Hui

    2016-08-16

    Familial Advanced Sleep Phase (FASP) is a heritable human sleep phenotype characterized by very early sleep and wake times. We identified a missense mutation in the human Cryptochrome 2 (CRY2) gene that co-segregates with FASP in one family. The mutation leads to replacement of an alanine residue at position 260 with a threonine (A260T). In mice, the CRY2 mutation causes a shortened circadian period and reduced phase-shift to early-night light pulse associated with phase-advanced behavioral rhythms in the light-dark cycle. The A260T mutation is located in the phosphate loop of the flavin adenine dinucleotide (FAD) binding domain of CRY2. The mutation alters the conformation of CRY2, increasing its accessibility and affinity for FBXL3 (an E3 ubiquitin ligase), thus promoting its degradation. These results demonstrate that CRY2 stability controlled by FBXL3 plays a key role in the regulation of human sleep wake behavior.

  15. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment.

    PubMed

    Song, Ehwang; Mechref, Yehia

    2015-01-01

    Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.

  16. False-negative BRAF V600E mutation results on fine-needle aspiration cytology of papillary thyroid carcinoma.

    PubMed

    Paek, Se Hyun; Kim, Byung Seup; Kang, Kyung Ho; Kim, Hee Sung

    2017-11-13

    The BRAF V600E mutation is highly specific for papillary thyroid carcinoma (PTC). A test for this mutation can increase the diagnostic accuracy of fine-needle aspiration cytology (FNAC), but a considerably high false-negative rate for the BRAF V600E mutation on FNAC has been reported. In this study, we investigated the risk factors associated with false-negative BRAF V600E mutation results on FNAC. BRAF V600E mutation results of 221 PTC nodules between December 2011 and June 2013 were retrospectively reviewed. BRAF V600E mutation results on both preoperative FNAC and postoperative formalin-fixed, paraffin-embedded (FFPE) samples were compared. We investigated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of BRAF V600E mutation results on FNAC. And, we identified the risk factors associated with false-negative results. Of 221 PTC nodules, 150 (67.9%) on FNAC and 185 (83.7%) on FFPE samples were BRAF V600E mutation positive. The sensitivity, specificity, PPV, and NPV for BRAF V600E mutation testing with FNAC were 80.5, 97.2, 99.3, and 49.3%, respectively. Thirty-six (16.3%) BRAF V600E mutation-negative nodules on FNAC were mutation positive on FFPE sample analysis. Risk factors for these false-negative results were age, indeterminate FNAC results (nondiagnostic, atypia of undetermined significance (AUS), and findings suspicious for PTC), and PTC subtype. False-negative rate of BRAF mutation testing with FNAC for thyroid nodules is increased in cases of old age, indeterminate FNAC pathology results, and certain PTC subtypes. Therapeutic surgery can be considered for these cases. A well-designed prospective study with informed consent of patients will be essential for more informative results.

  17. BRAF V600E mutational status in bile duct adenomas and hamartomas.

    PubMed

    Pujals, Anaïs; Bioulac-Sage, Paulette; Castain, Claire; Charpy, Cécile; Zafrani, Elie Serge; Calderaro, Julien

    2015-10-01

    Bile duct adenomas (BDA) and bile duct hamartomas (BDH) are benign bile duct lesions considered neoplastic or secondary to ductal plate malformation, respectively. We have reported previously a high prevalence of BRAF V600E mutations detected by allele-specific polymerase chain reaction assay in BDA, and suggested that BDA may be precursors to a subset of intrahepatic cholangiocarcinomas harbouring V600E mutations. The aim of the present study was to assess the existence of BRAF V600E mutations, using immunohistochemical methods, in additional BDA as well as in BDH. Fifteen BDA and 35 BDH were retrieved from the archives of the pathology departments of two French university hospitals. All cases were reviewed by two pathologists specialized in liver diseases. BRAF V600E mutational status was investigated by immunohistochemistry. Mutated BRAF mutant protein was detected in 53% of the BDA and in none of the cases of BDH. Our findings suggest that BDA and BDH are different processes, and that BDA represent true benign neoplasms. They also support the hypothesis that mutated BDA might precede the development of the subset of intrahepatic cholangiocarcinomas harbouring BRAF V600E mutations. © 2015 John Wiley & Sons Ltd.

  18. Posttranslational modifications of Sindbis virus glycoproteins: electrophoretic analysis of pulse-chase-labeled infected cells.

    PubMed

    Bonatti, S; Cancedda, F D

    1982-04-01

    Cytoplasmic extracts prepared from Sindbis virus-infected chicken embryo fibroblasts pulse-chase-labeled with [35S]methionine 6 h postinfection were analyzed on a highly resolving sodium dodecyl sulfate-gel either directly or after various treatments. The results we obtained suggest that (i) the proteolytic cleavage which converts PE2 to E2 glycoprotein takes place intracellularly, before or at least during the formation of complex-type oligosaccharide side chains; and (ii) E1 glycoprotein undergoes a complex maturation pattern. Newly synthesized E1 has a molecular weight of 53,000: shortly thereafter, this 53,000 (53K) form was converted to a 50K form. Subsequently, the 50K form decreased its apparent molecular weight progressively and eventually comigrated with E1 glycoprotein present in the extracellular virus, which displays a molecular weight of 51,000 to 52,000. The conversion of the 53K to the 50K form was not the result of a proteolytic processing and did not depend on glycosylation or disulfide bridge formation and exchange. The possible mechanisms of this conversion are discussed. The second conversion step (from the 50K to the 51-52K form) was due to the formation of complex-type oligosaccharide and was reversed by incubating the cellular extracts with neuraminidase before electrophoretic analysis.

  19. Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer.

    PubMed

    Suzuki, Makoto; Shigematsu, Hisayuki; Iizasa, Toshihiko; Hiroshima, Kenzo; Nakatani, Yukio; Minna, John D; Gazdar, Adi F; Fujisawa, Takehiko

    2006-05-15

    Both genetic and epigenetic changes in nonsmall cell lung cancer (NSCLC) are known to be a common event. Mutations in the epidermal growth factor receptor gene (EGFR), HER-2, and KRAS and the methylation profile of 9 genes for NSCLC were analyzed and correlated with clinical and histologic data. Thirty-nine EGFR, 4 HER-2, and 6 KRAS mutations were found in 150 NSCLC cases, with the methylation percentages of the genes ranging from 13% to 54%. Most mutations were present in adenocarcinomas, but mutations of the 3 genes were never found to be present in individual tumors. The frequency of methylation for all the genes was correlated with the Methylation Index, a reflection of the overall methylation pattern (all genes, P< or = .01), supporting the presence of the CpG island methylator phenotype (CIMP) in NSCLC. On the basis of the methylation profile, CRBP1 and CDH13 methylation were good indicators of CIMP in NSCLC, and were correlated with a poorer prognosis in adenocarcinomas. Mutations in EGFR, HER-2, and KRAS were found to be present exclusively, whereas methylation tended to be present synchronously. A comparison of mutation and methylation demonstrated that the EGFR mutation had an inverse correlation with methylation of SPARC (secreted protein acidic and rich in cysteine), an extracellular Ca2+-binding matricellular glycoprotein associated with the regulation of cell adhesion and growth, and the p16INK4A gene. The findings of the current study suggest that adenocarcinoma cases with CIMP have a poorer prognosis than adenocarcinoma cases without CIMP, and the EGFR mutation was shown to have an inverse correlation with methylation of SPARC and the p16INK4A gene in NSCLC. Copyright 2006 American Cancer Society

  20. Ultrasensitive Electrochemical Detection of Glycoprotein Based on Boronate Affinity Sandwich Assay and Signal Amplification with Functionalized SiO2@Au Nanocomposites.

    PubMed

    You, Min; Yang, Shuai; Tang, Wanxin; Zhang, Fan; He, Pin-Gang

    2017-04-26

    Herein we propose a multiple signal amplification strategy designed for ultrasensitive electrochemical detection of glycoproteins. This approach introduces a new type of boronate-affinity sandwich assay (BASA), which was fabricated by using gold nanoparticles combined with reduced graphene oxide (AuNPs-GO) to modify sensing surface for accelerating electron transfer, the composite of molecularly imprinted polymer (MIP) including 4-vinylphenylboronic acid (VPBA) for specific capturing glycoproteins, and SiO 2 nanoparticles carried gold nanoparticles (SiO 2 @Au) labeled with 6-ferrocenylhexanethiol (FcHT) and 4-mercaptophenylboronic acid (MPBA) (SiO 2 @Au/FcHT/MPBA) as tracing tag for binding glycoprotein and generating electrochemical signal. As a sandwich-type sensing, the SiO 2 @Au/FcHT/MPBA was captured by glycoprotein on the surface of imprinting film for further electrochemical detection in 0.1 M PBS (pH 7.4). Using horseradish peroxidase (HRP) as a model glycoprotein, the proposed approach exhibited a wide linear range from 1 pg/mL to 100 ng/mL, with a low detection limit of 0.57 pg/mL. To the best of our knowledge, this is first report of a multiple signal amplification approach based on boronate-affinity molecularly imprinted polymer and SiO 2 @Au/FcHT/MPBA, exhibiting greatly enhanced sensitivity for glycoprotein detection. Furthermore, the newly constructed BASA based glycoprotein sensor demonstrated HRP detection in real sample, such as human serum, suggesting its promising prospects in clinical diagnostics.

  1. Mutation detection of E6 and LCR genes from HPV 16 associated with carcinogenesis.

    PubMed

    Mosmann, Jessica P; Monetti, Marina S; Frutos, Maria C; Kiguen, Ana X; Venezuela, Raul F; Cuffini, Cecilia G

    2015-01-01

    Human papillomavirus (HPV) is responsible for one of the most frequent sexually transmitted infections. The first phylogenetic analysis was based on a LCR region fragment. Nowadays, 4 variants are known: African (Af-1, Af-2), Asian-American (AA) and European (E). However the existence of sub-lineages of the European variant havs been proposed, specific mutations in the E6 and LCR sequences being possibly related to persistent viral infections. The aim of this study was a phylogenetic study of HPV16 sequences of endocervical samples from Cordoba, in order to detect the circulating lineages and analyze the presence of mutations that could be correlated with malignant disease. The phylogenetic analysis determined that 86% of the samples belonged to the E variant, 7% to AF-1 and the remaining 7% to AF-2. The most frequent mutation in LCR sequences was G7521A, in 80% of the analyzed samples; it affects the binding site of a transcription factor that could contribute to carcinogenesis. In the E6 sequences, the most common mutation was T350G (L83V), detected in 67% of the samples, associated with increased risk of persistent infection. The high detection rate of the European lineage correlated with patterns of human migration. This study emphasizes the importance of recognizing circulating lineages, as well as the detection of mutations associated with high-grade neoplastic lesions that could be correlated to the development of carcinogenic lesions.

  2. Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus.

    PubMed

    Han, Jun; Chadha, Pooja; Meckes, David G; Baird, Nicholas L; Wills, John W

    2011-09-01

    The UL11 tegument protein of herpes simplex virus plays a critical role in the secondary envelopment; however, the mechanistic details remain elusive. Here, we report a new function of UL11 in the budding process in which it directs efficient acquisition of glycoprotein E (gE) via a direct interaction. In vitro binding assays showed that the interaction required only the first 28, membrane-proximal residues of the cytoplasmic tail of gE, and the C-terminal 26 residues of UL11. A second, weaker binding site was also found in the N-terminal half of UL11. The significance of the gE-UL11 interaction was subsequently investigated with viral deletion mutants. In the absence of the gE tail, virion packaging of UL11, but not other tegument proteins such as VP22 and VP16, was reduced by at least 80%. Reciprocally, wild-type gE packaging was also drastically reduced by about 87% in the absence of UL11, and this defect could be rescued in trans by expressing U(L)11 at the U(L)35 locus. Surprisingly, a mutant that lacks the C-terminal gE-binding site of UL11 packaged nearly normal amounts of gE despite its strong interaction with the gE tail in vitro, indicating that the interaction with the UL11 N terminus may be important. Mutagenesis studies of the UL11 N terminus revealed that the association of UL11 with membrane was not required for this function. In contrast, the UL11 acidic cluster motif was found to be critical for gE packaging and was not replaceable with foreign acidic clusters. Together, these results highlight an important role of UL11 in the acquisition of glycoprotein-enriched lipid bilayers, and the findings may also have important implications for the role of UL11 in gE-mediated cell-to-cell spread.

  3. A novel, de novo mutation in the PRKAG2 gene: infantile-onset phenotype and the signaling pathway involved.

    PubMed

    Xu, Yanchun; Gray, A; Hardie, D Grahame; Uzun, Alper; Shaw, Sunil; Padbury, James; Phornphutkul, Chanika; Tseng, Yi-Tang

    2017-08-01

    PRKAG2 encodes the γ 2 -subunit isoform of 5'-AMP-activated protein kinase (AMPK), a heterotrimeric enzyme with major roles in the regulation of energy metabolism in response to cellular stress. Mutations in PRKAG2 have been implicated in a unique hypertrophic cardiomyopathy (HCM) characterized by cardiac glycogen overload, ventricular preexcitation, and hypertrophy. We identified a novel, de novo PRKAG2 mutation (K475E) in a neonate with prenatal onset of HCM. We aimed to investigate the cellular impact, signaling pathways involved, and therapeutic options for K475E mutation using cells stably expressing human wild-type (WT) or the K475E mutant. In human embryonic kidney-293 cells, the K475E mutation induced a marked increase in the basal phosphorylation of T172 and AMPK activity, reduced sensitivity to AMP in allosteric activation, and a loss of response to phenformin. In H9c2 cardiomyocytes, the K475E mutation induced inhibition of AMPK and reduced the response to phenformin and increases in the phosphorylation of p70S6 kinase (p70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). Primary fibroblasts from the patient with the K475E mutation also showed marked increases in the phosphorylation of p70S6K and 4E-BP1 compared with those from age-matched, nondiseased controls. Moreover, overexpression of K475E induced hypertrophy in H9c2 cells, which was effectively reversed by treatment with rapamycin. Taken together, we have identified a novel, de novo infantile-onset PRKAG2 mutation causing HCM. Our study suggests the K475E mutation induces alteration in basal AMPK activity and results in a hypertrophy phenotype involving the mechanistic target of rapamycin signaling pathway, which can be reversed with rapamycin. NEW & NOTEWORTHY We identified a novel, de novo PRKAG2 mutation (K475E) in the cystathionine β-synthase 3 repeat, a region critical for AMP binding but with no previous reported mutation. Our data suggest the mutation

  4. E258K HCM-causing mutation in cardiac MyBP-C reduces contractile force and accelerates twitch kinetics by disrupting the cMyBP-C and myosin S2 interaction.

    PubMed

    De Lange, Willem J; Grimes, Adrian C; Hegge, Laura F; Spring, Alexander M; Brost, Taylor M; Ralphe, J Carter

    2013-09-01

    Mutations in cardiac myosin binding protein C (cMyBP-C) are prevalent causes of hypertrophic cardiomyopathy (HCM). Although HCM-causing truncation mutations in cMyBP-C are well studied, the growing number of disease-related cMyBP-C missense mutations remain poorly understood. Our objective was to define the primary contractile effect and molecular disease mechanisms of the prevalent cMyBP-C E258K HCM-causing mutation in nonremodeled murine engineered cardiac tissue (mECT). Wild-type and human E258K cMyBP-C were expressed in mECT lacking endogenous mouse cMyBP-C through adenoviral-mediated gene transfer. Expression of E258K cMyBP-C did not affect cardiac cell survival and was appropriately incorporated into the cardiac sarcomere. Functionally, expression of E258K cMyBP-C caused accelerated contractile kinetics and severely compromised twitch force amplitude in mECT. Yeast two-hybrid analysis revealed that E258K cMyBP-C abolished interaction between the N terminal of cMyBP-C and myosin heavy chain sub-fragment 2 (S2). Furthermore, this mutation increased the affinity between the N terminal of cMyBP-C and actin. Assessment of phosphorylation of three serine residues in cMyBP-C showed that aberrant phosphorylation of cMyBP-C is unlikely to be responsible for altering these interactions. We show that the E258K mutation in cMyBP-C abolishes interaction between N-terminal cMyBP-C and myosin S2 by directly disrupting the cMyBP-C-S2 interface, independent of cMyBP-C phosphorylation. Similar to cMyBP-C ablation or phosphorylation, abolition of this inhibitory interaction accelerates contractile kinetics. Additionally, the E258K mutation impaired force production of mECT, which suggests that in addition to the loss of physiological function, this mutation disrupts contractility possibly by tethering the thick and thin filament or acting as an internal load.

  5. Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity.

    PubMed

    Däumer, Martin P; Schneider, Beate; Giesen, Doris M; Aziz, Sheriff; Kaiser, Rolf; Kupfer, Bernd; Schneweis, Karl E; Schneider-Mergener, Jens; Reineke, Ulrich; Matz, Bertfried; Eis-Hübinger, Anna M

    2011-05-01

    Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.

  6. Influenza Virus Assembly and Lipid Raft Microdomains: a Role for the Cytoplasmic Tails of the Spike Glycoproteins

    PubMed Central

    Zhang, Jie; Pekosz, Andrew; Lamb, Robert A.

    2000-01-01

    Influenza viruses encoding hemagglutinin (HA) and neuraminidase (NA) glycoproteins with deletions in one or both cytoplasmic tails (HAt− or NAt−) have a reduced association with detergent-insoluble glycolipids (DIGs). Mutations which eliminated various combinations of the three palmitoylation sites in HA exhibited reduced amounts of DIG-associated HA in virus-infected cells. The influenza virus matrix (M1) protein was also found to be associated with DIGs, but this association was decreased in cells infected with HAt− or NAt− virus. Regardless of the amount of DIG-associated protein, the HA and NA glycoproteins were targeted primarily to the apical surface of virus-infected, polarized cells. The uncoupling of DIG association and apical transport was augmented by the observation that the influenza A virus M2 protein as well as the influenza C virus HA-esterase-fusion glycoprotein were not associated with DIGs but were apically targeted. The reduced DIG association of HAt− and NAt− is an intrinsic property of the glycoproteins, as similar reductions in DIG association were observed when the proteins were expressed from cDNA. Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt− and NAt− viruses. The data indicate that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition. PMID:10775599

  7. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    PubMed

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  8. Phenotypic spectrum and prevalence of INPP5E mutations in Joubert syndrome and related disorders.

    PubMed

    Travaglini, Lorena; Brancati, Francesco; Silhavy, Jennifer; Iannicelli, Miriam; Nickerson, Elizabeth; Elkhartoufi, Nadia; Scott, Eric; Spencer, Emily; Gabriel, Stacey; Thomas, Sophie; Ben-Zeev, Bruria; Bertini, Enrico; Boltshauser, Eugen; Chaouch, Malika; Cilio, Maria Roberta; de Jong, Mirjam M; Kayserili, Hulya; Ogur, Gonul; Poretti, Andrea; Signorini, Sabrina; Uziel, Graziella; Zaki, Maha S; Johnson, Colin; Attié-Bitach, Tania; Gleeson, Joseph G; Valente, Enza Maria

    2013-10-01

    Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain-hindbrain malformation known as the 'molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.

  9. Usefulness of immunohistochemistry for the detection of the BRAF V600E mutation in Japanese lung adenocarcinoma.

    PubMed

    Sasaki, Hidefumi; Shimizu, Shigeki; Tani, Yoichi; Shitara, Masayuki; Okuda, Katsuhiro; Hikosaka, Yu; Moriyama, Satoru; Yano, Motoki; Fujii, Yoshitaka

    2013-10-01

    Mutations in components of the mitogen-activated protein kinase (MAPK) cascade may be a new candidate for target for lung cancer. The usefulness of immunohistochemistry (IHC) as a new approach for the detection of BRAF V600E in cancer patients has been recently reported. To increase the sensitivity, we modified BRAF V600E expression detection assay by IHC using mutation specific antibody. From the screening step, we found a novel 599 insertion T BRAF mutation in lung adenocarcinoma. In this study included 26 surgically removed cases with EGFR, Kras, erbB2, EML4-ALK and KIF5B-RET wild-type (wt) lung adenocarcinomas, including 7 BRAF mutants (5 V600E, 1 N581I, and 1 novel 599 insertion T mutation) analyzed by DNA sequencing. Detection of the BRAF V600E mutation was carried out by the Dako EnVision™ FLEX detection system using the VE1 clone antibody and compared with the results of direct sequencing. The autostainer IHC VE1 assay was positive in 5 of 5 (100%) BRAF V600E-mutated tumors and negative in 20 of 21 (95.2%) BRAF non-V600E tumors, except for a novel 599 insertion T case. IHC using the VE1 clone and FLEX linker is a specific method for the detection BRAF V600E and may be an alternative to molecular biology for the detection of mutations in lung adenocarcinomas. This method might be useful for screening to use molecular target therapy for lung adenocarcinomas. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1.

    PubMed

    Nelson, Omar; Tu, Huiping; Lei, Tianhua; Bentahir, Mostafa; de Strooper, Bart; Bezprozvanny, Ilya

    2007-05-01

    Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of the amyloid precursor protein by gamma-secretase. Recently, we discovered that presenilins also function as passive ER Ca(2+) leak channels. Here we used planar lipid bilayer reconstitution assays and Ca(2+) imaging experiments with presenilin-null mouse embryonic fibroblasts to analyze ER Ca(2+) leak function of 6 FAD-linked PS1 mutants and 3 known FTD-associated PS1 mutants. We discovered that L166P, A246E, E273A, G384A, and P436Q FAD mutations in PS1 abolished ER Ca(2+) leak function of PS1. In contrast, A79V FAD mutation or FTD-associated mutations (L113P, G183V, and Rins352) did not appear to affect ER Ca(2+) leak function of PS1 in our experiments. We validated our findings in Ca(2+) imaging experiments with primary fibroblasts obtained from an FAD patient possessing mutant PS1-A246E. Our results indicate that many FAD mutations in presenilins are loss-of-function mutations affecting ER Ca(2+) leak activity. In contrast, none of the FTD-associated mutations affected ER Ca(2+) leak function of PS1, indicating that the observed effects are disease specific. Our observations are consistent with the potential role of disturbed Ca(2+) homeostasis in Alzheimer disease pathogenesis.

  11. Induction of apoptosis and reversal of permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM by ginsenoside Rh2.

    PubMed

    Zhang, Hui; Gong, Jian; Zhang, Huilai; Kong, Di

    2015-01-01

    Multidrug resistance is a phenomenon that cancer cells develop a cross-resistant phenotype against several unrelated drugs, and permeability glycoprotein derived from the overexpression of multidrug resistance gene 1 has been taken as the most significant cause of multidrug resistance. In the present study, ginsenoside Rh2 was used to reverse permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM cell line. Effects of ginsenoside Rh2 on the apoptotic process and caspase-3 activity of MCF-7 and MCF-7/ADM cell lines were determined using flow cytometry and microplate reader. Methyl thiazolyl tetrazolium test was conducted to assess the IC50 values of ginsenoside Rh2 and adriamycin on MCF-7 and MCF-7/ADM cultures; Rhodamin 123 assay was used to assess the retention of permeability glycoprotein after ginsenoside Rh2 treatment; flow cytometry and real time polymerase chain reaction were used to determine the expression levels of permeability glycoprotein and multidrug resistance gene 1 in drug-resistant cells and their parental cells after exposure to ginsenoside Rh2. The results showed that ginsenoside Rh2, except for inducing apoptosis, had the ability to reverse multidrug resistance in MCF-7/ADM cell line without changing the expression levels of permeability glycoprotein and multidrug resistance gene 1. Our findings provided some valuable information for the application of ginsenoside Rh2 in cancer therapy, especially for multidrug resistance reversal in clinic.

  12. Molecular basis of maple syrup urine disease: Novel mutations at the E1[alpha] locus that impair E1([alpha][sub 2][beta][sub 2]) assembly or decrease steady-state E1[alpha] mRNA levels of branched-chain [alpha]-keto acid dehydrogenase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.L.; Fisher, C.R.; Chuang, D.T.

    1994-08-01

    The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertionmore » generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.« less

  13. Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex.

    PubMed

    Sciandra, Francesca; Bozzi, Manuela; Bianchi, Marzia; Pavoni, Ernesto; Giardina, Bruno; Brancaccio, Andrea

    2003-01-01

    Dystroglycan (DG) is an adhesion molecule composed of two subunits, alpha and beta, that are produced by the post-translational cleavage of a single precursor molecule. DG is a pivotal component of the dystrophin-glycoprotein complex (DGC), which connects the extracellular matrix to the cytoskeleton in skeletal muscle and many other tissues. Some muscular dystrophies are caused by mutations of DGC components, such as dystrophin, sarcoglycan or laminin-2, or also of DGC-associated molecules, such as caveolin-3. DG-null mice died during early embriogenesis and no neuromuscular diseases directly associated to genetic abnormalities of DG were identified so far. However, DG plays a crucial role for muscle integrity since its targeting at the sarcolemma is often perturbed in DGC-related neuromuscular disorders.

  14. Novel Calmodulin (CALM2) Mutations Associated with Congenital Arrhythmia Susceptibility

    PubMed Central

    Makita, Naomasa; Yagihara, Nobue; Crotti, Lia; Johnson, Christopher N.; Beckmann, Britt-Maria; Roh, Michelle S.; Shigemizu, Daichi; Lichtner, Peter; Ishikawa, Taisuke; Aiba, Takeshi; Homfray, Tessa; Behr, Elijah R.; Klug, Didier; Denjoy, Isabelle; Mastantuono, Elisa; Theisen, Daniel; Tsunoda, Tatsuhiko; Satake, Wataru; Toda, Tatsushi; Nakagawa, Hidewaki; Tsuji, Yukiomi; Tsuchiya, Takeshi; Yamamoto, Hirokazu; Miyamoto, Yoshihiro; Endo, Naoto; Kimura, Akinori; Ozaki, Kouichi; Motomura, Hideki; Suda, Kenji; Tanaka, Toshihiro; Schwartz, Peter J.; Meitinger, Thomas; Kääb, Stefan; Guicheney, Pascale; Shimizu, Wataru; Bhuiyan, Zahurul A.; Watanabe, Hiroshi; Chazin, Walter J.; George, Alfred L.

    2014-01-01

    Background Genetic predisposition to life-threatening cardiac arrhythmias such as in congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. Methods and Results We employed conventional and next-generation sequencing approaches including exome analysis in genotype-negative LQTS probands. We identified five novel de novo missense mutations in CALM2 in three subjects with LQTS (p.N98S, p.N98I, p.D134H) and two subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1–9 years. Three of five probands had cardiac arrest and one of these subjects did not survive. Although all probands had LQTS, two subjects also exhibited electrocardiographic features consistent with CPVT. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of five probands responded to β-blocker therapy whereas one subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within calcium binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced calcium binding affinity. Conclusions CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT. PMID:24917665

  15. The hydroxyapatite-binding regions of a rat salivary glycoprotein.

    PubMed

    Embery, G; Green, D R

    1989-09-01

    The regions of a salivary sulphated glycoprotein which are involved in its attachment to hydroxyapatite (Biogel HTP) have been characterised. The sulphated glycoprotein, a 35S-labelled preparation from mixed palatal and buccal minor gland secretions of the rat was bound onto hydroxyapatite and the resultant glycoprotein-hydroxyapatite complex was sequentially digested with pronase E and alpha-L-fucosidase, a treatment which released 86.8% +/- 1.7% of the radioactivity of the initially bound glycoprotein. The fragments which remained attached to the hydroxyapatite after enzymic digestion were fractionated on Sephadex G-25 and analysed for carbohydrate and amino acid components. A range of amino acids were detected which could reflect both glycosylated and non-glycosylated-binding regions. Sialic acid, although considered to be involved in the attachment process was not detected in any of the fragments remaining after enzymic digestion, a finding which provides indirect evidence that the enzymically liberated products do not subsequently re-attach to the hydroxyapatite surface. The notable feature of the fractions with average Mr estimated at 1000 or less is the high proportion of N-acetylhexosamine and N-acetylgalactosamine. It is apparent that the hexosamine residues, which normally bear the ester sulphate moieties of sulphated glycoproteins, play an important role in the attachment of sulphated glycoproteins to hydroxyapatite.

  16. 116 kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN) inhibits glucose/glucose oxidase (G/GO)-induced apoptosis in BNL CL.2 cells.

    PubMed

    Ko, Jeong-Hyeon; Lee, Sei-Jung; Lim, Kye-Taek

    2005-09-14

    Ulmus davidiana Nakai (UDN) has been used in folk medicine for its anti-inflammatory activity. In the present study, we investigated the antiapoptotic effect of UDN glycoprotein in glucose/glucose oxidase (G/GO)-induced BNL CL.2 cells. To evaluate the antiapoptotic effect of UDN glycoprotein, experiments were carried out using Western blot analysis for nuclear factor-kappa B (NF-kappaB), caspase-3, and poly(ADP-ribose) polymerase (PARP). We also examined nitric oxide (NO) production and nuclear staining. When BNL CL.2 cells were treated with G/GO (50 mU/ml), viability of the cells was 54.1%. However, the number of living cells after the addition of UDN glycoprotein in the presence of G/GO increased. UDN glycoprotein protected from cell damage caused by G/GO. Interestingly, UDN glycoprotein decreased NF-kappaB activation and stimulated NO production in G/GO-induced BNL CL.2 cells. In apoptotic parameters, UDN glycoprotein inhibited activations of caspase-3 and PARP cleavage in G/GO-induced BNL CL.2 cells. The results of nuclear staining indicated that UDN glycoprotein (50 microg/ml) has a protective ability from apoptotic cell death caused G/GO (50 mU/ml). In conclusion, UDN glycoprotein has a protective effect on apoptosis induced by G/GO through the inhibition of NF-kappaB, caspase-3, and PARP activity, and the stimulation of NO production in BNL CL.2 cells.

  17. Prevalence of human pegivirus-1 and sequence variability of its E2 glycoprotein estimated from screening donors of fetal stem cell-containing material.

    PubMed

    Vitrenko, Yakov; Kostenko, Iryna; Kulebyakina, Kateryna; Sorochynska, Khrystyna

    2017-08-31

    Human pegivirus-1 (HPgV-1) is a member of the Flaviviridae family whose genomic organization and mode of cellular entry is similar to that of hepatitis C virus (HCV). The E2 glycoprotein of HPgV-1 is the principle mediator in the virus-cell interaction and as such harbors most of HPgV-1's antigenic determinants. HPgV-1 persists in blood cell precursors which are increasingly used for cell therapy. We studied HPgV-1 prevalence in a large cohort of females donating fetal tissues for clinical use. PCR was used for screening and estimation of viral load in viremic plasma and fetal samples. Sequence analysis was performed for portions of the 5'-untranslated and E2 regions of HPgV-1 purified from donor plasmas. Sequencing was followed by phylogenetic analysis. HPgV-1 was revealed in 13.7% of plasmas, 5.0% of fetal tissues, 5.4% of chorions, exceeding the prevalence of HCV in these types of samples. Transmission of HPgV-1 occurred in 25.8% of traceable mother-chorion-fetal tissues triads. For HPgV-1-positive donors, a high viral load in plasma appears to be a prerequisite for transmission. However, about one third of fetal samples acquired infection from non-viremic individuals. Sequencing of 5'-untranslated region placed most HPgV-1 samples to genotype 2a. At the same time, a portion of E2 sequence provided a much weaker support for this grouping apparently due to a higher variability. Polymorphisms were detected in important structural and antigenic motifs of E2. HPgV-1 is efficiently transmitted to fetus at early embryonic stages. A high variability in E2 may pose a risk of generation of pathogenic subtypes. Although HPgV-1 is considered benign and no longer tested mandatorily in blood banks, the virus may have adversary effects at target niches if delivered with infected graft upon cell transplantation. This argues for the necessity of HPgV-1 testing of cell samples aimed for clinical use.

  18. Mutations in TULP1, NR2E3, and MFRP genes in Indian families with autosomal recessive retinitis pigmentosa

    PubMed Central

    Singh, Hardeep; Sahini, Nishika; Jalali, Subhadra; Mohan, Gayathri

    2012-01-01

    Purpose To identify genes underlying autosomal recessive retinitis pigmentosa (ARRP) by homozygosity mapping. Methods Families with ARRP were recruited after complete ophthalmic evaluation of all members and diagnosis of RP by predefined criteria. Genomic DNA from affected members of 26 families was genotyped on Illumina single nucleotide polymorphism (SNP) 6.0 K arrays with standard procedures. Genotypes were evaluated for homozygous regions that were common and concordant between affected members of each family. The genes mapping to homozygous intervals within these families were screened for pathogenic changes with PCR amplification and sequencing of coding regions. Cosegegration of sequence changes with disease was determined within each pedigree, and each variation was tested for presence in 100 unrelated normal controls. Results A genome-wide scan for homozygosity showed homozygous regions harboring the tubby like protein 1 gene (TULP1; chromosome 6) in one family, the nuclear receptor subfamily 2, group E, member 3 gene (NR2E3; chromosome 15) in three families, and the membrane frizzled-related protein gene (MFRP; chromosome 11) in one family. Screening of the three genes in the respective families revealed homozygous disease-causing mutations in three families. These included a missense mutation in TULP1, a deletion-cum-insertion in NR2E3, and a single base deletion in MFRP. Patients from all three families had a rod-cone type of dystrophy with night blindness initially. The NR2E3 and MFRP genes were associated with fundus features atypical of RP. Conclusions This study shows involvement of the TULP1, NR2E3, and MFRP genes in ARRP in Indian cases. Genome-wide screening with SNP arrays followed by a prioritized candidate gene evaluation is useful in identifying genes in these patients. PMID:22605927

  19. Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak.

    PubMed

    Dietzel, Erik; Schudt, Gordian; Krähling, Verena; Matrosovich, Mikhail; Becker, Stephan

    2017-01-15

    The Ebola virus (EBOV) outbreak in West Africa started in December 2013, claimed more than 11,000 lives, threatened to destabilize a whole region, and showed how easily health crises can turn into humanitarian disasters. EBOV genomic sequences of the West African outbreak revealed nonsynonymous mutations, which induced considerable public attention, but their role in virus spread and disease remains obscure. In this study, we investigated the functional significance of three nonsynonymous mutations that emerged early during the West African EBOV outbreak. Almost 90% of more than 1,000 EBOV genomes sequenced during the outbreak carried the signature of three mutations: a D759G substitution in the active center of the L polymerase, an A82V substitution in the receptor binding domain of surface glycoprotein GP, and an R111C substitution in the self-assembly domain of RNA-encapsidating nucleoprotein NP. Using a newly developed virus-like particle system and reverse genetics, we found that the mutations have an impact on the functions of the respective viral proteins and on the growth of recombinant EBOVs. The mutation in L increased viral transcription and replication, whereas the mutation in NP decreased viral transcription and replication. The mutation in the receptor binding domain of the glycoprotein GP improved the efficiency of GP-mediated viral entry into target cells. Recombinant EBOVs with combinations of the three mutations showed a growth advantage over the prototype isolate Makona C7 lacking the mutations. This study showed that virus variants with improved fitness emerged early during the West African EBOV outbreak. The dimension of the Ebola virus outbreak in West Africa was unprecedented. Amino acid substitutions in the viral L polymerase, surface glycoprotein GP, and nucleocapsid protein NP emerged, were fixed early in the outbreak, and were found in almost 90% of the sequences. Here we showed that these mutations affected the functional activity of

  20. Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.

    PubMed

    Diehl, William E; Lin, Aaron E; Grubaugh, Nathan D; Carvalho, Luiz Max; Kim, Kyusik; Kyawe, Pyae Phyo; McCauley, Sean M; Donnard, Elisa; Kucukural, Alper; McDonel, Patrick; Schaffner, Stephen F; Garber, Manuel; Rambaut, Andrew; Andersen, Kristian G; Sabeti, Pardis C; Luban, Jeremy

    2016-11-03

    The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A substitution in the transmembrane region of the glycoprotein leads to an unstable attenuation of Machupo virus.

    PubMed

    Patterson, Michael; Koma, Takaaki; Seregin, Alexey; Huang, Cheng; Miller, Milagros; Smith, Jennifer; Yun, Nadezhda; Smith, Jeanon; Paessler, Slobodan

    2014-09-01

    Machupo virus (MACV) is the etiologic agent of Bolivian hemorrhagic fever (BHF). Utilizing a reverse-genetics system recently developed, we report the rescue of a rationally modified recombinant MACV containing a single mutation in the transmembrane region of the glycoprotein. Following challenge of susceptible mice, we identified a significant reduction in virulence in the novel virus. We also identified an instability leading to reversion of the single mutation to a wild-type genotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Induction of Broad CD4+ and CD8+ T-Cell Responses and Cross- Neutralizing Antibodies against Hepatitis C Virus by Vaccination with Th1-Adjuvanted Polypeptides Followed by Defective Alphaviral Particles Expressing Envelope Glycoproteins gpE1 and gpE2 and Nonstructural Proteins 3, 4, and 5▿ †

    PubMed Central

    Lin, Yinling; Kwon, Taewoo; Polo, John; Zhu, Yi-Fei; Coates, Stephen; Crawford, Kevin; Dong, Christine; Wininger, Mark; Hall, John; Selby, Mark; Coit, Doris; Medina-Selby, Angelica; McCoin, Colin; Ng, Philip; Drane, Debbie; Chien, David; Han, Jang; Vajdy, Michael; Houghton, Michael

    2008-01-01

    Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen. PMID:18508900

  3. Immune Responses to a Recombinant Glycoprotein E Herpes Zoster Vaccine in Adults Aged 50 Years or Older

    PubMed Central

    Cunningham, Anthony L; Heineman, Thomas C; Lal, Himal; Godeaux, Olivier; Chlibek, Roman; Hwang, Shinn-Jang; McElhaney, Janet E; Vesikari, Timo; Andrews, Charles; Choi, Won Suk; Esen, Meral; Ikematsu, Hideyuki; Choma, Martina Kovac; Pauksens, Karlis; Ravault, Stéphanie; Salaun, Bruno; Schwarz, Tino F; Smetana, Jan; Abeele, Carline Vanden; Van den Steen, Peter; Vastiau, Ilse; Weckx, Lily Yin; Levin, Myron J

    2018-01-01

    Abstract Background The herpes zoster subunit vaccine (HZ/su), consisting of varicella-zoster virus glycoprotein E (gE) and AS01B Adjuvant System, was highly efficacious in preventing herpes zoster in the ZOE-50 and ZOE-70 trials. We present immunogenicity results from those trials. Methods Participants (ZOE-50: ≥50; ZOE-70: ≥70 years of age) received 2 doses of HZ/su or placebo, 2 months apart. Serum anti-gE antibodies and CD4 T cells expressing ≥2 of 4 activation markers assessed (CD42+) after stimulation with gE-peptides were measured in subcohorts for humoral (n = 3293) and cell-mediated (n = 466) immunogenicity. Results After vaccination, 97.8% of HZ/su and 2.0% of placebo recipients showed a humoral response. Geometric mean anti-gE antibody concentrations increased 39.1-fold and 8.3-fold over baseline in HZ/su recipients at 1 and 36 months post-dose 2, respectively. A gE-specific CD42+ T-cell response was shown in 93.3% of HZ/su and 0% of placebo recipients. Median CD42+ T-cell frequencies increased 24.6-fold (1 month) and 7.9-fold (36 months) over baseline in HZ/su recipients and remained ≥5.6-fold above baseline in all age groups at 36 months. The proportion of CD4 T cells expressing all 4 activation markers increased over time in all age groups. Conclusions Most HZ/su recipients developed robust immune responses persisting for 3 years following vaccination. Clinical Trials Registration NCT01165177; NCT01165229. PMID:29529222

  4. Plant-originated glycoprotein (24 kDa) has an inhibitory effect on proliferation of BNL CL.2 cells in response to di(2-ethylhexyl)phthalate.

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2011-08-01

    Di(2-ethylhexyl)phthalate (DEHP) is one of the many environmental chemicals that are widely used in polyvinyl chloride products, vinyl flooring, food packaging and infant toys. They cause cell proliferation or dysfunction of human liver. The purpose of this study is to investigate the inhibitory effect of a glycoprotein (24 kDa) isolated from Zanthoxylum piperitum DC (ZPDC) on proliferation of liver cell in the DEHP-induced BNL CL. 2 cells. [³H]-thymidine incorporation, intracellular reactive oxygen species (ROS), intracellular Ca²⁺ mobilization and activity of protein kinase C (PKC) were measured using radioactivity and fluorescence method respectively. The expression of mitogen-activated protein kinases [extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK)], activator protein (AP)-1 (c-Jun and c-Fos), proliferating cell nuclear antigen (PCNA) and cell cycle-related factors (cyclin D1/cyclin-dependent kinase [CDK] 4) were evaluated using Western blotting or electrophoretic mobility shift assay. The results in this study showed that the levels of [³H]-thymidine incorporation, intracellular ROS, intracellular Ca²⁺ mobilization and activity of PKCα were inhibited by ZPDC glycoprotein (100 µg/ml) in the DEHP-induced BNL CL. 2 cells. Also, activities of ERK, JNK and AP-1 were reduced by ZPDC glycoprotein (100 µg/ml). With regard to cell proliferation, activities of PCNA and cyclin D1/CDK4 were significantly suppressed at treatment with ZPDC glycoprotein (100 µg/ml) in the presence of DEHP. Taken together, these findings suggest that ZPDC glycoprotein significantly normalized activities of PCNA and cyclin D1/CDK4, which relate to cell proliferation factors. Thus, ZPDC glycoprotein appears to be one of the compounds derived from natural products that are able to inhibit cell proliferation in the phthalate-induced BNL CL. 2 cells. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Vaccinia virus-free rescue of fluorescent replication-defective vesicular stomatitis virus and pseudotyping with Puumala virus glycoproteins for use in neutralization tests.

    PubMed

    Paneth Iheozor-Ejiofor, Rommel; Levanov, Lev; Hepojoki, Jussi; Strandin, Tomas; Lundkvist, Åke; Plyusnin, Alexander; Vapalahti, Olli

    2016-05-01

    Puumala virus (PUUV) grows slowly in cell culture. To study antigenic properties of PUUV, an amenable method for their expression would be beneficial. To achieve this, a replication-defective recombinant vesicular stomatitis virus, rVSVΔG*EGFP, was rescued using BSRT7/5 and encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES)-enabled rescue plasmids. Using these particles, pseudotypes bearing PUUV Sotkamo strain glycoproteins were produced, with titres in the range 105-108, and were used in pseudotype focus reduction neutralization tests (pFRNTs) with neutralizing monoclonal antibodies and patient sera. The results were compared with those from orthodox focus reduction neutralization tests (oFRNTs) using native PUUV with the same samples and showed a strong positive correlation (rs = 0.82) between the methods. While developing the system we identified three amino acids which were mutated in the Vero E6 cell culture adapted PUUV prototype Sotkamo strain sequence, and changing these residues was critical for expression and neutralizing antibody binding of PUUV glycoproteins.

  6. Serological diagnosis and prognosis of severe acute pancreatitis by analysis of serum glycoprotein 2.

    PubMed

    Roggenbuck, Dirk; Goihl, Alexander; Hanack, Katja; Holzlöhner, Pamela; Hentschel, Christian; Veiczi, Miklos; Schierack, Peter; Reinhold, Dirk; Schulz, Hans-Ulrich

    2017-05-01

    Glycoprotein 2 (GP2), the pancreatic major zymogen granule membrane glycoprotein, was reported to be elevated in acute pancreatitis in animal models. Enzyme-linked immunosorbent assays (ELISAs) were developed to evaluate human glycoprotein 2 isoform alpha (GP2a) and total GP2 (GP2t) as specific markers for acute pancreatitis in sera of 153 patients with acute pancreatitis, 26 with chronic pancreatitis, 125 with pancreatic neoplasms, 324 with non-pancreatic neoplasms, 109 patients with liver/biliary disease, 67 with gastrointestinal disease, and 101 healthy subjects. GP2a and GP2t levels were correlated with procalcitonin and C-reactive protein in 152 and 146 follow-up samples of acute pancreatitis patients, respectively. The GP2a ELISA revealed a significantly higher assay accuracy in contrast to the GP2t assay (sensitivity ≤3 disease days: 91.7%, specificity: 96.7%, positive likelihood ratio [LR+]: 24.6, LR-: 0.09). GP2a and GP2t levels as well as prevalences were significantly elevated in early acute pancreatitis (≤3 disease days) compared to all control cohorts (p<0.05, respectively). GP2a and GP2t levels were significantly higher in patients with severe acute pancreatitis at admission compared with mild cases (p<0.05, respectively). Odds ratio for GP2a regarding mild vs. severe acute pancreatitis with lethal outcome was 7.8 on admission (p=0.0222). GP2a and GP2t levels were significantly correlated with procalcitonin [Spearman's rank coefficient of correlation (ρ)=0.21, 0.26; p=0.0110, 0.0012; respectively] and C-reactive protein (ρ=0.37, 0.40; p<0.0001; respectively). Serum GP2a is a specific marker of acute pancreatitis and analysis of GP2a can aid in the differential diagnosis of acute upper abdominal pain and prognosis of severe acute pancreatitis.

  7. Mutations in the conserved carboxy-terminal hydrophobic region of glycoprotein gB affect infectivity of herpes simplex virus.

    PubMed

    Wanas, E; Efler, S; Ghosh, K; Ghosh, H P

    1999-12-01

    Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family HERPESVIRIDAE: Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in Herpesviridae, were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in trans was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.

  8. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus.

    PubMed

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C; Dreux, Marlène; Evans, Matthew J; Bukh, Jens; Rice, Charles M; Ploss, Alexander; Burton, Dennis R; Law, Mansun

    2012-04-17

    Hepatitis C virus (HCV) infects ∼2% of the world's population. It is estimated that there are more than 500,000 new infections annually in Egypt, the country with the highest HCV prevalence. An effective vaccine would help control this expanding global health burden. HCV is highly variable, and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human mAbs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the CD81bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies to HCV.

  9. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    PubMed

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Recombinant Hepatitis C Virus Envelope Glycoprotein Vaccine Elicits Antibodies Targeting Multiple Epitopes on the Envelope Glycoproteins Associated with Broad Cross-Neutralization

    PubMed Central

    Wong, Jason Alexander Ji-Xhin; Bhat, Rakesh; Hockman, Darren; Logan, Michael; Chen, Chao; Levin, Aviad; Frey, Sharon E.; Belshe, Robert B.; Tyrrell, D. Lorne

    2014-01-01

    ABSTRACT Although effective hepatitis C virus (HCV) antivirals are on the horizon, a global prophylactic vaccine for HCV remains elusive. The diversity of the virus is a major concern for vaccine development; there are 7 major genotypes of HCV found globally. Therefore, a successful vaccine will need to protect against HCV infection by all genotypes. Despite the diversity, many monoclonal antibodies (MAbs) with broadly cross-neutralizing activity have been described, suggesting the presence of conserved epitopes that can be targeted to prevent infection. Similarly, a vaccine comprising recombinant envelope glycoproteins (rE1E2) derived from the genotype 1a HCV-1 strain has been shown to be capable of eliciting cross-neutralizing antibodies in guinea pigs, chimpanzees, and healthy human volunteers. In order to investigate the basis for this cross-neutralization, epitope mapping of anti-E1E2 antibodies present within antisera from goats and humans immunized with HCV-1 rE1E2 was conducted through peptide mapping and competition studies with a panel of cross-neutralizing MAbs targeting various epitopes within E1E2. The immunized-goat antiserum was shown to compete with the binding of all MAbs tested (AP33, HC33.4, HC84.26, 1:7, AR3B, AR4A, AR5A, IGH526, and A4). Antisera showed the best competition against HC84.26 and AR3B and the weakest competition against AR4A. Furthermore, antisera from five immunized human vaccinees were shown to compete with five preselected MAbs (AP33, AR3B, AR4A, AR5A, and IGH526). These data show that immunization with HCV-1 rE1E2 elicits antibodies targeting multiple cross-neutralizing epitopes. Our results further support the use of such a vaccine antigen to induce cross-genotype neutralization. IMPORTANCE An effective prophylactic vaccine for HCV is needed for optimal control of the disease burden. The high diversity of HCV has posed a challenge for developing vaccines that elicit neutralizing antibodies for protection against infection

  11. Immunoprecipitation of human immunodeficiency virus type 2 glycoproteins by sera positive for human immunodeficiency virus type 1.

    PubMed Central

    Espejo, R T; Uribe, P

    1990-01-01

    Analysis by radioimmunoprecipitation of serum samples from 27 different human immunodeficiency virus type 1 (HIV-1)-infected individuals residing in Chile showed that the sera of 26% of these individuals also react with glycoprotein gp125 of HIV type 2 (HIV-2). This cross-reaction seems to reflect a qualitative difference among infected individuals, because the titer of antibodies against gp120 of HIV-1 in the cross-reacting samples did not differ significantly from that in the non-cross-reacting samples. Most of the HIV-1-seropositive sera, including many that did not react with gp125 of HIV-2, reacted with gp140, the precursor of HIV-2 glycoproteins. The observed cross-reactions allowed us to distinguish three groups of HIV-1-infected individuals: (i) those whose sera react with both gp140 and gp125, (ii) those whose sera react with gp140, and (iii) those whose sera react with neither of these glycoproteins. The possible cause and significance of these differences is under study. Images PMID:2229392

  12. High frequency of genes' promoter methylation, but lack of BRAF V600E mutation among Iranian colorectal cancer patients.

    PubMed

    Naghibalhossaini, Fakhraddin; Hosseini, Hamideh Mahmoodzadeh; Mokarram, Pooneh; Zamani, Mozhdeh

    2011-12-01

    Gene silencing due to DNA hypermethylation is a major mechanism for loss of tumor suppressor genes function in colorectal cancer. Activating V600E mutation in BRAF gene has been linked with widespread methylation of CpG islands in sporadic colorectal cancers. The aim of the present study was to evaluate the methylation status of three cancer-related genes, APC2, p14ARF, and ECAD in colorectal carcinogenesis and their association with the mutational status of BRAF and KRAS among Iranian colorectal cancer patients. DNA from 110 unselected series of sporadic colorectal cancer patients was examined for BRAF V600E mutation by PCR-RFLP. Promoter methylation of genes in tumors was determined by methylation specific PCR. The frequency of APC2, E-CAD, and p14 methylation was 92.6%, 40.4% and 16.7%, respectively. But, no V600E mutation was identified in the BRAF gene in any sample. No association was found in cases showing epigenetic APC, ECAD, and p14 abnormality with the clinicopathological parameters under study. The association between KRAS mutations and the so called methylator phenotype was previously reported. Therefore, we also analyzed the association between the hot spot KRAS gene mutations in codons of 12 and 13 with genes' promoter hypermethylation in a subset of this group of patients. Out of 86 tumors, KRAS was mutated in 24 (28%) of tumors, the majority occurring in codon 12. KRAS mutations were not associated with genes' methylation in this tumor series. These findings suggest a distinct molecular pathway for methylation of APC2, p14, and ECAD genes from those previously described for colorectal cancers with BRAF or KRAS mutations.

  13. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoetzel, Isidro; Cheevers, William P.

    2005-09-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains ofmore » CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain {beta}-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding.« less

  14. Characterization of D150E and G196D aquaporin-2 mutations responsible for nephrogenic diabetes insipidus: importance of a mild phenotype

    PubMed Central

    Guyon, Cécile; Lussier, Yoann; Bissonnette, Pierre; Leduc-Nadeau, Alexandre; Lonergan, Michèle; Arthus, Marie-Françoise; Perez, Rafael Bedoya; Tiulpakov, Anatoly; Lapointe, Jean-Yves; Bichet, Daniel G.

    2009-01-01

    Aquaporin-2 (AQP2) is a water channel responsible for the final water reabsorption in renal collecting ducts. Alterations in AQP2 function induce nephrogenic diabetes insipidus (NDI), a condition characterized by severe polyuria and polydipsia. Three patients affected with severe NDI, who were compound heterozygous for the AQP2 mutations D150E and G196D, are presented here along with a mildly affected D150E homozygous patient from another family. Using Xenopus oocytes as an expression system, these two mutations (G196D and D150E) were compared with the wild-type protein (AQP2-wt) for functional activity (water flux analysis), protein maturation, and plasma membrane targeting. AQP2-wt induces a major increase in water permeability (Pf = 47.4 ± 12.2 × 10−4 cm/s) whereas D150E displays intermediate Pf values (Pf = 12.5 ± 3.0 × 10−4 cm/s) and G196D presents no specific water flux, similar to controls (Pf = 2.1 ± 0.8 × 10−4 cm/s and 2.2 ± 0.7 × 10−4 cm/s, respectively). Western blot and immunocytochemical evaluations show protein targeting that parallels activity levels with AQP2-wt adequately targeted to the plasma membrane, partial targeting for D150E, and complete sequestration of G196D within intracellular compartments. When coinjecting AQP2-wt with mutants, no (AQP2-wt + D150E) or partial (AQP2-wt + G196D) reduction of water flux were observed compared with AQP2-wt alone, whereas complete loss of function was found when both mutants were coinjected. These results essentially recapitulate the clinical profiles of the family members, showing a typical dominant negative effect when G196D is coinjected with either AQP2-wt or D150E but not between AQP2-wt and D150E mutant. PMID:19458121

  15. Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses.

    PubMed

    Chen, Haifen; Zhou, Xinrui; Zheng, Jie; Kwoh, Chee-Keong

    2016-12-05

    The human influenza viruses undergo rapid evolution (especially in hemagglutinin (HA), a glycoprotein on the surface of the virus), which enables the virus population to constantly evade the human immune system. Therefore, the vaccine has to be updated every year to stay effective. There is a need to characterize the evolution of influenza viruses for better selection of vaccine candidates and the prediction of pandemic strains. Studies have shown that the influenza hemagglutinin evolution is driven by the simultaneous mutations at antigenic sites. Here, we analyze simultaneous or co-occurring mutations in the HA protein of human influenza A/H3N2, A/H1N1 and B viruses to predict potential mutations, characterizing the antigenic evolution. We obtain the rules of mutation co-occurrence using association rule mining after extracting HA1 sequences and detect co-mutation sites under strong selective pressure. Then we predict the potential drifts with specific mutations of the viruses based on the rules and compare the results with the "observed" mutations in different years. The sites under frequent mutations are in antigenic regions (epitopes) or receptor binding sites. Our study demonstrates the co-occurring site mutations obtained by rule mining can capture the evolution of influenza viruses, and confirms that cooperative interactions among sites of HA1 protein drive the influenza antigenic evolution.

  16. Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi

    PubMed Central

    Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes AP; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G

    2017-01-01

    Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n = 61), followed by less frequent mutations in GNA11 (16%, n = 17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T > A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi. PMID:27934878

  17. Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi.

    PubMed

    Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes Ap; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G

    2017-03-01

    Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n=61), followed by less frequent mutations in GNA11 (16%, n=17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T>A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi.

  18. Preexisting MEK1 Exon 3 Mutations in V600E/KBRAF Melanomas Do Not Confer Resistance to BRAF Inhibitors

    PubMed Central

    Shi, Hubing; Moriceau, Gatien; Kong, Xiangju; Koya, Richard C.; Nazarian, Ramin; Pupo, Gulietta M.; Bacchiocchi, Antonella; Dahlman, Kimberly B.; Chmielowski, Bartosz; Sosman, Jeffrey A.; Halaban, Ruth; Kefford, Richard F.; Long, Georgina V.; Ribas, Antoni; Lo, Roger S.

    2012-01-01

    BRAF inhibitors (BRAFi) induce antitumor responses in nearly 60% of patients with advanced V600E/KBRAF melanomas. Somatic activating MEK1 mutations are thought to be rare in melanomas, but their potential concurrence with V600E/KBRAF may be selected for by BRAFi. We sequenced MEK1/2 exon 3 in melanomas at baseline and upon disease progression. Of 31 baseline V600E/KBRAF melanomas, 5 (16%) carried concurrent somatic BRAF/MEK1 activating mutations. Three of 5 patients with BRAF/MEK1 double-mutant baseline melanomas showed objective tumor responses, consistent with the overall 60% frequency. No MEK1 mutation was found in disease progression melanomas, except when it was already identified at baseline. MEK1-mutant expression in V600E/KBRAF melanoma cell lines resulted in no significant alterations in p-ERK1/2 levels or growth-inhibitory sensitivities to BRAFi, MEK1/2 inhibitor (MEKi), or their combination. Thus, activating MEK1 exon 3 mutations identified herein and concurrent with V600E/KBRAF do not cause BRAFi resistance in melanoma. SIGNIFICANCE As BRAF inhibitors gain widespread use for treatment of advanced melanoma, bio-markers for drug sensitivity or resistance are urgently needed. We identify here concurrent activating mutations in BRAF and MEK1 in melanomas and show that the presence of a downstream mutation in MEK1 does not necessarily make BRAF–mutant melanomas resistant to BRAF inhibitors. PMID:22588879

  19. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs.more » Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.« less

  20. Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria

    PubMed Central

    El Harchi, Aziza; Hancox, Jules C.

    2017-01-01

    Gain-of-function mutations in KCNJ2-encoded Kir2.1 channels underlie variant 3 (SQT3) of the short QT syndrome, which is associated with atrial fibrillation (AF). Using biophysically-detailed human atria computer models, this study investigated the mechanistic link between SQT3 mutations and atrial arrhythmogenesis, and potential ion channel targets for treatment of SQT3. A contemporary model of the human atrial action potential (AP) was modified to recapitulate functional changes in IK1 due to heterozygous and homozygous forms of the D172N and E299V Kir2.1 mutations. Wild-type (WT) and mutant formulations were incorporated into multi-scale homogeneous and heterogeneous tissue models. Effects of mutations on AP duration (APD), conduction velocity (CV), effective refractory period (ERP), tissue excitation threshold and their rate-dependence, as well as the wavelength of re-entry (WL) were quantified. The D172N and E299V Kir2.1 mutations produced distinct effects on IK1 and APD shortening. Both mutations decreased WL for re-entry through a reduction in ERP and CV. Stability of re-entrant excitation waves in 2D and 3D tissue models was mediated by changes to tissue excitability and dispersion of APD in mutation conditions. Combined block of IK1 and IKr was effective in terminating re-entry associated with heterozygous D172N conditions, whereas IKr block alone may be a safer alternative for the E299V mutation. Combined inhibition of IKr and IKur produced a synergistic anti-arrhythmic effect in both forms of SQT3. In conclusion, this study provides mechanistic insights into atrial proarrhythmia with SQT3 Kir2.1 mutations and highlights possible pharmacological strategies for management of SQT3-linked AF. PMID:28609477

  1. Chimpanzee GB virus C and GB virus A E2 envelope glycoproteins contain a peptide motif that inhibits human immunodeficiency virus type 1 replication in human CD4+ T-cells

    PubMed Central

    McLinden, James H.; Stapleton, Jack T.; Klinzman, Donna; Murthy, Krishna K.; Chang, Qing; Kaufman, Thomas M.; Bhattarai, Nirjal

    2013-01-01

    GB virus type C (GBV-C) is a lymphotropic virus that can cause persistent infection in humans. GBV-C is not associated with any disease, but is associated with reduced mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Related viruses have been isolated from chimpanzees (GBV-Ccpz) and from New World primates (GB virus type A, GBV-A). These viruses are also capable of establishing persistent infection. We determined the nucleotide sequence encoding the envelope glycoprotein (E2) of two GBV-Ccpz isolates obtained from the sera of captive chimpanzees. The deduced GBV-Ccpz E2 protein differed from human GBV-C by 31 % at the amino acid level. Similar to human GBV-C E2, expression of GBV-Ccpz E2 in a tet-off human CD4+ Jurkat T-cell line significantly inhibited the replication of diverse HIV-1 isolates. This anti-HIV-replication effect of GBV-Ccpz E2 protein was reversed by maintaining cells in doxycycline to reduce E2 expression. Previously, we found a 17 aa region within human GBV-C E2 that was sufficient to inhibit HIV-1. Although GBV-Ccpz E2 differed by 3 aa differences in this region, the chimpanzee GBV-C 17mer E2 peptide inhibited HIV-1 replication. Similarly, the GBV-A peptide that aligns with this GBV-C E2 region inhibited HIV-1 replication despite sharing only 5 aa with the human GBV-C E2 sequence. Thus, despite amino acid differences, the peptide region on both the GBV-Ccpz and the GBV-A E2 protein inhibit HIV-1 replication similar to human GBV-C. Consequently, GBV-Ccpz or GBV-A infection of non-human primates may provide an animal model to study GB virus–HIV interactions. PMID:23288422

  2. Antigenic relatedness between glycoproteins of human respiratory syncytial virus subgroups A and B: evaluation of the contributions of F and G glycoproteins to immunity.

    PubMed Central

    Johnson, P R; Olmsted, R A; Prince, G A; Murphy, B R; Alling, D W; Walsh, E E; Collins, P L

    1987-01-01

    The degree of antigenic relatedness between human respiratory syncytial virus (RSV) subgroups A and B was estimated from antibody responses induced in cotton rats by respiratory tract infection with RSV. Glycoprotein-specific enzyme-linked immunosorbent assays of antibody responses induced by RSV infection demonstrated that the F glycoproteins of subgroups A and B were antigenically closely related (relatedness, R approximately 50%), whereas the G glycoproteins were only distantly related (R approximately 5%). Intermediate levels of antigenic relatedness (R approximately 25%) were seen in neutralizing antibodies from cotton rats infected with RSV of the two subgroups. Immunity against the F glycoprotein of subgroup A, induced by vaccinia-A2-F, conferred a high level of protection which was of comparable magnitude against challenge by RSV of either subgroup. In comparison, immunity against the G glycoprotein of subgroup A, induced by vaccinia-A2-G, conferred less complete, but significant, protection. Importantly, in vaccinia-A2-G-immunized animals, suppression of homologous challenge virus replication was significantly greater (13-fold) than that observed for the heterologous virus. PMID:3305988

  3. Production of Recombinant Rabies Virus Glycoprotein by Insect Cells in a Single-Use Fixed-Bed Bioreactor.

    PubMed

    Ventini-Monteiro, Daniella C; Astray, Renato M; Pereira, Carlos A

    2018-01-01

    A single-use fixed-bed bioreactor (iCELLis nano) can be used for cultivating non adherent insect cells, which can be then recovered for scaling up or for harvesting a membrane-associated viral glycoprotein with high quality in terms of preserved protein structure and biological function. Here, we describe the procedures for establishing genetically modified Drosophila melanogaster Schneider 2 (S2) cell cultures in the iCELLis nano bioreactor and for quantifying by ELISA the recombinant rabies virus glycoprotein (rRVGP) synthesized. By using the described protocol of production, the following performance can be regularly achieved: 1.7 ± 0.6 × 1E10 total cells; 2.4 ± 0.8 × 1E7 cells/mL and 1.2 ± 0.9 μg of rRVGP/1E7 cells; 1.5 ± 0.8 mg of total rRVGP.

  4. Research resource: Update and extension of a glycoprotein hormone receptors web application.

    PubMed

    Kreuchwig, Annika; Kleinau, Gunnar; Kreuchwig, Franziska; Worth, Catherine L; Krause, Gerd

    2011-04-01

    The SSFA-GPHR (Sequence-Structure-Function-Analysis of Glycoprotein Hormone Receptors) database provides a comprehensive set of mutation data for the glycoprotein hormone receptors (covering the lutropin, the FSH, and the TSH receptors). Moreover, it provides a platform for comparison and investigation of these homologous receptors and helps in understanding protein malfunctions associated with several diseases. Besides extending the data set (> 1100 mutations), the database has been completely redesigned and several novel features and analysis tools have been added to the web site. These tools allow the focused extraction of semiquantitative mutant data from the GPHR subtypes and different experimental approaches. Functional and structural data of the GPHRs are now linked interactively at the web interface, and new tools for data visualization (on three-dimensional protein structures) are provided. The interpretation of functional findings is supported by receptor morphings simulating intramolecular changes during the activation process, which thus help to trace the potential function of each amino acid and provide clues to the local structural environment, including potentially relocated spatial counterpart residues. Furthermore, double and triple mutations are newly included to allow the analysis of their functional effects related to their spatial interrelationship in structures or homology models. A new important feature is the search option and data visualization by interactive and user-defined snake-plots. These new tools allow fast and easy searches for specific functional data and thereby give deeper insights in the mechanisms of hormone binding, signal transduction, and signaling regulation. The web application "Sequence-Structure-Function-Analysis of GPHRs" is accessible on the internet at http://www.ssfa-gphr.de/.

  5. 36 kDa glycoprotein isolated from Rhus verniciflua stokes inhibits G/GO-induced mitochondrial apoptotic signal pathways in BNL CL.2 cells.

    PubMed

    Lee, Sei-Jung; Oh, Phil-Sun; Lim, Kwang; Lim, Kye-Taek

    2005-12-01

    Rhus verniciflua Stokes is one of the medicinal plants traditionally used to heal and treat hepatic and inflammatory diseases. We found that a glycoprotein isolated from the fruit has a molecular weight of 36 kDa and consists of a carbohydrate component (38.75%) and a protein (61.25%), and that the glycoprotein has a strong scavenging activity against hydroxyl radicals without any pro-oxidant activity in the cell-free system. In glucose/glucose oxidase (G/GO)-induced BNL CL.2 cells, the results showed that Rhus verniciflua Stokes glycoprotein has dose-dependent blocking activities against G/GO-induced cytotoxicity and apoptosis, increasing the glutathione (GSH) peroxidase activity. In the activity of the mitochondrial apoptotic mediators (cytochrome c, caspases and poly(ADP-ribose)polymerase (PARP)), the glycoprotein (100 microg/ml) showed an inhibitory effect on cytochrome c release, caspase-9/3 activation, and PARP cleavage. Moreover, Rhus verniciflua Stokes glycoprotein has a stimulating effect on the nitric oxide production. Here, we speculate that this glycoprotein is one of the natural antioxidants and of the modulators of apoptotic signal pathways in BNL CL.2 cells.

  6. [Relationship between electrocardiographic and genetic mutation (MYH7-H1717Q, MYLK2-K324E and KCNQ1-R190W) phenotype in patients with hypertrophic cardiomyopathy].

    PubMed

    Shao, Hong; Zhang, Yanmin; Liu, Liwen; Ma, Zhiling; Zuo, Lei; Ye, Chuang; Wei, Xiaomei; Sun, Chao; Tao, Ling

    2016-01-01

    To explore the relationship between electrocardiographic (ECG) and genetic mutations of patients with hypertrophic cardiomyopathy (HCM), and early ECG changes in HCM patients. Clinical, 12-lead ECG and echocardiographic examination as well as genetic examinations were made in a three-generation Chinses HCM pedigree with 8 family members (4 males). The clinical characterization and ECG parameters were analyzed and their relationship with genotypes in the family was explored. Four missense mutations (MYH7-H1717Q, MYLK2-K324E, KCNQ1-R190W, TMEM70-I147T) were detected in this pedigree. The proband carried all 4 mutations and 5 members carried 2 mutations. Corrected QTc interval of KCNQ1-H1717Q carriers was significantly prolonged and was consistent with the ECG characterization of long QT syndrome. MYLK2-K324E and KCNQ1-R190W carriers presented with Q wave and(or) depressed ST segment, as well as flatted or reversed T waves in leads from anterolateral and inferior ventricular walls. ECG results showed ST segment depression, flat and inverted T wave in the gene mutation carriers with normal echocardiographic examination results. ECG and echocardiographic results were normal in TMEM70-I147T mutation carrier. The combined mutations of the genes associated with cardiac ion channels and HCM are linked with the ECG phenotype changes in this HCM pedigree. The variations in ECG parameters due to the genetic mutation appear earlier than the echocardiography and clinical manifestations. Variation in ECG may become one of the indexes for early diagnostic screening and disease progression of the HCM gene mutation carriers.

  7. EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step

    PubMed Central

    Ninagawa, Satoshi; Okada, Tetsuya; Sumitomo, Yoshiki; Kamiya, Yukiko; Kato, Koichi; Horimoto, Satoshi; Ishikawa, Tokiro; Takeda, Shunichi; Sakuma, Tetsushi; Yamamoto, Takashi

    2014-01-01

    Glycoproteins misfolded in the endoplasmic reticulum (ER) are subjected to ER-associated glycoprotein degradation (gpERAD) in which Htm1-mediated mannose trimming from the oligosaccharide Man8GlcNAc2 to Man7GlcNAc2 is the rate-limiting step in yeast. In contrast, the roles of the three Htm1 homologues (EDEM1/2/3) in mammalian gpERAD have remained elusive, with a key controversy being whether EDEMs function as mannosidases or as lectins. We therefore conducted transcription activator-like effector nuclease–mediated gene knockout analysis in human cell line and found that all endogenous EDEMs possess mannosidase activity. Mannose trimming from Man8GlcNAc2 to Man7GlcNAc2 is performed mainly by EDEM3 and to a lesser extent by EDEM1. Most surprisingly, the upstream mannose trimming from Man9GlcNAc2 to Man8GlcNAc2 is conducted mainly by EDEM2, which was previously considered to lack enzymatic activity. Based on the presence of two rate-limiting steps in mammalian gpERAD, we propose that mammalian cells double check gpERAD substrates before destruction by evolving EDEM2, a novel-type Htm1 homologue that catalyzes the first mannose trimming step from Man9GlcNAc2. PMID:25092655

  8. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding.

    PubMed

    Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar

    2016-11-01

    Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.

  9. Characterization of Influenza Virus Pseudotyped with Ebolavirus Glycoprotein.

    PubMed

    Xiao, Julie Huiyuan; Rijal, Pramila; Schimanski, Lisa; Tharkeshwar, Arun Kumar; Wright, Edward; Annaert, Wim; Townsend, Alain

    2018-02-15

    We have produced a new Ebola virus pseudotype, E-S-FLU, that can be handled in biosafety level 1/2 containment for laboratory analysis. The E-S-FLU virus is a single-cycle influenza virus coated with Ebolavirus glycoprotein, and it encodes enhanced green fluorescence protein as a reporter that replaces the influenza virus hemagglutinin. MDCK-SIAT1 cells were transduced to express Ebolavirus glycoprotein as a stable transmembrane protein for E-S-FLU virus production. Infection of cells with the E-S-FLU virus was dependent on the Niemann-Pick C1 protein, which is the well-characterized receptor for Ebola virus entry at the late endosome/lysosome membrane. The E-S-FLU virus was neutralized specifically by an anti-Ebolavirus glycoprotein antibody and a variety of small drug molecules that are known to inhibit the entry of wild-type Ebola virus. To demonstrate the application of this new Ebola virus pseudotype, we show that a single laboratory batch was sufficient to screen a library (LOPAC 1280 ; Sigma) of 1,280 pharmacologically active compounds for inhibition of virus entry. A total of 215 compounds inhibited E-S-FLU virus infection, while only 22 inhibited the control H5-S-FLU virus coated in H5 hemagglutinin. These inhibitory compounds have very dispersed targets and mechanisms of action, e.g., calcium channel blockers, estrogen receptor antagonists, antihistamines, serotonin uptake inhibitors, etc., and this correlates with inhibitor screening results obtained with other pseudotypes or wild-type Ebola virus in the literature. The E-S-FLU virus is a new tool for Ebola virus cell entry studies and is easily applied to high-throughput screening assays for small-molecule inhibitors or antibodies. IMPORTANCE Ebola virus is in the Filoviridae family and is a biosafety level 4 pathogen. There are no FDA-approved therapeutics for Ebola virus. These characteristics warrant the development of surrogates for Ebola virus that can be handled in more convenient laboratory

  10. Characterization of Influenza Virus Pseudotyped with Ebolavirus Glycoprotein

    PubMed Central

    Xiao, Julie Huiyuan; Rijal, Pramila; Schimanski, Lisa; Tharkeshwar, Arun Kumar; Wright, Edward; Annaert, Wim

    2017-01-01

    ABSTRACT We have produced a new Ebola virus pseudotype, E-S-FLU, that can be handled in biosafety level 1/2 containment for laboratory analysis. The E-S-FLU virus is a single-cycle influenza virus coated with Ebolavirus glycoprotein, and it encodes enhanced green fluorescence protein as a reporter that replaces the influenza virus hemagglutinin. MDCK-SIAT1 cells were transduced to express Ebolavirus glycoprotein as a stable transmembrane protein for E-S-FLU virus production. Infection of cells with the E-S-FLU virus was dependent on the Niemann-Pick C1 protein, which is the well-characterized receptor for Ebola virus entry at the late endosome/lysosome membrane. The E-S-FLU virus was neutralized specifically by an anti-Ebolavirus glycoprotein antibody and a variety of small drug molecules that are known to inhibit the entry of wild-type Ebola virus. To demonstrate the application of this new Ebola virus pseudotype, we show that a single laboratory batch was sufficient to screen a library (LOPAC1280; Sigma) of 1,280 pharmacologically active compounds for inhibition of virus entry. A total of 215 compounds inhibited E-S-FLU virus infection, while only 22 inhibited the control H5-S-FLU virus coated in H5 hemagglutinin. These inhibitory compounds have very dispersed targets and mechanisms of action, e.g., calcium channel blockers, estrogen receptor antagonists, antihistamines, serotonin uptake inhibitors, etc., and this correlates with inhibitor screening results obtained with other pseudotypes or wild-type Ebola virus in the literature. The E-S-FLU virus is a new tool for Ebola virus cell entry studies and is easily applied to high-throughput screening assays for small-molecule inhibitors or antibodies. IMPORTANCE Ebola virus is in the Filoviridae family and is a biosafety level 4 pathogen. There are no FDA-approved therapeutics for Ebola virus. These characteristics warrant the development of surrogates for Ebola virus that can be handled in more convenient

  11. Severe congenital muscular dystrophy in a Mexican family with a new nonsense mutation (R2578X) in the laminin alpha-2 gene.

    PubMed

    Coral-Vazquez, Ramon M; Rosas-Vargas, Haydee; Meza-Espinosa, Pedro; Mendoza, Irma; Huicochea, Juan C; Ramon, Guillermo; Salamanca, Fabio

    2003-01-01

    The congenital muscular dystrophies (CMDs) are a heterogeneous group of autosomal recessive disorders. Approximately one half of cases diagnosed with classic CMD show primary deficiency of the laminin alpha2 chain of merosin. Complete absence of this protein is usually associated with a severe phenotype characterized by drastic muscle weakness and characteristic changes in white matter in cerebral magnetic resonance imaging (MRI). Here we report an 8-month-old Mexican female infant, from a consanguineous family, with classical CMD. Serum creatine kinase was elevated, muscle biopsy showed dystrophic changes, and there were abnormalities in brain MRI. Immunofluorescence analysis demonstrated the complete absence of laminin alpha2. In contrast, expression of alpha-, beta-, gamma-, and delta-sarcoglycans and dystrophin, all components of the dystrophin-glycoprotein complex, appeared normal. A homozygous C long right arrow T substitution at position 7781 that generated a stop codon in the G domain of the protein was identified by mutation analysis of the laminin alpha2 gene ( LAMA2). Sequence analysis on available DNA samples of the family showed that parents and other relatives were carriers of the mutation.

  12. A Diverse Panel of Hepatitis C Virus Glycoproteins for Use in Vaccine Research Reveals Extremes of Monoclonal Antibody Neutralization Resistance.

    PubMed

    Urbanowicz, Richard A; McClure, C Patrick; Brown, Richard J P; Tsoleridis, Theocharis; Persson, Mats A A; Krey, Thomas; Irving, William L; Ball, Jonathan K; Tarr, Alexander W

    2015-12-23

    Despite significant advances in the treatment of hepatitis C virus (HCV) infection, the need to develop preventative vaccines remains. Identification of the best vaccine candidates and evaluation of their performance in preclinical and clinical development will require appropriate neutralization assays utilizing diverse HCV isolates. We aimed to generate and characterize a panel of HCV E1E2 glycoproteins suitable for subsequent use in vaccine and therapeutic antibody testing. Full-length E1E2 clones were PCR amplified from patient-derived serum samples, cloned into an expression vector, and used to generate viral pseudoparticles (HCVpp). In addition, some of these clones were used to generate cell culture infectious (HCVcc) clones. The infectivity and neutralization sensitivity of these viruses were then determined. Bioinformatic and HCVpp infectivity screening of approximately 900 E1E2 clones resulted in the assembly of a panel of 78 functional E1E2 proteins representing distinct HCV genotypes and different stages of infection. These HCV glycoproteins differed markedly in their sensitivity to neutralizing antibodies. We used this panel to predict antibody efficacy against circulating HCV strains, highlighting the likely reason why some monoclonal antibodies failed in previous clinical trials. This study provides the first objective categorization of cross-genotype patient-derived HCV E1E2 clones according to their sensitivity to antibody neutralization. It has shown that HCV isolates have clearly distinguishable neutralization-sensitive, -resistant, or -intermediate phenotypes, which are independent of genotype. The panel provides a systematic means for characterization of the neutralizing response elicited by candidate vaccines and for defining the therapeutic potential of monoclonal antibodies. Hepatitis C virus (HCV) has a global burden of more than 170 million people, many of whom cannot attain the new, expensive, direct-acting antiviral therapies. A safe and

  13. Mutation analysis in the long isoform of USH2A in American patients with Usher Syndrome type II.

    PubMed

    Yan, Denise; Ouyang, Xiaomei; Patterson, D Michael; Du, Li Lin; Jacobson, Samuel G; Liu, Xue-Zhong

    2009-12-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa (RP). To identify novel mutations and determine the frequency of USH2A mutations as a cause of USH2, we have carried out mutation screening of all 72 coding exons and exon-intron splice sites of the USH2A gene. A total of 20 USH2 American probands of European descent were analyzed using single strand conformational polymorphism (SSCP) and direct sequencing methods. Ten different USH2A mutations were identified in 55% of the probands, five of which were novel mutations. The detected mutations include three missense, three frameshifts and four nonsense mutations, with c.2299delG/p.E767fs mutation, accounting for 38.9% of the pathological alleles. Two cases were homozygotes, two cases were compound heterozygotes and one case had complex allele with three variants. In seven probands, only one USH2A mutation was detected and no pathological mutation was found in the remaining eight individuals. Altogether, our data support the fact that c.2299delG/p.E767fs is indeed the most common USH2A mutation found in USH2 patients of European Caucasian background. Thus, if screening for mutations in USH2A is considered, it is reasonable to screen for the c.2299delG mutation first.

  14. Immune responses in pigs induced by recombinant canine adenovirus 2 expressing the glycoprotein 5 of porcine reproductive and respiratory syndrome virus.

    PubMed

    Zhou, J-X; Xue, J-D; Yu, T; Zhang, J-B; Liu, Y; Jiang, N; Li, Y-L; Hu, R-L

    2010-04-01

    To develop a new type vaccine for porcine reproductive and respiratory syndrome (PRRS) prevention by using canine adenovirus 2(CAV-2) as vector, the Glycoprotein 5(GP5) gene from PRRSV strain JL was amplified by RT-PCR, and the expression cassette of GP5 was constructed using the human cytomegalovirus (HCMV) promoter and the simian virus 40 (SV40) early mRNA polyadenylation signal. The expression cassette of Glycoprotein 5 was cloned into the CAV-2 genome in which E3 region had been partly deleted, and the recombinant virus (CAV-2-GP5) was obtained by transfecting the recombinant CAV-2-GP5 genome into MDCK cells together with Lipofectamine 2000. Immunization trial in pigs with the recombinant virus CAV-2-GP5 showed that CAV-2-GP5 could stimulate a specific immune response to PRRSV. Immune response to the GP5 and PRRSV was confirmed by ELISA, neutralization test and lymphocyte proliferative responses, and western blotting confirmed expression of GP5 by the vector in cells. These results indicated that CAV-2 may serve as a vector for development of PRRSV vaccine in pigs, and the CAV-2-GP5 might be a candidate vaccine to be tested for preventing PRRSV infection.

  15. TFAP2B mutation and dental anomalies.

    PubMed

    Tanasubsinn, Natchaya; Sittiwangkul, Rekwan; Pongprot, Yupada; Kawasaki, Katsushige; Ohazama, Atsushi; Sastraruji, Thanapat; Kaewgahya, Massupa; Kantaputra, Piranit Nik

    2017-08-01

    Mutations inTFAP2B has been reported in patients with isolated patent ductus arteriosus (PDA) and Char syndrome. We performed mutation analysis of TFAP2B in 43 patients with isolated PDA, 7 patients with PDA with other congenital heart defects and 286 patients with isolated tooth agenesis with or without other dental anomalies. The heterozygous c.1006G>A mutation was identified in 20 individuals. Those mutation carriers consisted of 1 patient with term PDA (1/43), 16 patients with isolated tooth agenesis with or without other dental anomalies (16/286; 5.6%), 1 patient with PDA and severe valvular aortic stenosis and tooth agenesis (1/4) and 2 normal controls (2/100; 1%). The mutation is predicted to cause an amino-acid substitution p.Val336Ile in the TFAP2B protein. Tfap2b expression during early mouse tooth development supports the association of TFAP2B mutation and dental anomalies. It is hypothesized that this incidence might have been the result of founder effect. Here we report for the first time that TFAP2B mutation is associated with tooth agenesis, microdontia, supernumerary tooth and root maldevelopment. In addition, we also found that TFAP2B mutations, the common causes of PDA in Caucasian, are not the common cause of PDA in Thai population.

  16. Molecular Profiling of Papillary Thyroid Carcinoma in Korea with a High Prevalence of BRAFV600E Mutation.

    PubMed

    Lee, Seung Eun; Hwang, Tae Sook; Choi, Yoon-La; Kim, Wook Youn; Han, Hye Seung; Lim, So Dug; Kim, Wan-Seop; Yoo, Young Bum; Kim, Suk Kyeong

    2017-06-01

    The BRAF V600E mutation in papillary thyroid carcinoma (PTC) is particularly prevalent in Korea, and a considerable number of wild-type BRAF PTCs harbor RAS mutations. In addition, subsets of other genetic alterations clearly exist, but their prevalence in the Korean population has not been well studied. Recent increased insight into noninvasive encapsulated follicular variant PTC has prompted endocrine pathologists to reclassify this entity as "noninvasive follicular thyroid neoplasm with papillary-like nuclear features" (NIFTP). This study analyzed the genetic alterations among the histologic variants of PTC, including NIFTP. Mutations of the BRAF and RAS genes and rearrangement of the RET/PTC1, NTRK1, and ALK genes using 769 preoperative fine-needle aspiration specimens and resected PTCs were analyzed. Molecular alterations were found in 687 (89.3%) of 769 PTCs. BRAF V600E mutation (80.8%) was the most frequent alteration, followed by RAS mutation and RET/PTC1, NTRK1, and ALK rearrangements (5.6%, 2.1%, 0.4%, and 0%, respectively). The low prevalence of NTRK1 fusions and the absence of an ALK fusion detected in Korea may also be attributed to the higher prevalence of the BRAF V600E mutation. There were significant differences in the frequency of the genetic alterations among the histologic variants of PTC. The prevalence of NIFTP in PTC was 2.7%, and among the NIFTPs, 28.6% and 57.1% harbored BRAF and RAS mutations, respectively. Clinicopathologic factors and mutational profiles between NIFTP and encapsulated follicular variant PTC with capsular invasion group were not significantly different. Genetic alterations in PTC vary among its different histologic variants and seem to be different in each ethnic group.

  17. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system

    USDA-ARS?s Scientific Manuscript database

    E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. Howev...

  18. Molecular Docking Studies to Explore Potential Binding Pockets and Inhibitors for Chikungunya Virus Envelope Glycoproteins.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2017-03-11

    The chikungunya virus (CHIKV) envelope glycoproteins are considered important potential targets for anti-CHIKV drug discovery due to their crucial roles in virus attachment and virus entry. In this study, using two available crystal structures of the immature and mature forms of envelope glycoproteins, virtual screenings based on blind dockings and focused dockings were carried out to identify potential binding pockets and hit compounds for the virus. The chemical library database of compounds, NCI Diversity Set II, was used in these docking studies. In addition to reproducing previously reported examples, new binding pockets were identified, e.g., Pocket 2 in the 3N40, and Pocket 2 and Pocket 3 in the 3N42. Convergences in conformational sampling in docking using AutoDock Vina were evaluated. An analysis of docking results was carried out to understand interactions of the envelope glycoproteins complexes. Some key residues for interactions, for example Gly91 and His230, are identified as possessing important roles in the fusion process.

  19. Mutation Analysis of IDH1/2 Genes in Unselected De novo Acute Myeloid Leukaemia Patients in India - Identification of A Novel IDH2 Mutation.

    PubMed

    Raveendran, Sureshkumar; Sarojam, Santhi; Vijay, Sangeetha; Geetha, Aswathy Chandran; Sreedharan, Jayadevan; Narayanan, Geetha; Sreedharan, Hariharan

    2015-01-01

    IDH1/2 mutations which result in alternation in DNA methylation pattern are one of the most common methylation associated mutations in Acute myeloid leukaemia. IDH1/2 mutations frequently associated with higher platelet level, normal cytogentics and NPM1 mutations. Here we analyzed IDH1/2 mutations in 200 newly diagnosed unselected Indian adult AML patients and investigated their correlation with clinical, cytogenetic parameters along with cooperating NPM1 mutation. We detected 5.5% and 4% mutations in IDH1/2 genes, respectively. Except IDH2 c.515_516GG>AA mutation, all the other identified mutations were reported mutations. Similar to reported c.515G>A mutation, the novel c.515_516GG>AA mutation replaces 172nd arginine to lysine in the active site of the enzyme. Even though there was a preponderance of IDH1/2 mutations in NK-AML, cytogenetically abnormal patients also harboured IDH1/2 mutations. IDH1 mutations showed significant higher platelet count and NPM1 mutations. IDH2 mutated patients displayed infrequent NPM1 mutations and lower WBC count. All the NPM1 mutations in the IDH1/2 mutated cases showed type A mutation. The present data suggest that IDH1/2 mutations are associated with normal cytogenetics and type A NPM1 mutations in adult Indian AML patients.

  20. Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum.

    PubMed

    Satoh, Tadashi; Yamaguchi, Takumi; Kato, Koichi

    2015-01-30

    In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.

  1. The Papillomavirus E2 proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Alison A., E-mail: amcbride@nih.gov

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses.more » • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.« less

  2. Somatic activating mutations in MAP2K1 cause melorheostosis.

    PubMed

    Kang, Heeseog; Jha, Smita; Deng, Zuoming; Fratzl-Zelman, Nadja; Cabral, Wayne A; Ivovic, Aleksandra; Meylan, Françoise; Hanson, Eric P; Lange, Eileen; Katz, James; Roschger, Paul; Klaushofer, Klaus; Cowen, Edward W; Siegel, Richard M; Marini, Joan C; Bhattacharyya, Timothy

    2018-04-11

    Melorheostosis is a sporadic disease of uncertain etiology characterized by asymmetric bone overgrowth and functional impairment. Using whole exome sequencing, we identify somatic mosaic MAP2K1 mutations in affected, but not unaffected, bone of eight unrelated patients with melorheostosis. The activating mutations (Q56P, K57E and K57N) cluster tightly in the MEK1 negative regulatory domain. Affected bone displays a mosaic pattern of increased p-ERK1/2 in osteoblast immunohistochemistry. Osteoblasts cultured from affected bone comprise two populations with distinct p-ERK1/2 levels by flow cytometry, enhanced ERK1/2 activation, and increased cell proliferation. However, these MAP2K1 mutations inhibit BMP2-mediated osteoblast mineralization and differentiation in vitro, underlying the markedly increased osteoid detected in affected bone histology. Mosaicism is also detected in the skin overlying bone lesions in four of five patients tested. Our data show that the MAP2K1 oncogene is important in human bone formation and implicate MEK1 inhibition as a potential treatment avenue for melorheostosis.

  3. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    PubMed

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  4. Identification of O-Linked Glycoproteins Binding to the Lectin Helix pomatia Agglutinin as Markers of Metastatic Colorectal Cancer.

    PubMed

    Peiris, Diluka; Ossondo, Marlène; Fry, Simon; Loizidou, Marilena; Smith-Ravin, Juliette; Dwek, Miriam V

    2015-01-01

    Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer. In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens. Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002). Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer.

  5. Identification of O-Linked Glycoproteins Binding to the Lectin Helix pomatia Agglutinin as Markers of Metastatic Colorectal Cancer

    PubMed Central

    Peiris, Diluka; Ossondo, Marlène; Fry, Simon; Loizidou, Marilena; Smith-Ravin, Juliette; Dwek, Miriam V.

    2015-01-01

    Background Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer. Methodology In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens. Results Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002). Conclusion Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer. PMID:26495974

  6. Protein and glycoprotein content of lymphocystis disease virus (LCDV).

    PubMed

    García-Rosado, Esther; Castro, Dolores; Cano, Irene; Alonso, M Carmen; Pérez-Prieto, Sara I; Borrego, Juan J

    2004-06-01

    The polypeptide and glycoprotein composition of eight strains of the fish-pathogenic lymphocystis disease virus (LCDV) isolated from gilt-head seabream (Sparus aurata), blackspot seabream (Pagellus bogaraveo), and sole (Solea senegalensis) were determined. The protein electrophoretic patterns of all LCDV isolates were quite similar regardless of the host fish, showing two major proteins (79.9 and 55.6 kDa) and a variable number of minor proteins. Three groups of LCDV isolates were distinguished according to the number and molecular masses of the minor proteins. Eight glycoproteins were detected inside viral particles of LCDV 2, LCDV 3 and LCDV 5 isolates, but only seven glycoproteins were found inside viral particles of LCDV 1, LCDV 4, LCDV 6, LCDV 7, and LCDV 11 isolates and the reference virus ATCC VR 342 by using five lectins. LCDV glycoproteins were mainly composed of mannose and sialic acid. These glycoproteins could be part of an external viral envelope probably derived from the host cell membrane.

  7. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    PubMed

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. E-cadherin germline mutation carriers: clinical management and genetic implications.

    PubMed

    Corso, Giovanni; Figueiredo, Joana; Biffi, Roberto; Trentin, Chiara; Bonanni, Bernardo; Feroce, Irene; Serrano, Davide; Cassano, Enrico; Annibale, Bruno; Melo, Soraia; Seruca, Raquel; De Lorenzi, Francesca; Ferrara, Francesco; Piagnerelli, Riccardo; Roviello, Franco; Galimberti, Viviana

    2014-12-01

    Hereditary diffuse gastric cancer is an autosomic dominant syndrome associated with E-cadherin protein (CDH1) gene germline mutations. Clinical criteria for genetic screening were revised in 2010 by the International Gastric Cancer Linkage Consortium at the Cambridge meeting. About 40 % of families fulfilling clinical criteria for this inherited disease present deleterious CDH1 germline mutations. Lobular breast cancer is a neoplastic condition associated with hereditary diffuse gastric cancer syndrome. E-cadherin constitutional mutations have been described in both settings, in gastric and breast cancers. The management of CDH1 asymptomatic mutation carriers requires a multidisciplinary approach; the only life-saving procedure is the prophylactic total gastrectomy after thorough genetic counselling. Several prophylactic gastrectomies have been performed to date; conversely, no prophylactic mastectomies have been described in CDH1 mutant carriers. However, the recent discovery of novel germline alterations in pedigree clustering only for lobular breast cancer opens up a new debate in the management of these individuals. In this critical review, we describe the clinical management of CDH1 germline mutant carriers providing specific recommendations for genetic counselling, clinical criteria, surveillance and/ or prophylactic surgery.

  9. HER2 mutations in lung adenocarcinomas: A report from the Lung Cancer Mutation Consortium.

    PubMed

    Pillai, Rathi N; Behera, Madhusmita; Berry, Lynne D; Rossi, Mike R; Kris, Mark G; Johnson, Bruce E; Bunn, Paul A; Ramalingam, Suresh S; Khuri, Fadlo R

    2017-11-01

    Human epidermal growth factor receptor 2 (HER2) mutations have been reported in lung adenocarcinomas. Herein, the authors describe the prevalence, clinical features, and outcomes associated with HER2 mutations in 1007 patients in the Lung Cancer Mutation Consortium (LCMC). Patients with advanced-stage lung adenocarcinomas were enrolled to the LCMC. Tumor specimens were assessed for diagnosis and adequacy; multiplexed genotyping was performed in Clinical Laboratory Improvement Amendments (CLIA)-certified laboratories to examine 10 oncogenic drivers. The LCMC database was queried for patients with HER2 mutations to access demographic data, treatment history, and vital status. An exploratory analysis was performed to evaluate the survival of patients with HER2 mutations who were treated with HER2-directed therapies. A total of 920 patients were tested for HER2 mutations; 24 patients (3%) harbored exon 20 insertion mutations (95% confidence interval, 2%-4%). One patient had a concurrent mesenchymal-epithelial transition factor (MET) amplification. The median age of the patients was 62 years, with a slight predominance of females over males (14 females vs 10 males). The majority of the patients were never-smokers (71%) and presented with advanced disease at the time of diagnosis. The median survival for patients who received HER2-targeted therapies (12 patients) was 2.1 years compared with 1.4 years for those who did not (12 patients) (P = .48). Patients with HER2 mutations were found to have inferior survival compared with the rest of the LCMC cohort with other mutations: the median survival was 3.5 years in the LCMC population receiving targeted therapy and 2.4 years for patients not receiving targeted therapy. HER2 mutations were detected in 3% of patients with lung adenocarcinoma in the LCMC. HER2-directed therapies should be investigated in this subgroup of patients. Cancer 2017;123:4099-4105. © 2017 American Cancer Society. © 2017 American Cancer Society.

  10. Mutations in the inositol polyphosphate-5-phosphatase E gene link phosphatidyl inositol signaling to the ciliopathies

    PubMed Central

    Bielas, Stephanie L.; Silhavy, Jennifer L.; Brancati, Francesco; Kisseleva, Marina V.; Al-Gazali, Lihadh; Sztriha, Laszlo; Bayoumi, Riad A.; Zaki, Maha S.; Abdel-Aleem, Alice; Rosti, Ozgur; Kayserili, Hulya; Swistun, Dominika; Scott, Lesley C.; Bertini, Enrico; Boltshauser, Eugen; Fazzi, Elisa; Travaglini, Lorena; Field, Seth J.; Gayral, Stephanie; Jacoby, Monique; Schurmans, Stephane; Dallapiccola, Bruno; Majerus, Philip W.; Valente, Enza Maria; Gleeson, Joseph G.

    2009-01-01

    Phosphotidylinositol (PtdIns) signaling is tightly regulated, both spatially and temporally, by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events 1. Joubert Syndrome (JS) characterized by a specific midbrain-hindbrain malformation (“molar tooth sign”) and variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly 2, and is included in the newly emerging group of “ciliopathies”. In patients linking to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected in JS, and mutations promoted premature destabilization of cilia in response to stimulation. Thus, these data links PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly appreciated for its role in mediating cell signals and neuronal function. PMID:19668216

  11. The Heterodimeric Glycoprotein Hormone, GPA2/GPB5, Regulates Ion Transport across the Hindgut of the Adult Mosquito, Aedes aegypti

    PubMed Central

    Paluzzi, Jean-Paul; Vanderveken, Mark; O’Donnell, Michael J.

    2014-01-01

    A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB), which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1) pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ) and the gonadotropins luteinizing hormone (GPA1/LHβ), follicle stimulating hormone (GPA1/FSHβ), choriogonadotropin (GPA1/CGβ). A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5) and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET) to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an important

  12. Potential relationship between Hashimoto's thyroiditis and BRAF(V600E) mutation status in papillary thyroid cancer.

    PubMed

    Zeng, Rui-Chao; Jin, Lang-Ping; Chen, En-Dong; Dong, Si-Yang; Cai, Ye-Feng; Huang, Guan-Li; Li, Quan; Jin, Chun; Zhang, Xiao-Hua; Wang, Ou-Chen

    2016-04-01

    The purpose of this study was to evaluate the potential relationship between Hashimoto's thyroiditis and BRAF(V600E) mutation status in patients with papillary thyroid carcinoma (PTC). A total of 619 patients with PTC who underwent total thyroidectomy with lymph node dissection were enrolled in this study. Univariable and multivariate analyses were used. Hashimoto's thyroiditis was present in 35.9% (222 of 619) of PTCs. Multivariate logistic regressions showed that BRAF(V600E) mutation, sex, extrathyroidal extension, and lymph node metastasis were independent factors for Hashimoto's thyroiditis. Female sex, more frequent extrathyroidal extension, and a higher incidence of lymph node metastasis were significantly associated with PTCs accompanied by BRAF(V600E) mutation without Hashimoto's thyroiditis compared with PTCs accompanied by BRAF(V600E) mutation with Hashimoto's thyroiditis. Hashimoto's thyroiditis was negatively associated with BRAF(V600E) mutation, extrathyroidal extension, and lymph node metastasis. In addition, Hashimoto's thyroiditis was related to less lymph node metastasis and extrathyroidal extension in PTCs with BRAF(V600E) mutation. Therefore, Hashimoto's thyroiditis is a potentially protective factor in PTC. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1019-E1025, 2016. © 2015 Wiley Periodicals, Inc.

  13. Retention of glucose units added by the UDP-GLC:glycoprotein glucosyltransferase delays exit of glycoproteins from the endoplasmic reticulum

    PubMed Central

    1995-01-01

    It has been proposed that the UDP-Glc:glycoprotein glucosyltransferase, an endoplasmic reticulum enzyme that only glucosylates improperly folded glycoproteins forming protein-linked Glc1Man7-9-GlcNAc2 from the corresponding unglucosylated species, participates together with lectin- like chaperones that recognize monoglucosylated oligosaccharides in the control mechanism by which cells only allow passage of properly folded glycoproteins to the Golgi apparatus. Trypanosoma cruzi cells were used to test this model as in trypanosomatids addition of glucosidase inhibitors leads to the accumulation of only monoglucosylated oligosaccharides, their formation being catalyzed by the UDP- Glc:glycoprotein glucosyltransferase. In all other eukaryotic cells the inhibitors produce underglycosylation of proteins and/or accumulation of oliogosaccharides containing two or three glucose units. Cruzipain, a lysosomal proteinase having three potential N-glycosylation sites, two at the catalytic domain and one at the COOH-terminal domain, was isolated in a glucosylated form from cells grown in the presence of the glucosidase II inhibitor 1-deoxynojirimycin. The oligosaccharides present at the single glycosylation site of the COOH-terminal domain were glucosylated in some cruzipain molecules but not in others, this result being consistent with an asynchronous folding of glycoproteins in the endoplasmic reticulum. In spite of not affecting cell growth rate or the cellular general metabolism in short and long term incubations, 1-deoxynojirimycin caused a marked delay in the arrival of cruzipain to lysosomes. These results are compatible with the model proposed by which monoglucosylated glycoproteins may be transiently retained in the endoplasmic reticulum by lectin-like anchors recognizing monoglucosylated oligosaccharides. PMID:7642696

  14. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  15. Urinary tract effects of HPSE2 mutations.

    PubMed

    Stuart, Helen M; Roberts, Neil A; Hilton, Emma N; McKenzie, Edward A; Daly, Sarah B; Hadfield, Kristen D; Rahal, Jeffery S; Gardiner, Natalie J; Tanley, Simon W; Lewis, Malcolm A; Sites, Emily; Angle, Brad; Alves, Cláudia; Lourenço, Teresa; Rodrigues, Márcia; Calado, Angelina; Amado, Marta; Guerreiro, Nancy; Serras, Inês; Beetz, Christian; Varga, Rita-Eva; Silay, Mesrur Selcuk; Darlow, John M; Dobson, Mark G; Barton, David E; Hunziker, Manuela; Puri, Prem; Feather, Sally A; Goodship, Judith A; Goodship, Timothy H J; Lambert, Heather J; Cordell, Heather J; Saggar, Anand; Kinali, Maria; Lorenz, Christian; Moeller, Kristina; Schaefer, Franz; Bayazit, Aysun K; Weber, Stefanie; Newman, William G; Woolf, Adrian S

    2015-04-01

    Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurogenic neurogenic bladder probands and, of 439 families with nonsyndromic vesicoureteric reflux, only one carried a putative pathogenic HPSE2 variant. Homozygous Hpse2 mutant mouse bladders contained urine more often than did wild-type organs, phenocopying human UFS. Pelvic ganglia neural cell bodies contained heparanase 1, heparanase 2, and leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2), which is mutated in certain UFS families. In conclusion, heparanase 2 is an autonomic neural protein implicated in bladder emptying, but HPSE2 variants are uncommon in urinary diseases resembling UFS. Copyright © 2015 by the American Society of Nephrology.

  16. Functional studies of p.R132C, p.R149C, p.M283V, p.E431K, and a novel c.652-2A>G mutations of the CYP21A2 gene.

    PubMed

    Taboas, Melisa; Gómez Acuña, Luciana; Scaia, María Florencia; Bruque, Carlos D; Buzzalino, Noemí; Stivel, Mirta; Ceballos, Nora R; Dain, Liliana

    2014-01-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism and accounts for 90-95% of CAH cases. In the present work, we analyzed the functional consequence of four novel previously reported point CYP21A2 mutations -p.R132C, p.R149C, p.M283V, p.E431K- found in Argentinean 21-hydroxylase deficient patients. In addition, we report an acceptor splice site novel point mutation, c.652-2A>G, found in a classical patient in compound heterozygosity with the rare p.R483Q mutation. We performed bioinformatic and functional assays to evaluate the biological implication of the novel mutation. Our analyses revealed that the residual enzymatic activity of the isolated mutants coding for CYP21A2 aminoacidic substitutions was reduced to a lesser than 50% of the wild type with both progesterone and 17-OH progesterone as substrates. Accordingly, all the variants would predict mild non-classical alleles. In one non-classical patient, the p.E431K mutation was found in cis with the p.D322G one. The highest decrease in enzyme activity was obtained when both mutations were assayed in the same construction, with a residual activity most likely related to the simple virilizing form of the disease. For the c.652-2A>G mutation, bioinformatic tools predicted the putative use of two different cryptic splicing sites. Nevertheless, functional analyses revealed the use of only one cryptic splice acceptor site located within exon 6, leading to the appearance of an mRNA with a 16 nt deletion. A severe allele is strongly suggested due to the presence of a premature stop codon in the protein only 12 nt downstream.

  17. Functional Studies of p.R132C, p.R149C, p.M283V, p.E431K, and a Novel c.652-2A>G Mutations of the CYP21A2 Gene

    PubMed Central

    Taboas, Melisa; Gómez Acuña, Luciana; Scaia, María Florencia; Bruque, Carlos D.; Buzzalino, Noemí; Stivel, Mirta

    2014-01-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism and accounts for 90–95% of CAH cases. In the present work, we analyzed the functional consequence of four novel previously reported point CYP21A2 mutations -p.R132C, p.R149C, p.M283V, p.E431K- found in Argentinean 21-hydroxylase deficient patients. In addition, we report an acceptor splice site novel point mutation, c.652-2A>G, found in a classical patient in compound heterozygosity with the rare p.R483Q mutation. We performed bioinformatic and functional assays to evaluate the biological implication of the novel mutation. Our analyses revealed that the residual enzymatic activity of the isolated mutants coding for CYP21A2 aminoacidic substitutions was reduced to a lesser than 50% of the wild type with both progesterone and 17-OH progesterone as substrates. Accordingly, all the variants would predict mild non-classical alleles. In one non-classical patient, the p.E431K mutation was found in cis with the p.D322G one. The highest decrease in enzyme activity was obtained when both mutations were assayed in the same construction, with a residual activity most likely related to the simple virilizing form of the disease. For the c.652-2A>G mutation, bioinformatic tools predicted the putative use of two different cryptic splicing sites. Nevertheless, functional analyses revealed the use of only one cryptic splice acceptor site located within exon 6, leading to the appearance of an mRNA with a 16 nt deletion. A severe allele is strongly suggested due to the presence of a premature stop codon in the protein only 12 nt downstream. PMID:24667412

  18. Glycoprotein (116 kD) isolated from Ulmus davidiana Nakai protects from injury of 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated BNL CL.2 cells.

    PubMed

    Oh, Phil-Sun; Lee, Sei-Jung; Lim, Kye-Taek

    2006-01-01

    Ulmus davidiana Nakai (UDN) has been used for a long time to cure inflammation in oriental medicine. To evaluate the cytoprotective effects of the UDN glycoprotein, we measured cytotoxicity, the level of intracellular reactive oxygen species (ROS), activity of nuclear factor-kappaB (NF-kappaB), nitric oxide (NO) production, and thiobarbituric acid-reactive substances (TBARS) formation in 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated BNL CL.2 cells. In TPA-treated BNL CL.2 cells, the results showed that UDN glycoprotein has dose-dependent blocking activities against TPA-induced cytotoxicity and NF-kappaB activation. In cytotoxic-related events, UDN glycoprotein (200 microg/ml) has an inhibitory effect on intracellular ROS production, NO production, and TBARS formation, without any toxic effects in the BNL CL.2 cells. These results suggest that UDN glycoprotein has cytoprotective abilities against TPA-induced oxidative cell injury.

  19. Spectrum of mutations in RARS-T patients includes TET2 and ASXL1 mutations.

    PubMed

    Szpurka, Hadrian; Jankowska, Anna M; Makishima, Hideki; Bodo, Juraj; Bejanyan, Nelli; Hsi, Eric D; Sekeres, Mikkael A; Maciejewski, Jaroslaw P

    2010-08-01

    While a majority of patients with refractory anemia with ring sideroblasts and thrombocytosis harbor JAK2V617F and rarely MPLW515L, JAK2/MPL-negative cases constitute a diagnostic problem. 23 RARS-T cases were investigated applying immunohistochemical phospho-STAT5, sequencing and SNP-A-based karyotyping. Based on the association of TET2/ASXL1 mutations with MDS/MPN we studied molecular pattern of these genes. Two patients harbored ASXL1 and another 2 TET2 mutations. Phospho-STAT5 activation was present in one mutated TET2 and ASXL1 case. JAK2V617F/MPLW515L mutations were absent in TET2/ASXL1 mutants, indicating that similar clinical phenotype can be produced by various MPN-associated mutations and that additional unifying lesions may be present in RARS-T. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Structure of acidic pH dengue virus showing the fusogenic glycoprotein trimers.

    PubMed

    Zhang, Xinzheng; Sheng, Ju; Austin, S Kyle; Hoornweg, Tabitha E; Smit, Jolanda M; Kuhn, Richard J; Diamond, Michael S; Rossmann, Michael G

    2015-01-01

    Flaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However, the dynamic nature of the fusogenic trimer has made the determination of its structure a challenge. Here we have used Fab fragments of the neutralizing antibody DV2-E104 to stop the conformational change of dengue virus at an intermediate stage of the fusion process. Using cryo-electron microscopy, we show that in this intermediate stage, the E glycoproteins form 60 trimers that are similar to the predicted "open" fusogenic trimer. The structure of a dengue virus has been captured during the formation of fusogenic trimers. This was accomplished by binding Fab fragments of the neutralizing antibody DV2-E104 to the virus at neutral pH and then decreasing the pH to 5.5. These trimers had an "open" conformation, which is distinct from the "closed" conformation of postfusion trimers. Only two of the three E proteins within each spike are bound by a Fab molecule at domain III. Steric hindrance around the icosahedral 3-fold axes prevents binding of a Fab to the third domain III of each E protein spike. Binding of the DV2-E104 Fab fragments prevents domain III from rotating by about 130° to the postfusion orientation and thus precludes the stem region from "zipping" together the three E proteins along the domain II boundaries into the "closed" postfusion conformation, thus inhibiting fusion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Insilico modeling and molecular dynamic simulation of claudin-1 point mutations in HCV infection.

    PubMed

    Vipperla, Bhavaniprasad; Dass, J Febin Prabhu; Jayanthi, S

    2014-01-01

    Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection.

  2. Herpes Simplex Virus Membrane Proteins gE/gI and US9 Act Cooperatively To Promote Transport of Capsids and Glycoproteins from Neuron Cell Bodies into Initial Axon Segments

    PubMed Central

    Howard, Paul W.; Howard, Tiffani L.

    2013-01-01

    Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE−, gI−, or US9− mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE−/US9− double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons. PMID:23077321

  3. Germline Mutations of BRCA1 and BRCA2 in Korean Ovarian Cancer Patients: Finding Founder Mutations.

    PubMed

    Choi, Min Chul; Heo, Jin-Hyung; Jang, Ja-Hyun; Jung, Sang Geun; Park, Hyun; Joo, Won Duk; Lee, Chan; Lee, Je Ho; Lee, Jun Mo; Hwang, Yoon Young; Kim, Seung Jo

    2015-10-01

    To investigate and analyze the BRCA mutations in Korean ovarian cancer patients with or without family history and to find founder mutations in this group. One hundred two patients who underwent a staging operation for pathologically proven epithelial cancer between January 2013 and December 2014 were enrolled. Thirty-two patients declined to analyze BRCA1/2 gene alterations after genetic counseling and pedigree analysis. Lymphocyte specimens from peripheral blood were assessed for BRCA1/2 by direct sequencing. BRCA genetic test results of 70 patients were available. Eighteen BRCA1/2 mutations and 17 unclassified variations (UVs) were found. Five of the BRCA1/2 mutations and 4 of the UVs were not reported in the Breast Cancer Information Core database. One BRCA2 UV (8665_8667delGGA) was strongly suspicious to be a deleterious mutation. BRCA1/2 mutations were identified in 11 (61.1%) of 18 patients with a family history and in 7 (13.5%) of 52 patients without a family history.Candidates for founder mutations in Korean ovarian cancer patients were assessed among 39 BRCA1/2 mutations from the present study and from literature reviews. The analysis showed that 1041_1043delAGCinsT (n = 4; 10.2%) and 3746insA (n = 4; 10.2%) were possible BRCA1 founder mutations. Only one of the BRCA2 mutations (5804_5807delTTAA) was repeated twice (n = 2; 5.1%). The prevalence of BRCA1/2 mutations in Korean ovarian cancer patients irrespective of the family history was significantly higher than previously reported. Possible founder mutations in Korean ovarian cancer patients were identified.

  4. Biosynthesis and maturation of cellular membrane glycoproteins.

    PubMed

    Hunt, L A

    1979-01-01

    The biosynthesis and the processing of asparagine-linked oligosaccharides of cellular membrane glycoproteins were examined in monolayer cultures of BHK21 cells and human diploid fibroblasts after pulse- and pulse-chase labeling with [2-3H]mannose. After pronase digestion, radiolabeled glycopeptides were characterized by high-resolution gel filtration, with or without additional digestion with various exoglycosidases and endoglycosidases. Pulse-labeled glycoproteins contained a relatively homogenous population of neutral oligosaccharides (major species: Man9GlcNAc2ASN). The vast majority of these asparagine-linked oligosaccharides was smaller than the major fraction of lipid-linked oligosaccharides from the cell and was apparently devoid of terminal glucose. After pulse-chase or long labeling periods, a significant fraction of the large oligomannosyl cores was processed by removal of mannose units and addition of branch sugars (NeuNAc-Gal-GlcNAc), resulting in complex acidic structures containing three and possibly five mannoses. In addition, some of the large oligomannosyl cores were processed by the removal of only several mannoses, resulting in a mixture of neutral structures with 5-9 mannoses. This oligomannosyl core heterogeneity in both neutral and acidic oligosaccharides linked to asparagine in cellular membrane glycoproteins was analogous to the heterogeneity reported for the oligosaccharides of avian RNA tumor virus glycoproteins (Hunt LA, Wright SE, Etchison JR, Summers DF: J Virol 29:336, 1979).

  5. Amino acid mutations in Ebola virus glycoprotein of the 2014 epidemic.

    PubMed

    Giovanetti, Marta; Grifoni, Alba; Lo Presti, Alessandra; Cella, Eleonora; Montesano, Carla; Zehender, Gianguglielmo; Colizzi, Vittorio; Amicosante, Massimo; Ciccozzi, Massimo

    2015-06-01

    Zaire Ebola virus (EBOV) is an enveloped non-segmented negative strand RNA virus of 19 kb in length belonging to the family Filoviridae. The virus was isolated and identified in 1976 during the epidemic of hemorrhagic fever in Zaire. The most recent outbreak of EBOV among humans, was that occurred in the forested areas of south eastern Guinea, that began in February 2014 and is still ongoing. The recent Ebola outbreak, is affecting other countries in West Africa, in addiction to Guinea: Liberia, Nigeria, and Sierra Leone. In this article, a selective pressure analysis and homology modeling based on the G Glycoprotein (GP) sequences retrieved from public databases were used to investigate the genetic diversity and modification of antibody response in the recent outbreak of Ebola Virus. Structural and the evolutionary analysis underline the 2014 epidemic virus being under negative selective pressure does not change with respect to the old epidemic in terms of genome adaptation. © 2015 Wiley Periodicals, Inc.

  6. eIF2β is critical for eIF5-mediated GDP-dissociation inhibitor activity and translational control

    PubMed Central

    Jennings, Martin D.; Kershaw, Christopher J.; White, Christopher; Hoyle, Danielle; Richardson, Jonathan P.; Costello, Joseph L.; Donaldson, Ian J.; Zhou, Yu; Pavitt, Graham D.

    2016-01-01

    In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2β that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2β mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2β mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2β acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation. PMID:27458202

  7. eIF2β is critical for eIF5-mediated GDP-dissociation inhibitor activity and translational control.

    PubMed

    Jennings, Martin D; Kershaw, Christopher J; White, Christopher; Hoyle, Danielle; Richardson, Jonathan P; Costello, Joseph L; Donaldson, Ian J; Zhou, Yu; Pavitt, Graham D

    2016-11-16

    In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2β that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2β mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2β mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2β acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System

    PubMed Central

    Meessen-Pinard, Mathieu; Dubé, Mathieu; Day, Robert; Seidah, Nabil G.; Talbot, Pierre J.

    2015-01-01

    Human coronaviruses (HCoV) are respiratory pathogens that may be associated with the development of neurological diseases, in view of their neuroinvasive and neurotropic properties. The viral spike (S) glycoprotein is a major virulence factor for several coronavirus species, including the OC43 strain of HCoV (HCoV-OC43). In an attempt to study the role of this protein in virus spread within the central nervous system (CNS) and neurovirulence, as well as to identify amino acid residues important for such functions, we compared the sequence of the S gene found in the laboratory reference strain HCoV-OC43 ATCC VR-759 to S sequences of viruses detected in clinical isolates from the human respiratory tract. We identified one predominant mutation at amino acid 758 (from RRSR↓ G 758 to RRSR↓R 758), which introduces a putative furin-like cleavage (↓) site. Using a molecular cDNA infectious clone to generate a corresponding recombinant virus, we show for the first time that such point mutation in the HCoV-OC43 S glycoprotein creates a functional cleavage site between the S1 and S2 portions of the S protein. While the corresponding recombinant virus retained its neuroinvasive properties, this mutation led to decreased neurovirulence while potentially modifying the mode of virus spread, likely leading to a limited dissemination within the CNS. Taken together, these results are consistent with the adaptation of HCoV-OC43 to the CNS environment, resulting from the selection of quasi-species harboring mutations that lead to amino acid changes in viral genes, like the S gene in HCoV-OC43, which may contribute to a more efficient establishment of a less pathogenic but persistent CNS infection. This adaptative mechanism could potentially be associated with human encephalitis or other neurological degenerative pathologies. PMID:26545254

  9. Glucokinase gene mutations (MODY 2) in Asian Indians.

    PubMed

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is <1:1,517. This is the first study of MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  10. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  11. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  12. Meconium ileus caused by mutations in GUCY2C, encoding the CFTR-activating guanylate cyclase 2C.

    PubMed

    Romi, Hila; Cohen, Idan; Landau, Daniella; Alkrinawi, Suliman; Yerushalmi, Baruch; Hershkovitz, Reli; Newman-Heiman, Nitza; Cutting, Garry R; Ofir, Rivka; Sivan, Sara; Birk, Ohad S

    2012-05-04

    Meconium ileus, intestinal obstruction in the newborn, is caused in most cases by CFTR mutations modulated by yet-unidentified modifier genes. We now show that in two unrelated consanguineous Bedouin kindreds, an autosomal-recessive phenotype of meconium ileus that is not associated with cystic fibrosis (CF) is caused by different homozygous mutations in GUCY2C, leading to a dramatic reduction or fully abrogating the enzymatic activity of the encoded guanlyl cyclase 2C. GUCY2C is a transmembrane receptor whose extracellular domain is activated by either the endogenous ligands, guanylin and related peptide uroguanylin, or by an external ligand, Escherichia coli (E. coli) heat-stable enterotoxin STa. GUCY2C is expressed in the human intestine, and the encoded protein activates the CFTR protein through local generation of cGMP. Thus, GUCY2C is a likely candidate modifier of the meconium ileus phenotype in CF. Because GUCY2C heterozygous and homozygous mutant mice are resistant to E. coli STa enterotoxin-induced diarrhea, it is plausible that GUCY2C mutations in the desert-dwelling Bedouin kindred are of selective advantage. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers.

    PubMed

    Melchior, Donald L; Sharom, Frances J; Evers, Raymond; Wright, George E; Chu, Joseph W K; Wright, Stephen E; Chu, Xiaoyan; Yabut, Jocelyn

    2012-03-01

    P-Glycoprotein (ABCB1, MDR1) is a multidrug efflux pump that is a member of the ATP-binding cassette (ABC) superfamily. Many drugs in common clinical use are either substrates or inhibitors of this transporter. Quantitative details of P-glycoprotein inhibition by pharmaceutical agents are essential for assessment of their pharmacokinetic behavior and prevention of negative patient reactions. Cell-based systems have been widely used for determination of drug interactions with P-glycoprotein, but they suffer from several disadvantages, and results are often widely variable between laboratories. We aimed to demonstrate that a novel liposomal system employing contemporary biochemical methodologies could measure the ability of clinically used drugs to inhibit the P-glycoprotein pump. To accomplish this we compared results with those of cell-based approaches. Purified transport-competent hamster Abcb1a P-glycoprotein was reconstituted into a unilamellar liposomal system, Fluorosome-trans-pgp, whose aqueous interior contains fluorescent drug sensors. This provides a well-defined system for measuring P-glycoprotein transport inhibition by test drugs in real time using rapid fluorescence-based technology. Inhibition of ATP-driven transport by Fluorosome-trans-pgp employed a panel of 46 representative drugs. Resulting IC50 values correlated well (r2=0.80) with Kd values for drug binding to purified P-glycoprotein. They also showed a similar trend to transport inhibition data obtained using LLC-MDR1 cell monolayers. Fluorosome-trans-pgp IC50 values were in agreement with published results of digoxin drug-drug interaction studies in humans. This novel approach using a liposomal system and fluorescence-based technology is shown to be suitable to study whether marketed drugs and drug candidates are P-glycoprotein inhibitors. The assay is rapid, allowing a 7-point IC50 determination in <6 min, and requires minimal quantities of test drug. The method is amenable to robotics and

  14. Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers

    PubMed Central

    Melchior, Donald L.; Sharom, Frances J.; Evers, Raymond; Wright, George E.; Chu, Joseph W.K.; Wright, Stephen E.; Chu, Xiaoyan; Yabut, Jocelyn

    2012-01-01

    Introduction P-Glycoprotein (ABCB1, MDR1) is a multidrug efflux pump that is a member of the ATP-binding cassette (ABC) superfamily. Many drugs in common clinical use are either substrates or inhibitors of this transporter. Quantitative details of P-glycoprotein inhibition by pharmaceutical agents are essential for assessment of their pharmacokinetic behavior and prevention of negative patient reactions. Cell-based systems have been widely used for determination of drug interactions with P-glycoprotein, but they suffer from several disadvantages, and results are often widely variable between laboratories. We aimed to demonstrate that a novel liposomal system employing contemporary biochemical methodologies could measure the ability of clinically used drugs to inhibit the P-glycoprotein pump. To accomplish this we compared results with those of cell-based approaches. Methods Purified transport-competent hamster Abcb1a P-glycoprotein was reconstituted into a unilamellar liposomal system, Fluorosome-trans-pgp, whose aqueous interior contains fluorescent drug sensors. This provides a well-defined system for measuring P-glycoprotein transport inhibition by test drugs in real time using rapid fluorescence-based technology. Results Inhibition of ATP-driven transport by Fluorosome-trans-pgp employed a panel of 46 representative drugs. Resulting IC50 values correlated well (r2 = 0.80) with Kd values for drug binding to purified P-glycoprotein. They also showed a similar trend to transport inhibition data obtained using LLC-MDR1 cell monolayers. Fluorosome-trans-pgp IC50 values were in agreement with published results of digoxin drug-drug interaction studies in humans. Discussion This novel approach using a liposomal system and fluorescence-based technology is shown to be suitable to study whether marketed drugs and drug candidates are P-glycoprotein inhibitors. The assay is rapid, allowing a 7-point IC50 determination in <6 minutes, and requires minimal quantities of test

  15. Recurrent and founder mutations in the PMS2 gene

    PubMed Central

    Tomsic, Jerneja; Senter, Leigha; Liyanarachchi, Sandya; Clendenning, Mark; Vaughn, Cecily P.; Jenkins, Mark A.; Hopper, John L.; Young, Joanne; Samowitz, Wade; de la Chapelle, Albert

    2012-01-01

    Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However some mutations are observed repeatedly, across individuals not known to be related, due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations, one (c.903G>T) a probable founder, and one (c.1A>G) where founder mutation status could not be evaluated. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2. PMID:22577899

  16. Recurrent and founder mutations in the PMS2 gene.

    PubMed

    Tomsic, J; Senter, L; Liyanarachchi, S; Clendenning, M; Vaughn, C P; Jenkins, M A; Hopper, J L; Young, J; Samowitz, W; de la Chapelle, A

    2013-03-01

    Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2. © 2012 John Wiley & Sons A/S.

  17. Preclinical Evaluation of Vemurafenib as Therapy for BRAFV600E Mutated Sarcomas.

    PubMed

    Gouravan, Sarina; Meza-Zepeda, Leonardo A; Myklebost, Ola; Stratford, Eva W; Munthe, Else

    2018-03-23

    The BRAF V600E mutation, which in melanoma is targetable with vemurafenib, is also found in sarcomas and we here evaluate the therapeutic potential in sarcoma cell lines. Four sarcoma cell lines harboring the BRAFV600E mutation, representing liposarcomas (SA-4 and SW872), Ewing sarcoma (A673) and atypical synovial sarcoma (SW982), were treated with vemurafenib and the effects on cell growth, apoptosis, cell cycle progression and cell signaling were determined. Vemurafenib induced a strong cytostatic effect in SA-4 cells, mainly due to cell cycle arrest, whereas only moderate levels of apoptosis were observed. However, a high dose was required compared to BRAF V600E mutated melanoma cells, and removal of vemurafenib demonstrated that the continuous presence of drug was required for sustained growth inhibition. A limited growth inhibition was observed in the other three cell lines. Protein analyses demonstrated reduced phosphorylation of ERK during treatment with vemurafenib in all the four sarcoma cell lines confirming that the MAPK pathway is active in these cell lines, and that the pathway can be inhibited by vemurafenib, but also that these cells can proliferate despite this. These findings indicate that vemurafenib alone would not be an efficient therapy against BRAF V600E mutated sarcomas. However, further investigations of combination with other drugs are warranted.

  18. A Recurrent Mutation in PARK2 Is Associated with Familial Lung Cancer

    PubMed Central

    Xiong, Donghai; Wang, Yian; Kupert, Elena; Simpson, Claire; Pinney, Susan M.; Gaba, Colette R.; Mandal, Diptasri; Schwartz, Ann G.; Yang, Ping; de Andrade, Mariza; Pikielny, Claudio; Byun, Jinyoung; Li, Yafang; Stambolian, Dwight; Spitz, Margaret R.; Liu, Yanhong; Amos, Christopher I.; Bailey-Wilson, Joan E.; Anderson, Marshall; You, Ming

    2015-01-01

    PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation. PMID:25640678

  19. Novel GABRG2 mutations cause familial febrile seizures.

    PubMed

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima; Baulac, Stéphanie

    2015-12-01

    To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism.

  20. Selective control of oligosaccharide transfer efficiency for the N-glycosylation sequon by a point mutation in oligosaccharyltransferase.

    PubMed

    Igura, Mayumi; Kohda, Daisuke

    2011-04-15

    Asn-linked glycosylation is the most ubiquitous posttranslational protein modification in eukaryotes and archaea, and in some eubacteria. Oligosaccharyltransferase (OST) catalyzes the transfer of preassembled oligosaccharides on lipid carriers onto asparagine residues in polypeptide chains. Inefficient oligosaccharide transfer results in glycoprotein heterogeneity, which is particularly bothersome in pharmaceutical glycoprotein production. Amino acid variation at the X position of the Asn-X-Ser/Thr sequon is known to modulate the glycosylation efficiency. The best amino acid at X is valine, for an archaeal Pyrococcus furiosus OST. We performed a systematic alanine mutagenesis study of the archaeal OST to identify the essential and dispensable amino acid residues in the three catalytic motifs. We then investigated the effects of the dispensable mutations on the amino acid preference in the N-glycosylation sequon. One residue position was found to selectively affect the amino acid preference at the X position. This residue is located within the recently identified DXXKXXX(M/I) motif, suggesting the involvement of this motif in N-glycosylation sequon recognition. In applications, mutations at this position may facilitate the design of OST variants adapted to particular N-glycosylation sites to reduce the heterogeneity of glycan occupancy. In fact, a mutation at this position led to 9-fold higher activity relative to the wild-type enzyme, toward a peptide containing arginine at X in place of valine. This mutational approach is potentially applicable to eukaryotic and eubacterial OSTs for the production of homogenous glycoproteins in engineered mammalian and Escherichia coli cells.

  1. Selective Control of Oligosaccharide Transfer Efficiency for the N-Glycosylation Sequon by a Point Mutation in Oligosaccharyltransferase*

    PubMed Central

    Igura, Mayumi; Kohda, Daisuke

    2011-01-01

    Asn-linked glycosylation is the most ubiquitous posttranslational protein modification in eukaryotes and archaea, and in some eubacteria. Oligosaccharyltransferase (OST) catalyzes the transfer of preassembled oligosaccharides on lipid carriers onto asparagine residues in polypeptide chains. Inefficient oligosaccharide transfer results in glycoprotein heterogeneity, which is particularly bothersome in pharmaceutical glycoprotein production. Amino acid variation at the X position of the Asn-X-Ser/Thr sequon is known to modulate the glycosylation efficiency. The best amino acid at X is valine, for an archaeal Pyrococcus furiosus OST. We performed a systematic alanine mutagenesis study of the archaeal OST to identify the essential and dispensable amino acid residues in the three catalytic motifs. We then investigated the effects of the dispensable mutations on the amino acid preference in the N-glycosylation sequon. One residue position was found to selectively affect the amino acid preference at the X position. This residue is located within the recently identified DXXKXXX(M/I) motif, suggesting the involvement of this motif in N-glycosylation sequon recognition. In applications, mutations at this position may facilitate the design of OST variants adapted to particular N-glycosylation sites to reduce the heterogeneity of glycan occupancy. In fact, a mutation at this position led to 9-fold higher activity relative to the wild-type enzyme, toward a peptide containing arginine at X in place of valine. This mutational approach is potentially applicable to eukaryotic and eubacterial OSTs for the production of homogenous glycoproteins in engineered mammalian and Escherichia coli cells. PMID:21357684

  2. Comparison of Immunohistochemistry and Direct Sanger Sequencing for Detection of the BRAFV600E Mutation in Thyroid Neoplasm

    PubMed Central

    Oh, Hye-Seon; Kwon, Hyemi; Park, Suyeon; Kim, Mijin; Jeon, Min Ji; Kim, Tae Yong; Shong, Young Kee; Kim, Won Bae; Choi, Jene

    2018-01-01

    Background The BRAFV600E mutation is the most common genetic alteration identified in papillary thyroid carcinoma (PTC). Because of its costs effectiveness and sensitivity, direct Sanger sequencing has several limitations. The aim of this study was to evaluate the efficiency of immunohistochemistry (IHC) as an alternative method to detect the BRAFV600E mutation in preoperative and postoperative tissue samples. Methods We evaluated 71 patients who underwent thyroid surgery with the result of direct sequencing of the BRAFV600E mutation. IHC staining of the BRAFV600E mutation was performed in 49 preoperative and 23 postoperative thyroid specimens. Results Sixty-two patients (87.3%) had PTC, and of these, BRAFV600E was confirmed by direct sequencing in 57 patients (91.9%). In 23 postoperative tissue samples, the BRAFV600E mutation was detected in 16 samples (70%) by direct sequencing and 18 samples (78%) by IHC. In 24 fine needle aspiration (FNA) samples, BRAFV600E was detected in 18 samples (75%) by direct sequencing and 16 samples (67%) by IHC. In 25 core needle biopsy (CNB) samples, the BRAFV600E mutation was detected in 15 samples (60%) by direct sequencing and 16 samples (64%) by IHC. The sensitivity and specificity of IHC for detecting the BRAFV600E mutation were 77.8% and 66.7% in FNA samples and 99.3% and 80.0% in CNB samples. Conclusion IHC could be an alternative method to direct Sanger sequencing for BRAFV600E mutation detection both in postoperative and preoperative samples. However, application of IHC to detect the BRAFV600E mutation in FNA samples is of limited value compared with direct sequencing. PMID:29388401

  3. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate

    PubMed Central

    Dang, Lenny; White, David W.; Gross, Stefan; Bennett, Bryson D.; Bittinger, Mark A.; Driggers, Edward M.; Fantin, Valeria R.; Jang, Hyun Gyung; Jin, Shengfang; Keenan, Marie C.; Marks, Kevin M.; Prins, Robert M.; Ward, Patrick S.; Yen, Katharine E.; Liau, Linda M.; Rabinowitz, Joshua D.; Cantley, Lewis C.; Thompson, Craig B.; Vander Heiden, Matthew G.; Su, Shinsan M.

    2009-01-01

    Summary Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site resulting in loss of the enzyme’s ability to catalyze conversion of isocitrate to α-ketoglutarate. However, only a single copy of the gene is mutated in tumors, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when R132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert α-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumors in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harboring IDH1 mutations, we find dramatically elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and suggest that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas. PMID:19935646

  4. Naturally Occurring Frameshift Mutations in the tvb Receptor Gene Are Responsible for Decreased Susceptibility of Chicken to Infection with Avian Leukosis Virus Subgroups B, D, and E.

    PubMed

    Li, Xinjian; Chen, Weiguo; Zhang, Huanmin; Li, Aijun; Shu, Dingming; Li, Hongxing; Dai, Zhenkai; Yan, Yiming; Zhang, Xinheng; Lin, Wencheng; Ma, Jingyun; Xie, Qingmei

    2018-04-15

    The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution. IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced

  5. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected].

    PubMed

    Dong, Ningzheng; Zhou, Tiantian; Zhang, Yue; Liu, Meng; Li, Hui; Huang, Xiaoyi; Liu, Zhenzhen; Wu, Yi; Fukuda, Koichi; Qin, Jun; Wu, Qingyu

    2014-06-20

    Corin is a membrane-bound serine protease that acts as the atrial natriuretic peptide (ANP) convertase in the heart. Recent studies show that corin also activates ANP in the pregnant uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Two CORIN gene mutations, K317E and S472G, were identified in preeclamptic patients and shown to have reduced activity in vitro. In this study, we carried out molecular modeling and biochemical experiments to understand how these mutations impair corin function. By molecular modeling, the mutation K317E was predicted to alter corin LDL receptor-2 module conformation. Western blot analysis of K317E mutant in HEK293 cells showed that the mutation did not block corin expression on the cell surface but inhibited corin zymogen activation. In contrast, the mutation S472G was predicted to abolish a β-sheet critical for corin frizzled-2 module structure. In Western blot analysis and flow cytometry, S472G mutant was not detected on the cell surface in transfected HEK293 cells. By immunostaining, the S472G mutant was found in the ER, indicating that the mutation S472G disrupted the β-sheet, causing corin misfolding and ER retention. Thus, these results show that mutations in the CORIN gene may impair corin function by entirely different mechanisms. Together, our data provide important insights into the molecular basis underlying corin mutations that may contribute to preeclampsia in patients. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Selection of target mutation in rat gastrointestinal tract E. coli by minute dosage of enrofloxacin.

    PubMed

    Lin, Dachuan; Chen, Kaichao; Li, Ruichao; Liu, Lizhang; Guo, Jiubiao; Yao, Wen; Chen, Sheng

    2014-01-01

    It has been suggested that bacterial resistance is selected within a mutation selection window of antibiotics. More recent studies showed that even extremely low concentration of antibiotic could select resistant bacteria in vitro. Yet little is known about the exact antibiotic concentration range that can effectively select for resistant organisms in animal gastrointestinal (GI) tract. In this study, the effect of different dosages of enrofloxacin on resistance and mutation development in rat GI tract E. coli was investigated by determining the number of resistant E. coli recoverable from rat fecal samples. Our data showed that high dose antibiotic treatment could effectively eliminate E. coli with single gyrA mutation in the early course of treatment, yet the eradication effects diminished upon prolonged treatment. Therapeutic and sub-therapeutic dose (1/10 and 1/100 of therapeutic doses) of enrofloxacin could effectively select for mutation in GI tract E. coli at the later course of enrofloxacin treatment and during the cessation periods. Surprisingly, very low dose of enrofloxacin (1/1000 therapeutic dose) could also select for mutation in GI tract E. coli at the later course of enrofloxacin treatment, only with slightly lower efficiency. No enrofloxacin-resistant E. coli could be selected at all test levels of enrofloxacin during long term treatment and the strength of antibiotic treatment does not alter the overall level of E. coli in rat GI tract. This study demonstrated that long term antibiotic treatment seems to be the major trigger for the development of target mutations in GI tract E. coli, which provided insight into the rational use of antibiotics in animal husbandry.

  7. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase

    PubMed Central

    Chiu, Wen-Chin; Chiou, Tzeon-Jye; Chung, Meng-Ju; Chiang, An-Na

    2016-01-01

    Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy. PMID:27579889

  8. Hearing loss caused by a P2RX2 mutation identified in a MELAS family with a coexisting mitochondrial 3243AG mutation

    PubMed Central

    Moteki, Hideaki; Azaiez, Hela; Booth, Kevin T; Hattori, Mitsuru; Sato, Ai; Sato, Yoshihiko; Motobayashi, Mitsuo; Sloan, Christina M; Kolbe, Diana L; Shearer, A Eliot; Smith, Richard J H; Usami, Shin-ichi

    2015-01-01

    Objective We present a family with a mitochondrial DNA 3243A>G mutation resulting in MELAS, of which some members have hearing loss where a novel mutation in the P2RX2 gene was identified. Methods One hundred ninety-four (194) Japanese subjects from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known non-syndromic hearing loss genes were performed to identify the genetic causes of hearing loss. Results A novel mutation in the P2RX2 gene, that corresponded to c.601G>A (p.Asp201Tyr) was identified. Two patients carried the mutation, and had severe SNHL, while other members with MELAS (who did not carry the P2RX2 mutation) had normal hearing. Conclusion This is the first case report of a diagnosis of hearing loss caused by P2RX2 mutation in patients with MELAS. A potential explanation is that decreasing ATP production due to MELAS with mitochondrial 3243A>G mutation might suppress activation of P2X2 receptors. We also suggest that hearing loss caused by the P2RX2 mutation might be influenced by the decrease in ATP production due to MELAS, and that nuclear genetic factors may play a modifying role in mitochondrial dysfunction. PMID:25788561

  9. The Role of Conserved N-Linked Glycans on Ebola Virus Glycoprotein 2.

    PubMed

    Lennemann, Nicholas J; Walkner, Madeline; Berkebile, Abigail R; Patel, Neil; Maury, Wendy

    2015-10-01

    N-linked glycosylation is a common posttranslational modification found on viral glycoproteins (GPs) and involved in promoting expression, cellular attachment, protection from proteases, and antibody evasion. The GP subunit GP2 of filoviruses contains 2 completely conserved N-linked glycosylation sites (NGSs) at N563 and N618, suggesting that they have been maintained through selective pressures. We assessed mutants lacking these glycans for expression and function to understand the role of these sites during Ebola virus entry. Elimination of either GP2 glycan individually had a modest effect on GP expression and no impact on antibody neutralization of vesicular stomatitis virus pseudotyped with Ebola virus GP. However, loss of the N563 glycan enhanced entry by 2-fold and eliminated GP detection by a well-characterized monoclonal antibody KZ52. Loss of both sites dramatically decreased GP expression and abolished entry. Surprisingly, a GP that retained a single NGS at N563, eliminating the remaining 16 NGSs from GP1 and GP2, had detectable expression, a modest increase in entry, and pronounced sensitivity to antibody neutralization. Our findings support the importance of the GP2 glycans in GP expression/structure, transduction efficiency, and antibody neutralization, particularly when N-linked glycans are also removed from GP1. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The effect of charge-introduction mutations on E. coli thioredoxin stability.

    PubMed

    Perez-Jimenez, Raul; Godoy-Ruiz, Raquel; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2005-04-01

    Technological applications of proteins are often hampered by their low-stability and, consequently, the development of procedures for protein stabilization is of considerable biotechnological interest. Here, we use simple electrostatics to determine positions in E. coli thioredoxin at which mutations that introduce new charged residues are expected to lead to stability enhancement. We also obtain the corresponding mutants and characterize their stability using differential scanning calorimetry. The results are interpreted in terms of the accessibility in the native structure of the mutated residues and the potential effect of the mutations on the residual structure of the denatured state.

  11. Tromantadine inhibits HSV-1 induced syncytia formation and viral glycoprotein processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ickes, D.E.

    1989-01-01

    Tromantadine inhibits a late event in Herpes Simplex Virus Type 1 (HSV-1) replication, visualized by the inhibition of both the size and number of syncytia. Tromantadine can be added at any time between 1 and 9 h post infection with complete inhibition of syncytia formation. Glycan synthesis of the viral glycoproteins, important for syncytia formation, is incomplete due to tromantadine treatment. Tromantadine does not inhibit the initiation of glycosylation, since viral glycoproteins, gX{sub t}, synthesized in the presence of tromantadine still incorporate {sup 3}H-glucosamine. Tromantadine does not inhibit the transport of t e viral glycoproteins to the cell surface, sincemore » glycoproteins B, C, and D are expressed, as demonstrated by immunofluorescence. Tromantadine inhibition of HSV-1 glycoprotein processing is demonstrated by an increase in mobility of the radioimmunoprecipitated gX{sub t}, on SDS-PAGE. The gX{sub t} of KOS, a non-syncytial strain of HSV-1, had a similar increase in mobility, suggesting that the block in glycoprotein processing is a general effect of tromantadine treatment. Fucose, which is incorporated into oligosaccharides in the medial Golgi, is incorporated into gX{sub t}, indicating that the tromantadine block in glycoprotein processing occurs after this step. Lectin binding studies and SDS-PAGE analysis of gC processed in the presence of tromantadine, gC{sub t}, indicates that it has terminal galactose residues in both N- and O-linked glycans (binds Peanut and Ricin Agglutinins, respectively). The inhibition of sialylation of N-linked glycans by tromantadine was indicated by the extent of the increase in SDS-PAGE mobility of the G protein from Vesicular Stomatitis Virus. O-glycanase digestion and SDS-PAGE analysis of gC{sub t} indicate that the O-linked disaccharide NAcGal-Galactose is present.« less

  12. Novel USH2A mutations in Japanese Usher syndrome type 2 patients: marked differences in the mutation spectrum between the Japanese and other populations.

    PubMed

    Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Usami, Shin-Ichi; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei

    2011-07-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A. In a recent mutation screening of USH2A in Japanese USH2 patients, we identified 11 novel mutations in 10 patients and found the possible frequent mutation c.8559-2A>G in 4 of 10 patients. To obtain a more precise mutation spectrum, we analyzed further nine Japanese patients in this study. We identified nine mutations, of which eight were novel. This result indicates that the mutation spectrum for USH2A among Japanese patients largely differs from Caucasian, Jewish and Palestinian patients. Meanwhile, we did not find the c.8559-2A>G in this study. Haplotype analysis of the c.8559-2G (mutated) alleles using 23 single nucleotide polymorphisms surrounding the mutation revealed an identical haplotype pattern of at least 635 kb in length, strongly suggesting that the mutation originated from a common ancestor. The fact that all patients carrying c.8559-2A>G came from western Japan suggests that the mutation is mainly distributed in that area; indeed, most of the patients involved in this study came from eastern Japan, which contributed to the absence of c.8559-2A>G.

  13. An automated method measures variability in P-glycoprotein and ABCG2 densities across brain regions and brain matter.

    PubMed

    Kannan, Pavitra; Schain, Martin; Kretzschmar, Warren W; Weidner, Lora; Mitsios, Nicholas; Gulyás, Balázs; Blom, Hans; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D; Mulder, Jan

    2017-06-01

    Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.

  14. Escherichia coli as a glycoprotein production host: recent developments and challenges.

    PubMed

    Jaffé, Stephen R P; Strutton, Benjamin; Levarski, Zdenko; Pandhal, Jagroop; Wright, Phillip C

    2014-12-01

    Chinese Hamster Ovary cells are the most popular host expression system for the large-scale production of human therapeutic glycoproteins, but, the race to engineer Escherichia coli to perform glycosylation is gathering pace. The successful functional transfer of an N-glycosylation pathway from Campylobacter jejuni to Escherichia coli in 2002 can be considered as the crucial first engineering step. Here, we discuss the recent advancements in the field of N-glycosylation of recombinant therapeutic proteins in E. coli cells, from the manipulation of glycan composition, to the improvement in glycosylation efficiency, along with the challenges that remain before E. coli can be available as an industry host cell for economically viable glycoprotein production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Combined "Infiltrating Astrocytoma/Pleomorphic Xanthoastrocytoma" Harboring IDH1 R132H and BRAF V600E Mutations.

    PubMed

    Yamada, Seiji; Kipp, Benjamin R; Voss, Jesse S; Giannini, Caterina; Raghunathan, Aditya

    2016-02-01

    Pleomorphic xanthoastrocytoma (PXA) has rarely been reported in combination with infiltrating glioma, historically interpreted as a "collision tumor." Isocitrate dehydrogenase 1 (IDH1) and BRAF V600E mutations are usually not concurrent. The former is typical of adult infiltrating gliomas, and the latter is identified in a variety of primary central nervous system neoplasms, including PXA, ganglioglioma, pilocytic astrocytoma, and rarely infiltrating gliomas. We report the case of a 56-year-old man presenting with seizures and headaches. Magnetic resonance imaging revealed a large right temporal lobe mass with low T1 and high T2/FLAIR signal and a discrete contrast-enhancing focus. Histologically, the tumor showed 2 distinct components: an infiltrating astrocytoma harboring 5 mitoses/10 high-power fields and a relatively circumscribed focus, resembling PXA with, at most, 2 mitoses/10 high-power fields. No microvascular proliferation or necrosis was present in either component. The infiltrating astrocytoma component contained numerous axons, whereas the PXA-like component had sparse axons, as demonstrated by the neurofilament immunostain. Both components were positive for the mutant IDH1 R132H and showed loss of ATRX expression, whereas BRAF V600E was restricted to the PXA-like component. On sequencing of the 2 components separately after microdissection, both showed identical IDH1 R132H and TP53 R273C point mutations, whereas the BRAF V600E mutation was limited to the PXA-like component. These findings are consistent with clonal expansion of a morphologically distinct focus, harboring a private BRAF V600E mutation within an IDH1-mutant glioma. Intratumoral heterogeneity and clonal evolution, as seems to have occurred here, suggest reevaluation of "collision tumors" as a concept.

  16. PMS2 monoallelic mutation carriers: the known unknown

    PubMed Central

    Goodenberger, McKinsey L.; Thomas, Brittany C.; Riegert-Johnson, Douglas; Boland, C. Richard; Plon, Sharon E.; Clendenning, Mark; Ko Win, Aung; Senter, Leigha; Lipkin, Steven M.; Stadler, Zsofia K.; Macrae, Finlay A.; Lynch, Henry T.; Weitzel, Jeffrey N.; de la Chapelle, Albert; Syngal, Sapna; Lynch, Patrick; Parry, Susan; Jenkins, Mark A.; Gallinger, Steven; Holter, Spring; Aronson, Melyssa; Newcomb, Polly A.; Burnett, Terrilea; Le Marchand, Loïc; Pichurin, Pavel; Hampel, Heather; Terdiman, Jonathan P.; Lu, Karen H.; Thibodeau, Stephen; Lindor, Noralane M.

    2016-01-01

    Germline mutations in MLH1, MSH2, MSH6 and PMS2 have been shown to cause Lynch syndrome. The penetrance for cancer and tumor spectrum has been repeatedly studied and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared to the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age of onset and frequency of colonic screening. Published reports of PMS2 germline mutations were combined with unpublished cases from the authors’ research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with CRC were diagnosed under age 30 and each of these tumors presented on the left-side of the colon. As it is currently unknown what causes the early-onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the documented reduced penetrance. PMID:25856668

  17. Novel GABRG2 mutations cause familial febrile seizures

    PubMed Central

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  18. The mutation profile of JAK2 and CALR in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms

    PubMed Central

    2014-01-01

    Mutations in JAK2, MPL and CALR are highly relevant to the Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs). We performed high resolution melting analysis and Sanger sequencing together with T-A cloning to elucidate the unique mutation profile of these genes, in Chinese patients with MPNs. Peripheral blood DNA samples were obtained from 80 patients with polycythemia vera (PV), 80 patients with essential thrombocytosis (ET) and 50 patients with primary myelofibrosis (PMF). Ten PV patients were identified with diverse JAK2 exon 12 mutations. Five novel JAK2 Exon 12 mutation patterns (M532V/E543G, N533D, M535I/H538Y/K549I, E543G and D544N) were described. JAK2 V617F was detected in 140 samples (66 PV, 45 ET and 29 PMF). JAK2 Exon 12 mutations were prevalent (13%) and variable in the Chinese patients. Compared with PV patients with JAK2 V617F mutations, PV patients with JAK2 exon 12 mutations had an earlier median onset of disease (P = 0.0013). MPL W515L/K mutations were discerned in 4 ET and 3 PMF patients. Two kinds of CALR mutation, c. 1179_1230del and c. 1234_1235insTTGTC were detected in 20 ET and 16 PMF patients. A novel CALR mutation pattern (c. 1173_1223del/c. 1179_1230del) was identified in 2 PMF samples. In addition, 17 scattered point mutations in CALR c.1153 to c.1255 were also detected in 13 cases with CALR frame-shifting variations and 2 cases without CALR frame-shifting variations. Female patients showed a predisposition to CALR mutations (P = 0.0035). Chinese Ph-negative MPN patients have a unique mutation landscape in the common molecular markers of MPN diagnosis. Validation of the molecular diagnostic pipeline should be emphasized since there is a considerable ethnical diversity in the molecular profiles of Ph-negative MPNs. PMID:25023898

  19. Congenital heart defect causing mutation in Nkx2.5 displays in vivo functional deficit.

    PubMed

    Zakariyah, Abeer F; Rajgara, Rashida F; Veinot, John P; Skerjanc, Ilona S; Burgon, Patrick G

    2017-04-01

    The Nkx2.5 gene encodes a transcription factor that plays a critical role in heart development. In humans, heterozygous mutations in NKX2.5 result in congenital heart defects (CHDs). However, the molecular mechanisms by which these mutations cause the disease remain unknown. NKX2.5-R142C is a mutation that was reported to be associated with atrial septal defect (ASD) and atrioventricular (AV) block in 13-patients from one family. The R142C mutation is located within both the DNA-binding domain and the nuclear localization sequence of NKX2.5 protein. The pathogenesis of CHDs in humans with R142C point mutation is not well understood. To examine the functional deficit associated with this mutation in vivo, we generated and characterized a knock-in mouse that harbours the human mutation R142C. Systematic structural and functional examination of the embryonic, newborn, and adult mice revealed that the homozygous embryos Nkx2.5 R141C/R141C are developmentally arrested around E10.5 with delayed heart morphogenesis and downregulation of Nkx2.5 target genes, Anf, Mlc2v, Actc1 and Cx40. Histological examination of Nkx2.5 R141C/+ newborn hearts showed that 36% displayed ASD, with at least 80% 0f adult heterozygotes displaying a septal defect. Moreover, heterozygous Nkx2.5 R141C/+ newborn mice have downregulation of ion channel genes with 11/12 adult mice manifesting a prolonged PR interval that is indicative of 1st degree AV block. Collectively, the present study demonstrates that mice with the R141C point mutation in the Nkx2.5 allele phenocopies humans with the NKX2.5 R142C point mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications.

    PubMed

    Zhu, Rui; Song, Ehwang; Hussein, Ahmed; Kobeissy, Firas H; Mechref, Yehia

    2017-01-01

    Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.

  1. Association of PKD2 (polycystin 2) mutations with left-right laterality defects.

    PubMed

    Bataille, Stanislas; Demoulin, Nathalie; Devuyst, Olivier; Audrézet, Marie-Pierre; Dahan, Karin; Godin, Michel; Fontès, Michel; Pirson, Yves; Burtey, Stéphane

    2011-09-01

    Mutations in the PKD1 (polycystin 1) and PKD2 (polycystin 2) genes cause autosomal dominant polycystic kidney disease (ADPKD). Most Pkd2-null mouse embryos present with left-right laterality defects. For the first time, we report the association of ADPKD resulting from a mutation in PKD2 and left-right asymmetry defects. PKD1 and PKD2 were screened for mutations or large genomic rearrangements in 3 unrelated patients with ADPKD presenting with laterality defects: dextrocardia in one and situs inversus totalis in 2 others. A large gene deletion, a single-exon duplication, and an in-frame duplication respectively, were found in the 3 patients. These polymorphisms were found in all tested relatives with ADPKD, but were absent in unaffected related individuals. No left-right anomalies were found in other members of the 3 families. A possible association between heterotaxia and a PKD2 mutation in our 3 patients is suggested by: (1) the existence of laterality defects in Pkd2-null mouse and zebrafish models and (2) detection of a pathogenic PKD2 mutation in the 3 probands, although PKD2 mutations account for only 15% of ADPKD families. The presence of left-right laterality defects should be systematically screened in larger cohorts of patients with ADPKD harboring PKD2 mutations. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Germline mutation of CHEK2 in neurofibromatosis 1 and 2: Two case reports.

    PubMed

    Li, Qiang; Zhao, Feilong; Ju, Yan

    2018-06-01

    Neurofibromatosis, including type 1 and type 2, is inherited dominant disease that causes serious consequences. The genetic mechanism of these diseases has been described, but germline mutation of checkpoint 2 kinase gene, together with other DNA repair related genes, has not been fully elucidated in the context of neurofibromatosis. In this article, we reported identical germline mutation of CHEK2 gene (p.R180C) in a 7-year-old Tibetan boy with NF1, and in a 12-year-old Chinese girl with NF2. Neurofibromatosis 1 and 2 with CHECK2 gene germline mutation. Both patients underwent operation to obtain tumor tissue, and peripheral blood of their family was tested. Identical germline mutation of CHEK2 gene (p.R180C) was detected in both patients, and germline mutations of POLE, MUTYH and ATR were also detected. This is the first article to describe CHEK2 mutation in both NF1 and NF2. This article highlights a possible role of CHEK2, in association with other germline genetic mutations, in tumorigenesis of NF1 and NF2.

  3. Effects of oestrogens and anti-oestrogens on normal breast tissue from women bearing BRCA1 and BRCA2 mutations

    PubMed Central

    Bramley, M; Clarke, R B; Howell, A; Evans, D G R; Armer, T; Baildam, A D; Anderson, E

    2006-01-01

    There is considerable interest in whether anti-oestrogens can be used to prevent breast cancer in women bearing mutations in the BRCA1 and BRCA2 genes. The effects of oestradiol (E2), tamoxifen (TAM) and fulvestrant (FUL) on proliferation and steroid receptor expression were assessed in normal breast epithelium taken from women at varying risks of breast cancer and implanted into athymic nude mice, which were treated with E2 in the presence and absence of TAM or FUL. Tissue samples were taken at various time points thereafter for assessment of proliferative activity and expression of oestrogen and progesterone receptors (ERα and PgR) by immunohistochemistry. Oestradiol increased proliferation in the breast epithelium from women carrying mutations in the BRCA1/2 genes, those otherwise at increased risk and those at population risk of breast cancer. This increase was reduced by both TAM and FUL in all risk groups. In the absence of E2, PgR expression was reduced in all risk groups but significantly more so in the BRCA-mutated groups. Subsequent E2 treatment caused a rapid, complete induction of PgR expression in the population-risk group but not in the high-risk or BRCA-mutated groups in which PgR induction was significantly delayed. These data suggest that the mechanisms by which E2 induces breast epithelial PgR expression are impaired in BRCA1/2 mutation carriers, whereas those regulating proliferation remain intact. We conclude that early anti-oestrogen treatment should prevent breast cancer in very high-risk women. PMID:16538216

  4. JAK and MPL mutations in myeloid malignancies.

    PubMed

    Tefferi, Ayalew

    2008-03-01

    The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.

  5. Different CHEK2 germline mutations are associated with distinct immunophenotypic molecular subtypes of breast cancer.

    PubMed

    Domagala, Pawel; Wokolorczyk, Dominika; Cybulski, Cezary; Huzarski, Tomasz; Lubinski, Jan; Domagala, Wenancjusz

    2012-04-01

    Germline mutations in BRCA1 were already linked to basal-like subtype of immunophenotypic molecular classification of breast cancer (BC). However, it is not known whether mutations in other BC susceptibility genes are associated with molecular subtypes of this cancer. We tested the hypothesis that distinct mutations in another BC susceptibility gene involved in DNA repair, i.e., CHEK2 may be associated with particular immunophenotypic molecular subtypes of this cancer. Two groups of patients: 1255 with BCs and 5496 healthy controls were genotyped for four CHEK2 mutations (I157T and three truncating mutations: 1100delC, IVS2 + 1G > A, del5395). BCs were tested by immunohistochemistry on tissue microarrays for ER, PR, HER-2, EGFR, and CK5/6 and were assigned to appropriate subtypes of immunophenotypic molecular classification. There was a significant association between CHEK2 mutations and the immunophenotypic molecular classification (P = 0.004). CHEK2-associated cancers were predominantly luminal (108/117 = 92.3%). CHEK2-I157T variant was associated with the luminal A subtype (P = 0.01), whereas CHEK2-truncating mutations were associated with the luminal B subtype (P = 0.005). Comparing the prevalence of CHEK2 mutations in BC with controls revealed that carriers of an I157T variant had OR of 1.80 for luminal A subtype and carriers of truncating mutations had OR of 6.26 for luminal B subtype of BC. To our knowledge, this is the first study showing that specific mutations in the same susceptibility gene are associated with different immunophenotypic molecular subtypes of BC. This association represents independent evidence supporting the biological significance of immunophenotypic molecular classification of BC.

  6. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study.

    PubMed

    Makrythanasis, P; van Bon, B W; Steehouwer, M; Rodríguez-Santiago, B; Simpson, M; Dias, P; Anderlid, B M; Arts, P; Bhat, M; Augello, B; Biamino, E; Bongers, E M H F; Del Campo, M; Cordeiro, I; Cueto-González, A M; Cuscó, I; Deshpande, C; Frysira, E; Izatt, L; Flores, R; Galán, E; Gener, B; Gilissen, C; Granneman, S M; Hoyer, J; Yntema, H G; Kets, C M; Koolen, D A; Marcelis, C l; Medeira, A; Micale, L; Mohammed, S; de Munnik, S A; Nordgren, A; Psoni, S; Reardon, W; Revencu, N; Roscioli, T; Ruiterkamp-Versteeg, M; Santos, H G; Schoumans, J; Schuurs-Hoeijmakers, J H M; Silengo, M C; Toledo, L; Vendrell, T; van der Burgt, I; van Lier, B; Zweier, C; Reymond, A; Trembath, R C; Perez-Jurado, L; Dupont, J; de Vries, B B A; Brunner, H G; Veltman, J A; Merla, G; Antonarakis, S E; Hoischen, A

    2013-12-01

    Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. PMS2 monoallelic mutation carriers: the known unknown.

    PubMed

    Goodenberger, McKinsey L; Thomas, Brittany C; Riegert-Johnson, Douglas; Boland, C Richard; Plon, Sharon E; Clendenning, Mark; Win, Aung Ko; Senter, Leigha; Lipkin, Steven M; Stadler, Zsofia K; Macrae, Finlay A; Lynch, Henry T; Weitzel, Jeffrey N; de la Chapelle, Albert; Syngal, Sapna; Lynch, Patrick; Parry, Susan; Jenkins, Mark A; Gallinger, Steven; Holter, Spring; Aronson, Melyssa; Newcomb, Polly A; Burnett, Terrilea; Le Marchand, Loïc; Pichurin, Pavel; Hampel, Heather; Terdiman, Jonathan P; Lu, Karen H; Thibodeau, Stephen; Lindor, Noralane M

    2016-01-01

    Germ-line mutations in MLH1, MSH2, MSH6, and PMS2 have been shown to cause Lynch syndrome. The penetrance of the cancer and tumor spectrum has been repeatedly studied, and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared with the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age at onset and frequency of colonic screening. Published reports of PMS2 germ-line mutations were combined with unpublished cases from the authors' research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with colorectal cancer (CRC) were diagnosed before age 30, and each of these tumors presented on the left side of the colon. As it is currently unknown what causes the early onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the reduced penetrance.Genet Med 18 1, 13-19.

  8. Novel AQP2 mutation causing congenital nephrogenic diabetes insipidus: challenges in management during infancy.

    PubMed

    Rugpolmuang, Rottanat; Deeb, Asma; Hassan, Yousef; Deekajorndech, Tawatchai; Shotelersuk, Vorasuk; Sahakitrungruang, Taninee

    2014-01-01

    Congenital nephrogenic diabetes insipidus (NDI) is a rare inherited disorder, mostly caused by AVPR2 mutations. Less than 10% of cases are due to mutations in the aquaporin-2 (AQP2) gene. Diagnosis and management of this condition remain challenging especially during infancy. Here, we report two unrelated patients, a 6-month-old Thai boy and a 5-year-old Emirati girl, with a history of failure to thrive, chronic fever, polydipsia, and polyuria presented in early infancy. The results of water deprivation test were compatible with a diagnosis of NDI. The entire coding regions of the AVPR2 and AQP2 gene were amplified by polymerase chain reaction and sequenced. Patient 1 was homozygous for a novel missense AQP2 mutation p.G96E, inherited from both parents. Patient 2 harbored a previously described homozygous p.T126M mutation in the AQP2 gene. Both patients were treated with a combination of thiazide diuretics and amiloride. Patient 1 developed paradoxical hyponatremia and severe dehydration 2 weeks after medical treatment began. In conclusion, we report a novel mutation of the AQP2 gene and highlight an important role of genetic testing for definite diagnosis. Vigilant monitoring of the fluid status and electrolytes after beginning the therapy is mandatory in infants with NDI.

  9. The prevalence of ABCB1:c.227_230delATAG mutation in affected dog breeds from European countries.

    PubMed

    Firdova, Zuzana; Turnova, Evelina; Bielikova, Marcela; Turna, Jan; Dudas, Andrej

    2016-06-01

    Deletion of 4-base pairs in the canine ABCB1 (MDR1) gene, responsible for encoding P-glycoprotein, leads to nonsense frame-shift mutation, which causes hypersensitivity to macrocyclic lactones drugs (e.g. ivermectin). To date, at least 12 purebred dog breeds have been found to be affected by this mutation. The aim of this study was to update information about the prevalence of ABCB1 mutation (c.227_230delATAG) in predisposed breeds in multiple European countries. This large scale survey also includes countries which were not involved in previous studies. The samples were collected in the period from 2012 to 2014. The overview is based on genotyping data of 4729 individuals. The observed mutant allele frequencies were 58.5% (Smooth Collie), 48.3% (Rough Collie), 35% (Australian Shepherd), 30.3% (Shetland Sheepdog), 28.1% (Silken Windhound), 26.1% (Miniature Australian Shepherd), 24.3% (Longhaired Whippet), 16.2% (White Swiss Shepherd) and 0% (Border Collie). The possible presence of an ABCB1 mutant allele in Akita-Inu breed has been investigated with negative results. This information could be helpful for breeders in optimization of their breeding strategy and for veterinarians when prescribing drug therapy for dogs of predisposed breeds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Foxp2 mutations impair auditory-motor association learning.

    PubMed

    Kurt, Simone; Fisher, Simon E; Ehret, Günter

    2012-01-01

    Heterozygous mutations of the human FOXP2 transcription factor gene cause the best-described examples of monogenic speech and language disorders. Acquisition of proficient spoken language involves auditory-guided vocal learning, a specialized form of sensory-motor association learning. The impact of etiological Foxp2 mutations on learning of auditory-motor associations in mammals has not been determined yet. Here, we directly assess this type of learning using a newly developed conditioned avoidance paradigm in a shuttle-box for mice. We show striking deficits in mice heterozygous for either of two different Foxp2 mutations previously implicated in human speech disorders. Both mutations cause delays in acquiring new motor skills. The magnitude of impairments in association learning, however, depends on the nature of the mutation. Mice with a missense mutation in the DNA-binding domain are able to learn, but at a much slower rate than wild type animals, while mice carrying an early nonsense mutation learn very little. These results are consistent with expression of Foxp2 in distributed circuits of the cortex, striatum and cerebellum that are known to play key roles in acquisition of motor skills and sensory-motor association learning, and suggest differing in vivo effects for distinct variants of the Foxp2 protein. Given the importance of such networks for the acquisition of human spoken language, and the fact that similar mutations in human FOXP2 cause problems with speech development, this work opens up a new perspective on the use of mouse models for understanding pathways underlying speech and language disorders.

  11. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations.

    PubMed

    Rebbeck, Timothy R; Friebel, Tara M; Friedman, Eitan; Hamann, Ute; Huo, Dezheng; Kwong, Ava; Olah, Edith; Olopade, Olufunmilayo I; Solano, Angela R; Teo, Soo-Hwang; Thomassen, Mads; Weitzel, Jeffrey N; Chan, T L; Couch, Fergus J; Goldgar, David E; Kruse, Torben A; Palmero, Edenir Inêz; Park, Sue Kyung; Torres, Diana; van Rensburg, Elizabeth J; McGuffog, Lesley; Parsons, Michael T; Leslie, Goska; Aalfs, Cora M; Abugattas, Julio; Adlard, Julian; Agata, Simona; Aittomäki, Kristiina; Andrews, Lesley; Andrulis, Irene L; Arason, Adalgeir; Arnold, Norbert; Arun, Banu K; Asseryanis, Ella; Auerbach, Leo; Azzollini, Jacopo; Balmaña, Judith; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Benitez, Javier; Berger, Andreas; Berger, Raanan; Blanco, Amie M; Blazer, Kathleen R; Blok, Marinus J; Bonadona, Valérie; Bonanni, Bernardo; Bradbury, Angela R; Brewer, Carole; Buecher, Bruno; Buys, Saundra S; Caldes, Trinidad; Caliebe, Almuth; Caligo, Maria A; Campbell, Ian; Caputo, Sandrine M; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Collée, J Margriet; Cook, Jackie; Davidson, Rosemarie; de la Hoya, Miguel; De Leeneer, Kim; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Ding, Yuan Chun; Ditsch, Nina; Domchek, Susan M; Dorfling, Cecilia M; Velazquez, Carolina; Dworniczak, Bernd; Eason, Jacqueline; Easton, Douglas F; Eeles, Ros; Ehrencrona, Hans; Ejlertsen, Bent; Engel, Christoph; Engert, Stefanie; Evans, D Gareth; Faivre, Laurence; Feliubadaló, Lidia; Ferrer, Sandra Fert; Foretova, Lenka; Fowler, Jeffrey; Frost, Debra; Galvão, Henrique C R; Ganz, Patricia A; Garber, Judy; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Gesta, Paul; Giannini, Giuseppe; Giraud, Sophie; Glendon, Gord; Godwin, Andrew K; Greene, Mark H; Gronwald, Jacek; Gutierrez-Barrera, Angelica; Hahnen, Eric; Hauke, Jan; Henderson, Alex; Hentschel, Julia; Hogervorst, Frans B L; Honisch, Ellen; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Kaczmarek, Katarzyna; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Kim, Sung-Won; Konstantopoulou, Irene; Korach, Jacob; Laitman, Yael; Lasa, Adriana; Lasset, Christine; Lázaro, Conxi; Lee, Annette; Lee, Min Hyuk; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lindor, Noralane M; Longy, Michel; Loud, Jennifer T; Lu, Karen H; Lubinski, Jan; Machackova, Eva; Manoukian, Siranoush; Mari, Véronique; Martínez-Bouzas, Cristina; Matrai, Zoltan; Mebirouk, Noura; Meijers-Heijboer, Hanne E J; Meindl, Alfons; Mensenkamp, Arjen R; Mickys, Ugnius; Miller, Austin; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Neuhausen, Susan L; Nevanlinna, Heli; Ngeow, Joanne; Nguyen, Huu Phuc; Niederacher, Dieter; Nielsen, Henriette Roed; Nielsen, Finn Cilius; Nussbaum, Robert L; Offit, Kenneth; Öfverholm, Anna; Ong, Kai-Ren; Osorio, Ana; Papi, Laura; Papp, Janos; Pasini, Barbara; Pedersen, Inge Sokilde; Peixoto, Ana; Peruga, Nina; Peterlongo, Paolo; Pohl, Esther; Pradhan, Nisha; Prajzendanc, Karolina; Prieur, Fabienne; Pujol, Pascal; Radice, Paolo; Ramus, Susan J; Rantala, Johanna; Rashid, Muhammad Usman; Rhiem, Kerstin; Robson, Mark; Rodriguez, Gustavo C; Rogers, Mark T; Rudaitis, Vilius; Schmidt, Ane Y; Schmutzler, Rita Katharina; Senter, Leigha; Shah, Payal D; Sharma, Priyanka; Side, Lucy E; Simard, Jacques; Singer, Christian F; Skytte, Anne-Bine; Slavin, Thomas P; Snape, Katie; Sobol, Hagay; Southey, Melissa; Steele, Linda; Steinemann, Doris; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tan, Yen Y; Teixeira, Manuel R; Terry, Mary Beth; Teulé, Alex; Thomas, Abigail; Thull, Darcy L; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Topka, Sabine; Trainer, Alison H; Tung, Nadine; van Asperen, Christi J; van der Hout, Annemieke H; van der Kolk, Lizet E; van der Luijt, Rob B; Van Heetvelde, Mattias; Varesco, Liliana; Varon-Mateeva, Raymonda; Vega, Ana; Villarreal-Garza, Cynthia; von Wachenfeldt, Anna; Walker, Lisa; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weber, Bernhard H F; Yannoukakos, Drakoulis; Yoon, Sook-Yee; Zanzottera, Cristina; Zidan, Jamal; Zorn, Kristin K; Hutten Selkirk, Christina G; Hulick, Peter J; Chenevix-Trench, Georgia; Spurdle, Amanda B; Antoniou, Antonis C; Nathanson, Katherine L

    2018-05-01

    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations. © 2018 Wiley Periodicals, Inc.

  12. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng,Q.; Deng, Y.; Liu, J.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARSmore » coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.« less

  13. Predicted Mutation Strength of Nontruncating PKD1 Mutations Aids Genotype-Phenotype Correlations in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Heyer, Christina M; Sundsbak, Jamie L; Abebe, Kaleab Z; Chapman, Arlene B; Torres, Vicente E; Grantham, Jared J; Bae, Kyongtae T; Schrier, Robert W; Perrone, Ronald D; Braun, William E; Steinman, Theodore I; Mrug, Michal; Yu, Alan S L; Brosnahan, Godela; Hopp, Katharina; Irazabal, Maria V; Bennett, William M; Flessner, Michael F; Moore, Charity G; Landsittel, Douglas; Harris, Peter C

    2016-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) often results in ESRD but with a highly variable course. Mutations to PKD1 or PKD2 cause ADPKD; both loci have high levels of allelic heterogeneity. We evaluated genotype-phenotype correlations in 1119 patients (945 families) from the HALT Progression of PKD Study and the Consortium of Radiologic Imaging Study of PKD Study. The population was defined as: 77.7% PKD1, 14.7% PKD2, and 7.6% with no mutation detected (NMD). Phenotypic end points were sex, eGFR, height-adjusted total kidney volume (htTKV), and liver cyst volume. Analysis of the eGFR and htTKV measures showed that the PKD1 group had more severe disease than the PKD2 group, whereas the NMD group had a PKD2-like phenotype. In both the PKD1 and PKD2 populations, men had more severe renal disease, but women had larger liver cyst volumes. Compared with nontruncating PKD1 mutations, truncating PKD1 mutations associated with lower eGFR, but the mutation groups were not differentiated by htTKV. PKD1 nontruncating mutations were evaluated for conservation and chemical change and subdivided into strong (mutation strength group 2 [MSG2]) and weak (MSG3) mutation groups. Analysis of eGFR and htTKV measures showed that patients with MSG3 but not MSG2 mutations had significantly milder disease than patients with truncating cases (MSG1), an association especially evident in extreme decile populations. Overall, we have quantified the contribution of genic and PKD1 allelic effects and sex to the ADPKD phenotype. Intrafamilial correlation analysis showed that other factors shared by families influence htTKV, with these additional genetic/environmental factors significantly affecting the ADPKD phenotype. Copyright © 2016 by the American Society of Nephrology.

  14. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion.

    PubMed

    Peterson, Robyn A; Gueniche, Audrey; Adam de Beaumais, Ségolène; Breton, Lionel; Dalko-Csiba, Maria; Packer, Nicolle H

    2016-03-01

    There is increasing evidence that secretory fluids such as tears, saliva and milk play an important role in protecting the human body from infection via a washing mechanism involving glycan-mediated adhesion of potential pathogens to secretory glycoproteins. Interaction of sweat with bacteria is well established as the cause of sweat-associated malodor. However, the role of sweat glycoproteins in microbial attachment has received little, if any, research interest in the past. In this review, we demonstrate how recent published studies involving high-throughput proteomic analysis have inadvertently, and fortuitously, exposed an abundance of glycoproteins in sweat, many of which have also been identified in other secretory fluids. We bring together research demonstrating microbial adhesion to these secretory glycoproteins in tears, saliva and milk and suggest a similar role of the sweat glycoproteins in mediating microbial attachment to sweat and/or skin. The contribution of glycan-mediated microbial adhesion to sweat glycoproteins, and the associated impact on sweat derived malodor and pathogenic skin infections are unchartered new research areas that we are beginning to explore. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Glycoprotein Disease Markers and Single Protein-omics*

    PubMed Central

    Chandler, Kevin; Goldman, Radoslav

    2013-01-01

    Glycoproteins are well represented among biomarkers for inflammatory and cancer diseases. Secreted and membrane-associated glycoproteins make excellent targets for noninvasive detection. In this review, we discuss clinically applicable markers of cancer diseases and methods for their analysis. High throughput discovery continues to supply marker candidates with unusual glycan structures, altered glycoprotein abundance, or distribution of site-specific glycoforms. Improved analytical methods are needed to unlock the potential of these discoveries in validated clinical assays. A new generation of targeted quantitative assays is expected to advance the use of glycoproteins in early detection of diseases, molecular disease classification, and monitoring of therapeutic interventions. PMID:23399550

  16. Metabolism of Glycoproteins in Turpentine Granuloma*

    PubMed Central

    Prodi, G.; Pane, G.; Romeo, G.

    1970-01-01

    The local synthesis of sialic acid and sialic acid containing glycoproteins in granuloma experimentally produced with turpentine has been investigated by incubating them in vitro with 14C glucosamine. The content and activity of chromatographically isolated sialic acid of water soluble and water insoluble fractions of tissue incubated at different times after injection of turpentine was determined. A local synthesis of sialic acid and its incorporation both in the soluble and insoluble fractions were found, with a time depending slope. Chromatography on DEAE Sephadex of glycoproteins obtained from water soluble fraction showed that radioactivity was present in 2 peaks. After papain digestion of the insoluble fraction, the sialic acid containing material could be separated into 2 groups of radioactive glycopeptides on DEAE Sephadex. The data demonstrates that granuloma can synthestize in vitro a considerable variety of glycoproteic materials. PMID:5491911

  17. Mutational Analysis of Plant Cap-Binding Protein eIF4E Reveals Key Amino Acids Involved in Biochemical Functions and Potyvirus Infection▿

    PubMed Central

    German-Retana, Sylvie; Walter, Jocelyne; Doublet, Bénédicte; Roudet-Tavert, Geneviève; Nicaise, Valérie; Lecampion, Cécile; Houvenaghel, Marie-Christine; Robaglia, Christophe; Michon, Thierry; Le Gall, Olivier

    2008-01-01

    The eukaryotic translation initiation factor 4E (eIF4E) (the cap-binding protein) is involved in natural resistance against several potyviruses in plants. In lettuce, the recessive resistance genes mo11 and mo12 against Lettuce mosaic virus (LMV) are alleles coding for forms of eIF4E unable, or less effective, to support virus accumulation. A recombinant LMV expressing the eIF4E of a susceptible lettuce variety from its genome was able to produce symptoms in mo11 or mo12 varieties. In order to identify the eIF4E amino acid residues necessary for viral infection, we constructed recombinant LMV expressing eIF4E with point mutations affecting various amino acids and compared the abilities of these eIF4E mutants to complement LMV infection in resistant plants. Three types of mutations were produced in order to affect different biochemical functions of eIF4E: cap binding, eIF4G binding, and putative interaction with other virus or host proteins. Several mutations severely reduced the ability of eIF4E to complement LMV accumulation in a resistant host and impeded essential eIF4E functions in yeast. However, the ability of eIF4E to bind a cap analogue or to fully interact with eIF4G appeared unlinked to LMV infection. In addition to providing a functional mutational map of a plant eIF4E, this suggests that the role of eIF4E in the LMV cycle might be distinct from its physiological function in cellular mRNA translation. PMID:18480444

  18. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    PubMed

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Ammonia transport in the kidney by Rhesus glycoproteins

    PubMed Central

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  20. Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model.

    PubMed

    Duehr, James; Wohlbold, Teddy John; Oestereich, Lisa; Chromikova, Veronika; Amanat, Fatima; Rajendran, Madhusudan; Gomez-Medina, Sergio; Mena, Ignacio; tenOever, Benjamin R; García-Sastre, Adolfo; Basler, Christopher F; Munoz-Fontela, Cesar; Krammer, Florian

    2017-08-15

    Out of an estimated 31,100 cases since their discovery in 1976, ebolaviruses have caused approximately 13,000 deaths. The vast majority (∼11,000) of these occurred during the 2013-2016 West African epidemic. Three out of five species in the genus are known to cause Ebola Virus Disease in humans. Several monoclonal antibodies against the ebolavirus glycoprotein are currently in development as therapeutics. However, there is still a paucity of monoclonal antibodies that can cross-react between the glycoproteins of different ebolavirus species, and the mechanism of these monoclonal antibody therapeutics is still not understood in detail. Here, we generated a panel of eight murine monoclonal antibodies (MAbs) utilizing a prime-boost vaccination regimen with a Zaire ebolavirus glycoprotein expression plasmid followed by infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. We tested the binding breadth of the resulting monoclonal antibodies using a set of recombinant surface glycoproteins from Reston, Taï Forest, Bundibugyo, Zaire, Sudan, and Marburg viruses and found two antibodies that showed pan-ebolavirus binding. An in vivo Stat2 -/- mouse model was utilized to test the ability of these MAbs to protect from infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. Several of our antibodies, including the broadly binding ones, protected mice from mortality despite lacking neutralization capability in vitro , suggesting their protection may be mediated by Fc-FcR interactions. Indeed, three antibodies displayed cellular phagocytosis and/or antibody-dependent cell-mediated cytotoxicity in vitro Our antibodies, specifically the two identified cross-reactive monoclonal antibodies (KL-2E5 and KL-2H7), might add to the understanding of anti-ebolavirus humoral immunity. IMPORTANCE This study describes the generation of a panel of novel anti-ebolavirus glycoprotein monoclonal antibodies, including two

  1. Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model

    PubMed Central

    Duehr, James; Wohlbold, Teddy John; Oestereich, Lisa; Chromikova, Veronika; Amanat, Fatima; Gomez-Medina, Sergio; Mena, Ignacio; tenOever, Benjamin R.; García-Sastre, Adolfo; Basler, Christopher F.

    2017-01-01

    ABSTRACT Out of an estimated 31,100 cases since their discovery in 1976, ebolaviruses have caused approximately 13,000 deaths. The vast majority (∼11,000) of these occurred during the 2013-2016 West African epidemic. Three out of five species in the genus are known to cause Ebola Virus Disease in humans. Several monoclonal antibodies against the ebolavirus glycoprotein are currently in development as therapeutics. However, there is still a paucity of monoclonal antibodies that can cross-react between the glycoproteins of different ebolavirus species, and the mechanism of these monoclonal antibody therapeutics is still not understood in detail. Here, we generated a panel of eight murine monoclonal antibodies (MAbs) utilizing a prime-boost vaccination regimen with a Zaire ebolavirus glycoprotein expression plasmid followed by infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. We tested the binding breadth of the resulting monoclonal antibodies using a set of recombinant surface glycoproteins from Reston, Taï Forest, Bundibugyo, Zaire, Sudan, and Marburg viruses and found two antibodies that showed pan-ebolavirus binding. An in vivo Stat2−/− mouse model was utilized to test the ability of these MAbs to protect from infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. Several of our antibodies, including the broadly binding ones, protected mice from mortality despite lacking neutralization capability in vitro, suggesting their protection may be mediated by Fc-FcR interactions. Indeed, three antibodies displayed cellular phagocytosis and/or antibody-dependent cell-mediated cytotoxicity in vitro. Our antibodies, specifically the two identified cross-reactive monoclonal antibodies (KL-2E5 and KL-2H7), might add to the understanding of anti-ebolavirus humoral immunity. IMPORTANCE This study describes the generation of a panel of novel anti-ebolavirus glycoprotein monoclonal antibodies

  2. Small Cell Lung Cancer Exhibits Frequent Inactivating Mutations in the Histone Methyltransferase KMT2D/MLL2: CALGB 151111 (Alliance)

    PubMed Central

    Augert, Arnaud; Zhang, Qing; Bates, Breanna; Cui, Min; Wang, Xiaofei; Wildey, Gary; Dowlati, Afshin; MacPherson, David

    2017-01-01

    Introduction SCLC is a lethal neuroendocrine tumor type that is highly prone to metastasis. There is an urgency to understand the mutated genes that promote SCLC, as there are no approved targeted therapies yet available. SCLC is rarely resected, limiting the number of samples available for genomic analyses of somatic mutations. Methods To identify potential driver mutations in human SCLC we sequenced the whole exomes of 18 primary SCLCs and seven cell lines along with matched normal controls. We extended these data by resequencing a panel of genes across 40 primary SCLCs and 48 cell lines. Results We report frequent mutations in the lysine methyltransferase 2D gene (KMT2D) (also known as MLL2), a key regulator of transcriptional enhancer function. KMT2D exhibited truncating nonsense/frameshift/splice site mutations in 8% of SCLC tumors and 17% of SCLC cell lines. We found that KMT2D mutation in human SCLC cell lines was associated with reduced lysine methyltransferase 2D protein levels and reduced monomethylation of histone H3 lysine 4, a mark associated with transcriptional enhancers. We also found mutations in other genes associated with transcriptional enhancer control, including CREB binding protein gene (CREBBP), E1A binding protein p300 gene (EP300), and chromodomain helicase DNA binding protein 7 gene (CHD7), and we report mutations in additional chromatin remodeling genes such as polybromo 1 gene (PBRM1). Conclusions These data indicate that KMT2D is one of the major mutated genes in SCLC, and they point to perturbation of transcriptional enhancer control as potentially contributing to SCLC. PMID:28007623

  3. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner.

    PubMed

    Zheng, Hong; Yu, Wen-Mei; Waclaw, Ronald R; Kontaridis, Maria I; Neel, Benjamin G; Qu, Cheng-Kui

    2018-03-20

    Catalytically activating mutations in Ptpn11 , which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations in Ptpn11 are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse. Targeted pan-neuronal knockin of a Ptpn11 allele encoding the active SHP2 E76K mutant resulted in hydrocephalus due to aberrant development of ependymal cells and their cilia. These pathogenic effects of the E76K mutation were suppressed by the additional mutation C459S, which abolished the catalytic activity of SHP2. Moreover, ependymal cells in NSML mice bearing the inactive SHP2 mutant Y279C were also unaffected. Mechanistically, the SHP2 E76K mutant induced developmental defects in ependymal cells by enhancing dephosphorylation and inhibition of the transcription activator STAT3. Whereas STAT3 activity was reduced in Ptpn11 E76K/+ cells, the activities of the kinases ERK and AKT were enhanced, and neural cell-specific Stat3 knockout mice also manifested developmental defects in ependymal cells and cilia. These genetic and biochemical data demonstrate a catalytic-dependent role of SHP2 gain-of-function disease mutants in the pathogenesis of hydrocephalus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Dynamics of glycoprotein charge in the evolutionary history of human influenza.

    PubMed

    Arinaminpathy, Nimalan; Grenfell, Bryan

    2010-12-30

    Influenza viruses show a significant capacity to evade host immunity; this is manifest both as large occasional jumps in the antigenic phenotype of viral surface molecules and in gradual antigenic changes leading to annual influenza epidemics in humans. Recent mouse studies show that avidity for host cells can play an important role in polyclonal antibody escape, and further that electrostatic charge of the hemagglutinin glycoprotein can contribute to such avidity. We test the role of glycoprotein charge on sequence data from the three major subtypes of influenza A in humans, using a simple method of calculating net glycoprotein charge. Of all subtypes, H3N2 in humans shows a striking pattern of increasing positive charge since its introduction in 1968. Notably, this trend applies to both hemagglutinin and neuraminidase glycoproteins. In the late 1980s hemagglutinin charge reached a plateau, while neuraminidase charge started to decline. We identify key groups of amino acid sites involved in this charge trend. To our knowledge these are the first indications that, for human H3N2, net glycoprotein charge covaries strongly with antigenic drift on a global scale. Further work is needed to elucidate how such charge interacts with other immune escape mechanisms, such as glycosylation, and we discuss important questions arising for future study.

  5. Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity.

    PubMed

    Xu, Guanlong; Zhang, Xuxiao; Gao, Weihua; Wang, Chenxi; Wang, Jinliang; Sun, Honglei; Sun, Yipeng; Guo, Lu; Zhang, Rui; Chang, Kin-Chow; Liu, Jinhua; Pu, Juan

    2016-09-15

    Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human infectivity. Copyright © 2016

  6. Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity

    PubMed Central

    Xu, Guanlong; Zhang, Xuxiao; Gao, Weihua; Wang, Chenxi; Wang, Jinliang; Sun, Honglei; Sun, Yipeng; Guo, Lu; Zhang, Rui; Chang, Kin-Chow; Liu, Jinhua

    2016-01-01

    ABSTRACT Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo. In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. IMPORTANCE Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo. Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human

  7. Checkpoint Kinase 2 (CHEK2) Mutation in Renal Cell Carcinoma: A Single-Center Experience

    PubMed Central

    Huszno, Joanna; Kołosza, Zofia

    2018-01-01

    Renal cell carcinoma (RCC) occurs in sporadic and heritable forms. Genetic mutations have been identified as risk factors in 1–2% of RCC. The aim of this study was to evaluate I157T and CHEK2*1100delC mutations of checkpoint kinase 2 (CHEK2) gene in RCC. Medical records of 40 clear cell RCC patients who had genetic tests and consultation at the Genetic Outpatient Clinic, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland, were reviewed retrospectively. Mutation profile was assessed by ASA-PCR and RFLP-PCR techniques. Only three female patients had CHEK2 mutation (I157T). No CHEK2*1100delC was observed in any of the patients. These tumors were N0, and two were Grade 3. One showed capsular infiltration. No blood vessel infiltration or metastases was observed. Overall, RCC from patients with CHEK2 mutation did not display any special characteristics when compared with those without the mutation. While no association between CHEK2 mutation and RCC could be established, all three patients with CHEK2 mutation developed second neoplasms many years after first diagnosis. Further studies, especially regarding CHEK2 mutation as a predictive factor for second neoplasm in RCC patients, are warranted. PMID:29682443

  8. Checkpoint Kinase 2 (CHEK2) Mutation in Renal Cell Carcinoma: A Single-Center Experience.

    PubMed

    Huszno, Joanna; Kołosza, Zofia

    2018-01-01

    Renal cell carcinoma (RCC) occurs in sporadic and heritable forms. Genetic mutations have been identified as risk factors in 1-2% of RCC. The aim of this study was to evaluate I157T and CHEK2*1100delC mutations of checkpoint kinase 2 (CHEK2) gene in RCC. Medical records of 40 clear cell RCC patients who had genetic tests and consultation at the Genetic Outpatient Clinic, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland, were reviewed retrospectively. Mutation profile was assessed by ASA-PCR and RFLP-PCR techniques. Only three female patients had CHEK2 mutation (I157T). No CHEK2*1100delC was observed in any of the patients. These tumors were N0, and two were Grade 3. One showed capsular infiltration. No blood vessel infiltration or metastases was observed. Overall, RCC from patients with CHEK2 mutation did not display any special characteristics when compared with those without the mutation. While no association between CHEK2 mutation and RCC could be established, all three patients with CHEK2 mutation developed second neoplasms many years after first diagnosis. Further studies, especially regarding CHEK2 mutation as a predictive factor for second neoplasm in RCC patients, are warranted.

  9. P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity.

    PubMed

    Nervi, Pierluigi; Li-Blatter, Xiaochun; Aänismaa, Päivi; Seelig, Anna

    2010-03-01

    We compared the P-glycoprotein ATPase activity in inside-out plasma membrane vesicles and living NIH-MDR1-G185 cells with the aim to detect substrate transport. To this purpose we used six substrates which differ significantly in their passive influx through the plasma membrane. In cells, the cytosolic membrane leaflet harboring the substrate binding site of P-glycoprotein has to be approached by passive diffusion through the lipid membrane, whereas in inside-out plasma membrane vesicles, it is accessible directly from the aqueous phase. Compounds exhibiting fast passive influx compared to active efflux by P-glycoprotein induced similar ATPase activity profiles in cells and inside-out plasma membrane vesicles, because their concentrations in the cytosolic leaflets were similar. Compounds exhibiting similar influx as efflux induced in contrast different ATPase activity profiles in cells and inside-out vesicles. Their concentration was significantly lower in the cytosolic leaflet of cells than in the cytosolic leaflet of inside-out membrane vesicles, indicating that P-glycoprotein could cope with passive influx. P-glycoprotein thus transported all compounds at a rate proportional to ATP hydrolysis (i.e. all compounds were substrates). However, it prevented substrate entry into the cytosol only if passive influx of substrates across the lipid bilayer was in a similar range as active efflux. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Alzheimer’s Protective A2T Mutation Changes the Conformational Landscape of the Aβ1–42 Monomer Differently Than Does the A2V Mutation

    PubMed Central

    Das, Payel; Murray, Brian; Belfort, Georges

    2015-01-01

    The aggregation of amyloid-β (Aβ) peptides plays a crucial role in the etiology of Alzheimer’s disease (AD). Recently, it has been reported that an A2T mutation in Aβ can protect against AD. Interestingly, a nonpolar A2V mutation also has been found to offer protection against AD in the heterozygous state, although it causes early-onset AD in homozygous carriers. Since the conformational landscape of the Aβ monomer is known to directly contribute to the early-stage aggregation mechanism, it is important to characterize the effects of the A2T and A2V mutations on Aβ1–42 monomer structure. Here, we have performed extensive atomistic replica-exchange molecular dynamics simulations of the solvated wild-type (WT), A2V, and A2T Aβ1–42 monomers. Our simulations reveal that although all three variants remain as collapsed coils in solution, there exist significant structural differences among them at shorter timescales. A2V exhibits an enhanced double-hairpin population in comparison to the WT, similar to those reported in toxic WT Aβ1–42 oligomers. Such double-hairpin formation is caused by hydrophobic clustering between the N-terminus and the central and C-terminal hydrophobic patches. In contrast, the A2T mutation causes the N-terminus to engage in unusual electrostatic interactions with distant residues, such as K16 and E22, resulting in a unique population comprising only the C-terminal hairpin. These findings imply that a single A2X (where X = V or T) mutation in the primarily disordered N-terminus of the Aβ1–42 monomer can dramatically alter the β-hairpin population and switch the equilibrium toward alternative structures. The atomistically detailed, comparative view of the structural landscapes of A2V and A2T variant monomers obtained in this study can enhance our understanding of the mechanistic differences in their early-stage aggregation. PMID:25650940

  11. The effect of lycopene on cytochrome P450 isoenzymes and P-glycoprotein by using human liver microsomes and Caco-2 cell monolayer model.

    PubMed

    Kong, Lingti; Song, Chunli; Ye, Linhu; Xu, Jian; Guo, Daohua; Shi, Qingping

    2018-01-11

    Lycopene is widely used as a dietary supplement. However, the effects of lycopene on cytochrome P450 (CYP) enzymes or P-glycoprotein (P-gp) are not comprehensive. The present study was performed to investigate the effects of lycopene on the CYP enzymes and P-gp activity. A cocktail method was used to evaluate the activities of CYP3A4, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. Caco-2 cell monolayer model was carried out to assay lycopene on P-gp activity. The results indicated that lycopene had a moderate inhibitory effect on CYP2E1, with IC50 value of 43.65 μM, whereas no inhibitory effects on CYP3A4, CYP2C19, CYP2D6 and CYP2E1, with IC50 values all over 100 μM. In addition, lycopene showed almost no inhibitory effect on rhodamine-123 efflux and uptake (p > .05), indicated no effects on P-gp activity. In conclusion, there should be required attention when lycopene are coadministered with other drugs that are metabolised by CYP2E1.

  12. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    PubMed

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of

  13. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation.

    PubMed Central

    Konrad, Zvia; Eichler, Jerry

    2002-01-01

    Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg(2+)-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [(3)H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane. PMID:12069685

  14. Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region.

    PubMed

    Flyak, Andrew I; Kuzmina, Natalia; Murin, Charles D; Bryan, Christopher; Davidson, Edgar; Gilchuk, Pavlo; Gulka, Christopher P; Ilinykh, Philipp A; Shen, Xiaoli; Huang, Kai; Ramanathan, Palaniappan; Turner, Hannah; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; King, Hannah; Sapparapu, Gopal; Doranz, Benjamin J; Ksiazek, Thomas G; Wright, David W; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E

    2018-05-07

    Ebola virus (EBOV) in humans causes a severe illness with high mortality rates. Several strategies have been developed in the past to treat EBOV infection, including the antibody cocktail ZMapp, which has been shown to be effective in nonhuman primate models of infection 1 and has been used under compassionate-treatment protocols in humans 2 . ZMapp is a mixture of three chimerized murine monoclonal antibodies (mAbs) 3-6 that target EBOV-specific epitopes on the surface glycoprotein 7,8 . However, ZMapp mAbs do not neutralize other species from the genus Ebolavirus, such as Bundibugyo virus (BDBV), Reston virus (RESTV) or Sudan virus (SUDV). Here, we describe three naturally occurring human cross-neutralizing mAbs, from BDBV survivors, that target an antigenic site in the canonical heptad repeat 2 (HR2) region near the membrane-proximal external region (MPER) of the glycoprotein. The identification of a conserved neutralizing antigenic site in the glycoprotein suggests that these mAbs could be used to design universal antibody therapeutics against diverse ebolavirus species. Furthermore, we found that immunization with a peptide comprising the HR2-MPER antigenic site elicits neutralizing antibodies in rabbits. Structural features determined by conserved residues in the antigenic site described here could inform an epitope-based vaccine design against infection caused by diverse ebolavirus species.

  15. Glycoproteomic analysis of bronchoalveolar lavage (BAL) fluid identifies tumor-associated glycoproteins from lung adenocarcinoma.

    PubMed

    Li, Qing Kay; Shah, Punit; Li, Yan; Aiyetan, Paul O; Chen, Jing; Yung, Rex; Molena, Daniela; Gabrielson, Edward; Askin, Frederic; Chan, Daniel W; Zhang, Hui

    2013-08-02

    Cytological examination of cells from bronchoalveolar lavage (BAL) is commonly used for the diagnosis of lung cancer. Proteins released from lung cancer cells into BAL may serve as biomarkers for cancer detection. In this study, N-glycoproteins in eight cases of BAL fluid, as well as eight lung adenocarcinoma tissues and eight tumor-matched normal lung tissues, were analyzed using the solid-phase extraction of N-glycoprotein (SPEG), iTRAQ labeling, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Of 80 glycoproteins found in BAL specimens, 32 were identified in both cancer BAL and cancer tissues, with levels of 25 glycoproteins showing at least a 2-fold difference between cancer and benign BAL. Among them, eight glycoproteins showed greater than 2-fold elevations in cancer BAL, including Neutrophil elastase (NE), Integrin alpha-M, Cullin-4B, Napsin A, lysosome-associated membrane protein 2 (LAMP2), Cathepsin D, BPI fold-containing family B member 2, and Neutrophil gelatinase-associated lipocalin. The levels of Napsin A in cancer BAL were further verified in independently collected 39 BAL specimens using an ELISA assay. Our study demonstrates that potential protein biomarkers in BAL fluid can be detected and quantified.

  16. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma.

    PubMed

    Bayley, Jean-Pierre; Kunst, Henricus P M; Cascon, Alberto; Sampietro, Maria Lourdes; Gaal, José; Korpershoek, Esther; Hinojar-Gutierrez, Adolfo; Timmers, Henri J L M; Hoefsloot, Lies H; Hermsen, Mario A; Suárez, Carlos; Hussain, A Karim; Vriends, Annette H J T; Hes, Frederik J; Jansen, Jeroen C; Tops, Carli M; Corssmit, Eleonora P; de Knijff, Peter; Lenders, Jacques W M; Cremers, Cor W R J; Devilee, Peter; Dinjens, Winand N M; de Krijger, Ronald R; Robledo, Mercedes

    2010-04-01

    Paragangliomas and phaeochromocytomas are neuroendocrine tumours associated frequently with germline mutations of SDHD, SDHC, and SDHB. Previous studies have shown the imprinted SDHAF2 gene to be mutated in a large Dutch kindred with paragangliomas. We aimed to identify SDHAF2 mutation carriers, assess the clinical genetic significance of SDHAF2, and describe the associated clinical phenotype. We undertook a multicentre study in Spain and The Netherlands in 443 apparently sporadic patients with paragangliomas and phaeochromocytomas who did not have mutations in SDHD, SDHC, or SDHB. We analysed DNA of 315 patients for germline mutations of SDHAF2; a subset (n=200) was investigated for gross gene deletions. DNA from a group of 128 tumours was studied for somatic mutations. We also examined a Spanish family with head and neck paragangliomas with a young age of onset for the presence of SDHAF2 mutations, undertook haplotype analysis in this kindred, and assessed their clinical phenotype. We did not identify any germline or somatic mutations of SDHAF2, and no gross gene deletions were noted in the subset of apparently sporadic patients analysed. Investigation of the Spanish family identified a pathogenic germline DNA mutation of SDHAF2, 232G-->A (Gly78Arg), identical to the Dutch kindred. SDHAF2 mutations do not have an important role in phaeochromocytoma and are rare in head and neck paraganglioma. Identification of a second family with the Gly78Arg mutation suggests that this is a crucial residue for the function of SDHAF2. We conclude that SDHAF2 mutation analysis is justified in very young patients with isolated head and neck paraganglioma without mutations in SDHD, SDHC, or SDHB, and in individuals with familial antecedents who are negative for mutations in all other risk genes. Dutch Cancer Society, European Union 6th Framework Program, Fondo Investigaciones Sanitarias, Fundación Mutua Madrileña, and Red Temática de Investigación Cooperativa en Cáncer. 2010

  17. Intracellular transport and stability of varicella-zoster virus glycoprotein K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Susan L.; Govero, Jennifer L.; Heineman, Thomas C.

    2007-02-20

    VZV gK, an essential glycoprotein that is conserved among the alphaherpesviruses, is believed to participate in membrane fusion and cytoplasmic virion morphogenesis based on analogy to its HSV-1 homolog. However, the production of VZV gK-specific antibodies has proven difficult presumably due to its highly hydrophobic nature and, therefore, VZV gK has received limited study. To overcome this obstacle, we inserted a FLAG epitope into gK near its amino terminus and produced VZV recombinants expressing epitope-tagged gK (VZV gK-F). These recombinants grew indistinguishably from native VZV, and FLAG-tagged gK could be readily detected in VZV gK-F-infected cells. FACS analysis established thatmore » gK is transported to the plasma membrane of infected cells, while indirect immunofluorescence demonstrated that gK accumulates predominately in the Golgi. Using VZV gK-F-infected cells we demonstrated that VZV gK, like several other herpesvirus glycoproteins, is efficiently endocytosed from the plasma membrane. However, pulse-labeling experiments revealed that the half-life of gK is considerably shorter than that of other VZV glycoproteins including gB, gE and gH. This finding suggests that gK may be required in lower abundance than other viral glycoproteins during virion morphogenesis or viral entry.« less

  18. Clinicopathological characteristics including BRAF V600E mutation status and PET/CT findings in papillary thyroid carcinoma.

    PubMed

    Choi, Eun Kyoung; Chong, Ari; Ha, Jung-Min; Jung, Chan Kwon; O, Joo Hyun; Kim, Sung Hoon

    2017-07-01

    We assessed the associations between FDG uptake in primary papillary thyroid carcinomas (PTCs) and clinicopathological features, including the BRAF V600E mutation, using quantitative and qualitative analyses of preoperative PET/CT data. This was a retrospective review of 106 patients with PTC who underwent PET/CT scans between February 2009 and January 2011 before undergoing total thyroidectomy. Data collected from surgical specimens were compared with FDG uptake in the primary tumour using quantitative and qualitative analyses of preoperative PET/CT data. Clinicopathological data included the primary tumour size, subtype, capsular invasion, extrathyroid extension, multifocality, BRAF V600E mutation status, lymph node metastasis and distant metastasis. The SUVmax of the primary tumour was significantly higher in patients with a primary tumour >1 cm, extrathyroid extension or the BRAF V600E mutation than in patients without these features (P<.001, .049 and <.001). Univariate analyses showed that primary tumour size, extrathyroid extension and BRAF V600E mutation status were associated with the SUVmax of the PTC. Multivariate analysis indicated that primary tumour size and the BRAF V600E mutation were associated with the SUVmax of the PTC. In a visual assessment, the primary tumour size was larger in FDG-avid than in non-FDG-avid PTCs (P<.001). There was no significant difference in the presence of multifocality, thyroid capsular invasion, extrathyroid extension, BRAF V600E mutation, lymph node metastasis or distant metastasis between FDG-avid and non-FDG-avid PTCs. Primary tumour size and the BRAF V600E mutation are significant factors associated with the SUVmax on preoperative PET/CT in patients with PTC. © 2017 John Wiley & Sons Ltd.

  19. Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype.

    PubMed

    Tatton-Brown, Katrina; Murray, Anne; Hanks, Sandra; Douglas, Jenny; Armstrong, Ruth; Banka, Siddharth; Bird, Lynne M; Clericuzio, Carol L; Cormier-Daire, Valerie; Cushing, Tom; Flinter, Frances; Jacquemont, Marie-Line; Joss, Shelagh; Kinning, Esther; Lynch, Sally Ann; Magee, Alex; McConnell, Vivienne; Medeira, Ana; Ozono, Keiichi; Patton, Michael; Rankin, Julia; Shears, Debbie; Simon, Marleen; Splitt, Miranda; Strenger, Volker; Stuurman, Kyra; Taylor, Clare; Titheradge, Hannah; Van Maldergem, Lionel; Temple, I Karen; Cole, Trevor; Seal, Sheila; Rahman, Nazneen

    2013-12-01

    Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve. © 2013 Wiley Periodicals, Inc.

  20. HER2 activating mutations are targets for colorectal cancer treatment.

    PubMed

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  1. Recurrent papillary craniopharyngioma with BRAFV600E mutation treated with neoadjuvant-targeted therapy.

    PubMed

    Rostami, Elham; Witt Nyström, Petra; Libard, Sylwia; Wikström, Johan; Casar-Borota, Olivera; Gudjonsson, Olafur

    2017-11-01

    Craniopharyngiomas are histologically benign but locally aggressive tumors in the sellar region that may cause devastating neurological and endocrine deficits. They tend to recur following surgery with high morbidity; hence, postoperative radiotherapy is recommended following sub-total resection. BRAFV600E mutation is the principal oncogenic driver in the papillary variant of craniopharyngiomas. Recently, a dramatic tumor reduction has been reported in a patient with BRAFV600E mutated, multiply recurrent papillary craniopharyngioma using a combination therapy of BRAF inhibitor dabrafenib and MEK inhibitor trametinib. Here, we report on near-radical reduction of a growing residual BRAFV600E craniopharyngioma using the same neoadjuvant therapy.

  2. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    PubMed

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. An Examination of the Proteolytic Activity for Bovine Pregnancy-Associated Glycoprotein 2 and 12

    PubMed Central

    Telugu, Bhanu Prakash V.L.; Palmier, Mark O.; Van Doren, Steven R.; Green, Jonathan A.

    2010-01-01

    The pregnancy-associated glycoproteins (PAGs) represent a complex group of putative aspartic peptidases expressed exclusively in the placentas of species in the Artiodactyla order. The ruminant PAGs segregate into two classes -the ‘ancient’ and ‘modern’ PAGs. Some of the modern PAGs possess alterations in the catalytic center that are predicted to preclude their ability to act as peptidases. The ancient ruminant PAGs in contrast are thought to be peptidases, although, no proteolytic activity has been described for these members. The goal of this present study was to investigate (1) if the ancient bovine PAGs (PAGs-2 and -12) have proteolytic activity, and (2) if there are any differences in activity between these two closely related members. Recombinant bovine PAGs-2 and -12 were expressed in a baculovirus expression system and the purified proteins were analyzed for proteolytic activity against a synthetic fluorescent cathepsin D/E substrate. Both proteins exhibited proteolytic activity with acidic pH optima. The kcat/KM for bovine PAG-2 was 2.7×105 M−1s−1 and for boPAG-12 it was 6.8×104 M−1s−1. The enzymes were inhibited by pepstatin A with a Ki of 0.56 and 7.5 nM for boPAG-2 and boPAG-12, respectively. This is the first report describing proteolytic activity in PAGs from ruminant ungulates. PMID:20030586

  4. GATA2 mutations in patients with acute myeloid leukemia-paired samples analyses show that the mutation is unstable during disease evolution.

    PubMed

    Hou, Hsin-An; Lin, Yun-Chu; Kuo, Yuan-Yeh; Chou, Wen-Chien; Lin, Chien-Chin; Liu, Chieh-Yu; Chen, Chien-Yuan; Lin, Liang-In; Tseng, Mei-Hsuan; Huang, Chi-Fei; Chiang, Ying-Chieh; Liu, Ming-Chih; Liu, Chia-Wen; Tang, Jih-Luh; Yao, Ming; Huang, Shang-Yi; Ko, Bor-Sheng; Hsu, Szu-Chun; Wu, Shang-Ju; Tsay, Woei; Chen, Yao-Chang; Tien, Hwei-Fang

    2015-02-01

    Recently, mutations of the GATA binding protein 2 (GATA2) gene were identified in acute myeloid leukemia (AML) patients with CEBPA double mutations (CEBPA (double-mut)), but the interaction of this mutation with other genetic alterations and its dynamic changes during disease progression remain to be determined. In this study, 14 different missense GATA2 mutations, which were all clustered in the highly conserved N-terminal zinc finger 1 domain, were identified in 27.4, 6.7, and 1 % of patients with CEBPA (double-mut), CEBPA (single-mut), and CEBPA wild type, respectively. All but one patient with GATA2 mutation had concurrent CEBPA mutation. GATA2 mutations were closely associated with younger age, FAB M1 subtype, intermediate-risk cytogenetics, expression of HLA-DR, CD7, CD15, or CD34 on leukemic cells, and CEBPA mutation, but negatively associated with FAB M4 subtype, favorable-risk cytogenetics, and NPM1 mutation. Patients with GATA2 mutation had significantly better overall survival and relapse-free survival than those without GATA2 mutation. Sequential analysis showed that the original GATA2 mutations might be lost during disease progression in GATA2-mutated patients, while novel GATA2 mutations might be acquired at relapse in GATA2-wild patients. In conclusion, AML patients with GATA2 mutations had distinct clinic-biological features and a favorable prognosis. GATA2 mutations might be lost or acquired at disease progression, implying that it was a second hit in the leukemogenesis of AML, especially those with CEBPA mutation.

  5. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis.

    PubMed

    Chen, Dong; Huang, Jun-Fu; Liu, Kai; Zhang, Li-Qun; Yang, Zhao; Chuai, Zheng-Ran; Wang, Yun-Xia; Shi, Da-Chuan; Huang, Qing; Fu, Wei-Ling

    2014-01-01

    Colorectal cancer (CRC) is a heterogeneous disease with multiple underlying causative genetic mutations. The B-type Raf proto-oncogene (BRAF) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade during CRC. The presence of BRAFV600E mutation can determine the response of a tumor to chemotherapy. However, the association between the BRAFV600E mutation and the clinicopathological features of CRC remains controversial. We performed a systematic review and meta-analysis to estimate the effect of BRAFV600E mutation on the clinicopathological characteristics of CRC. We identified studies that examined the effect of BRAFV600E mutation on CRC within the PubMed, ISI Science Citation Index, and Embase databases. The effect of BRAFV600E on outcome parameters was estimated by odds ratios (ORs) with 95% confidence intervals (CIs) for each study using a fixed effects or random effects model. 25 studies with a total of 11,955 CRC patients met inclusion criteria. The rate of BRAFV600 was 10.8% (1288/11955). The BRAFV600E mutation in CRC was associated with advanced TNM stage, poor differentiation, mucinous histology, microsatellite instability (MSI), CpG island methylator phenotype (CIMP). This mutation was also associated with female gender, older age, proximal colon, and mutL homolog 1 (MLH1) methylation. This meta-analysis demonstrated that BRAFV600E mutation was significantly correlated with adverse pathological features of CRC and distinct clinical characteristics. These data suggest that BRAFV600E mutation could be used to supplement standard clinical and pathological staging for the better management of individual CRC patients, and could be considered as a poor prognostic marker for CRC.

  6. HER2 activating mutations are targets for colorectal cancer treatment

    PubMed Central

    Kavuri, Shyam M.; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M.; Migliardi, Giorgia; Searleman, Adam C.; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A.; Bertotti, Andrea; Bose, Ron

    2015-01-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of colorectal cancer patients. Introduction of the HER2 mutations, S310F, L755S, V777L, V842I, and L866M, into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutations are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors, neratinib and afatinib. HER2 gene sequencing of 48 cetuximab resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) WT colorectal cancer patient-derived xenografts (PDX’s) identified 4 PDX’s with HER2 mutations. HER2 targeted therapies were tested on two PDX’s. Treatment with a single HER2 targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2 targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2 mutated PDX’s. PMID:26243863

  7. Screening for Pancreatic Adenocarcinoma in BRCA2 Mutation Carriers: Results of a Disease Simulation Model.

    PubMed

    Pandharipande, Pari V; Jeon, Alvin; Heberle, Curtis R; Dowling, Emily C; Kong, Chung Yin; Chung, Daniel C; Brugge, William R; Hur, Chin

    2015-12-01

    BRCA2 mutation carriers are at increased risk for multiple cancers including pancreatic adenocarcinoma (PAC). Our goal was to compare the effectiveness of different PAC screening strategies in BRCA2 mutation carriers, from the standpoint of life expectancy. A previously published Markov model of PAC was updated and extended to incorporate key aspects of BRCA2 mutation carrier status, including competing risks of breast- and ovarian-cancer specific mortality. BRCA2 mutation carriers were modeled and analyzed as the primary cohort for the analysis. Additional higher risk BRCA2 cohorts that were stratified according to the number of first-degree relatives (FDRs) with PAC were also analyzed. For each cohort, one-time screening and annual screening were evaluated, with screening starting at age 50 in both strategies. The primary outcome was net gain in life expectancy (LE) compared to no screening. Sensitivity analysis was performed on key model parameters, including surgical mortality and MRI test performance. One-time screening at age 50 resulted in a LE gain of 3.9 days for the primary BRCA2 cohort, and a gain of 5.8 days for those with BRCA2 and one FDR. Annual screening resulted in LE loss of 12.9 days for the primary cohort and 1.3 days for BRCA2 carriers with 1 FDR, but resulted in 20.6 days gained for carriers with 2 FDRs and 260 days gained for those with 3 FDRs. For patients with ≥ 3 FDRs, annual screening starting at an earlier age (i.e. 35-40) was optimal. Among BRCA2 mutation carriers, aggressive screening regimens may be ineffective unless additional indicators of elevated risk (e.g., 2 or more FDRs) are present. More clinical studies are needed to confirm these findings. American Cancer Society - New England Division - Ellison Foundation Research Scholar Grant (RSG-15-129-01-CPHPS).

  8. Two E-selectin ligands, BST-2 and LGALS3BP, predict metastasis and poor survival of ER-negative breast cancer.

    PubMed

    Woodman, Natalie; Pinder, Sarah E; Tajadura, Virginia; Le Bourhis, Xuefen; Gillett, Cheryl; Delannoy, Philippe; Burchell, Joy M; Julien, Sylvain

    2016-07-01

    Distant metastases account for the majority of cancer-related deaths in breast cancer. The rate and site of metastasis differ between estrogen receptor (ER)-negative and ER-positive tumours, and metastatic fate can be very diverse even within the ER-negative group. Characterisation of new pro-metastatic markers may help to identify patients with higher risk and improve their care accordingly. Selectin ligands aberrantly expressed by cancer cells promote metastasis by enabling interaction between circulating tumour cells and endothelial cells in distant organs. These ligands consist in carbohydrate molecules, such as sialyl-Lewis x antigen (sLex), borne by glycoproteins or glycolipids on the cancer cell surface. We have previously demonstrated that the molecular scaffold presenting sLex to selectins (e.g. glycolipid vs. glycoproteins) was crucial for these interactions to occur. Moreover, we reported that detection of sLex alone in breast carcinomas was only of limited prognostic value. However, since sLex was found to be carried by several glycoproteins in cancer cells, we hypothesized that the combination of the carbohydrate with its carriers could be more relevant than each marker independently. In this study, we addressed this question by analysing sLex expression together with two glycoproteins (BST-2 and LGALS3BP), shown to interact with E-selectin in a carbohydrate-dependent manner, in a cohort of 249 invasive breast cancers. We found both glycoproteins to be associated with distant metastasis risk and poorer survival. Importantly, concomitant high expression of BST-2 with sLex defined a sub-group of patients with ER-negative tumours displaying higher risks of liver and brain metastasis and a 3-fold decreased survival rate.

  9. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-1-glycoproteins immunological test system....5420 Alpha-1-glycoproteins immunological test system. (a) Identification. An alpha-1-glycoproteins... alpha-1-glycoproteins (a group of plasma proteins found in the alpha-1 group when subjected to...

  10. Solubilization of glycoproteins of envelope viruses by detergents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.

    1986-11-20

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-..beta..-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis.more » Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines.« less

  11. Analyzing 5'HS3 and 5'HS4 LCR core regions and NF-E2 in Iranian thalassemia intermedia patients with normal or carrier status for beta-globin mutations.

    PubMed

    Neishabury, Maryam; Azarkeivan, Azita; Oberkanins, Christian; Abedini, Seyedeh Sedigheh; Zamani, Shahbaz; Najmabadi, Hossein

    2011-03-15

    Our data on 114 Iranian individuals with thalassemia intermedia phenotype revealed homozygous or compound heterozygous beta-globin mutations to be the predominant disease factor in 86.2% of cases. However, 8.2% of these individuals were found to be heterozygous or wild type for beta-globin mutations. In search for determinants outside of the beta-globin gene, which could be responsible for the unexpected thalassemia intermedia phenotype in these subjects, we screened the alpha-globin genes, the 5'HS3 and 5'HS4 regions of the beta-globin LCR, and the NF-E2 transcription factor for sequence variations in selected individuals. The -3.7 deletion was the only alpha-globin mutation detected, and no alterations were found in 5'HS3 and NF-E2. Sequence analysis of the 5'HS4 LCR core region identified three known SNPs in a single patient, who required irregular blood transfusions. The A/G polymorphism in the 5'HS4 palindromic region was also observed to be variable. Family studies were carried out on a female G/G homozygous patient, who received irregular blood transfusions. Her father, who had the same heterozygous IVSII-1 beta-globin mutation but the A/G genotype at the 5'HS4 palindromic site, presented with mild anemia and no requirement for blood transfusions. This suggests an impact of SNPs in the 5'HS4 LCR core region on the thalassemia phenotype and offers an interesting subject for further investigations in the Iranian population. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. The G glycoprotein of respiratory syncytial virus depresses respiratory rates through the CX3C motif and substance P.

    PubMed

    Tripp, Ralph A; Dakhama, Azzeddine; Jones, Les P; Barskey, Albert; Gelfand, Erwin W; Anderson, Larry J

    2003-06-01

    Respiratory syncytial virus (RSV) infection in the neonate can alter respiratory rates, i.e., lead to episodes of apnea. We show that RSV G glycoprotein reduces respiratory rates associated with the induction of substance P (SP) and G glycoprotein-CX3CR1 interaction, an effect that is inhibited by treatment with anti-G glycoprotein, anti-SP, or anti-CX3CR1 monoclonal antibodies. These data suggest new approaches for treating some aspects of RSV disease.

  13. The G Glycoprotein of Respiratory Syncytial Virus Depresses Respiratory Rates through the CX3C Motif and Substance P

    PubMed Central

    Tripp, Ralph A.; Dakhama, Azzeddine; Jones, Les P.; Barskey, Albert; Gelfand, Erwin W.; Anderson, Larry J.

    2003-01-01

    Respiratory syncytial virus (RSV) infection in the neonate can alter respiratory rates, i.e., lead to episodes of apnea. We show that RSV G glycoprotein reduces respiratory rates associated with the induction of substance P (SP) and G glycoprotein-CX3CR1 interaction, an effect that is inhibited by treatment with anti-G glycoprotein, anti-SP, or anti-CX3CR1 monoclonal antibodies. These data suggest new approaches for treating some aspects of RSV disease. PMID:12743318

  14. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia.

    PubMed

    Yang, Chunzhang; Zhuang, Zhengping; Fliedner, Stephanie M J; Shankavaram, Uma; Sun, Michael G; Bullova, Petra; Zhu, Roland; Elkahloun, Abdel G; Kourlas, Peter J; Merino, Maria; Kebebew, Electron; Pacak, Karel

    2015-01-01

    We have investigated genetic/pathogenetic factors associated with a new clinical entity in patients presenting with pheochromocytoma/paraganglioma (PHEO/PGL) and polycythemia. Two patients without hypoxia-inducible factor 2α (HIF2A) mutations, who presented with similar clinical manifestations, were analyzed for other gene mutations, including prolyl hydroxylase (PHD) mutations. We have found for the first time a germ-line mutation in PHD1 in one patient and a novel germ-line PHD2 mutation in a second patient. Both mutants exhibited reduced protein stability with substantial quantitative protein loss and thus compromised catalytic activities. Due to the unique association of patients' polycythemia with borderline or mildly elevated erythropoietin (EPO) levels, we also performed an in vitro sensitivity assay of erythroid progenitors to EPO and for EPO receptor (EPOR) expression. The results show inappropriate hypersensitivity of erythroid progenitors to EPO in these patients, indicating increased EPOR expression/activity. In addition, the present study indicates that HIF dysregulation due to PHD mutations plays an important role in the pathogenesis of these tumors and associated polycythemia. The PHD1 mutation appears to be a new member contributing to the genetic landscape of this novel clinical entity. Our results support the existence of a specific PHD1- and PHD2-associated PHEO/PGL-polycythemia disorder. • A novel germ-l i n e PHD1 mutation causing heochromocytoma/paraganglioma and polycythemia. • Increased EPOR activity and inappropriate hypersensitivity of erythroid progenitors to EPO.

  15. Improved survival with vemurafenib in melanoma with BRAF V600E mutation.

    PubMed

    Chapman, Paul B; Hauschild, Axel; Robert, Caroline; Haanen, John B; Ascierto, Paolo; Larkin, James; Dummer, Reinhard; Garbe, Claus; Testori, Alessandro; Maio, Michele; Hogg, David; Lorigan, Paul; Lebbe, Celeste; Jouary, Thomas; Schadendorf, Dirk; Ribas, Antoni; O'Day, Steven J; Sosman, Jeffrey A; Kirkwood, John M; Eggermont, Alexander M M; Dreno, Brigitte; Nolop, Keith; Li, Jiang; Nelson, Betty; Hou, Jeannie; Lee, Richard J; Flaherty, Keith T; McArthur, Grant A

    2011-06-30

    Phase 1 and 2 clinical trials of the BRAF kinase inhibitor vemurafenib (PLX4032) have shown response rates of more than 50% in patients with metastatic melanoma with the BRAF V600E mutation. We conducted a phase 3 randomized clinical trial comparing vemurafenib with dacarbazine in 675 patients with previously untreated, metastatic melanoma with the BRAF V600E mutation. Patients were randomly assigned to receive either vemurafenib (960 mg orally twice daily) or dacarbazine (1000 mg per square meter of body-surface area intravenously every 3 weeks). Coprimary end points were rates of overall and progression-free survival. Secondary end points included the response rate, response duration, and safety. A final analysis was planned after 196 deaths and an interim analysis after 98 deaths. At 6 months, overall survival was 84% (95% confidence interval [CI], 78 to 89) in the vemurafenib group and 64% (95% CI, 56 to 73) in the dacarbazine group. In the interim analysis for overall survival and final analysis for progression-free survival, vemurafenib was associated with a relative reduction of 63% in the risk of death and of 74% in the risk of either death or disease progression, as compared with dacarbazine (P<0.001 for both comparisons). After review of the interim analysis by an independent data and safety monitoring board, crossover from dacarbazine to vemurafenib was recommended. Response rates were 48% for vemurafenib and 5% for dacarbazine. Common adverse events associated with vemurafenib were arthralgia, rash, fatigue, alopecia, keratoacanthoma or squamous-cell carcinoma, photosensitivity, nausea, and diarrhea; 38% of patients required dose modification because of toxic effects. Vemurafenib produced improved rates of overall and progression-free survival in patients with previously untreated melanoma with the BRAF V600E mutation. (Funded by Hoffmann-La Roche; BRIM-3 ClinicalTrials.gov number, NCT01006980.).

  16. CHEK2 mutations and the risk of papillary thyroid cancer.

    PubMed

    Siołek, Monika; Cybulski, Cezary; Gąsior-Perczak, Danuta; Kowalik, Artur; Kozak-Klonowska, Beata; Kowalska, Aldona; Chłopek, Małgorzata; Kluźniak, Wojciech; Wokołorczyk, Dominika; Pałyga, Iwona; Walczyk, Agnieszka; Lizis-Kolus, Katarzyna; Sun, Ping; Lubiński, Jan; Narod, Steven A; Góźdż, Stanisław

    2015-08-01

    Mutations in the cell cycle checkpoint kinase 2 (CHEK2) tumor suppressor gene are associated with multi-organ cancer susceptibility including cancers of the breast and prostate. A genetic association between thyroid and breast cancer has been suggested, however little is known about the determinants of this association. To characterize the association of CHEK2 mutations with thyroid cancer, we genotyped 468 unselected patients with papillary thyroid cancer and 468 (matched) cancer-free controls for four founder mutations of CHEK2 (1100delC, IVS2 + 1G>A, del5395 and I157T). We compared the family histories reported by patients with a CHEK2 mutation to those of non-carriers. A CHEK2 mutation was seen in 73 of 468 (15.6%) unselected patients with papillary thyroid cancer, compared to 28 of 460 (6.0%) age- and sex-matched controls (OR 3.3; p < 0.0001). A truncating mutation (IVS2 + 1G>A, 1100delC or del5395) was associated with a higher risk of thyroid cancer (OR = 5.7; p = 0.006), than was the missense mutation I157T (OR = 2.8; p = 0.0001). CHEK2 mutation carriers reported a family history of breast cancer 2.2 times more commonly than non-carriers (16.4% vs.8.1%; p = 0.05). A CHEK2 mutation was found in seven of 11 women (63%) with multiple primary cancers of the breast and thyroid (OR = 10; p = 0.0004). These results suggest that CHEK2 mutations predispose to thyroid cancer, familial aggregations of breast and thyroid cancer and to double primary cancers of the breast and thyroid. © 2015 UICC.

  17. Proteomics screen to reveal molecular changes mediated by C722G missense mutation in CHRM2 gene.

    PubMed

    Hou, Dongyan; Chen, Ying; Liu, Jiamei; Xu, Lin; Zhang, Zhiyong; Zhang, Juan; Wang, Hua; Wang, Xin; Chen, Jin; Zhao, Rongrui; Hu, Aihua; Hakonarson, Hakon; Zhang, Lin; Shen, Yan

    2013-08-26

    Previously, we reported a missense mutation (C722G) in the M2-muscarinic acetylcholine receptor (CHRM2) gene associated with familial dilated cardiomyopathy. However, the exact molecular mechanisms by the related protein changes of CHRM2-C722G mutation induced are still unclear. CHRM2 and CHRM2-C722G lentiviral vector was infected to CHO cells. Proteomic analysis by label-free shotgun strategy and the STRING 9.0 software were performed. A total of 102 proteins with at least 2-fold change in the CHRM2-C722G group were identified, 42 proteins were up-regulated, whereas 57 were down-regulated. These altered proteins belong to three broad functional categories: (i) metabolic (e.g. Cytosolic acyl coenzyme A thioester hydrolase, Malate dehydrogenase); (ii) cytoskeletal (e.g. Actin-related protein, Myosin light polypeptide 6 and Alpha-actinin-1) and (iii) stress response (e.g. heat shock protein 70, Ras-related protein Rab-10). Interestingly, the marked differences in the expression of selected eight proteins (change >4.0-fold), were connected with many proteins related to apoptosis and immune/inflammatory response such as: FOS, BAX, MYC, TP53 and IL6. This novel study demonstrated for the first time a full-scale screening of the proteomics research by CHRM2-C722G mutation and profiled 102 changed proteins, of which, eight might be critical in cardiac dysfunction for future mapping. It was a full-scale screening of the proteomics research by CHRM2-C722G mutation. These proteins might serve as valuable biomarkers that could predict the presence of a precursor field. These proteins might serve to further explore the pathophysiological mechanisms in familial DCM patients with C176W mutation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Novel (ovario) leukodystrophy related to AARS2 mutations

    PubMed Central

    Dallabona, Cristina; Diodato, Daria; Kevelam, Sietske H.; Haack, Tobias B.; Wong, Lee-Jun; Salomons, Gajja S.; Baruffini, Enrico; Melchionda, Laura; Mariotti, Caterina; Strom, Tim M.; Meitinger, Thomas; Prokisch, Holger; Chapman, Kim; Colley, Alison; Rocha, Helena; Őunap, Katrin; Schiffmann, Raphael; Salsano, Ettore; Savoiardo, Mario; Hamilton, Eline M.; Abbink, Truus E. M.; Wolf, Nicole I.; Ferrero, Ileana; Lamperti, Costanza; Zeviani, Massimo; Vanderver, Adeline

    2014-01-01

    Objectives: The study was focused on leukoencephalopathies of unknown cause in order to define a novel, homogeneous phenotype suggestive of a common genetic defect, based on clinical and MRI findings, and to identify the causal genetic defect shared by patients with this phenotype. Methods: Independent next-generation exome-sequencing studies were performed in 2 unrelated patients with a leukoencephalopathy. MRI findings in these patients were compared with available MRIs in a database of unclassified leukoencephalopathies; 11 patients with similar MRI abnormalities were selected. Clinical and MRI findings were investigated. Results: Next-generation sequencing revealed compound heterozygous mutations in AARS2 encoding mitochondrial alanyl-tRNA synthetase in both patients. Functional studies in yeast confirmed the pathogenicity of the mutations in one patient. Sanger sequencing revealed AARS2 mutations in 4 of the 11 selected patients. The 6 patients with AARS2 mutations had childhood- to adulthood-onset signs of neurologic deterioration consisting of ataxia, spasticity, and cognitive decline with features of frontal lobe dysfunction. MRIs showed a leukoencephalopathy with striking involvement of left-right connections, descending tracts, and cerebellar atrophy. All female patients had ovarian failure. None of the patients had signs of a cardiomyopathy. Conclusions: Mutations in AARS2 have been found in a severe form of infantile cardiomyopathy in 2 families. We present 6 patients with a new phenotype caused by AARS2 mutations, characterized by leukoencephalopathy and, in female patients, ovarian failure, indicating that the phenotypic spectrum associated with AARS2 variants is much wider than previously reported. PMID:24808023

  19. Serum AMH levels in healthy women from BRCA1/2 mutated families: are they reduced?

    PubMed

    van Tilborg, Theodora C; Derks-Smeets, Inge A P; Bos, Anna M E; Oosterwijk, Jan C; van Golde, Ron J; de Die-Smulders, Christine E; van der Kolk, Lizet E; van Zelst-Stams, Wendy A G; Velthuizen, Maria E; Hoek, Annemieke; Eijkemans, Marinus J C; Laven, Joop S E; Ausems, Margreet G E M; Broekmans, Frank J M

    2016-11-01

    were relatively young. Power was insufficient to analyze BRCA1 and BRCA2 mutation carriers separately. AMH levels may have been influenced by the use of hormonal contraceptives, though similar proportions of carriers and non-carriers were current users and adjustments were made to correct for potential confounding in our analysis. Limitations of the current analysis and limitations of the existing literature argue for prospective, well-controlled follow-up studies with recurrent AMH measurements to determine whether carriers might be at risk for low ovarian reserve and to definitively guide care. This study was partially financially supported by a personal grant for Inge A.P. Derks-Smeets, kindly provided by the Dutch Cancer Society (Grant Number UM 2011-5249). Theodora C. van Tilborg, Inge A.P. Derks-Smeets, Anna M.E. Bos, Jan C. Oosterwijk, Christine E. de Die-Smulders, Lizet E. van der Kolk, Wendy A.G. van Zelst-Stams, Maria E. Velthuizen, Marinus J.C. Eijkemans and Margreet G.E.M. Ausems have nothing to disclose. Ron J. van Golde has received unrestricted research grants from Ferring and Merck Serono, outside the submitted work. Annemieke Hoek received an unrestricted educational grant from Ferring pharmaceutical BV, The Netherlands and a speaker's fee for post graduate education from MSD pharmaceutical company, outside the submitted work. Joop S.E. Laven has received unrestricted research grants from Ferring, Merck Serono, Merck Sharpe & Dome, Organon, and Schering Plough, outside the submitted work. Frank J.M. Broekmans is a member of the external advisory board for Merck Serono (The Netherlands), outside the submitted work. NTR no. 4324. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A recombinant pseudorabies virus expressing rabies virus glycoprotein: safety and immunogenicity in dogs.

    PubMed

    Yuan, Ziguo; Zhang, Shoufeng; Liu, Ye; Zhang, Fei; Fooks, Anthony R; Li, Qianxue; Hu, Rongliang

    2008-03-04

    Several recombinant vaccines expressing the rabies virus glycoprotein have been developed, particularly for the oral vaccination of wildlife. While these vaccines induce protective immunity in some animal species such as foxes, they are less effective in others. Pseudorabies virus (PRV) has been licensed for use as a live vaccine in pigs and possesses an excellent safety and efficacy record. We have used it to construct a recombinant virus, rPRV/eGFP/rgp, expressing the rabies virus glycoprotein. This recombinant virus has been shown to be safe for dogs by oral and intramuscular routes of inoculation and was demonstrated to induce immune responses against both pseudorabies and rabies in dogs after a single oral dose of 2 x 10(7.0) plaque forming units (PFU). Neutralizing antibody titers against rabies reached > 0.5 IU/ml and 1:64-1:128 against pseudorabies by 5 weeks post-vaccination in all dogs, indicating that the pseudorabies virus vector infected dogs and replicated in vivo, and that the rabies virus glycoprotein had been expressed and an effective immune response elicited. Antibody titers were maintained for over 6 months. This suggests that pseudorabies virus could be an effective live vector for recombinant rabies oral vaccination.

  1. A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors.

    PubMed

    Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L; Parrish, Walker P; Shonesy, Brian C; Marks, Christian R; Mortlock, Douglas P; Nakagawa, Terunaga; Sutcliffe, James S; Colbran, Roger J

    2017-02-22

    Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple Ca

  2. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

    PubMed Central

    Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; Aziz, A.; Godfrey, A.L.; Hinton, J.; Martincorena, I.; Van Loo, P.; Jones, A.V.; Guglielmelli, P.; Tarpey, P.; Harding, H.P.; Fitzpatrick, J.D.; Goudie, C.T.; Ortmann, C.A.; Loughran, S.J.; Raine, K.; Jones, D.R.; Butler, A.P.; Teague, J.W.; O’Meara, S.; McLaren, S.; Bianchi, M.; Silber, Y.; Dimitropoulou, D.; Bloxham, D.; Mudie, L.; Maddison, M.; Robinson, B.; Keohane, C.; Maclean, C.; Hill, K.; Orchard, K.; Tauro, S.; Du, M.-Q.; Greaves, M.; Bowen, D.; Huntly, B.J.P.; Harrison, C.N.; Cross, N.C.P.; Ron, D.; Vannucchi, A.M.; Papaemmanuil, E.; Campbell, P.J.; Green, A.R.

    2014-01-01

    BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with

  3. Use of lambdagt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-10-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector lambdagt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the lambdagt11 vector, the cloned proteins were expressed in Escherichia coli as ..beta..-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of (/sup 14/C)glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX;more » gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved.« less

  4. The role of turmerones on curcumin transportation and P-glycoprotein activities in intestinal Caco-2 cells.

    PubMed

    Yue, Grace G L; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K M; Hon, Po-Ming; Lee, Mavis Y H; Kennelly, Edward J; Deng, Gary; Yeung, Simon K; Cassileth, Barrie R; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B S

    2012-03-01

    The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases.

  5. The Role of Turmerones on Curcumin Transportation and P-Glycoprotein Activities in Intestinal Caco-2 Cells

    PubMed Central

    Yue, Grace G.L.; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K.M.; Hon, Po-Ming; Lee, Mavis Y.H.; Kennelly, Edward J.; Deng, Gary; Yeung, Simon K.; Cassileth, Barrie R.; Fung, Kwok-Pui; Leung, Ping-Chung

    2012-01-01

    Abstract The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases. PMID:22181075

  6. Surgical implications of B-RafV600E mutation in fine-needle aspiration of thyroid nodules

    PubMed Central

    Mekel, Michal; Nucera, Carmelo; Hodin, Richard A.; Parangi, Sareh

    2013-01-01

    BACKGROUND Management of patients with thyroid nodules is based on establishing an accurate diagnosis; however, differentiating benign from malignant lesions preoperatively is not always possible using current cytological techniques. Novel molecular testing on cytological material could lead to clearer treatment algorithms. B-RafV600E mutation is the most common genetic alteration in thyroid cancer, specifically found in papillary thyroid cancer (PTC), and usually reported to be associated with aggressive disease. DATA SOURCE A literature search using PubMed identified all the pertinent literature on the identification and utilization of the B-RafV600E mutation in thyroid cancer. CONCLUSIONS The utility of using B-Raf mutation testing for nodules with indeterminate cytology is limited since many of those nodules (benign and malignant) do not harbor B-Raf mutations. However, when the pathologist sees cytological features suspicious for PTC, B-RafV600E mutation analysis may enhance the assessment of preoperative risks for PTC, directing a more aggressive initial surgical management when appropriate. PMID:20637346

  7. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression

    PubMed Central

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-01-01

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment. PMID:27231931

  8. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression.

    PubMed

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-05-24

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm'-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment.

  9. Glycoprotein of the wall of sycamore tissue-culture cells.

    PubMed

    Heath, M F; Northcote, D H

    1971-12-01

    1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.

  10. Survival from breast cancer in patients with CHEK2 mutations.

    PubMed

    Huzarski, T; Cybulski, C; Wokolorczyk, D; Jakubowska, A; Byrski, T; Gronwald, J; Domagała, P; Szwiec, M; Godlewski, D; Kilar, E; Marczyk, E; Siołek, M; Wiśniowski, R; Janiszewska, H; Surdyka, D; Sibilski, R; Sun, P; Lubiński, J; Narod, S A

    2014-04-01

    The purpose of this study is to estimate 10-year survival rates for patients with early onset breast cancer, with and without a CHEK2 mutation and to identify prognostic factors among CHEK2-positive breast cancer patients. 3,592 women with stage I to stage III breast cancer, diagnosed at or below age 50, were tested for four founder mutations in the CHEK2 gene. Information on tumor characteristics and on treatments received was retrieved from medical records. Dates of death were obtained from the Poland Vital Statistics Registry. Survival curves were generated for the mutation-positive and -negative sub-cohorts. Predictors of survival were determined among CHEK2 carriers using the Cox proportional hazards model. 3,592 patients were eligible for the study, of whom 140 (3.9 %) carried a CHEK2-truncating mutation and 347 (9.7 %) carried a missense mutation. The mean follow-up was 8.9 years. The 10-year survival for all CHEK2 mutation carriers was 78.8 % (95 % CI 74.6-83.2 %) and for non-carriers was 80.1 % (95 % CI 78.5-81.8 %). Among women with a CHEK2-positive breast cancer, the adjusted hazard ratio associated with ER-positive status was 0.88 (95 % CI 0.48-1.62). Among women with an ER-positive breast cancer, the adjusted hazard ratio associated with a CHEK2 mutation was 1.31 (95 % CI 0.97-1.77). The survival of women with breast cancer and a CHEK2 mutation is similar to that of patients without a CHEK2 mutation.

  11. Determinant for Endoplasmic Reticulum Retention in the Luminal Domain of the Human Cytomegalovirus US3 Glycoprotein

    PubMed Central

    Lee, Sungwook; Park, Boyoun; Ahn, Kwangseog

    2003-01-01

    US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. To define the endoplasmic reticulum retention sequence in more detail, we have generated a series of deletion and point mutants of the US3 protein. By analyzing the rate of intracellular transport and immunolocalization of the mutants, we have identified Ser58, Glu63, and Lys64 as crucial for retention, suggesting that the retention signal of the US3 protein has a complex spatial arrangement and does not comprise a contiguous sequence of amino acids. We also show that a modified US3 protein with a mutation in any of these amino acids maintains its ability to bind class I molecules; however, such mutated proteins are no longer retained in the endoplasmic reticulum and are not able to block the cell surface expression of class I molecules. These findings indicate that the properties that allow the US3 glycoprotein to be localized in the endoplasmic reticulum and bind major histocompatibility complex class I molecules are located in different parts of the molecule and that the ability of US3 to block antigen presentation is due solely to its ability to retain class I molecules in the endoplasmic reticulum. PMID:12525649

  12. Characterization of pH-sensitive molecular switches that trigger the structural transition of vesicular stomatitis virus glycoprotein from the postfusion state toward the prefusion state.

    PubMed

    Ferlin, Anna; Raux, Hélène; Baquero, Eduard; Lepault, Jean; Gaudin, Yves

    2014-11-01

    Vesicular stomatitis virus (VSV; the prototype rhabdovirus) fusion is triggered at low pH and mediated by glycoprotein G, which undergoes a low-pH-induced structural transition. A unique feature of rhabdovirus G is that its conformational change is reversible. This allows G to recover its native prefusion state at the viral surface after its transport through the acidic Golgi compartments. The crystal structures of G pre- and postfusion states have been elucidated, leading to the identification of several acidic amino acid residues, clustered in the postfusion trimer, as potential pH-sensitive switches controlling the transition back toward the prefusion state. We mutated these residues and produced a panel of single and double mutants whose fusion properties, conformational change characteristics, and ability to pseudotype a virus lacking the glycoprotein gene were assayed. Some of these mutations were also introduced in the genome of recombinant viruses which were further characterized. We show that D268, located in the segment consisting of residues 264 to 273, which refolds into postfusion helix F during G structural transition, is the major pH sensor while D274, D395, and D393 have additional contributions. Furthermore, a single passage of recombinant virus bearing the mutation D268L (which was demonstrated to stabilize the G postfusion state) resulted in a pseudorevertant with a compensatory second mutation, L271P. This revealed that the propensity of the segment of residues 264 to 273 to refold into helix F has to be finely tuned since either an increase (mutation D268L alone) or a decrease (mutation L271P alone) of this propensity is detrimental to the virus. Vesicular stomatitis virus enters cells via endocytosis. Endosome acidification induces a structural transition of its unique glycoprotein (G), which mediates fusion between viral and endosomal membranes. G conformational change is reversible upon increases in pH. This allows G to recover its native

  13. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    PubMed

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  14. JAK2 mutations and clinical practice in myeloproliferative neoplasms.

    PubMed

    Tefferi, Ayalew

    2007-01-01

    With the discovery in the last 3 years of novel Janus kinase 2 (JAK2) and thrombopoietin receptor (MPL) mutations, the pathogenetic understanding of and clinical practice for myeloproliferative neoplasms (MPNs) have entered a new era. Each one of these newly discovered mutations, including JAK2V617F, MPLW515L, and a JAK2 exon 12 mutation, has been shown to result in constitutive activation of JAK-STAT signaling and also induce a MPN phenotype in mice. Thus, JAK2 is now considered to be a legitimate target for drug development in MPNs, and small molecule JAK2 inhibitors have already gone through successful preclinical testing, and early-phase human trials in primary myelofibrosis have already begun. Furthermore, JAK2 mutation screening has now become a front-line diagnostic test in the evaluation of both "erythrocytosis" and thrombocytosis and the 2001 World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis have now been revised to incorporate JAK2V617F mutation screening.

  15. Brief Report:MECP2 Mutations in People without Rett Syndrome

    ERIC Educational Resources Information Center

    Suter, Bernhard; Treadwell-Deering, Diane; Zoghbi, Huda Y.; Glaze, Daniel G.; Neul, Jeffrey L.

    2014-01-01

    Mutations in "Methyl-CpG-Binding protein 2" ("MECP2") are commonly associated with the neurodevelopmental disorder Rett syndrome (RTT). However, some people with RTT do not have mutations in "MECP2," and interestingly there have been people identified with "MECP2" mutations that do not have the clinical…

  16. Prevalence of the CHEK2 R95* germline mutation.

    PubMed

    Knappskog, Stian; Leirvaag, Beryl; Gansmo, Liv B; Romundstad, Pål; Hveem, Kristian; Vatten, Lars; Lønning, Per E

    2016-01-01

    While germline CHEK2 mutations have been linked to a moderately elevated cancer risk, to date, a limited number of such mutations have been identified. Recently, we reported a germline nonsense mutation (C283T; R95*), introducing an early stop-codon, in two Norwegian patients diagnosed with locally advanced breast cancer. Both patients were resistant to anthracycline therapy, resembling what has been observed for TP53 mutations. In the present study, we screened a large population based sample, including 3748 non-cancer individuals and 7081 incident cancer cases (breast cancer, n  = 1717; prostate cancer n  = 2501, lung cancer n  = 1331 and colorectal cancer n  = 1532), for the distribution of CHEK2 R95*. We found that 12 individuals (0.11 %) carried the R95* variant: 4 non-cancer individuals (0.11 %), 4 breast cancer cases (0.23 %), and 4 prostate cancer cases (0.16 %). Although the low number of observations precluded formal statistical assessment, our data may indicate an elevated risk for breast (OR: 2.19, 95 % CI: 0.55-8.75) and prostate cancer (OR: 1.5, 95 % CI: 0.36-6.00) associated with CHEK2 R95*. By mining international databanks, we found no individuals carrying the R95* mutation, indicating it to be restricted to the Norwegian population. We provide proof-of-concept that previously unknown CHEK2 germline mutations may be present in certain populations. Notably, germline mutations in tumours are in general missed by contemporary massive parallel sequencing strategies, since tumour mutations are usually filtered against the germline. The fact that the CHEK2 R95* mutation may be associated with resistance to anthracyclines in cancer patients emphasizes its possible clinical importance.

  17. Familial acute necrotizing encephalopathy without RANBP2 mutation: Poor outcome.

    PubMed

    Nishimura, Naoko; Higuchi, Yoshihisa; Kimura, Nobusuke; Nozaki, Fumihito; Kumada, Tomohiro; Hoshino, Ai; Saitoh, Makiko; Mizuguchi, Masashi

    2016-11-01

    Most childhood cases of acute necrotizing encephalopathy (ANE) involve neither family history nor recurrence. ANE occasionally occurs, however, as a familial disorder or recurs in Caucasian patients. A mutation of RAN-binding protein 2 (RANBP2) has been discovered in more than one half of familial or recurrent ANE patients. In contrast, there has been no report of this mutation in East Asia. Here, we report the first sibling cases of typical ANE in Japan, with poor outcome. DNA analysis of genes associated with ANE or other encephalopathies, including RANBP2 and carnitine palmitoyl transferase II (CPT2), indicated neither mutations nor disease-related polymorphisms. On literature review, recurrent or familial ANE without the RANBP2 mutation has a more severe outcome and greater predilection for male sex than that with the RANBP2 mutation. This suggests that there are unknown gene mutations linked to ANE. © 2016 Japan Pediatric Society.

  18. Distribution of human papilloma virus type 16 E6/E7 gene mutation in cervical precancer or cancer: A case control study in Guizhou Province, China.

    PubMed

    Yang, Yingjie; Ren, Jie; Zhang, Qizhu

    2016-02-01

    HPV-16 varies geographically and is correlated with cervical cancer genesis and progression. This study aimed to determine the distribution of HPV-16 E6/E7 genetic variation in patients with invasive cervical cancer or precancer in Guizhou Province, China. A case-control study was designed, and the distribution of HPV-16 E6/E7 genetic variation was compared among women with cervical cancer, precancer, and sexually active without cervical lesion. HPV infection was detected through flow-through hybridization and gene chip techniques to determine the prevalence of HPV 16 E6/E7 genetic variation. Among 90 specimens (30 cervical cancer, 30 precancer, 30 controls), 81 were subjected to HPV-16 E6/E7 gene sequencing. The rates of DNA sequence mutation and amino acid mutation were 76.5% (62/81) and 66.7% (54/81), respectively. Both E6 and E7 genes showed higher mutation rate than their prototypes. The prevalence of E6/E7 mutation significantly differed between the cervical cancer and the controls (P < 0.05) and between the cervical precancer and the controls (P < 0.05). Mutations were simultaneously detected at the E6-D32E (T96A) and E7-M28V (A82G)/L94P (T281C) sites of the amino acid sequence. The most common genetic variation was D32E/M28V/L94P, which accounted for 35.8% of the cases (29/81). D32E/M28V/L94P mutation was higher in the cervical cancer and precancer compared with the prototype. HPV-16 E6/E7 genetic variations, such as D32E/M28V/L94P, are more prevalent in cervical cancer or precancer than those in the controls. The possible correlation between genetic variation and cancerigenesis may be used to design an HPV vaccine for cervical carcinoma. © 2015 Wiley Periodicals, Inc.

  19. Heterozygous TGFBR2 mutations in Marfan syndrome

    PubMed Central

    Mizuguchi, Takeshi; Collod-Beroud, Gwenaëlle; Akiyama, Takushi; Abifadel, Marianne; Harada, Naoki; Morisaki, Takayuki; Allard, Delphine; Varret, Mathilde; Claustres, Mireille; Morisaki, Hiroko; Ihara, Makoto; Kinoshita, Akira; Yoshiura, Koh-ichiro; Junien, Claudine; Kajii, Tadashi; Jondeau, Guillaume; Ohta, Tohru; Kishino, Tatsuya; Furukawa, Yoichi; Nakamura, Yusuke; Niikawa, Norio; Boileau, Catherine; Matsumoto, Naomichi

    2004-01-01

    Marfan syndrome (MFS) is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton, and cardiovascular systems and associated with defects in the fibrillin gene (FBN1) at 15q21.1 1. We previously mapped the second locus for MFS (MFS type 2, MFS2, OMIM *154705), at 3p24.2-p25 in a large French family (MS1)2. Identification of a 3p24.1 chromosomal breakpoint disrupting the TGF-beta receptor 2 gene (TGFBR2) in a Japanese MFS patient led us to consider TGFBR2 as the MSF2 gene. We found a Q508Q mutation of TGFBR2 that resulted in abnormal splicing and segregated with MFS2 in MS1. Three other missense mutations were found in four unrelated probands and were shown by luciferase-assays to lead to loss of function of the TGF-β signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders. PMID:15235604

  20. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms.

    PubMed

    Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel

    2007-01-01

    Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.

  1. A recurrent de novo FAM111A mutation causes Kenny-Caffey syndrome type 2.

    PubMed

    Isojima, Tsuyoshi; Doi, Koichiro; Mitsui, Jun; Oda, Yoichiro; Tokuhiro, Etsuro; Yasoda, Akihiro; Yorifuji, Tohru; Horikawa, Reiko; Yoshimura, Jun; Ishiura, Hiroyuki; Morishita, Shinichi; Tsuji, Shoji; Kitanaka, Sachiko

    2014-04-01

    Kenny-Caffey syndrome (KCS) is a rare dysmorphologic syndrome characterized by proportionate short stature, cortical thickening and medullary stenosis of tubular bones, delayed closure of anterior fontanelle, eye abnormalities, and hypoparathyroidism. The autosomal dominant form of KCS (KCS type 2 [KCS2]) is distinguished from the autosomal recessive form of KCS (KCS type 1 [KCS1]), which is caused by mutations of the tubulin-folding cofactor E (TBCE) gene, by the absence of mental retardation. In this study, we recruited four unrelated Japanese patients with typical sporadic KCS2, and performed exome sequencing in three patients and their parents to elucidate the molecular basis of KCS2. The possible candidate genes were explored by a de novo mutation detection method. A single gene, FAM111A (NM_001142519.1), was shared among three families. An identical missense mutation, R569H, was heterozygously detected in all three patients but not in the unaffected family members. This mutation was also found in an additional unrelated patient. These findings are in accordance with those of a recent independent report by a Swiss group that KCS2 is caused by a de novo mutation of FAM111A, and R569H is a hot spot mutation for KCS2. Although the function of FAM111A is not known, this study would provide evidence that FAM111A is a key molecule for normal bone development, height gain, and parathyroid hormone development and/or regulation. © 2014 American Society for Bone and Mineral Research.

  2. Mutations in UBQLN2 and SIGMAR1 genes are rare in Korean patients with amyotrophic lateral sclerosis.

    PubMed

    Kim, Hee-Jung; Kwon, Min-Jung; Choi, Won-Jun; Oh, Ki-Wook; Oh, Seong-Il; Ki, Chang-Seok; Kim, Seung Hyun

    2014-08-01

    Mutations in the UBQLN2 and SIGMAR1 genes were recently identified in X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia (ALS and/or FTD) and FTD and/or motor neuron disease, respectively. Subsequent studies, however, found that UBQLN2 mutations were rare, and the pathogenicity of SIGMAR1 mutation in FTD and/or motor neuron disease was controversial. In the present study, we analyzed mutations in the UBQLN2 and SIGMAR1 genes in a Korean cohort of 258 patients with familial ALS (n = 9) or sporadic (sALS; n = 258) ALS. One novel UBQLN2 variant (p.D314E) was observed in 2 patients with sALS and 5 of 727 controls indicating that this variant might be a rare polymorphism rather than a disease-causing mutation. A novel SIGMAR1 gene variant in the 3'-untranslated region (c.*58T>C) was found in 1 sALS and was absent in 727 control samples. Taken together, our data suggest that causative mutations in the UBQLN2 and SIGMAR1 genes are rare in Korean patients with either familial or sporadic ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Initiating a watch list for Ebola virus antibody escape mutations.

    PubMed

    Miller, Craig R; Johnson, Erin L; Burke, Aran Z; Martin, Kyle P; Miura, Tanya A; Wichman, Holly A; Brown, Celeste J; Ytreberg, F Marty

    2016-01-01

    The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.

  4. Initiating a watch list for Ebola virus antibody escape mutations

    PubMed Central

    Johnson, Erin L.; Burke, Aran Z.; Martin, Kyle P.; Miura, Tanya A.; Wichman, Holly A.; Brown, Celeste J.

    2016-01-01

    The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens. PMID:26925318

  5. Interaction of forskolin with the P-glycoprotein multidrug transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming s, D.I.; Seamon, K.B.; Speicher, L.A.

    1991-08-27

    Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug reing ance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, and 6-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, which exhibit specificity for labelingmore » the glucose transporter and aing lyl cyclase, respectively. Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR. The ability of forskolin photolabels to specifically label the transporter, the adenylyl cyclase, and the P-glycoprotein suggests that these proteins may share a common biing g domain for forskolin analogues.« less

  6. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  7. LRIG2 Mutations Cause Urofacial Syndrome

    PubMed Central

    Stuart, Helen M.; Roberts, Neil A.; Burgu, Berk; Daly, Sarah B.; Urquhart, Jill E.; Bhaskar, Sanjeev; Dickerson, Jonathan E.; Mermerkaya, Murat; Silay, Mesrur Selcuk; Lewis, Malcolm A.; Olondriz, M. Beatriz Orive; Gener, Blanca; Beetz, Christian; Varga, Rita E.; Gülpınar, Ömer; Süer, Evren; Soygür, Tarkan; Özçakar, Zeynep B.; Yalçınkaya, Fatoş; Kavaz, Aslı; Bulum, Burcu; Gücük, Adnan; Yue, Wyatt W.; Erdogan, Firat; Berry, Andrew; Hanley, Neil A.; McKenzie, Edward A.; Hilton, Emma N.; Woolf, Adrian S.; Newman, William G.

    2013-01-01

    Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract. PMID:23313374

  8. A new general method for the assessment of the molecular-weight distribution of polydisperse preparations. Its application to an intestinal epithelial glycoprotein and two dextran samples, and comparison with a monodisperse glycoprotein

    PubMed Central

    Gibbons, Richard A.; Dixon, Stephen N.; Pocock, David H.

    1973-01-01

    A specimen of intestinal glycoprotein isolated from the pig and two samples of dextran, all of which are polydisperse (that is, the preparations may be regarded as consisting of a continuous distribution of molecular weights), have been examined in the ultracentrifuge under meniscus-depletion conditions at equilibrium. They are compared with each other and with a glycoprotein from Cysticercus tenuicollis cyst fluid which is almost monodisperse. The quantity c−⅓ (c=concentration) is plotted against ξ (the reduced radius); this plot is linear when the molecular-weight distribution approximates to the `most probable', i.e. when Mn:Mw:Mz: M(z+1)....... is as 1:2:3:4: etc. The use of this plot, and related procedures, to evaluate qualitatively and semi-quantitatively molecular-weight distribution functions where they can be realistically approximated to Schulz distributions is discussed. The theoretical basis is given in an Appendix. PMID:4778265

  9. Purification and characterization of a soluble glycoprotein from garlic (Allium sativum) and its in vitro bioactivity.

    PubMed

    Wang, Yan; Zou, Tingting; Xiang, Minghui; Jin, Chenzhong; Zhang, Xuejiao; Chen, Yong; Jiang, Qiuqing; Hu, Yihong

    2016-10-02

    A soluble glycoprotein was purified to homogeneity from ripe garlic (Allium sativum) bulbs using ammonium sulfate precipitation, Sephadex G-100 gel filtration, and diethylaminoethyl-52 cellulose anion-exchange chromatography. A native mass of 55.7 kDa estimated on gel permeation chromatography and a molecular weight of 13.2 kDa observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported that the glycoprotein is a homotetramer. β-Elimination reaction result suggested that the glycoprotein is an N-linked type. Fourier-transform infrared spectroscopy proved that it contains sugar. Gas chromatography-mass spectrometer analysis showed that its sugar component was galactose. The glycoprotein has 1,1-diphenyl-2-picrylhydrazil free radical scavenging activity and the peroxidation inhibition ability to polyunsaturated fatty acid. These results indicated that the glycoprotein has potential for food additives, functional foods, and even biotechnological and medical applications.

  10. Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy

    PubMed Central

    Yoshida, Yukiko; Yasuda, Sayaka; Fujita, Toshiharu; Hamasaki, Maho; Murakami, Arisa; Kawawaki, Junko; Iwai, Kazuhiro; Saeki, Yasushi; Yoshimori, Tamotsu; Matsuda, Noriyuki; Tanaka, Keiji

    2017-01-01

    Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy. PMID:28743755

  11. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis

    PubMed Central

    Scott, Linda M.; Tong, Wei; Levine, Ross L.; Scott, Mike A.; Beer, Philip A.; Stratton, Michael R.; Futreal, P. Andrew; Erber, Wendy N.; McMullin, Mary Frances; Harrison, Claire N.; Warren, Alan J.; Gilliland, D. Gary; Lodish, Harvey F.; Green, Anthony R.

    2010-01-01

    BACKGROUND The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. METHODS We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. RESULTS We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. CONCLUSIONS JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis

  12. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    PubMed

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  13. Resistance of herpes simplex virus type 2 to neomycin maps to the N-terminal portion of glycoprotein C.

    PubMed Central

    Oyan, A M; Dolter, K E; Langeland, N; Goins, W F; Glorioso, J C; Haarr, L; Crumpacker, C S

    1993-01-01

    Entry of herpes simplex virus (HSV) into cells is believed to be mediated by specific binding of envelope proteins to a cellular receptor. Neomycin specifically blocks this initial step in infection by HSV-1 but not HSV-2. Resistance of HSV-2 to this compound maps to a region of the genome encoding glycoprotein C (gC-2). We have studied the function of gC-2 in the initial interaction of the virus with the host cell, using HSV-2 mutants deleted for gC-2 and gC-2-rescued recombinants. Resistance to neomycin was directly linked to the presence of gC-2 within the viral genome. In addition, deletion of the gC-2 gene caused a marked delay in adsorption to cells relative to the wild-type virus. HSV-1 recombinants containing chimeric gC genes composed of HSV-1 and HSV-2 sequences were used to localize neomycin resistance within the N-terminal 223 amino acids of gC-2. This region of the glycoprotein comprises an important domain responsible for binding of HSV-2 to cell receptors in the presence of neomycin. A gC-2-negative mutant is still infectious, indicating that HSV-2 also has an alternative pathway of adsorption. Images PMID:8386261

  14. Gulose as a constituent of a glycoprotein.

    PubMed

    Mengele, R; Sumper, M

    1992-02-17

    The aldohexose gulose was identified as a constituent of a hydroxyproline-rich glycopeptide derived from the glycoprotein SSG 185. This glycoprotein is part of the extracellular matrix of the green alga Volvox carteri. The gulose residue occupies a terminal position in the corresponding saccharide.

  15. EIF2AK4 Mutations in Patients Diagnosed With Pulmonary Arterial Hypertension.

    PubMed

    Best, D Hunter; Sumner, Kelli L; Smith, Benjamin P; Damjanovich-Colmenares, Kristy; Nakayama, Ikue; Brown, Lynette M; Ha, Youna; Paul, Eleri; Morris, Ashley; Jama, Mohamed A; Dodson, Mark W; Bayrak-Toydemir, Pinar; Elliott, C Gregory

    2017-04-01

    Differentiating pulmonary venoocclusive disease (PVOD) and pulmonary capillary hemangiomatosis (PCH) from idiopathic pulmonary arterial hypertension (IPAH) or heritable pulmonary arterial hypertension (HPAH) is important clinically. Mutations in eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) cause heritable PVOD and PCH, whereas mutations in other genes cause HPAH. The aim of this study was to describe the frequency of pathogenic EIF2AK4 mutations in patients diagnosed clinically with IPAH or HPAH. Sanger sequencing and deletion/duplication analysis were performed to detect mutations in the bone morphogenetic protein receptor type II (BMPR2) gene in 81 patients diagnosed at 30 North American medical centers with IPAH (n = 72) or HPAH (n = 9). BMPR2 mutation-negative patients (n = 67) were sequenced for mutations in four other genes (ACVRL1, ENG, CAV1, and KCNK3) known to cause HPAH. Patients negative for mutations in all known PAH genes (n = 66) were then sequenced for mutations in EIF2AK4. We assessed the pathogenicity of EIF2AK4 mutations and reviewed clinical characteristics of patients with pathogenic EIF2AK4 mutations. Pathogenic BMPR2 mutations were identified in 8 of 72 (11.1%) patients with IPAH and 6 of 9 (66.7%) patients with HPAH. A novel homozygous EIF2AK4 mutation (c.257+4A>C) was identified in 1 of 9 (11.1%) patients diagnosed with HPAH. The novel EIF2AK4 mutation (c.257+4A>C) was homozygous in two sisters with severe pulmonary hypertension. None of the 72 patients with IPAH had biallelic EIF2AK4 mutations. Pathogenic biallelic EIF2AK4 mutations are rarely identified in patients diagnosed with HPAH. Identification of pathogenic biallelic EIF2AK4 mutations can aid clinicians in differentiating HPAH from heritable PVOD or PCH. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  16. Neurotoxic effects of ivermectin administration in genetically engineered mice with targeted insertion of the mutated canine ABCB1 gene.

    PubMed

    Orzechowski, Krystyna L; Swain, Marla D; Robl, Martin G; Tinaza, Constante A; Swaim, Heidi L; Jones, Yolanda L; Myers, Michael J; Yancy, Haile F

    2012-09-01

    To develop in genetically engineered mice an alternative screening method for evaluation of P-glycoprotein substrate toxicosis in ivermectin-sensitive Collies. 14 wild-type C57BL/6J mice (controls) and 21 genetically engineered mice in which the abcb1a and abcb1b genes were disrupted and the mutated canine ABCB1 gene was inserted. Mice were allocated to receive 10 mg of ivermectin/kg via SC injection (n = 30) or a vehicle-only formulation of propylene glycol and glycerol formal (5). Each was observed for clinical signs of toxic effects from 0 to 7 hours following drug administration. After ivermectin administration, considerable differences were observed in drug sensitivity between the 2 types of mice. The genetically engineered mice with the mutated canine ABCB1 gene had signs of severe sensitivity to ivermectin, characterized by progressive lethargy, ataxia, and tremors, whereas the wild-type control mice developed no remarkable effects related to the ivermectin. The ivermectin sensitivity modeled in the transgenic mice closely resembled the lethargy, stupor, disorientation, and loss of coordination observed in ivermectin-sensitive Collies with the ABCB1-1Δ mutation. As such, the model has the potential to facilitate toxicity assessments of certain drugs for dogs that are P-glycoprotein substrates, and it may serve to reduce the use of dogs in avermectin derivative safety studies that are part of the new animal drug approval process.

  17. The clinical phenotype of Lynch syndrome due to germline PMS2 mutations

    PubMed Central

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D.; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N.; Lindor, Noralane M.; Young, Joanne; Winship, Ingrid; Dowty, James G.; White, Darren M.; Hopper, John L.; Baglietto, Laura; Jenkins, Mark A.; de la Chapelle, Albert

    2009-01-01

    Background and Aims Although the clinical phenotype of Lynch syndrome (also known as Hereditary Nonpolyposis Colorectal Cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. Methods We performed PMS2 mutation analysis using long range PCR and MLPA for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Results Germline PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2 fold higher and the incidence of endometrial cancer was 7.5 fold higher. In North America, this translates to a cumulative cancer risk to age 70 of 15–20% for colorectal cancer, 15% for endometrial cancer, and 25–32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. Conclusions PMS2 mutations contribute significantly to Lynch syndrome but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed. PMID:18602922

  18. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, Joanne; Agnihothram, Sudhakar S.; Romanowski, Victor

    2005-12-20

    The G2 fusion subunit of the Junin virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins,more » four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell-cell fusion. Taken together, our results indicate that {alpha}-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever.« less

  19. The eicosanoid, 15-(S)-HETE, stimulates secretion of mucin-like glycoprotein by the corneal epithelium.

    PubMed

    Jackson , R S; Van Dyken, S J; McCartney, M D; Ubels, J L

    2001-07-01

    The eicosanoid, 15-(S)-hydroxyeicosa-5Z, 8Z-11Z, 13E-tetraenoic acid (15-(S)-HETE), is known to stimulate production of mucin glycoprotein by airway epithelium. This study investigated the effect of 15-(S)-HETE on the mucin glycoprotein secretion by the corneal epithelium. To determine the effect of dose, corneas of anesthetized New Zealand White rabbits were treated with 50, 500, or 5,000 nM 15-(S)-HETE in artificial tears for 120 minutes. To determine the time to onset of the response, corneas were treated with 500 or 1,000 nM 15-(S)-HETE in balanced salt solution for periods ranging from 5 to 120 minutes. Corneas were fixed for electron microscopy in fixative containing 0.5% cetylpyridinium chloride (CPC) to stabilize the layer of mucin-like glycoprotein on the corneal surface. The mucin layer thickness was measured by image analysis of electron micrographs. The layer of CPC-fixed mucin-like glycoprotein on the surface of control corneas was 0.46 +/- 0.04 microm thick. After treatment with 15-(S)-HETE, the thickness of the mucin layer increased to 0.64 +/- 0.1 microm at 50 or 5,000 nM HETE and as much as 1.02 +/- 0.2 microm in response to 500 nM HETE. Mucin thickness reached a statistical maximum of 0.59 +/- 0.1 microm after only 5 minutes of exposure to 500 or 1,000 nM HETE. Exposure of the cornea to 15-(S)-HETE causes a rapid-onset increase in the thickness of a layer of mucin-like glycoprotein on the surface of the corneal epithelium. This supports previous reports that corneal epithelial cells produce mucin and suggests that treatment with topical 15-(S)-HETE may be effective in treating ocular surface mucin deficiency in dry eye syndrome.

  20. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer.

    PubMed

    Talseth-Palmer, Bente A; McPhillips, Mary; Groombridge, Claire; Spigelman, Allan; Scott, Rodney J

    2010-05-21

    Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  1. Mutation analysis of BRCA1/2 mutations with special reference to polymorphic SNPs in Indian breast cancer patients.

    PubMed

    Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V

    2018-01-01

    Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.

  2. Analysis of alkaptonuria (AKU) mutations and polymorphisms reveals that the CCC sequence motif is a mutational hot spot in the homogentisate 1,2 dioxygenase gene (HGO).

    PubMed Central

    Beltrán-Valero de Bernabé, D; Jimenez, F J; Aquaron, R; Rodríguez de Córdoba, S

    1999-01-01

    We recently showed that alkaptonuria (AKU) is caused by loss-of-function mutations in the homogentisate 1,2 dioxygenase gene (HGO). Herein we describe haplotype and mutational analyses of HGO in seven new AKU pedigrees. These analyses identified two novel single-nucleotide polymorphisms (INV4+31A-->G and INV11+18A-->G) and six novel AKU mutations (INV1-1G-->A, W60G, Y62C, A122D, P230T, and D291E), which further illustrates the remarkable allelic heterogeneity found in AKU. Reexamination of all 29 mutations and polymorphisms thus far described in HGO shows that these nucleotide changes are not randomly distributed; the CCC sequence motif and its inverted complement, GGG, are preferentially mutated. These analyses also demonstrated that the nucleotide substitutions in HGO do not involve CpG dinucleotides, which illustrates important differences between HGO and other genes for the occurrence of mutation at specific short-sequence motifs. Because the CCC sequence motifs comprise a significant proportion (34.5%) of all mutated bases that have been observed in HGO, we conclude that the CCC triplet is a mutational hot spot in HGO. PMID:10205262

  3. Inactivating Mutation screening of Exon 6 and Exon 10E of FSHR gene in women with Polycystic Ovarian Syndrome in Vellore population

    NASA Astrophysics Data System (ADS)

    Sekar, Nishu; Sapre, Madhura; Kale, Vaikhari; Prabhu, Yogamaya D.; Renu, Kaviyarasi; Ramgir, Shalaka S.; Abilash, V. G.

    2017-11-01

    Polycystic Ovarian syndrome (PCOS) is a major cause of infertility in females of reproducing age and is typified by oligo-anovulation, hyperandrogenism, hirsutism and polycystic ovaries. FSHR gene located on chromosome 2 p21 is responsible for the normal follicular development and any deletion or mutation in the gene affects the interaction of FSH with its receptor. Thus, it becomes the candidate gene for PCOS study. Inactivating mutation in FSHR gene limits the receptor’s function by creating a complete block, changing the receptor-ligand complex or the basic hormone signal transduction.To screen the inactivating mutations in Exon 6 and Exon 10E of FSHR gene in women diagnosed with PCOS.PCR-RFLP analysis indicated that there were no inactivating mutations found in Exon 6 and Exon 10E. Variations in hormone levels were seen amongst the PCOS patients. There were no inactivating mutations found in FSHR gene of the women diagnosed with PCOS according to the Rotterdam criteria in Vellore population.

  4. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.

    PubMed

    Jeong, Kyoung Yong; Son, Mina; Lee, June Yong; Park, Kyung Hee; Lee, Jae-Hyun; Park, Jung-Won

    2016-01-01

    Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm.

  5. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori

    PubMed Central

    Son, Mina; Lee, June Yong

    2016-01-01

    Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm. PMID:26770033

  6. Is MPP a good prognostic factor in stage III lung adenocarcinoma with EGFR exon 19 mutation?

    PubMed

    Zhang, Tian; Wang, Jing; Su, Yanjun; Chen, Xi; Yan, Qingna; Li, Qi; Sun, Leina; Wang, Yuwen; Er, Puchun; Pang, Qingsong; Wang, Ping

    2017-06-20

    Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein encoded by a gene located in the short arm of chromosome 7. This study aimed to investigate the clinicopathologic characteristics of classic EGFR exon mutation in Chinese patients with TMN stage III lung adenocarcinoma who received radical surgery. A total of 1,801 lung adenocarcinomas were analyzed for mutations in EGFR; 35% exhibited mutation of classic EGFR exons. Clinical and pathologic characteristics of patients with EGFR exon 19 mutation were compared with those who harbored EGFR exon 21 mutation. Patients with EGFR exon 19 mutation had a higher overall survival (OS, p=0.023) than those harboring EGFR exon 21 mutation. Our results demonstrated that patients with a micropapillary pattern (MPP) pathologic type in EGFR exon 19 mutation had a higher OS (p=0.022), and patients with exon 19 mutation were more sensitive to EGFR-tyrosine kinase inhibitors (p=0.032). The results of the current study can be used in decision-making regarding the treatment of patients with classic EGFR exon mutations.

  7. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins.

    PubMed

    Leitner, Verena M; Walker, Greg F; Bernkop-Schnürch, Andreas

    2003-09-01

    Disulphide bonds between thiolated polymers (thiomers) and cysteine-rich subdomains of mucus glycoproteins are supposed to be responsible for the enhanced mucoadhesive properties of thiomers. This study set out to provide evidence for these covalent interactions using poly(acrylic acid)-cysteine conjugates of 2 and 450 kDa (PAA2-Cys, PAA450-Cys) displaying 402.5-776.0 micromol thiol groups per gram polymer. The effect of the disulphide bond breaker cysteine on thiomer-mucin disulphide bonds was monitored by (1) mucoadhesion studies and (2) rheological studies. Furthermore, (3) diffusion studies and (4) gel filtration studies were performed with thiomer-mucus mixtures. The addition of cysteine significantly (P<0.01) reduced the adhesion of thiomer tablets to porcine mucosa and G'/G" values of thiomer-mucin mixtures, whereas unthiolated controls were not influenced. These results indicate the cleavage of disulphide bonds between thiomer and mucus glycoproteins. Diffusion studies demonstrated that a 12.8-fold higher concentration of the thiomer (PAA2-Cys) remains in the mucin gel than the corresponding unmodified polymer. Gel filtration studies showed that PAA2-Cys was able to form disulphide bonds with mucin glycoproteins resulting in an altered elution profile of the mucin/PAA2-Cys mixture in comparison to mucin alone or mucin/PAA2 mixture. According to these results, the study provides evidence for the formation of covalent bonds between thiomer and mucus glycoproteins.

  8. Hepatitis C Patient-Derived Glycoproteins Exhibit Marked Differences in Susceptibility to Serum Neutralizing Antibodies: Genetic Subtype Defines Antigenic but Not Neutralization Serotype▿

    PubMed Central

    Tarr, Alexander W.; Urbanowicz, Richard A.; Hamed, Mohamed R.; Albecka, Anna; McClure, C. Patrick; Brown, Richard J. P.; Irving, William L.; Dubuisson, Jean; Ball, Jonathan K.

    2011-01-01

    Neutralizing antibodies have a role in controlling hepatitis C virus (HCV) infection. A successful vaccine will need to elicit potently neutralizing antibodies that are capable of preventing the infection of genetically diverse viral isolates. However, the specificity of the neutralizing antibody response in natural HCV infection still is poorly understood. To address this, we examined the reactivity of polyclonal antibodies isolated from chronic HCV infection to the diverse patient-isolated HCV envelope glycoproteins E1 and E2 (E1E2), and we also examined the potential to neutralize the entry of pseudoparticles bearing these diverse E1E2 proteins. The genetic type of the infection was found to determine the pattern of the antibody recognition of these E1E2 proteins, with the greatest reactivity to homologous E1E2 proteins. This relationship was strongest when the component of the antibody response directed only to linear epitopes was analyzed. In contrast, the neutralization serotype did not correlate with genotype. Instead, serum-derived antibodies displayed a range of neutralization breadth and potency, while different E1E2 glycoproteins displayed different sensitivities to neutralization, such that these could be divided broadly into neutralization-sensitive and -resistant phenotypes. An important additional observation was that entry mediated by some E1E2 proteins was enhanced in the presence of some of the polyclonal antibody fractions isolated during chronic infection. These data highlight the need to use diverse E1E2 isolates, which represent extremes of neutralization sensitivity, when screening antibodies for therapeutic potential and for testing antibodies generated following immunization as part of vaccine development. PMID:21325403

  9. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2.

    PubMed

    Kaiserman, Nadia; Obolensky, Alexey; Banin, Eyal; Sharon, Dror

    2007-02-01

    To identify USH2A mutations in Israeli patients with autosomal-recessive Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). Patients from 95 families with RP and 4 with USH2 were clinically evaluated. USH2A exons 2-72 were scanned for mutations using single-strand conformation and sequencing analyses. The frequency of novel missense changes was determined in patients and controls using restriction endonucleases. The analysis revealed 3 USH2A mutations, 2 of which are novel, in 2 families with USH2 and a large family (MOL0051) with both USH2 and RP. Compound heterozygotes for 2 null mutations (Thr80fs and Arg737stop) in MOL0051 suffered from USH2 while compound heterozygotes for 1 of the null mutations and a novel missense mutation (Gly4674Arg) had nonsyndromic RP. Our results support the involvement of USH2A in nonsyndromic RP and we report here of a second, novel, missense mutation in this gene causing autosomal-recessive RP. Possible involvement of USH2A should be considered in the molecular genetic evaluation of patients with autosomal-recessive RP. Understanding the mechanism by which different USH2A mutations cause either USH2 or RP may assist in the development of novel therapeutic approaches.

  10. Neurologic syndrome associated with homozygous mutation at MAG sialic acid binding site.

    PubMed

    Roda, Ricardo H; FitzGibbon, Edmond J; Boucekkine, Houda; Schindler, Alice B; Blackstone, Craig

    2016-08-01

    The MAG gene encodes myelin-associated glycoprotein (MAG), an abundant protein involved in axon-glial interactions and myelination during nerve regeneration. Several members of a consanguineous family with a clinical syndrome reminiscent of Pelizaeus-Merzbacher disease and demyelinating leukodystrophy on brain MRI were recently found to harbor a homozygous missense p.Ser133Arg MAG mutation. Here, we report two brothers from a nonconsanguineous family afflicted with progressive cognitive impairment, neuropathy, ataxia, nystagmus, and gait disorder. Exome sequencing revealed the homozygous missense mutation p.Arg118His in MAG. This Arg118 residue in immunoglobulin domain 1 is critical for sialic acid binding, providing a compelling mechanistic basis for disease pathogenesis.

  11. Mutations in the HFE, TFR2, and SLC40A1 genes in patients with hemochromatosis.

    PubMed

    Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Cuadrado-Grande, Nuria; Alvarez-Sala-Walther, Luis-Antonio; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa

    2012-10-15

    Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype. Copyright © 2012. Published by Elsevier B.V.

  12. Wild-type and mutated IDH1/2 enzymes and therapy responses.

    PubMed

    Molenaar, Remco J; Maciejewski, Jaroslaw P; Wilmink, Johanna W; van Noorden, Cornelis J F

    2018-04-01

    Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of D-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.

  13. Mutations in SLC2A2 Gene Reveal hGLUT2 Function in Pancreatic β Cell Development*

    PubMed Central

    Michau, Aurélien; Guillemain, Ghislaine; Grosfeld, Alexandra; Vuillaumier-Barrot, Sandrine; Grand, Teddy; Keck, Mathilde; L'Hoste, Sébastien; Chateau, Danielle; Serradas, Patricia; Teulon, Jacques; De Lonlay, Pascale; Scharfmann, Raphaël; Brot-Laroche, Edith; Leturque, Armelle; Le Gall, Maude

    2013-01-01

    The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and β cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced β cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic β cell development and insulin secretion. PMID:23986439

  14. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  15. Screening for germline mutations in the neurofibromatosis type 2 (NF2) gene in NF2 patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andermann, A.A.; Ruttledge, M.H.; Rangaratnam, A.

    Neurofibromatosis type 2 (NF2) is an autosomal dominant disease with over 95% penetrance which predisposes gene carriers to develop multiple tumors of the central nervous system. The NF2 gene is a putative tumor suppressor gene which was previously mapped to the long arm of chromosome 22, and has recently been identified, using positional cloning techniques. The gene encodes a protein, schwannomin (SCH), which is highly homologous to the band 4.1 protein family. In an attempt to identify and characterize mutations which lead to the manifestation of the disease, we have used single strand conformation analysis (SSCA) to screen for germlinemore » mutations in all 17 exons of the NF2 gene in 59 unrelated NF2 patients, representing both familial and new mutations. A total of 27 migration abnormalities was found in 26 patients. Using direct sequencing analysis, the majority of these variants were found to result in nonsense, splice-site or frameshift mutations. Mutations identified in familial NF2 patients segregate in the family, and may prove to be useful tools for a simple and direct SSCA-based technique of presymptomatic or prenatal diagnosis in relatives of patients with NF2. This may be of particular importance in children of patients who have new mutations in the NF2 gene, where linkage analysis may not be feasible.« less

  16. BRAF-mutated cells activate GCN2-mediated integrated stress response as a cytoprotective mechanism in response to vemurafenib.

    PubMed

    Nagasawa, Ikuko; Kunimasa, Kazuhiro; Tsukahara, Satomi; Tomida, Akihiro

    2017-01-22

    In BRAF-mutated melanoma cells, the BRAF inhibitor, vemurafenib, induces phosphorylation of eukaryotic initiation factor 2α (eIF2α) and subsequent induction of activating transcription factor 4 (ATF4), the central regulation node of the integrated stress response (ISR). While the ISR supports cellular adaptation to various stresses, the role of vemurafenib-triggered ISR has not been fully characterized. Here, we showed that in response to vemurafenib, BRAF-mutated melanoma and colorectal cancer cells rapidly induced the ISR as a cytoprotective mechanism through activation of general control nonderepressible 2 (GCN2), an eIF2α kinase sensing amino acid levels. The vemurafenib-triggered ISR, an event independent of downstream MEK inhibition, was specifically prevented by silencing GCN2, but not other eIF2α kinases, including protein kinase-like endoplasmic reticulum kinase, which transmits endoplasmic reticulum (ER) stress. Consistently, the ER stress gatekeeper, GRP78, was not induced by vemurafenib. Interestingly, ATF4 silencing by siRNA rendered BRAF-mutated melanoma cells sensitive to vemurafenib. Thus, the GCN2-mediated ISR can promote cellular adaptation to vemurafenib-induced stress, providing an insight into the development of drug resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. GJB2 Mutations in Mongolia: Complex Alleles, Low Frequency, and Reduced Fitness of the Deaf

    PubMed Central

    Tekin, Mustafa; Xia, Xia-Juan; Erdenetungalag, Radnaabazar; Cengiz, F. Basak; White, Thomas W.; Radnaabazar, Janchiv; Dangaasuren, Begzsuren; Tastan, Hakki; Nance, Walter E.; Pandya, Arti

    2016-01-01

    Summary We screened the GJB2 gene for mutations in 534 (108 multiplex and 426 simplex) probands with non-syndromic sensorineural deafness, who were ascertained through the only residential school for deaf in Mongolia and in 217 hearing controls. Twenty different alleles, including four novel changes, were identified. Biallelic GJB2 mutations were found in 4.5% of the deaf probands (8.3% in multiplex, 3.5% in simplex). The most common mutations were c.IVS1+1G>A (c.-3201G>A) and c.235delC with allele frequencies of 3.5% and 1.5%, respectively. The c.IVS1+1G>A mutation appears to have diverse origins based on its association with multiple haplotypes constructed using nearby SNP markers. The p.V27I and p.E114G variants were frequently detected in both deaf probands and hearing controls. The p.E114G variant was always associated with p.V27I, and haplotype analysis confirmed that it was always in cis with the p.V27I variant. Although in vitro experiments using Xenopus oocytes have suggested that p.[V27I;E114G] disturb the gap junction function of Cx26, the equal distribution of this complex allele in both deaf probands and hearing controls makes it a less likely cause of profound congenital deafness. We found a lower frequency of assortative mating (37.5%) and decreased genetic fitness (62%) of the deaf in Mongolia as compared to the western populations, which provides an explanation for lower frequency of GJB2 deafness in Mongolia. PMID:20201936

  18. BRAF V600E mutations in papillary craniopharyngioma

    PubMed Central

    Brastianos, Priscilla K.; Santagata, Sandro

    2016-01-01

    Papillary craniopharyngioma is an intracranial tumor that results in high levels of morbidity. We recently demonstrated that the vast majority of these tumors harbor the oncogenic BRAF V600E mutation. The pathologic diagnosis of papillary craniopharyngioma can now be confirmed using mutation specific immunohistochemistry and targeted genetic testing. Treatment with targeted agents is now also a possibility in select situations. We recently reported a patient with a multiply recurrent papillary craniopharyngioma in whom targeting both BRAF and MEK resulted in a dramatic therapeutic response with a marked anti-tumor immune response. This work shows that activation of the MAPK pathway is the likely principal oncogenic driver of these tumors. We will now investigate the efficacy of this approach in a multicenter phase II clinical trial. Post-treatment resection samples will be monitored for the emergence of resistance mechanisms. Further advances in the non-invasive diagnosis of papillary craniopharyngioma by radiologic criteria and by cell-free DNA testing could someday allow neo-adjuvant therapy for this disease in select patient populations. PMID:26563980

  19. CHEK2 mutations and HNPCC-related colorectal cancer.

    PubMed

    Suchy, Janina; Cybulski, Cezary; Wokołorczyk, Dominika; Oszurek, Oleg; Górski, Bohdan; Debniak, Tadeusz; Jakubowska, Anna; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Dziuba, Ireneusz; Gogacz, Marek; Wiśniowski, Rafał; Wandzel, Piotr; Banaszkiewicz, Zbigniew; Kurzawski, Grzegorz; Kładny, Józef; Narod, Steven A; Lubiński, Jan

    2010-06-15

    Recently, the 1100delC variant of cell cycle checkpoint kinase 2 (CHEK2) has been reported to confer a colorectal cancer risk in hereditary non-polyposis-colorectal cancer (HNPCC) and HNPCC-related families in the Netherlands. To investigate whether CHEK2 mutations confer increased cancer risk in HNPCC and HNPCC-related families in Poland, we genotyped 463 probands from HNPCC and HNPCC-related families, and 5,496 controls for 4 CHEK2 alleles (1100delC, IVS2+1G>A, del5395, I157T). All 463 probands were screened for mutations in the HNPCC-related genes MSH2, MLH1 and MSH6. A positive association was observed for HNPCC-related cancer and the I157T missense CHEK2 mutation (OR = 1.7; p = 0.007), but not for the truncating alleles (OR = 1.0; p = 1.0). The association with the I157T was seen both for the 117 cases who fulfill Amsterdam criteria (OR = 1.9; p = 0.1) and for the 346 cases who do not fulfill the criteria (OR = 1.6; p = 0.03). One hundred forty-five of the 463 families had a mutation in MSH2, MLH1 or MSH6 (MMR-positive families). A positive association between the CHEK2 I157T mutation and HNPCC-related cancer was observed only for MMR-negative cases (OR = 2.1; p = 0.0004), but not for MMR-positive cases (OR = 0.8; p = 0.9). The association with I157T was particularly strong for MMR-negative cases with familial colorectal cancer (2 or more first-degree relatives affected) (OR = 2.5; p < 0.0001). We conclude that the I157T variant of CHEK2 increases the risk of colorectal cancer among MMR-negative, HNPCC/HNPCC-related families in Poland.

  20. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    PubMed

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  1. Analgesic effects of glycoproteins from Panax ginseng root in mice.

    PubMed

    Wang, Ying; Chen, Yinghong; Xu, Hong; Luo, Haoming; Jiang, Ruizhi

    2013-07-30

    The root of Panax ginseng C.A. Mey has various beneficial pharmacological effects. The present study aimed to evaluate the analgesic activities of glycoproteins from the root of Panax ginseng C.A. Mey in mice. Glycoproteins were isolated and purified from the root of Panax ginseng C.A. Mey. Physicochemical properties and molecular mass were determined by chemical assay and HPLC. Acetic acid-induced writhing and hot-plate tests were employed to study the analgesic effect of glycoproteins and compared with that of aspirin or morphine. The locomotor activity was tested in mice by using actophometer. Four glycoproteins were obtained. The glycoproteins which protein content was the highest (73.04%) displayed dose-dependent analgesic effect. In writhing test, the glycoproteins significantly inhibited writhes (P<0.001) at the dose of 20 mg/kg by intraperitoneal injection. In hot-plate test, only at the dose of 20 mg/kg prolong the hot-plate latency (P<0.05, at 30 min). In the locomotor activity test, the glycoproteins were significant decrease of motility counts at the dose of 20 and 40 mg/kg. These findings collectively indicate that the glycoproteins from the root of Panax ginseng C.A. Mey exhibited significant analgesic activities and the proteins were the active site, providing evidence for its pharmacal use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Immunoreactive serum opsonic alpha 2 sb glycoprotein as a noninvasive index of RES systemic defense after trauma.

    PubMed

    Kaplan, J E; Saba, T M

    1979-01-01

    Reticuloendothelial system (RES) depression has been correlated with diminished resistance to trauma, shock, and sepsis in man and animals. Previous studies have related the depression of RES hepatic Kupffer cell phagocytic function after trauma to diminished bioassayable opsonic activity. The present study determined if the loss of biological activity and RES alteration correlated with immunoreactive serum opsonic alpha 2 SB glycoprotein levels after trauma. Serum opsonic activity was measured by liver slice bioassay, and immunoreactive opsonic protein was measured by rocket electroimmunoassay. RE function was determined by colloid clearance over a 24-hour post-trauma period. Anesthetized rats (250-300 gm) subjected to sublethal or severe (greater than LD50) whole-body NCD trauma were the shock models investigated. Immunoreactive levels in 63 rats prior to injury were 518 +/- 24 microgram/ml. Neither biological nor immunoreactive levels were altered over 24 hours in anesthetized sham-traumatized controls. Temporal alteration in the initial decrease and recovery pattern of biologically active and immunoreactive opsonic protein levels significantly correlated following both sublethal and severe injury. Moreover, the patterns of immunoreactive levels of the opsonic protein correlated with the functional phagocytic activity of the RES as determined by vascular clearance of a test dose of blood-borne radiolabeled particulates. This glycoprotein falls after trauma, and the magnitude and duration of the decline increases with severity of injury. Immunoreactive opsonic alpha 2 SB glycoprotein appears to be an accurate measurement of circulating opsonic activity and RE Kupffer cell function after trauma, especially with respect to clearance. Thus, immunoreactive opsonic protein warrants clinical consideration as a noninvasive measure of reticuloendothelial systemic defense in patients after trauma and burn.

  3. The M2 autoantigen of central nervous system myelin, a glycoprotein present in oligodendrocyte membrane.

    PubMed Central

    Lebar, R; Lubetzki, C; Vincent, C; Lombrail, P; Boutry, J M

    1986-01-01

    Autoantibodies with in-vitro demyelinating capacity induced in Hartley and strain 13 guinea pigs with homologous central nervous system (CNS) tissue were used to characterize the target autoantigen M2. Using the Dot Immunobinding technique, M2 was found to be a component of CNS myelin different from basic protein (BP) and from cerebroside. The expression of M2 on oligodendrocytes, cells known to produce CNS myelin, also confirmed that M2 was a component of CNS myelin. Furthermore, the autoradiography of immunoprecipitates formed with radiolabelled guinea pig myelin and analysed in sodium dodecyl sulphate gels showed that M2 was specific to CNS myelin and absent in peripheral nervous system (PNS) myelin. On electrophoresis M2 appeared as two CNS myelin protein bands at the 27 and 54 KD molecular weight levels, distinct from the major protein bands of proteolipid and BP. M2 bands were of glycoprotein nature, as was demonstrated by affinity chromatography of CNS myelin on wheat germ agglutinin (WGA)-Sepharose. A monoclonal antibody induced by BP-free CNS glycoproteins recognized the same bands as anti-M2 serum in guinea pig CNS myelin. This would imply that both M2 bands share common determinants. M2 bands similar to the above in guinea pig were also shown in rat, rabbit and bovine CNS myelin with guinea pig antibodies. The same type of anti-M2 antibodies were induced in rabbit immunized with homologous CNS tissue. Although only a minor component of myelin, M2 is strongly immunogenic compared to BP. M2 antigen could thus be the target of chronic demyelinating processes such as experimental allergic encephalomyelitis. Images Fig. 1 Figure 2 Fig. 3 Fig. 4 PMID:2434274

  4. LRIG2 mutations cause urofacial syndrome.

    PubMed

    Stuart, Helen M; Roberts, Neil A; Burgu, Berk; Daly, Sarah B; Urquhart, Jill E; Bhaskar, Sanjeev; Dickerson, Jonathan E; Mermerkaya, Murat; Silay, Mesrur Selcuk; Lewis, Malcolm A; Olondriz, M Beatriz Orive; Gener, Blanca; Beetz, Christian; Varga, Rita E; Gülpınar, Omer; Süer, Evren; Soygür, Tarkan; Ozçakar, Zeynep B; Yalçınkaya, Fatoş; Kavaz, Aslı; Bulum, Burcu; Gücük, Adnan; Yue, Wyatt W; Erdogan, Firat; Berry, Andrew; Hanley, Neil A; McKenzie, Edward A; Hilton, Emma N; Woolf, Adrian S; Newman, William G

    2013-02-07

    Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. The evolution of cellular deficiency in GATA2 mutation

    PubMed Central

    Dickinson, Rachel E.; Milne, Paul; Jardine, Laura; Zandi, Sasan; Swierczek, Sabina I.; McGovern, Naomi; Cookson, Sharon; Ferozepurwalla, Zaveyna; Langridge, Alexander; Pagan, Sarah; Gennery, Andrew; Heiskanen-Kosma, Tarja; Hämäläinen, Sari; Seppänen, Mikko; Helbert, Matthew; Tholouli, Eleni; Gambineri, Eleonora; Reykdal, Sigrún; Gottfreðsson, Magnús; Thaventhiran, James E.; Morris, Emma; Hirschfield, Gideon; Richter, Alex G.; Jolles, Stephen; Bacon, Chris M.; Hambleton, Sophie; Haniffa, Muzlifah; Bryceson, Yenan; Allen, Carl; Prchal, Josef T.; Dick, John E.; Bigley, Venetia

    2014-01-01

    Constitutive heterozygous GATA2 mutation is associated with deafness, lymphedema, mononuclear cytopenias, infection, myelodysplasia (MDS), and acute myeloid leukemia. In this study, we describe a cross-sectional analysis of 24 patients and 6 relatives with 14 different frameshift or substitution mutations of GATA2. A pattern of dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency (DCML deficiency) with elevated Fms-like tyrosine kinase 3 ligand (Flt3L) was observed in all 20 patients phenotyped, including patients with Emberger syndrome, monocytopenia with Mycobacterium avium complex (MonoMAC), and MDS. Four unaffected relatives had a normal phenotype indicating that cellular deficiency may evolve over time or is incompletely penetrant, while 2 developed subclinical cytopenias or elevated Flt3L. Patients with GATA2 mutation maintained higher hemoglobin, neutrophils, and platelets and were younger than controls with acquired MDS and wild-type GATA2. Frameshift mutations were associated with earlier age of clinical presentation than substitution mutations. Elevated Flt3L, loss of bone marrow progenitors, and clonal myelopoiesis were early signs of disease evolution. Clinical progression was associated with increasingly elevated Flt3L, depletion of transitional B cells, CD56bright NK cells, naïve T cells, and accumulation of terminally differentiated NK and CD8+ memory T cells. These studies provide a framework for clinical and laboratory monitoring of patients with GATA2 mutation and may inform therapeutic decision-making. PMID:24345756

  6. Neurofilament light polypeptide gene N98S mutation in mice leads to neurofilament network abnormalities and a Charcot-Marie-Tooth Type 2E phenotype.

    PubMed

    Adebola, Adijat A; Di Castri, Theo; He, Chui-Zhen; Salvatierra, Laura A; Zhao, Jian; Brown, Kristy; Lin, Chyuan-Sheng; Worman, Howard J; Liem, Ronald K H

    2015-04-15

    Charcot-Marie-Tooth disease (CMT) is the most commonly inherited neurological disorder with a prevalence of 1 in 2500 people worldwide. Patients suffer from degeneration of the peripheral nerves that control sensory information of the foot/leg and hand/arm. Multiple mutations in the neurofilament light polypeptide gene, NEFL, cause CMT2E. Previous studies in transfected cells showed that expression of disease-associated neurofilament light chain variants results in abnormal intermediate filament networks associated with defects in axonal transport. We have now generated knock-in mice with two different point mutations in Nefl: P8R that has been reported in multiple families with variable age of onset and N98S that has been described as an early-onset, sporadic mutation in multiple individuals. Nefl(P8R/+) and Nefl(P8R/P8R) mice were indistinguishable from Nefl(+/+) in terms of behavioral phenotype. In contrast, Nefl(N98S/+) mice had a noticeable tremor, and most animals showed a hindlimb clasping phenotype. Immunohistochemical analysis revealed multiple inclusions in the cell bodies and proximal axons of spinal cord neurons, disorganized processes in the cerebellum and abnormal processes in the cerebral cortex and pons. Abnormal processes were observed as early as post-natal day 7. Electron microscopic analysis of sciatic nerves showed a reduction in the number of neurofilaments, an increase in the number of microtubules and a decrease in the axonal diameters. The Nefl(N98S/+) mice provide an excellent model to study the pathogenesis of CMT2E and should prove useful for testing potential therapies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: A novel founder mutation in Ashkenazi Jews.

    PubMed

    Lerer, I; Sagi, M; Ben-Neriah, Z; Wang, T; Levi, H; Abeliovich, D

    2001-11-01

    A deletion of at least 140 kb starting approximately 35kb upstream (telomeric) to the GJB2 (CX26) gene was identified in 7 patients from 4 unrelated Jewish Ashkenazi families with non-syndromic hearing loss. These patients were heterozygous for one of the common mutations 167delT or 35delG in the GJB2 gene in trans to the deletion. The deletion started at 5' side of the GJB6 (CX30) gene including the first exon and it did not affect the integrity of the GJB2 gene. The deletion mutation segregated together with the hearing loss, and was not found in a control group of 100 Ashkenazi individuals. We suggest that the deletion is a recessive mutation causing hearing loss in individuals that are double heterozygous for the deletion and for a mutation in the GJB2 gene. The effect of the deletion mutation could be due to a digenic mode of inheritance of GJB2 and GJB6 genes that encode two different connexins; connexin 26 and connexin 30, or it may abolish control elements that are important in the expression of the GJB2 gene in the cochlea. Regardless which of the options is valid, it is apparent that the deletion mutation provides a new insight into connexin function in the auditory system. The deletion mutation was on the same haplotypic background in all the families, and therefore is a founder mutation that increases the impact of GJB2 in the etiology of prelingual recessive non-syndromic hearing loss in the Ashkenazi population. Copyright 2001 Wiley-Liss, Inc.

  8. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development.

    PubMed

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments.

  9. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development

    PubMed Central

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  10. Effect of a myosin regulatory light chain mutation K104E on actin-myosin interactions.

    PubMed

    Duggal, D; Nagwekar, J; Rich, R; Huang, W; Midde, K; Fudala, R; Das, H; Gryczynski, I; Szczesna-Cordary, D; Borejdo, J

    2015-05-15

    Familial hypertrophic cardiomyopathy (FHC) is the most common cause of sudden cardiac death in young individuals. Molecular mechanisms underlying this disorder are largely unknown; this study aims at revealing how disruptions in actin-myosin interactions can play a role in this disorder. Cross-bridge (XB) kinetics and the degree of order were examined in contracting myofibrils from the ex vivo left ventricles of transgenic (Tg) mice expressing FHC regulatory light chain (RLC) mutation K104E. Because the degree of order and the kinetics are best studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs in an ex vivo ventricle was minimized to ∼20. Autofluorescence and photobleaching were minimized by labeling the myosin lever arm with a relatively long-lived red-emitting dye containing a chromophore system encapsulated in a cyclic macromolecule. Mutated XBs were significantly better ordered during steady-state contraction and during rigor, but the mutation had no effect on the degree of order in relaxed myofibrils. The K104E mutation increased the rate of XB binding to thin filaments and the rate of execution of the power stroke. The stopped-flow experiments revealed a significantly faster observed dissociation rate in Tg-K104E vs. Tg-wild-type (WT) myosin and a smaller second-order ATP-binding rate for the K104E compared with WT myosin. Collectively, our data indicate that the mutation-induced changes in the interaction of myosin with actin during the contraction-relaxation cycle may contribute to altered contractility and the development of FHC. Copyright © 2015 the American Physiological Society.

  11. Flow cytometric analysis of platelet cyclooxygenase-1 and -2 and surface glycoproteins in patients with immune thrombocytopenia and healthy individuals.

    PubMed

    Rubak, Peter; Kristensen, Steen D; Hvas, Anne-Mette

    2017-06-01

    Immature platelets may contain more platelet enzymes such as cyclooxygenase (COX)-1 and COX-2 than mature platelets. Patients with immune thrombocytopenia (ITP) have a higher fraction of immature platelets and can therefore be utilized as a biological model for investigating COX-1 and COX-2 platelet expression. The aims were to develop flow cytometric assays for platelet COX-1 and COX-2 and to investigate the COX-1 and COX-2 platelet expression, platelet turnover, and platelet glycoproteins in ITP patients (n = 10) compared with healthy individuals (n = 30). Platelet count and platelet turnover parameters (mean platelet volume (MPV), immature platelet fraction (IPF), and immature platelet count (IPC)) were measured by flow cytometry (Sysmex XE-5000). Platelet COX-1, COX-2, and the glycoproteins (GP)IIb, IX, Ib, Ia, and IIIa were all analyzed by flow cytometry (Navios) and expressed as median fluorescence intensity. COX analyses were performed in both whole blood and platelet rich plasma (PRP), whereas platelet glycoproteins were analyzed in whole blood only. ITP patients had significantly lower platelet count (55 × 10 9 /L) than healthy individuals (240 × 10 9 /L, p < 0.01), but a higher MPV (p = 0.03) and IPF (p < 0.01). IPC was similar for the two groups (p = 0.74). PRP had significantly lower MPV (p < 0.01) and significantly higher platelet count and IPC (both p-values <0.03) when compared with whole blood. IPF was similar for PRP and whole blood (p = 0.18). COX-1 expression was 10 times higher and COX-2 expression was 50% higher in PRP than in whole blood (p COX-1 < 0.01, p COX-2 < 0.01). Platelet COX-1 expression was higher in ITP patients than healthy individuals using whole blood (p COX-1 < 0.01) and PRP, though this was nonsignificant in PRP (p COX-1 = 0.17). In ITP patients, positive correlations were found between platelet turnover and COX-1 expression (all p-values <0.01, rho = 0.80-0.94), whereas healthy individuals showed significant though weaker

  12. Filamin 2 (Fln2)

    PubMed Central

    Thompson, Terri G.; Chan, Yiu-Mo; Hack, Andrew A.; Brosius, Melissa; Rajala, Michael; Lidov, Hart G.W.; McNally, Elizabeth M.; Watkins, Simon; Kunkel, Louis M.

    2000-01-01

    Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin–glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin–glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a γ- and δ-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy. PMID:10629222

  13. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2005-08-09

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  14. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2010-11-16

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  15. Glycoprotein synthesis

    DOEpatents

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

    2009-07-14

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  16. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2006-10-31

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  17. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2007-08-28

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  18. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2007-07-03

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  19. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2010-11-02

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  20. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2007-05-15

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  1. Glycoprotein synthesis

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Zhang, Zhiwen

    2007-02-27

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  2. Glycoprotein synthesis

    DOEpatents

    Shultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2007-04-03

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  3. The HOXB13 G84E Mutation Is Associated with an Increased Risk for Prostate Cancer and Other Malignancies.

    PubMed

    Beebe-Dimmer, Jennifer L; Hathcock, Matthew; Yee, Cecilia; Okoth, Linda A; Ewing, Charles M; Isaacs, William B; Cooney, Kathleen A; Thibodeau, Stephen N

    2015-09-01

    A rare nonconservative substitution (G84E) in the HOXB13 gene has been shown to be associated with risk of prostate cancer. DNA samples from male patients included in the Mayo Clinic Biobank (MCB) were genotyped to determine the frequency of the G84E mutation and its association with various cancers. Subjects were genotyped using a custom TaqMan (Applied Biosystems) assay for G84E (rs138213197). In addition to donating a blood specimen, all MCB participants completed a baseline questionnaire to collect information on medical history and family history of cancer. Forty-nine of 9,012 male patients were carriers of G84E (0.5%). Thirty-one percent (n = 2,595) of participants had been diagnosed with cancer, including 51.1% of G84E carriers compared with just 30.6% of noncarriers (P = 0.004). G84E was most frequently observed among men with prostate cancer compared with men without cancer (P < 0.0001). However, the mutation was also more commonly observed in men with bladder cancer (P = 0.06) and leukemia (P = 0.01). G84E carriers were more likely to have a positive family history of prostate cancer in a first-degree relative compared to noncarriers (36.2% vs. 16.0%, P = 0.0003). Our study confirms the association between the HOXB13 G84E variant and prostate cancer and suggests a novel association between G84E and leukemia and a suggestive association with bladder cancer. Future investigation is warranted to confirm these associations in order to improve our understanding of the role of germline HOXB13 mutations in human cancer. The associations between HOXB13 and prostate, leukemia, and bladder suggest that this gene is important in carcinogenesis. ©2015 American Association for Cancer Research.

  4. JAK2, MPL, and CALR mutations in Chinese Han patients with essential thrombocythemia.

    PubMed

    Wang, Jing; Zhang, Biao; Chen, Bing; Zhou, Rong-Fu; Zhang, Qi-Guo; Li, Juan; Yang, Yong-Gong; Zhou, Min; Shao, Xiao-Yan; Xu, Yong; Xu, Xi-Hui; Ouyang, Jian; Xu, Jingyan; Ye, Qing

    2017-04-01

    Mutations in Janus kinase 2 (JAK2), myeloproliferative leukemia (MPL), and CALR are highly relevant to Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms. Assessing the prevalence of molecular mutations in Chinese Han patients with essential thrombocythemia (ET), and correlating their mutational profile with disease characteristics/phenotype. Of the 110 subjects studied, 62 carried the JAK2 V617F mutation, 21 had CALR mutations, one carried an MPL (W515) mutation, and 28 had non-mutated JAK2, CALR, and MPL (so-called triple-negative ET). Mutations in JAK2 exon 12 were not detected in any patient. Two ET patients had both CALR and JAK2 V617F mutations. Comparing the hematological parameters of the patients with JAK2 mutations with those of the patients with CALR mutations showed that the ET patients with CALR mutations were younger (p = 0.045) and had higher platelet counts (p = 0.043). Genotyping for CALR could be a useful diagnostic tool for JAK2/MPL-negative ET, since the data suggest that CALR is much more prevalent than MPL, therefore testing for CALR should be considered in patients who are JAK2 negative as its frequency is almost 20 times that of MPL mutation.

  5. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients.

    PubMed

    Sturm, Richard A; Fox, Carly; McClenahan, Phil; Jagirdar, Kasturee; Ibarrola-Villava, Maider; Banan, Parastoo; Abbott, Nicola C; Ribas, Gloria; Gabrielli, Brian; Duffy, David L; Peter Soyer, H

    2014-01-01

    A germline polymorphism of the microphthalmia transcription factor (MITF) gene encoding a SUMOylation-deficient E318K-mutated protein has recently been described as a medium-penetrance melanoma gene. In a clinical assessment of nevi from 301 volunteers taken from Queensland, we identified six individuals as MITF E318K mutation carriers. The phenotype for 5 of these individuals showed a commonality of fair skin, body freckling that varied over a wide range, and total nevus count between 46 and 430; in addition, all were multiple primary melanoma patients. The predominant dermoscopic signature pattern of nevi was reticular, and the frequency of globular nevi in carriers varied, which does not suggest that the MITF E318K mutation acts to force the continuous growth of nevi. Excised melanocytic lesions were available for four MITF E318K carrier patients and were compared with a matched range of wild-type (WT) melanocytic lesions. The MITF staining pattern showed a predominant nuclear signal in all sections, with no significant difference in the nuclear/cytoplasmic ratio between mutation-positive or -negative samples. A high incidence of amelanotic melanomas was found within the group, with three of the five melanomas from one patient suggesting a genetic interaction between the MITF E318K allele and an MC1R homozygous red hair color (RHC) variant genotype.

  7. An acquired HER2 T798I gatekeeper mutation induces resistance to neratinib in a patient with HER2 mutant-driven breast cancer

    PubMed Central

    Hanker, Ariella B.; Brewer, Monica Red; Sheehan, Jonathan H.; Koch, James P.; Sliwoski, Gregory R.; Nagy, Rebecca; Lanman, Richard; Berger, Michael F.; Hyman, David M.; Solit, David B.; He, Jie; Miller, Vincent; Cutler, Richard E.; Lalani, Alshad S.; Cross, Darren; Lovly, Christine M.; Meiler, Jens; Arteaga, Carlos L.

    2017-01-01

    We report a HER2T798I gatekeeper mutation in a patient with HER2L869R-mutant breast cancer with acquired resistance to neratinib. Laboratory studies suggested that HER2L869R is a neratinib-sensitive, gain-of-function mutation that upon dimerization with mutant HER3E928G, also present in the breast cancer, amplifies HER2 signaling. The patient was treated with neratinib and exhibited a sustained partial response. Upon clinical progression, HER2T798I was detected in plasma tumor cell-free DNA. Structural modeling of this acquired mutation suggested that the increased bulk of isoleucine in HER2T798I reduces neratinib binding. Neratinib blocked HER2-mediated signaling and growth in cells expressing HER2L869R but not HER2L869R/T798I. In contrast, afatinib and the osimertinib metabolite AZ5104 strongly suppressed HER2L869R/T798I-induced signaling and cell growth. Acquisition of HER2T798I upon development of resistance to neratinib in a breast cancer with an initial activating HER2 mutation suggests HER2L869R is a driver mutation. HER2T798I-mediated neratinib resistance may be overcome by other irreversible HER2 inhibitors like afatinib. PMID:28274957

  8. Identification and analysis of CHEK2 germline mutations in Chinese BRCA1/2-negative breast cancer patients.

    PubMed

    Fan, Zhenhua; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xu, Ye; Xie, Yuntao

    2018-05-01

    Cell-cycle-checkpoint kinase 2 (CHEK2) is an important moderate-penetrance breast cancer predisposition gene; however, recurrent CHEK2 mutations found in Caucasian women are very rare in Chinese population. We investigated the mutation spectrum and clinical relevance of CHEK2 germline mutations in Chinese breast cancer patients. The entire coding regions and splicing sites of CHEK2 were screened in 7657 Chinese BRCA1/2-negative breast cancer patients, using 62-gene panel-based sequencing. Out of 7657 BRCA1/2-negative breast cancer patients, 26 (0.34%) carried CHEK2 pathogenic germline mutations. Most of these mutations (92.3%, 24/26) were nonsense or frameshift mutations; 84.6% (22/26) of them were in forkhead-associated (FHA) or kinase domains. Of the 18 types of CHEK2 mutations we found, 61.1% (11/18) of were novel mutations and two recurrent mutations (Y139X and R137X) were found in this cohort. Patients with CHEK2 mutations were significantly more likely to have family histories of breast and/or ovarian cancer (23.1% vs. 8.6%, p = 0.022) and family histories of any cancer (50.0% vs. 31.6%, p = 0.044); and were significantly more likely to have lymph node-positive (53.8% vs. 27.3%, p = 0.002) and progesterone receptor (PR)-positive (88.5% vs. 64.5%, p = 0.011) breast cancers. Among Chinese breast cancer patients, the CHEK2 germline mutation rate is approximately 0.34% and two specific mutations (Y139X and R137X) are recurrent. Patients with CHEK2 mutations are significantly more likely to have family histories of cancer, and to develop lymph node-positive and/or PR-positive breast cancers.

  9. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners

    PubMed Central

    Muramatsu, Takashi

    2016-01-01

    Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. PMID:26684586

  10. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners.

    PubMed

    Muramatsu, Takashi

    2016-05-01

    Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society.

  11. Targeted Entry via Somatostatin Receptors Using a Novel Modified Retrovirus Glycoprotein That Delivers Genes at Levels Comparable to Those of Wild-Type Viral Glycoproteins

    PubMed Central

    Li, Fang; Ryu, Byoung Y.; Krueger, Robin L.; Heldt, Scott A.

    2012-01-01

    Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 106 transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins. PMID:22013043

  12. A Homozygous Mutation in a Novel Zinc-Finger Protein, ERIS, Is Responsible for Wolfram Syndrome 2

    PubMed Central

    Amr, Sami ; Heisey, Cindy ; Zhang, Min ; Xia, Xia-Juan ; Shows, Kathryn H. ; Ajlouni, Kamel ; Pandya, Arti ; Satin, Leslie S. ; El-Shanti, Hatem ; Shiang, Rita 

    2007-01-01

    A single missense mutation was identified in a novel, highly conserved zinc-finger gene, ZCD2, in three consanguineous families of Jordanian descent with Wolfram syndrome (WFS). It had been shown that these families did not have mutations in the WFS1 gene (WFS1) but were mapped to the WFS2 locus at 4q22-25. A G→C transversion at nucleotide 109 predicts an amino acid change from glutamic acid to glutamine (E37Q). Although the amino acid is conserved and the mutation is nonsynonymous, the pathogenesis for the disorder is because the mutation also causes aberrant splicing. The mutation was found to disrupt messenger RNA splicing by eliminating exon 2, and it results in the introduction of a premature stop codon. Mutations in WFS1 have also been found to cause low-frequency nonsyndromic hearing loss, progressive hearing loss, and isolated optic atrophy associated with hearing loss. Screening of 377 probands with hearing loss did not identify mutations in the WFS2 gene. The WFS1-encoded protein, Wolframin, is known to localize to the endoplasmic reticulum and plays a role in calcium homeostasis. The ZCD2-encoded protein, ERIS (endoplasmic reticulum intermembrane small protein), is also shown to localize to the endoplasmic reticulum but does not interact directly with Wolframin. Lymphoblastoid cells from affected individuals show a significantly greater rise in intracellular calcium when stimulated with thapsigargin, compared with controls, although no difference was observed in resting concentrations of intracellular calcium. PMID:17846994

  13. BRCA1 and BRCA2 germline mutations in lymphoma patients.

    PubMed

    Yossepowitch, Orit; Olvera, Narciso; Satagopan, Jaya M; Huang, Helen; Jhanwar, Sabrina; Rapaport, Beth; Boyd, Jeff; Offit, Kenneth

    2003-01-01

    Mutations in the BRCA1 and BRCA2 tumor suppressor genes are associated with an increased risk for breast and ovarian cancers as well as other types of malignancies. The observation of a germline BRCA1 mutation in an index case with a lymphoid neoplasm in the setting of a family history of breast cancer prompted us to explore the role of BRCA germline mutations as lymphoma susceptibility alleles. A panel of 286 DNA samples from Jewish lymphoma patients was analyzed for the three most frequent BRCA1 and BRCA2 germline mutations in those of Ashkenazi Jewish heritage, and compared to a cohort of 5010 DNA samples from healthy controls. Of the 286 cases, 2 patients carried a germline BRCA mutation; both were diagnosed at an early age with an intermediate grade non-Hodgkin's lymphoma. This data indicate that germline BRCA mutations are not associated with an increased risk for lymphoid malignancies.

  14. EFFECTS OF THE ANTIMUTAGENS VANILLIN AND CINNAMALDEHYDE ON SPONTANEOUS MUTATION IN E. COLI LACL STRAINS AND ON GLOBAL GENE EXPRESSION IN SALMONELLA TA104 AND HUMAN HEPG2 CELLS

    EPA Science Inventory

    Effects of the Antimutagens Vanillin and Cinnamaldehyde on Spontaneous Mutation in E. coli lacI Strains and on Global Gene Epression in Salmonella TAlO4 and Human HepG2 Cells

    In previous work we have shown that vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutag...

  15. Disease-Associated Mutations of TREM2 Alter the Processing of N-Linked Oligosaccharides in the Golgi Apparatus.

    PubMed

    Park, Ji-Seon; Ji, In Jung; An, Hyun Joo; Kang, Min-Ji; Kang, Sang-Wook; Kim, Dong-Hou; Yoon, Seung-Yong

    2015-05-01

    The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune-modulatory receptor involved in phagocytosis and inflammation. Mutations of Q33X, Y38C and T66M cause Nasu-Hakola disease (NHD) which is characterized by early onset of dementia and bone cysts. A recent, genome-wide association study also revealed that single nucleotide polymorphism of TREM2, such as R47H, increased the risk of Alzheimer's disease (AD) similar to ApoE4. However, how these mutations affect the trafficking of TREM2, which may affect the normal functions of TREM2, was not known. In this study, we show that TREM2 with NHD mutations are impaired in the glycosylation with complex oligosaccharides in the Golgi apparatus, in the trafficking to plasma membrane and further processing by γ-secretase. Although R47H mutation in AD affected the glycosylation and normal trafficking of TREM2 less, the detailed pattern of glycosylated TREM2 differs from that of the wild type, thus suggesting that precise regulation of TREM2 glycosylation is impaired when arginine at 47 is mutated to histidine. Our results suggest that the impaired glycosylation and trafficking of TREM2 from endoplasmic reticulum/Golgi to plasma membrane by mutations may inhibit its normal functions in the plasma membrane, which may contribute to the disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. GM2 gangliosidosis AB variant: novel mutation from India - a case report with a review.

    PubMed

    Sheth, Jayesh; Datar, Chaitanya; Mistri, Mehul; Bhavsar, Riddhi; Sheth, Frenny; Shah, Krati

    2016-07-11

    GM2 gangliosidosis-AB variants a rare autosomal recessive neurodegenerative disorder occurring due to deficiency of GM2 activator protein resulting from the mutation in GM2A gene. Only seven mutations in nine cases have been reported from different population except India. Present case is a one year old male born to 3rd degree consanguineous Indian parents from Maharashtra. He was presented with global developmental delay, hypotonia and sensitive to hyperacusis. Horizontal nystagmus and cherry red spot was detected during ophthalmic examination. MRI of brain revealed putaminal hyperintensity and thalamic hypointensity with some unmyelinated white matter in T2/T1 weighted images. Initially he was suspected having Tay-Sachs disease and finally diagnosed as GM2 gangliosidosis, AB variant due to truncated protein caused by nonsense mutation c.472 G > T (p.E158X) in GM2Agene. Children with phenotypic presentation as GM2 gangliosidosis (Tay-Sachs or Sandhoff disease) and normal enzyme activity of β-hexosaminidase-A and -B in leucocytes need to be investigated for GM2 activator protein deficiency.

  17. Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin.

    PubMed

    Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K; Nichol, Stuart T; Albariño, César G; Spiropoulou, Christina F

    2015-05-01

    Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV's high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor's maturation to GP38, and Gn precursor's maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public

  18. Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin

    PubMed Central

    Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K.; Nichol, Stuart T.; Albariño, César G.; Spiropoulou, Christina F.

    2015-01-01

    Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV’s high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor’s maturation to GP38, and Gn precursor’s maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public

  19. Early progressive encephalopathy in boys and MECP2 mutations.

    PubMed

    Kankirawatana, P; Leonard, H; Ellaway, C; Scurlock, J; Mansour, A; Makris, C M; Dure, L S; Friez, M; Lane, J; Kiraly-Borri, C; Fabian, V; Davis, M; Jackson, J; Christodoulou, J; Kaufmann, W E; Ravine, D; Percy, A K

    2006-07-11

    MECP2 mutations mainly occur in females with Rett syndrome. Mutations have been described in 11 boys with progressive encephalopathy: seven of nine with affected sisters and two de novo. The authors report four de novo occurrences: three pathogenic and one potentially pathogenic. Common features include failure to thrive, respiratory insufficiency, microcephaly, and abnormal motor control. MECP2 mutations should be assessed in boys with progressive encephalopathy and one or more of respiratory insufficiency, abnormal movements or tone, and intractable seizures.

  20. A mutation in the hepatitis E virus RNA polymerase promotes its replication and associates with ribavirin treatment failure in organ transplant recipients.

    PubMed

    Debing, Yannick; Gisa, Anett; Dallmeier, Kai; Pischke, Sven; Bremer, Birgit; Manns, Michael; Wedemeyer, Heiner; Suneetha, Pothakamuri Venkata; Neyts, Johan

    2014-11-01

    We analyzed blood samples collected from 15 patients with chronic hepatitis E who were recipients of solid-organ transplants. All patients cleared the hepatitis E virus (HEV) except for 2 (nonresponders); 1 patient died. A G1634R mutation in viral polymerase was detected in the HEV RNA of the nonresponders; this mutation did not provide the virus with resistance to ribavirin in vitro. However, the mutant form of a subgenomic replicon of genotype 3 HEV replicated more efficiently in vitro than HEV without this mutation, and the same was true for infectious virus, including in competition assays. Similar results were obtained for genotype 1 HEV. The G1634R mutation therefore appears to increase the replicative capacity of HEV in the human liver and hence reduce the efficacy of ribavirin. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Can selenium be a modifier of cancer risk in CHEK2 mutation carriers?

    PubMed

    Gupta, Satish; Jaworska-Bieniek, Katarzyna; Lubinski, Jan; Jakubowska, Anna

    2013-11-01

    Selenium is an essential trace element for humans, playing an important role in various major metabolic pathways. Selenium helps to protect the body from the poisonous effects of heavy metals and other harmful substances. Medical studies have provided evidence of selenium supplementation in preventing certain cancers. Low and too high selenium (Se) status correlates with increased risk of e.g. lung, larynx, colorectal and prostate cancers. A higher level of selenium and supplementation with selenium has been shown to be associated with substantially reduced cancer mortality. Selenium exerts its biological roles through selenoproteins, which are involved in oxidoreductions, redox signalling, antioxidant defence, thyroid hormone metabolism and immune responses. Checkpoint kinase 2 (CHEK2) is an important signal transducer of cellular responses to DNA damage and acts as a tumour suppressor gene. Mutations in the CHEK2 gene have been shown to be associated with increased risks of several cancers. Four common mutations in CHEK2 gene (1100delC, IVS2+1G>A, del5395 and I157T) have been identified in the Polish population. Studies have provided evidence that CHEK2-truncating and/or missense mutations are associated with increased risk of breast, prostate, thyroid, colon and kidney cancers. The variability in penetrance and cancer expression in CHEK2 mutation carriers can probably be explained by the influence of other genetic or environmental factors. One of the possible candidates is Se, which together with genetic variations in selenoprotein genes may influence susceptibility to cancer risk.

  2. A new strategy for full-length Ebola virus glycoprotein expression in E.coli.

    PubMed

    Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming

    2016-12-01

    Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.

  3. Detection and initial characterization of protein entities consisting of the HIV glycoprotein cytoplasmic C-terminal domain alone.

    PubMed

    Pfeiffer, Tanya; Ruppert, Thomas; Schaal, Heiner; Bosch, Valerie

    2013-06-20

    Employing antibodies against the cytoplasmic tail of the HIV-1 glycoprotein (Env-CT), in addition to gp160/gp41, we have identified several novel small Env proteins (<25kD) in HIV-1 transfected and infected cells. Mass spectrometric and mutational analyses show that two mechanisms contribute to their generation. Thus the protein, designated Tr-Env-CT (for truncated Env-CT), consists of the C-terminal 139 amino acids (aa) of Env (aa 718-856) with the N-terminal Q718 modified to pyroglutamic acid. It is likely derived from full-length Env protein by proteolytic processing. A further heterogeneous set of slightly larger proteins, termed Env-CT* species, are rather derived from spliced mRNAs containing only those Env C-terminal residues (aa 719-856) which overlap with the second tat and rev coding exons. They are N-terminally extended in the same reading frame. It is conceivable that essential Env-CT functions may be fulfilled by these novel species rather than by the full-length glycoprotein itself. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Recombinant glycoprotein E produced in mammalian cells in large-scale as an antigen for varicella-zoster-virus serology.

    PubMed

    Thomsson, Elisabeth; Persson, Linn; Grahn, Anna; Snäll, Johanna; Ekblad, Maria; Brunhage, Eva; Svensson, Frida; Jern, Christina; Hansson, Gunnar C; Bäckström, Malin; Bergström, Tomas

    2011-07-01

    A recombinant glycoprotein E (gE) from varicella-zoster virus (VZV) was generated and produced in Chinese Hamster Ovary (CHO) cells, in the development of a specific antigen for analysis of IgG antibodies to VZV. Several stable gE-secreting clones were established and one clone was adapted to growth in serum-free suspension culture. When the cells were cultured in a perfusion bioreactor, gE was secreted into the medium, from where it could be easily purified. The recombinant gE was then evaluated as a serological antigen in ELISA. When compared to a conventional whole virus antigen, the VZV gE showed similar results in ELISA-based seroprevalence studies of 854 samples derived from blood donors, students, ischemic stroke patients and their controls, including samples with border-line results in previous analyses. Eight samples (0.9%) were discordant, all being IgG-negative by the VZV gE ELISA and positive by the whole virus ELISA. The sensitivity and specificity of the VZV gE ELISA were 99.9% and 100%, respectively, compared to 100% and 88.9% for the VZV whole virus ELISA. The elderly subjects showed similar reactivities to both antigens, while VZV gE gave lower signals in the younger cohorts, suggesting that antibodies to gE may increase with age. It was concluded that the recombinant VZV gE from CHO cells was suitable as a serological antigen for the detection of IgG antibodies specific for VZV. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. An Acquired HER2T798I Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 Mutant-Driven Breast Cancer.

    PubMed

    Hanker, Ariella B; Brewer, Monica Red; Sheehan, Jonathan H; Koch, James P; Sliwoski, Gregory R; Nagy, Rebecca; Lanman, Richard; Berger, Michael F; Hyman, David M; Solit, David B; He, Jie; Miller, Vincent; Cutler, Richard E; Lalani, Alshad S; Cross, Darren; Lovly, Christine M; Meiler, Jens; Arteaga, Carlos L

    2017-06-01

    We report a HER2 T798I gatekeeper mutation in a patient with HER2 L869R -mutant breast cancer with acquired resistance to neratinib. Laboratory studies suggested that HER2 L869R is a neratinib-sensitive, gain-of-function mutation that upon dimerization with mutant HER3 E928G , also present in the breast cancer, amplifies HER2 signaling. The patient was treated with neratinib and exhibited a sustained partial response. Upon clinical progression, HER2 T798I was detected in plasma tumor cell-free DNA. Structural modeling of this acquired mutation suggested that the increased bulk of isoleucine in HER2 T798I reduces neratinib binding. Neratinib blocked HER2-mediated signaling and growth in cells expressing HER2 L869R but not HER2 L869R/T798I In contrast, afatinib and the osimertinib metabolite AZ5104 strongly suppressed HER2 L869R/T798I -induced signaling and cell growth. Acquisition of HER2 T798I upon development of resistance to neratinib in a breast cancer with an initial activating HER2 mutation suggests HER2 L869R is a driver mutation. HER2 T798I -mediated neratinib resistance may be overcome by other irreversible HER2 inhibitors like afatinib. Significance: We found an acquired HER2 gatekeeper mutation in a patient with HER2 -mutant breast cancer upon clinical progression on neratinib. We speculate that HER2 T798I may arise as a secondary mutation following response to effective HER2 tyrosine kinase inhibitors (TKI) in other cancers with HER2 -activating mutations. This resistance may be overcome by other irreversible HER2 TKIs, such as afatinib. Cancer Discov; 7(6); 575-85. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 539 . ©2017 American Association for Cancer Research.

  6. Recessive myosin myopathy with external ophthalmoplegia associated with MYH2 mutations.

    PubMed

    Tajsharghi, Homa; Hammans, Simon; Lindberg, Christopher; Lossos, Alexander; Clarke, Nigel F; Mazanti, Ingrid; Waddell, Leigh B; Fellig, Yakov; Foulds, Nicola; Katifi, Haider; Webster, Richard; Raheem, Olayinka; Udd, Bjarne; Argov, Zohar; Oldfors, Anders

    2014-06-01

    Myosin myopathies comprise a group of inherited diseases caused by mutations in myosin heavy chain (MyHC) genes. Homozygous or compound heterozygous truncating MYH2 mutations have been demonstrated to cause recessive myopathy with ophthalmoplegia, mild-to-moderate muscle weakness and complete lack of type 2A muscle fibers. In this study, we describe for the first time the clinical and morphological characteristics of recessive myosin IIa myopathy associated with MYH2 missense mutations. Seven patients of five different families with a myopathy characterized by ophthalmoplegia and mild-to-moderate muscle weakness were investigated. Muscle biopsy was performed to study morphological changes and MyHC isoform expression. Five of the patients were homozygous for MYH2 missense mutations, one patient was compound heterozygous for a missense and a nonsense mutation and one patient was homozygous for a frame-shift MYH2 mutation. Muscle biopsy demonstrated small or absent type 2A muscle fibers and reduced or absent expression of the corresponding MyHC IIa transcript and protein. We conclude that mild muscle weakness and ophthalmoplegia in combination with muscle biopsy demonstrating small or absent type 2A muscle fibers are the hallmark of recessive myopathy associated with MYH2 mutations.

  7. Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells

    PubMed Central

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z.

    2010-01-01

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In

  8. Pulse-chase analysis of N-linked sugar chains from glycoproteins in mammalian cells.

    PubMed

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z

    2010-04-27

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-(3)H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2

  9. A novel mutation of laminin β2 (LAMB2) in two siblings with renal failure.

    PubMed

    Falix, Farah A; Bennebroek, Carlien A M; van der Zwaag, Bert; Lapid-Gortzak, Ruth; Florquin, Sandrine; Oosterveld, Michiel J S

    2017-04-01

    This report describes a novel mutation of LAMB2, the gene associated with Pierson syndrome (microcoria-congenital nephrosis syndrome), in two female siblings. The c.970T>C p.(Cys324Arg) mutation in the LAMB2 gene affects one of the eight highly conserved cysteine residues within the first EGF-like module of the laminin β2 protein. These residues form disulfide bonds in order to achieve a correct 3D structure of the protein. The reported phenotype is considered a relatively mild variant of Pierson syndrome and is associated with later-onset (18 months) therapy-resistant nephrotic syndrome leading to renal failure, and ocular abnormalities consisting of high myopia, microcoria, diverse retinal abnormalities, hence a low level of visual acuity. Importantly, the reported LAMB2 mutation was associated with normal neurological development in both siblings. this report presents the variability of the renal, ocular and neurological phenotypes associated with LAMB2 mutations and underscores the importance of ophthalmologic examination in all children with unexplained renal insufficiency or nephrotic syndrome. What is known • LAMB2 mutations are associated with Pierson syndrome • Pierson syndrome is associated with congenital nephrotic syndrome, microcoria and neurological deficits What is new • A novel mutation in the LAMB2 gene in two female siblings • Genotype and clinical phenotype description of a novel LAMB2 mutation.

  10. EIF2AK4 Mutations in Pulmonary Capillary Hemangiomatosis

    PubMed Central

    Best, D. Hunter; Sumner, Kelli L.; Austin, Eric D.; Chung, Wendy K.; Brown, Lynette M.; Borczuk, Alain C.; Rosenzweig, Erika B.; Bayrak-Toydemir, Pinar; Mao, Rong; Cahill, Barbara C.; Tazelaar, Henry D.; Leslie, Kevin O.; Hemnes, Anna R.; Robbins, Ivan M.

    2014-01-01

    Background: Pulmonary capillary hemangiomatosis (PCH) is a rare disease of capillary proliferation of unknown cause and with a high mortality. Families with multiple affected individuals with PCH suggest a heritable cause although the genetic etiology remains unknown. Methods: We used exome sequencing to identify a candidate gene for PCH in a family with two affected brothers. We then screened 11 unrelated patients with familial (n = 1) or sporadic (n = 10) PCH for mutations. Results: Using exome sequencing, we identified compound mutations in eukaryotic translation initiation factor 2 α kinase 4 (EIF2AK4) (formerly known as GCN2) in both affected brothers. Both parents and an unaffected sister were heterozygous carriers. In addition, we identified two EIF2AK4 mutations in each of two of 10 unrelated individuals with sporadic PCH. EIF2AK4 belongs to a family of kinases that regulate angiogenesis in response to cellular stress. Conclusions: Mutations in EIF2AK4 are likely to cause autosomal-recessive PCH in familial and some nonfamilial cases. PMID:24135949

  11. Structural approaches to the study of oligosaccharides in glycoprotein quality control.

    PubMed

    Ito, Yukishige; Hagihara, Shinya; Matsuo, Ichiro; Totani, Kiichiro

    2005-10-01

    High-mannose-type oligosaccharides have been shown to play important roles in protein quality control. Several intracellular proteins, such as lectins, chaperones and glycan-processing enzymes, are involved in this process. These include calnexin/calreticulin, UDP-glucose:glycoprotein glucosyltransferase (UGGT), cargo receptors (such as VIP36 and ERGIC-53), mannosidase-like proteins (e.g. EDEM and Htm1p) and ubiquitin ligase (Fbs). They are thought to recognize high-mannose-type glycans with subtly different structures, although the precise specificities are yet to be clarified. In order to gain a clear understanding of these protein-carbohydrate interactions, comprehensive synthesis of high-mannose-type glycans was conducted. In addition, two approaches to the synthesis of artificial glycoproteins with homogeneous oligosaccharides were investigated. Furthermore, a novel substrate of UGGT was discovered.

  12. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations.

    PubMed

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N; Lindor, Noralane M; Young, Joanne; Winship, Ingrid; Dowty, James G; White, Darren M; Hopper, John L; Baglietto, Laura; Jenkins, Mark A; de la Chapelle, Albert

    2008-08-01

    Although the clinical phenotype of Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. We performed PMS2 mutation analysis using long-range polymerase chain reaction and multiplex ligation-dependent probe amplification for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Germ-line PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2-fold higher, and the incidence of endometrial cancer was 7.5-fold higher. In North America, this translates to a cumulative cancer risk to age 70 years of 15%-20% for colorectal cancer, 15% for endometrial cancer, and 25%-32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. PMS2 mutations contribute significantly to Lynch syndrome, but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed.

  13. The risk of gastric cancer in carriers of CHEK2 mutations.

    PubMed

    Teodorczyk, Urszula; Cybulski, Cezary; Wokołorczyk, Dominika; Jakubowska, Anna; Starzyńska, Teresa; Lawniczak, Małgorzata; Domagała, Paweł; Ferenc, Katarzyna; Marlicz, Krzysztof; Banaszkiewicz, Zbigniew; Wiśniowski, Rafał; Narod, Steven A; Lubiński, Jan

    2013-09-01

    CHEK2 is a tumor suppressor gene whose functions are central to the induction of cell cycle arrest and apoptosis following DNA damage. Mutations in CHEK2 have been associated with cancers at many sites, including breast and prostate cancers, but the relationship between CHEK2 and gastric cancer has not been extensively studied. In Poland, there are four known founder alleles of CHEK2; three alleles are protein truncating (1100delC, IVS2G>A, del5395) and the other is a missense variant (I157T). We examined the frequencies of four Polish founder mutations in the CHEK2 gene in 658 unselected gastric cancer patients, in 154 familial gastric cancer patients and in 8,302 controls. A CHEK2 mutation was seen in 57 of 658 (8.7 %) unselected patients with gastric cancer compared to 480 of 8,302 (5.8 %) controls (OR 1.6, p = 0.004). A CHEK2 mutation was present in 19 of 154 (12.3 %) familial cases (OR = 2.3, p = 0.001). The odds ratio for early onset (<50 years) gastric cancer was higher (2.1, p = 0.01), than for cases diagnosed at age of 50 or above (OR 1.4, p = 0.05). Truncating mutations of CHEK2 were associated with higher risk (OR = 2.1, p = 0.02) than the missense mutation I157T (OR = 1.4, p = 0.04). CHEK2 mutations predispose to gastric cancer, in particular to young-onset cases.

  14. Thioredoxin Reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD).

    PubMed

    Prasad, Rathi; Chan, Li F; Hughes, Claire R; Kaski, Juan P; Kowalczyk, Julia C; Savage, Martin O; Peters, Catherine J; Nathwani, Nisha; Clark, Adrian J L; Storr, Helen L; Metherell, Louise A

    2014-08-01

    Classic ACTH resistance, due to disruption of ACTH signaling, accounts for the majority of cases of familial glucocorticoid deficiency (FGD). Recently FGD cases caused by mutations in the mitochondrial antioxidant, nicotinamide nucleotide transhydrogenase, have highlighted the importance of redox regulation in steroidogenesis. We hypothesized that other components of mitochondrial antioxidant systems would be good candidates in the etiology of FGD. Whole-exome sequencing was performed on three related patients, and segregation of putative causal variants confirmed by Sanger sequencing of all family members. A TXNRD2-knockdown H295R cell line was created to investigate redox homeostasis. The study was conducted on patients from three pediatric centers in the United Kingdom. Seven individuals from a consanguineous Kashmiri kindred, six of whom presented with FGD between 0.1 and 10.8 years, participated in the study. There were no interventions. Identification and functional interrogation of a novel homozygous mutation segregating with the disease trait were measured. A stop gain mutation, p.Y447X in TXNRD2, encoding the mitochondrial selenoprotein thioredoxin reductase 2 (TXNRD2) was identified and segregated with disease in this extended kindred. RT-PCR and Western blotting revealed complete absence of TXNRD2 in patients homozygous for the mutation. TXNRD2 deficiency leads to impaired redox homeostasis in a human adrenocortical cell line. In contrast to the Txnrd2-knockout mouse model, in which embryonic lethality as a consequence of hematopoietic and cardiac defects is described, absence of TXNRD2 in humans leads to glucocorticoid deficiency. This is the first report of a homozygous mutation in any component of the thioredoxin antioxidant system leading to inherited disease in humans.

  15. Antiplatelet activity of L-sulforaphane by regulation of platelet activation factors, glycoprotein IIb/IIIa and thromboxane A2.

    PubMed

    Oh, Chung-Hun; Shin, Jang-In; Mo, Sang Joon; Yun, Sung-Jo; Kim, Sung-Hoon; Rhee, Yun-Hee

    2013-07-01

    L-sulforaphane was identified as an anticarcinogen that could produce quinine reductase and a phase II detoxification enzyme. In recent decades, multi-effects of L-sulforaphane may have been investigated, but, to the authors' knowledge, the antiplatelet activation of L-sulforaphane has not been studied yet.In this study, 2 μg/ml of collagen, 50 μg/ml of ADP and 5 μg/ml of thrombin were used for platelet aggregations with or without L-sulforaphane. L-sulforaphane inhibited the platelet aggregation dose-dependently. Among these platelet activators, collagen was most inhibited by L-sulforaphane, which markedly decreased collagen-induced glycoprotein IIb/IIIa activation and thromboxane A2 (TxA2) formation in vitro. L-sulforaphane also reduced the collagen and epinephrine-induced pulmonary embolism, but did not affect prothrombin time (PT) in vivo. This finding demonstrated that L-sulforaphane inhibited the platelet activation through an intrinsic pathway.L-sulforaphane had a beneficial effect on various pathophysiological pathways of the collagen-induced platelet aggregation and thrombus formation as a selective inhibition of cyclooxygenase and glycoprotein IIb/IIIa antagonist. Thus, we recommend L-sulforaphane as a potential antithrombotic drug.

  16. Association between SCO2 mutation and extreme myopia in Japanese patients.

    PubMed

    Wakazono, Tomotaka; Miyake, Masahiro; Yamashiro, Kenji; Yoshikawa, Munemitsu; Yoshimura, Nagahisa

    2016-07-01

    To investigate the role of SCO2 in extreme myopia of Japanese patients. In total, 101 Japanese patients with extreme myopia (axial length of ≥30 mm) OU at the Kyoto University Hospital were included in this study. Exon 2 of SCO2 was sequenced by conventional Sanger sequencing. The detected variants were assessed using in silico prediction programs: SIFT, PolyPhen-2 and MutationTaster. To determine the frequency of the mutations in normal subjects, we referred to the 1000 Genomes Project data and the Human Genetic Variation Database (HGVD) in the Human Genetic Variation Browser. The average age of the participants was 62.9 ± 12.7 years. There were 31 males (30.7 %) and 70 females. Axial lengths were 31.76 ± 1.17 mm OD and 31.40 ± 1.07 mm OS, and 176 eyes (87.6 %) out of 201 eyes had myopic maculopathy of grade 2 or more. Among the 101 extremely myopic patients, one mutation (c.290 C > T;p.Ala97Val) in SCO2 was detected. This mutation was not found in the 1000 Genomes Project data or HGVD data. Variant type of the mutation was nonsynonymous. Although the SIFT prediction score was 0.350, the PolyPhen-2 probability was 0.846, thus predicting its pathogenicity to be possibly damaging. MutationTaster PhyloP was 1.268, suggesting that the mutation is conserved. We identified one novel possibility of an extreme myopia-causing mutation in SCO2. No other disease-causing mutation was found in 101 extremely myopic Japanese patients, suggesting that SCO2 plays a limited role in Japanese extreme myopia. Further investigation is required for better understanding of extreme myopia.

  17. Accurate detection of low prevalence AKT1 E17K mutation in tissue or plasma from advanced cancer patients

    PubMed Central

    de Bruin, Elza C.; Whiteley, Jessica L.; Corcoran, Claire; Kirk, Pauline M.; Fox, Jayne C.; Armisen, Javier; Lindemann, Justin P. O.; Schiavon, Gaia; Ambrose, Helen J.; Kohlmann, Alexander

    2017-01-01

    Personalized healthcare relies on accurate companion diagnostic assays that enable the most appropriate treatment decision for cancer patients. Extensive assay validation prior to use in a clinical setting is essential for providing a reliable test result. This poses a challenge for low prevalence mutations with limited availability of appropriate clinical samples harboring the mutation. To enable prospective screening for the low prevalence AKT1 E17K mutation, we have developed and validated a competitive allele-specific TaqMan® PCR (castPCR™) assay for mutation detection in formalin-fixed paraffin-embedded (FFPE) tumor tissue. Analysis parameters of the castPCR™ assay were established using an FFPE DNA reference standard and its analytical performance was assessed using 338 breast cancer and gynecological cancer FFPE samples. With recent technical advances for minimally invasive mutation detection in circulating tumor DNA (ctDNA), we subsequently also evaluated the OncoBEAM™ assay to enable plasma specimens as additional diagnostic opportunity for AKT1 E17K mutation testing. The analysis performance of the OncoBEAM™ test was evaluated using a novel AKT1 E17K ctDNA reference standard consisting of sheared genomic DNA spiked into human plasma. Both assays are employed at centralized testing laboratories operating according to quality standards for prospective identification of the AKT1 E17K mutation in ER+ breast cancer patients in the context of a clinical trial evaluating the AKT inhibitor AZD5363 in combination with endocrine (fulvestrant) therapy. PMID:28472036

  18. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    PubMed

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  19. Double PALB2 and BRCA1/BRCA2 mutation carriers are rare in breast cancer and breast-ovarian cancer syndrome families from the French Canadian founder population.

    PubMed

    Ancot, Frédéric; Arcand, Suzanna L; Mes-Masson, Anne-Marie; Provencher, Diane M; Tonin, Patricia N

    2015-06-01

    French Canadian families with breast cancer and breast-ovarian cancer syndrome harbor specific BRCA1, BRCA2 and PALB2 germline mutations, which have been attributed to common founders. Mutations in these genes confer an increased risk to breast and ovarian cancers, and have been identified to play a role in and directly interact with the common homologous recombination DNA repair pathways. Our previous study described the case of a female diagnosed with breast cancer at 45 years old, who harbored the PALB2:c.2323C>T [p.Q775X] and BRCA2:c.9004G>A [p.E3002K] germline mutations, which have been found to recur in the French Canadian cancer families. As the frequency of double heterozygous carriers of breast-ovarian cancer susceptibility alleles is unknown, and due to the possibility that there may be implications for genetic counseling and management for these carriers, the present study investigated the co-occurrence of BRCA1/BRCA2 and PALB2 mutations in the French Canadian cancer families. The PALB2:c.2323C>T [p.Q775X] mutation, which is the only PALB2 mutation to have been identified in French Canadian cancer families, was screened in 214 breast cancer cases and 22 breast-ovarian cancer cases from 114 BRCA1/BRCA2 mutation-positive French Canadian breast cancer (n=61) and breast-ovarian cancer (n=53) families using a tailored polymerase chain reaction-based TaqMan® SNP Genotyping Assay. No additional PALB2:c.2323C>T [p.Q775X] mutation carriers were identified among the BRCA1/BRCA2 mutation carriers. The results suggest that carriers of the PALB2:c.2323C>T [p.Q775X] mutation rarely co-occur in French Canadian breast cancer and breast-ovarian cancer families harboring BRCA1 or BRCA2 mutations.

  20. Partial purification and characterization of a mannosyl transferase involved in O -linked mannosylation of glycoproteins in Candida albicans.

    PubMed

    Arroyo-Flores, Blanca L; Calvo-Méndez, Carlos; Flores-Carreón, Arturo; López-Romero, Everardo

    2004-04-01

    Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.

  1. Immunomodulatory Effects of Nontoxic Glycoprotein Fraction Isolated from Rice Bran.

    PubMed

    Park, Ho-Young; Yu, A-Reum; Hong, Hee-Do; Kim, Ha Hyung; Lee, Kwang-Won; Choi, Hee-Don

    2016-05-01

    Rice bran, a by-product of brown rice milling, is a rich source of dietary fiber and protein, and its usage as a functional food is expected to increase. In this study, immunomodulatory effects of glycoprotein obtained from rice bran were studied in normal mice and mouse models of cyclophosphamide-induced immunosuppression. We prepared glycoprotein from rice bran by using ammonium precipitation and anion chromatography techniques. Different doses of glycoprotein from rice bran (10, 25, and 50 mg/kg) were administered orally for 28 days. On day 21, cyclophosphamide at a dose of 100 mg/kg was administered intraperitoneally. Glycoprotein from rice bran showed a significant dose-dependent restoration of the spleen index and white blood cell count in the immunocompromised mice. Glycoprotein from rice bran affected the immunomodulatory function by inducing the proliferation of splenic lymphocytes, which produce potential T and B cells. Moreover, it prevented cyclophosphamide-induced damage of Th1-type immunomodulatory function through enhanced secretion of Th1-type cytokines (interferon-γ and interleukin-12). These results indicate that glycoprotein from rice bran significantly recovered cyclophosphamide-induced immunosuppression. Based on these data, it was concluded that glycoprotein from rice bran is a potent immunomodulator and can be developed to recover the immunity of immunocompromised individuals. Georg Thieme Verlag KG Stuttgart · New York.

  2. Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse.

    PubMed

    Charles, Roch-Philippe; Iezza, Gioia; Amendola, Elena; Dankort, David; McMahon, Martin

    2011-06-01

    Mutated BRAF is detected in approximately 45% of papillary thyroid carcinomas (PTC). To model PTC, we bred mice with adult-onset, thyrocyte-specific expression of BRAF(V600E). One month following BRAF(V600E) expression, mice displayed increased thyroid size, widespread alterations in thyroid architecture, and dramatic hypothyroidism. Over 1 year, without any deliberate manipulation of tumor suppressor genes, all mice developed PTC displaying nuclear atypia and marker expression characteristic of the human disease. Pharmacologic inhibition of MEK1/2 led to decreased thyroid size, restoration of thyroid form and function, and inhibition of tumorigenesis. Mice with BRAF(V600E)-induced PTC will provide an excellent system to study thyroid tumor initiation and progression and the evaluation of inhibitors of oncogenic BRAF signaling.

  3. Detection of glycoproteins in the Acanthamoeba plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paatero, G.I.L.; Gahmberg, C.G.

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presencemore » of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.« less

  4. Characterization of BRCA2 Mutation in a Series of Functional Assays

    DTIC Science & Technology

    2005-05-01

    9 Appendices .................................................................................... 10 Abstract Mutations in the BRCA2 gene account for...approximately 20% of all hereditary breast cancer. Many individuals undergo expensive clinical testing for mutations in the BRCA2 gene in order to...BRCA2 breast and ovarian cancer predisposition gene was identified in 1995. Mutations in the gene account for approximately 20% of all hereditary breast

  5. Mutation Update and Genotype–Phenotype Correlations of Novel and Previously Described Mutations in TPM2 and TPM3 Causing Congenital Myopathies

    PubMed Central

    Marttila, Minttu; Lehtokari, Vilma-Lotta; Marston, Steven; Nyman, Tuula A.; Barnerias, Christine; Beggs, Alan H.; Bertini, Enrico; Ceyhan-Birsoy, OÖzge; Cintas, Pascal; Gerard, Marion; Gilbert-Dussardier, Brigitte; Hogue, Jacob S.; Longman, Cheryl; Eymard, Bruno; Frydman, Moshe; Kang, Peter B.; Klinge, Lars; Kolski, Hanna; Lochmüller, Hans; Magy, Laurent; Manel, Véronique; Mayer, Michèle; Mercuri, Eugenio; North, Kathryn N.; Peudenier-Robert, Sylviane; Pihko, Helena; Probst, Frank J.; Reisin, Ricardo; Stewart, Willie; Taratuto, Ana Lia; de Visser, Marianne; Wilichowski, Ekkehard; Winer, John; Nowak, Kristen; Laing, Nigel G.; Winder, Tom L.; Monnier, Nicole; Clarke, Nigel F.; Pelin, Katarina; Grönholm, Mikaela; Wallgren-Pettersson, Carina

    2014-01-01

    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding. PMID:24692096

  6. Increased Expression of P-Glycoprotein Is Associated With Chlorpyrifos Resistance in the German Cockroach (Blattodea: Blattellidae).

    PubMed

    Hou, Weiyuan; Jiang, Chu; Zhou, Xiaojie; Qian, Kun; Wang, Lei; Shen, Yanhui; Zhao, Yan

    2016-12-01

    A principal method for control of the German cockroach, Blattella germanica (L.), is the broad-spectrum organophosphorus insecticide, chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate); however, extensive and repeated application has resulted in the development of resistance to chlorpyrifos in this insect. Evidence suggests that ATP-binding cassette protein transporters, including P-glycoprotein, are involved in insecticide resistance. However, little is known of the role of P-glycoprotein in insecticide resistance in the German cockroach. Here, we developed a chlorpyrifos-resistant strain of German cockroach and investigated the relationship between P-glycoprotein and chlorpyrifos resistance using toxicity assays; inhibition studies with two P-glycoprotein inhibitors, verapamil and quinine; P-glycoprotein-ATPase activity assays; and western blotting analysis. After 23 generations of selection from susceptible strain cockroaches, we obtained animals with high resistance to chlorpyrifos. When P-glycoprotein-ATPase activity was inhibited by verapamil and quinine, we observed enhanced susceptibility to chlorpyrifos in both control and chlorpyrifos-resistant cockroaches. No significant alterations of P-glycoprotein expression or ATPase activity were observed in cockroaches acutely exposed to LD50 doses of chlorpyrifos for 24 h, while P-glycoprotein expression and ATPase activity were clearly elevated in the chlorpyrifos-resistant cockroach strain. Thus, we conclude that P-glycoprotein is associated with chlorpyrifos resistance in the German cockroach and that elevated levels of P-glycoprotein expression and ATPase activity may be an important mechanism of chlorpyrifos resistance in the German cockroach. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A new SETX mutation producing AOA2 in two siblings.

    PubMed

    Datta, Neil; Hohler, Anna

    2013-09-01

    In this paper, we document two cases of a new SETX mutation (820:A>G) combined with an established recessive SETX mutation (5927:T>G) causing ataxia with oculomotor apraxia type 2 (AOA2). The patients had a detailed neurological history and examination performed. Radiological imaging was obtained and genetic analysis was obtained. Both siblings demonstrated healthy and normal growth until adolescence. At that time, slowed speech, hypophonia, dysarthria, extraocular muscle dysfunction and some mild choreiform movements began to appear. Family history included some movement disorder difficulties in second degree relatives. The diagnosis of AOA2 was confirmed by genetic testing. We describe a new SETX gene mutation, which when combined with a recognized SETX mutation results in AOA2. The clinical, radiographic and ancillary testing are described.

  8. Simple and Robust N-Glycan Analysis Based on Improved 2-Aminobenzoic Acid Labeling for Recombinant Therapeutic Glycoproteins.

    PubMed

    Jeong, Yeong Ran; Kim, Sun Young; Park, Young Sam; Lee, Gyun Min

    2018-03-21

    N-glycans of therapeutic glycoproteins are critical quality attributes that should be monitored throughout all stages of biopharmaceutical development. To reduce both the time for sample preparation and the variations in analytical results, we have developed an N-glycan analysis method that includes improved 2-aminobenzoic acid (2-AA) labeling to easily remove deglycosylated proteins. Using this analytical method, 15 major 2-AA-labeled N-glycans of Enbrel ® were separated into single peaks in hydrophilic interaction chromatography mode and therefore could be quantitated. 2-AA-labeled N-glycans were also highly compatible with in-line quadrupole time-of-flight mass spectrometry (MS) for structural identification. The structures of 15 major and 18 minor N-glycans were identified from their mass values determined by quadrupole time-of-flight MS. Furthermore, the structures of 14 major N-glycans were confirmed by interpreting the MS/MS data of each N-glycan. This analytical method was also successfully applied to neutral N-glycans of Humira ® and highly sialylated N-glycans of NESP ® . Furthermore, the analysis data of Enbrel ® that were accumulated for 2.5 years demonstrated the high-level consistency of this analytical method. Taken together, the results show that a wide repertoire of N-glycans of therapeutic glycoproteins can be analyzed with high efficiency and consistency using the improved 2-AA labeling-based N-glycan analysis method. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. A disease-associated mutation in the adhesion GPCR BAI2 (ADGRB2) increases receptor signaling activity.

    PubMed

    Purcell, Ryan H; Toro, Camilo; Gahl, William A; Hall, Randy A

    2017-12-01

    Mutations in G protein-coupled receptors (GPCRs) that increase constitutive signaling activity can cause human disease. A de novo C-terminal mutation (R1465W) in the adhesion GPCR BAI2 (also known as ADGRB2) was identified in a patient suffering from progressive spastic paraparesis and other neurological symptoms. In vitro studies revealed that this mutation strongly increases the constitutive signaling activity of an N-terminally cleaved form of BAI2, which represents the activated form of the receptor. Further studies dissecting the mechanism(s) underling this effect revealed that wild-type BAI2 primarily couples to Gα z , with the R1465W mutation conferring increased coupling to Gα i . The R1465W mutation also increases the total and surface expression of BAI2. The mutation has no effect on receptor binding to β-arrestins, but does perturb binding to the endocytic protein endophilin A1, identified here as a novel interacting partner for BAI2. These studies provide new insights into the signaling capabilities of the adhesion GPCR BAI2/ADGRB2 and shed light on how an apparent gain-of-function mutation to the receptor's C-terminus may lead to human disease. © 2017 Wiley Periodicals, Inc.

  10. Functional properties of LRRK2 mutations in Taiwanese Parkinson disease.

    PubMed

    Chang, Kuo-Hsuan; Chen, Chiung-Mei; Lin, Chih-Hsin; Chang, Wen-Teng; Jiang, Pei-Ru; Hsiao, Ya-Chin; Wu, Yih-Ru; Lee-Chen, Guey-Jen

    2017-03-01

    Leucine-rich repeat kinase 2 (LRRK2) is a large protein encoding multiple functional domains. Mutations within different LRRK2 domains have been considered to be involved in the development of Parkinson disease by different mechanisms. Our previous study found three LRRK2 mutations-p.R767H, p.S885N, and p.R1441H-in Taiwanese patients with Parkinson disease. We evaluated the functional properties of LRRK2 p.R767H, p.S885N, and p.R1441H mutations by overexpressing them in human embryonic kidney 293 and neuroblastoma SK-N-SH cells. The common p.G2019S mutation in the kinase domain was included for comparison. In 293 cells, overexpressed p.R1441H-but not p.R767H, p.S885N, or p.G2019-increased GTP binding affinity to prolong the active state. Overexpressed p.R1441H and p.G2019S generated inclusions in 293 cells. In SK-N-SH cells, the α-synuclein was coexpressed with wild type as well as mutated p.R767H, p.S885N, p.R1441H, and p.G2019 LRRK2 proteins. Part of the perinuclear inclusions formed by p.R1441H and p.G2019S were colocalized with α-synuclein. Additionally, p.S885N and p.R1441H mutations caused reduced interaction between LRRK2 and ARHGEF7, a putative guanine nucleotide exchange factor for LRRK2, whereas this interaction was well preserved in p.R767H and p.G2019S mutations. Our study suggests that p.R1441H protein facilitates the formation of intracellular inclusions, compromises GTP hydrolysis by increasing its affinity for GTP, and reduces its interaction with ARHGEF7. Copyright © 2016. Published by Elsevier B.V.

  11. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD.

  12. Analytical validation of BRAF mutation testing from circulating free DNA using the amplification refractory mutation testing system.

    PubMed

    Aung, Kyaw L; Donald, Emma; Ellison, Gillian; Bujac, Sarah; Fletcher, Lynn; Cantarini, Mireille; Brady, Ged; Orr, Maria; Clack, Glen; Ranson, Malcolm; Dive, Caroline; Hughes, Andrew

    2014-05-01

    BRAF mutation testing from circulating free DNA (cfDNA) using the amplification refractory mutation testing system (ARMS) holds potential as a surrogate for tumor mutation testing. Robust assay validation is needed to establish the optimal clinical matrix for measurement and cfDNA-specific mutation calling criteria. Plasma- and serum-derived cfDNA samples from 221 advanced melanoma patients were analyzed for BRAF c.1799T>A (p.V600E) mutation using ARMS in two stages in a blinded fashion. cfDNA-specific mutation calling criteria were defined in stage 1 and validated in stage 2. cfDNA concentrations in serum and plasma, and the sensitivities and specificities of BRAF mutation detection in these two clinical matrices were compared. Sensitivity of BRAF c.1799T>A (p.V600E) mutation detection in cfDNA was increased by using mutation calling criteria optimized for cfDNA (these criteria were adjusted from those used for archival tumor biopsies) without compromising specificity. Sensitivity of BRAF mutation detection in serum was 44% (95% CI, 35% to 53%) and in plasma 52% (95% CI, 43% to 61%). Specificity was 96% (95% CI, 90% to 99%) in both matrices. Serum contains significantly higher total cfDNA than plasma, whereas the proportion of tumor-derived mutant DNA was significantly higher in plasma. Using mutation calling criteria optimized for cfDNA improves sensitivity of BRAF c.1799T>A (p.V600E) mutation detection. The proportion of tumor-derived cfDNA in plasma was significantly higher than in serum. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    PubMed Central

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  14. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients.

    PubMed Central

    Beltrán-Valero de Bernabé, D; Granadino, B; Chiarelli, I; Porfirio, B; Mayatepek, E; Aquaron, R; Moore, M M; Festen, J J; Sanmartí, R; Peñalva, M A; de Córdoba, S R

    1998-01-01

    Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles. PMID:9529363

  15. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    PubMed

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  16. Structural basis for the mutation-induced dysfunction of human CYP2J2: a computational study.

    PubMed

    Cong, Shan; Ma, Xiao-Tu; Li, Yi-Xue; Wang, Jing-Fang

    2013-06-24

    Arachidonic acid is an essential fatty acid in cells, acting as a key inflammatory intermediate in inflammatory reactions. In cardiac tissues, CYP2J2 can adopt arachidonic acid as a major substrate to produce epoxyeicosatrienoic acids (EETs), which can protect endothelial cells from ischemic or hypoxic injuries and have been implicated in the pathogenesis of coronary artery disease and hypertension. However, some CYP2J2 polymorphisms, i.e., T143A and N404Y, significantly reduce the metabolism of arachidonic acid. Lacking experimental structural data for CYP2J2, the detailed mechanism for the mutation-induced dysfunction in the metabolism of arachidonic acid is still unknown. In the current study, three-dimensional structural models of the wild-type CYP2J2 and two mutants (T143A and N404Y) were constructed by a coordinate reconstruction approach and ab initio modeling using CYP2R1 as a template. The structural analysis of the computational models showed that the wild-type CYP2J2 exhibited a typical CYP fold with 12 alpha-helices and three beta-sheets on one side and with the heme group buried deeply inside the core. Due to the small and hydrophobic side-chain, T143A mutation could destabilize the C helix, further placing the water access channel in a closed state to prevent the escape of the produced water molecules during the catalytic processes. N404Y mutation could reposition the side-chain of Leu(378), making it no longer form a hydrogen bond with the carboxyl group of arachidonic acid. However, this hydrogen bond was essential for substrate recognition and positioning in a correct orientation.

  17. Familial solitary chondrosarcoma resulting from germline EXT2 mutation.

    PubMed

    Heddar, Abdelkader; Fermey, Pierre; Coutant, Sophie; Angot, Emilie; Sabourin, Jean-Christophe; Michelin, Paul; Parodi, Nathalie; Charbonnier, Françoise; Vezain, Myriam; Bougeard, Gaëlle; Baert-Desurmont, Stéphanie; Frébourg, Thierry; Tournier, Isabelle

    2017-02-01

    Germline mutations of EXT2, encoding Exostosin Glycosyltransferase 2, are associated with multiple osteochondromas (MO), an autosomal dominant disease characterized by the development of multiple peripheral cartilaginous benign tumors with a weak risk of malignant transformation. We report here a family with a remarkable clinical presentation characterized by the development of isolated chondrosarcomas, mostly located in ribs. Comparative analysis of exomes from two third-degree affected relatives led us to identify a single common disruptive variation, corresponding to a stop mutation (c.237G > A, p.Trp79*; (NM_000401.3); c.138G > A, p.Trp46*; (NM_207122.1)) within exon 2 of the EXT2 gene. Interestingly, no obvious sign of MO was detected in affected members by radiological examination. This report shows that germline mutations of EXT2 can result, not only in the development of multiple benign osteochondromas, but also in the development of isolated malignant cartilaginous tumors including central tumors, and that the presence of germline EXT2 mutation should be considered in patients suspected to have an inherited predisposition to chondrosarcoma, even in the absence of MO. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Mutations in the AVPR2, AVP-NPII, and AQP2 genes in Turkish patients with diabetes insipidus.

    PubMed

    Duzenli, Duygu; Saglar, Emel; Deniz, Ferhat; Azal, Omer; Erdem, Beril; Mergen, Hatice

    2012-12-01

    The aim of this study was to identify mutations in three different genes, the arginine-vasopressin-neurophysin II (AVP-NPII) gene, the arginine-vasopressin receptor 2 (AVPR2) gene, and the vasopressin-sensitive water channel aquaporin-2 (AQP2) gene in Turkish patients affected by central diabetes insipidus or nephrogenic diabetes insipidus. This study included 15 patients from unrelated families. Prospective clinical data were collected for all patients including the patients underwent a water deprivation-desmopressin test. The coding regions of the AVPR2, AQP2, and AVP-NPII genes were amplified by polymerase chain reaction and submitted to direct sequence analysis. Of the 15 patients with diabetes insipidus referred to Gulhane Military Medical Academy, Department of Endocrinology and Metabolism, eight patients have AVPR2 mutations, five patients have AQP2 mutations and two patients have AVP-NPII mutations. Of the patients, which have AVPR2 mutations, one is compound heterozygous for AVPR2 gene. Seven of these mutations are novel. Comparison of the clinical outcomes of these mutations may facilitate in understanding the functions of AVP-NPII, AQP2, and AVPR2 genes in future studies.

  19. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.

    PubMed

    Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. © 2017 Elsevier Inc. All rights reserved.

  20. Isolement et caractérisation de deux subunites constitutives des glycoproteines de structure du tissu sous cutané de lapin.

    PubMed

    Randoux, A; CornilletStoupy, J; Desanti, M; Borel, J P

    1976-09-28

    Structural glycoproteins have been extracted by 8 M ureau from the insoluble residue remaining after collagenase digestion of rabbit dermis and purified by Sepharose 4 B chromatography. After reduction and alkylation, Dowex 1 x 2 chromatography allowed separation of two structural glycoproteins (D1 and D2) in an homogenous state as shown by chromatographic and electrophoretic behaviour as well as N terminal amino acid determination. These two glycoproteins have a molecular weight of about 16 000. Their amino acid compositions (very similar), are characterized by a high level of dicarboxylic amino acids and the absence of hydroxyproline and hydroxylysine. The less acidic glycoprotein (D1) has glycine for N terminal amino acid and contains 10.4 percent of bound carbohydrates. The glycoprotein D2 contains 5.1 percent of bound carbohydrates and its N terminal amino acid is glutamic acid.

  1. EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia.

    PubMed

    Schäfer, Vivien; Ernst, Jana; Rinke, Jenny; Winkelmann, Nils; Beck, James F; Hochhaus, Andreas; Gruhn, Bernd; Ernst, Thomas

    2016-07-01

    Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and young adults. The polycomb repressive complex 2 (PRC2) has been identified as one of the most frequently mutated epigenetic protein complexes in hematologic cancers. PRC2 acts as an epigenetic repressor through histone H3 lysine 27 trimethylation (H3K27me3), catalyzed by the histone methyltransferase enhancer of zeste homolog 2 protein (EZH2). To study the prevalence and clinical impact of PRC2 aberrations in an unselected childhood ALL cohort (n = 152), we performed PRC2 mutational screenings by Sanger sequencing and promoter methylation analyses by quantitative pyrosequencing for the three PRC2 core component genes EZH2, suppressor of zeste 12 (SUZ12), and embryonic ectoderm development (EED). Targeted deep next-generation sequencing of 30 frequently mutated genes in leukemia was performed to search for cooperating mutations in patients harboring PRC2 aberrations. Finally, the functional consequence of EZH2 promoter hypermethylation on H3K27me3 was studied by Western blot analyses of primary cells. Loss-of-function EZH2 mutations were detected in 2/152 (1.3 %) patients with common-ALL and early T-cell precursor (ETP)-ALL, respectively. In one patient, targeted deep sequencing identified cooperating mutations in ASXL1 and TET2. EZH2 promoter hypermethylation was found in one patient with ETP-ALL which led to reduced H3K27me3. In comparison with healthy children, the EZH2 promoter was significantly higher methylated in T-ALL patients. No mutations or promoter methylation changes were identified for SUZ12 or EED genes, respectively. Although PRC2 aberrations seem to be rare in childhood ALL, our findings indicate that EZH2 aberrations might contribute to the disease in specific cases. Hereby, EZH2 promoter hypermethylation might have functionally similar consequences as loss-of-function mutations.

  2. Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease

    PubMed Central

    Friedrich, Timo; Lambert, Aaron M.; Masino, Mark A.; Downes, Gerald B.

    2012-01-01

    SUMMARY Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt), a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD), a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD. PMID:22046030

  3. Bilateral Oophorectomy and Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    PubMed

    Kotsopoulos, Joanne; Huzarski, Tomasz; Gronwald, Jacek; Singer, Christian F; Moller, Pal; Lynch, Henry T; Armel, Susan; Karlan, Beth; Foulkes, William D; Neuhausen, Susan L; Senter, Leigha; Tung, Nadine; Weitzel, Jeffrey N; Eisen, Andrea; Metcalfe, Kelly; Eng, Charis; Pal, Tuya; Evans, Gareth; Sun, Ping; Lubinski, Jan; Narod, Steven A

    2017-01-01

    Whether oophorectomy reduces breast cancer risk among BRCA mutation carriers is a matter of debate. We undertook a prospective analysis of bilateral oophorectomy and breast cancer risk in BRCA mutation carriers. Subjects had no history of cancer, had both breasts intact, and had information on oophorectomy status (n = 3722). Women were followed until breast cancer diagnosis, prophylactic bilateral mastectomy, or death. A Cox regression model was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) of breast cancer associated with oophorectomy (coded as a time-dependent variable). All statistical tests were two-sided. Over a mean follow-up of 5.6 years, 350 new breast cancers were diagnosed. Among women with a BRCA1 or BRCA2 mutation, oophorectomy was not associated with breast cancer risk compared with women who did not undergo an oophorectomy. The age-adjusted hazard ratio associated with oophorectomy was 0.96 (95% CI = 0.73 to 1.26, P = 76) for BRCA1 and was 0.65 (95% CI = 0.37 to 1.16, P = 14) for BRCA2 mutation carriers. In stratified analyses, the effect of oophorectomy was statistically significant for breast cancer in BRCA2 mutation carriers diagnosed prior to age 50 years (age-adjusted HR = 0.18, 95% CI = 0.05 to 0.63, P = 007). Oophorectomy was not associated with risk of breast cancer prior to age 50 years among BRCA1 mutation carriers (age-adjusted HR = 0.79, 95% CI = 0.55 to 1.13, P = 51). Findings from this large prospective study support a role of oophorectomy for the prevention of premenopausal breast cancer in BRCA2, but not BRCA1 mutation carriers. These findings warrant further evaluation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Novel homozygous VHL mutation in exon 2 is associated with congenital polycythemia but not with cancer.

    PubMed

    Lanikova, Lucie; Lorenzo, Felipe; Yang, Chunzhang; Vankayalapati, Hari; Drachtman, Richard; Divoky, Vladimir; Prchal, Josef T

    2013-05-09

    Germline von Hippel-Lindau (VHL) gene mutations underlie dominantly inherited familial VHL tumor syndrome comprising a predisposition for renal cell carcinoma, pheochromocytoma/paraganglioma, cerebral hemangioblastoma, and endolymphatic sac tumors. However, recessively inherited congenital polycythemia, exemplified by Chuvash polycythemia, has been associated with 2 separate 3' VHL gene mutations in exon 3. It was proposed that different positions of loss-of-function VHL mutations are associated with VHL syndrome cancer predisposition and only C-terminal domain-encoding VHL mutations would cause polycythemia. However, now we describe a new homozygous VHL exon 2 mutation of the VHL gene:(c.413C>T):P138L, which is associated in the affected homozygote with congenital polycythemia but not in her, or her-heterozygous relatives, with cancer or other VHL syndrome tumors. We show that VHL(P138L) has perturbed interaction with hypoxia-inducible transcription factor (HIF)1α. Further, VHL(P138L) protein has decreased stability in vitro. Similarly to what was reported in Chuvash polycythemia and some other instances of HIFs upregulation, VHL(P138L) erythroid progenitors are hypersensitive to erythropoietin. Interestingly, the level of RUNX1/AML1 and NF-E2 transcripts that are specifically upregulated in acquired polycythemia vera were also upregulated in VHL(P138L) granulocytes.

  5. Prevalence of the HOXB13 G84E mutation in Danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness.

    PubMed

    Storebjerg, Tine M; Høyer, Søren; Kirkegaard, Pia; Bro, Flemming; Ørntoft, Torben F; Borre, Michael; Sørensen, Karina D

    2016-10-01

    To determine the prevalence of the HOXB13 G84E mutation (rs138213197) in Danish men with or without prostate cancer (PCa) and to investigate possible correlations between HOXB13 mutation status and clinicopathological characteristics associated with tumour aggressiveness. We conducted a case-control study including 995 men with PCa (cases) who underwent radical prostatectomy (RP) between 1997 and 2011 at the Department of Urology, Aarhus University Hospital, Denmark. As controls, we used 1622 healthy men with a normal prostate specific antigen (PSA) level. The HOXB13 G84E mutation was identified in 0.49% of controls and in 2.51% of PCa cases. The mutation was associated with a 5.12-fold increased relative risk (RR) of PCa (95% confidence interval [CI] 2.26-13.38; P = 13 × 10(-6) ). Furthermore, carriers of the risk allele were significantly more likely to have a higher PSA level at diagnosis (mean PSA 19.9 vs 13.6 ng/mL; P = 0.032), a pathological Gleason score ≥7 (83.3 vs 60.9%; P = 0.032), and positive surgical margins (56.0 vs 28.5%; P = 0.006) than non-carriers. Risk allele carriers were also more likely to have aggressive disease (54.2 vs 28.6%; P = 0.011), as defined by a preoperative PSA ≥20 ng/mL, pathological Gleason score ≥ (4+3) and/or presence of regional/distant disease. At a mean follow-up of 7 months, we found no significant association between HOXB13 mutation status and biochemical recurrence in this cohort of men who underwent RP. This is the first study to investigate the HOXB13 G84E mutation in Danish men. The mutation was detected in 0.49% of controls and in 2.51% of cases, and was associated with 5.12-fold increased RR of being diagnosed with PCa. In our RP cohort, HOXB13 mutation carriers were more likely to develop aggressive PCa. Further studies are needed to assess the potential of HOXB13 for future targeted screening approaches. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  6. BRAF Mutation and CDKN2A Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma

    PubMed Central

    Mistry, Matthew; Zhukova, Nataliya; Merico, Daniele; Rakopoulos, Patricia; Krishnatry, Rahul; Shago, Mary; Stavropoulos, James; Alon, Noa; Pole, Jason D.; Ray, Peter N.; Navickiene, Vilma; Mangerel, Joshua; Remke, Marc; Buczkowicz, Pawel; Ramaswamy, Vijay; Guerreiro Stucklin, Ana; Li, Martin; Young, Edwin J.; Zhang, Cindy; Castelo-Branco, Pedro; Bakry, Doua; Laughlin, Suzanne; Shlien, Adam; Chan, Jennifer; Ligon, Keith L.; Rutka, James T.; Dirks, Peter B.; Taylor, Michael D.; Greenberg, Mark; Malkin, David; Huang, Annie; Bouffet, Eric; Hawkins, Cynthia E.; Tabori, Uri

    2015-01-01

    Purpose To uncover the genetic events leading to transformation of pediatric low-grade glioma (PLGG) to secondary high-grade glioma (sHGG). Patients and Methods We retrospectively identified patients with sHGG from a population-based cohort of 886 patients with PLGG with long clinical follow-up. Exome sequencing and array CGH were performed on available samples followed by detailed genetic analysis of the entire sHGG cohort. Clinical and outcome data of genetically distinct subgroups were obtained. Results sHGG was observed in 2.9% of PLGGs (26 of 886 patients). Patients with sHGG had a high frequency of nonsilent somatic mutations compared with patients with primary pediatric high-grade glioma (HGG; median, 25 mutations per exome; P = .0042). Alterations in chromatin-modifying genes and telomere-maintenance pathways were commonly observed, whereas no sHGG harbored the BRAF-KIAA1549 fusion. The most recurrent alterations were BRAF V600E and CDKN2A deletion in 39% and 57% of sHGGs, respectively. Importantly, all BRAF V600E and 80% of CDKN2A alterations could be traced back to their PLGG counterparts. BRAF V600E distinguished sHGG from primary HGG (P = .0023), whereas BRAF and CDKN2A alterations were less commonly observed in PLGG that did not transform (P < .001 and P < .001 respectively). PLGGs with BRAF mutations had longer latency to transformation than wild-type PLGG (median, 6.65 years [range, 3.5 to 20.3 years] v 1.59 years [range, 0.32 to 15.9 years], respectively; P = .0389). Furthermore, 5-year overall survival was 75% ± 15% and 29% ± 12% for children with BRAF mutant and wild-type tumors, respectively (P = .024). Conclusion BRAF V600E mutations and CDKN2A deletions constitute a clinically distinct subtype of sHGG. The prolonged course to transformation for BRAF V600E PLGGs provides an opportunity for surgical interventions, surveillance, and targeted therapies to mitigate the outcome of sHGG. PMID:25667294

  7. New autosomal recessive mutations in aquaporin-2 causing nephrogenic diabetes insipidus through deficient targeting display normal expression in Xenopus oocytes

    PubMed Central

    Leduc-Nadeau, Alexandre; Lussier, Yoann; Arthus, Marie-Françoise; Lonergan, Michèle; Martinez-Aguayo, Alejandro; Riveira-Munoz, Eva; Devuyst, Olivier; Bissonnette, Pierre; Bichet, Daniel G

    2010-01-01

    Aquaporin-2 (AQP2), located at the luminal side of the collecting duct principal cells, is a water channel responsible for the final concentration of urine. Lack of function, often occurring through mistargeting of mutated proteins, induces nephrogenic diabetes insipidus (NDI), a condition characterized by large urinary volumes. In the present study, two new mutations (K228E and V24A) identified in NDI-affected individuals from distinct families along with the already reported R187C were analysed in comparison to the wild-type protein (AQP2-wt) using Xenopus laevis oocytes and a mouse collecting duct cell-line (mIMCD-3). Initial data in oocytes showed that all mutations were adequately expressed at reduced levels when compared to AQP2-wt. K228E and V24A were found to be properly targeted at the plasma membrane and exhibited adequate functionality similar to AQP2-wt, as opposed to R187C which was retained in internal stores and was thus inactive. In coexpression studies using oocytes, R187C impeded the functionality of all other AQP2 variants while combinations with K228E, V24A and AQP2-wt only showed additive functionalities. When expressed in mIMCD-3 cells, forskolin treatment efficiently promoted the targeting of AQP2-wt at the plasma membrane (>90%) while K228E only weakly responded to the same treatment (∼20%) and both V24A and R187C remained completely insensitive to the treatment. We concluded that both V24A and K228E are intrinsically functional water channels that lack a proper response to vasopressin, which leads to NDI as found in both compound mutations studied (K228E + R187C and V24A + R187C). The discrepancies in plasma membrane targeting response found in both expression systems stress the need to evaluate such data using mammalian cell systems. PMID:20403973

  8. A GXXXA motif in the transmembrane domain of the Ebola virus glycoprotein is required for tetherin antagonism.

    PubMed

    González-Hernández, Mariana; Hoffmann, Markus; Brinkmann, Constantin; Nehls, Julia; Winkler, Michael; Schindler, Michael; Pöhlmann, Stefan

    2018-04-18

    The interferon-induced antiviral host cell protein tetherin can inhibit the release of several enveloped viruses from infected cells. The Ebola virus (EBOV) glycoprotein (GP) antagonizes tetherin but the domains and amino acids in GP that are required for tetherin antagonism have not been fully defined. A GXXXA motif within the transmembrane domain (TMD) of EBOV-GP was previously shown to be important for GP-mediated cellular detachment. Here, we investigated whether this motif also contributes to tetherin antagonism. Mutation of the GXXXA motif did not impact GP expression or particle incorporation and only modestly reduced EBOV-GP-driven entry. In contrast, the GXXXA motif was required for tetherin antagonism in transfected cells. Moreover, alteration of the GXXXA motif increased tetherin-sensitivity of a replication-competent vesicular stomatitis virus (VSV) chimera encoding EBOV-GP. Although these results await confirmation with authentic EBOV, they indicate that a GXXXA motif in the TMD of EBOV-GP is important for tetherin antagonism. Moreover, they provide the first evidence that GP can antagonize tetherin in the context of an infectious EBOV surrogate. IMPORTANCE The glycoprotein (GP) of Ebola virus (EBOV) inhibits the antiviral host cell protein tetherin and may promote viral spread in tetherin-positive cells. However, tetherin antagonism by GP has so far only been demonstrated using virus-like particles and it is unknown whether GP can block tetherin in infected cells. Moreover, a mutation in GP that selectively abrogates tetherin antagonism is unknown. Here, we show that a GXXXA motif in the transmembrane domain of EBOV-GP, which was previously reported to be required for GP-mediated cell rounding, is also important for tetherin counteraction. Moreover, analysis of this mutation in the context of vesicular stomatitis virus chimeras encoding EBOV-GP revealed that GP-mediated tetherin counteraction is operative in infected cells. To our knowledge, these

  9. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    PubMed

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  10. Cell-wall polysaccharides and glycoproteins of parenchymatous tissues of runner bean (Phaseolus coccineus).

    PubMed Central

    Ryden, P; Selvendran, R R

    1990-01-01

    1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues. PMID:2167068

  11. Deleterious BRCA1/2 mutations in an urban population of Black women

    PubMed Central

    Smith, Karen Lisa; Stein, Julie; DeMarco, Tiffani; Wang, Yiru; Wang, Hongkun; Fries, Melissa; Peshkin, Beth N.; Isaacs, Claudine

    2018-01-01

    Information on the prevalence of deleterious BRCA1 and BRCA2 (BRCA1/2) mutations in clinic-based populations of Black women is limited. In order to address this gap, we performed a retrospective study to determine the prevalence of deleterious BRCA1/2 mutations, predictors of having a mutation, and acceptance of risk-reducing surgeries in Black women. In an urban unselected clinic-based population, we evaluated 211 self-identified Black women who underwent genetic counseling for hereditary breast–ovarian cancer syndrome. BRCA1/2 mutations were identified in 13.4 % of the participants who received genetic testing. Younger age at diagnosis, higher BRCA-PRO score, significant family history, and diagnosis of triple-negative breast cancer were associated with identification of a BRCA1/2 mutation. Of the affected patients found to have a deleterious mutation, almost half underwent prophylactic measures. In our study population, 1 in 7 Black women who underwent genetic testing harbored a deleterious BRCA1/2 mutation independent of age at diagnosis or family history. PMID:26250392

  12. A comprehensive computational study on pathogenic mis-sense mutations spanning the RING2 and REP domains of Parkin protein.

    PubMed

    Biswas, Ria; Bagchi, Angshuman

    2017-04-30

    Various mutations in PARK2 gene, which encodes the protein parkin, are significantly associated with the onset of autosomal recessive juvenile Parkinson (ARJP) in neuronal cells. Parkin is a multi domain protein, the N-terminal part contains the Ubl and the C-terminal part consists of four zinc coordinating domains, viz., RING0, RING1, in between ring (IBR) and RING2. Disease mutations are spread over all the domains of Parkin, although mutations in some regions may affect the functionality of Parkin more adversely. The mutations in the RING2 domain are seen to abolish the neuroprotective E3 ligase activity of Parkin. In this current work, we carried out detailed in silico analysis to study the extent of pathogenicity of mutations spanning the Parkin RING2 domain and the adjoining REP region by SIFT, Mutation Accessor, PolyPhen2, SNPs and GO, GV/GD and I-mutant. To study the structural and functional implications of these mutations on RING2-REP domain of Parkin, we studied the solvent accessibility (SASA/RSA), hydrophobicity, intra-molecular hydrogen bonding profile and domain analysis by various computational tools. Finally, we analysed the interaction energy profiles of the mutants and compared them to the wild type protein using Discovery studio 2.5. By comparing the various analyses it could be safely concluded that except P437L and A379V mutations, all other mutations were potentially deleterious affecting various structural aspects of RING2 domain architecture. This study is based purely on computational approach which has the potential to identify disease mutations and the information could further be used in treatment of diseases and prognosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Novel MSH2 splice-site mutation in a young patient with Lynch syndrome

    PubMed Central

    Liccardo, Raffaella; De Rosa, Marina; Izzo, Paola; Duraturo, Francesca

    2018-01-01

    Lynch Syndrome (LS) is associated with germline mutations in one of the mismatch repair (MMR) genes, including MutL homolog 1 (MLH1), MutS homolog 2 (MSH2), MSH6, PMS1 homolog 2, mismatch repair system component (PMS2), MLH3 and MSH3. The mutations identified in MMR genes are point mutations or large rearrangements. The point mutations are certainly pathogenetic whether they determine formation of truncated protein. The mutations that arise in splice sites are classified as ‘likely pathogenic’ variants. In the present study, a novel splicing mutation was identified, (named c.212-1g>a), in the MSH2 gene. This novel mutation in the consensus splice site of MSH2 exon 2 leads to the loss of the canonical splice site, without skipping in-frame of exon 2; also with the formation of 2 aberrant transcripts, due to the activation of novel splice sites in exon 2. This mutation was identified in a young patient who developed colon cancer at the age of 26 years and their belongs to family that met the ‘Revised Amsterdam Criteria’. The present study provided insight into the molecular mechanism determining the pathogenicity of this novel MSH2 mutation and it reaffirms the importance of genetic testing in LS. PMID:29568967

  14. The value of the repeated examination of BRAF V600E mutation status in diagnostics of papillary thyroid cancer.

    PubMed

    Beiša, Augustas; Beiša, Virgilijus; Stoškus, Mindaugas; Ostanevičiūtė, Elvyra; Griškevičius, Laimonas; Strupas, Kęstutis

    2016-01-01

    Nodular thyroid disease is one of the most frequently diagnosed pathologies of the adult population in iodine-deficient regions. Approximately 30% of thyroid aspirates are classified as nondiagnostic/unsatisfactory or indeterminate. However, patients with indeterminate cytology still undergo surgery. The object of this study was to determine the diagnostic value of re-examining the BRAF V600E mutation in papillary thyroid carcinoma patients. All patients underwent ultrasound guided fine-needle aspiration of a thyroid nodule. They were assigned to one of the four groups (indeterminate or positive for malignant cells) of the Bethesda System for Reporting Thyroid Cytopathology. Genetic investigation of the BRAF V600E mutation was performed for all of the fine-needle aspiration cytology specimens. All of the patients underwent surgery. Subsequently, histological investigation of the removed tissues was performed. Additional analysis of the BRAF V600E mutation from the histology specimen was then performed for the initially BRAF-negative cases. Two hundred and fourteen patients were involved in the study. One hundred and six (49.53%) patients were diagnosed with thyroid cancer. Of these 106 patients, 95 (89.62%) patients were diagnosed with papillary thyroid cancer. The BRAF V600E mutation was positive in 62 (65.26%) and negative in 33 (34.74%) histologically confirmed papillary thyroid cancer cases. After the genetic investigation, a total of 74 (77.89%) papillary thyroid cancer cases were positive for the BRAF V600E mutation and 21 (22.11%) were negative. Repeated examination of the BRAF V600E mutation status in the fine-needle aspiration may potentially increase the sensitivity of papillary thyroid cancer diagnostics.

  15. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals.

    PubMed

    Kuusisto, Kirsi M; Bebel, Aleksandra; Vihinen, Mauno; Schleutker, Johanna; Sallinen, Satu-Leena

    2011-02-28

    Two major high-penetrance breast cancer genes, BRCA1 and BRCA2, are responsible for approximately 20% of hereditary breast cancer (HBC) cases in Finland. Additionally, rare mutations in several other genes that interact with BRCA1 and BRCA2 increase the risk of HBC. Still, a majority of HBC cases remain unexplained which is challenging for genetic counseling. We aimed to analyze additional mutations in HBC-associated genes and to define the sensitivity of our current BRCA1/2 mutation analysis protocol used in genetic counseling. Eighty-two well-characterized, high-risk hereditary breast and/or ovarian cancer (HBOC) BRCA1/2-founder mutation-negative Finnish individuals, were screened for germline alterations in seven breast cancer susceptibility genes, BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1. BRCA1/2 were analyzed by multiplex ligation-dependent probe amplification (MLPA) and direct sequencing. CHEK2 was analyzed by the high resolution melt (HRM) method and PALB2, RAD50, BRIP1 and CDH1 were analyzed by direct sequencing. Carrier frequencies between 82 (HBOC) BRCA1/2-founder mutation-negative Finnish individuals and 384 healthy Finnish population controls were compared by using Fisher's exact test. In silico prediction for novel missense variants effects was carried out by using Pathogenic-Or-Not -Pipeline (PON-P). Three previously reported breast cancer-associated variants, BRCA1 c.5095C > T, CHEK2 c.470T > C, and CHEK2 c.1100delC, were observed in eleven (13.4%) individuals. Ten of these individuals (12.2%) had CHEK2 variants, c.470T > C and/or c.1100delC. Fourteen novel sequence alterations and nine individuals with more than one non-synonymous variant were identified. One of the novel variants, BRCA2 c.72A > T (Leu24Phe) was predicted to be likely pathogenic in silico. No large genomic rearrangements were detected in BRCA1/2 by multiplex ligation-dependent probe amplification (MLPA). In this study, mutations in previously known breast cancer

  16. Kunjin Virus Replicon-Based Vaccines Expressing Ebola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection

    PubMed Central

    Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.

    2011-01-01

    Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742

  17. SIX2 and BMP4 mutations associate with anomalous kidney development.

    PubMed

    Weber, Stefanie; Taylor, Jaclyn C; Winyard, Paul; Baker, Kari F; Sullivan-Brown, Jessica; Schild, Raphael; Knüppel, Tanja; Zurowska, Aleksandra M; Caldas-Alfonso, Alberto; Litwin, Mieczyslaw; Emre, Sevinc; Ghiggeri, Gian Marco; Bakkaloglu, Aysin; Mehls, Otto; Antignac, Corinne; Network, Escape; Schaefer, Franz; Burdine, Rebecca D

    2008-05-01

    Renal hypodysplasia (RHD) is characterized by reduced kidney size and/or maldevelopment of the renal tissue following abnormal organogenesis. Mutations in renal developmental genes have been identified in a subset of affected individuals. Here, we report the first mutations in BMP4 and SIX2 identified in patients with RHD. We detected 3 BMP4 mutations in 5 RHD patients, and 3 SIX2 mutations in 5 different RHD patients. Overexpression assays in zebrafish demonstrated that these mutations affect the function of Bmp4 and Six2 in vivo. Overexpression of zebrafish six2.1 and bmp4 resulted in dorsalization and ventralization, respectively, suggesting opposing roles in mesendoderm formation. When mutant constructs containing the identified human mutations were overexpressed instead, these effects were attenuated. Morpholino knockdown of bmp4 and six2.1 affected glomerulogenesis, suggesting specific roles for these genes in the formation of the pronephros. In summary, these studies implicate conserved roles for Six2 and Bmp4 in the development of the renal system. Defects in these proteins could affect kidney development at multiple stages, leading to the congenital anomalies observed in patients with RHD.

  18. JAK2 mutation in a patient with CLL with coexistent myeloproliferative neoplasm (MPN).

    PubMed

    Kodali, Srinivas; Chen, Chi; Rathnasabapathy, Chenthilmurugan; Wang, Jen Chin

    2009-12-01

    JAK2 mutation has not been described in patients with chronic lymphocytic leukemia (CLL). We found JAK2 mutation in a patient with CLL and coexisting myeloproliferative neoplasm (MPN). In this patient, we demonstrated the presence of the JAK2 mutation in CD34(+) progenitor cells, myeloid lineage cells, megakaryocytes, B lymphocytes but not in T lymphocytes. This case represents the first case report of JAK2 mutation in CLL and may also suggest that, JAK2 mutation most likely represents a secondary event from primary gene mutations involving the primitive stem cells which give rise to MPN and CLL. Furthermore, in this case, we believe that we are the first to demonstrate that JAK2 mutation in myeloid and B lymphoid cells but not T lymphocytes in a case of coexisting CLL and MPN.

  19. Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins.

    PubMed

    Anumula, K R; Du, P

    1999-11-15

    Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose. Copyright 1999 Academic Press.

  20. Clinical resistance associated with a novel MAP2K1 mutation in a patient with Langerhans cell histiocytosis.

    PubMed

    Azorsa, David O; Lee, David W; Wai, Daniel H; Bista, Ranjan; Patel, Apurvi R; Aleem, Eiman; Henry, Michael M; Arceci, Robert J

    2018-05-16

    Patients with Langerhans cell histiocytosis (LCH) harbor BRAF V600E and activating mutations of MAP2K1/MEK1 in 50% and 25% of cases, respectively. We evaluated a patient with treatment-refractory LCH for mutations in the RAS-RAF-MEK-ERK pathway and identified a novel mutation in the MAP2K1 gene resulting in a p.L98_K104 > Q deletion and predicted to be auto-activating. During treatment with the MEK inhibitor trametinib, the patient's disease showed significant progression. In vitro characterization of the MAP2K1 p.L98_K104 > Q deletion confirmed its effect on cellular activation of the ERK pathway and drug resistance. © 2018 Wiley Periodicals, Inc.