Sample records for e2 small nucleolar

  1. Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions.

    PubMed

    Uliel, Shai; Liang, Xue-hai; Unger, Ron; Michaeli, Shulamit

    2004-03-29

    Small nucleolar RNAs constitute a family of newly discovered non-coding small RNAs, most of which function in guiding RNA modifications. Two prevalent types of modifications are 2'-O-methylation and pseudouridylation. The modification is directed by the formation of a canonical small nucleolar RNA-target duplex. Initially, RNA-guided modification was shown to take place on rRNA, but recent studies suggest that small nuclear RNA, mRNA, tRNA, and the trypanosome spliced leader RNA also undergo guided modifications. Trypanosomes contain more modifications and potentially more small nucleolar RNAs than yeast, and the increased number of modifications may help to preserve ribosome function under adverse environmental conditions during the cycling between the insect and mammalian host. The genome organisation in clusters carrying the two types of small nucleolar RNAs, C/D and H/ACA-like RNAs, resembles that in plants. However, the trypanosomatid H/ACA RNAs are similar to those found in Archaea and are composed of a single hairpin that may represent the primordial H/ACA RNA. In this review we summarise this new field of trypanosome small nucleolar RNAs, emphasising the open questions regarding the number of small nucleolar RNAs, the repertoire, genome organisation, and the unique function of guided modifications in these protozoan parasites.

  2. Small nucleolar RNA U2_19 promotes hepatocellular carcinoma progression by regulating Wnt/β-catenin signaling.

    PubMed

    Wang, Haitao; Ma, Pei; Liu, Pengpeng; Chen, Baiyang; Liu, Zhisu

    2018-06-02

    Emerging evidence suggests that small nucleolar RNAs (snoRNAs) have malfunctioning roles in oncogenesis. In the present study, we investigated the role of box C/D small nucleolar RNA U2_19 (snoU2_19) in the tumorigenesis of hepatocellular carcinoma (HCC). Recently, we screened snoRNAs differential signatures by performing high-throughput small RNA sequence in HCC tissues and validated that upregulated snoU2_19 was associated with aggressive phenotypes in HCC patients. Aberrant snoU2_19 facilitated HCC cell proliferation, inhibited apoptosis and induced cell cycle progression in vitro analyses. We globally investigated the molecular mechanisms of snoU2_19 in HCC and found that snoU2_19 knockdown inhibited Wnt/β-catenin signaling pathway through inducing the translocation of β-catenin in cytoplasm. We concluded that snoU2_19 plays a pathological role in the development and progression of HCC, and is a potential therapeutic target for HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Nuclear Retention Elements of U3 Small Nucleolar RNA

    PubMed Central

    Speckmann, Wayne; Narayanan, Aarthi; Terns, Rebecca; Terns, Michael P.

    1999-01-01

    The processing and methylation of precursor rRNA is mediated by the box C/D small nucleolar RNAs (snoRNAs). These snoRNAs differ from most cellular RNAs in that they are not exported to the cytoplasm. Instead, these RNAs are actively retained in the nucleus where they assemble with proteins into mature small nucleolar ribonucleoprotein particles and are targeted to their intranuclear site of action, the nucleolus. In this study, we have identified the cis-acting sequences responsible for the nuclear retention of U3 box C/D snoRNA by analyzing the nucleocytoplasmic distributions of an extensive panel of U3 RNA variants after injection of the RNAs into Xenopus oocyte nuclei. Our data indicate the importance of two conserved sequence motifs in retaining U3 RNA in the nucleus. The first motif is comprised of the conserved box C′ and box D sequences that characterize the box C/D family. The second motif contains conserved box sequences B and C. Either motif is sufficient for nuclear retention, but disruption of both motifs leads to mislocalization of the RNAs to the cytoplasm. Variant RNAs that are not retained also lack 5′ cap hypermethylation and fail to associate with fibrillarin. Furthermore, our results indicate that nuclear retention of U3 RNA does not simply reflect its nucleolar localization. A fragment of U3 containing the box B/C motif is not localized to nucleoli but retained in coiled bodies. Thus, nuclear retention and nucleolar localization are distinct processes with differing sequence requirements. PMID:10567566

  4. SmgGDS is a transient nucleolar protein that protects cells from nucleolar stress and promotes the cell cycle by regulating DREAM complex gene expression.

    PubMed

    Gonyo, P; Bergom, C; Brandt, A C; Tsaih, S-W; Sun, Y; Bigley, T M; Lorimer, E L; Terhune, S S; Rui, H; Flister, M J; Long, R M; Williams, C L

    2017-12-14

    The chaperone protein and guanine nucleotide exchange factor SmgGDS (RAP1GDS1) is a key promoter of cancer cell proliferation and tumorigenesis. SmgGDS undergoes nucleocytoplasmic shuttling, suggesting that it has both cytoplasmic and nuclear functions that promote cancer. Previous studies indicate that SmgGDS binds cytoplasmic small GTPases and promotes their trafficking to the plasma membrane. In contrast, little is known about the functions of SmgGDS in the nucleus, or how these nuclear functions might benefit cancer cells. Here we show unique nuclear localization and regulation of gene transcription pathways by SmgGDS. Strikingly, SmgGDS depletion significantly reduces expression of over 600 gene products that are targets of the DREAM complex, which is a transcription factor complex that regulates expression of proteins controlling the cell cycle. The cell cycle regulators E2F1, MYC, MYBL2 (B-Myb) and FOXM1 are among the DREAM targets that are diminished by SmgGDS depletion. E2F1 is well known to promote G1 cell cycle progression, and the loss of E2F1 in SmgGDS-depleted cells provides an explanation for previous reports that SmgGDS depletion characteristically causes a G1 cell cycle arrest. We show that SmgGDS localizes in nucleoli, and that RNAi-mediated depletion of SmgGDS in cancer cells disrupts nucleolar morphology, signifying nucleolar stress. We show that nucleolar SmgGDS interacts with the RNA polymerase I transcription factor upstream binding factor (UBF). The RNAi-mediated depletion of UBF diminishes nucleolar localization of SmgGDS and promotes proteasome-mediated degradation of SmgGDS, indicating that nucleolar sequestration of SmgGDS by UBF stabilizes SmgGDS protein. The ability of SmgGDS to interact with UBF and localize in the nucleolus is diminished by expressing DiRas1 or DiRas2, which are small GTPases that bind SmgGDS and act as tumor suppressors. Taken together, our results support a novel nuclear role for SmgGDS in protecting malignant

  5. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.

    PubMed

    Gaspin, C; Cavaillé, J; Erauso, G; Bachellerie, J P

    2000-04-07

    Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into

  6. The Role of a Novel Nucleolar Protein in Regulation of E2F1 in Breast Cancer

    DTIC Science & Technology

    2009-09-01

    publication and successful defense of a PhD. 8 References 1. Paik JC, Wang B, Liu K, Lue J , Lin WC. Regulation of E2F1-induced apoptosis by...the nucleolar protein RRP1B. J Biol Chem. 2009 Dec 29. [E-pub ahead of print] 2. Hsieh SM, Look MP, Sieuwerts AM, Foekens JA, Hunter KW. Distinct...factor. J Biol Chem. 2009 Oct 16;284(42):28660-73. 4. Crawford NP, Walker RC, Lukes L, Officewala JS, Williams RW, Hunter KW. The Diasporin Pathway: a

  7. GLTSCR2 promotes the nucleoplasmic translocation and subsequent degradation of nucleolar ARF.

    PubMed

    Lee, Sun; Cho, Young-Eun; Kim, Sang-Hoon; Kim, Yong-Jun; Park, Jae-Hoon

    2017-03-07

    The alternative reading frame protein (p14ARF/ARF) is a key determinant of cell fate, acting as a potent tumor suppressor through a p53/MDM2-dependent pathway or promoting apoptosis in a p53-independent manner. The ARF protein is mainly expressed in the nucleolus and sequestered by nucleophosmin (NPM), whereas ARF-binding proteins, including p53 and MDM2, predominantly reside in the nucleoplasm. This raises the question of how nucleolar ARF binds nucleoplasmic signaling proteins to suppress tumor growth or inhibit cell cycle progression. GLTSCR2 (also known as PICT-1) is a nucleolar protein involved in both tumor suppression and oncogenesis in concert with p53, NPM, and/or MYC. Here, we show that GLTSCR2 increases nucleoplasmic ARF translocation and its degradation. Specifically, GLTSCR2 bound to ARF, and GLTSCR2-ARF complexes were released to the nucleoplasm, where GLTSCR2 increased the binding affinity of ARF for ULF/TRIP12 (a nucleoplasmic E3-ubiquitin ligase of ARF) and enhanced ARF degradation through the polyubiquitination pathway. Our results demonstrate that nucleolar/nucleoplasmic GLTSCR2 is a strong candidate for promoting the subcellular localization and protein stability of ARF.

  8. p53 -Dependent and -Independent Nucleolar Stress Responses

    PubMed Central

    Olausson, Karl Holmberg; Nistér, Monica; Lindström, Mikael S.

    2012-01-01

    The nucleolus has emerged as a cellular stress sensor and key regulator of p53-dependent and -independent stress responses. A variety of abnormal metabolic conditions, cytotoxic compounds, and physical insults induce alterations in nucleolar structure and function, a situation known as nucleolar or ribosomal stress. Ribosomal proteins, including RPL11 and RPL5, become increasingly bound to the p53 regulatory protein MDM2 following nucleolar stress. Ribosomal protein binding to MDM2 blocks its E3 ligase function leading to stabilization and activation of p53. In this review we focus on a number of novel regulators of the RPL5/RPL11-MDM2-p53 complex including PICT1 (GLTSCR2), MYBBP1A, PML and NEDD8. p53-independent pathways mediating the nucleolar stress response are also emerging and in particular the negative control that RPL11 exerts on Myc oncoprotein is of importance, given the role of Myc as a master regulator of ribosome biogenesis. We also briefly discuss the potential of chemotherapeutic drugs that specifically target RNA polymerase I to induce nucleolar stress. PMID:24710530

  9. Evidence for nucleolar subcompartments in Dictyostelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, Andrew, E-mail: acatalano@ccny.cuny.edu; O’Day, Danton H., E-mail: danton.oday@utoronto.ca; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5

    2015-01-24

    Highlights: • Two nucleolar subcompartments (NoSC1, NoSC2) were found in Dictyostelium. • Specific nucleolar proteins localize to different nucleolar subcompartments. • Specific proteins exit NoSC1 and NoSC2 differently upon Actinomycin D treatment. • KRKR appears to function as an NoSC2 nucleolar subcompartment localization signal. - Abstract: The nucleolus is a multifunctional nuclear compartment usually consisting of two to three subcompartments which represent stages of ribosomal biogenesis. It is linked to several human diseases including viral infections, cancer, and neurodegeneration. Dictyostelium is a model eukaryote for the study of fundamental biological processes as well as several human diseases however comparatively littlemore » is known about its nucleolus. Unlike most nucleoli it does not possess visible subcompartments at the ultrastructural level. Several recently identified nucleolar proteins in Dictyostelium leave the nucleolus after treatment with the rDNA transcription inhibitor actinomycin-D (AM-D). Different proteins exit in different ways, suggesting that previously unidentified nucleolar subcompartments may exist. The identification of nucleolar subcompartments would help to better understand the nucleolus in this model eukaryote. Here, we show that Dictyostelium nucleolar proteins nucleomorphin isoform NumA1 and Bud31 localize throughout the entire nucleolus while calcium-binding protein 4a localizes to only a portion, representing nucleolar subcompartment 1 (NoSC1). SWI/SNF complex member Snf12 localizes to a smaller area within NoSC1 representing a second nucleolar subcompartment, NoSC2. The nuclear/nucleolar localization signal KRKR from Snf12 localized GFP to NoSC2, and thus also appears to function as a nucleolar subcompartment localization signal. FhkA localizes to the nucleolar periphery displaying a similar pattern to that of Hsp32. Similarities between the redistribution patterns of Dictyostelium nucleolar proteins

  10. Identification of novel proteins associated with yeast snR30 small nucleolar RNA

    PubMed Central

    Lemay, Vincent; Hossain, Ahmed; Osheim, Yvonne N.; Beyer, Ann L.; Dragon, François

    2011-01-01

    H/ACA small nucleolar RNPs (snoRNPs) that guide pseudouridylation reactions are comprised of one small nucleolar RNA (snoRNA) and four common proteins (Cbf5, Gar1, Nhp2 and Nop10). Unlike other H/ACA snoRNPs, snR30 is essential for the early processing reactions that lead to the production of 18S ribosomal RNA in the yeast Saccharomyces cerevisiae. To determine whether snR30 RNP contains specific proteins that contribute to its unique functional properties, we devised an affinity purification strategy using TAP-tagged Gar1 and an RNA aptamer inserted in snR30 snoRNA to selectively purify the RNP. Northern blotting and pCp labeling experiments showed that S1-tagged snR30 snoRNA can be selectively purified with streptavidin beads. Protein analysis revealed that aptamer-tagged snR30 RNA was associated with the four H/ACA proteins and a number of additional proteins: Nop6, ribosomal proteins S9 and S18 and histones H2B and H4. Using antibodies raised against Nop6 we show that endogenous Nop6 localizes to the nucleolus and that it cosediments with snR30 snoRNA in sucrose density gradients. We demonstrate through primer extension experiments that snR30 snoRNA is required for cleavages at site A0, A1 and A2, and that the absence of Nop6 decreases the efficiency of cleavage at site A2. Finally, electron microscopy analyses of chromatin spreads from cells depleted of snR30 snoRNA show that it is required for SSU processome assembly. PMID:21893585

  11. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism

    PubMed Central

    Lee, Jiyeon; Harris, Alexis N.; Holley, Christopher L.; Mahadevan, Jana; Pyles, Kelly D.; Lavagnino, Zeno; Scherrer, David E.; Fujiwara, Hideji; Sidhu, Rohini; Zhang, Jessie; Huang, Stanley Ching-Cheng; Piston, David W.; Remedi, Maria S.; Urano, Fumihiko; Ory, Daniel S.

    2016-01-01

    Small nucleolar RNAs (snoRNAs) are non-coding RNAs that form ribonucleoproteins to guide covalent modifications of ribosomal and small nuclear RNAs in the nucleus. Recent studies have also uncovered additional non-canonical roles for snoRNAs. However, the physiological contributions of these small RNAs are largely unknown. Here, we selectively deleted four snoRNAs encoded within the introns of the ribosomal protein L13a (Rpl13a) locus in a mouse model. Loss of Rpl13a snoRNAs altered mitochondrial metabolism and lowered reactive oxygen species tone, leading to increased glucose-stimulated insulin secretion from pancreatic islets and enhanced systemic glucose tolerance. Islets from mice lacking Rpl13a snoRNAs demonstrated blunted oxidative stress responses. Furthermore, these mice were protected against diabetogenic stimuli that cause oxidative stress damage to islets. Our study illuminates a previously unrecognized role for snoRNAs in metabolic regulation. PMID:27820699

  12. Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae.

    PubMed

    Qiu, Hui; Eifert, Julia; Wacheul, Ludivine; Thiry, Marc; Berger, Adam C; Jakovljevic, Jelena; Woolford, John L; Corbett, Anita H; Lafontaine, Denis L J; Terns, Rebecca M; Terns, Michael P

    2008-06-01

    Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.

  13. SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs

    PubMed Central

    1990-01-01

    SSB-1, the yeast single-strand RNA-binding protein, is demonstrated to be a yeast nucleolar-specific, silver-binding protein. In double-label immunofluorescence microscopy experiments antibodies to two other nucleolar proteins, RNA Pol I 190-kD and fibrillarin, were used to reveal the site of rRNA transcription; i.e., the fibrillar region of the nucleolus. SSB-1 colocalized with fibrillarin in a double-label immunofluorescence mapping experiment to the yeast nucleolus. SSB-1 is located, though, over a wider region of the nucleolus than the transcription site marker. Immunoprecipitations of yeast cell extracts with the SSB-1 antibody reveal that in 150 mM NaCl SSB-1 is bound to two small nuclear RNAs (snRNAs). These yeast snRNAs are snR10 and snR11, with snR10 being predominant. Since snR10 has been implicated in pre-rRNA processing, the association of SSB-1 and snR10 into a nucleolar snRNP particle indicates SSB-1 involvement in rRNA processing as well. Also, another yeast protein, SSB-36-kD, isolated by single- strand DNA chromatography, is shown to bind silver under the conditions used for nucleolar-specific staining. It is, most likely, another yeast nucleolar protein. PMID:2121740

  14. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  15. Autoantigenicity of nucleolar complexes.

    PubMed

    Welting, Tim J M; Raijmakers, Reinout; Pruijn, Ger J M

    2003-10-01

    Autoantibodies targeting nucleolar autoantigens (ANoA) are most frequently found in sera from patients with systemic sclerosis (SSc, also designated scleroderma) or with SSc overlap syndromes. During the last decade an extensive number of nucleolar components have been identified and this allowed a more detailed analysis of the identity of nucleolar autoantigens. This review intends to give an overview of the molecular composition of the major (families of) autoantigenic nucleolar complexes, to provide some insight into their functions and to summarise the data concerning their autoantigenicity.

  16. Role of the Box C/D Motif in Localization of Small Nucleolar RNAs to Coiled Bodies and Nucleoli

    PubMed Central

    Narayanan, Aarthi; Speckmann, Wayne; Terns, Rebecca; Terns, Michael P.

    1999-01-01

    Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C′, box D, and the 3′ terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs. PMID:10397754

  17. PNAC: a protein nucleolar association classifier

    PubMed Central

    2011-01-01

    Background Although primarily known as the site of ribosome subunit production, the nucleolus is involved in numerous and diverse cellular processes. Recent large-scale proteomics projects have identified thousands of human proteins that associate with the nucleolus. However, in most cases, we know neither the fraction of each protein pool that is nucleolus-associated nor whether their association is permanent or conditional. Results To describe the dynamic localisation of proteins in the nucleolus, we investigated the extent of nucleolar association of proteins by first collating an extensively curated literature-derived dataset. This dataset then served to train a probabilistic predictor which integrates gene and protein characteristics. Unlike most previous experimental and computational studies of the nucleolar proteome that produce large static lists of nucleolar proteins regardless of their extent of nucleolar association, our predictor models the fluidity of the nucleolus by considering different classes of nucleolar-associated proteins. The new method predicts all human proteins as either nucleolar-enriched, nucleolar-nucleoplasmic, nucleolar-cytoplasmic or non-nucleolar. Leave-one-out cross validation tests reveal sensitivity values for these four classes ranging from 0.72 to 0.90 and positive predictive values ranging from 0.63 to 0.94. The overall accuracy of the classifier was measured to be 0.85 on an independent literature-based test set and 0.74 using a large independent quantitative proteomics dataset. While the three nucleolar-association groups display vastly different Gene Ontology biological process signatures and evolutionary characteristics, they collectively represent the most well characterised nucleolar functions. Conclusions Our proteome-wide classification of nucleolar association provides a novel representation of the dynamic content of the nucleolus. This model of nucleolar localisation thus increases the coverage while providing

  18. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko

    2006-06-10

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, amore » cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25.« less

  19. Nucleolar proteins Bfr2 and Enp2 interact with DEAD-box RNA helicase Dbp4 in two different complexes

    PubMed Central

    Soltanieh, Sahar; Lapensée, Martin; Dragon, François

    2014-01-01

    Different pre-ribosomal complexes are formed during ribosome biogenesis, and the composition of these complexes is highly dynamic. Dbp4, a conserved DEAD-box RNA helicase implicated in ribosome biogenesis, interacts with nucleolar proteins Bfr2 and Enp2. We show that, like Dbp4, Bfr2 and Enp2 are required for the early processing steps leading to the production of 18S ribosomal RNA. We also found that Bfr2 and Enp2 associate with the U3 small nucleolar RNA (snoRNA), the U3-specific protein Mpp10 and various pre-18S ribosomal RNA species. Thus, we propose that Bfr2, Dbp4 and Enp2 are components of the small subunit (SSU) processome, a large complex of ∼80S. Sucrose gradient sedimentation analyses indicated that Dbp4, Bfr2 and Enp2 sediment in a peak of ∼50S and in a peak of ∼80S. Bfr2, Dbp4 and Enp2 associate together in the 50S complex, which does not include the U3 snoRNA; however, they associate with U3 snoRNA in the 80S complex (SSU processome). Immunoprecipitation experiments revealed that U14 snoRNA associates with Dbp4 in the 50S complex, but not with Bfr2 or Enp2. The assembly factor Tsr1 is not part of the ‘50S’ complex, indicating this complex is not a pre-40S ribosome. A combination of experiments leads us to propose that Bfr2, Enp2 and Dbp4 are recruited at late steps during assembly of the SSU processome. PMID:24357410

  20. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140.

    PubMed

    Yang, Y; Isaac, C; Wang, C; Dragon, F; Pogacic, V; Meier, U T

    2000-02-01

    Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2'-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells.

  1. Conserved Composition of Mammalian Box H/ACA and Box C/D Small Nucleolar Ribonucleoprotein Particles and Their Interaction with the Common Factor Nopp140

    PubMed Central

    Yang, Yunfeng; Isaac, Cynthia; Wang, Chen; Dragon, François; Pogac̆ić, Vanda; Meier, U. Thomas

    2000-01-01

    Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2′-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells. PMID:10679015

  2. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis.

    PubMed

    Yuan, Fuwen; Xu, Chenzhong; Li, Guodong; Tong, Tanjun

    2018-05-03

    The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.

  3. Human H/ACA Small Nucleolar RNPs and Telomerase Share Evolutionarily Conserved Proteins NHP2 and NOP10

    PubMed Central

    Pogacic, Vanda; Dragon, François; Filipowicz, Witold

    2000-01-01

    The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. In the yeast Saccharomyces cerevisiae, four common proteins are associated with H/ACA snoRNAs: Gar1p, Cbf5p, Nhp2p, and Nop10p. In vitro reconstitution studies showed that four proteins also specifically interact with H/ACA snoRNAs in mammalian cell extracts. Two mammalian proteins, NAP57/dyskerin (the ortholog of Cbf5p) and hGAR1, have been characterized. In this work we describe properties of hNOP10 and hNHP2, human orthologs of yeast Nop10p and Nhp2p, respectively, and further characterize hGAR1. hNOP10 and hNHP2 complement yeast cells depleted of Nhp2p and Nop10p, respectively. Immunoprecipitation experiments with extracts from transfected HeLa cells indicated that epitope-tagged hNOP10 and hNHP2 specifically associate with hGAR1 and H/ACA RNAs; they also interact with the RNA subunit of telomerase, which contains an H/ACA-like domain in its 3′ moiety. Immunofluorescence microscopy experiments showed that hGAR1, hNOP10, and hNHP2 are localized in the dense fibrillar component of the nucleolus and in Cajal (coiled) bodies. Deletion analysis of hGAR1 indicated that its evolutionarily conserved core domain contains all the signals required for localization, but progressive deletions from either the N or the C terminus of the core domain abolish localization in the nucleolus and/or the Cajal bodies. PMID:11074001

  4. Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration.

    PubMed

    Mizielinska, Sarah; Ridler, Charlotte E; Balendra, Rubika; Thoeng, Annora; Woodling, Nathan S; Grässer, Friedrich A; Plagnol, Vincent; Lashley, Tammaryn; Partridge, Linda; Isaacs, Adrian M

    2017-04-18

    An intronic GGGGCC expansion in C9orf72 is the most common known cause of both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat expansion leads to the generation of sense and antisense repeat RNA aggregates and dipeptide repeat (DPR) proteins, generated by repeat-associated non-ATG translation. The arginine-rich DPR proteins poly(glycine-arginine or GR) and poly(proline-arginine or PR) are potently neurotoxic and can localise to the nucleolus when expressed in cells, resulting in enlarged nucleoli with disrupted functionality. Furthermore, GGGGCC repeat RNA can bind nucleolar proteins in vitro. However, the relevance of nucleolar stress is unclear, as the arginine-rich DPR proteins do not localise to the nucleolus in C9orf72-associated FTLD/ALS (C9FTLD/ALS) patient brain. We measured nucleolar size in C9FTLD frontal cortex neurons using a three-dimensional, volumetric approach. Intriguingly, we found that C9FTLD brain exhibited bidirectional nucleolar stress. C9FTLD neuronal nucleoli were significantly smaller than control neuronal nucleoli. However, within C9FTLD brains, neurons containing poly(GR) inclusions had significantly larger nucleolar volumes than neurons without poly(GR) inclusions. In addition, expression of poly(GR) in adult Drosophila neurons led to significantly enlarged nucleoli. A small but significant increase in nucleolar volume was also observed in C9FTLD frontal cortex neurons containing GGGGCC repeat-containing RNA foci. These data show that nucleolar abnormalities are a consistent feature of C9FTLD brain, but that diverse pathomechanisms are at play, involving both DPR protein and repeat RNA toxicity.

  5. All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA

    PubMed Central

    Gerbi, Susan A.; Lange, Thilo Sascha

    2002-01-01

    Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3′ end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3′-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3′ hydroxyl of U6 snRNA to a 3′ phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies. PMID:12221120

  6. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    PubMed Central

    Macovei, Anca; Faè, Matteo; Biggiogera, Marco; de Sousa Araújo, Susana; Carbonera, Daniela; Balestrazzi, Alma

    2018-01-01

    The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2) involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively) and a control (CTRL) line carrying the empty vector were investigated. Transmission electron microscopy (TEM) revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL), the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL) and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells. PMID:29868059

  7. Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction.

    PubMed

    Franek, Michal; Kovaříková, Alena; Bártová, Eva; Kozubek, Stanislav

    2016-11-01

    DNA damage response (DDR) in ribosomal genes and mechanisms of DNA repair in embryonic stem cells (ESCs) are less explored nuclear events. DDR in ESCs should be unique due to their high proliferation rate, expression of pluripotency factors, and specific chromatin signature. Given short population doubling time and fast progress through G1 phase, ESCs require a sustained production of rRNA, which leads to the formation of large and prominent nucleoli. Although transcription of rRNA in the nucleolus is relatively well understood, little is known about DDR in this nuclear compartment. Here, we directed formation of double-strand breaks in rRNA genes with I- PpoI endonuclease, and we studied nucleolar morphology, DDR, and chromatin modifications. We observed a pronounced formation of I- PpoI-induced nucleolar caps, positive on BRCA1, NBS1, MDC1, γH2AX, and UBF1 proteins. We showed interaction of nucleolar protein TCOF1 with HDAC1 and TCOF1 with CARM1 after DNA injury. Moreover, H3R17me2a modification mediated by CARM1 was found in I- PpoI-induced nucleolar caps. Finally, we report that heterochromatin protein 1 is not involved in DNA repair of nucleolar caps.

  8. Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction

    PubMed Central

    Franek, Michal; Kovaříková, Alena; Bártová, Eva; Kozubek, Stanislav

    2016-01-01

    DNA damage response (DDR) in ribosomal genes and mechanisms of DNA repair in embryonic stem cells (ESCs) are less explored nuclear events. DDR in ESCs should be unique due to their high proliferation rate, expression of pluripotency factors, and specific chromatin signature. Given short population doubling time and fast progress through G1 phase, ESCs require a sustained production of rRNA, which leads to the formation of large and prominent nucleoli. Although transcription of rRNA in the nucleolus is relatively well understood, little is known about DDR in this nuclear compartment. Here, we directed formation of double-strand breaks in rRNA genes with I-PpoI endonuclease, and we studied nucleolar morphology, DDR, and chromatin modifications. We observed a pronounced formation of I-PpoI-induced nucleolar caps, positive on BRCA1, NBS1, MDC1, γH2AX, and UBF1 proteins. We showed interaction of nucleolar protein TCOF1 with HDAC1 and TCOF1 with CARM1 after DNA injury. Moreover, H3R17me2a modification mediated by CARM1 was found in I-PpoI-induced nucleolar caps. Finally, we report that heterochromatin protein 1 is not involved in DNA repair of nucleolar caps. PMID:27680669

  9. A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells.

    PubMed

    Condemine, Wilfried; Takahashi, Yuki; Le Bras, Morgane; de Thé, Hugues

    2007-09-15

    The promyelocytic leukemia (PML) tumour suppressor is the organiser of PML nuclear bodies, which are domains the precise functions of which are still disputed. We show that upon several types of stress, endogenous PML proteins form nucleolar caps and eventually engulf nucleolar components. Only two specific PML splice variants (PML-I and PML-IV) are efficiently targeted to the nucleolus and the abundant PML-I isoform is required for the targeting of endogenous PML proteins to this organelle. We identified a nucleolar targeting domain within the evolutionarily conserved C-terminus of PML-I. This domain contains a predicted exonuclease III fold essential for the targeting of the PML-I C-terminus to nucleolar fibrillar centres. Furthermore, spontaneous or oncogene retrieval-induced senescence is associated with the formation of very large PML nuclear bodies that initially contain nucleolar components. Later, poly-ubiquitin conjugates are found on the outer shell or within most of these senescence-associated PML bodies. Thus, unexpectedly, the scarcely studied PML-I isoform links PML bodies, nucleolus, senescence and proteolysis.

  10. In situ localization of nucleolin in the plant nucleolar matrix.

    PubMed

    Minguez, A; Moreno Diaz de la Espina, S

    1996-01-10

    The analysis of isolated nucleolar matrices from onion cells by light and electron microscopy, 2-D separation of proteins, and confocal microscopy has confirmed the existence of an organized nucleolar matrix with a complex protein composition to which are attached the insoluble processing complexes. In the present work, we present evidence from immunoblotting, immunofluorescence, immunogold labeling, and preferential cytochemical staining with bismuth salts that an insoluble fraction of the multifunctional protein nucleolin, is a component of the onion nucleolar matrix, and analyse its ultrastructural distribution in the described domains of the matrix.

  11. U14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA.

    PubMed

    Morrissey, J P; Tollervey, D

    1997-06-01

    The small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.

  12. Increased functional load on mouse kidney proximal tubule epithelial cells causes changes in nucleolar 3-D architecture.

    PubMed

    Chelidze, P V; Dzidziguri, D V; Tumanishvili, G D

    1998-05-01

    nucleolar activation. The vacuolar system develops by a gradual fusion of small isolated cavities into a united vacuolar network. Nucleoli with 2-7 fibrillar centers are considered to be intermediate forms reflecting successive stages of its activation or inactivation: from the resting ring-shaped nucleolus via transient stages of increasing functional activity to the active reticulated nucleoli and vice versa. The observed differences in the nucleolar ultrastructure are regarded as evidence of the functional heterogeneity of cell populations within one functional segment of nephron.

  13. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    PubMed

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  14. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage

    PubMed Central

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein–protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage. PMID:24675884

  15. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage.

    PubMed

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein-protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage.

  16. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels

    PubMed Central

    Goudarzi, Kaveh M; Nistér, Monica; Lindström, Mikael S

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors. PMID:25482947

  17. Small nucleoli are a cellular hallmark of longevity

    PubMed Central

    Tiku, Varnesh; Jain, Chirag; Raz, Yotam; Nakamura, Shuhei; Heestand, Bree; Liu, Wei; Späth, Martin; Suchiman, H. Eka. D.; Müller, Roman-Ulrich; Slagboom, P. Eline; Partridge, Linda; Antebi, Adam

    2017-01-01

    Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa. PMID:28853436

  18. Small nucleoli are a cellular hallmark of longevity.

    PubMed

    Tiku, Varnesh; Jain, Chirag; Raz, Yotam; Nakamura, Shuhei; Heestand, Bree; Liu, Wei; Späth, Martin; Suchiman, H Eka D; Müller, Roman-Ulrich; Slagboom, P Eline; Partridge, Linda; Antebi, Adam

    2016-08-30

    Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa.

  19. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster.

    PubMed

    Sahoo, Trilochan; del Gaudio, Daniela; German, Jennifer R; Shinawi, Marwan; Peters, Sarika U; Person, Richard E; Garnica, Adolfo; Cheung, Sau Wai; Beaudet, Arthur L

    2008-06-01

    Prader-Willi syndrome (PWS) is caused by deficiency for one or more paternally expressed imprinted transcripts within chromosome 15q11-q13, including SNURF-SNRPN and multiple small nucleolar RNAs (snoRNAs). Balanced chromosomal translocations that preserve expression of SNURF-SNRPN and centromeric genes but separate the snoRNA HBII-85 cluster from its promoter cause PWS. A microdeletion of the HBII-85 snoRNAs in a child with PWS provides, in combination with previous data, effectively conclusive evidence that deficiency of HBII-85 snoRNAs causes the key characteristics of the PWS phenotype, although some atypical features suggest that other genes in the region may make more subtle phenotypic contributions.

  20. Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis.

    PubMed

    Piñol-Roma, S

    1999-01-01

    rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin-a major nucleolar RNA-binding protein-contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.

  1. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies.

    PubMed

    Ehm, Patrick; Nalaskowski, Marcus M; Wundenberg, Torsten; Jücker, Manfred

    2015-01-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in haematopoietic cells. By converting PI(3,4,5)P3 to PtdIns(3,4)P2 at the plasma membrane, SHIP1 modifies PI3-kinase mediated signaling. We have recently demonstrated that SHIP1 is a nucleo-cytoplasmic shuttling protein and SHIP1 nuclear puncta partially colocalize with FLASH, a component of nuclear bodies. In this study, we demonstrate that endogenous SHIP1 localizes to intranucleolar regions of both normal and leukemic haematopoietic cells. In addition, we report that ectopically expressed SHIP1 accumulates in nucleolar cavities and colocalizes with the tumor suppressor protein p53 and components of PML nuclear bodies (e.g. SP100, SUMO-1 and CK2). Moreover, SHIP1 also colocalizes in nucleolar cavities with components of the ubiquitin-proteasome pathway. By using confocal microscopy data, we generated 3D-models revealing the enormous extent of the SHIP1 aggresomes in the nucleolus. Furthermore, treatment of cells with the proteasome inhibitor MG132 causes an enlargement of nucleolar SHIP1 containing structures. Unexpectedly, this accumulation can be partially prevented by treatment with the inhibitor of nuclear protein export Leptomycin B. In recent years, several proteins aggregating in nucleolar cavities were shown to be key factors of neurodegenerative diseases and cancerogenesis. Our findings support current relevance of nuclear localized SHIP1.

  2. Immunocytochemical localization of a histone H2A variant in the mammalian nucleolar chromatin.

    PubMed

    Bhatnagar, Y M; McCullar, M K; Chronister, R B

    1984-11-01

    The distribution of protein "A", a minor variant of H2A present in the mouse testis, was studied in the liver and brain nuclei using peroxidase-antiperoxidase technique. The data presented here suggest that nucleolar-associated chromatin is highly enriched in protein "A". Microspectrophotometric measurements corroborate the immunocytochemical data. The regional differentiation in the eukaryotic chromatin, therefore, may involve qualitative changes in the histone composition.

  3. Nucleolar Trafficking of Nucleostemin Family Proteins: Common versus Protein-Specific Mechanisms▿ §

    PubMed Central

    Meng, Lingjun; Zhu, Qubo; Tsai, Robert Y. L.

    2007-01-01

    The nucleolus has begun to emerge as a subnuclear organelle capable of modulating the activities of nuclear proteins in a dynamic and cell type-dependent manner. It remains unclear whether one can extrapolate a rule that predicts the nucleolar localization of multiple proteins based on protein sequence. Here, we address this issue by determining the shared and unique mechanisms that regulate the static and dynamic distributions of a family of nucleolar GTP-binding proteins, consisting of nucleostemin (NS), guanine nucleotide binding protein-like 3 (GNL3L), and Ngp1. The nucleolar residence of GNL3L is short and primarily controlled by its basic-coiled-coil domain, whereas the nucleolar residence of NS and Ngp1 is long and requires the basic and the GTP-binding domains, the latter of which functions as a retention signal. All three proteins contain a nucleoplasmic localization signal (NpLS) that prevents their nucleolar accumulation. Unlike that of the basic domain, the activity of NpLS is dynamically controlled by the GTP-binding domain. The nucleolar retention and the NpLS-regulating functions of the G domain involve specific residues that cannot be predicted by overall protein homology. This work reveals common and protein-specific mechanisms underlying the nucleolar movement of NS family proteins. PMID:17923687

  4. Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*

    PubMed Central

    Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela

    2009-01-01

    Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686

  5. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA.

    PubMed

    Hughes, J M

    1996-06-21

    The U3 nucleolar RNA has a remarkably wide phyletic distribution extending from the Eukarya to the Archaea. It functions in maturation of the small subunit (SSU) rRNA through a mechanism which is as yet unknown but which involves base-pairing with pre-rRNA. The most conserved part of U3 is within 30 nucleotides of the 5' end, but as yet no function for this domain has been proposed. Elements within this domain are complementary to highly conserved sequences in the SSU rRNA which, in the mature form, fold into a universally conserved pseudoknot. The nature of the complementarity suggests a novel mechanism for U3 function whereby U3 facilitates correct folding of the pseudoknot. Wide phylogenetic comparison provides compelling evidence in support of the interaction in that significant complementary changes have taken place, particularly in the archaeon Sulfolobus, which maintain the base-pairing. Base-substitution mutations in yeast U3 designed to disrupt the base-pairing indicate that the interaction is probably essential. These include cold-sensitivity mutations which exhibit phenotypes similar to U3-depletion, but without impairment of the AO processing step, which occurs within the 5' ETS. These phenotypes are consistent with the destabilization of SSU precursors and partial impairment of the processing steps A1, at the 5' ETS/18 S boundary, and A2, within the ITS1.

  6. Proteomic characterization of the nucleolar linker histone H1 interaction network

    PubMed Central

    Szerlong, Heather J.; Herman, Jacob A.; Krause, Christine M.; DeLuca, Jennifer G.; Skoultchi, Arthur; Winger, Quinton A.; Prenni, Jessica E.; Hansen, Jeffrey C.

    2015-01-01

    To investigate the relationship between linker histone H1 and protein-protein interactions in the nucleolus, biochemical and proteomics approaches were used to characterize nucleoli purified from cultured human and mouse cells. Mass spectrometry identified 175 proteins in human T-cell nucleolar extracts that bound to sepharose-immobilized H1 in vitro. Gene ontology analysis found significant enrichment for H1 binding proteins with functions related to nucleolar chromatin structure and RNA polymerase I transcription regulation, rRNA processing, and mRNA splicing. Consistent with the affinity binding results, H1 existed in large (400 to >650 kDa) macromolecular complexes in human T cell nucleolar extracts. To complement the biochemical experiments, the effects of in vivo H1 depletion on protein content and structural integrity of the nucleolus were investigated using the H1 triple isoform knock out (H1ΔTKO) mouse embryonic stem cell (mESC) model system. Proteomic profiling of purified wild type mESC nucleoli identified a total of 613 proteins, only ~60% of which were detected in the H1 mutant nucleoli. Within the affected group, spectral counting analysis quantitated 135 specific nucleolar proteins whose levels were significantly altered in H1ΔTKO mESC. Importantly, the functions of the affected proteins in mESC closely overlapped with those of the human T cell nucleolar H1 binding proteins. Immunofluorescence microscopy of intact H1ΔTKO mESC demonstrated both a loss of nucleolar RNA content and altered nucleolar morphology resulting from in vivo H1 depletion. We conclude that H1 organizes and maintains an extensive protein-protein interaction network in the nucleolus required for nucleolar structure and integrity. PMID:25584861

  7. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    NASA Astrophysics Data System (ADS)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated

  8. Box C/D small nucleolar RNA (snoRNA) U60 regulates intracellular cholesterol trafficking.

    PubMed

    Brandis, Katrina A; Gale, Sarah; Jinn, Sarah; Langmade, Stephen J; Dudley-Rucker, Nicole; Jiang, Hui; Sidhu, Rohini; Ren, Aileen; Goldberg, Anna; Schaffer, Jean E; Ory, Daniel S

    2013-12-13

    Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function.

  9. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies

    PubMed Central

    Ehm, Patrick; Nalaskowski, Marcus M; Wundenberg, Torsten; Jücker, Manfred

    2015-01-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in haematopoietic cells. By converting PI(3,4,5)P3 to PtdIns(3,4)P2 at the plasma membrane, SHIP1 modifies PI3-kinase mediated signaling. We have recently demonstrated that SHIP1 is a nucleo-cytoplasmic shuttling protein and SHIP1 nuclear puncta partially colocalize with FLASH, a component of nuclear bodies. In this study, we demonstrate that endogenous SHIP1 localizes to intranucleolar regions of both normal and leukemic haematopoietic cells. In addition, we report that ectopically expressed SHIP1 accumulates in nucleolar cavities and colocalizes with the tumor suppressor protein p53 and components of PML nuclear bodies (e.g. SP100, SUMO-1 and CK2). Moreover, SHIP1 also colocalizes in nucleolar cavities with components of the ubiquitin-proteasome pathway. By using confocal microscopy data, we generated 3D-models revealing the enormous extent of the SHIP1 aggresomes in the nucleolus. Furthermore, treatment of cells with the proteasome inhibitor MG132 causes an enlargement of nucleolar SHIP1 containing structures. Unexpectedly, this accumulation can be partially prevented by treatment with the inhibitor of nuclear protein export Leptomycin B. In recent years, several proteins aggregating in nucleolar cavities were shown to be key factors of neurodegenerative diseases and cancerogenesis. Our findings support current relevance of nuclear localized SHIP1. PMID:25723258

  10. Conserved Regulators of Nucleolar Size Revealed by Global Phenotypic Analyses

    PubMed Central

    Neumüller, Ralph A.; Gross, Thomas; Samsonova, Anastasia A.; Vinayagam, Arunachalam; Buckner, Michael; Founk, Karen; Hu, Yanhui; Sharifpoor, Sara; Rosebrock, Adam P.; Andrews, Brenda; Winston, Fred; Perrimon, Norbert

    2014-01-01

    Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I–mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I–mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry–based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules. PMID:23962978

  11. Nucleolar changes after microinjection of antibodies to RNA polymerase I into the nucleus of mammalian cells.

    PubMed

    Benavente, R; Reimer, G; Rose, K M; Hügle-Dörr, B; Scheer, U

    1988-01-01

    After microinjection of antibodies against RNA polymerase I into the nuclei of cultured rat kangaroo (PtK2) and rat (RVF-SMC) cells alterations in nucleolar structure and composition were observed. These were detected by electron microscopy and double-label immunofluorescence microscopy using antibodies to proteins representative of the three major components of the nucleolus. The microinjected antibodies produced a progressive loss of the material of the dense fibrillar component (DFC) from the nucleoli which, at 4 h after injection, were transformed into bodies with purely granular component (GC) structure with attached fibrillar centers (FCs). Concomitantly, numerous extranucleolar aggregates appeared in the nucleoplasm which morphologically resembled fragments of the DFC and contained a protein (fibrillarin) diagnostic for this nucleolar structure. These observations indicate that the topological distribution of the material constituting the DFC can be experimentally influenced in interphase cells, apparently by modulating the transcriptional activity of the rRNA genes. These effects are different from nucleolar lesions induced by inhibitory drugs such as actinomycin D-dependent "nucleolar segregation". The structural alterations induced by antibodies to RNA polymerase I resemble, however, the initial events of nucleolar disintegration during mitotic prophase.

  12. Immunocytochemical localisation of the nucleolar protein fibrillarin and RNA polymerase I during mouse early embryogenesis.

    PubMed

    Cuadros-Fernández, J M; Esponda, P

    1996-02-01

    We have employed immunocytochemical procedures to localise the nucleolar protein fibrillarin and the enzyme RNA polymerase I in the numerous dense fibrillar bodies (nucleolar precursor bodies) which appear in the nuclei of mammalian early embryos. The aim of this study was to search for relationships between the localisation of these proteins, the changes in the structure of the nucleolar precursor bodies and the resumption of rRNA gene transcription during mouse early embryogenesis. Three human autoimmune sera which recognised fibrillarin and a rabbit antiserum created against RNA polymerase I were employed for fluorescence and electron microscopic immunocytochemical assays. A statistical analysis was also applied. Immunocytochemistry revealed that fibrillarin and RNA polymerase I showed the same localisation in the nucleolar precursor bodies. These proteins were immunolocalised only from the late 2-cell stage onward. Fibrillarin was initially detected at the periphery of the nucleolar precursor bodies and the labelling gradually increased until the morula and blastocyst stages, where normally active nucleoli are found. The pattern of increase of fibrillarin during early embryogenesis shows a parallelism with the rise in rRNA gene transcription occurring during these embryonic stages, and a possible correlation between these two phenomena is suggested. Results demonstrated that nucleolar precursor bodies differ in their biochemical composition from the nucleolus and also from the prenucleolar bodies which appear during mitosis. When anti-fibrillarin antibodies were microinjected into the male pronucleus of mouse embryos to analyse the functions of fibrillarin during early development, they partially blocked the early development of mouse embryos and only 23.8% of injected embryos reach the blastocyst stage.

  13. Nucleolar molecular signature of pluripotent stem cells.

    PubMed

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Jiang, Houbo; Hu, Zhixing; Ren, Yong; Feng, Jian; Prasad, Paras N

    2013-04-02

    Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells to the pluripotent state. Identification and quantitative characterization of changes in the molecular organization of the cell during the process of cellular reprogramming is valuable for stem cell research and advancement of its therapeutic applications. Here we employ quantitative Raman microspectroscopy and biomolecular component analysis (BCA) for a comparative analysis of the molecular composition of nucleoli in skin fibroblasts and iPSC derived from them. We report that the cultured fibroblasts obtained from different human subjects, share comparable concentrations of proteins, RNA, DNA, and lipids in the molecular composition of nucleoli. The nucleolar molecular environment is drastically changed in the corresponding iPSC. We measured that the transition from skin fibroblasts to iPSC is accompanied by a statistically significant increase in protein concentrations ~1.3-fold, RNA concentrations ~1.3-fold, and DNA concentrations ~1.4-fold, while no statistically significant difference was found for the lipid concentrations. The analysis of molecular vibrations associated with diverse aminoacids and protein conformations indicates that nucleoli of skin fibroblasts contain similar subsets of proteins, with prevalence of tyrosine. In iPSC, we observed a higher signal from tryptophan with an increase in the random coil and α helix protein conformations, indicating changes in the subset of nucleolar proteins during cell reprogramming. At the same time, the concentrations of major types of macromolecules and protein conformations in the nucleoli of iPSC and human embryonic stem cells (hESC) were found to be similar. We discuss these results in the context of nucleolar function and conclude that the nucleolar molecular content is correlated with the cellular differentiation status. The approach described here shows the potential for spectroscopically monitoring changes in

  14. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization

    PubMed Central

    Cavaillé, Jérôme; Buiting, Karin; Kiefmann, Martin; Lalande, Marc; Brannan, Camilynn I.; Horsthemke, Bernhard; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2000-01-01

    We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11–q13, within a region implicated in the Prader–Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2′-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA. PMID:11106375

  15. Nucleolar Persistence: Peculiar Characteristic of Spermatogenesis of the Vectors of Chagas Disease (Hemiptera, Triatominae)

    PubMed Central

    Madeira, Fernanda Fernandez; Borsatto, Kelly Cristine; Lima, Anna Claudia Campaner; Ravazi, Amanda; de Oliveira, Jader; da Rosa, João Aristeu; de Azeredo-Oliveira, Maria Tercília Vilela; Alevi, Kaio Cesar Chaboli

    2016-01-01

    All species of triatomines are considered potential vectors of Chagas disease and the reproductive biology of these bugs has been studied by different approaches. In 1999, nucleolar persistence during meiosis was observed in the subfamily for the first time. Recently, it has been observed that all species within the genus Rhodnius exhibit the same phenomenon, suggesting that it may be a synapomorphy of the triatomines. Thus, this article aims to analyze the nucleolar behavior during spermatogenesis of 59 triatomine species. All analyzed species exhibited nucleolar persistence during meiosis. Recently, it has been suggested that nucleolar persistence may be fundamental for the spermatogenesis of these vectors, since it is related to the formation of the chromatoid body. Therefore, we emphasize that this phenomenon is a peculiarity of the Triatominae subfamily and that further studies are required to analyze whether the nucleolar material that persists is active. PMID:27645782

  16. Nucleolar sub-compartments in motion during rRNA synthesis inhibition: Contraction of nucleolar condensed chromatin and gathering of fibrillar centers are concomitant

    PubMed Central

    Tchelidze, Pavel; Benassarou, Aassif; Kaplan, Hervé; O’Donohue, Marie-Françoise; Lucas, Laurent; Terryn, Christine; Rusishvili, Levan; Mosidze, Giorgi; Lalun, Nathalie

    2017-01-01

    The nucleolus produces the large polycistronic transcript (47S precursor) containing the 18S, 5.8S and 28S rRNA sequences and hosts most of the nuclear steps of pre-rRNA processing. Among numerous components it contains condensed chromatin and active rRNA genes which adopt a more accessible conformation. For this reason, it is a paradigm of chromosome territory organization. Active rRNA genes are clustered within several fibrillar centers (FCs), in which they are maintained in an open configuration by Upstream Binding Factor (UBF) molecules. Here, we used the reproducible reorganization of nucleolar components induced by the inhibition of rRNA synthesis by Actinomycin D (AMD) to address the steps of the spatiotemporal reorganization of FCs and nucleolar condensed chromatin. To reach that goal, we used two complementary approaches: i) time-lapse confocal imaging of cells expressing one or several GFP-tagged proteins (fibrillarin, UBF, histone H2B) and ii) ultrastructural identification of nucleolar components involved in the reorganization. Data obtained by time lapse confocal microscopy were analyzed through detailed 3D imaging. This allowed us to demonstrate that AMD treatment induces no fusion and no change in the relative position of the different nucleoli contained in one nucleus. In contrast, for each nucleolus, we observed step by step gathering and fusion of both FCs and nucleolar condensed chromatin. To analyze the reorganization of FCs and condensed chromatin at a higher resolution, we performed correlative light and electron microscopy electron microscopy (CLEM) imaging of the same cells. We demonstrated that threads of intranucleolar condensed chromatin are localized in a complex 3D network of vacuoles. Upon AMD treatment, these structures coalesce before migrating toward the perinucleolar condensed chromatin, to which they finally fuse. During their migration, FCs, which are all linked to ICC, are pulled by the latter to gather as caps disposed at the

  17. Quantitative analysis of nucleolar chromatin distribution in the complex convoluted nucleoli of Didinium nasutum (Ciliophora).

    PubMed

    Leonova, Olga G; Karajan, Bella P; Ivlev, Yuri F; Ivanova, Julia L; Skarlato, Sergei O; Popenko, Vladimir I

    2013-01-01

    We have earlier shown that the typical Didinium nasutum nucleolus is a complex convoluted branched domain, comprising a dense fibrillar component located at the periphery of the nucleolus and a granular component located in the central part. Here our main interest was to study quantitatively the spatial distribution of nucleolar chromatin structures in these convoluted nucleoli. There are no "classical" fibrillar centers in D.nasutum nucleoli. The spatial distribution of nucleolar chromatin bodies, which play the role of nucleolar organizers in the macronucleus of D.nasutum, was studied using 3D reconstructions based on serial ultrathin sections. The relative number of nucleolar chromatin bodies was determined in macronuclei of recently fed, starved D.nasutum cells and in resting cysts. This parameter is shown to correlate with the activity of the nucleolus. However, the relative number of nucleolar chromatin bodies in different regions of the same convoluted nucleolus is approximately the same. This finding suggests equal activity in different parts of the nucleolar domain and indicates the existence of some molecular mechanism enabling it to synchronize this activity in D. nasutum nucleoli. Our data show that D. nasutum nucleoli display bipartite structure. All nucleolar chromatin bodies are shown to be located outside of nucleoli, at the periphery of the fibrillar component.

  18. Identification of a novel box C/D snoRNA from mouse nucleolar cDNA library.

    PubMed

    Zhou, Hui; Zhao, Jin; Yu, Chuan-He; Luo, Qing-Jun; Chen, Yue-Qin; Xiao, Yu; Qu, Liang-Hu

    2004-02-18

    By construction and screen of mouse nucleolar cDNA library, a novel mammalian small nucleolar RNAs (snoRNA) was identified. The novel snoRNA, 70 nt in length, displays structural features typical of C/D box snoRNA family. The snoRNA possesses an 11-nt-long rRNA antisense element and is predicted to guide the 2'-O-methylation of mouse 28S rRNA at G4043, a site unknown so far to be modified in vertebrates. The comparison of functional element of snoRNA guides among eukaryotes reveals that the novel snoRNA is a mammalian counterpart of yeast snR38 despite highly divergent sequence between them. Mouse and human snR38 and other cognates in distant vertebrates were positively detected with slight length variability. As expected, the rRNA ribose-methylation site predicted by mouse snR38 was precisely mapped by specific-primer extension assay. Furthermore, our analyses show that mouse and human snR38 gene have multiple variants and are nested in the introns of different host genes with unknown function. Thus, snR38 is a phylogenetically conserved methylation guide but exhibits different genomic organization in eukaryotes.

  19. NOA36 Protein Contains a Highly Conserved Nucleolar Localization Signal Capable of Directing Functional Proteins to the Nucleolus, in Mammalian Cells

    PubMed Central

    de Melo, Ivan S.; Jimenez-Nuñez, Maria D.; Iglesias, Concepción; Campos-Caro, Antonio; Moreno-Sanchez, David; Ruiz, Felix A.; Bolívar, Jorge

    2013-01-01

    NOA36/ZNF330 is an evolutionarily well-preserved protein present in the nucleolus and mitochondria of mammalian cells. We have previously reported that the pro-apoptotic activity of this protein is mediated by a characteristic cysteine-rich domain. We now demonstrate that the nucleolar localization of NOA36 is due to a highly-conserved nucleolar localization signal (NoLS) present in residues 1–33. This NoLS is a sequence containing three clusters of two or three basic amino acids. We fused the amino terminal of NOA36 to eGFP in order to characterize this putative NoLS. We show that a cluster of three lysine residues at positions 3 to 5 within this sequence is critical for the nucleolar localization. We also demonstrate that the sequence as found in human is capable of directing eGFP to the nucleolus in several mammal, fish and insect cells. Moreover, this NoLS is capable of specifically directing the cytosolic yeast enzyme polyphosphatase to the target of the nucleolus of HeLa cells, wherein its enzymatic activity was detected. This NoLS could therefore serve as a very useful tool as a nucleolar marker and for directing particular proteins to the nucleolus in distant animal species. PMID:23516598

  20. Identification of a novel TIF-IA-NF-κB nucleolar stress response pathway.

    PubMed

    Chen, Jingyu; Lobb, Ian T; Morin, Pierre; Novo, Sonia M; Simpson, James; Kennerknecht, Kathrin; von Kriegsheim, Alex; Batchelor, Emily E; Oakley, Fiona; Stark, Lesley A

    2018-06-05

    p53 as an effector of nucleolar stress is well defined, but p53 independent mechanisms are largely unknown. Like p53, the NF-κB transcription factor plays a critical role in maintaining cellular homeostasis under stress. Many stresses that stimulate NF-κB also disrupt nucleoli. However, the link between nucleolar function and activation of the NF-κB pathway is as yet unknown. Here we demonstrate that artificial disruption of the PolI complex stimulates NF-κB signalling. Unlike p53 nucleolar stress response, this effect does not appear to be linked to inhibition of rDNA transcription. We show that specific stress stimuli of NF-κB induce degradation of a critical component of the PolI complex, TIF-IA. This degradation precedes activation of NF-κB and is associated with increased nucleolar size. It is mimicked by CDK4 inhibition and is dependent upon a novel pathway involving UBF/p14ARF and S44 of the protein. We show that blocking TIF-IA degradation blocks stress effects on nucleolar size and NF-κB signalling. Finally, using ex vivo culture, we show a strong correlation between degradation of TIF-IA and activation of NF-κB in freshly resected, human colorectal tumours exposed to the chemopreventative agent, aspirin. Together, our study provides compelling evidence for a new, TIF-IA-NF-κB nucleolar stress response pathway that has in vivo relevance and therapeutic implications.

  1. Computer-based fluorescence quantification: a novel approach to study nucleolar biology

    PubMed Central

    2011-01-01

    Background Nucleoli are composed of possibly several thousand different proteins and represent the most conspicuous compartments in the nucleus; they play a crucial role in the proper execution of many cellular processes. As such, nucleoli carry out ribosome biogenesis and sequester or associate with key molecules that regulate cell cycle progression, tumorigenesis, apoptosis and the stress response. Nucleoli are dynamic compartments that are characterized by a constant flux of macromolecules. Given the complex and dynamic composition of the nucleolar proteome, it is challenging to link modifications in nucleolar composition to downstream effects. Results In this contribution, we present quantitative immunofluorescence methods that rely on computer-based image analysis. We demonstrate the effectiveness of these techniques by monitoring the dynamic association of proteins and RNA with nucleoli under different physiological conditions. Thus, the protocols described by us were employed to study stress-dependent changes in the nucleolar concentration of endogenous and GFP-tagged proteins. Furthermore, our methods were applied to measure de novo RNA synthesis that is associated with nucleoli. We show that the techniques described here can be easily combined with automated high throughput screening (HTS) platforms, making it possible to obtain large data sets and analyze many of the biological processes that are located in nucleoli. Conclusions Our protocols set the stage to analyze in a quantitative fashion the kinetics of shuttling nucleolar proteins, both at the single cell level as well as for a large number of cells. Moreover, the procedures described here are compatible with high throughput image acquisition and analysis using HTS automated platforms, thereby providing the basis to quantify nucleolar components and activities for numerous samples and experimental conditions. Together with the growing amount of information obtained for the nucleolar proteome

  2. Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells.

    PubMed

    Wang, Xiaojuan; Wang, Yanan; He, Hua; Ma, Xiqi; Chen, Qi; Zhang, Shuai; Ge, Baosheng; Wang, Shengjie; Nau, Werner M; Huang, Fang

    2017-05-31

    Nucleoli are important subnuclear structures inside cells. We report novel fluorescent gold nanoclusters (K-AuNCs) that are able to stain the nucleoli selectively and make it possible to explore the nucleolar morphology with fluorescence imaging technique. This novel probe is prepared through an easy synthesis method by employing a tripeptide (Lys-Cys-Lys) as the surface ligand. The properties, including deep-red fluorescence emission (680 nm), large Stocks shift, broad excitation band, low cytotoxicity, and good photostability, endow this probe with potential for bioanalytical applications. Because of their small size and their positively charged surface, K-AuNCs are able to accumulate efficiently at the nucleolar regions and provide precise morphological information. K-AuNCs are also used to monitor the nucleolar dynamics along the reverse-transformation process of malignant cells, induced by the agonist of protein A, 8-chloro-cyclic adenosine monophosphate. This gives a novel approach for investigating the working mechanism of antitumor drugs.

  3. In nucleoli, the steady state of nucleolar proteins is leptomycin B-sensitive.

    PubMed

    Muro, Eleonora; Hoang, Thang Q; Jobart-Malfait, Aude; Hernandez-Verdun, Danièle

    2008-05-01

    The nucleolus is a dynamic structure. It has been demonstrated that nucleolar proteins rapidly associate with and dissociate from nucleolar components in continuous exchanges with the nucleoplasm using GFP (green fluorescent protein)-tagged proteins. However, how the exchanges within one nucleolus and between nucleoli within the nuclear volume occurred is still poorly understood. The movement of PAGFP (photoactivatable GFP)-tagged proteins that become visible after photoactivation can be followed. In the present study, we establish the protocol allowing quantification of the traffic of PAGFP-tagged nucleolar proteins in nuclei containing two nucleoli. The traffic in the activated area, at the periphery of the activated area and to the neighbouring nucleolus is measured. Protein B23 is rapidly replaced in the activated area, and at the periphery of the activated area the steady state suggests intranucleolar recycling of B23; this recycling is LMB (leptomycin B)-sensitive. The pool of activated B23 is equally distributed in the volume of the two nucleoli within 2 min. The three-dimensional distribution of the proteins Nop52 and fibrillarin is less rapid than that of B23 but is also LMB-sensitive. In contrast, traffic of fibrillarin from the nucleoli to the CB (Cajal body) was not modified by LMB. We propose that the steady state of nucleolar proteins in nucleoli depends on the affinity of the proteins for their partners and on intranucleolar recycling. This steady state can be impaired by LMB but not the uptake in the neighbouring nucleolus or the CB.

  4. Pharmacological AMP Kinase Activators Target the Nucleolar Organization and Control Cell Proliferation

    PubMed Central

    Kodiha, Mohamed; Salimi, Ali; Wang, Yi Meng; Stochaj, Ursula

    2014-01-01

    Aims Phenformin, resveratrol and AICAR stimulate the energy sensor 5′-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis. Methods Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting. Results AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin. Conclusions AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents

  5. Pharmacological AMP kinase activators target the nucleolar organization and control cell proliferation.

    PubMed

    Kodiha, Mohamed; Salimi, Ali; Wang, Yi Meng; Stochaj, Ursula

    2014-01-01

    Phenformin, resveratrol and AICAR stimulate the energy sensor 5'-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis. Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting. AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin. AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents, nucleolin represents a potential

  6. To the nucleolar bodies (nucleoli) in cells of the lymphocytic lineage in patients suffering from B - chronic lymphocytic leukemia.

    PubMed

    Smetana, K; Karban, J; Trneny, M

    2010-01-01

    The present study was undertaken to provide more information on nucleoli in lymphocytes of B - chronic lymphocytic leukemia. The computer assisted nucleolar and cytoplasmic RNA image densitometry, reflecting the nucleolar and cytoplasmic RNA concentration at the single cell level, demonstrated a remarkable stability during the differentiation and maturation of B- lymphocytes. In contrast, as it was expected, the nucleolar diameter during the lymphocytic development markedly decreased. Thus the nucleolar RNA content of leukemic B-lymphocytes was apparently related to the nucleolar size. In both immature and mature lymphocytes, the cytostatic treatment increased the incidence of micronucleoli, which represent the "inactive" type of nucleoli. However, the decreased values of the nucleolar diameter were statistically significant only in mature lymphocytes of treated patients. On the other hand, despite such observation, it must be mentioned that "large active" and "ring shaped resting" nucleoli were still present in immature and mature lymphocytes after the cytostatic therapy and such cells might represent a potential pool of proliferating cells. As it is generally accepted "large active nucleoli" with multiple fibrillar centers are known to be characteristic for proliferating cells. "Ring shaped resting nucleoli" are present in sleeping cells, which may be stimulated to return to the cell cycle and to proliferate again. In addition, the nucleolar RNA distribution also indicated that Gumprecht ghosts mostly originated from mature lymphocytes. Increased ratio of the nucleolar to cytoplasmic RNA density in Gumprecht ghosts or apoptotic cells and apoptotic bodies of the lymphocytic origin was related to the decreased cytoplasmic RNA concentration. The increased nucleolar size together with the markedly decreased cytoplasmic RNA concentration characteristic for Gumprecht ghosts just reflected the spreading of lymphocytes during smear preparations. In apoptotic cells or

  7. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells

    PubMed Central

    Stępiński, D.

    2012-01-01

    In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system. PMID:22688294

  8. An ancillary method in urine cytology: Nucleolar/nuclear volume ratio for discrimination between benign and malignant urothelial cells.

    PubMed

    Tone, Kiyoshi; Kojima, Keiko; Hoshiai, Keita; Kumagai, Naoya; Kijima, Hiroshi; Kurose, Akira

    2016-06-01

    The essential of urine cytology for the diagnosis and the follow-up of urothelial neoplasia has been widely recognized. However, there are some cases in which a definitive diagnosis cannot be made due to difficulty in discriminating between benign and malignant. This study evaluated the practicality of nucleolar/nuclear volume ratio (%) for the discrimination. Using Papanicolaou-stained slides, 253 benign urothelial cells and 282 malignant urothelial cells were selected and divided into a benign urothelial cell and an urothelial carcinoma (UC) cell groups. Three suspicious cases and four cases in which discrimination between benign and malignant was difficult were prepared for verification test. Subject cells were decolorized and stained with 4',6-diamidino-2-phenylindole for detection of the nuclei and the nucleoli. Z-stack method was performed to analyze. When the cutoff point of 1.514% discriminating benign urothelial cells and UC cells from nucleolar/nuclear volume ratio (%) was utilized, the sensitivity was 56.0%, the specificity was 88.5%, the positive predictive value was 84.5%, and the negative predictive value was 64.4%. Nuclear and nucleolar volume, number of the nucleoli, and nucleolar/nuclear volume ratio (%) were significantly higher in the UC cell group than in the benign urothelial cell group (P <0.001). In the verification test using the nucleolar/nuclear ratio (%), four of the seven cases were concordant with the final diagnosis. This study analyzed the nuclear and nucleolar volume to establish an index for discrimination of benign and malignant urothelial cells, providing possible additional information in urine cytology. Diagn. Cytopathol. 2016;44:483-491. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Nucleolar chromatin organization at different activities of soybean root meristematic cell nucleoli.

    PubMed

    Stępiński, Dariusz

    2013-06-01

    Nucleolar chromatin, including nucleolus-associated chromatin as well as active and inactive condensed ribosomal DNA (rDNA) chromatin, derives mostly from secondary constrictions known as nucleolus organizer regions containing rDNA genes on nucleolus-forming chromosomes. This chromatin may occupy different nucleolar positions being in various condensation states which may imply different rDNA transcriptional competence. Sections of nucleoli originating from root meristematic cells of soybean seedlings grown at 25 °C (the control), then subjected to chilling stress (10 °C), and next transferred again to 25 °C (the recovery) were used to measure profile areas occupied by nucleolar condensed chromatin disclosed with sodium hydroxide methylation-acetylation plus uranyl acetate technique. The biggest total area of condensed chromatin was found in the nucleoli of chilled plants, while the smallest was found in those of recovered plants in relation to the amounts of chromatin in the control nucleoli. The condensed nucleolar chromatin, in the form of different-sized and different-shaped clumps, was mainly located in fibrillar centers. One can suppose that changes of condensed rDNA chromatin amounts might be a mechanism controlling the number of transcriptionally active rDNA genes as the nucleoli of plants grown under these experimental conditions show different transcriptional activity and morphology.

  10. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization

    PubMed Central

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan

    2016-01-01

    ABSTRACT Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To

  11. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization.

    PubMed

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan; Vitour, Damien

    2017-01-01

    Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this

  12. [Heterosis, macromolecular composition and several physico-chemical properties of the nucleolar-chromatic complex].

    PubMed

    Shereshevskaia, Ts M; Krasnopol'skiĭ, Iu M; Verkhovskiĭ, B A

    1977-01-01

    The nucleolar-chromatin complex of the hybrids liver cells is shown to contain a larger amount of RNA and phospholipids. When teeated with 1.0 M NaCl nucleoproteins of hybrid organisms display greater dissociation. A large number of free loci was determined in the matrix when titrating nucleolar chromatin complex with actinomycin "D". The effect of heterosis might be connected with a specific physiochemical state of chromosome in hybrid organisms.

  13. A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA Pool in Caenorhabditis elegans

    PubMed Central

    Chiou, Pey-Tsyr; Chen, Po-Hsiang; Lee, Ching-Ming; Chu, Yu-De; Yu, Hsiang; Hsiung, Kuei-Ching; Tsai, Yi-Tzang; Lee, Chi-Chang; Chang, Yu-Sun; Chan, Shih-Peng; Tan, Bertrand Chin-Ming; Lo, Szecheng J.

    2015-01-01

    Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3’UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function. PMID:26492166

  14. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  15. Nucleolar Protein Trafficking in Response to HIV-1 Tat: Rewiring the Nucleolus

    PubMed Central

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W.; Gautier, Virginie W.

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  16. Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar FunctionsD⃞

    PubMed Central

    Pendle, Alison F.; Clark, Gillian P.; Boon, Reinier; Lewandowska, Dominika; Lam, Yun Wah; Andersen, Jens; Mann, Matthias; Lamond, Angus I.; Brown, John W. S.; Shaw, Peter J.

    2005-01-01

    The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic analysis of plant (Arabidopsis thaliana) nucleoli, in which we have identified 217 proteins. This allows a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis. The comparison identified many common proteins, plant-specific proteins, proteins of unknown function found in both proteomes, and proteins that were nucleolar in plants but nonnucleolar in human. Seventy-two proteins were expressed as GFP fusions and 87% showed nucleolar or nucleolar-associated localization. In a striking and unexpected finding, we have identified six components of the postsplicing exon-junction complex (EJC) involved in mRNA export and nonsense-mediated decay (NMD)/mRNA surveillance. This association was confirmed by GFP-fusion protein localization. These results raise the possibility that in plants, nucleoli may have additional functions in mRNA export or surveillance. PMID:15496452

  17. Insulin/IGF1-PI3K-dependent nucleolar localization of a glycolytic enzyme--phosphoglycerate mutase 2, is necessary for proper structure of nucleolus and RNA synthesis.

    PubMed

    Gizak, Agnieszka; Grenda, Marcin; Mamczur, Piotr; Wisniewski, Janusz; Sucharski, Filip; Silberring, Jerzy; McCubrey, James A; Wisniewski, Jacek R; Rakus, Dariusz

    2015-07-10

    Phosphoglycerate mutase (PGAM), a conserved, glycolytic enzyme has been found in nucleoli of cancer cells. Here, we present evidence that accumulation of PGAM in the nucleolus is a universal phenomenon concerning not only neoplastically transformed but also non-malignant cells. Nucleolar localization of the enzyme is dependent on the presence of the PGAM2 (muscle) subunit and is regulated by insulin/IGF-1-PI3K signaling pathway as well as drugs influencing ribosomal biogenesis. We document that PGAM interacts with several 40S and 60S ribosomal proteins and that silencing of PGAM2 expression results in disturbance of nucleolar structure, inhibition of RNA synthesis and decrease of the mitotic index of squamous cell carcinoma cells. We conclude that presence of PGAM in the nucleolus is a prerequisite for synthesis and initial assembly of new pre-ribosome subunits.

  18. Nucleolar Organizer Regions in Oral Squamous Cell Carcinoma

    PubMed Central

    Moradzadeh Khiavi, Monir; Vosoughhosseini, Sepideh; Halimi, Monire; Mahmoudi, Seyyed Mostafa; Yarahmadi, Asghar

    2012-01-01

    Background and aims Several diagnostic methods are being employed to detect benign and malignant lesions, one of which is silver nitrate staining for organizer regions. The number of nucleolar organizing regions (NORs) can be used to show the degree of cell activity or metabolism in pathologic lesions. This study was designed to evaluate NORs as determi-nants of precancerous and squamous cell carcinoma. Materials and methods A silver colloid technique was applied on paraffin sections of 40 cases of oral squamous cell carcinoma and 25 cases of precancerous lesions; 15 specimens of normal epithelium were selected for the control group. After staining with silver nitrate, argyrophilic nucleolar organizer regions (AgNORs) were counted in 100 epithelial cells in three groups with the use of an oil immersion and ×1000 objective lens. One-way ANOVA and a post hoc Tukey test were used for statistical analysis. Results The mean numbers and standard deviations of AgNORs were 1.58 ± 0.76 in normal epithelium, 2.1 ± 1.05 in pre-cancerous lesions and 2.43 ±1.33 in squamous cell carcinoma (SCC). There were statistically significant differences in Ag-NORs numbers between the groups (P<0.001) and significant differences in precancerous lesions between dysplastic and non-dysplastic epithelia (P<0.001). The mean AgNORs count per nucleus increased from healthy epithelium to precancer-ous lesion to SCC. Conclusion This study suggests that the silver staining technique for the detection of NORs (AgNOR) can be used to distinguish precancerous lesions and benign and malignant lesions. PMID:22991629

  19. Elucidation of Motifs in Ribosomal Protein S9 That Mediate Its Nucleolar Localization and Binding to NPM1/Nucleophosmin

    PubMed Central

    Lindström, Mikael S.

    2012-01-01

    Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site. PMID:23285058

  20. Nucleolar organizer regions activity in lymphocytes of patients with laryngeal carcinoma.

    PubMed

    Maione, S; Lamberti, L

    1993-12-01

    The activity of nucleolar organizer regions (Ag-NORs) and the frequency of NOR associations in chromosomes of phytohemagglutinin-stimulated lymphocytes from 12 patients with laryngeal carcinoma and 12 healthy subjects were studied using the gelatine silver staining technique. This study was undertaken to examine whether any disease associated changes occur in NOR activity. A lower mean number of Ag-NORs per metaphase (t test, 0.05 > p > 0.02) was found in patients compared to controls. This difference was not due to any specific group of acrocentric chromosomes (D or G). The mean number of NOR associations per metaphase was also found to be markedly lower (t test, 0.01 > p > 0.001) in patients than in controls. This difference was principally due to the significant decrease in the associations between 2 chromosomes (t test, 0.02 > p > 0.01), and in particular to the decrease in the D-G type associations (t test, 0.05 > p > 0.02). These findings are discussed in relation to existing data on the nucleolar activity of lymphocytes in a variety of solid tumours and leukemias.

  1. [Peculiarities of mitosis and nucleolar characteristics of the birch plantlets under antropogenous pollution].

    PubMed

    Butorina, A K; Kalaev, V N; Karpova, S S

    2002-01-01

    A study was made of some cytogenetic characteristics (mitotic activity, the level and spectrum of pathological mitosis, nucleolar features in root tip cells) in birch plantlets. The seeds were collected in four districts of Voronezh and in the ecologically clean territory. The index of mitotic activity has a considerable resistance to anthropogenous pollution. In the experimental areas, the level and spectrum of pathological mitosis increase. In contaminated areas we observed changes of nucleolar characteristics (the increased surface area of nucleoli and their higher number in cells, the increased number of cells with highly active types of nucleoli, the appearance of residual nucleoli). These changes can be considered as possible mechanisms of adaptation to stress due to antropogenous pollution. It is suggested that the use of such indices as single nucleolar surface area or the level of pathological mitosis may be perspective for cytogenetic monitoring of the environment, and for prognostification of environmental conditions suitable or unsuitable for the human health.

  2. Quantitative analysis of Argyrophilic Nucleolar organizer regions in odontogenic cysts and tumor - A comparative study.

    PubMed

    Gupta, Bhavana; Chandra, Shaleen; Raj, Vineet; Gupta, Vivek

    2018-01-01

    The nucleolar organizer region (NOR) is by definition part of a chromosome, and nucleolus is a structure containing this chromosomal part and in addition the material which accumulate around the NOR, mostly rRNAs and their precursors as well as specific ribosomal proteins. Argyrophilic Nucleolar organizing region (AgNOR) are silver binding NORs often used to study cell proliferation in various types of tumors. Quantitative assessment of Argyrophilic Nucleolar organizing region count and its comparison among dentigerous cyst, keratocystic odontogenic tumor and ameloblastoma. Forty-five histologically confirmed cases, 15 cases each of keratocystic odontogenic tumor, dentigerous cysts and ameloblastomas were examined for Argyrophilic Nucleolar organizing region. The sections were obtained and Argyrophilic Nucleolar organizer regions staining was done for comparing the proliferative capacity among these lesions. Post hoc analysis for inter-group comparison and one way ANOVA were done in all three groups in this study. P  < 0.001 was considered significant. The results of AgNOR counts were higher in KCOTs as compared to ameloblastoma and least in dentigerous cysts. The mean AgNOR counts between the study groups were compared using one way ANOVA test and the differences were found to be significant ( P  < 0.001). AgNOR counts were significantly higher in KCOT and ameloblastoma as compared to dentigerous cyst suggesting that these lesions have a higher proliferative capacity than dentigerous cyst. The finding of a significantly higher AgNOR counts in KCOT as compared to ameloblastoma represent a difference in proliferative activity and greater growth potential between these two lesions.

  3. NC-Mediated Nucleolar Localization of Retroviral Gag Proteins

    PubMed Central

    Lochmann, Timothy L.; Bann, Darrin V.; Ryan, Eileen P.; Beyer, Andrea R.; Mao, Annie; Cochrane, Alan

    2012-01-01

    The assembly and release of retrovirus particles from the cell membrane is directed by the Gag polyprotein. The Gag protein of Rous sarcoma virus (RSV) traffics through the nucleus prior to plasma membrane localization. We previously reported that nuclear localization of RSV Gag is linked to efficient packaging of viral genomic RNA, however the intranuclear activities of RSV Gag are not well understood. To gain insight into the properties of the RSV Gag protein within the nucleus, we examined the subnuclear localization and dynamic trafficking of RSV Gag. Restriction of RSV Gag to the nucleus by mutating its nuclear export signal (NES) in the p10 domain or interfering with CRM1-mediated nuclear export of Gag by leptomycin B (LMB) treatment led to the accumulation of Gag in nucleoli and discrete nucleoplasmic foci. Retention of RSV Gag in nucleoli was reduced with cis-expression of the 5′ untranslated RU5 region of the viral RNA genome, suggesting the psi (ψ packaging signal may alter the subnuclear localization of Gag. Fluorescence recovery after photobleaching (FRAP) demonstrated that the nucleolar fraction of Gag was highly mobile, indicating that the there was rapid exchange with Gag proteins in the nucleoplasm. RSV Gag is targeted to nucleoli by a nucleolar localization signal (NoLS) in the NC domain, and similarly, the human immunodeficiency virus type 1 (HIV-1) NC protein also contains an NoLS consisting of basic residues. Interestingly, co-expression of HIV-1 NC or Rev with HIV-1 Gag resulted in accumulation of Gag in nucleoli. Moreover, a subpopulation of HIV-1 Gag was detected in the nucleoli of HeLa cells stably expressing the entire HIV-1 genome in a Rev-dependent fashion. These findings suggest that the RSV and HIV-1 Gag proteins undergo nucleolar trafficking in the setting of viral infection. PMID:23036987

  4. The Stability of the Small Nucleolar Ribonucleoprotein (snoRNP) Assembly Protein Pih1 in Saccharomyces cerevisiae Is Modulated by Its C Terminus*

    PubMed Central

    Paci, Alexandr; Liu, Xiao Hu; Huang, Hao; Lim, Abelyn; Houry, Walid A.; Zhao, Rongmin

    2012-01-01

    Pih1 is an unstable protein and a subunit of the R2TP complex that, in yeast Saccharomyces cerevisiae, also contains the helicases Rvb1, Rvb2, and the Hsp90 cofactor Tah1. Pih1 and the R2TP complex are required for the box C/D small nucleolar ribonucleoprotein (snoRNP) assembly and ribosomal RNA processing. Purified Pih1 tends to aggregate in vitro. Molecular chaperone Hsp90 and its cochaperone Tah1 are required for the stability of Pih1 in vivo. We had shown earlier that the C terminus of Pih1 destabilizes the protein and that the C terminus of Tah1 binds to the Pih1 C terminus to form a stable complex. Here, we analyzed the secondary structure of the Pih1 C terminus and identified two intrinsically disordered regions and five hydrophobic clusters. Site-directed mutagenesis indicated that one predicted intrinsically disordered region IDR2 is involved in Tah1 binding, and that the C terminus of Pih1 contains multiple destabilization or degron elements. Additionally, the Pih1 N-terminal domain, Pih11–230, was found to be able to complement the physiological role of full-length Pih1 at 37 °C. Pih11–230 as well as a shorter Pih1 N-terminal fragment Pih11–195 is able to bind Rvb1/Rvb2 heterocomplex. However, the sequence between the two disordered regions in Pih1 significantly enhances the Pih1 N-terminal domain binding to Rvb1/Rvb2. Based on these data, a model of protein-protein interactions within the R2TP complex is proposed. PMID:23139418

  5. To the Large Nucleolar Bodies in Apoptotic Leukaemic Granulocytic Progenitors without Further Differentiation. Are Large Nucleoli Always Present in Proliferating Cells?

    PubMed

    Smetana, K; Kuželová, K; Zápotocký, M; Hrkal, Z

    2017-01-01

    Large nucleoli have generally been believed to be present in less differentiated and proliferating cells including the malignant ones. Such nucleoli have also been considered to be active in the biosynthetic process and major cell developmental activities. In contrast, after cytostatic treatment, apoptotic leukaemic progenitors still containing nuclei did not exhibit substantial reduction of the nucleolar size but displayed decreased nucleolar biosynthetic activity. The present study was undertaken to provide more information on the large nucleoli in spontaneously occurring apoptotic leukaemic progenitors without further differentiation. Leukaemic progenitors of established cell lineages originating from leukaemic patients represented a very convenient model for such study. Some of them exhibit morphological signs of the spontaneously occurring apoptotic process. Since such signs are expressed by nuclear and cytoplasmic morphological variability, the present study dealt with spontaneously occurring apoptotic progenitors with preserved nuclei characterized by heavy chromatin condensation and occasional fragmentation. Based of nucleolar body and nuclear maximal diameter measurements it seems to be clear that the nucleolar size in these cells was not substantially reduced, contrary to that of the nucleus. However, large nucleolar bodies in spontaneously occurring apoptotic cells were characterized by markedly reduced biosynthetic activity, as expressed by the decreased number of nucleolar transcription markers such as nucleolar fibrillar centres. In conclusion, large nucleoli may be present not only in proliferating, but also in spontaneously occurring apoptotic cells.

  6. Aurora-B Regulates RNA Methyltransferase NSUN2

    PubMed Central

    Sakita-Suto, Shiho; Kanda, Akifumi; Suzuki, Fumio; Sato, Sunao; Takata, Takashi

    2007-01-01

    Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G1 phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis. PMID:17215513

  7. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes.

    PubMed

    Schäfer, Thorsten; Strauss, Daniela; Petfalski, Elisabeth; Tollervey, David; Hurt, Ed

    2003-03-17

    Recent reports have increased our knowledge of the consecutive steps during 60S ribosome biogenesis substantially, but 40S subunit formation is less well understood. Here, we investigate the maturation of nucleolar 90S pre-ribosomes into cytoplasmic 40S pre-ribosomes. During the transition from 90S to 40S particles, the majority of non-ribosomal proteins (approximately 30 species) dissociate, and significantly fewer factors associate with 40S pre-ribosomes. Notably, some of these components are part of both early 90S and intermediate 40S pre-particles in the nucleolus (e.g. Enp1p, Dim1p and Rrp12p), whereas others (e.g. Rio2p and Nob1p) are found mainly on late cytoplasmic pre-40S subunits. Finally, temperature-sensitive mutants mapping either in earlier (enp1-1) or later (rio2-1) components exhibit defects in the formation and nuclear export of pre-40S subunits. Our data provide an initial biochemical map of the pre-40S ribosomal subunit on its path from the nucleolus to the cytoplasm. This pathway involves fewer changes in composition than seen during 60S biogenesis.

  8. Localized movement and morphology of UBF1-positive nucleolar regions are changed by γ-irradiation in G2 phase of the cell cycle

    PubMed Central

    Sorokin, Dmitry V; Stixová, Lenka; Sehnalová, Petra; Legartová, Soňa; Suchánková, Jana; Šimara, Pavel; Kozubek, Stanislav; Matula, Pavel; Skalníková, Magdalena; Raška, Ivan; Bártová, Eva

    2015-01-01

    The nucleolus is a well-organized site of ribosomal gene transcription. Moreover, many DNA repair pathway proteins, including ATM, ATR kinases, MRE11, PARP1 and Ku70/80, localize to the nucleolus (Moore et al., 2011). We analyzed the consequences of DNA damage in nucleoli following ultraviolet A (UVA), C (UVC), or γ-irradiation in order to test whether and how radiation-mediated genome injury affects local motion and morphology of nucleoli. Because exposure to radiation sources can induce changes in the pattern of UBF1-positive nucleolar regions, we visualized nucleoli in living cells by GFP-UBF1 expression for subsequent morphological analyses and local motion studies. UVA radiation, but not 5 Gy of γ-rays, induced apoptosis as analyzed by an advanced computational method. In non-apoptotic cells, we observed that γ-radiation caused nucleolar re-positioning over time and changed several morphological parameters, including the size of the nucleolus and the area of individual UBF1-positive foci. Radiation-induced nucleoli re-arrangement was observed particularly in G2 phase of the cell cycle, indicating repair of ribosomal genes in G2 phase and implying that nucleoli are less stable, thus sensitive to radiation, in G2 phase. PMID:26208041

  9. The Relationship Between Human Nucleolar Organizer Regions and Nucleoli, Probed by 3D-ImmunoFISH.

    PubMed

    van Sluis, Marjolein; van Vuuren, Chelly; McStay, Brian

    2016-01-01

    3D-immunoFISH is a valuable technique to compare the localization of DNA sequences and proteins in cells where three-dimensional structure has been preserved. As nucleoli contain a multitude of protein factors dedicated to ribosome biogenesis and form around specific chromosomal loci, 3D-immunoFISH is a particularly relevant technique for their study. In human cells, nucleoli form around transcriptionally active ribosomal gene (rDNA) arrays termed nucleolar organizer regions (NORs) positioned on the p-arms of each of the acrocentric chromosomes. Here, we provide a protocol for fixing and permeabilizing human cells grown on microscope slides such that nucleolar proteins can be visualized using antibodies and NORs visualized by DNA FISH. Antibodies against UBF recognize transcriptionally active rDNA/NORs and NOP52 antibodies provide a convenient way of visualizing the nucleolar volume. We describe a probe designed to visualize rDNA and introduce a probe comprised of NOR distal sequences, which can be used to identify or count individual NORs.

  10. Mercuric chloride induces autoantibodies against U3 small nuclear ribonucleoprotein in susceptible mice.

    PubMed Central

    Reuter, R; Tessars, G; Vohr, H W; Gleichmann, E; Lührmann, R

    1989-01-01

    Autoantibodies to nucleolar components are a common serological feature of patients suffering from scleroderma, a collagen vascular autoimmune disease. While animal models, which spontaneously develop abundant anti-nucleolar antibodies, have not yet been described, high titers of such antibodies may be induced by treating susceptible strains of mice with mercuric chloride. We have identified the nucleolar autoantigen against which the HgCl2-induced IgG autoantibodies from mice of strain B10.S are directed. It is a protein with an apparent molecular mass of 36 kDa and a pI value of approximately 8.6, which is associated with the nucleolar small nuclear RNA U3, and by these criteria must be identical with a polypeptide called fibrillarin. It is striking that scleroderma patients spontaneously produce autoantibodies against the same U3 ribonucleoprotein (RNP). The HgCl2-induced murine and the scleroderma-specific human anti-U3 RNP autoantibodies were indistinguishable in their reactivities toward fibrillarin. They further resemble each other insofar as both recognize epitopes on the 36-kDa protein, which have been highly conserved throughout evolution. Our results provide a basis to investigate at the molecular level whether similar immunoregulatory dysfunctions may lead to the preferential anti-U3 RNP autoantibody production in the animal model and in scleroderma patients. Images PMID:2521387

  11. Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH

    PubMed Central

    Fraser, Johanna E.; Rawlinson, Stephen M.; Heaton, Steven M.

    2016-01-01

    ABSTRACT The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond

  12. Identification of "tumor-associated" nucleolar antigens in human urothelial cancer.

    PubMed

    Yu, D; Pietro, T; Jurco, S; Scardino, P T

    1987-09-01

    Nucleoli isolated from HeLa S3 cells were used to produce rabbit antisera capable of binding nucleoli of transitional cell carcinomas (TCCa) of the bladder. Cross-reactivity of the rabbit antiserum with normal nucleoli was reduced by absorption with fetal calf serum, normal human serum, and human placental nucleoli. This antinucleolar antiserum exhibited strong reactivity in immunoperoxidase assays performed on specimens of human bladder cancer. In frozen tissue sections of 24 patients with TCCa and eight individuals without tumor, nucleolar staining was observed in all malignant specimens, but was not observed in seven of the normal specimens. Cytologic examination of bladder washing specimens from 47 normal individuals showed absence of nucleolar staining in 43 (91%) of 47 normal specimens while 12 (86%) of 14 specimens from patients with TCCa were positive. These results suggest that there are antigens associated with the nucleoli of HeLa cells and transitional cell carcinomas which are generally absent (or in low concentration) in normal human urothelial cells, and that antisera to these antigens may be useful in the cytologic diagnosis of human transitional cell carcinoma.

  13. Nucleolar cycle and chromatoid body formation: is there a relationship between these two processes during spermatogenesis of Dendropsophus minutus (Amphibia, Anura)?

    PubMed

    Peruquetti, Rita Luiza; Taboga, Sebastião Roberto; Santos, Lia Raquel de Souza; Oliveira, Classius de; Azeredo-Oliveira, Maria Tercília Vilela de

    2011-01-01

    The goals of this study were to monitor the nucleolar material distribution during Dendropsophus minutus spermatogenesis using cytological and cytochemical techniques and ultrastructural analysis, as well as to compare the nucleolar material distribution to the formation of the chromatoid body (CB) in the germ epithelium of this amphibian species. Nucleolar fragmentation occurred during the pachytene of prophase I and nucleolus reorganization occurred in the early spermatid nucleus. The area of the spermatogonia nucleolus was significantly larger than that of the earlier spermatid nucleolus. Ultrastructural analysis showed an accumulation of nuages in the spermatogonia cytoplasm, which form the CB before nucleolar fragmentation. The CB was observed in association with mitochondrial clusters in the cytoplasm of primary spermatocytes, as well as in those of earlier spermatids. In conclusion, the nucleolus seems to be related to CB formation during spermatogenesis of D. minutus, because, at the moment of nucleolus fragmentation in the primary spermatocytes, the CB area reaches a considerable size and is able to execute its important functions during spermatogenesis. The reorganized nucleolus of the earlier spermatids has a smaller area due to several factors, among them the probable migration of nucleolar fragments from the nucleus to the cytoplasm, and plays a part in the CB chemical composition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Bin; Mitchell, Grant A.; Richter, Andrea

    2005-12-10

    Cirhin (NP{sub 1}16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show thatmore » cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis.« less

  15. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Lewinska, Anna; Miedziak, Beata; Kulak, Klaudia; Molon, Mateusz; Wnuk, Maciej

    2014-06-01

    The nucleolus is speculated to be a regulator of cellular senescence in numerous biological systems (Guarente, Genes Dev 11(19):2449-2455, 1997; Johnson et al., Curr Opin Cell Biol 10(3):332-338, 1998). In the budding yeast Saccharomyces cerevisiae, alterations in nucleolar architecture, the redistribution of nucleolar protein and the accumulation of extrachromosomal ribosomal DNA circles (ERCs) during replicative aging have been reported. However, little is known regarding rDNA stability and changes in nucleolar activity during chronological aging (CA), which is another yeast aging model used. In the present study, the impact of aberrant cell cycle checkpoint control (knock-out of BUB1, BUB2, MAD1 and TEL1 genes in haploid and diploid hemizygous states) on CA-mediated changes in the nucleolus was studied. Nucleolus fragmentation, changes in the nucleolus size and the nucleolus/nucleus ratio, ERC accumulation, expression pattern changes and the relocation of protein involved in transcriptional silencing during CA were revealed. All strains examined were affected by oxidative stress, aneuploidy (numerical rather than structural aberrations) and DNA damage. However, the bub1 cells were the most prone to aneuploidy events, which may contribute to observed decrease in chronological lifespan. We postulate that chronological aging may be affected by redox imbalance-mediated chromosome XII instability leading to both rDNA instability and whole chromosome aneuploidy. CA-mediated nucleolus fragmentation may be a consequence of nucleolus enlargement and/or Nop2p upregulation. Moreover, the rDNA content of chronologically aging cells may be a factor determining the subsequent replicative lifespan. Taken together, we demonstrated that the nucleolus state is also affected during CA in yeast.

  16. Internal Associations of the Acidic Region of Upstream Binding Factor Control Its Nucleolar Localization.

    PubMed

    Ueshima, Shuhei; Nagata, Kyosuke; Okuwaki, Mitsuru

    2017-11-15

    Upstream binding factor (UBF) is a member of the high-mobility group (HMG) box protein family, characterized by multiple HMG boxes and a C-terminal acidic region (AR). UBF is an essential transcription factor for rRNA genes and mediates the formation of transcriptionally active chromatin in the nucleolus. However, it remains unknown how UBF is specifically localized to the nucleolus. Here, we examined the molecular mechanisms that localize UBF to the nucleolus. We found that the first HMG box (HMG box 1), the linker region (LR), and the AR cooperatively regulate the nucleolar localization of UBF1. We demonstrated that the AR intramolecularly associates with and attenuates the DNA binding activity of HMG boxes and confers the structured DNA preference to HMG box 1. In contrast, the LR was found to serve as a nuclear localization signal and compete with HMG boxes to bind the AR, permitting nucleolar localization of UBF1. The LR sequence binds DNA and assists the stable chromatin binding of UBF. We also showed that the phosphorylation status of the AR does not clearly affect the localization of UBF1. Our results strongly suggest that associations of the AR with HMG boxes and the LR regulate UBF nucleolar localization. Copyright © 2017 American Society for Microbiology.

  17. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc

    PubMed Central

    Sun, Xiao-Xin; He, Xia; Yin, Li; Komada, Masayuki; Sears, Rosalie C.; Dai, Mu-Shui

    2015-01-01

    c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCFFbw7 (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc’s nucleolar degradation pathway. PMID:25775507

  18. Direct visualization of nucleolar G-quadruplexes in live cells by using a fluorescent light-up probe.

    PubMed

    Zhang, Suge; Sun, Hongxia; Chen, Hongbo; Li, Qian; Guan, Aijiao; Wang, Lixia; Shi, Yunhua; Xu, Shujuan; Liu, Meirong; Tang, Yalin

    2018-05-01

    Direct detection of G-quadruplexes in human cells has become an important issue due to the vital role of G-quadruplex related to biological functions. Despite several probes have been developed for detection of the G-quadruplexes in cytoplasm or whole cells, the probe being used to monitor the nucleolar G-quadruplexes is still lacking. Formation of the nucleolar G-quadruplex structures was confirmed by using circular dichroism (CD) spectroscopy. The binding affinity and selectivity of Thioflavin T (ThT) towards various DNA/RNA motifs in solution and gel system were measured by using fluorescence spectroscopy and polyacrylamide gel electrophoresis (PAGE), respectively. G-quadruplex imaging in live cells was directly captured by using confocal laser scanning microscopy (CLSM). Formation of the rDNA and rRNA G-quadruplex structures is demonstrated in vitro. ThT is found to show much higher affinity and selectivity towards these G-quadruplex structures versus other nucleic acid motifs either in solution or in gel system. The nucleolar G-quadruplexes in living cells are visualized by using ThT as a fluorescent probe. G-quadruplex-ligand treatments in live cells lead to sharp decrease of ThT signal. The natural existence of the G-quadruplexes structure in the nucleoli of living cells is directly visualized by using ThT as an indicator. The research provides substantive evidence for formation of the rRNA G-quadruplex structures, and also offers an effective probe for direct visualization of the nucleolar G-quadruplexes in living cells. Copyright © 2018. Published by Elsevier B.V.

  19. Nucleolar proteins change in altered gravity

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; Kordyum, E. L.; Gonzalez-Camacho, F.; Medina, F. J.

    Discovery of gravisensitivity of cells no specified to gravity perception focused continuous attention on an elucidation of mechanisms involved in altered gravity effects at the different levels of cellular organization A nucleolus is the nuclear domain in which the major portion of ribosome biogenesis takes place This is a basic process for cell vitality beginning with the transcription of rDNA followed by processing newly synthesized pre-rRNA molecules A wide range of nucleolar proteins plays a highly significant role in all stages of biosynthesis of ribosomes Different steps of ribosome biogenesis should respond to various external factors affecting generally the cell metabolism Nevertheless a nucleolus remains not enough studied under the influence of altered environmental conditions For this reason we studied root apices from 2-day old Lepidium sativum seedlings germinated and grown under slow horizontal clinorotation and stationary conditions in darkness The extraction of cell nuclei followed by sequential fractionation of nuclear proteins according to their solubility in buffers of increasing ionic strength was carried out This procedure gave rise to 5 distinct fractions We analyzed nuclear subproteomes of the most soluble fraction called S2 It is actually a functionally significant fraction consisting of ribonucleoproteins actively engaged in pre-rRNA synthesis and processing 2D-electrophoresis of S2 fraction proteins was carried out The gels were silver stained and stained gels were scanned and analyzed

  20. Meiotic nucleolar cycle and chromatoid body formation during the rat (Rattus novergicus) and mouse (Mus musculus) spermiogenesis.

    PubMed

    Peruquetti, Rita Luiza; Assis, Isabella Mariana; Taboga, Sebastião Roberto; de Azeredo-Oliveira, Maria Tercília Vilela

    2008-06-01

    The aims of the present study were to follow the nucleolar cycle in spermiogenesis of the laboratory rodents Rattus novergicus and Mus musculus, to verify the relationship between the nucleolar component and chromatoid body (CB) formation and to investigate the function of this cytoplasmic supramolecular structure in spermatogenic haploid cells. Histological sections of adult seminiferous tubules were analyzed cytochemically by light microscopy and ultrastructural procedures by transmission electron microscopy. The results reveal that in early spermatids, the CB was visualized in association with the Golgi cisterns indicating that this structure may participate in the acrosome formation process. In late spermatids, the CB was observed near the axonema, a fact suggesting that this structure may support the formation of the spermatozoon tail. In conclusion, our data showed that there is disintegration of spermatid nucleoli at the beginning of spermatogenesis and a fraction of this nucleolar material migrates to the cytoplasm, where a specific structure is formed, known as the "chromatoid body", which, apparently, participates in some parts of the rodent spermiogenesis process.

  1. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region.

    PubMed

    Wise, C A; Chiang, L C; Paznekas, W A; Sharma, M; Musy, M M; Ashley, J A; Lovett, M; Jabs, E W

    1997-04-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development.

  2. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region

    PubMed Central

    Wise, Carol A.; Chiang, Lydia C.; Paznekas, William A.; Sharma, Mridula; Musy, Maurice M.; Ashley, Jennifer A.; Lovett, Michael; Jabs, Ethylin W.

    1997-01-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development. PMID:9096354

  3. Nucleolar changes in response to dietary protein malnutrition in the neurons of the motor cerebral cortex and cerebellum of squirrel moneky Saimiri sciureus.

    PubMed

    Manocha, S L; Sharma, S P

    1978-01-01

    Nucleolo-cytoplasmic relationships have been studied in healthy squirrel monkeys and those subjected to a known degree of protein malnutrition. In the latter group, thirty-two pregnant animals starting from 35 days of gestation and 24 young adult animals were given a diet containing 7.5% and 2.0% protein content, respectively, compared to a diet with 25% protein for the controls. The motor cortex and the cerebellum removed from neonates as well as young adult animals sacrificed after 9, 11, 13 and 15 weeks of feeding schedules were investigated. Four animals after 15 weeks of dietary protein deprivation were rehabilitated with a balanced diet over a year's period. Formaldehyde-fixed as well as fresh frozen tissues were used for the histological study and to employ histochemical techniques for the demonstration of lipids, carbohydrates, nucleic acids and enzymes of various metabolic cycles. As a result of protein malnutrition, the nucleolus in a majority of the neurons from the motor cortex and the Purkinje cells of the cerebellum undergoes a series of morphological and cytochemical transformations in response to cytoplasmic changes related to impaired protein metabolism. The greater the level of protein deprivation, the greater is the degree of cytoplasmic chromatolysis and more pronounced are the nucleolar transformation in terms of enlarged size, secretory activity and transfer of nucleolar material in the cytoplasm. The nucleolar buds located close to the periphery of the nuclear membrane and the nucleolar material in the cytoplasm show identical cytochemical nature except for the presence of DNA in the former. It appears that during migration through the nuclear membrane the nucleolar material loses its DNA component and only aggregates of ribosomes and protein pass into cytoplasm, which aid in the synthesis of specific proteins lost as a result of catabolic processes initiated by protein malnutrition. Most of the observed changes in the adult squirrel monkeys

  4. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway.

    PubMed

    Bailly, A; Perrin, A; Bou Malhab, L J; Pion, E; Larance, M; Nagala, M; Smith, P; O'Donohue, M-F; Gleizes, P-E; Zomerdijk, J; Lamond, A I; Xirodimas, D P

    2016-01-28

    The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.

  5. Mutations in the Treacher Collins syndrome gene lead to mislocalization of the nucleolar protein treacle.

    PubMed

    Marsh, K L; Dixon, J; Dixon, M J

    1998-10-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS gene ( TCOF1 ), which is localized to chromosome 5q32-q33.1, recently has been identified by positional cloning. Analysis of TCOF1 revealed that the majority of TCS mutations result in the creation of a premature termination codon. The function of the predicted protein, treacle, is unknown, although indirect evidence from database analyses suggests that it may function as a shuttling nucleolar phosphoprotein. In the current study, we provide the first direct evidence that treacle is a nucleolar protein. An antibody generated against treacle shows that it localizes to the nucleolus. Fusion proteins tagged to a green fluorescent protein reporter were shown to localize to different compartments of the cell when putative nuclear localization signals were deleted. Parallel experiments using conserved regions of the murine homologue of TCOF1 confirmed these results. Site-directed mutagenesis has been used to recreate mutations observed in individuals with TCS. The resulting truncated proteins are mislocalized within the cell, which further supports the hypothesis that an integral part of treacle's function involves shuttling between the nucleolus and the cytoplasm. TCS is, therefore, the first Mendelian disorder resulting from mutations which lead to aberrant expression of a nucleolar protein.

  6. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    PubMed

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Three major nucleolar proteins migrate from nucleolus to nucleoplasm and cytoplasm in root tip cells of Vicia faba L. exposed to aluminum.

    PubMed

    Qin, Rong; Zhang, Huaning; Li, Shaoshan; Jiang, Wusheng; Liu, Donghua

    2014-09-01

    Results from our previous investigation indicated that Al could affect the nucleolus and induce extrusion of silver-staining nucleolar particles containing argyrophilic proteins from the nucleolus into the cytoplasm in root tip cells of Vicia faba L. So far, the nucleolar proteins involved have not been identified. It is well known that nucleophosmin (B23), nucleolin (C23), and fibrillarin are three major and multifunctional nucleolar proteins. Therefore, effects of Al on B23, C23, and fibrillarin in root tip cells of V. faba exposed to 100 μM Al for 48 h were observed and analyzed using indirect immunofluorescence microscopy and Western blotting. The results from this work demonstrated that after 100 μM of Al treatment for 48 h, B23 and C23 migrated from the nucleolus to the cytoplasm and fibrillarin from the nucleolus to the nucleoplasm. In some cells, fibrillarin was present only in the cytoplasm. Western blotting data revealed higher expression of the three major nucleolar proteins in Al-treated roots compared with the control and that the B23 content increased markedly. These findings confirmed our previous observations.

  8. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery.

    PubMed

    Stepiński, Dariusz

    2009-03-01

    The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.

  9. A nucleolar protein RRS1 contributes to chromosome congression.

    PubMed

    Gambe, Arni E; Matsunaga, Sachihiro; Takata, Hideaki; Ono-Maniwa, Rika; Baba, Akiko; Uchiyama, Susumu; Fukui, Kiichi

    2009-06-18

    We report here the functional analysis of human Regulator of Ribosome Synthesis 1 (RRS1) protein during mitosis. We demonstrate that RRS1 localizes in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. RNA interference experiments revealed that RRS1-depleted cells show abnormalities in chromosome alignment and spindle organization, which result in mitotic delay. RRS1 knockdown also perturbs the centromeric localization of Shugoshin 1 and results in premature separation of sister chromatids. Our results suggest that a nucleolar protein RRS1 contributes to chromosome congression.

  10. A Vulnerability Assessment of the U.S. Small Business B2C E-Commerce Network Systems

    ERIC Educational Resources Information Center

    Zhao, Jensen J.; Truell, Allen D.; Alexander, Melody W.; Woosley, Sherry A.

    2011-01-01

    Objective: This study assessed the security vulnerability of the U.S. small companies' business-to-consumer (B2C) e-commerce network systems. Background: As the Internet technologies have been changing the way business is conducted, the U.S. small businesses are investing in such technologies and taking advantage of e-commerce to access global…

  11. In Vitro Assembly of Human H/ACA Small Nucleolar RNPs Reveals Unique Features of U17 and Telomerase RNAs

    PubMed Central

    Dragon, François; Pogačić, Vanda; Filipowicz, Witold

    2000-01-01

    The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. They usually fold into a two-domain hairpin-hinge-hairpin-tail structure, with the conserved motifs H and ACA located in the hinge and tail, respectively. Synthetic RNA transcripts and extracts from HeLa cells were used to reconstitute human U17 and other H/ACA ribonucleoproteins (RNPs) in vitro. Competition and UV cross-linking experiments showed that proteins of about 60, 29, 23, and 14 kDa interact specifically with U17 RNA. Except for U17, RNPs could be reconstituted only with full-length H/ACA snoRNAs. For U17, the 3′-terminal stem-loop followed by box ACA (U17/3′st) was sufficient to form an RNP, and U17/3′st could compete other full-length H/ACA snoRNAs for assembly. The H/ACA-like domain that constitutes the 3′ moiety of human telomerase RNA (hTR), and its 3′-terminal stem-loop (hTR/3′st), also could form an RNP by binding H/ACA proteins. Hence, the 3′-terminal stem-loops of U17 and hTR have some specific features that distinguish them from other H/ACA RNAs. Antibodies that specifically recognize the human GAR1 (hGAR1) protein could immunoprecipitate H/ACA snoRNAs and hTR from HeLa cell extracts, which demonstrates that hGAR1 is a component of H/ACA snoRNPs and telomerase in vivo. Moreover, we show that in vitro-reconstituted RNPs contain hGAR1 and that binding of hGAR1 does not appear to be a prerequisite for the assembly of the other H/ACA proteins. PMID:10757788

  12. Early effects of altered gravity environments on plant cell growth and cell proliferation: Characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NASA Astrophysics Data System (ADS)

    Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier

    2016-02-01

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  13. SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5.

    PubMed

    Cai, Chang; Huo, Qiang; Wang, Xiaolong; Chen, Bing; Yang, Qifeng

    2017-04-01

    Long noncoding RNAs (lncRNAs) have been proved to play important roles in cellular processes of cancer, including the development, proliferation, and migration of cancer cells. In the present study, we demonstrated small nucleolar RNA host gene 16 (SNHG16) as an oncogene on cell migration in breast cancer. Expression levels of SNHG16 were found to be frequently higher in breast cancer tissues than in the paired noncancerous tissues. Gain- and loss-of-function studies proved that SNHG16 significantly promoted breast cancer cell migration. We predicted SNHG16 as a competitive endogenous RNA (ceRNA) of E2F transcription factor 5 protein (E2F5) via competition for the shared miR-98 through bioinformatics analysis, and proved this regulation using relative quantitative real-time PCR (qRT-PCR), western blot, RNA immunoprecipitation (RIP) assay and luciferase reporter assay. In addition, we identified a positive correlation between SNHG16 and E2F5 in breast cancer tissues. Furthermore, we demonstrated that forced expression of miR-98 could partially abrogate SNHG16-mediated increase of breast cancer cells migration, suggesting that SNHG16 promoted cell migration in a miR-98 dependent manner. Taken together, our findings indicated that SNHG16 induces breast cancer cell migration by competitively binding miR-98 with E2F5, and SNHG16 can serve as a potential therapeutic target for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. 26 CFR 1.927(e)-2T - Temporary regulations; effect of boycott participation on FSC and small FSC benefits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... small FSC benefits. (a) International boycott factor. If the FSC (or small FSC) or any member of the FSC...) exempt foreign trade income multiplied by the international boycott factor determined under section 999... participation on FSC and small FSC benefits. 1.927(e)-2T Section 1.927(e)-2T Internal Revenue INTERNAL REVENUE...

  15. Nucleoli in human early erythroblasts (K2, K1, K1/2 cells).

    PubMed

    Smetana, K; Jirásková, I; Klamová, H

    2005-01-01

    Human early erythroid precursors classified according to the nuclear size were studied to provide information on nucleoli in these cells using simple cytochemical procedures for demonstration of RNA and proteins of silver-stained nucleolar organizers. K2 cells with nuclear diameter larger than 13 microm and K1 cells with nuclear diameter larger than 9 microm corresponding to proerythroblasts and macroblasts (large basophilic erythroblasts) mostly possessed large irregularly shaped nucleoli with multiple fibrillar centres representing "active nucleoli". K1/2 cells with nuclear diameter smaller than 9 microm corresponding to small basophilic erythroblasts were usually characterized by the presence of micronucleoli representing "inactive nucleolar types". On the other hand, a few K1/2 cells contained large nucleoli with multiple fibrillar centres similar to those present in K2 cells and thus appeared as "microproerythroblasts". The nucleolar asynchrony expressed by the presence of large irregularly shaped nucleoli with multiple nucleoli (active nucleoli) and ring-shaped nucleoli (resting nucleoli) in one and the same nucleus of K2 or K1 cells was not exceptional and might reflect a larger resistance of these cells to negative factors influencing the erythropoiesis. The intranucleolar translocation of silver-stained nucleolus organized regions was noted in K2 cells and might indicate the premature aging of these cells without further differentiation. More studies, however, are required in this direction.

  16. Transcriptional analysis of nucleolar dominance in polyploid plants: Biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica

    PubMed Central

    Chen, Z. Jeffrey; Pikaard, Craig S.

    1997-01-01

    Nucleolar dominance is an epigenetic phenomenon that describes the formation of nucleoli around rRNA genes inherited from only one parent in the progeny of an interspecific hybrid. Despite numerous cytogenetic studies, little is known about nucleolar dominance at the level of rRNA gene expression in plants. We used S1 nuclease protection and primer extension assays to define nucleolar dominance at a molecular level in the plant genus Brassica. rRNA transcription start sites were mapped in three diploids and in three allotetraploids (amphidiploids) and one allohexaploid species derived from these diploid progenitors. rRNA transcripts of only one progenitor were detected in vegetative tissues of each polyploid. Dominance was independent of maternal effect, ploidy, or rRNA gene dosage. Natural and newly synthesized amphidiploids yielded the same results, arguing against substantial evolutionary effects. The hypothesis that nucleolar dominance in plants is correlated with physical characteristics of rRNA gene intergenic spacers is not supported in Brassica. Furthermore, in Brassica napus, rRNA genes silenced in vegetative tissues were found to be expressed in all floral organs, including sepals and petals, arguing against the hypothesis that passage through meiosis is needed to reactivate suppressed genes. Instead, the transition of inflorescence to floral meristem appears to be a developmental stage when silenced genes can be derepressed. PMID:9096413

  17. Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals

    PubMed Central

    Fedoriw, Andrew M.; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2012-01-01

    Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals. PMID:22275877

  18. Fbw7α and Fbw7γ Collaborate To Shuttle Cyclin E1 into the Nucleolus for Multiubiquitylation

    PubMed Central

    Bhaskaran, Nimesh; van Drogen, Frank; Ng, Hwee-Fang; Kumar, Raman; Ekholm-Reed, Susanna; Peter, Matthias

    2013-01-01

    Cyclin E1, an activator of cyclin-dependent kinase 2 (Cdk2) that promotes replicative functions, is normally expressed periodically within the mammalian cell cycle, peaking at the G1-S-phase transition. This periodicity is achieved by E2F-dependent transcription in late G1 and early S phases and by ubiquitin-mediated proteolysis. The ubiquitin ligase that targets phosphorylated cyclin E is SCFFbw7 (also known as SCFCdc4), a member of the cullin ring ligase (CRL) family. Fbw7, a substrate adaptor subunit, is expressed as three splice-variant isoforms with different subcellular distributions: Fbw7α is nucleoplasmic but excluded from the nucleolus, Fbw7β is cytoplasmic, and Fbw7γ is nucleolar. Degradation of cyclin E in vivo requires SCF complexes containing Fbw7α and Fbw7γ, respectively. In vitro reconstitution showed that the role of SCFFbw7α in cyclin E degradation, rather than ubiquitylation, is to serve as a cofactor of the prolyl cis-trans isomerase Pin1 in the isomerization of a noncanonical proline-proline bond in the cyclin E phosphodegron. This isomerization is required for subsequent binding and ubiquitylation by SCFFbw7γ. Here we show that Pin1-mediated isomerization of the cyclin E phosphodegron and subsequent binding to Fbw7γ drive nucleolar localization of cyclin E, where it is ubiquitylated by SCFFbw7γ prior to its degradation by the proteasome. It is possible that this constitutes a mechanism for rapid inactivation of phosphorylated cyclin E by nucleolar sequestration prior to its multiubiquitylation and degradation. PMID:23109421

  19. L-Ilf3 and L-NF90 Traffic to the Nucleolus Granular Component: Alternatively-Spliced Exon 3 Encodes a Nucleolar Localization Motif

    PubMed Central

    Viranaicken, Wildriss; Gasmi, Laila; Chaumet, Alexandre; Durieux, Christiane; Georget, Virginie; Denoulet, Philippe; Larcher, Jean-Christophe

    2011-01-01

    Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins. PMID:21811582

  20. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription.

    PubMed

    Bütepage, Mareike; Preisinger, Christian; von Kriegsheim, Alexander; Scheufen, Anja; Lausberg, Eva; Li, Jinyu; Kappes, Ferdinand; Feederle, Regina; Ernst, Sabrina; Eckei, Laura; Krieg, Sarah; Müller-Newen, Gerhard; Rossetti, Giulia; Feijs, Karla L H; Verheugd, Patricia; Lüscher, Bernhard

    2018-04-30

    Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.

  1. C1q Protein Binds to the Apoptotic Nucleolus and Causes C1 Protease Degradation of Nucleolar Proteins*

    PubMed Central

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-01-01

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. PMID:26231209

  2. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    PubMed

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Localization of nucleolar chromatin by immunocytochemistry and in situ hybridization at the electron microscopic level.

    PubMed

    Thiry, M; Scheer, U; Goessens, G

    1991-01-01

    Nucleoli are the morphological expression of the activity of a defined set of chromosomal segments bearing rRNA genes. The topological distribution and composition of the intranucleolar chromatin as well as the definition of nucleolar structures in which enzymes of the rDNA transcription machinery reside have been investigated in mammalian cells by various immunogold labelling approaches at the ultrastructural level. The precise intranucleolar location of rRNA genes has been further specified by electron microscopic in situ hybridization with a non-autoradiographic procedure. Our results indicate that the fibrillar centers are the sole nucleolar structures where rDNA, core histones, RNA polymerase I and DNA topoisomerase I are located together. Taking into account the potential value and limitations of immunoelectron microscopic techniques, we propose that transcription of the rRNA genes takes place within the confines of the fibrillar centers, probably close to the boundary regions to the surrounding dense fibrillar component.

  4. Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast cancer cell invasion.

    PubMed

    Patterson, Dillon G; Roberts, Justin T; King, Valeria M; Houserova, Dominika; Barnhill, Emmaline C; Crucello, Aline; Polska, Caroline J; Brantley, Lucas W; Kaufman, Garrett C; Nguyen, Michael; Santana, Megann W; Schiller, Ian A; Spicciani, Julius S; Zapata, Anastasia K; Miller, Molly M; Sherman, Timothy D; Ma, Ruixia; Zhao, Hongyou; Arora, Ritu; Coley, Alexander B; Zeidan, Melody M; Tan, Ming; Xi, Yaguang; Borchert, Glen M

    2017-01-01

    Genetic searches for tumor suppressors have recently linked small nucleolar RNA misregulations with tumorigenesis. In addition to their classically defined functions, several small nucleolar RNAs are now known to be processed into short microRNA-like fragments called small nucleolar RNA-derived RNAs. To determine if any small nucleolar RNA-derived RNAs contribute to breast malignancy, we recently performed a RNA-seq-based comparison of the small nucleolar RNA-derived RNAs of two breast cancer cell lines (MCF-7 and MDA-MB-231) and identified small nucleolar RNA-derived RNAs derived from 13 small nucleolar RNAs overexpressed in MDA-MB-231s. Importantly, we find that inhibiting the most differentially expressed of these small nucleolar RNA-derived RNAs (sdRNA-93) in MDA-MB-231 cells results primarily in a loss of invasiveness, whereas increased sdRNA-93 expression in either cell line conversely results in strikingly enhanced invasion. Excitingly, we recently determined sdRNA-93 expressions in small RNA-seq data corresponding to 116 patient tumors and normal breast controls, and while we find little sdRNA-93 expression in any of the controls and only sporadic expression in most subtypes, we find robust expression of sdRNA-93 in 92.8% of Luminal B Her2+tumors. Of note, our analyses also indicate that at least one of sdRNA-93's endogenous roles is to regulate the expression of Pipox, a sarcosine metabolism-related protein whose expression significantly correlates with distinct molecular subtypes of breast cancer. We find sdRNA-93 can regulate the Pipox 3'UTR via standard reporter assays and that manipulating endogenous sdRNA-93 levels inversely correlates with altered Pipox expression. In summary, our results strongly indicate that sdRNA-93 expression actively contributes to the malignant phenotype of breast cancer through participating in microRNA-like regulation.

  5. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zejun; Gong, Chaoju; Liu, Hong

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression ofmore » E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration

  6. The TORMOZ Gene Encodes a Nucleolar Protein Required for Regulated Division Planes and Embryo Development in Arabidopsis[W

    PubMed Central

    Griffith, Megan E.; Mayer, Ulrike; Capron, Arnaud; Ngo, Quy A.; Surendrarao, Anandkumar; McClinton, Regina; Jürgens, Gerd; Sundaresan, Venkatesan

    2007-01-01

    Embryogenesis in Arabidopsis thaliana is marked by a predictable sequence of oriented cell divisions, which precede cell fate determination. We show that mutation of the TORMOZ (TOZ) gene yields embryos with aberrant cell division planes and arrested embryos that appear not to have established normal patterning. The defects in toz mutants differ from previously described mutations that affect embryonic cell division patterns. Longitudinal division planes of the proembryo are frequently replaced by transverse divisions and less frequently by oblique divisions, while divisions of the suspensor cells, which divide only transversely, appear generally unaffected. Expression patterns of selected embryo patterning genes are altered in the mutant embryos, implying that the positional cues required for their proper expression are perturbed by the misoriented divisions. The TOZ gene encodes a nucleolar protein containing WD repeats. Putative TOZ orthologs exist in other eukaryotes including Saccharomyces cerevisiae, where the protein is predicted to function in 18S rRNA biogenesis. We find that disruption of the Sp TOZ gene results in cell division defects in Schizosaccharomyces pombe. Previous studies in yeast and animal cells have identified nucleolar proteins that regulate the exit from M phase and cytokinesis, including factors involved in pre-rRNA processing. Our study suggests that in plant cells, nucleolar functions might interact with the processes of regulated cell divisions and influence the selection of longitudinal division planes during embryogenesis. PMID:17616738

  7. A human monoclonal autoantibody to a nucleolar structure.

    PubMed Central

    Gonzalez, M F; Wichmann, I; Yelamos, J; Melero, J; Magariño, R; Sanchez-Roman, J; Nuñez-Roldan, A; Sanchez, B

    1992-01-01

    Peripheral blood lymphocytes from a scleroderma patient (CDC) were isolated, transformed with Epstein-Barr virus and fused to the heteromyeloma SHM-D33. Supernatants from cultures were screened for autoantibody production against nucleoprotamine by ELISA. Positive wells were cloned by limiting dilution. After cloning, supernatants from two wells were positive for the nucleoprotamine assay. One named CDC-1 has been studied in our laboratory. CDC-1 recognized a nucleolar antigen by indirect immunofluorescence. By using an ELISA with purified recombinant antigens, CDC-1 reacted against Ro/SS-A, U1 (RNP) and Sm. By immunoblotting using a lysate of MOLT-4 cell line, CDC-1 was able to react against a structure of 60 kD. When the antigen recognized by CDC-1 was purified, SDS-PAGE under reducing conditions with purified antigen and subsequent silver staining of the gel allowed us to detect three bands at 60, 55 and 39 kD, respectively. A screening by ELISA with previously characterized antisera against our purified antigen demonstrated reactivity of the CDC-1 antigen with those antisera able to recognize Ro/SS-A. Images Fig. 1 Fig. 2 Fig. 3 PMID:1572098

  8. Base Pairing between U3 Small Nucleolar RNA and the 5′ End of 18S rRNA Is Required for Pre-rRNA Processing

    PubMed Central

    Sharma, Kishor; Tollervey, David

    1999-01-01

    The loop of a stem structure close to the 5′ end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A1, the 5′ end of the 18S rRNA, and at site A2, located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3–pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In the Escherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5′ external transcribed spacer (5′ ETS). Cleavage at site A0 in the yeast 5′ ETS strictly requires base pairing between U3 and a sequence within the 5′ ETS. In contrast, the U3-18S interaction is not required for A0 cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A1 cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A1 cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing. PMID:10454548

  9. Upregulation of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 Promotes Radioresistance of Glioma by Repressing Semaphorin 5A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Rong; Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian; Yao, Qiwei

    Purpose: Although increasing evidence has shown that long noncoding RNAs play an important regulatory role in carcinogenesis and tumor progression, little is known about the role of small nucleolar RNA host gene 18 (SNHG18) in cancer. The goal of this study was to investigate the expression of SNHG18 and its clinical significance in glioma. Methods and Materials: Differences in the lncRNA expression profile between M059K and M059J cells were assessed by lncRNA expression microarray analysis. The expression and localization of SNHG18 in glioma cells or tissues was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH),more » respectively. the clinical associations of SNHG18 in glioma was evaluated by qRT-PCR, ISH and immunohistochemistry. The role of SNHG18 in glioma radiosensitivity was evaluated by colony formation assays, immunofluorescence, Western blot and tumor growth inhibition study. Results: The present study investigated the clinical associations of SNHG18 and its role in glioma. Our results showed that the expression of SNHG18 was remarkably upregulated in clinical glioma tissues compared with normal brain tissues. SNHG18 expression was associated with the clinical tumor grade and correlated negatively with isocitrate dehydrogenase 1 mutation. In addition, knockdown of SNHG18 with short hairpin RNA suppressed the radioresistance of glioma cells, and transgenic expression of SNHG18 had the opposite effect. Furthermore, xenograft tumors grown from cells with SNHG18 deletion were more radiosensitive than tumors grown from control cells. Further studies revealed that SNHG18 promotes radioresistance by inhibiting semaphorin 5A and that inhibition of semaphorin 5A expression abrogated the radiosensitizing effect caused by SNHG18 deletion. Conclusions: Our findings provide new insights into the role of SNHG18 in glioma and suggest its potential as a target for glioma therapy.« less

  10. Comparative ultrastructure of CRM1-Nucleolar bodies (CNoBs), Intranucleolar bodies (INBs) and hybrid PML/p62 bodies uncovers new facets of nuclear body dynamic and diversity

    PubMed Central

    Souquere, Sylvie; Weil, Dominique; Pierron, Gérard

    2015-01-01

    In order to gain insights on the nuclear organization in mammalian cells, we characterized ultrastructurally nuclear bodies (NBs) previously described as fluorescent foci. Using high resolution immunoelectron microscopy (I-EM), we provide evidence that CNoBs (CRM1-Nucleolar bodies) and INBs (Intranucleolar bodies) are distinct genuine nucleolar structures in untreated HeLa cells. INBs are fibrillar and concentrate the post-translational modifiers SUMO1 and SUMO-2/3 as strongly as PML bodies. In contrast, the smallest CRM1-labeled CNoBs are vitreous, preferentially located at the periphery of the nucleolus and, intricately linked to the chromatin network. Upon blockage of the CRM1-dependent nuclear export by leptomycin B (LMB), CNoBs disappear while p62/SQSTM1-containing fibrillar nuclear bodies are induced. These p62 bodies are enriched in ubiquitinated proteins. They progressively associate with PML bodies to form hybrid bodies of which PML decorates the periphery while p62/SQSTM1 is centrally-located. Our study is expanding the repertoire of nuclear bodies; revealing a previously unrecognized composite nucleolar landscape and a new mode of interactions between ubiquitous (PML) and stress-induced (p62) nuclear bodies, resulting in the formation of hybrid bodies. PMID:26275159

  11. Subcellular distribution of human RDM1 protein isoforms and their nucleolar accumulation in response to heat shock and proteotoxic stress.

    PubMed

    Messaoudi, Lydia; Yang, Yun-Gui; Kinomura, Aiko; Stavreva, Diana A; Yan, Gonghong; Bortolin-Cavaillé, Marie-Line; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hainaut, Pierre; Cavaillé, Jérome; Takata, Minoru; Van Dyck, Eric

    2007-01-01

    The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.

  12. Integrating the genomic architecture of human nucleolar organizer regions with the biophysical properties of nucleoli.

    PubMed

    Mangan, Hazel; Gailín, Michael Ó; McStay, Brian

    2017-12-01

    Nucleoli are the sites of ribosome biogenesis and the largest membraneless subnuclear structures. They are intimately linked with growth and proliferation control and function as sensors of cellular stress. Nucleoli form around arrays of ribosomal gene (rDNA) repeats also called nucleolar organizer regions (NORs). In humans, NORs are located on the short arms of all five human acrocentric chromosomes. Multiple NORs contribute to the formation of large heterochromatin-surrounded nucleoli observed in most human cells. Here we will review recent findings about their genomic architecture. The dynamic nature of nucleoli began to be appreciated with the advent of photodynamic experiments using fluorescent protein fusions. We review more recent data on nucleoli in Xenopus germinal vesicles (GVs) which has revealed a liquid droplet-like behavior that facilitates nucleolar fusion. Further analysis in both XenopusGVs and Drosophila embryos indicates that the internal organization of nucleoli is generated by a combination of liquid-liquid phase separation and active processes involving rDNA. We will attempt to integrate these recent findings with the genomic architecture of human NORs to advance our understanding of how nucleoli form and respond to stress in human cells. © 2017 Federation of European Biochemical Societies.

  13. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis.

    PubMed

    Yuan, Xuejun; Zhou, Yonggang; Casanova, Emilio; Chai, Minqiang; Kiss, Eva; Gröne, Hermann-Josef; Schütz, Günter; Grummt, Ingrid

    2005-07-01

    Growth-dependent regulation of rRNA synthesis is mediated by TIF-IA, a basal transcription initiation factor for RNA polymerase I. We inactivated the murine TIF-IA gene by homologous recombination in mice and embryonic fibroblasts (MEFs). TIF-IA-/- embryos die before or at embryonic day 9.5 (E9.5), displaying retardation of growth and development. In MEFs, Cre-mediated depletion of TIF-IA leads to disruption of nucleoli, cell cycle arrest, upregulation of p53, and induction of apoptosis. Elevated levels of p53 after TIF-IA depletion are due to increased binding of ribosomal proteins, such as L11, to MDM2 and decreased interaction of MDM2 with p53 and p19(ARF). RNAi-induced loss of p53 overcomes proliferation arrest and apoptosis in response to TIF-IA ablation. The striking correlation between perturbation of nucleolar function, elevated levels of p53, and induction of cell suicide supports the view that the nucleolus is a stress sensor that regulates p53 activity.

  14. Dynamic nucleolar activity in wheat × Aegilops hybrids: evidence of C-genome dominance.

    PubMed

    Mirzaghaderi, Ghader; Abdolmalaki, Zinat; Zohouri, Mohsen; Moradi, Zeinab; Mason, Annaliese S

    2017-08-01

    NOR loci of C-subgenome are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and evolution. After interspecific hybridisation, some genes are often expressed from only one of the progenitor species, shaping subsequent allopolyploid genome evolution processes. A well-known example is nucleolar dominance, i.e. the formation of cell nucleoli from chromosomes of only one parental species. We studied nucleolar organizing regions (NORs) in diploid Aegilops markgrafii (syn: Ae. caudata; CC), Ae. umbellulata (UU), allotetraploids Aegilops cylindrica (C c C c D c D c ) and Ae. triuncialis (C t C t U t U t ), synthetic interspecific F 1 hybrids between these two allotetraploids and bread wheat (Triticum aestivum, AABBDD) and in F 3 generation hybrids with genome composition AABBDDC t C t U t U t using silver staining and fluorescence in situ hybridization (FISH). In Ae. markgrafii (CC), NORs of both 1C and 5C or only 5C chromosome pairs were active in different individual cells, while only NORs on 1U chromosomes were active in Ae. umbellulata (UU). Although all 35S rDNA loci of the C t subgenome (located on 1C t and 5C t ) were active in Ae. triuncialis, only one pair (occupying either 1C c or 5C c ) was active in Ae. cylindrica, depending on the genotype studied. These C-genome expression patterns were transmitted to the F 1 and F 3 generations. Wheat chromosome NOR activity was variable in Ae. triuncialis × T. aestivum F 1 seeds, but silenced by the F 3 generation. No effect of maternal or paternal cross direction was observed. These results indicate that C-subgenome NOR loci are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and allopolyploid evolution.

  15. Analysis of silver stained nucleolar organizing regions in odontogenic cysts and tumors.

    PubMed

    Prasanna, Md; Charan, Cr; Reddy Ealla, Kranti Kiran; Surekha, V; Kulkarni, Ganesh; Gokavarapu, Sandhya

    2014-09-01

    The present study aimed to investigate the probable differences in cell proliferation index of odontogenic cysts and tumors by means of a comparative silver stained nucleolar organizing region (AgNOR) quantification. This descriptive cross-sectional study was done on archival paraffin blocks (n = 62), consisting of 10 odontogenic keratocysts, 10 dentigerous cysts, 10 radicular cysts, 10 conventional ameloblastomas, 10 adenomatoid odontogenic tumors, 10 calcifying epithelial odontogenic tumors and 2 ameloblasic carcinomas. The mean AgNOR count of odontogenic cysts was 1.709 and the benign odontogenic tumors was 1.862. Highest AgNOR count was recorded in odontogenic keratocyst and lowest was seen in radicular cyst. Statistically significant difference in AgNOR counts of ameloblastoma and adenomatoid odontogenic tumor, amelobalastoma and calcifying epithelial odontogenic tumor, benign odontogenic tumors and ameloblastic carcinoma were seen. AgNORs in ameloblastic carcinoma were more in number and more widely spread. AgNOR technique may be considered a good indicator of cell proliferation in odontogenic cysts and tumors.

  16. Nucleolar organizer regions in Sittasomus griseicapillus and Lepidocolaptes angustirostris (Aves, Dendrocolaptidae): Evidence of a chromosome inversion.

    PubMed

    de Oliveira Barbosa, Marcelo; da Silva, Rubens Rodrigues; de Sena Correia, Vanessa Carolina; Dos Santos, Luana Pereira; Garnero, Analía Del Valle; Gunski, Ricardo José

    2013-03-01

    Cytogenetic studies in birds are still scarce compared to other vertebrates. Woodcreepers (Dendrocolaptidae) are part of a highly specialized group within the Suboscines of the New World. They are forest birds exclusive to the Neotropical region and similar to woodpeckers, at a comparable evolutionary stage. This paper describes for the first time the karyotypes of the Olivaceous and the Narrow-billed Woodcreeper using conventional staining with Giemsa and silver nitrate staining of the nucleolar organizer regions (Ag-NORs). Metaphases were obtained by fibular bone marrow culture. The chromosome number of the Olivaceous Woodcreeper was 2n = 82 and of the Narrow-billed Woodcreeper, 2n = 82. Ag-NORs in the largest macrochromosome pair and evidence of a chromosome inversion are described herein for the first time for this group.

  17. Tissue–selective effects of nucleolar stress and rDNA damage in developmental disorders

    PubMed Central

    Calo, Eliezer; Gu, Bo; Bowen, Margot E.; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A.; Swigut, Tomek; Chang, Howard Y.; Attardi, Laura D.; Wysocka, Joanna

    2018-01-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis1,2. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis3,4, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis5, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue

  18. Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA.

    PubMed

    Shishova, Kseniya V; Lavrentyeva, Elena A; Dobrucki, Jurek W; Zatsepina, Olga V

    2015-01-15

    It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA. Our results unequivocally show that, similarly to typical nucleoli, proteins and RNA are major constituents of transcriptionally active (or non-surrounded) NLBs as well as of transcriptionally silent (or surrounded) NLBs. We also show, by exposing fixed oocytes to a mild proteinase K treatment, that the NLB mass in oocytes of both types contains nucleolar proteins that are involved in all major steps of ribosome biogenesis, including rDNA transcription (UBF), early rRNA processing (fibrillarin), and late rRNA processing (NPM1/nucleophosmin/B23, nucleolin/C23), but none of the nuclear proteins tested, including SC35, NOBOX, topoisomerase II beta, HP1α, and H3. The ribosomal RPL26 protein was detected within the NLBs of NSN-type oocytes but is virtually absent from NLBs of SN-type oocytes. Taking into account that the major class of nucleolar RNA is ribosomal RNA (rRNA), we applied fluorescence in situ hybridization with oligonucleotide probes targeting 18S and 28S rRNAs. The results show that, in contrast to active nucleoli, NLBs of fully-grown oocytes are impoverished for the rRNAs, which is consistent with the absence of transcribed ribosomal genes in the NLB mass. Overall, the results of this study suggest that NLBs of fully-grown mammalian oocytes serve for storing major nucleolar proteins but not rRNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Investigation of cell cycle-associated structural reorganization in nucleolar FC/DFCs from mouse MFC cells by electron microscopy.

    PubMed

    Chen, Lingling; Jiao, Yang; Guan, Xin; Li, Xiliang; Feng, Yunpeng; Jiao, Mingda

    2018-05-01

    Nucleolus structure alters as the cell cycle is progressing. It is established in telophase, maintained throughout the entire interphase and disassembled in metaphase. Fibrillar centers (FCs), dense fibrillar components (DFCs) and granular components (GCs) are essential nucleolar organizations where rRNA transcription and processing and ribosome assembly take place. Hitherto, little is known about the cell cycle-dependent reorganization of these structures. In this study, we followed the nucleolus structure during the cell cycle by electron microscopy (EM). We found the nucleolus experienced multiple rounds of structural reorganization within a single cell cycle: (1) when nucleoli are formed during the transition from late M to G1 phase, FCs, DFCs and GCs are constructed, leading to the establishment of tripartite nucleolus; (2) as FC/DFCs are disrupted at mid-G1, tripartite nucleolus is gradually changed into a bipartite organization; (3) at late G1, the reassembly of FC/DFCs results in a structural transition from bipartite nucleolus towards tripartite nucleolus; (4) as cells enter S phase, FC/DFCs are disassembled again and tripartite nucleolus is thus changed into a bipartite organization. Of note, FC/DFCs were not observed until late S phase; (5) FC/DFCs experience structural disruption and restoration during G2 and (6) when cells are at mitotic stage, FC/DFCs disappear before nucleolus structure is disassembled. These results also suggest that bipartite nucleolus can exist in higher eukaryotes at certain period of the cell cycle. As structures are the fundamental basis of diverse cell activities, unveiling the structural reorganization of nucleolar FCs and DFCs may bring insights into the spatial-temporal compartmentalization of relevant cellular functions.

  20. New insights into the nucleolar localization of a plant RNA virus-encoded protein that acts in both RNA packaging and RNA silencing suppression: involvement of importins alpha and relevance for viral infection.

    PubMed

    Pérez-Cañamás, Miryam; Hernández, Carmen

    2018-05-21

    Despite replication of plus strand RNA viruses takes place in the cytoplasm of host cells, different proteins encoded by these infectious agents have been shown to localize in the nucleus, with high accumulation at the nucleolus. In most cases, the molecular determinants and/or biological significance of such subcellular localization remain elusive. Recently, we reported that protein p37 encoded by Pelargonium line pattern virus (family Tombusviridae) acts in both RNA packaging and RNA silencing suppression. Connsistently with these functions, p37 was detected in the cytoplasm of plant cells though it was also present in the nucleus and, particularly, in the nucleolus. Here, we have aimed to gain further insights into factors influencing p37 nucleolar localization and into its potential relevance for viral infection. Besides mapping the protein region containing the nucleolar localization signal, we have found that p37 interacts with distinct members of the importin alpha family -main cellular transporters for nucleo-cytoplasmic traffic of proteins-, and that these interactions are crucial for nucleolar targeting of p37. Impairment of p37 nucleolar localization through down-regulation of importin alpha expression resulted in a reduction of viral accumulation, suggesting that sorting of the protein to the major subnuclear compartment is advantageous for the infection process.

  1. Identification of a silver binding protein associated with the cytological silver staining of actively transcribing nucleolar regions.

    PubMed

    Hubbell, H R; Rothblum, L I; Hsu, T C

    1979-10-01

    Nucleoli isolated from Novikoff hepatoma cells were stained with AgNO3 to demonstrate the typical staining of active ribosomal cistrons. Pre-treatment of the nucleoli with 80 mM Tris-HCl (pH 7.5) -- 2.0 M NaCl did not interfere with silver staining. Treatment of the nucleoli with 80 mM Tris-HCl (pH 7.5) -- 0.15 M NaCl did, however, eliminate silver binding. Serial extraction of nucleoli with 2.0 M NaCl buffer followed by 0.15 M NaCl buffer also abolished silver staining. Analysis of the supernatant fraction of these extracts by polyacrylamide gel electrophoresis indicates that, although more than one nucleolar protein can bind silver, only one protein is associated with the staining of active ribosomal cistrons.

  2. Analysis of silver stained nucleolar organizing regions in odontogenic cysts and tumors

    PubMed Central

    Prasanna, MD; Charan, CR; Reddy Ealla, Kranti Kiran; Surekha, V; Kulkarni, Ganesh; Gokavarapu, Sandhya

    2014-01-01

    Objective: The present study aimed to investigate the probable differences in cell proliferation index of odontogenic cysts and tumors by means of a comparative silver stained nucleolar organizing region (AgNOR) quantification. Study Design: This descriptive cross-sectional study was done on archival paraffin blocks (n = 62), consisting of 10 odontogenic keratocysts, 10 dentigerous cysts, 10 radicular cysts, 10 conventional ameloblastomas, 10 adenomatoid odontogenic tumors, 10 calcifying epithelial odontogenic tumors and 2 ameloblasic carcinomas. Results: The mean AgNOR count of odontogenic cysts was 1.709 and the benign odontogenic tumors was 1.862. Highest AgNOR count was recorded in odontogenic keratocyst and lowest was seen in radicular cyst. Statistically significant difference in AgNOR counts of ameloblastoma and adenomatoid odontogenic tumor, amelobalastoma and calcifying epithelial odontogenic tumor, benign odontogenic tumors and ameloblastic carcinoma were seen. AgNORs in ameloblastic carcinoma were more in number and more widely spread. Conclusion: AgNOR technique may be considered a good indicator of cell proliferation in odontogenic cysts and tumors. PMID:25364178

  3. Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells.

    PubMed

    Ozdian, Tomas; Holub, Dusan; Maceckova, Zuzana; Varanasi, Lakshman; Rylova, Gabriela; Rehulka, Jiri; Vaclavkova, Jana; Slavik, Hanus; Moudry, Pavel; Znojek, Pawel; Stankova, Jarmila; de Sanctis, Juan Bautista; Hajduch, Marian; Dzubak, Petr

    2017-06-06

    Oxaliplatin is widely used to treat colorectal cancer in both palliative and adjuvant settings. It is also being tested for use in treating hematological, esophageal, biliary tract, pancreatic, gastric, and hepatocellular cancers. Despite its routine clinical use, little is known about the responses it induces in cancer cells. Therefore the whole-cell proteomics study was conducted to characterize the cellular response induced by oxaliplatin. Chemosensitive CCRF-CEM cells were treated with oxaliplatin at 29.3μM (5×IC 50 ) for 240min (half-time to caspase activation). The proteomes of un-/treated cells were then compared by high-resolution mass spectrometry, revealing 4049 proteins expressed over 3 biological replicates. Among these proteins, 76 were significantly downregulated and 31 significantly upregulated in at least two replicates. In agreement with the DNA-damaging effects of platinum drugs, proteins involved in DNA damage responses were present in both the upregulated and downregulated groups. The downregulated proteins were divided into three subgroups; i) centrosomal proteins, ii) RNA processing and iii) ribosomal proteins, which indicates nucleolar and ribosomal stress. In conclusion, our data supported by further validation experiments indicate the initial cellular response to oxaliplatin is the activation of DNA damage response, which in turn or in parallel triggers nucleolar and ribosomal stress. We have performed a whole-cell proteomic study of cellular response to oxaliplatin treatment, which is the drug predominantly used in the treatment of colorectal cancer. Compared to its predecessors, cisplatin and carboplatin, there is only a small fraction of studies dedicated to oxaliplatin. From those studies, most of them are focused on modification of treatment regimens or study of oxaliplatin in new cancer diagnoses. Cellular response hasn't been studied deeply and to our best knowledge, this is the first whole-cell proteomics study focused exclusively

  4. Nucleolar organizer region variants as a risk factor for Down syndrome.

    PubMed Central

    Jackson-Cook, C K; Flannery, D B; Corey, L A; Nance, W E; Brown, J A

    1985-01-01

    An unusual nucleolar organizer region (NOR) heteromorphism was noted among 13 of 41 parents in whom nondisjunction leading to trisomy 21 was known to have occurred. In contrast, only one of these double NOR (dNOR) variants was found among the 41 normal spouses and none were seen among 50 control individuals. In two dNOR(+) families, a second child with trisomy 21 was conceived. In both families, the extra chromosome in each child was contributed by the parent who carried the dNOR variant and resulted from a recurrent meiosis I error. Our data suggest that the dNOR heteromorphism may play a role in meiotic nondisjunction and could be associated with as much as a 20-fold increased risk for having offspring with trisomy 21. Images Fig. 1 PMID:2934977

  5. Small nuclear RNA U2 is base-paired to heterogeneous nuclear RNA.

    PubMed

    Calvet, J P; Meyer, L M; Pederson, T

    1982-07-30

    Eukaryotic cells contain a set of low molecular weight nuclear RNA's. One of the more abundant of these is termed U2 RNA. The possibility that U2 RNA is hydrogen-bonded to complementary sequences in other nuclear RNA's was investigated. Cultured human (HeLa) cells were treated with a psoralen derivative that cross-links RNA chains that are base-paired with one another. High molecular weight heterogeneous nuclear RNA was isolated under denaturing conditions, and the psoralen cross-links were reversed. Electrophoresis of the released RNA and hybridization with a human cloned U2 DNA probe revealed that U2 is hydrogen-bonded to complementary sequences in heterogeneous nuclear RNA in vivo. In contrast, U2 RNA is not base-paired with nucleolar RNA, which contains the precursors of ribosomal RNA. The results suggest that U2 RNA participates in messenger RNA processing in the nucleus.

  6. Improved silver staining of nucleolar organiser regions in paraffin wax sections using an inverted incubation technique.

    PubMed Central

    Coghill, G; Grant, A; Orrell, J M; Jankowski, J; Evans, A T

    1990-01-01

    A new simple modification to the silver staining of nucleolar organiser regions (AgNORs) was devised which, by performing the incubation with the slide inverted, results in minimal undesirable background staining, a persistent problem. Inverted incubation is facilitated by the use of a commercially available plastic coverplate. This technique has several additional advantages over other published staining protocols. In particular, the method is straightforward, fast, and maintains a high degree of contrast between the background and the AgNORs. Images PMID:1702451

  7. Papillomavirus E7 Oncoproteins Share Functions with Polyomavirus Small T Antigens

    PubMed Central

    White, Elizabeth A.; Kramer, Rebecca E.; Hwang, Justin H.; Pores Fernando, Arun T.; Naetar, Nana; Hahn, William C.; Roberts, Thomas M.; Schaffhausen, Brian S.; Livingston, David M.

    2014-01-01

    ABSTRACT Many of the small DNA tumor viruses encode transforming proteins that function by targeting critical cellular pathways involved in cell proliferation and survival. In this study, we have examined whether some of the functions of the polyomavirus small T antigens (ST) are shared by the E6 and E7 oncoproteins of two oncogenic papillomaviruses. Using three different assays, we have found that E7 can provide some simian virus 40 (SV40) or murine polyomavirus (PyV) ST functions. Both human papillomavirus 16 (HPV16) and bovine papillomavirus (BPV1) E7 proteins are capable of partially substituting for SV40 ST in a transformation assay that also includes SV40 large T antigen, the catalytic subunit of cellular telomerase, and oncogenic Ras. Like SV40 ST, HPV16 E7 has the ability to override a quiescence block induced by mitogen deprivation. Like PyV ST, it also has the ability to inhibit myoblast differentiation. At least two of these activities are dependent upon the interaction of HPV16 E7 with retinoblastoma protein family members. For small T antigens, interaction with PP2A is needed for each of these functions. Even though there is no strong evidence that E6 or E7 share the ability of small T to interact with PP2A, E7 provides these functions related to cellular transformation. IMPORTANCE DNA tumor viruses have provided major insights into how cancers develop. Some viruses, like the human papillomaviruses, can cause cancer directly. Both the papillomaviruses and the polyomaviruses have served as tools for understanding pathways that are often perturbed in cancer. Here, we have compared the functions of transforming proteins from several DNA tumor viruses, including two papillomaviruses and two polyomaviruses. We tested the papillomavirus E6 and E7 oncoproteins in three functional assays and found that E7 can provide some or all of the functions of the SV40 small T antigen, another well-characterized oncoprotein, in two of these assays. In a third assay

  8. Nucleolar Organizer Regions of Oral Epithelial Cells in Crack Cocaine Users

    PubMed Central

    Carvalho de M. Thiele, Magna; Carlos Bohn, Joslei; Lima Chaiben, Cassiano; Trindade Grégio, Ana Maria; Ângela Naval Machado, Maria; Adilson Soares de Lima, Antonio

    2013-01-01

    Background: The health risks of crack cocaine smoking on the oral mucosa has not been widely researched and documented. Objective: The purpose of this study was to analyze the proliferative activity of oral epithelial cells exposed to crack cocaine smoke using silver nucleolar organizer region (AgNOR) staining. Methods: Oral smears were collected from clinically normal-appearing buccal mucosa by liquid-based exfoliative cytology of 60 individuals (30 crack cocaine users and 30 healthy controls matched for age and gender) and analyzed for cytomorphologic and cytomorphometric techniques. Results: Crack cocaine users consumed about 13.3 heat-stable rocks per day and the time consumption of the drug was of 5.2 (± 3.3) years. Mean values of AgNOR counting for case and control groups were 5.18 ± 1.83 and 3.38 ± 1.02 (P<0.05), respectively. AgNOR area and percentage of AgNOR-occupied nuclear area were increased in comparison with the control (P<0.05). There was no statistically significant difference in the mean values of the nuclear area between the groups (P>0.05). Conclusion: This study revealed that crack cocaine smoke increases the rate of cellular proliferation in cells of normal buccal mucosa. PMID:23567853

  9. The nucleolus directly regulates p53 export and degradation.

    PubMed

    Boyd, Mark T; Vlatkovic, Nikolina; Rubbi, Carlos P

    2011-09-05

    The correlation between stress-induced nucleolar disruption and abrogation of p53 degradation is evident after a wide variety of cellular stresses. This link may be caused by steps in p53 regulation occurring in nucleoli, as suggested by some biochemical evidence. Alternatively, nucleolar disruption also causes redistribution of nucleolar proteins, potentially altering their interactions with p53 and/or MDM2. This raises the fundamental question of whether the nucleolus controls p53 directly, i.e., as a site where p53 regulatory processes occur, or indirectly, i.e., by determining the cellular localization of p53/MDM2-interacting factors. In this work, transport experiments based on heterokaryons, photobleaching, and micronucleation demonstrate that p53 regulatory events are directly regulated by nucleoli and are dependent on intact nucleolar structure and function. Subcellular fractionation and nucleolar isolation revealed a distribution of ubiquitylated p53 that supports these findings. In addition, our results indicate that p53 is exported by two pathways: one stress sensitive and one stress insensitive, the latter being regulated by activities present in the nucleolus.

  10. Successful E-Learning in Small and Medium-Sized Enterprises

    ERIC Educational Resources Information Center

    Paulsen, Morten Flate

    2009-01-01

    So far, e-learning has primarily been used when there are many learners involved. The up-front investments related to e-learning are relatively high, and may be perceived as prohibitive for small and medium-sized enterprises (SMEs). Some e-learning is, however, getting less expensive, and some e-learning models are more suited for small-scale…

  11. Importin-α-mediated nucleolar localization of potato mop-top virus TRIPLE GENE BLOCK1 (TGB1) protein facilitates virus systemic movement, whereas TGB1 self-interaction is required for cell-to-cell movement in Nicotiana benthamiana.

    PubMed

    Lukhovitskaya, Nina I; Cowan, Graham H; Vetukuri, Ramesh R; Tilsner, Jens; Torrance, Lesley; Savenkov, Eugene I

    2015-03-01

    Recently, it has become evident that nucleolar passage of movement proteins occurs commonly in a number of plant RNA viruses that replicate in the cytoplasm. Systemic movement of Potato mop-top virus (PMTV) involves two viral transport forms represented by a complex of viral RNA and TRIPLE GENE BLOCK1 (TGB1) movement protein and by polar virions that contain the minor coat protein and TGB1 attached to one extremity. The integrity of polar virions ensures the efficient movement of RNA-CP, which encodes the virus coat protein. Here, we report the involvement of nuclear transport receptors belonging to the importin-α family in nucleolar accumulation of the PMTV TGB1 protein and, subsequently, in the systemic movement of the virus. Virus-induced gene silencing of two importin-α paralogs in Nicotiana benthamiana resulted in significant reduction of TGB1 accumulation in the nucleus, decreasing the accumulation of the virus progeny in upper leaves and the loss of systemic movement of RNA-CP. PMTV TGB1 interacted with importin-α in N. benthamiana, which was detected by bimolecular fluorescence complementation in the nucleoplasm and nucleolus. The interaction was mediated by two nucleolar localization signals identified by bioinformatics and mutagenesis in the TGB1 amino-terminal domain. Our results showed that while TGB1 self-interaction is needed for cell-to-cell movement, importin-α-mediated nucleolar targeting of TGB1 is an essential step in establishing the efficient systemic infection of the entire plant. These results enabled the identification of two separate domains in TGB1: an internal domain required for TGB1 self-interaction and cell-to-cell movement and the amino-terminal domain required for importin-α interaction in plants, nucleolar targeting, and long-distance movement. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Nucleolar Targeting by Platinum: p53-Independent Apoptosis Follows rRNA Inhibition, Cell-Cycle Arrest, and DNA Compaction

    PubMed Central

    2015-01-01

    TriplatinNC is a highly positively charged, substitution-inert derivative of the phase II clinical anticancer drug, BBR3464. Such substitution-inert complexes form a distinct subset of polynuclear platinum complexes (PPCs) interacting with DNA and other biomolecules through noncovalent interactions. Rapid cellular entry is facilitated via interaction with cell surface glycosoaminoglycans and is a mechanism unique to PPCs. Nanoscale secondary ion mass spectrometry (nanoSIMS) showed rapid distribution within cytoplasmic and nucleolar compartments, but not the nucleus. In this article, the downstream effects of nucleolar localization are described. In human colon carcinoma cells, HCT116, the production rate of 47S rRNA precursor transcripts was dramatically reduced as an early event after drug treatment. Transcriptional inhibition of rRNA was followed by a robust G1 arrest, and activation of apoptotic proteins caspase-8, -9, and -3 and PARP-1 in a p53-independent manner. Using cell synchronization and flow cytometry, it was determined that cells treated while in G1 arrest immediately, but cells treated in S or G2 successfully complete mitosis. Twenty-four hours after treatment, the majority of cells finally arrest in G1, but nearly one-third contained highly compacted DNA; a distinct biological feature that cannot be associated with mitosis, senescence, or apoptosis. This unique effect mirrored the efficient condensation of tRNA and DNA in cell-free systems. The combination of DNA compaction and apoptosis by TriplatinNC treatment conferred striking activity in platinum-resistant and/or p53 mutant or null cell lines. Taken together, our results support that the biological activity of TriplatinNC reflects reduced metabolic deactivation (substitution-inert compound not reactive to sulfur nucleophiles), high cellular accumulation, and novel consequences of high-affinity noncovalent DNA binding, producing a new profile and a further shift in the structure

  13. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.

    PubMed

    Calo, Eliezer; Gu, Bo; Bowen, Margot E; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A; Swigut, Tomek; Chang, Howard Y; Attardi, Laura D; Wysocka, Joanna

    2018-02-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and

  14. Quantitative assessment of silver-stained nucleolar organizer region in odontogenic cysts to correlate the growth and malignant potentiality.

    PubMed

    Biswas, Sailendra Nath; Paul, R R; Ray, Jay Gopal; Majumdar, Sumit; Uppala, Divya

    2017-01-01

    The most common and important odontogenic cyst involving jaws is the odontogenic keratocyst (OKC) or primordial cyst, the dentigerous cyst and the radicular cyst. These cysts all though do not show similar behavior, they all have the potentiality to recur. Silver nitrate staining of the nucleolar organizer regions (AgNORs) of the benign and malignant lesions is becoming very useful as a diagnostic indicator. Thus, the aim of this study is to assess the diagnostic potential of AgNORs in the cystic epithelium of common odontogenic cysts. Archived specimens of odontogenic cysts were stained with hematoxylin and eosin stain and AgNOR stain. The comparative evaluation of the AgNOR counts was done among the three varieties of odontogenic cysts, i.e., radicular cysts, dentigerous cysts and OKC and were observed that the mean for OKC was significantly higher than that of radicular cyst. Therefore, AgNor could be used as an efficient tool for comparative evaluation of microscopic features such as epithelial thickness, surface keratinization and mural proliferation in dentigerous cyst to that of the AgNOR count.

  15. Nuclear-cytoplasmic partitioning of cucumber mosaic virus protein 2b determines the balance between its roles as a virulence determinant and an RNA-silencing suppressor.

    PubMed

    Du, Zhiyou; Chen, Aizhong; Chen, Wenhu; Liao, Qiansheng; Zhang, Hengmu; Bao, Yiming; Roossinck, Marilyn J; Carr, John P

    2014-05-01

    small RNA pathways. Moreover, this work supports the contention that the silencing suppressor activity of CMV 2b protein is predominantly exerted by that portion of the 2b protein residing in the cytoplasm. Thus, we propose that partitioning of the 2b protein between the cytoplasmic and nuclear/nucleolar compartments allows CMV to regulate the balance between virus accumulation and damage to the host, presumably to maximize the benefit for the virus.

  16. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus.

    PubMed

    Ando, Kiyohiro; Parsons, Melissa J; Shah, Richa B; Charendoff, Chloé I; Paris, Sheré L; Liu, Peter H; Fassio, Sara R; Rohrman, Brittany A; Thompson, Ruth; Oberst, Andrew; Sidi, Samuel; Bouchier-Hayes, Lisa

    2017-06-05

    The PIDDosome (PIDD-RAIDD-caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2-dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function. © 2017 Ando et al.

  17. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus

    PubMed Central

    Ando, Kiyohiro; Shah, Richa B.; Charendoff, Chloé I.; Fassio, Sara R.; Rohrman, Brittany A.; Thompson, Ruth; Oberst, Andrew

    2017-01-01

    The PIDDosome (PIDD–RAIDD–caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2–dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function. PMID:28432080

  18. Plant nucleolar DNA: Green light shed on the role of Nucleolin in genome organization

    PubMed Central

    Picart, Claire

    2017-01-01

    ABSTRACT The nucleolus forms as a consequence of ribosome biogenesis, but it is also implicated in other cell functions. The identification of nucleolus-associated chromatin domains (NADs) in animal and plant cells revealed the presence of DNA sequences other than rRNA genes in and around the nucleolus. NADs display repressive chromatin signatures and harbour repetitive DNA, but also tRNA genes and RNA polymerase II-transcribed genes. Furthermore, the identification of NADs revealed a specific function of the nucleolus and the protein Nucleolin 1 (NUC1) in telomere biology. Here, we discuss the significance of these data with regard to nucleolar structure and to the role of the nucleolus and NUC1 in global genome organization and stability. PMID:27644794

  19. Relationship between interphasic nucleolar organizer regions and growth rate in two neuroblastoma cell lines.

    PubMed Central

    Derenzini, M.; Pession, A.; Farabegoli, F.; Trerè, D.; Badiali, M.; Dehan, P.

    1989-01-01

    The relationship between the quantity of silver-stained interphasic nucleolar organizer regions (NORs) and nuclear synthetic activity, caryotype, and growth rate was studied in two established neuroblastoma cell lines (CHP 212 and HTB 10). Statistical analysis of silver-stained NORs revealed four times as many in CHP 212 cells compared with HTB 10 cells. No difference was observed in the ribosomal RNA synthesis between the two cell lines. The caryotype index was 1.2 for CHP 212 and 1.0 for HTB 10 cells. The number of chromosomes carrying NORs and the quantity of ribosomal genes was found to be the same for the two cell lines. Doubling time of CHP 212 cells was 20 hours compared with 54 hours for HTB 10 cells. In CHP 212 cells bindering of cell duplication by serum deprivation induced a progressive lowering (calculated at 48, 72, and 96 hours) of the quantity of silver-stained interphasic NORs. Recovery of duplication by new serum addition induced, after 24 hours, an increase of the quantity of silver-stained interphasic NORs up to control levels. In the light of available data, these results indicate that the quantity of interphasic NORs is strictly correlated only to the growth rate of the cell. Images Figure 2 Figure 3 Figure 4 PMID:2705511

  20. lncRNA-HIT promotes cell proliferation of non-small cell lung cancer by association with E2F1.

    PubMed

    Yu, L; Fang, F; Lu, S; Li, X; Yang, Y; Wang, Z

    2017-05-01

    Lung cancer is the leading cause of cancer-related death around the world. Long noncoding RNA (lncRNA) has pivotal roles in cancer occurrence and development. However, only a few lncRNAs have been functionally characterized. In the present study, we investigated the effects of lncRNA-HIT (HOXA transcript induced by TGFβ) expression on non-small cell lung cancer (NSCLC) cell phenotype with the gain-of-function and loss-of-function assays. We found that ectopic expression or knockdown of lncRNA-HIT markedly increased or decreased NSCLC cell proliferation, respectively. Moreover, we also showed that lncRNA-HIT interacted with E2F1 to regulate its target genes, such as Survivin, FOXM1, SKP2, NELL2 and DOK1. Collectively, our findings indicated that lncRNA-HIT affected the proliferation of NSCLC cells at least in part via regulating the occupancy of E2F1 in the promoter regions of its target genes. The lncRNA-HIT-E2F1 complex may be a potential target for NSCLC treatment.

  1. Karyotype Plasticity in Crickets: Numerical, Morphological, and Nucleolar Organizer Region Distribution Pattern of Anurogryllus sp.

    PubMed Central

    Cristina Schneider, Marielle; Ariza Zacaro, Adilson; Ferreira, Amilton; Maria Cella, Doralice

    2010-01-01

    Within the Orthopteran species, those of the suborder Ensifera have been rarely studied from the cytogenetic point of view, mainly due to the difficulties for taxonomic identification of its species. The Gryllidae is the second largest family of this suborder and possesses some genera, such as Anurogryllus, that occur only on the American continents. The aim of this work was to determine the karyotype characteristics, the meiotic chromosome behaviour, and the nucleolar organizer region (NOR) pattern of Anurogryllus sp (Orthoptera: Gryllidae). In the analyzed sample, high levels of numerical, morphological, and NORs polymorphisms were detected. Within five distinct karyotypes that were found, the basic karyotype of Anurogryllus sp. showed 2n(♂) = 22 + X0 with acrocentric autosomes and a metacentric X sex chromosome; furthermore, a conspicuous secondary constriction related to the NOR was present along the entire short arm on pair 5. The other four types of karyotypes arose from centric fusions between elements of pairs 1/3, 2/6, 4/7 and a NOR partial translocation from pair 5 onto the long arm terminal region of one element of the fused pair 2/6. Such intraspecific variability and the consequences of high levels of polymorphism are discussed, leading to conjectures about the mechanisms that led to these chromosome rearrangements. PMID:20673072

  2. Small interfering RNA-mediated suppression of serum response factor, E2-promotor binding factor and survivin in non-small cell lung cancer cell lines by non-viral transfection.

    PubMed

    Walker, Tobias; Nolte, Andrea; Steger, Volker; Makowiecki, Christina; Mustafi, Migdat; Friedel, Godehard; Schlensak, Christian; Wendel, Hans-Peter

    2013-03-01

    Serum response factor (SRF), E2F1 and survivin are well-known factors involved in a multitude of cancer-related regulation processes. However, to date, no suitable means has been found to apply their potential in the therapy of non-small cell lung cancer (NSCLC). This study deals with questions of small interfering ribonucleic acid (siRNA) transfection efficiency by a non-viral transfection of NSCLC cell-lines and the power of siRNA to transiently influence cell division by specific silencing. Different NSCLC cell lines were cultured under standard conditions and transfected, with specific siRNA targeting SRF, E2F1 and survivin in a non-viral manner. Cells treated with non-specific siRNA (SCR-siRNA) served as controls. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for messenger RNA (mRNA) expression levels. Additionally, transfection efficiency was evaluated by flow cytometry. The analysis of cell proliferation was determined with a CASY cell counter 3 days after transfection with SRF or SCR-siRNA. Transfection of the NSCLC cell lines with specific siRNAs against SRF, E2F1 and survivin resulted in a very considerable reduction of the intracellular mRNA concentration. CASY confirmation of cell viability demonstrated an excellent survival of the cell lines treated with non-specific siRNA, in contrast to with application of specific siRNA. This study reports a reliable transfectability of NSCLC-cell lines by siRNA, initially in a non-viral manner, and a reproducible knockdown of the focussed targets, consequently leading to the death of the tumour cells. This constitutes a strong candidate for a new assessment strategy in the therapy of non-small cell lung cancer.

  3. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    PubMed Central

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  4. The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells

    PubMed Central

    Fong, Yick W; Ho, Jaclyn J; Inouye, Carla; Tjian, Robert

    2014-01-01

    Acquisition of pluripotency is driven largely at the transcriptional level by activators OCT4, SOX2, and NANOG that must in turn cooperate with diverse coactivators to execute stem cell-specific gene expression programs. Using a biochemically defined in vitro transcription system that mediates OCT4/SOX2 and coactivator-dependent transcription of the Nanog gene, we report the purification and identification of the dyskerin (DKC1) ribonucleoprotein complex as an OCT4/SOX2 coactivator whose activity appears to be modulated by a subset of associated small nucleolar RNAs (snoRNAs). The DKC1 complex occupies enhancers and regulates the expression of key pluripotency genes critical for self-renewal in embryonic stem (ES) cells. Depletion of DKC1 in fibroblasts significantly decreased the efficiency of induced pluripotent stem (iPS) cell generation. This study thus reveals an unanticipated transcriptional role of the DKC1 complex in stem cell maintenance and somatic cell reprogramming. DOI: http://dx.doi.org/10.7554/eLife.03573.001 PMID:25407680

  5. Nucleolar structure across evolution: the transition between bi- and tri-compartmentalized nucleoli lies within the class Reptilia.

    PubMed

    Lamaye, Françoise; Galliot, Sonia; Alibardi, Lorenzo; Lafontaine, Denis L J; Thiry, Marc

    2011-05-01

    Two types of nucleolus can be distinguished among eukaryotic cells: a tri-compartmentalized nucleolus in amniotes and a bi-compartmentalized nucleolus in all the others. However, though the nucleolus' ultrastructure is well characterized in mammals and birds, it has been so far much less studied in reptiles. In this work, we examined the ultrastructural organization of the nucleolus in various tissues from different reptilian species (three turtles, three lizards, two crocodiles, and three snakes). Using cytochemical and immunocytological methods, we showed that in reptiles both types of nucleolus are present: a bi-compartmentalized nucleolus in turtles and a tri-compartmentalized nucleolus in the other species examined in this study. Furthermore, in a given species, the same type of nucleolus is present in all the tissues, however, the importance and the repartition of those nucleolar components could vary from one tissue to another. We also reveal that, contrary to the mammalian nucleolus, the reptilian fibrillar centers contain small clumps of condensed chromatin and that their surrounding dense fibrillar component is thicker. Finally, we also report that Cajal bodies are detected in reptiles. Altogether, we believe that these results have profound evolutionarily implications since they indicate that the point of transition between bipartite and tripartite nucleoli lies at the emergence of the amniotes within the class Reptilia. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites.

    PubMed

    Reid, Colleen R; Hobman, Tom C

    2017-01-01

    Flaviviruses, including the human pathogen, West Nile virus (WNV), are known to co-opt many host factors for their replication and propagation. To this end, we previously reported that the nucleolar DEAD-box RNA helicase, DDX56, is important for production of infectious WNV virions. In this study, we show that WNV infection results in relocalization of DDX56 from nucleoli to virus assembly sites on the endoplasmic reticululm (ER), an observation that is consistent with a role for DDX56 in WNV virion assembly. Super-resolution microscopy revealed that capsid and DDX56 localized to the same subcompartment of the ER, however, unexpectedly, stable interaction between these two proteins was only detected in the nucleus. Together, these data suggest that DDX56 relocalizes to the site of virus assembly during WNV infection and that its interaction with WNV capsid in the cytoplasm may occur transiently during virion morphogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Quantitative assessment of silver-stained nucleolar organizer region in odontogenic cysts to correlate the growth and malignant potentiality

    PubMed Central

    Biswas, Sailendra Nath; Paul, R R; Ray, Jay Gopal; Majumdar, Sumit; Uppala, Divya

    2017-01-01

    Context: The most common and important odontogenic cyst involving jaws is the odontogenic keratocyst (OKC) or primordial cyst, the dentigerous cyst and the radicular cyst. These cysts all though do not show similar behavior, they all have the potentiality to recur. Silver nitrate staining of the nucleolar organizer regions (AgNORs) of the benign and malignant lesions is becoming very useful as a diagnostic indicator. Thus, the aim of this study is to assess the diagnostic potential of AgNORs in the cystic epithelium of common odontogenic cysts. Materials and Methods: Archived specimens of odontogenic cysts were stained with hematoxylin and eosin stain and AgNOR stain. Results: The comparative evaluation of the AgNOR counts was done among the three varieties of odontogenic cysts, i.e., radicular cysts, dentigerous cysts and OKC and were observed that the mean for OKC was significantly higher than that of radicular cyst. Conclusion: Therefore, AgNor could be used as an efficient tool for comparative evaluation of microscopic features such as epithelial thickness, surface keratinization and mural proliferation in dentigerous cyst to that of the AgNOR count. PMID:29391734

  8. [The use of nucleolar morphological characteristics of birch seedlings for the assessment of environmental pollution].

    PubMed

    Karpova, S S; Kalaev, V N; Artiukov, V G; Trofimova, V A; OstashkovaL G, A D; Savko

    2006-01-01

    Micronucleus frequency in buccal mucosa from the oral cavity of children as well as nucleolar structural characteristics (surface area of single nucleoli as well as their number and type) in the root meristem of seed progeny of birch (Betula pendula Roth) were studied in some districts of Voronezh City and Voronezh Region (Novovoronezh Town, Zemlyansk Village). Similar trends of changes in cytogenetic parameters have been revealed for both subjects. Regression analysis allowed us to generate an equation relating the cytogenetic parameters of birch seed progeny (surface area of single nucleoli) and humans (frequency of micronuclei in buccal mucosa of children). This study can be considered as a result of cytogenetic monitoring of environmental pollution in some areas of Voronezh City and Voronezh Region.

  9. Quantitative and qualitative assessment of argyrophilic nucleolar organizer regions in normal, premalignant and malignant oral lesions.

    PubMed

    Khushbu, Buddhdev P; Chalishazar, Monali; Kale, Hemant; Baranwal, Malay; Modi, Tapan

    2017-01-01

    The aim of the study was to assess the cell proliferation and biologic aggressiveness of the lesions by evaluating the significance of number and dispersal pattern of Argyrophillic Nucleolar organizing Regions (AgNORs) using silver colloid technique in normal mucosa, premalignant and malignant lesions. In-vitro study, lab setting. The study sample consisted of five groups each with a sample size of 10 and a control group. Group I (Control), Group II (Oral Submucous Fibrosis - Mild dysplasia), Group III (Oral Submucous Fibrosis - Moderate dysplasia), Group IV (Leukoplakia - Mild dysplasia), Group V (Leukoplakia - Moderate dysplasia) and Group VI (Squamous cell carcinoma). Two sections were cut, of which one was stained with H/E stain for histopathological analysis and the second one with Silver nitrate for AgNOR counting and grading. The data obtained were analyzed both qualitatively and qualititavely. Student's Unpaired T test and One- way ANOVA. The Mean AgNOR count increased in the following ascending order: i.e OSMF with mild dysplasia, leukoplakia with mild dysplasia, OSMF with moderate dysplasia, leukoplakia with moderate dysplasia and squamous cell carcinoma. Qualititatively, Type II AgNOR pattern was found to be the predominant one in all the samples. Type III AgNOR pattern was found to be increasing with the increase in the grade of dysplasia. AgNOR quantity is proportional to the proliferative activity of the cell and does not necessarily always indicate malignancy. It is the qualitative characteristics of AgNOR that help to differentiate the premalignant and malignant lesions.

  10. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    PubMed

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  11. Remote Substituent Effects on the Structures and Stabilities of P═E π-Stabilized Diphosphatetrylenes (R2P)2E (E = Ge, Sn).

    PubMed

    Izod, Keith; Evans, Peter; Waddell, Paul G; Probert, Michael R

    2016-10-17

    A rare P-E π interaction between the lone pair of a planar P center and the vacant p orbital at the Ge or Sn center provides efficient stabilization for P-substituted tetrylenes (R 2 P) 2 E (E = Ge, Sn) and enables isolation of the first example of a compound with a crystallographically authenticated P═Sn bond. Subtle changes in the electronic properties of the bulky aryl substituents in these compounds change the preference for planar versus pyramidal P centers in the solid state; however, variable-temperature NMR spectroscopy indicates that in solution these species are subject to a dynamic equilibrium, which interconverts the planar and pyramidal P centers. Consistent with this, density functional theory studies suggest that there is only a small energy difference between the planar and pyramidal forms of these compounds and reveal a small singlet-triplet energy separation, suggesting potentially interesting reactivities.

  12. Expression of argyrophilic proteins in the nucleolar organizer regions of human thymocytes and thymic epitheliocytes under conditions of coculturing with vilon and epithalon peptides.

    PubMed

    Raikhlin, N T; Bukaeva, I A; Smirnova, E A; Yarilin, A A; Sharova, N I; Mitneva, M M; Khavinson, V Kh; Polyakova, V O; Trofimov, A V; Kvetnoi, I M

    2004-06-01

    Vilon stimulated and Epithalon suppressed the expression of argyrophilic proteins in nucleolar organizer regions of thymocytes and epithelial cells, stimulating or reducing, respectively, the formation, assembly, and transport of ribosomes into the cytoplasm and thus determining the intensity of protein synthesis in these cells. A direct mitogenic effect of Vilon was also revealed: this peptide promoted thymocyte transformation into proliferating blast cells.

  13. [High-resolution GTG-banding and nucleolar organizer regions of chromosomes of two vole species: Microtus rossiaemeridonionalis and M. transcaspicus (Rodentia, Arvicolidae)].

    PubMed

    Mazurok, N A; Rubtsova, N V; Isaenko, A A; Nesterova, T B; Meĭer, M N; Zakiian, S M

    1998-08-01

    With the use of the GTG-banding of prometaphase chromosomes, 503 and 402 segments were revealed in haploid chromosome sets of voles Microtus rossiaemeridionalis and M. transcaspicus, respectively. Based on a detailed study of chromosomes at different condensation levels, idiograms of M. rossiaemeridionalis and M. transcaspicus chromosomes were constructed. Sequential Ag-staining and GTG-banding allowed nucleolar organizer regions (NORs) to be localized in 16 and 11 chromosome pairs of M. rossiaemeridionalis and M. transcaspicus, respectively.

  14. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture

    PubMed Central

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P.H.

    2014-01-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. PMID:24609384

  15. 12 CFR 563e.26 - Small savings association performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Small savings association performance standards... COMMUNITY REINVESTMENT Standards for Assessing Performance § 563e.26 Small savings association performance standards. (a) Performance criteria—(1) Small savings associations that are not intermediate small savings...

  16. 12 CFR 563e.26 - Small savings association performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Small savings association performance standards... COMMUNITY REINVESTMENT Standards for Assessing Performance § 563e.26 Small savings association performance standards. (a) Performance criteria—(1) Small savings associations that are not intermediate small savings...

  17. Loss of Nucleolar Histone Chaperone NPM1 Triggers Rearrangement of Heterochromatin and Synergizes with a Deficiency in DNA Methyltransferase DNMT3A to Drive Ribosomal DNA Transcription*

    PubMed Central

    Holmberg Olausson, Karl; Nistér, Monica; Lindström, Mikael S.

    2014-01-01

    Nucleoli are prominent nuclear structures assembled and organized around actively transcribed ribosomal DNA (rDNA). The nucleolus has emerged as a platform for the organization of chromatin enriched for repressive histone modifications associated with repetitive DNA. NPM1 is a nucleolar protein required for the maintenance of genome stability. However, the role of NPM1 in nucleolar chromatin dynamics and ribosome biogenesis remains unclear. We found that normal fibroblasts and cancer cells depleted of NPM1 displayed deformed nucleoli and a striking rearrangement of perinucleolar heterochromatin, as identified by immunofluorescence staining of trimethylated H3K9, trimethylated H3K27, and heterochromatin protein 1γ (HP1γ/CBX3). By co-immunoprecipitation we found NPM1 associated with HP1γ and core and linker histones. Moreover, NPM1 was required for efficient tethering of HP1γ-enriched chromatin to the nucleolus. We next tested whether the alterations in perinucleolar heterochromatin architecture correlated with a difference in the regulation of rDNA. U1242MG glioma cells depleted of NPM1 presented with altered silver staining of nucleolar organizer regions, coupled to a modest decrease in H3K9 di- and trimethylation at the rDNA promoter. rDNA transcription and cell proliferation were sustained in these cells, indicating that altered organization of heterochromatin was not secondary to inhibition of rDNA transcription. Furthermore, knockdown of DNA methyltransferase DNMT3A markedly enhanced rDNA transcription in NPM1-depleted U1242MG cells. In summary, this study highlights a function of NPM1 in the spatial organization of nucleolus-associated heterochromatin. PMID:25349213

  18. C 1 s ionization in C sub 2 H sub 2 studied by asymmetric ( e ,2 e ) experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avaldi, L.; Camilloni, R.; Stefani, G.

    1990-01-01

    The dynamics of core ionization by electron impact is investigated through the measurement of the triply differential cross section of the C {sigma}1{ital s} orbital in the molecule C{sub 2}H{sub 2}. The ({ital e},2{ital e}) experiments have been performed under asymmetric conditions and at small scattering angles, with a scattered electron energy of 1500 eV and low energies of the ejected electrons (9.6 and 41.0 eV). The measured angular distributions are characterized by large-size recoil lobes, breaking of the symmetry around the momentum-transfer direction, and unusual deviations of the maxima of the recoil peaks towards smaller deflection angles. In themore » ({ital e},2{ital e}) energy spectrum a shift is observed in the position of the C {sigma}1{ital s} peak with respect to the expected value as measured by x-ray photoelectron spectroscopy. The amplitude of the shift amounts to 0.46{plus minus}0.23 eV at 9.6 eV excess energy, and it is too large to be explained only in terms of postcollision interactions.« less

  19. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  20. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed Central

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded. Images PMID:2823109

  1. How does the nucleolar number involve in muscle fiber atrophy? Response to Beta-guanidinopropionic acid supplementation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yoshikazu; Kawano, Fuminori; Oke, Yoshihiko; Higo, Yoko; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiaodong; Terada, Masahiro; Shinoda, Yo; Lan, Yongbo; Ogura, Akihiko; Ohira, Yoshinobu

    2005-08-01

    To investigate the relationship between the myonuclear capability and the number of nucleolus during muscle remodeling, oral supplementation of β-guanidinopropionic acid (β-GPA) on the characteristics of plantaris muscle fibers was performed for 2 weeks in adult male Wistar rats. Effects of β-GPA supply in culture medium on mouse myoblast cell line C2C12 was also studied. The mean fiber cross-sectional area was less in β-GPA-fed than control rats (35%, p<0.05). And the myonuclear number per mm of fiber length was significantly greater (35%, p<0.05). Thus, the cytoplasmic volume per myonucleus was less (52%) in β-GPA-fed rats (p<0.05). The number of nucleolar organizer regions (NORs) per myonucleus was also less (17%) in β-GPA-fed group (p<0.05). The number of NORs was greater (14%) in the myoblasts cultured with creatine phosphate compared with non-supplemented control, but it was less (10%) in the myoblasts cultured with β-GPA (p<0.05). Further, the number of NORs was also greater (26%) in the differentiated myotubes cultured with creatine phosphate (p<0.05). The results suggested that the nucleoli may play some role(s) in the regulation of muscle fiber size and its number may be influenced by creatine content.

  2. Triply differential (e,2e) studies of phenol.

    PubMed

    da Silva, G B; Neves, R F C; Chiari, L; Jones, D B; Ali, E; Madison, D H; Ning, C G; Nixon, K L; Lopes, M C A; Brunger, M J

    2014-09-28

    We have measured (e,2e) triple differential cross sections (TDCS) for the electron-impact ionisation of phenol with coplanar asymmetrical kinematics for an incident electron energy of 250 eV. Experimental measurements of the angular distribution of the slow outgoing electrons at 20 eV are obtained when the incident electron scatters through angles of -5°, -10°, and -15°, respectively. The TDCS data are compared with calculations performed within the molecular 3-body distorted wave model. In this case, a mixed level of agreement, that was dependent on the kinematical condition being probed, was observed between the theoretical and experimental results in the binary peak region. The experimental intensity of the recoil features under all kinematical conditions was relatively small, but was still largely underestimated by the theoretical calculations.

  3. Triply differential (e,2e) studies of phenol

    NASA Astrophysics Data System (ADS)

    da Silva, G. B.; Neves, R. F. C.; Chiari, L.; Jones, D. B.; Ali, E.; Madison, D. H.; Ning, C. G.; Nixon, K. L.; Lopes, M. C. A.; Brunger, M. J.

    2014-09-01

    We have measured (e,2e) triple differential cross sections (TDCS) for the electron-impact ionisation of phenol with coplanar asymmetrical kinematics for an incident electron energy of 250 eV. Experimental measurements of the angular distribution of the slow outgoing electrons at 20 eV are obtained when the incident electron scatters through angles of -5°, -10°, and -15°, respectively. The TDCS data are compared with calculations performed within the molecular 3-body distorted wave model. In this case, a mixed level of agreement, that was dependent on the kinematical condition being probed, was observed between the theoretical and experimental results in the binary peak region. The experimental intensity of the recoil features under all kinematical conditions was relatively small, but was still largely underestimated by the theoretical calculations.

  4. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture.

    PubMed

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P H

    2014-05-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].

  5. omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data.

    PubMed

    Müller, Sören; Rycak, Lukas; Winter, Peter; Kahl, Günter; Koch, Ina; Rotter, Björn

    2013-10-15

    Small RNA deep sequencing is widely used to characterize non-coding RNAs (ncRNAs) differentially expressed between two conditions, e.g. healthy and diseased individuals and to reveal insights into molecular mechanisms underlying condition-specific phenotypic traits. The ncRNAome is composed of a multitude of RNAs, such as transfer RNA, small nucleolar RNA and microRNA (miRNA), to name few. Here we present omiRas, a Web server for the annotation, comparison and visualization of interaction networks of ncRNAs derived from next-generation sequencing experiments of two different conditions. The Web tool allows the user to submit raw sequencing data and results are presented as: (i) static annotation results including length distribution, mapping statistics, alignments and quantification tables for each library as well as lists of differentially expressed ncRNAs between conditions and (ii) an interactive network visualization of user-selected miRNAs and their target genes based on the combination of several miRNA-mRNA interaction databases. The omiRas Web server is implemented in Python, PostgreSQL, R and can be accessed at: http://tools.genxpro.net/omiras/.

  6. New localization and function of calpain-2 in nucleoli of colorectal cancer cells in ribosomal biogenesis: effect of KRAS status

    PubMed Central

    Telechea-Fernández, Marcelino; Rodríguez-Fernández, Lucia; García, Concha; Zaragozá, Rosa; Viña, Juan; Cervantes, Andrés; García-Trevijano, Elena R.

    2018-01-01

    Calpain-2 belongs to a family of pleiotropic Cys-proteases with modulatory rather than degradative functions. Calpain (CAPN) overexpression has been controversially correlated with poor prognosis in several cancer types, including colorectal carcinoma (CRC). However, the mechanisms of substrate-recognition, calpain-2 regulation/deregulation and specific functions in CRC remain elusive. Herein, calpain subcellular distribution was studied as a key event for substrate-recognition and consequently, for calpain-mediated function. We describe a new localization for calpain-2 in the nucleoli of CRC cells. Calpain-2 nucleolar distribution resulted dependent on its enzymatic activity and on the mutational status of KRAS. In KRASWT/- cells serum-starvation induced CAPN2 expression, nucleolar accumulation and increased binding to the rDNA-core promoter and intergenic spacer (IGS), concomitant with a reduction in pre-rRNA levels. Depletion of calpain-2 by specific siRNA prevented pre-rRNA down-regulation after serum removal. Conversely, ribosomal biogenesis proceeded in the absence of serum in unresponsive KRASG13D/- cells whose CAPN2 expression, nucleolar localization and rDNA-occupancy remained unchanged during the time-course of serum starvation. We propose here that nucleolar calpain-2 might be a KRAS-dependent sensor to repress ribosomal biogenesis in growth limiting conditions. Under constitutive activation of the pathway commonly found in CRC, calpain-2 is deregulated and tumor cells become insensitive to the extracellular microenvironment. PMID:29507677

  7. New localization and function of calpain-2 in nucleoli of colorectal cancer cells in ribosomal biogenesis: effect of KRAS status.

    PubMed

    Telechea-Fernández, Marcelino; Rodríguez-Fernández, Lucia; García, Concha; Zaragozá, Rosa; Viña, Juan; Cervantes, Andrés; García-Trevijano, Elena R

    2018-02-06

    Calpain-2 belongs to a family of pleiotropic Cys-proteases with modulatory rather than degradative functions. Calpain (CAPN) overexpression has been controversially correlated with poor prognosis in several cancer types, including colorectal carcinoma (CRC). However, the mechanisms of substrate-recognition, calpain-2 regulation/deregulation and specific functions in CRC remain elusive. Herein, calpain subcellular distribution was studied as a key event for substrate-recognition and consequently, for calpain-mediated function. We describe a new localization for calpain-2 in the nucleoli of CRC cells. Calpain-2 nucleolar distribution resulted dependent on its enzymatic activity and on the mutational status of KRAS. In KRASWT/- cells serum-starvation induced CAPN2 expression, nucleolar accumulation and increased binding to the rDNA-core promoter and intergenic spacer (IGS), concomitant with a reduction in pre-rRNA levels. Depletion of calpain-2 by specific siRNA prevented pre-rRNA down-regulation after serum removal. Conversely, ribosomal biogenesis proceeded in the absence of serum in unresponsive KRASG13D/- cells whose CAPN2 expression, nucleolar localization and rDNA-occupancy remained unchanged during the time-course of serum starvation. We propose here that nucleolar calpain-2 might be a KRAS-dependent sensor to repress ribosomal biogenesis in growth limiting conditions. Under constitutive activation of the pathway commonly found in CRC, calpain-2 is deregulated and tumor cells become insensitive to the extracellular microenvironment.

  8. Pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione derivatives as novel small molecule chaperone amplifiers.

    PubMed

    Zhou, Yuefen; Wei, Linyi; Brady, Thomas P; Murali Mohan Redddy, P S; Nguyen, Tram; Chen, Jinhua; Au, Qingyan; Yoon, Il Sang; Yip, Gary; Zhang, Bin; Barber, Jack R; Ng, Shi Chung

    2009-08-01

    Pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione derivatives were investigated as novel small molecule amplifiers of heat shock factor 1 transcriptional activity. Lead optimization led to the discovery of compound 4A-13, which displayed potent HSF1 activity under mild heat stress (EC(50)=2.5microM) and significant cytoprotection in both rotenone (EC(50)=0.23microM) and oxygen-glucose deprivation cell toxicity models (80% protection at 2.5microM).

  9. E3 ubiquitin ligase Pirh2 enhances tumorigenic properties of human non-small cell lung carcinoma cells

    PubMed Central

    Fedorova, Olga; Shuvalov, Oleg; Merkulov, Valeriy; Vasileva, Elena; Antonov, Alexey; Barlev, Nikolai A.

    2016-01-01

    The product of RCHY1 human gene, Pirh2, is a RING-finger containing E3 ligase that modifies p53 with ubiquitin residues resulting in its subsequent degradation in proteasomes. Transcription of RCHY1 is regulated by p53 itself thus forming a negative regulatory feedback loop. Functionally, by eliminating p53, Pirh2 facilitates tumorigenesis. However, the role of Pirh2 in cancer cells lacking p53 is yet not well understood. Therefore, we decided to elucidate the role of Pirh2 in p53-negative human non-small cell lung carcinoma cells, H1299. We found that ectopic expression of Pirh2 enhanced cell proliferation, resistance to doxorubicin, and increased migration potential. Ablation of Pirh2 by specific shRNA reversed these phenotypes. Mechanistically, Pirh2 increased mRNA and protein levels of the c-Myc oncogene. The bioinformatics data indicate that co-expression of both c-Myc and Pirh2 strongly correlated with poor survival of lung cancer patients. Collectively, our results suggest that Pirh2 can be considered as a potential pharmacological target for developing anticancer therapies to treat p53-negative cancers. PMID:28191284

  10. Deficient brain RNA polymerase and altered nucleolar structure persists until day 8 after perinatal asphyxia of the rat.

    PubMed

    Kastner, Philomena; Mosgoeller, Wilhelm; Fang-Kircher, Susanne; Kitzmueller, Erwin; Kirchner, Liselotte; Hoeger, Harald; Seither, Peter; Lubec, Gert; Lubec, Barbara

    2003-01-01

    RNA polymerases (POL) are integral constituents of the protein synthesis machinery, with POL I and POL III coding for ribosomal RNA and POL II coding for protein. POL I is located in the nucleolus and transcribes class I genes, those that code for large ribosomal RNA. It has been reported that the POL system is seriously affected in perinatal asphyxia (PA) immediately after birth. Because POL I is necessary for protein synthesis and brain protein synthesis was shown to be deranged after hypoxic-ischemic conditions, we aimed to study whether POL derangement persists in a simple, well-documented animal model of graded global PA at the activity, mRNA, protein, and morphologic level until 8 d after the asphyctic insult. Nuclear POL I activity was determined according to a radiochemical method; mRNA steady state and protein levels of RPA4O-an essential subunit of POL I and III-were evaluated by blotting methods; and the POL I subunit polymerase activating factor-53 was evaluated using immunohistochemistry. Silver staining and transmission electron microscopy were used to examine the nucleolus. At the eighth day after PA, nuclear POL I decreased with the length of the asphyctic period, whereas mRNA and protein levels for RPA4O were unchanged. The subunit polymerase activating factor-53, however, was unambiguously reduced in several brain regions. Dramatic changes of nucleolar morphology were observed, the main finding being nucleolar disintegration at the electron microscopy level. We suggest that severe acidosis and/or deficient protein kinase C in the brain during the asphyctic period may be responsible for disintegration of the nucleolus as well as for decreased POL activity persisting until the eighth day after PA. The biologic effect may be that PA causes impaired RNA and protein synthesis, which has been already observed in hypoxic-ischemic states.

  11. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening.

    PubMed

    O'Leary, Debra A; Sharif, Orzala; Anderson, Paul; Tu, Buu; Welch, Genevieve; Zhou, Yingyao; Caldwell, Jeremy S; Engels, Ingo H; Brinker, Achim

    2009-12-17

    One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened approximately 10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.

  12. Cooperative transformation and coexpression of bovine papillomavirus type 1 E5 and E7 proteins.

    PubMed

    Bohl, J; Hull, B; Vande Pol, S B

    2001-01-01

    Productively infected bovine fibropapillomas were examined for bovine papillomavirus type 1 (BPV-1) E7 localization. BPV-1 E7 was observed in the cytoplasm of basal and lower spinous epithelial cells, coexpressed in the cytoplasm of basal cells with the E5 oncoprotein. E7 was also observed in nucleoli throughout the basal and spinous layers but not in the granular cell layer. Ectopic expression of E7 in cultured epithelial cells gave rise to localization similar to that seen in productive fibropapillomas, with cytoplasmic and nucleolar expression observed. Consistent with the coexpression of E7 and E5 in basal keratinocytes, BPV-1 E7 cooperated with E5 as well as E6 in an anchorage independence transformation assay. While E5 is expressed in both basal and superficial differentiating keratinocytes, BPV-1 E7 is only observed in basal and lower spinous epithelial cells. Therefore, BPV-1 E7 may serve to modulate the cellular response of basal epithelial cells to E5 expression.

  13. Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana

    PubMed Central

    Montacié, Charlotte; Durut, Nathalie; Opsomer, Alison; Palm, Denise; Comella, Pascale; Picart, Claire; Carpentier, Marie-Christine; Pontvianne, Frederic; Carapito, Christine; Schleiff, Enrico; Sáez-Vásquez, Julio

    2017-01-01

    In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity. PMID:29104584

  14. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    PubMed

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  15. Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1.

    PubMed

    Wünsch, Désirée; Hahlbrock, Angelina; Heiselmayer, Christina; Bäcker, Sandra; Heun, Patrick; Goesswein, Dorothee; Stöcker, Walter; Schirmeister, Tanja; Schneider, Günter; Krämer, Oliver H; Knauer, Shirley K; Stauber, Roland H

    2015-05-01

    Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and β-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism. © FASEB.

  16. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity

    PubMed Central

    Sobol, Margarita; Yildirim, Sukriye; Philimonenko, Vlada V; Marášek, Pavel; Castaño, Enrique; Hozák, Pavel

    2013-01-01

    To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis. PMID:24513678

  17. The nucleolar protein SURF-6 is essential for viability in mouse NIH/3T3 cells.

    PubMed

    Polzikov, Mikhail; Magoulas, Charalambos; Zatsepina, Olga

    2007-09-01

    SURF-6 is a bona fide nucleolar protein comprising an evolutionary conserved family that extends from human to yeast. The expression of the mammalian SURF-6 has been recently found to be regulated during the cell cycle. In order to determine the importance of SURF-6 in mammalian cells, we applied the Tet-On system to regulate conditionally, in response to tetracycline, the expression of an antisense RNA (asRNA) that targets Surf-6 mRNA in mouse NIH/3T3 cells. Induced Surf-6 asRNA caused an effective depletion of SURF-6 protein resulted in cell death and in an apparent arrest in the G1 phase of the cell cycle. These results provide for the first time evidence that expression of SURF-6 is essential for mammalian cell viability, and suggest that SURF-6 might participate in the progression of cell cycle.

  18. E2E: A Summary of the e2e Learning Framework.

    ERIC Educational Resources Information Center

    Learning and Skills Development Agency, London (England).

    This publication is a summary of the E2E (Entry to Employment) Learning Framework that provides guidance on program implementation. (E2E is a new learning program for young people not yet ready or able to enter Modern Apprenticeship programs, a Level 2 program, or employment directly.) Section 2 highlights core values to which all involved should…

  19. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli.

    PubMed

    Smith, Corey L; Matheson, Timothy D; Trombly, Daniel J; Sun, Xiaoming; Campeau, Eric; Han, Xuemei; Yates, John R; Kaufman, Paul D

    2014-09-15

    Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element-containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. In addition, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces α-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus. © 2014 Smith et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. The Aryl Hydrocarbon Receptor Binds to E2F1 and Inhibits E2F1-induced Apoptosis

    PubMed Central

    Marlowe, Jennifer L.; Fan, Yunxia; Chang, Xiaoqing; Peng, Li; Knudsen, Erik S.; Xia, Ying

    2008-01-01

    Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr−/− fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, γH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G0/G1 cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression. PMID:18524851

  1. Identification of Small Molecule and Genetic Modulators of AON-Induced Dystrophin Exon Skipping by High-Throughput Screening

    PubMed Central

    O'Leary, Debra A.; Sharif, Orzala; Anderson, Paul; Tu, Buu; Welch, Genevieve; Zhou, Yingyao; Caldwell, Jeremy S.; Engels, Ingo H.; Brinker, Achim

    2009-01-01

    One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened ∼10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping. PMID:20020055

  2. The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation

    PubMed Central

    Lin, Tsung-Chieh; Su, Chia-Yi; Wu, Pei-Yu; Lai, Tsung-Ching; Pan, Wen-An; Jan, Yi-Hua; Chang, Yu-Chang; Yeh, Chi-Tai; Chen, Chi-Long; Ger, Luo-Ping; Chang, Hong-Tai; Yang, Chih-Jen; Huang, Ming-Shyan; Liu, Yu-Peng; Lin, Yuan-Feng; Shyy, John Y-J; Tsai, Ming-Daw; Hsiao, Michael

    2016-01-01

    Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation. DOI: http://dx.doi.org/10.7554/eLife.11288.001 PMID:26984280

  3. Characterisation of the nucleolar organising regions during the cell cycle in two varieties of Petunia hybrida as visualised by fluorescence in situ hybridisation and silver staining.

    PubMed

    Montijn, M B; ten Hoopen, R; Fransz, P F; Oud, J L; Nanninga, N

    1998-05-01

    The cell cycle-dependent spatial position, morphology and activity of the four nucleolar organising regions (NORs) of the Petunia hybrida cultivar Mitchell and the inbred line V26 have been analysed. Application of the silver staining technique and fluorescence in situ hybridisation on fixed root-tip material revealed that these interspecific hybrids possess four NORs of which only those of chromosome 2 are active during interphase, which implies that the NOR activity is not of parental origin. However, at the end of mitosis, activity of all NOR regions could be detected, suggesting that the high demand for ribosomes at this stage of the cell cycle requires temporal activity of all NORs. Using actin DNA probes as markers in fluorescence in situ hybridisation experiments enabled the identification of the individual petunia chromosomes.

  4. A karyometric note on nucleoli in human early granulocytic precursors.

    PubMed

    Smetana, K; Mikulenková, D; Jirásková, I; Klamová, H

    2006-01-01

    The diameter of nucleoli was measured in human bone marrow early granulocytic precursors after visualization by a simple cytochemical method for demonstration of RNA. Such method facilitated to clearly see nucleolar bodies without perinucleolar chromatin, including those of micronucleoli. The bone marrow of patients suffering from chronic myeloid leukaemia (untreated with cytostatics) provided a satisfactory number of both myeloblasts and promyelocytes for nucleolar measurements because of prevailing granulopoiesis. The direct nucleolar measurement was carried out on digitized and processed images on the screen at magnification 4,300x. It seems to be likely that the nucleolar size is directly related to the number of nucleoli per cell. The largest nucleoli were present in both myeloblasts and promyelocytes that possessed a single nucleolus. In contrast, the nucleolar diameter was significantly smaller in cells with multiple nucleoli. However, in cells with small multiple nucleoli, one of them was always larger and dominant with a large number of AgNORs. Such large nucleoli are possibly visible in specimens stained with panoptic procedures or methods staining nuclear chromatin or DNA. It should also be mentioned that both myeloblasts and promyelocytes mostly possessed two nucleoli with the mean diameter close to 1.5 microm. The incidence of early granulocytic precursors classified according to the nucleolar number and size strongly suggested that the various nucleolar number and nucleolar size in these cells might be related to the different stage of the cell cycle and might also explain their heterogeneity.

  5. An abundant nucleolar phosphoprotein is associated with ribosomal DNA in Tetrahymena macronuclei.

    PubMed Central

    McGrath, K E; Smothers, J F; Dadd, C A; Madireddi, M T; Gorovsky, M A; Allis, C D

    1997-01-01

    An abundant 52-kDa phosphoprotein was identified and characterized from macronuclei of the ciliated protozoan Tetrahymena thermophila. Immunoblot analyses combined with light and electron microscopic immunocytochemistry demonstrate that this polypeptide, termed Nopp52, is enriched in the nucleoli of transcriptionally active macronuclei and missing altogether from transcriptionally inert micronuclei. The cDNA sequence encoding Nopp52 predicts a polypeptide whose amino-terminal half consists of multiple acidic/serine-rich regions alternating with basic/proline-rich regions. Multiple serines located in these acidic stretches lie within casein kinase II consensus motifs, and Nopp52 is an excellent substrate for casein kinase II in vitro. The carboxyl-terminal half of Nopp52 contains two RNA recognition motifs and an extreme carboxyl-terminal domain rich in glycine, arginine, and phenylalanine, motifs common in many RNA processing proteins. A similar combination and order of motifs is found in vertebrate nucleolin and yeast NSR1, suggesting that Nopp52 is a member of a family of related nucleolar proteins. NSR1 and nucleolin have been implicated in transcriptional regulation of rDNA and rRNA processing. Consistent with a role in ribosomal gene metabolism, rDNA and Nopp52 colocalize in situ, as well as by cross-linking and immunoprecipitation experiments, demonstrating an association between Nopp52 and rDNA in vivo. Images PMID:9017598

  6. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    PubMed Central

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C.; Lewis, Aurélia E.

    2016-01-01

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  7. STUDIES ON ISOLATED NUCLEI. II. ISOLATION AND CHEMICAL CHARACTERIZATION OF NUCLEOLAR AND NUCLEOPLASMIC SUBFRACTIONS.

    PubMed

    MAGGIO, R; SIEKEVITZ, P; PALADE, G E

    1963-08-01

    This paper describes the subfractionation of nuclei isolated from guinea pig liver by the procedure presented in the first article of the series (8). Centrifugation in a density gradient system of nuclear fractions disrupted by sonication permits the isolation of the following subfractions: (a) a nucleolar subfraction which consists mainly of nucleoli surrounded by a variable amount of nucleolus-associated chromatin and contaminated by chromatin blocks derived primarily from von Kupffer cell nuclei; (b) and (c), two nucleoplasmic subfractions (I and II) which consist mainly of chromatin threads in a coarser (I) or finer (II) degree of fragmentation. The protein, RNA, and DNA content of these subfractions was determined, and their RNA's characterized in terms of NaCl-solubility, nucleotide composition, and in vivo nucleotide turnover, using inorganic (32)P as a marker. The results indicate that there are at least three types of RNA in the nucleus (one in the nucleolus and two in the nucleoplasm or chromatin), which differ from one another in NaCl-solubility, nucleotide composition, turnover, and possibly sequence. Possible relations among these RNA's and those of the cytoplasm are discussed.

  8. Training and Human Resource Issues in Small E-Businesses: Towards a Research Agenda

    ERIC Educational Resources Information Center

    Matlay, Harry

    2004-01-01

    A great deal has been written in recent years about the internet and the emergence of e-businesses operating in the global e-economy. Although a small proportion of the expanding literature on this topic is based on empirically rigorous research, the bulk of publications tend to be of limited value to small business owner/managers. Furthermore,…

  9. Pressure-induced magnetic collapse and metallization of TlF e1.6S e2

    NASA Astrophysics Data System (ADS)

    Naumov, P. G.; Filsinger, K.; Shylin, S. I.; Barkalov, O. I.; Ksenofontov, V.; Qi, Y.; Palasyuk, T.; Schnelle, W.; Medvedev, S. A.; Greenblatt, M.; Felser, C.

    2017-08-01

    The crystal structure, magnetic ordering, and electrical resistivity of TlF e1.6S e2 were studied at high pressures. Below ˜7 GPa , TlF e1.6S e2 is an antiferromagnetically ordered semiconductor with a ThC r2S i2 -type structure. The insulator-to-metal transformation observed at a pressure of ˜7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ˜7.5 -11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.

  10. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes.

    PubMed

    Montanaro, Lorenzo; Govoni, Marzia; Orrico, Catia; Treré, Davide; Derenzini, Massimo

    2011-01-01

    The precise location of rDNA transcription to the components of mammalian cell nucleolus is still debated. This was due to the fact that all the molecules necessary for rRNA synthesis are located in two of the three components, the fibrillar centers (FCs) and the dense fibrillar component (DFC), which together with the granular component (GC) are considered to be constantly present in mammalian cell nucleoli. In the present study we demonstrated that in nucleoli of many regenerating rat hepatocytes at 15 h after partial hepatectomy the FCs were no longer present, only the DFC and the GC being detected. At this time of regeneration the rRNA transcriptional activity was three fold that of resting hepatocytes, while the synthesis of DNA was not yet significantly increased, indicating that these nucleolar changes were due to the rRNA synthesis up-regulation. The DFC appeared to be organized in numerous, small, roundish tufts of fibrils. The silver staining procedure for AgNOR proteins, which are associated with the ribosomal genes, selectively and homogeneously stained these fibrillar tufts. Immuno-gold visualization of the Upstream Binding Factor (UBF), which is associated with the promoter region and the transcribed portion of the rRNA 45S gene, demonstrated that UBF was selectively located in the fibrillar tufts. We concluded that in proliferating rat hepatocytes the increased synthesis of rRNA induced an activation of the rRNA transcription machinery located in the fibrillar centers which, by becoming associated with the ribonucleoprotein transcripts, assumed the morphological pattern of the DFC.

  11. Random phage mimotopes recognized by monoclonal antibodies against the pyruvate dehydrogenase complex-E2 (PDC-E2).

    PubMed Central

    Cha, S; Leung, P S; Van de Water, J; Tsuneyama, K; Joplin, R E; Ansari, A A; Nakanuma, Y; Schatz, P J; Cwirla, S; Fabris, L E; Neuberger, J M; Gershwin, M E; Coppel, R L

    1996-01-01

    Dihydrolipoamide acetyltransferase, the E2 component of the pyruvate dehydrogenase complex (PDC-E2), is the autoantigen most commonly recognized by autoantibodies in primary biliary cirrhosis (PBC). We identified a peptide mimotope(s) of PDC-E2 by screening a phage-epitope library expressing random dodecapeptides in the pIII coat protein of fd phage using C355.1, a murine monoclonal antibody (mAb) that recognizes a conformation-dependent epitope in the inner lipoyl domain of PDC-E2 and uniquely stains the apical region of bile duct epithelium (BDE) only in patients with PBC. Eight different sequences were identified in 36 phage clones. WMSYPDRTLRTS was present in 29 clones; WESYPFRVGTSL, APKTYVSVSGMV, LTYVSLQGRQGH, LDYVPLKHRHRH, AALWGVKVRHVS, KVLNRIMAGVRH and GNVALVSSRVNA were singly represented. Three common amino acid motifs (W-SYP, TYVS, and VRH) were shared among all peptide sequences. Competitive inhibition of the immunohistochemical staining of PBC BDE was performed by incubating the peptides WMSYPDRTLRTS, WESYPDRTLRTS, APKTYVSVSGMV, and AALWGVKVRHVS with either C355.1 or a second PDC-E2-specific mAb, C150.1. Both mAbs were originally generated to PDC-E2 but map to distinct regions of PDC-E2. Two of the peptides, although selected by reaction with C355.1, strongly inhibited the staining of BDE by C150.1, whereas the peptide APKTYVSVSGMV consistently inhibited the staining of C355.1 on biliary duct epithelium more strongly than the typical mitochondrial staining of hepatocytes. Rabbit sera raised against the peptide WMSYPDRTLRTS stained BDE of livers and isolated bile duct epithelial cells of PBC patients more intensively than controls. The rabbit sera stained all size ducts in normals, but only small/medium-sized ductules in PBC livers. These studies provide evidence that the antigen present in BDE is a molecular mimic of PDC-E2, and not PDC-E2 itself. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8855289

  12. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiazhang; Sheedlo, Michael J.; Yu, Kaiwen

    Signaling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalyzed by the E1, E2 and E3 three-enzyme cascade 1, which links the C terminus of ubiquitin via an isopeptide bond mostly to the ε-amino group of a lysine of the substrate. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents 2. For example, many bacterial pathogens exploit ubiquitin signaling using virulence factors that function as E3 ligases, deubiquitinases 3 or asmore » enzymes that directly attack ubiquitin 4. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a niche permissive for its replication in phagocytes 5. Here we demonstrate that members of the SidE effector family (SidEs) of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum (ER). Moreover, we show that these proteins are capable of catalyzing ubiquitination without the need for the E1 and E2 enzymes. The E1/E2-independent ubiquitination catalyzed by these enzymes requires NAD but not ATP and Mg2+. A putative mono ADP-ribosyltransferase (mART) motif critical for the ubiquitination activity is also essential for the role of SidEs in intracellular bacterial replication in a protozoan host. These results establish that ubiquitination can be catalyzed by a single enzyme.« less

  13. Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations.

    PubMed

    Willett, R L; Pfeiffer, L N; West, K W

    2009-06-02

    A standing problem in low-dimensional electron systems is the nature of the 5/2 fractional quantum Hall (FQH) state: Its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be used to manipulate and measure quantum Hall edge excitations. Here we use a small-area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharonov-Bohm effect are observed for integer quantum Hall and FQH states (filling factors nu = 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these factors as charge calibrations, periodic transmission through the device consistent with quasiparticle charge e/4 is observed at nu = 5/2 and at lowest temperatures. The principal finding of this work is that, in addition to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 nu and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations.

  14. Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations

    PubMed Central

    Willett, R. L.; Pfeiffer, L. N.; West, K. W.

    2009-01-01

    A standing problem in low-dimensional electron systems is the nature of the 5/2 fractional quantum Hall (FQH) state: Its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be used to manipulate and measure quantum Hall edge excitations. Here we use a small-area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharonov–Bohm effect are observed for integer quantum Hall and FQH states (filling factors ν = 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these factors as charge calibrations, periodic transmission through the device consistent with quasiparticle charge e/4 is observed at ν = 5/2 and at lowest temperatures. The principal finding of this work is that, in addition to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 ν and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations. PMID:19433804

  15. Identification of small non-coding RNA classes expressed in swine whole blood during HP-PRRSV infection.

    PubMed

    Fleming, Damarius S; Miller, Laura C

    2018-04-01

    It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs have emerged as having an important role in the immune system in humans. The study uses transcriptomic read counts to profile the type and quantity of both well and lesser characterized sncRNAs, such as microRNAs and small nucleolar RNAs to identify and quantify the classes of sncRNA expressed in whole blood between healthy and highly pathogenic PRRSV-infected pigs. Our results returned evidence on nine classes of sncRNA, four of which were consistently statistically significantly different based on Fisher's Exact Test, that can be detected and possibly interrogated for their effect on host dysregulation during PRRSV infections. Published by Elsevier Inc.

  16. E-Mentoring for Small Business: An Examination of Effectiveness

    ERIC Educational Resources Information Center

    Rickard, Kim; Rickard, Alex

    2009-01-01

    Purpose: While information and communications technology provides new opportunities for supporting mentoring, there is a need to explore how effectively these potential benefits are being realized. This paper seeks to evaluate the effectiveness of a program in the small business context as a basis for proposing determinants of e-mentoring…

  17. QUANTIFICATION OF NUCLEOLAR CHANNEL SYSTEMS: UNIFORM PRESENCE THROUGHOUT THE UPPER ENDOMETRIAL CAVITY

    PubMed Central

    Szmyga, Michael J.; Rybak, Eli A.; Nejat, Edward J.; Banks, Erika H.; Whitney, Kathleen D.; Polotsky, Alex J.; Heller, Debra S.; Meier, U. Thomas

    2014-01-01

    Objective To determine the prevalence of nucleolar channel systems (NCSs) by uterine region applying continuous quantification. Design Prospective clinical study. Setting Tertiary care academic medical center. Patients 42 naturally cycling women who underwent hysterectomy for benign indications. Intervention NCS presence was quantified by a novel method in six uterine regions, fundus, left cornu, right cornu, anterior body, posterior body, and lower uterine segment (LUS), using indirect immunofluorescence. Main Outcome Measures Percent of endometrial epithelial cells (EECs) with NCSs per uterine region. Results NCS quantification was observer-independent (intraclass correlation coefficient [ICC] = 0.96) and its intra-sample variability low (coefficient of variability [CV] = 0.06). 11/42 hysterectomy specimens were midluteal, 10 of which were analyzable with 9 containing over 5% EECs with NCSs in at least one region. The percent of EECs with NCSs varied significantly between the lower uterine segment (6.1%; IQR = 3.0-9.9) and the upper five regions (16.9%; IQR = 12.7-23.4) with fewer NCSs in the basal layer of the endometrium (17% +/−6%) versus the middle (46% +/−9%) and luminal layers (38% +/−9%) of all six regions). Conclusions NCS quantification during the midluteal phase demonstrates uniform presence throughout the endometrial cavity, excluding the LUS, with a preference for the functional, luminal layers. Our quantitative NCS evaluation provides a benchmark for future studies and further supports NCS presence as a potential marker for the window of implantation. PMID:23137760

  18. INACTIVATION OF E. COLI PYRUVATE FORMATE-LYASE: ROLE OF AdhE AND SMALL MOLECULES

    PubMed Central

    Nnyepi, Mbako R.; Peng, Yi; Broderick, Joan B.

    2007-01-01

    E. coli AdhE has been reported to harbor three distinct enzymatic activities: alcohol dehydrogenase, acetaldehyde-CoA dehydrogenase, and pyruvate formate-lyase (PFL) deactivase. Herein we report on the cloning, expression, and purification of E. coli AdhE, and the re-investigation of its purported enzymatic activities. While both the alcohol dehydrogenase and acetaldehyde-CoA dehydrogenase activities were readily detectible, we were unable to obtain any evidence for catalytic deactivation of PFL by AdhE, regardless of whether the reported cofactors for deactivation (Fe(II), NAD, and CoA) were present. Our results demonstrate that AdhE is not a PFL deactivating enzyme. We have also examined the potential for deactivation of active PFL by small-molecule thiols. Both β-mercaptoethanol and dithiothreitol deactivate PFL efficiently, with the former providing quite rapid deactivation. PFL deactivated by these thiols can be reactivated, suggesting that this deactivation is non-destructive transfer of an H atom equivalent to quench the glycyl radical. PMID:17280641

  19. Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization.

    PubMed

    Perera, Yasser; Costales, Heydi C; Diaz, Yakelin; Reyes, Osvaldo; Farina, Hernan G; Mendez, Lissandra; Gómez, Roberto E; Acevedo, Boris E; Gomez, Daniel E; Alonso, Daniel F; Perea, Silvio E

    2012-04-01

    CIGB-300 is a novel anticancer peptide that impairs the casein kinase 2-mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB-300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB-300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB-300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB-300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB-300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull-down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB-300-treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB-300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide-based drug should entail its more efficient intracellular delivery at such subcellular localization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  20. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Qi; Zheng, Xingzheng; McNutt, Michael A.

    2009-06-10

    The midbody is a structural organelle formed in late phase mitosis which is responsible for completion of cytokinesis. Although various kinds of proteins have been found to distribute or immigrate to this organelle, their functions have still not been completely worked out. In this study, we demonstrated that NAT10 (N-acetyltransferase 10, NAT10) is not only predominantly distributed in the nucleolus in interphase, but is also concentrated in the mitotic midbody during telophase. The domain in N-terminal residues 549-834 of NAT10 specifically mediated its subcellular localization. Treatment with genotoxic agents or irradiation increased concentration of NAT10 in both the nucleolus andmore » midbody. Moreover, DNA damage induced increase of NAT10 in the midbody apparently accompanied by in situ elevation of the level of acetylated {alpha}-tubulin, suggesting that it plays a role in maintaining or enhancing stability of {alpha}-tubulin. The depletion of NAT10 induced defects in nucleolar assembly, cytokinesis and decreased acetylated {alpha}-tubulin, leading to G2/M cell cycle arrest or delay of mitotic exit. In addition, over-expression of NAT10 was found in a variety of soft tissue sarcomas, and correlated with tumor histological grading. These results indicate that NAT10 may play an important role in cell division through facilitating reformation of the nucleolus and midbody in the late phase of cell mitosis, and stabilization of microtubules.« less

  1. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F.

    PubMed Central

    Bandara, L R; Buck, V M; Zamanian, M; Johnston, L H; La Thangue, N B

    1993-01-01

    It is widely believed that the cellular transcription factor DRTF1/E2F integrates cell cycle events with the transcription apparatus because during cell cycle progression in mammalian cells it interacts with molecules that are important regulators of cellular proliferation, such as the retinoblastoma tumour suppressor gene product (pRb), p107, cyclins and cyclin-dependent kinases. Thus, pRb, which negatively regulates early cell cycle progression and is frequently mutated in tumour cells, and the Rb-related protein p107, bind to and repress the transcriptional activity of DRTF1/E2F. Viral oncoproteins, such as adenovirus E1a and SV40 large T antigen, overcome such repression by sequestering pRb and p107 and in so doing are likely to activate genes regulated by DRTF1/E2F, such as cdc2, c-myc and DHFR. Two sequence-specific DNA binding proteins, E2F-1 and DP-1, which bind to the E2F site, contain a small region of similarity. The functional relationship between them has, however, been unclear. We report here that DP-1 and E2F-1 exist in a DNA binding complex in vivo and that they bind efficiently and preferentially as a heterodimer to the E2F site. Moreover, studies in yeast and Drosophila cells indicate that DP-1 and E2F-1 interact synergistically in E2F site-dependent transcriptional activation. Images PMID:8223441

  2. A new role of GCN2 in the nucleolus.

    PubMed

    Nakamura, Akito; Kimura, Hiromichi

    2017-04-01

    General control nonderepressible 2 (GCN2) is activated by the accumulation of uncharged tRNA in response to amino acid shortage and regulates amino acid starvation response in the cytosol. Here we report the nucleolar localization of GCN2 and the association between GCN2 and small RNA transcripts. Immunofluorescence analysis revealed that GCN2 was constitutively localized to the nucleolus or recruited to the nucleolus by amino acid starvation stress. The nucleolus is the largest structure in the nucleus, where it primarily serves as the site of ribosome and RNA synthesis in addition to acting as a stress sensor through the regulation of p53 function. We found that siRNA-mediated depletion of GCN2 increases small RNA transcripts such as tRNA and 5S rRNA, and induces the p53 pathway activation. Derepression of these transcripts and p53 pathway activation by GCN2 depletion was restored by depletion of B-related factor 1 (BRF1), a primary subunit of RNA polymerase III (pol III) components. These data suggest that the excess amount of small RNA transcripts following GCN2 depletion was responsible for the p53 activation. Our findings reveal a role of GCN2 in the nucleolus that is involved in the expression of small RNA transcripts and serves as alternative stress-sensing machinery for nutrient deficiency. Thus, GCN2 may play pivotal roles in multiple protein translation checkpoints in both the nucleolus and cytosol. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Capsaicin Displays Anti-Proliferative Activity against Human Small Cell Lung Cancer in Cell Culture and Nude Mice Models via the E2F Pathway

    PubMed Central

    Hardman, W. Elaine; Luo, Haitao; Chen, Yi C.; Carpenter, A. Betts; Lau, Jamie K.; Dasgupta, Piyali

    2010-01-01

    Background Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo. Methodology/Principal Findings BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation. Conclusions/Significance Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs. PMID:20421925

  4. Middle and small manufacture enterprise e-commerce application systems research

    NASA Astrophysics Data System (ADS)

    Zhu, Mingqiang

    2017-04-01

    With the extensive application of electronic commerce in manufacturing enterprises, e-commerce the influence of operation is increasingly becoming the focus of academic and business circles on the basis, this paper probes into the influence of e-commerce on the operation of the enterprise for the manufacturing enterprises to correctly understand the performance of e-commerce to provide a little help. The article first analyses e-commerce new environment on medium manufacturing enterprise requires, current medium manufacturing enterprise achieved e-commerce has many difficult, should e-commerce correctly awareness, and full planning, and points step implementation, and e-commerce and enterprise integration, and construction features of e-commerce platform, and procurement and supply chain of collaborative management, and attention customer management, and variety e-commerce of mode mixed, and flexible effective operations, and logistics socialization, views, focus on small and medium manufacturing enterprises in e-commerce applications to be innovative in design, production and management of agile and flexible production strategies.

  5. Structures of ribonucleoprotein particle modification enzymes

    PubMed Central

    Liang, Bo; Li, Hong

    2016-01-01

    Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA–protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo. PMID:21108865

  6. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors

    PubMed Central

    Rietz, Anne; Petrov, Dino P.; Bartolowits, Matthew; DeSmet, Marsha; Davisson, V. Jo; Androphy, Elliot J.

    2016-01-01

    The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6. PMID:26915086

  7. Spliceosomal protein E regulates neoplastic cell growth by modulating expression of cyclin E/CDK2 and G2/M checkpoint proteins.

    PubMed

    Li, Z; Pützer, B M

    2008-12-01

    Small nuclear ribonucleoproteins are essential splicing factors. We previously identified the spliceosomal protein E (SmE) as a downstream effector of E2F1 in p53-deficient human carcinoma cells. Here, we investigated the biological relevance of SmE in determining the fate of cancer and non-tumourigenic cells. Adenovirus-mediated expression of SmE selectively reduces growth of cancerous cells due to decreased cell proliferation but not apoptosis. A similar growth inhibitory effect for SmD1 suggests that this is a general function of Sm-family members. Deletion of Sm-motifs reveals the importance of the Sm-1 domain for growth suppression. Consistently, SmE overexpression leads to inhibition of DNA synthesis and G2 arrest as shown by BrdU-incorporation and MPM2-staining. Real-time RT-PCR and immunoblotting showed that growth arrest by SmE directly correlates with the reduction of cyclin E, CDK2, CDC25C and CDC2 expression, and up-regulation of p27Kip. Importantly, SmE activity was not associated with enhanced expression of other spliceosome components such as U1 SnRNP70, suggesting that the growth inhibitory effect of SmE is distinct from its pre-mRNA splicing function. Furthermore, specific inactivation of SmE by shRNA significantly increased the percentage of cells in S phase, whereas the amount of G2/M arrested cells was reduced. Our data provide evidence that Sm proteins function as suppressors of tumour cell growth and may have major implications as cancer therapeutics.

  8. E. coli Resuspension During an Artificial High-flow Event in a Small First-order Creek

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Guber, A. K.; Shelton, D. R.; Hill, R. L.

    2009-04-01

    Stream, pond, and lake sediments can serve as environmental reservoirs for E. coli, including pathogenic strains. Substantial increases in E. coli concentrations observed in stream water during rainfall events are often attributed exclusively to runoff from agricultural fields, pastures, and riparian areas. However, this increase can, to various extents, be caused by the resuspension of E. coli from sediment. The separation of runoff vs. sediment E. coli sources is not possible based exclusively on creek water sampling during natural rainfalls. The objectives of this work were (a) to create and monitor an artificial high-flow event that would cause E. coli concentration changes solely due to resuspension and settling, (b) to develop a model of E. coli transport in creek water as affected by resuspension and settling. The study site, at the USDA-Beltsville Agricultural Research Center, is in the mid-Atlantic coastal plain of Maryland. The site contains a small first-order stream that is instrumented with four stations for monitoring stream flow and bacteria concentrations. The creek runs within a riparian corridor of variable width from about 65 m at its narrowest point, to more than 100 m. The creek bed is from 100 to 150 cm wide. Prior to the high-flow experiment, the creek sediment was grab-sampled weekly for 2 months for E. coli concentrations at three locations downstream from stations 1, 2 and 4. Time and sample position across the creek were not significant factors affecting E. coli concentrations in sediment; location along the creek was a significant factor. Initial E. coli concentrations in top 1 cm (just prior to flow) averaged 4500, 2500, and 500 cell per g of sediment at locations 1 and 2 and 4, respectively. The E. coli concentrations in sediments decreased exponentially with depth by about one order of magnitude per 2 cm. The artificial flow event was created by releasing 80 tons of tap water on a tarp-covered stream bank at 11 m above the station 1

  9. Structures of (2E,5E)-2-(4-cyanobenzylidene)-5-(4-dimethylaminobenzylidene)cyclopentanone and (2E,5E)-2-benzylidene-5-cinnamylidenecyclopentanone

    NASA Astrophysics Data System (ADS)

    Zoto, Christopher A.; MacDonald, John C.

    2017-10-01

    The X-ray crystal structures of (2E,5E)-2-(4-cyanobenzylidene)-5-(4-dimethylaminobenzylidene)cyclopentanone (I) and (2E,5E)-2-benzylidene-5-cinnamylidenecyclopentanone (II) are presented, compared to the gas phase structures calculated using density functional theory, and discussed in the context of the photophysical behavior exhibited by I and II. Compound I crystallizes in the triclinic space group P 1 bar with a = 6.8743(2) Å, b = 8.8115(2) Å, c = 14.9664(4) Å, α = 77.135(2)°, β = 81.351(2)°, γ = 80.975(2)°, and Z = 2, and exhibits a planar structure. Compound II crystallizes in the monoclinic space group C2/c with a = 33.4281(10) Å, b = 11.9668(4) Å, c = 7.8031(2) Å, β = 92.785(2)°, and Z = 8, and adopts a nonplanar structure in the solid state and calculated structure.

  10. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice.

    PubMed

    Weber, Christopher; Büchner, Sarah M; Schnierle, Barbara S

    2015-04-01

    The mosquito-borne Chikungunya virus (CHIKV) causes high fever and severe joint pain in humans. It is expected to spread in the future to Europe and has recently reached the USA due to globalization, climate change and vector switch. Despite this, little is known about the virus life cycle and, so far, there is no specific treatment or vaccination against Chikungunya infections. We aimed here to identify small antigenic determinants of the CHIKV E2 protein able to induce neutralizing immune responses. E2 enables attachment of the virus to target cells and a humoral immune response against E2 should protect from CHIKV infections. Seven recombinant proteins derived from E2 and consisting of linear and/or structural antigens were created, and were expressed in and purified from E. coli. BALB/c mice were vaccinated with these recombinant proteins and the mouse sera were screened for neutralizing antibodies. Whereas a linear N-terminally exposed peptide (L) and surface-exposed parts of the E2 domain A (sA) alone did not induce neutralizing antibodies, a construct containing domain B and a part of the β-ribbon (called B+) was sufficient to induce neutralizing antibodies. Furthermore, domain sA fused to B+ (sAB+) induced the highest amount of neutralizing antibodies. Therefore, the construct sAB+ was used to generate a recombinant modified vaccinia virus Ankara (MVA), MVA-CHIKV-sAB+. Mice were vaccinated with MVA-CHIKV-sAB+ and/or the recombinant protein sAB+ and were subsequently challenged with wild-type CHIKV. Whereas four vaccinations with MVA-CHIKV-sAB+ were not sufficient to protect mice from a CHIKV infection, protein vaccination with sAB+ markedly reduced the viral titers of vaccinated mice. The recombinant protein sAB+ contains important structural antigens for a neutralizing antibody response in mice and its formulation with appropriate adjuvants might lead to a future CHIKV vaccine.

  11. Phase Transitions in the Nucleus: the functional implications of concentration-dependent assembly of a Liquid-like RNA/Protein Body

    NASA Astrophysics Data System (ADS)

    Zhu, Lian; Weber, Stephanie; Berry, Joel; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford

    2015-03-01

    The nucleolus is a liquid-like membrane-less nuclear body which plays an important role in cell growth and size control. By modulating nucleolar component concentration through RNAi conditions that change C. elegans cell size, we find that nucleoli only assemble above a threshold concentration; moreover, the ripening dynamics of nucleated droplets are consistent with the hypothesis that the assembly of the nucleolus represents an intracellular liquid-liquid phase transition. A key question is how this phase-transition is linked to the primary function of the nucleolus, in transcribing and processing ribosomal RNA. To address this, we characterize the localization of RNA Polymerase I, a key transcriptional enzyme, into nucleolar foci as a function of nucleolar component concentration. Our results suggest that there are a small number of key disordered phosphoproteins that may serve as a link between transcription and assembly. Finally, we present preliminary results using a reduced model system consisting of purified nucleolar proteins to assess the ability of nucleolar proteins to drive liquid-liquid phase separation in vitro. These results lay the foundation for a quantitative understanding of intracellular phase transitions and their impact on biomedically-critical RNA-processing steps.

  12. Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue

    PubMed Central

    Knights, Andrew J.; Abreu-Goodger, Cei; van de Bunt, Martijn; Guerra-Assunção, José Afonso; Bartonicek, Nenad; van Dongen, Stijn; Mägi, Reedik; Nisbet, James; Barrett, Amy; Rantalainen, Mattias; Nica, Alexandra C.; Quail, Michael A.; Small, Kerrin S.; Glass, Daniel; Enright, Anton J.; Winn, John; Deloukas, Panos; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Spector, Timothy D.; Durbin, Richard; Lindgren, Cecilia M.

    2012-01-01

    Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population. PMID:22589741

  13. Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription

    PubMed Central

    Tsai, Yi-Tzang; Lin, Chen-I; Chen, Hung-Kai; Lee, Kuo-Ming; Hsu, Chia-Yi; Yang, Shun-Jen

    2008-01-01

    The short arms of five human acrocentric chromosomes contain ribosomal gene (rDNA) clusters where numerous mini-nucleoli arise at the exit of mitosis. These small nucleoli tend to coalesce into one or a few large nucleoli during interphase by unknown mechanisms. Here, we demonstrate that the N- and C-terminal domains of a nucleolar protein, hNopp140, bound respectively to α-satellite arrays and rDNA clusters of acrocentric chromosomes for nucleolar formation. The central acidic-and-basic repeated domain of hNopp140, possessing a weak self-self interacting ability, was indispensable for hNopp140 to build up a nucleolar round-shaped structure. The N- or the C-terminally truncated hNopp140 caused nucleolar segregation and was able to alter locations of the rDNA transcription, as mediated by detaching the rDNA repeats from the acrocentric α-satellite arrays. Interestingly, an hNopp140 mutant, made by joining the N- and C-terminal domains but excluding the entire central repeated region, induced nucleolar disruption and global chromatin condensation. Furthermore, RNAi knockdown of hNopp140 resulted in dispersion of the rDNA and acrocentric α-satellite sequences away from nucleolus that was accompanied by rDNA transcriptional silence. Our findings indicate that hNopp140, a scaffold protein, is involved in the nucleolar assembly, fusion, and maintenance. PMID:18253863

  14. Studying fission neutrons with 2E-2v and 2E

    NASA Astrophysics Data System (ADS)

    Al-Adili, Ali; Jansson, Kaj; Tarrío, Diego; Hambsch, Franz-Josef; Göök, Alf; Oberstedt, Stephan; Olivier Frégeau, Marc; Gustavsson, Cecilia; Lantz, Mattias; Mattera, Andrea; Prokofiev, Alexander V.; Rakopoulos, Vasileios; Solders, Andreas; Vidali, Marzio; Österlund, Michael; Pomp, Stephan

    2018-03-01

    This work aims at measuring prompt-fission neutrons at different excitation energies of the nucleus. Two independent techniques, the 2E-2v and the 2E techniques, are used to map the characteristics of the mass-dependent prompt fission neutron multiplicity, v(A), when the excitation energy is increased. The VERDI 2E-2v spectrometer is being developed at JRC-GEEL. The Fission Fragment (FF) energies are measured using two arrays of 16 silicon (Si) detectors each. The FFs velocities are obtained by time-of-flight, measured between micro-channel plates (MCP) and Si detectors. With MCPs placed on both sides of the fission source, VERDI allows for independent timing measurements for both fragments. 252Cf(sf) was measured and the present results revealed particular features of the 2E-2v technique. Dedicated simulations were also performed using the GEF code to study important aspects of the 2E-2v technique. Our simulations show that prompt neutron emission has a non-negligible impact on the deduced fragment data and affects also the shape of v(A). Geometrical constraints lead to a total-kinetic energy-dependent detection efficiency. The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of 252Cf(sf) and another one of thermal-neutron induced fission in 235U(n,f). Results from 252Cf(sf) are reported here.

  15. Small-signal amplifier based on single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Radisavljevic, Branimir; Whitwick, Michael B.; Kis, Andras

    2012-07-01

    In this letter we demonstrate the operation of an analog small-signal amplifier based on single-layer MoS2, a semiconducting analogue of graphene. Our device consists of two transistors integrated on the same piece of single-layer MoS2. The high intrinsic band gap of 1.8 eV allows MoS2-based amplifiers to operate with a room temperature gain of 4. The amplifier operation is demonstrated for the frequencies of input signal up to 2 kHz preserving the gain higher than 1. Our work shows that MoS2 can effectively amplify signals and that it could be used for advanced analog circuits based on two-dimensional materials.

  16. BeppoSAX and Chandra Observations of SAX J0103.2-7209 = 2E 0101.5-7225: A New Persistent 345 Second X-Ray Pulsar in the Small Magellanic Cloud.

    PubMed

    Israel; Campana; Covino; Dal Fiume D; Gaetz; Mereghetti; Oosterbroek; Orlandini; Parmar; Ricci; Stella

    2000-03-10

    We report the results of a 1998 July BeppoSAX observation of a field in the Small Magellanic Cloud which led to the discovery of approximately 345 s pulsations in the X-ray flux of SAX J0103.2-7209. The BeppoSAX X-ray spectrum is well fitted by an absorbed power law with a photon index of approximately 1.0 plus a blackbody component with kT=0.11 keV. The unabsorbed luminosity in the 2-10 keV energy range is approximately 1.2x1036 ergs s-1. In a very recent Chandra observation, the 345 s pulsations are also detected. The available period measurements provide a constant period derivative of -1.7 s yr-1 over the last 3 years, making SAX J0103.2-7209 one of the most rapidly spinning up X-ray pulsars known. The BeppoSAX position (30&arcsec; uncertainty radius) is consistent with that of the Einstein source 2E 0101.5-7225 and the ROSAT source RX J0103.2-7209. This source was detected at a luminosity level of a few times 1035-1036 ergs s-1 in all data sets of past X-ray missions since 1979. The ROSAT HRI and Chandra positions are consistent with that of a mV=14.8 Be spectral-type star already proposed as the likely optical counterpart of 2E 0101.5-7225. We briefly report and discuss photometric and spectroscopic data carried out at the ESO telescopes 2 days before the BeppoSAX observation. We conclude that SAX J0103.2-7209 and 2E 0101.5-7225 are the same source: a relatively young and persistent X-ray pulsar in the SMC.

  17. SU-E-T-299: Dosimetric Characterization of Small Field in Small Animal Irradiator with Radiochromic Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S; Kim, K; Jung, H

    Purpose: The small animal irradiator has been used with small animals to optimize new radiation therapy as preclinical studies. The small animal was irradiated by whole- or partial-body exposure. In this study, the dosimetric characterizations of small animal irradiator were carried out in small field using Radiochromic films Material & Methods: The study was performed in commercial animal irradiator (XRAD-320, Precision x-ray Inc, North Brantford) with Radiochromic films (EBT2, Ashland Inc, Covington). The calibration curve was generated between delivery dose and optical density (red channel) and the films were scanned by and Epson 1000XL scanner (Epson America Inc., Long Beach,more » CA).We evaluated dosimetric characterization of irradiator using various filter supported by manufacturer in 260 kV. The various filters were F1 (2.0mm Aluminum (HVL = about 1.0mm Cu) and F2 (0.75mm Tin + 0.25mm Copper + 1.5mm Aluminum (HVL = about 3.7mm Cu). According to collimator size (3, 5, 7, 10 mm, we calculated percentage depth dose (PDD) and the surface –source distance(SSD) was 17.3 cm considering dose rate. Results: The films were irradiated in 260 kV, 10mA and we increased exposure time 5sec. intervals from 5sec. to 120sec. The calibration curve of films was fitted with cubic function. The correlation between optical density and dose was Y=0.1405 X{sup 3}−2.916 X{sup 2}+25.566 x+2.238 (R{sup 2}=0.994). Based on the calibration curve, we calculated PDD in various filters depending on collimator size. When compared PDD of specific depth (3mm) considering animal size, the difference by collimator size was 4.50% in free filter and F1 was 1.53% and F2 was within 2.17%. Conclusion: We calculated PDD curve in small animal irradiator depending on the collimator size and the kind of filter using the radiochromic films. The various PDD curve was acquired and it was possible to irradiate various dose using these curve.« less

  18. Evolutionary and biophysical relationships among the papillomavirus E2 proteins.

    PubMed

    Blakaj, Dukagjin M; Fernandez-Fuentes, Narcis; Chen, Zigui; Hegde, Rashmi; Fiser, Andras; Burk, Robert D; Brenowitz, Michael

    2009-01-01

    Infection by human papillomavirus (HPV) may result in clinical conditions ranging from benign warts to invasive cancer. The HPV E2 protein represses oncoprotein transcription and is required for viral replication. HPV E2 binds to palindromic DNA sequences of highly conserved four base pair sequences flanking an identical length variable 'spacer'. E2 proteins directly contact the conserved but not the spacer DNA. Variation in naturally occurring spacer sequences results in differential protein affinity that is dependent on their sensitivity to the spacer DNA's unique conformational and/or dynamic properties. This article explores the biophysical character of this core viral protein with the goal of identifying characteristics that associated with risk of virally caused malignancy. The amino acid sequence, 3d structure and electrostatic features of the E2 protein DNA binding domain are highly conserved; specific interactions with DNA binding sites have also been conserved. In contrast, the E2 protein's transactivation domain does not have extensive surfaces of highly conserved residues. Rather, regions of high conservation are localized to small surface patches. Implications to cancer biology are discussed.

  19. E 3 and M 2 transition strengths in Bi20983

    NASA Astrophysics Data System (ADS)

    Roberts, O. J.; NiÅ£ǎ, C. R.; Bruce, A. M.; Mǎrginean, N.; Bucurescu, D.; Deleanu, D.; Filipescu, D.; Florea, N. M.; Gheorghe, I.; GhiÅ£ǎ, D.; Glodariu, T.; Lica, R.; Mǎrginean, R.; Mihai, C.; Negret, A.; Sava, T.; Stroe, L.; Şuvǎilǎ, R.; Toma, S.; Alharbi, T.; Alexander, T.; Aydin, S.; Brown, B. A.; Browne, F.; Carroll, R. J.; Mulholland, K.; Podolyák, Zs.; Regan, P. H.; Smith, J. F.; Smolen, M.; Townsley, C. M.

    2016-01-01

    The 1 i13/2→1 h9/2 (M 2 ) and 3 s1/22 f7/2 (E 3 ) reduced proton transition probabilities in Bi20983 have been determined from the direct half-life measurements of the 13/21+ and 1/21+ states using the Romanian array for γ -ray SPectroscopy in HEavy ion REactions (RoSPHERE). The 13/21+ and 1/21+ states were found to have T1/2=0.120 (15 ) ns and T1/2=9.02 (24 ) ns respectively. Angular distribution measurements were used to determine an E 3 /M 2 mixing ratio of δ =-0.184 (13 ) for the 1609 keV γ -ray transition deexciting the 13/21+ state. This value for δ was combined with the measured half-life to give reduced transition probabilities of B (E 3 ,13/21+→9/21-) =12 (2 ) ×103 e2fm6 and B (M 2 ,13/21+→9/21-) =38 (5 ) μN2fm2 . These values are in good agreement with calculations within the finite Fermi system. The extracted value of B (E 3 ,1/21+→7/21-) =6.3 (2 ) ×103 e2fm6 can be explained by a small (˜6 % ) admixture in the wave function of the 1/21+ state.

  20. E-Learning in Small Organisations

    ERIC Educational Resources Information Center

    Sambrook, Sally

    2003-01-01

    This paper focuses on the existing and potential role of electronic learning in small and medium-sized organisations (SMEs). Innovations in information and communication technologies (ICTs) could create new forms of learning, particularly appealing to small organisations, to overcome traditional barriers such as lack of financial resources, time,…

  1. TFDP3 was expressed in coordination with E2F1 to inhibit E2F1-mediated apoptosis in prostate cancer.

    PubMed

    Ma, Yueyun; Xin, Yijuan; Li, Rui; Wang, Zhe; Yue, Qiaohong; Xiao, Fengjing; Hao, Xiaoke

    2014-03-10

    TFDP3 has been previously identified as an inhibitor of E2F molecules. It has been shown to suppress E2F1-induced apoptosis dependent P53 and to play a potential role in carcinogenesis. However, whether it indeed helps cancer cells tolerate apoptosis stress in cancer tissues remains unknown. TFDP3 expression was assessed by RT-PCR, in situ hybridization and immunohistochemistry in normal human tissues, cancer tissues and prostate cancer tissues. The association between TFDP3 and E2F1 in prostate cancer development was analyzed in various stages. Apoptosis was evaluated with annexin-V and propidium iodide staining and flow-cytometry. The results show that, in 96 samples of normal human tissues, TFDP3 could be detected in the cerebrum, esophagus, stomach, small intestine, bronchus, breast, ovary, uterus, and skin, but seldom in the lung, muscles, prostate, and liver. In addition, TFDP3 was highly expressed in numerous cancer tissues, such as brain-keratinous, lung squamous cell carcinoma, testicular seminoma, cervical carcinoma, skin squamous cell carcinoma, gastric adenocarcinoma, liver cancer, and prostate cancer. Moreover, TFDP3 was positive in 23 (62.2%) of 37 prostate cancer samples regardless of stage. Furthermore, immunohistochemistry results show that TFDP3 was always expressed in coordination with E2F1 at equivalent expression levels in prostate cancer tissues, and was highly expressed particularly in samples of high stage. When E2F1 was extrogenously expressed in LNCap cells, TFDP3 could be induced, and the apoptosis induced by E2F1 was significantly decreased. It was demonstrated that TFDP3 was a broadly expressed protein corresponding to E2F1 in human tissues, and suggested that TFDP3 is involved in prostate cancer cell survival by suppressing apoptosis induced by E2F1. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Astro-E2 Magnesium Diboride High Current Leads

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Tuttle, J. G.; Riall, S.; Mustafi, S.; Gray, A.; Edmonds, R.; Marrero, V.

    2003-01-01

    The recent discovery of superconducting properties in MgB_2 and rapid development of small diameter steel-clad wires has opened up the possibility of enhancing the design of the baseline Astro-E2 high current lead assembly. Replacing YBCO filaments with MgB_2 wires and modifying the heat sink location can give much higher margins against quench from temperature oscillations of the 4 K heat sink, although wih some overall thermal penalty. The design and performance of a new lead assembly during flight qualification is discussed, with emphasis on thermal, structural, and electrical test results.

  3. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy.

    PubMed

    Woods, Simone J; Hannan, Katherine M; Pearson, Richard B; Hannan, Ross D

    2015-07-01

    Recent studies have highlighted the fundamental role that key oncogenes such as MYC, RAS and PI3K occupy in driving RNA Polymerase I transcription in the nucleolus. In addition to maintaining essential levels of protein synthesis, hyperactivated ribosome biogenesis and nucleolar function plays a central role in suppressing p53 activation in response to oncogenic stress. Consequently, disruption of ribosome biogenesis by agents such as the small molecule inhibitor of RNA Polymerase I transcription, CX-5461, has shown unexpected, potent, and selective effects in killing tumour cells via disruption of nucleolar function leading to activation of p53, independent of DNA damage. This review will explore the mechanism of DNA damage-independent activation of p53 via the nucleolar surveillance pathway and how this can be utilised to design novel cancer therapies. Non-genotoxic targeting of nucleolar function may provide a new paradigm for treatment of a broad range of oncogene-driven malignancies with improved therapeutic windows. This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast

    PubMed Central

    2011-01-01

    Background Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence. Results In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice. Conclusion Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence. PMID:21835027

  5. Phospho-Bcl-x(L)(Ser62) plays a key role at DNA damage-induced G(2) checkpoint.

    PubMed

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2012-06-01

    Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G 2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G 2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G 2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G 2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G 2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G 2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.

  6. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse

    PubMed Central

    Hüttenhofer, Alexander; Kiefmann, Martin; Meier-Ewert, Sebastian; O’Brien, John; Lehrach, Hans; Bachellerie, Jean-Pierre; Brosius, Jürgen

    2001-01-01

    In mouse brain cDNA libraries generated from small RNA molecules we have identified a total of 201 different expressed RNA sequences potentially encoding novel small non-messenger RNA species (snmRNAs). Based on sequence and structural motifs, 113 of these RNAs can be assigned to the C/D box or H/ACA box subclass of small nucleolar RNAs (snoRNAs), known as guide RNAs for rRNA. While 30 RNAs represent mouse homologues of previously identified human C/D or H/ACA snoRNAs, 83 correspond to entirely novel snoRNAs. Among these, for the first time, we identified four C/D box snoRNAs and four H/ACA box snoRNAs predicted to direct modifications within U2, U4 or U6 small nuclear RNAs (snRNAs). Furthermore, 25 snoRNAs from either class lacked antisense elements for rRNAs or snRNAs. Therefore, additional snoRNA targets have to be considered. Surprisingly, six C/D box snoRNAs and one H/ACA box snoRNA were expressed exclusively in brain. Of the 88 RNAs not belonging to either snoRNA subclass, at least 26 are probably derived from truncated heterogeneous nuclear RNAs (hnRNAs) or mRNAs. Short interspersed repetitive elements (SINEs) are located on five RNA sequences and may represent rare examples of transcribed SINEs. The remaining RNA species could not as yet be assigned either to any snmRNA class or to a part of a larger hnRNA/mRNA. It is likely that at least some of the latter will represent novel, unclassified snmRNAs. PMID:11387227

  7. Modified Coulomb-Dipole Theory for 2e Photoionization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the light of recent experiment on 2e photoionization of Li near threshold, we have considered a modification of the Coulomb-dipole theory, retaining the basic assumption that the threshold is dominated by asymmetric events in phase space [implies r(sub 1), k(sub 1)) greater than or equal to 2(r(sub 2), k(sub )]. In this region [in a collinear model, 2/r(sub 12) approached + 2/(r(sub 1)+r(sub 2)] the interaction reduces to V(rIsub 1) is greater than or equal to 2r(sub 2) is identically equal to [(-Z/r(sub 2)-(A-1)/r(sub 1)] + [(-2r(sub 2)/r(sub 1 exp 2)] is identically equal to V(sub c)+[V(sub d)]. For two electron emission Z = 2, thus both electrons see a Coulomb potential (V(sub c)) asymptotically, albeit each seeing a different charge. The residual potential (V(sub d)) is dipole in character. Writing the total psi = psi (sub c) + psi(sub d) = delta psi, and noting that. (T+V(sub c)-E)psy(sub c) = 0 and (T+V(sub c))psi(sub d) = 0 can be solved exactly, we find, substituting psi into the complete Schrod. Eq., that delta psi = -(H-E)(exp -1)(V(sub d) psi(sub 0)+V(sub c psi (sub 1). Using the fact that the absolute value of V(sub c) is much more than the absolute value of V(sub d) in almost all of configuration space, we can replace H by H(sub 0) in 9H-E)(exp -1) to obtain an improved approximation psi (improved) = psi(sub c) + psi(sub d) -(H(sub 0)-E)(exp -1) (V(sub c) psi (sub 0) + V(sub c) psi(sub 1). Here's the Green's function (H(sub 0)-E)(exp -1), can be exhibited explicitly, but the last term in psi (improved) is small, compared to the first two terms. Inserting them into the transition matrix element, which one handles in the usual way, we obtain in the limit E approaches 0, the threshold law: Q(E) alpha E + M(E)E(exp 5/4) + higher order (Eq. 1a). The modulation function, M(E), is a well-defined (but very non-trivial integral, but it is expected to be well approximated by a sinusoidal function containing a dipole phase term (M(E) = c sin[alpha log (E

  8. Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation.

    PubMed

    Zhao, Carolyn Ying; Szekely, Laszlo; Bao, Wenjie; Selivanova, Galina

    2010-04-15

    Proteasomal degradation of p53 by human papilloma virus (HPV) E6 oncoprotein plays a pivotal role in the survival of cervical carcinoma cells. Abrogation of HPV-E6-dependent p53 destruction can therefore be a good strategy to combat cervical carcinomas. Here, we show that a small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) is able to induce the accumulation of p53 and rescue its tumor suppressor function in cells containing high-risk HPV16 and HPV18 by inhibiting HPV-E6-mediated proteasomal degradation. RITA blocks p53 ubiquitination by preventing p53 interaction with E6-associated protein, required for HPV-E6-mediated degradation. RITA activates the transcription of proapoptotic p53 targets Noxa, PUMA, and BAX, and repressed the expression of pro-proliferative factors CyclinB1, CDC2, and CDC25C, resulting in p53-dependent apoptosis and cell cycle arrest. Importantly, RITA showed substantial suppression of cervical carcinoma xenografts in vivo. These results provide a proof of principle for the treatment of cervical cancer in a p53-dependent manner by using small molecules that target p53. (c)2010 AACR.

  9. "Small Steps, Big Rewards": Preventing Type 2 Diabetes

    MedlinePlus

    ... please turn Javascript on. Feature: Diabetes "Small Steps, Big Rewards": Preventing Type 2 Diabetes Past Issues / Fall ... These are the plain facts in "Small Steps. Big Rewards: Prevent Type 2 Diabetes," an education campaign ...

  10. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization

    PubMed Central

    García-López, Jesús; Alonso, Lola; Cárdenas, David B.; Artaza-Alvarez, Haydeé; Hourcade, Juan de Dios; Martínez, Sergio; Brieño-Enríquez, Miguel A.; del Mazo, Jesús

    2015-01-01

    The small noncoding RNAs (sncRNAs) are considered as post-transcriptional key regulators of male germ cell development. In addition to microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), other sncRNAs generated from small nucleolar RNAs (snoRNAs), tRNAs, or rRNAs processing may also play important regulatory roles in spermatogenesis. By next-generation sequencing (NGS), we characterized the sncRNA populations detected at three milestone stages in male germ differentiation: primordial germ cells (PGCs), pubertal spermatogonia cells, and mature spermatozoa. To assess their potential transmission through the spermatozoa during fertilization, the sncRNAs of mouse oocytes and zygotes were also analyzed. Both, microRNAs and snoRNA-derived small RNAs are abundantly expressed in PGCs but transiently replaced by piRNAs in spermatozoa and endo-siRNAs in oocytes and zygotes. Exhaustive analysis of miRNA sequence variants also shows an increment of noncanonical microRNA forms along male germ cell differentiation. RNAs-derived from tRNAs and rRNAs interacting with PIWI proteins are not generated by the ping-pong pathway and could be a source of primary piRNAs. Moreover, our results strongly suggest that the small RNAs-derived from tRNAs and rRNAs are interacting with PIWI proteins, and specifically with MILI. Finally, computational analysis revealed their potential involvement in post-transcriptional regulation of mRNA transcripts suggesting functional convergence among different small RNA classes in germ cells and zygotes. PMID:25805854

  11. Synthesis and characterization of novel 1,2-oxazine-based small molecules that targets acetylcholinesterase.

    PubMed

    Sukhorukov, Alexey Yu; Nirvanappa, Anilkumar C; Swamy, Jagadish; Ioffe, Sema L; Nanjunda Swamy, Shivananju; Basappa; Rangappa, Kanchugarakoppal S

    2014-08-01

    Thirteen 2-oxazine-based small molecules were synthesized targeting 5-lipoxygenase (LOX), and acetylcholinesterase (AChE). The test revealed that the newly synthesized compounds had potent inhibition towards both 5-LOX and AChE in lower micro molar concentration. Among the tested compounds, the most active compound, 2-[(2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione (2a) showed inhibitory activity towards 5-LOX and AChE with an IC50 values of 1.88, and 2.5 μM, respectively. Further, the in silico molecular docking studies revealed that the compound 2a bound to the catalytic domain of AChE strongly with a highest CDOCKER score of -1.18 kcal/mol when compared to other compounds of the same series. Additionally, 2a showed a good lipophilicity (logP=2.66), suggesting a potential ability to penetrate the blood-brain-barrier. These initial pharmacological data revealed that the compound 2a could serve as a drug-seed in developing anti-Alzheimer's agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. De-repression of RaRF-mediated RAR repression by adenovirus E1A in the nucleolus.

    PubMed

    Um, Soo-Jong; Youn, Hye Sook; Kim, Eun-Joo

    2014-02-21

    Transcriptional activity of the retinoic acid receptor (RAR) is regulated by diverse binding partners, including classical corepressors and coactivators, in response to its ligand retinoic acid (RA). Recently, we identified a novel corepressor of RAR called the retinoic acid resistance factor (RaRF) (manuscript submitted). Here, we report how adenovirus E1A stimulates RAR activity by associating with RaRF. Based on immunoprecipitation (IP) assays, E1A interacts with RaRF through the conserved region 2 (CR2), which is also responsible for pRb binding. The first coiled-coil domain of RaRF was sufficient for this interaction. An in vitro glutathione-S-transferase (GST) pull-down assay was used to confirm the direct interaction between E1A and RaRF. Further fluorescence microscopy indicated that E1A and RaRF were located in the nucleoplasm and nucleolus, respectively. However, RaRF overexpression promoted nucleolar translocation of E1A from the nucleoplasm. Both the RA-dependent interaction of RAR with RaRF and RAR translocation to the nucleolus were disrupted by E1A. RaRF-mediated RAR repression was impaired by wild-type E1A, but not by the RaRF binding-defective E1A mutant. Taken together, our data suggest that E1A is sequestered to the nucleolus by RaRF through a specific interaction, thereby leaving RAR in the nucleoplasm for transcriptional activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells

    PubMed Central

    Lam, Yun W.; Evans, Vanessa C.; Heesom, Kate J.; Lamond, Angus I.; Matthews, David A.

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined. PMID:19812395

  14. Proteomics analysis of the nucleolus in adenovirus-infected cells.

    PubMed

    Lam, Yun W; Evans, Vanessa C; Heesom, Kate J; Lamond, Angus I; Matthews, David A

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined.

  15. 48 CFR 919.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Total small business set-asides. 919.502-2 Section 919.502-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 919.502-2 Total small business set...

  16. 48 CFR 919.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Total small business set-asides. 919.502-2 Section 919.502-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 919.502-2 Total small business set...

  17. 48 CFR 919.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Total small business set-asides. 919.502-2 Section 919.502-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 919.502-2 Total small business set...

  18. 48 CFR 919.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Total small business set-asides. 919.502-2 Section 919.502-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 919.502-2 Total small business set...

  19. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.

    PubMed

    Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R

    2011-02-01

    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.

  20. Reconstitution of the Recombinant RanBP2 SUMO E3 Ligase Complex.

    PubMed

    Ritterhoff, Tobias; Das, Hrishikesh; Hao, Yuqing; Sakin, Volkan; Flotho, Annette; Werner, Andreas; Melchior, Frauke

    2016-01-01

    One of the few proteins that have SUMO E3 ligase activity is the 358 kDa nucleoporin RanBP2 (Nup358). While small fragments of RanBP2 can stimulate SUMOylation in vitro, the physiologically relevant E3 ligase is a stable multi-subunit complex comprised of RanBP2, SUMOylated RanGAP1, and Ubc9. Here, we provide a detailed protocol to in vitro reconstitute the RanBP2 SUMO E3 ligase complex. With the exception of RanBP2, reconstitution involves untagged full-length proteins. We describe the bacterial expression and purification of all complex components, namely an 86 kDa His-tagged RanBP2 fragment, the SUMO E2-conjugating enzyme Ubc9, RanGAP1, and SUMO1, and we provide a protocol for quantitative SUMOylation of RanGAP1. Finally, we present details for the assembly and final purification of the catalytically active RanBP2/RanGAP1*SUMO1/Ubc9 complex.

  1. E2 enzyme inhibition by stabilization of a low affinity interface with ubiquitin

    PubMed Central

    St-Cyr, Daniel J.; Ziemba, Amy; Garg, Pankaj; Plamondon, Serge; Auer, Manfred; Sidhu, Sachdev; Marinier, Anne; Kleiger, Gary; Tyers, Mike; Sicheri, Frank

    2014-01-01

    Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small molecule inhibitor of the E2 ubiquitin conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester, without overtly affecting the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities. PMID:24316736

  2. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.

    PubMed

    Iglesias, Ainhoa; Murga, Matilde; Laresgoiti, Usua; Skoudy, Anouchka; Bernales, Irantzu; Fullaondo, Asier; Moreno, Bernardino; Lloreta, José; Field, Seth J; Real, Francisco X; Zubiaga, Ana M

    2004-05-01

    E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.

  3. The Mu2e undoped CsI crystal calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanov, N.; Baranov, V.; Budagov, J.

    We present the Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystalsmore » and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Lastly, although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.« less

  4. The Mu2e undoped CsI crystal calorimeter

    DOE PAGES

    Atanov, N.; Baranov, V.; Budagov, J.; ...

    2018-02-22

    We present the Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystalsmore » and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Lastly, although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.« less

  5. The Mu2e undoped CsI crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2018-02-01

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  6. Probing domain switching dynamics in ferroelectric thick films by small field e31,f piezoelectric measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Hongbo; Ouyang, Jun; Kanno, Isaku

    2017-07-01

    Epitaxial Pb(Zr0.53Ti0.47)O3 films were grown on (001) Pt/(001) MgO via rf-magnetron sputtering. Switching dynamics of 90° and 180° domains under bi-polar electric fields were probed by using small-field e31 ,f measurements in which the evolution of the transverse piezoelectric response with the bias voltage represents a set of fingerprints of the evolving domain structure. Furthermore, the asymmetric e31 ,f-V curves revealed a strong built-in electric field, which was verified by the standard polarization-electric field hysteresis measurement. Finally, X-ray 2θ-scan patterns under DC bias voltages were collected for the piezoelectric specimen. The domain switching sequence indicated by the XRD results is consistent with that revealed by the e31 ,f measurement.

  7. Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA

    PubMed Central

    Naveau, Marie; Lazennec-Schurdevin, Christine; Panvert, Michel; Dubiez, Etienne; Mechulam, Yves; Schmitt, Emmanuelle

    2013-01-01

    Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2–GDPNP–tRNA complex. PMID:23193270

  8. A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Malley, Konstantin R.; Brenner, Caitlin C.; Koroleva, Olga; Korolev, Sergey; Downes, Brian P.

    2016-08-01

    Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2~Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.

  9. Viruses and the nucleolus: the fatal attraction.

    PubMed

    Salvetti, Anna; Greco, Anna

    2014-06-01

    Viruses are small obligatory parasites and as a consequence, they have developed sophisticated strategies to exploit the host cell's functions to create an environment that favors their own replication. A common feature of most - if not all - families of human and non-human viruses concerns their interaction with the nucleolus. The nucleolus is a multifunctional nuclear domain, which, in addition to its well-known role in ribosome biogenesis, plays several crucial other functions. Viral infection induces important nucleolar alterations. Indeed, during viral infection numerous viral components localize in nucleoli, while various host nucleolar proteins are redistributed in other cell compartments or are modified, and non-nucleolar cellular proteins reach the nucleolus. This review highlights the interactions reported between the nucleolus and some human or animal viral families able to establish a latent or productive infection, selected on the basis of their known interactions with the nucleolus and the nucleolar activities, and their links with virus replication and/or pathogenesis. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A Case-Control Study of Oral Epithelial Proliferative Markers among Sudanese Toombak Dippers Using Micronuclei Assay, Argyrophilic Nucleolar Organizer Region, Papanicolaou and Crystal Violet Methods

    PubMed Central

    Anass, M. Abbas; G. Ahmed, Hussain

    2013-01-01

    The use of Toombak has been reported to play a major role in the etiology of oral cancer in Sudan. The cellular proliferative activity on the oral epithelium of 210 Toombak dippers was assessed by applying the micronuclei frequency, mean argyrophilic nucleolar organizer region (AgNOR) counts, Papanicolaou method, and 1% crystal violet stain. Participants were divided into 3 groups: 200 were apparently healthy individuals, 100 were Toombak users (cases), 100 were non-tobacco users (control) and 10 were patients with oral squamous cell carcinomas. Cytological atypia was identified among 4 (4%). Toombak users and was not found among the control group (P<0.04). The micronuclei frequencies were higher in Toombak users (1.026) than in the control group (0.356) (P<0.0001). The mean AgNOR counts in Toombak users (2.423) were higher than control group (1.303) (P<0.0001). Neither Toombak users nor control group showed mitotic figures in 1% crystal violet method. The results of this research showed that Toombak dipping is a high risk factor for increase in the cellular proliferation in the oral mucosa. The cytological proliferative marker methods used are useful for screening Toombak users. PMID:24179643

  11. Synthesis, structure elucidation and in vitro anticancer activities of novel derivatives of diethyl (2E)-2-[(2E)-(1-arylimidazolidin-2-ylidene)hydrazono]succinate and ethyl (4-oxo-8-aryl-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl)acetate.

    PubMed

    Sztanke, Małgorzata; Rzymowska, Jolanta; Sztanke, Krzysztof

    2013-12-01

    The worked out and optimized synthesis routes and remarkable antitumour activities in vitro of novel polynitrogenated derivatives of diethyl (2E)-2-[(2E)-(1-arylimidazolidin-2-ylidene)hydrazono]succinate (7-10) and ethyl (4-oxo-8-aryl-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl)acetate (11-16) are presented. Small molecules based on the privileged 7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-one scaffold (11-16) were obtained with fairly modest to good overall yields by very facile addition reactions of the nucleophilic centred 1-aryl-2-hydrazonoimidazolidine hydroiodides to diethyl acetylenedicarboxylate (DEAD) in the presence of triethylamine (TEA) and a subsequent cyclocondensation of the putative intermediate chain hydrazones. Heterobicyclic products 12 and 14-16 could also be prepared in high overall yields by an effective intramolecular cyclocondensation of the isolated stable and antiproliferative active heterocyclic hydrazones, namely, diethyl (2E)-2-[(2E)-(1-arylimidazolidin-2-ylidene)hydrazono]succinates (7-10), performed in refluxing DMF. These intermediates are the first products to be formed in the result of an addition of the nucleophilic reactants, namely, 1-aryl-2-hydrazonoimidazolidines of the 1-6 type, bearing the basic nitrogen atom of the hydrazono moiety (N-NH2), to the carbon-carbon triple bond of the highly electrophilic alkyne, that is, DEAD. Molecular structures of the synthesized compounds (7-16) in the DMSO-d6 solutions were verified by (1)H NMR and (13)C NMR spectral data. These were finally confirmed based on the advanced 2D HMBC and HMQC NMR experiments, which were performed for the two representatives (8 and 11) of the two synthesized sets of the bioactive substances. Among the majority of antiproliferative active molecules, the disclosed herein ethyl [4-oxo-8-(3-chlorophenyl)-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetate (14) is proposed as a promising lead structure for the design of novel highly selective

  12. Learning Styles Inequity for Small to Micro Firms (SMFs): Social Exclusion through Work-Based E-Learning Practice in Europe

    ERIC Educational Resources Information Center

    Hardaker, Glenn; Dockery, Richard; Sabki, Aishah

    2007-01-01

    Purpose: The elearn2work study of learning styles in the context of small to micro firms' (SMFs) and their perceived satisfaction has identified some important finding specific to e-learning content design, delivery and international standards development. Design/methodology/approach: The method of research adopts a deductive rather than an…

  13. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  14. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  15. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  16. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  17. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  18. The X-ray Mirrors for the Astro-E2 Mission

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Soong, Yang; Serlemitsos, Peter J.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The X-Ray telescopes (XRT) for the US/Japan collaborative mission Astro-E2 will be of the same basic design as those built for the original Astro-E mission which failed to reach orbit in Feb. 2000. The NASA/GSFC X-ray Astrophysics Branch will again provide the five lightweight, broad-band mirrors for the mission. X-ray calibrations of the mirrors delivered for the original Astro-E instrument showed spatial resolutions characterized by Half-Power Diameters (HPD) in the range of 1.8 - 2.2 minutes of arc, essentially independent of photon energy in the soft X-ray band. For the mission Astro-E2, both funding constraints and management decisions drastically limit any design modifications, so reflector fabrication and assembly procedures have remained largely unchanged. Nevertheless, in view of the importance in scientific return of attaining even a modest improvement in the spatial resolution of these mirrors, we have carefully considered the various sources of spatial error and, whenever possible, incorporated promising modifications. In this paper, we discuss our current understanding of the various error components as well as the small changes we have been able to implement.

  19. Can Small Countries Benefit from the E-waste Global Value Chain?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meine Pieter, Dijk van, E-mail: mpvandijk@iss.nl

    E-waste is a term used to cover items of all types of electrical and electronic equipment and its parts that have been discarded by the owners as waste without the intention of re-use, because this equipment has ceased to be of any value to its owners. E-waste is one of the fastestgrowing waste streams globally. Since the Rio Summit Earth summit organized by the United Nations in 1992, the concept of sustainability extends to rendering basic services such as Solid Waste Management and dealing with e-waste. People are afraid of e-waste because of its possible negative effects on health andmore » because it could pollute the environment. Indicators of unsustainable service provision concerninge-waste include irregular collection, open dumping, burning of solid and e-waste in open spaces. Often collection covers a small part of the country, cost recovery is limited or not existent, and one notes poor utilization of available resources with no or very limited reuse and recycling.« less

  20. (e,2e) and (Î3,2e) Processes: Open and Closed Questions

    NASA Astrophysics Data System (ADS)

    An important breakthrough has been achieved recently in the description of (e,2e) and (Î3,2e) processes with the development of new ab-initio theories: the external complex scaling theory (ECS), the time dependent close coupling theory (TDCC), and the hyperspherical R-matrix theory with semiclassical outgoing waves (HRM-SOW). The principles of these various theories are summarized, their relations are considered, and their achievements are discussed with respect to the available experimental data regarding electron impact ionization of H and photo double ionization of He. Possible directions for future work are outlined.

  1. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  2. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  3. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  4. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations to...

  5. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  6. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations to...

  7. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  8. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations to...

  9. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations to...

  10. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations to...

  11. Changes of the nucleolus architecture in absence of the nuclear factor CTCF.

    PubMed

    Hernández-Hernández, A; Soto-Reyes, E; Ortiz, R; Arriaga-Canon, C; Echeverría-Martinez, O M; Vázquez-Nin, G H; Recillas-Targa, F

    2012-01-01

    CTCF is a multifunctional nuclear factor involved in many cellular processes like gene regulation, chromatin insulation and genomic organization. Recently, CTCF has been shown to be involved in the transcriptional regulation of ribosomal genes and nucleolar organization in Drosophila cells and different murine cell types, including embryonic stem cells. Moreover, it has been suggested that CTCF could be associated to the nucleolus of human erythroleukemic K562 cells. In the present work, we took advantage of efficient small hairpin RNA interference against human CTCF to analyze nucleolar organization in HeLa cells. We have found that key components of the nucleolar architecture are altered. As a consequence of such alterations, an upregulation of ribosomal gene transcription was observed. We propose that CTCF contributes to the structural organization of the nucleolus and, through epigenetic mechanisms, to the regulation of the ribosomal gene expression. Copyright © 2012 S. Karger AG, Basel.

  12. Synthesis, antiproliferative activity, and mechanism of action of a series of 2-{[(2E)-3-phenylprop-2-enoyl]amino}benzamides

    PubMed Central

    Raffa, Demetrio; Maggio, Benedetta; Plescia, Fabiana; Cascioferro, Stella; Plescia, Salvatore; Raimondi, Maria Valeria; Daidone, Giuseppe; Tolomeo, Manlio; Grimaudo, Stefania; Di Cristina, Antonietta; Pipitone, Rosaria Maria; Bai, Ruoli; Hamel, Ernest

    2011-01-01

    Several new 2-{[(2E)-3-phenylprop-2-enoyl]amino}benzamides 12a–s and 17t–v were synthesized by stirring in pyridine the (E)-3-(2-R1-3-R2-4-R3-phenyl)acrylic acid chlorides 11c–k and 11t–v with the appropriate anthranilamide derivatives 10a–c or the 5-iodoanthranilic acid 13. Some of the synthesized compounds were evaluated for their in vitro antiproliferative activity against the full NCI tumor cell line panel derived from nine clinically isolated cancer types (leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate and breast). COMPARE analysis, effects on tubulin polymerization in cells and with purified tubulin, and effects on cell cycle distribution for 17t, the most active of the series, indicate that these new antiproliferative compounds act as antitubulin agents. PMID:21530013

  13. Structure of the E2 DNA-binding domain from human papillomavirus serotype 31 at 2.4 A.

    PubMed

    Bussiere, D E; Kong, X; Egan, D A; Walter, K; Holzman, T F; Lindh, F; Robins, T; Giranda, V L

    1998-11-01

    The papillomaviruses are a family of small double-stranded DNA viruses which exclusively infect epithelial cells and stimulate the proliferation of those cells. A key protein within the papillomavirus life-cycle is known as the E2 (Early 2) protein and is responsible for regulating viral transcription from all viral promoters as well as for replication of the papillomavirus genome in tandem with another protein known as E1. The E2 protein itself consists of three functional domains: an N-terminal trans-activation domain, a proline-rich linker, and a C-terminal DNA-binding domain. The first crystal structure of the human papillomavirus, serotype 31 (HPV-31), E2 DNA-binding domain has been determined at 2.4 A resolution. The HPV DNA-binding domain monomer consists of two beta-alpha-beta repeats of approximately equal length and is arranged as to have an anti-parallel beta-sheet flanked by the two alpha-helices. The monomers form the functional in vivo dimer by association of the beta-sheets of each monomer so as to form an eight-stranded anti-parallel beta-barrel at the center of the dimer, with the alpha-helices lining the outside of the barrel. The overall structure of HVP-31 E2 DNA-binding domain is similar to both the bovine papillomavirus E2-binding domain and the Epstein-Barr nuclear antigen-1 DNA-binding domain.

  14. Requirement analysis to promote small-sized E-waste collection from consumers.

    PubMed

    Mishima, Kuniko; Nishimura, Hidekazu

    2016-02-01

    The collection and recycling of small-sized waste electrical and electronic equipment is an emerging problem, since these products contain certain amounts of critical metals and rare earths. Even if the amount is not large, having a few supply routes for such recycled resources could be a good strategy to be competitive in a world of finite resources. The small-sized e-waste sometimes contains personal information, therefore, consumers are often reluctant to put them into recycling bins. In order to promote the recycling of E-waste, collection of used products from the consumer becomes important. Effective methods involving incentives for consumers might be necessary. Without such methods, it will be difficult to achieve the critical amounts necessary for an efficient recycling system. This article focused on used mobile phones among information appliances as the first case study, since it contains relatively large amounts of valuable metals compared with other small-sized waste electrical and electronic equipment and there are a large number of products existing in the market. The article carried out surveys to determine what kind of recycled material collection services are preferred by consumers. The results clarify that incentive or reward money alone is not a driving force for recycling behaviour. The article discusses the types of effective services required to promote recycling behaviour. The article concludes that securing information, transferring data and providing proper information about resources and environment can be an effective tool to encourage a recycling behaviour strategy to promote recycling, plus the potential discount service on purchasing new products associated with the return of recycled mobile phones. © The Author(s) 2015.

  15. Proteomic profiling of the human T-cell nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2011-12-01

    The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis

    PubMed Central

    Qin, Wei; Lv, Pinou; Fan, Xinqi; Quan, Baiyi; Zhu, Yuntao; Qin, Ke; Chen, Ying; Wang, Chu

    2017-01-01

    O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo. PMID:28760965

  17. Electron microscopic studies of mitosis in amebae. I. Amoeba proteus.

    PubMed

    ROTH, L E; OBETZ, S W; DANIELS, E W

    1960-09-01

    Individual organisms of Amoeba proteus have been fixed in buffered osmium tetroxide in either 0.9 per cent NaCl or 0.01 per cent CaCl(2), sectioned, and studied in the electron microscope in interphase and in several stages of mitosis. The helices typical of interphase nuclei do not coexist with condensed chromatin and thus either represent a DNA configuration unique to interphase or are not DNA at all. The membranes of the complex nuclear envelope are present in all stages observed but are discontinuous in metaphase. The inner, thick, honeycomb layer of the nuclear envelope disappears during prophase, reappearing after telophase when nuclear reconstruction is in progress. Nucleoli decrease in size and number during prophase and re-form during telophase in association with the chromatin network. In the early reconstruction nucleus, the nucleolar material forms into thin, sheet-like configurations which are closely associated with small amounts of chromatin and are closely applied to the inner, partially formed layer of the nuclear envelope. It is proposed that nucleolar material is implicated in the formation of the inner layer of the envelope and that there is a configuration of nucleolar material peculiar to this time. The plasmalemma is partially denuded of its fringe-like material during division.

  18. ELECTRON MICROSCOPIC STUDIES OF MITOSIS IN AMEBAE

    PubMed Central

    Roth, L. E.; Obetz, S. W.; Daniels, E. W.

    1960-01-01

    Individual organisms of Amoeba proteus have been fixed in buffered osmium tetroxide in either 0.9 per cent NaCl or 0.01 per cent CaCl2, sectioned, and studied in the electron microscope in interphase and in several stages of mitosis. The helices typical of interphase nuclei do not coexist with condensed chromatin and thus either represent a DNA configuration unique to interphase or are not DNA at all. The membranes of the complex nuclear envelope are present in all stages observed but are discontinuous in metaphase. The inner, thick, honeycomb layer of the nuclear envelope disappears during prophase, reappearing after telophase when nuclear reconstruction is in progress. Nucleoli decrease in size and number during prophase and re-form during telophase in association with the chromatin network. In the early reconstruction nucleus, the nucleolar material forms into thin, sheet-like configurations which are closely associated with small amounts of chromatin and are closely applied to the inner, partially formed layer of the nuclear envelope. It is proposed that nucleolar material is implicated in the formation of the inner layer of the envelope and that there is a configuration of nucleolar material peculiar to this time. The plasmalemma is partially denuded of its fringe-like material during division. PMID:13743845

  19. 48 CFR 19.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... exclusively for small business concerns and shall be set aside for small business unless the contracting...

  20. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells.

    PubMed

    Lewinska, Anna; Adamczyk, Jagoda; Pajak, Justyna; Stoklosa, Sylwia; Kubis, Barbara; Pastuszek, Paulina; Slota, Ewa; Wnuk, Maciej

    2014-09-01

    Curcumin, the major yellow-orange pigment of turmeric derived from the rhizome of Curcuma longa, is a highly pleiotropic molecule with the potential to modulate inflammation, oxidative stress, cell survival, cell secretion, homeostasis and proliferation. Curcumin, at relatively high concentrations, was repeatedly reported to be a potent inducer of apoptosis in cancer cells and thus considered a promising anticancer agent. In the present paper, the effects of low concentrations of curcumin on human cervical cancer (HeLa) cells were studied. We found curcumin-mediated decrease in the cell number and viability, and increase in apoptotic events and superoxide level. In contrast to previously shown curcumin cytotoxicity toward different cervical cancer lines, we observed toxic effects when even as low as 1 μM concentration of curcumin was used. Curcumin was not genotoxic to HeLa cells. Because argyrophilic nucleolar protein (AgNOR protein) expression is elevated in malignant cells compared to normal cells reflecting the rapidity of cancer cell proliferation, we evaluated curcumin-associated changes in size (area) and number of silver deposits. We showed curcumin-induced decrease in AgNOR protein pools, which may be mediated by global DNA hypermethylation observed after low concentration curcumin treatment. In summary, we have shown for the first time that curcumin at low micromolar range may be effective against HeLa cells, which may have implications for curcumin-based treatment of cervical cancer in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Identification of small molecule inhibitors of botulinum neurotoxin serotype E via footprint similarity

    DOE PAGES

    Zhou, Yuchen; McGillick, Brian E.; Teng, Yu-Han Gary; ...

    2016-07-18

    Botulinum neurotoxins (BoNT) are among the most poisonous substances known, and of the 7 serotypes (A–G) identified thus far at least 4 can cause death in humans. Here, the goal of this work was identification of inhibitors that specifically target the light chain catalytic site of the highly pathogenic but lesser-studied E serotype (BoNT/E). Large-scale computational screening, employing the program DOCK, was used to perform atomic-level docking of 1.4 million small molecules to prioritize those making favorable interactions with the BoNT/E site. In particular, ‘footprint similarity’ (FPS) scoring was used to identify compounds that could potentially mimic features on themore » known substrate tetrapeptide RIME. Among 92 compounds purchased and experimentally tested, compound C562-1101 emerged as the most promising hit with an apparent IC 50 value three-fold more potent than that of the first reported BoNT/E small molecule inhibitor NSC-77053. Additional analysis showed the predicted binding pose of C562-1101 was geometrically and energetically stable over an ensemble of structures generated by molecular dynamic simulations and that many of the intended interactions seen with RIME were maintained. Finally, several analogs were also computationally designed and predicted to have further molecular mimicry thereby demonstrating the potential utility of footprint-based scoring protocols to help guide hit refinement.« less

  2. Identification of small molecule inhibitors of botulinum neurotoxin serotype E via footprint similarity.

    PubMed

    Zhou, Yuchen; McGillick, Brian E; Teng, Yu-Han Gary; Haranahalli, Krupanandan; Ojima, Iwao; Swaminathan, Subramanyam; Rizzo, Robert C

    2016-10-15

    Botulinum neurotoxins (BoNT) are among the most poisonous substances known, and of the 7 serotypes (A-G) identified thus far at least 4 can cause death in humans. The goal of this work was identification of inhibitors that specifically target the light chain catalytic site of the highly pathogenic but lesser-studied E serotype (BoNT/E). Large-scale computational screening, employing the program DOCK, was used to perform atomic-level docking of 1.4 million small molecules to prioritize those making favorable interactions with the BoNT/E site. In particular, 'footprint similarity' (FPS) scoring was used to identify compounds that could potentially mimic features on the known substrate tetrapeptide RIME. Among 92 compounds purchased and experimentally tested, compound C562-1101 emerged as the most promising hit with an apparent IC 50 value three-fold more potent than that of the first reported BoNT/E small molecule inhibitor NSC-77053. Additional analysis showed the predicted binding pose of C562-1101 was geometrically and energetically stable over an ensemble of structures generated by molecular dynamic simulations and that many of the intended interactions seen with RIME were maintained. Several analogs were also computationally designed and predicted to have further molecular mimicry thereby demonstrating the potential utility of footprint-based scoring protocols to help guide hit refinement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Identification of small molecule inhibitors of botulinum neurotoxin serotype E via footprint similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuchen; McGillick, Brian E.; Teng, Yu-Han Gary

    Botulinum neurotoxins (BoNT) are among the most poisonous substances known, and of the 7 serotypes (A–G) identified thus far at least 4 can cause death in humans. Here, the goal of this work was identification of inhibitors that specifically target the light chain catalytic site of the highly pathogenic but lesser-studied E serotype (BoNT/E). Large-scale computational screening, employing the program DOCK, was used to perform atomic-level docking of 1.4 million small molecules to prioritize those making favorable interactions with the BoNT/E site. In particular, ‘footprint similarity’ (FPS) scoring was used to identify compounds that could potentially mimic features on themore » known substrate tetrapeptide RIME. Among 92 compounds purchased and experimentally tested, compound C562-1101 emerged as the most promising hit with an apparent IC 50 value three-fold more potent than that of the first reported BoNT/E small molecule inhibitor NSC-77053. Additional analysis showed the predicted binding pose of C562-1101 was geometrically and energetically stable over an ensemble of structures generated by molecular dynamic simulations and that many of the intended interactions seen with RIME were maintained. Finally, several analogs were also computationally designed and predicted to have further molecular mimicry thereby demonstrating the potential utility of footprint-based scoring protocols to help guide hit refinement.« less

  4. The Papillomavirus E2 proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Alison A., E-mail: amcbride@nih.gov

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses.more » • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.« less

  5. 16 CFR 1020.2 - What is the definition of “small business”?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...? 1020.2 Section 1020.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL SMALL BUSINESS § 1020.2 What is the definition of “small business”? As used in this part, the term small business means any entity that is either a small business, small organization, or small governmental jurisdiction, as...

  6. 16 CFR 1020.2 - What is the definition of “small business”?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...? 1020.2 Section 1020.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL SMALL BUSINESS § 1020.2 What is the definition of “small business”? As used in this part, the term small business means any entity that is either a small business, small organization, or small governmental jurisdiction, as...

  7. 16 CFR 1020.2 - What is the definition of “small business”?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...? 1020.2 Section 1020.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL SMALL BUSINESS § 1020.2 What is the definition of “small business”? As used in this part, the term small business means any entity that is either a small business, small organization, or small governmental jurisdiction, as...

  8. 32 CFR 241.10 - Small business consideration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Small business consideration. 241.10 Section 241...) MISCELLANEOUS PILOT PROGRAM FOR TEMPORARY EXCHANGE OF INFORMATION TECHNOLOGY PERSONNEL § 241.10 Small business... each year, at least 20 percent are from small business concerns (as defined by 5 U.S.C. 3703(e)(2)(A...

  9. 32 CFR 241.10 - Small business consideration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Small business consideration. 241.10 Section 241...) MISCELLANEOUS PILOT PROGRAM FOR TEMPORARY EXCHANGE OF INFORMATION TECHNOLOGY PERSONNEL § 241.10 Small business... each year, at least 20 percent are from small business concerns (as defined by 5 U.S.C. 3703(e)(2)(A...

  10. 32 CFR 241.10 - Small business consideration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Small business consideration. 241.10 Section 241...) MISCELLANEOUS PILOT PROGRAM FOR TEMPORARY EXCHANGE OF INFORMATION TECHNOLOGY PERSONNEL § 241.10 Small business... assignments made each year, at least 20 percent are small business concerns (as defined by 5 U.S.C. 3703(e)(2...

  11. 48 CFR 5119.1070-2 - Emerging small business set-aside.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Emerging small business... ARMY ACQUISITION REGULATIONS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Small Business Competitiveness Demonstration Program 5119.1070-2 Emerging small business set-aside. (a)(S-90) Solicitations for...

  12. 48 CFR 5119.1070-2 - Emerging small business set-aside.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Emerging small business... ARMY ACQUISITION REGULATIONS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Small Business Competitiveness Demonstration Program 5119.1070-2 Emerging small business set-aside. (a)(S-90) Solicitations for...

  13. 48 CFR 5119.1070-2 - Emerging small business set-aside.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Emerging small business... ARMY ACQUISITION REGULATIONS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Small Business Competitiveness Demonstration Program 5119.1070-2 Emerging small business set-aside. (a)(S-90) Solicitations for...

  14. 48 CFR 5119.1070-2 - Emerging small business set-aside.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Emerging small business... ARMY ACQUISITION REGULATIONS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Small Business Competitiveness Demonstration Program 5119.1070-2 Emerging small business set-aside. (a)(S-90) Solicitations for...

  15. 48 CFR 5119.1070-2 - Emerging small business set-aside.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Emerging small business set... ACQUISITION REGULATIONS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Small Business Competitiveness Demonstration Program 5119.1070-2 Emerging small business set-aside. (a)(S-90) Solicitations for...

  16. Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2-related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning.

    PubMed

    Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong

    2017-03-01

    The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch

  17. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution.

    PubMed

    Iglesias-Ara, A; Zenarruzabeitia, O; Buelta, L; Merino, J; Zubiaga, A M

    2015-10-01

    Tissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis. We show that pancreas atrophy in E2F1/E2F2 double-knockout (DKO) mice is associated with mitochondrial apoptosis and activation of the p53 pathway in young animals, before the development of diabetes. A deregulated expression of E2F target genes was detected in pancreatic cells of young DKO animals, along with unscheduled DNA replication and activation of a DNA damage response. Importantly, suppression of DNA replication in vivo with aphidicolin led to a significant inhibition of the p53 pathway in DKO pancreas, implying a causal link between DNA replication stress and p53 activation in this model. We further show that activation of the p53 pathway has a key role in the aberrant phenotype of DKO mice, since targeted inactivation of p53 gene abrogated cellular apoptosis and prevented organ involution and insulin-dependent diabetes in mice lacking E2F1/E2F2. Unexpectedly, p53 inactivation unmasked oncogenic features of E2F1/E2F2-depleted cells, as evidenced by an accelerated tumor development in triple-knockout mice compared with p53(-/-) mice. Collectively, our data reveal a role for E2F1 and E2F2 as suppressors of replicative stress in differentiating cells, and uncover the existence of a robust E2F-p53 regulatory axis to enable tissue homeostasis and prevent tumorigenesis. These findings have implications in the design of approaches targeting E2F for cancer therapy.

  18. 48 CFR 19.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...

  19. 48 CFR 19.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...

  20. 48 CFR 19.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...

  1. 48 CFR 819.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 819.502-2 Total small business set-asides. (a) When a total small business set-aside is made, one of the following statements, as applicable...

  2. 48 CFR 819.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 819.502-2 Total small business set-asides. (a) When a total small business set-aside is made, one of the following statements, as applicable...

  3. 48 CFR 819.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 819.502-2 Total small business set-asides. (a) When a total small business set-aside is made, one of the following statements, as applicable...

  4. 48 CFR 819.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 819.502-2 Total small business set-asides. (a) When a total small business set-aside is made, one of the following statements, as applicable...

  5. 48 CFR 819.502-2 - Total small business set-asides.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 819.502-2 Total small business set-asides. (a) When a total small business set-aside is made, one of the following statements, as applicable...

  6. SerpinE2, a poor biomarker of endometrial cancer, promotes the proliferation and mobility of EC cells.

    PubMed

    Shen, Yuan; Wang, Xiaoyu; Xu, Jianping; Lu, Lin

    2017-07-04

    The SerpinE2 pathway is evolutionarily conserved and plays an important role in tumorigenesis. SerpinE2 (a small ubiquitin-related modifier), like ubiquitin, conjugates SerpinE2 proteins onto lysine residues of target proteins. SerpinE2 over-expression has been found in several tumors. Here, we detected the level of SerpinE2 in 72 samples of EC tissue using immunohistochemistry to assess the role of SerpinE2 in EC prognosis. Meanwhile, we knocked down SerpinE2 by siRNA in the HTB-111 and Ishikawa EC cell lines and analyzed the viability and mobility change using an MTT assay, an annexin V/PI apoptosis assay, a wound scratch test and a transwell assay. A Kaplan-Meier analysis indicated a negative correlation between the level of SerpinE2 and the EC prognosis. Silencing SerpinE2 induced cell apoptosis and reduced the migration ability. Our data suggest SerpinE2 works as an oncogene in EC.

  7. DOE-2 sample run book: Version 2.1E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkelmann, F.C.; Birdsall, B.E.; Buhl, W.F.

    1993-11-01

    The DOE-2 Sample Run Book shows inputs and outputs for a variety of building and system types. The samples start with a simple structure and continue to a high-rise office building, a medical building, three small office buildings, a bar/lounge, a single-family residence, a small office building with daylighting, a single family residence with an attached sunspace, a ``parameterized`` building using input macros, and a metric input/output example. All of the samples use Chicago TRY weather. The main purpose of the Sample Run Book is instructional. It shows the relationship of LOADS-SYSTEMS-PLANT-ECONOMICS inputs, displays various input styles, and illustrates manymore » of the basic and advanced features of the program. Many of the sample runs are preceded by a sketch of the building showing its general appearance and the zoning used in the input. In some cases we also show a 3-D rendering of the building as produced by the program DrawBDL. Descriptive material has been added as comments in the input itself. We find that a number of users have loaded these samples onto their editing systems and use them as ``templates`` for creating new inputs. Another way of using them would be to store various portions as files that can be read into the input using the {number_sign}{number_sign} include command, which is part of the Input Macro feature introduced in version DOE-2.lD. Note that the energy rate structures here are the same as in the DOE-2.lD samples, but have been rewritten using the new DOE-2.lE commands and keywords for ECONOMICS. The samples contained in this report are the same as those found on the DOE-2 release files. However, the output numbers that appear here may differ slightly from those obtained from the release files. The output on the release files can be used as a check set to compare results on your computer.« less

  8. Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice

    PubMed Central

    Hansson, M; Abedi-Valugerdi, M

    2003-01-01

    Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692

  9. Transannular E···E' Interactions in Neutral, Radical Cationic, and Dicationic Forms of cyclo-[E(CH2CH2CH2)2E'] (E, E' = S, Se, Te, and O) with Structural Feature: Dynamic and Static Behavior of E···E' Elucidated by QTAIM Dual Functional Analysis.

    PubMed

    Hayashi, Satoko; Matsuiwa, Kohei; Nishizawa, Nozomu; Nakanishi, Waro

    2015-12-18

    The nature of the transannular E-∗-E' interactions in neutral, radical cationic, and dicationic forms of cyclo-E(CH2CH2CH2)2E' (1) (E, E' = S, Se, Te, and O) (1, 1(•+), and 1(2+), respectively) is elucidated by applying QTAIM dual functional analysis (QTAIM-DFA). Hb(rc) are plotted versus Hb(rc) - Vb(rc)/2 for the data of E-∗-E' at BCPs in QTAIM-DFA, where ∗ emphasizes the existence of BCP. Plots for the fully optimized structures are analyzed by the polar coordinate (R, θ) representation. Those containing the perturbed structures are by (θp, κp): θp corresponds to the tangent line of the plot, and κp is the curvature. While (R, θ) describes the static nature, (θp, κp) represents the dynamic nature of interactions. The nature is well-specified by (R, θ) and (θp, κp). E-∗-E' becomes stronger in the order of 1 < 1(•+) < 1(2+), except for O-∗-O. While E-∗-E' (E, E' = S, Se, and Te) in 1(2+) are characterized as weak covalent bonds, except for S-∗-Te (MC nature through CT) and Se-∗-Te (TBP nature through CT), O-∗-E' seems more complex. The behavior of E-∗-E' in 1(2+) is very close to that of cyclo-E(CH2CH2CH2)E' (E, E' = S, Se, Te, and O), except for O-∗-O.

  10. Ellagic Acid-Changed Epigenome of Ribosomal Genes and Condensed RPA194-Positive Regions of Nucleoli in Tumour Cells.

    PubMed

    Legartová, S; Sbardella, G; Kozubek, S; Bártová, E

    2015-01-01

    We studied the effect of ellagic acid (EA) on the morphology of nucleoli and on the pattern of major proteins of the nucleolus. After EA treatment of HeLa cells, we observed condensation of nucleoli as documented by the pattern of argyrophilic nucleolar organizer regions (AgNORs). EA also induced condensation of RPA194-positive nucleolar regions, but no morphological changes were observed in nucleolar compartments positive for UBF1/2 proteins or fibrillarin. Studied morphological changes induced by EA were compared with the morphology of control, non-treated cells and with pronounced condensation of all nucleolar domains caused by actinomycin D (ACT-D) treatment. Similarly as ACT-D, but in a lesser extent, EA induced an increased number of 53BP1-positive DNA lesions. However, the main marker of DNA lesions, γH2AX, was not accumulated in body-like nuclear structures. An increased level of γH2AX was found by immunofluorescence and Western blots only after EA treatment. Intriguingly, the levels of fibrillarin, UBF1/2 and γH2AX were increased at the promoters of ribosomal genes, while 53BP1 and CARM1 levels were decreased by EA treatment at these genomic regions. In the entire genome, EA reduced H3R17 dimethylation. Taken together, ellagic acid is capable of significantly changing the nucleolar morphology and protein levels inside the nucleolus.

  11. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution

    PubMed Central

    Iglesias-Ara, A; Zenarruzabeitia, O; Buelta, L; Merino, J; Zubiaga, A M

    2015-01-01

    Tissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis. We show that pancreas atrophy in E2F1/E2F2 double-knockout (DKO) mice is associated with mitochondrial apoptosis and activation of the p53 pathway in young animals, before the development of diabetes. A deregulated expression of E2F target genes was detected in pancreatic cells of young DKO animals, along with unscheduled DNA replication and activation of a DNA damage response. Importantly, suppression of DNA replication in vivo with aphidicolin led to a significant inhibition of the p53 pathway in DKO pancreas, implying a causal link between DNA replication stress and p53 activation in this model. We further show that activation of the p53 pathway has a key role in the aberrant phenotype of DKO mice, since targeted inactivation of p53 gene abrogated cellular apoptosis and prevented organ involution and insulin-dependent diabetes in mice lacking E2F1/E2F2. Unexpectedly, p53 inactivation unmasked oncogenic features of E2F1/E2F2-depleted cells, as evidenced by an accelerated tumor development in triple-knockout mice compared with p53−/− mice. Collectively, our data reveal a role for E2F1 and E2F2 as suppressors of replicative stress in differentiating cells, and uncover the existence of a robust E2F-p53 regulatory axis to enable tissue homeostasis and prevent tumorigenesis. These findings have implications in the design of approaches targeting E2F for cancer therapy. PMID:25656653

  12. The Epigenetic Factor KDM2B Regulates EMT and Small GTPases in Colon Tumor Cells.

    PubMed

    Zacharopoulou, Nefeli; Tsapara, Anna; Kallergi, Galatea; Schmid, Evi; Alkahtani, Saad; Alarifi, Saud; Tsichlis, Philip N; Kampranis, Sotirios C; Stournaras, Christos

    2018-05-14

    The epigenetic factor KDM2B is a histone demethylase expressed in various tumors. Recently, we have shown that KDM2B regulates actin cytoskeleton organization, small Rho GTPases signaling, cell-cell adhesion and migration of prostate tumor cells. In the present study, we addressed its role in regulating EMT and small GTPases expression in colon tumor cells. We used RT-PCR for the transcriptional analysis of various genes, Western blotting for the assessment of protein expression and immunofluorescence microscopy for visualization of fluorescently labeled proteins. We report here that KDM2B regulates EZH2 and BMI1 in HCT116 colon tumor cells. Knockdown of this epigenetic factor induced potent up-regulation of the protein levels of the epithelial markers E-cadherin and ZO-1, while the mesenchymal marker N-cadherin was downregulated. On the other hand, KDM2B overexpression downregulated the levels of both epithelial markers and upregulated the mesenchymal marker, suggesting control of EMT by KDM2B. In addition, RhoA, RhoB and RhoC protein levels diminished upon KDM2B-knockdown, while all three small GTPases became upregulated in KDM2B-overexpressing HCT116 cell clones. Interestingly, Rac1 GTPase level increased upon KDM2B-knockdown and diminished in KDM2B-overexpressing HCT116 colon tumor- and DU-145 prostate cancer cells. These results establish a clear functional role of the epigenetic factor KDM2B in the regulation of EMT and small-GTPases expression in colon tumor cells and further support the recently postulated oncogenic role of this histone demethylase in various tumors. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Involvement of aryl hydrocarbon receptor signaling in the development of small cell lung cancer induced by HPV E6/E7 oncoproteins

    PubMed Central

    2011-01-01

    Background Lung cancers consist of four major types that and for clinical-pathological reasons are often divided into two broad categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). All major histological types of lung cancer are associated with smoking, although the association is stronger for SCLC and squamous cell carcinoma than adenocarcinoma. To date, epidemiological studies have identified several environmental, genetic, hormonal and viral factors associated with lung cancer risk. It has been estimated that 15-25% of human cancers may have a viral etiology. The human papillomavirus (HPV) is a proven cause of most human cervical cancers, and might have a role in other malignancies including vulva, skin, oesophagus, head and neck cancer. HPV has also been speculated to have a role in the pathogenesis of lung cancer. To validate the hypothesis of HPV involvement in small cell lung cancer pathogenesis we performed a gene expression profile of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins. Methods Gene expression profile of SCLC has been performed using Agilent whole mouse genome (4 × 44k) representing ~ 41000 genes and mouse transcripts. Samples were obtained from two HPV16-E6/E7 transgenic mouse models and from littermate's normal lung. Data analyses were performed using GeneSpring 10 and the functional classification of deregulated genes was performed using Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com). Results Analysis of deregulated genes induced by the expression of E6/E7 oncoproteins supports the hypothesis of a linkage between HPV infection and SCLC development. As a matter of fact, comparison of deregulated genes in our system and those in human SCLC showed that many of them are located in the Aryl Hydrocarbon Receptor Signal transduction pathway. Conclusions In this study, the global gene expression of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins led us

  14. Role of eIF2α Kinases in Translational Control and Adaptation to Cellular Stress.

    PubMed

    Wek, Ronald C

    2018-02-12

    A central mechanism regulating translation initiation in response to environmental stress involves phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α causes inhibition of global translation, which conserves energy and facilitates reprogramming of gene expression and signaling pathways that help to restore protein homeostasis. Coincident with repression of protein synthesis, many gene transcripts involved in the stress response are not affected or are even preferentially translated in response to increased eIF2α phosphorylation by mechanisms involving upstream open reading frames (uORFs). This review highlights the mechanisms regulating eIF2α kinases, the role that uORFs play in translational control, and the impact that alteration of eIF2α phosphorylation by gene mutations or small molecule inhibitors can have on health and disease. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase.

    PubMed

    Hizli, Asli A; Chi, Yong; Swanger, Jherek; Carter, John H; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G; Clurman, Bruce E

    2013-02-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A-cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity.

  16. 16 CFR 1020.2 - What is the definition of “small business”?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false What is the definition of âsmall businessâ? 1020.2 Section 1020.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL SMALL BUSINESS § 1020.2 What is the definition of “small business”? As used in this part, the term small business means...

  17. Phosphorylation of Eukaryotic Elongation Factor 2 (eEF2) by Cyclin A–Cyclin-Dependent Kinase 2 Regulates Its Inhibition by eEF2 Kinase

    PubMed Central

    Hizli, Asli A.; Chi, Yong; Swanger, Jherek; Carter, John H.; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G.

    2013-01-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A–cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity. PMID:23184662

  18. "Small Steps, Big Rewards": You Can Prevent Type 2 Diabetes

    MedlinePlus

    ... Home Current Issue Past Issues Special Section "Small Steps, Big Rewards": You Can Prevent Type 2 Diabetes ... onset. Those are the basic facts of "Small Steps. Big Rewards: Prevent type 2 Diabetes," created by ...

  19. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells.

    PubMed

    Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás

    2015-01-01

    E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.

  20. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells

    PubMed Central

    Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás

    2015-01-01

    E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. PMID:25892555

  1. Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops

    PubMed Central

    Sun, Hong; De Hoyos, Cheryl L.; Bailey, Jeffrey K.; Liang, Xue-hai; Crooke, Stanley T.

    2017-01-01

    Abstract An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops. PMID:28977560

  2. RNA content in the nucleolus alters p53 acetylation via MYBBP1A

    PubMed Central

    Kuroda, Takao; Murayama, Akiko; Katagiri, Naohiro; Ohta, Yu-mi; Fujita, Etsuko; Masumoto, Hiroshi; Ema, Masatsugu; Takahashi, Satoru; Kimura, Keiji; Yanagisawa, Junn

    2011-01-01

    A number of external and internal insults disrupt nucleolar structure, and the resulting nucleolar stress stabilizes and activates p53. We show here that nucleolar disruption induces acetylation and accumulation of p53 without phosphorylation. We identified three nucleolar proteins, MYBBP1A, RPL5, and RPL11, involved in p53 acetylation and accumulation. MYBBP1A was tethered to the nucleolus through nucleolar RNA. When rRNA transcription was suppressed by nucleolar stress, MYBBP1A translocated to the nucleoplasm and facilitated p53–p300 interaction to enhance p53 acetylation. We also found that RPL5 and RPL11 were required for rRNA export from the nucleolus. Depletion of RPL5 or RPL11 blocked rRNA export and counteracted reduction of nucleolar RNA levels caused by inhibition of rRNA transcription. As a result, RPL5 or RPL11 depletion inhibited MYBBP1A translocation and p53 activation. Our observations indicated that a dynamic equilibrium between RNA generation and export regulated nucleolar RNA content. Perturbation of this balance by nucleolar stress altered the nucleolar RNA content and modulated p53 activity. PMID:21297583

  3. 17 CFR 402.2e - Appendix E-Temporary minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Appendix E-Temporary minimum requirements. 402.2e Section 402.2e Commodity and Securities Exchanges DEPARTMENT OF THE TREASURY REGULATIONS UNDER SECTION 15C OF THE SECURITIES EXCHANGE ACT OF 1934 FINANCIAL RESPONSIBILITY § 402.2e Appendix E...

  4. 17 CFR 402.2e - Appendix E-Temporary minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Appendix E-Temporary minimum requirements. 402.2e Section 402.2e Commodity and Securities Exchanges DEPARTMENT OF THE TREASURY REGULATIONS UNDER SECTION 15C OF THE SECURITIES EXCHANGE ACT OF 1934 FINANCIAL RESPONSIBILITY § 402.2e Appendix E...

  5. 17 CFR 402.2e - Appendix E-Temporary minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Appendix E-Temporary minimum requirements. 402.2e Section 402.2e Commodity and Securities Exchanges DEPARTMENT OF THE TREASURY REGULATIONS UNDER SECTION 15C OF THE SECURITIES EXCHANGE ACT OF 1934 FINANCIAL RESPONSIBILITY § 402.2e Appendix E...

  6. 17 CFR 402.2e - Appendix E-Temporary minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Appendix E-Temporary minimum requirements. 402.2e Section 402.2e Commodity and Securities Exchanges DEPARTMENT OF THE TREASURY REGULATIONS UNDER SECTION 15C OF THE SECURITIES EXCHANGE ACT OF 1934 FINANCIAL RESPONSIBILITY § 402.2e Appendix E...

  7. 17 CFR 402.2e - Appendix E-Temporary minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Appendix E-Temporary minimum requirements. 402.2e Section 402.2e Commodity and Securities Exchanges DEPARTMENT OF THE TREASURY REGULATIONS UNDER SECTION 15C OF THE SECURITIES EXCHANGE ACT OF 1934 FINANCIAL RESPONSIBILITY § 402.2e Appendix E...

  8. 75 FR 14607 - Small Entity Compliance Guide: Bottled Water: Total Coliform and E. coli

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0141] Small Entity Compliance Guide: Bottled Water: Total Coliform and E. coli; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing...

  9. Enumeration of small collections violates Weber's law.

    PubMed

    Choo, H; Franconeri, S L

    2014-02-01

    In a phenomenon called subitizing, we can immediately generate exact counts of small collections (one to three objects), in contrast to larger collections, for which we must either create rough estimates or serially count. A parsimonious explanation for this advantage for small collections is that noisy representations of small collections are more tolerable, due to the larger relative differences between consecutive numbers (e.g., 2 vs. 3 is a 50 % increase, but 10 vs. 11 is only a 10 % increase). In contrast, the advantage could stem from the fact that small-collection enumeration is more precise, relying on a unique mechanism. Here, we present two experiments that conclusively showed that the enumeration of small collections is indeed "superprecise." Participants compared numerosity within either small or large visual collections in conditions in which the relative differences were controlled (e.g., performance for 2 vs. 3 was compared with performance for 20 vs. 30). Small-number comparison was still faster and more accurate, across both "more-fewer" judgments (Exp. 1), and "same-different" judgments (Exp. 2). We then reviewed the remaining potential mechanisms that might underlie this superprecision for small collections, including the greater diagnostic value of visual features that correlate with number and a limited capacity for visually individuating objects.

  10. Flux-periodicity crossover from h/2e to h/e in aluminium nano-loops

    NASA Astrophysics Data System (ADS)

    Espy, C.; Sharon, O. J.; Braun, J.; Garreis, R.; Strigl, F.; Shaulov, A.; Leiderer, P.; Scheer, E.; Yeshurun, Y.

    2018-03-01

    We study the magnetoresistance of aluminium ‘double-networks’ formed by connecting the vertexes of nano-loops with relatively long wires, creating two interlaced subnetworks of small and large loops (SL and LL, respectively). Far below the critical temperature, Aharonov-Bohm like quantum interference effects are observed for both the LL and the SL subnetworks. When approaching T c, both exhibit the usual Little-Parks oscillations, with periodicity of the superconducting flux quantum Φ 0 =h/2e. For one sample, with a relatively large coherence length, ξ, at temperatures very close to T c, the Φ 0 periodicity of the SL disappears, and the waveform of the first period is consistent with that predicted recently for loops with a size a < ξ, indicating a crossover to 2Φ 0 periodicity.

  11. Lubiprostone Increases Small Intestinal Smooth Muscle Contractions Through a Prostaglandin E Receptor 1 (EP1)-mediated Pathway.

    PubMed

    Chan, Walter W; Mashimo, Hiroshi

    2013-07-01

    Lubiprostone, a chloride channel type 2 (ClC-2) activator, was thought to treat constipation by enhancing intestinal secretion. It has been associated with increased intestinal transit and delayed gastric emptying. Structurally similar to prostones with up to 54% prostaglandin E2 activity on prostaglandin E receptor 1 (EP1), lubiprostone may also exert EP1-mediated procontractile effect on intestinal smooth muscles. We investigated lubiprostone's effects on intestinal smooth muscle contractions and pyloric sphincter tone. Isolated murine small intestinal (longitudinal and circular) and pyloric tissues were mounted in organ baths with modified Krebs solution for isometric recording. Basal muscle tension and response to electrical field stimulation (EFS; 2 ms pulses/10 V/6 Hz/30 sec train) were measured with lubiprostone (10(-10)-10(-5) M) ± EP1 antagonist. Significance was established using Student t test and P < 0.05. Lubiprostone had no effect on the basal tension or EFS-induced contractions of longitudinal muscles. With circular muscles, lubiprostone caused a dose-dependent increase in EFS-induced contractions (2.11 ± 0.88 to 4.43 ± 1.38 N/g, P = 0.020) that was inhibited by pretreatment with EP1 antagonist (1.69 ± 0.70 vs. 4.43 ± 1.38 N/g, P = 0.030). Lubiprostone had no effect on circular muscle basal tension, but it induced a dose-dependent increase in pyloric basal tone (1.07 ± 0.01 to 1.97 ± 0.86 fold increase, P < 0.05) that was inhibited by EP1 antagonist. In mice, lubiprostone caused a dose-dependent and EP1-mediated increase in contractility of circular but not longitudinal small intestinal smooth muscles, and in basal tone of the pylorus. These findings suggest another mechanism for lubiprostone's observed clinical effects on gastrointestinal motility.

  12. Ternary chalcogenides C s 2 Z n 3 S e 4 and C s 2 Z n 3 T e 4 : Potential p -type transparent conducting materials

    DOE PAGES

    Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; ...

    2014-11-11

    Here we report prediction of two new ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these previously unknown compounds, Cs 2Zn 3Ch 4 (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs 2Zn 3Se 4 and Cs 2Zn 3Te 4 are calculated to assess the viability of these materials as p-type TCMs. Cs 2Zn 3Se 4 and Cs 2Zn 3Te 4, which are stable under ambient air, displaymore » large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have small hole effective masses (0.5-0.77 m e) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Lastly, non-equilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.« less

  13. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice.

    PubMed

    d'Uscio, Livius V; Smith, Leslie A; Katusic, Zvonimir S

    2011-12-01

    In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.

  14. 16 CFR § 1020.2 - What is the definition of “small business”?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...? § 1020.2 Section § 1020.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL SMALL BUSINESS § 1020.2 What is the definition of “small business”? As used in this part, the term small business means any entity that is either a small business, small organization, or small governmental jurisdiction...

  15. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  16. Inverse size scaling of the nucleolus by a concentration-dependent phase transition.

    PubMed

    Weber, Stephanie C; Brangwynne, Clifford P

    2015-03-02

    Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate.

    PubMed

    Guo, Charles C; Dancer, Jane Y; Wang, Yan; Aparicio, Ana; Navone, Nora M; Troncoso, Patricia; Czerniak, Bogdan A

    2011-01-01

    Recent studies have shown that most prostate cancers carry the TMPRSS2-ERG gene fusion. Here we evaluated the TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate (n = 12) in comparison with small cell carcinoma of the urinary bladder (n = 12) and lung (n = 11). Fluorescence in situ hybridization demonstrated rearrangement of the ERG gene in 8 cases of prostatic small cell carcinoma (67%), and the rearrangement was associated with deletion of the 5' ERG gene in 7 cases, but rearrangement of the ERG gene was not present in any small cell carcinoma of the urinary bladder or lung. Next we evaluated the TMPRSS2-ERG gene fusion in nude mouse xenografts that were derived from 2 prostatic small cell carcinomas carrying the TMPRSS2-ERG gene fusion. Two transcripts encoded by the TMPRSS2-ERG gene fusion were detected by reverse transcriptase polymerase chain reaction, and DNA sequencing demonstrated that the 2 transcripts were composed of fusions of exon 1 of the TMPRSS2 gene to exon 4 or 5 of the ERG gene. Our study demonstrates the specific presence of TMPRSS2-ERG gene fusion in prostatic small cell carcinoma, which may be helpful in distinguishing small cell carcinoma of prostatic origin from nonprostatic origins. The high prevalence of the TMPRSS2-ERG gene fusion in prostatic small cell carcinoma as well as adenocarcinoma implies that small cell carcinoma may share a common pathogenic pathway with adenocarcinoma in the prostate. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.

    2008-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicatedmore » that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.« less

  19. Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli

    PubMed Central

    Åberg, Veronica; Das, Pralay; Chorell, Erik; Hedenström, Mattias; Pinkner, Jerome S.; Hultgren, Scott J.; Almqvist, Fredrik

    2009-01-01

    Ring-fused 2-pyridones, termed pilicides, are small synthetic compounds that inhibit pilus assembly in uropathogenic E. coli. Their biological activity is clearly dependent upon a carboxylic acid functionality. Here we present the synthesis and biological evaluation of carboxylic acid isosteres, including e.g. tetrazoles, acyl sulfonamides and hydroxamic acids, of two lead 2-pyridones. Two independent biological evaluations show that acyl sulfonamides and tetrazoles significantly improve pilicide activity against uropathogenic E. coli. PMID:18499455

  20. RNA polymerase I transcription in a Brassica interspecific hybrid and its progenitors: Tests of transcription factor involvement in nucleolar dominance.

    PubMed Central

    Frieman, M; Chen, Z J; Saez-Vasquez, J; Shen, L A; Pikaard, C S

    1999-01-01

    In interspecific hybrids or allopolyploids, often one parental set of ribosomal RNA genes is transcribed and the other is silent, an epigenetic phenomenon known as nucleolar dominance. Silencing is enforced by cytosine methylation and histone deacetylation, but the initial discrimination mechanism is unknown. One hypothesis is that a species-specific transcription factor is inactivated, thereby silencing one set of rRNA genes. Another is that dominant rRNA genes have higher binding affinities for limiting transcription factors. A third suggests that selective methylation of underdominant rRNA genes blocks transcription factor binding. We tested these hypotheses using Brassica napus (canola), an allotetraploid derived from B. rapa and B. oleracea in which only B. rapa rRNA genes are transcribed. B. oleracea and B. rapa rRNA genes were active when transfected into protoplasts of the other species, which argues against the species-specific transcription factor model. B. oleracea and B. rapa rRNA genes also competed equally for the pol I transcription machinery in vitro and in vivo. Cytosine methylation had no effect on rRNA gene transcription in vitro, which suggests that transcription factor binding was unimpaired. These data are inconsistent with the prevailing models and point to discrimination mechanisms that are likely to act at a chromosomal level. PMID:10224274

  1. A new link between stress response and nucleolar function during pollen development in Arabidopsis mediated by AtREN1 protein.

    PubMed

    Reňák, David; Gibalová, Antónia; Solcová, Katarzyna; Honys, David

    2014-03-01

    Heat shock transcription factors (Hsfs) are involved in multiple aspects of stress response and plant growth. However, their role during male gametophyte development is largely unknown, although the generative phase is the most sensitive and critical period in the plant life cycle. Based on a wide screen of T-DNA mutant lines, we identified the atren1 mutation (restricted to nucleolus1) in early male gametophytic gene At1g77570, which has the closest homology to HSFA5 gene, the member of a heat shock transcription factor (HSF) gene family. The mutation causes multiple defects in male gametophyte development in both structure and function. Because the mutation disrupts an early acting (AtREN1) gene, these pollen phenotype abnormalities appear from bicellular pollen stage to pollen maturation. Moreover, the consequent progamic phase is compromised as well as documented by pollen germination defects and limited transmission via male gametophyte. In addition, atren1/- plants are defective in heat stress (HS) response and produce notably higher proportion of aberrant pollen grains. AtREN1 protein is targeted specifically to the nucleolus that, together with the increased size of the nucleolus in atren1 pollen, suggests that it is likely to be involved in ribosomal RNA biogenesis or other nucleolar functions. © 2013 John Wiley & Sons Ltd.

  2. 26 CFR 1.50B-2 - Electing small business corporations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Electing small business corporations. 1.50B-2... business corporations. (a) General rule—(1) In general. In the case of an electing small business... be apportioned separately. In determining who are shareholders of an electing small business...

  3. 26 CFR 1.50B-2 - Electing small business corporations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Electing small business corporations. 1.50B-2... business corporations. (a) General rule—(1) In general. In the case of an electing small business... be apportioned separately. In determining who are shareholders of an electing small business...

  4. Trivalent uranium phenylchalcogenide complexes: exploring the bonding and reactivity with CS2 in the Tp*2UEPh series (E = O, S, Se, Te).

    PubMed

    Matson, Ellen M; Breshears, Andrew T; Kiernicki, John J; Newell, Brian S; Fanwick, Phillip E; Shores, Matthew P; Walensky, Justin R; Bart, Suzanne C

    2014-12-15

    The trivalent uranium phenylchalcogenide series, Tp*2UEPh (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate, E = O (1), S (2), Se (3), Te (4)), has been synthesized to investigate the nature of the U-E bond. All compounds have been characterized by (1)H NMR, infrared and electronic absorption spectroscopies, and in the case of 4, X-ray crystallography. Compound 4 was also studied by SQUID magnetometry. Computational studies establish Mulliken spin densities for the uranium centers ranging from 3.005 to 3.027 (B3LYP), consistent for uranium-chalcogenide bonds that are primarily ionic in nature, with a small covalent contribution. The reactivity of 2-4 toward carbon disulfide was also investigated and showed reversible CS2 insertion into the U(III)-E bond, forming Tp*2U(κ(2)-S2CEPh) (E = S (5), Se (6), Te (7)). Compound 5 was characterized crystallographically.

  5. Long noncoding RNA SNHG1 promotes non-small cell lung cancer progression by up-regulating MTDH via sponging miR-145-5p.

    PubMed

    Lu, Qingchun; Shan, Shan; Li, Yanyan; Zhu, Dongyi; Jin, Wenjing; Ren, Tao

    2018-02-21

    Long noncoding RNAs participate in the progression and initiation of non-small cell lung cancer (NSCLC), although the mechanism remains unknown. The lncRNA identified as small nucleolar RNA host gene 1 ( SNHG1) is a novel lncRNA that is increased in multiple human cancers; however, the regulatory mechanism requires further investigation. In this study, we discovered that SNHG1 was markedly up-regulated in NSCLC tissues and cells and that SNHG1 silencing decreased tumor volumes. Moreover, we explored its regulatory mechanism and found that SNHG1 directly bound to microRNA (miRNA)-145-5p, isolating miR-145-5p from its target gene MTDH. Inhibition of SNHG1 suppressed NSCLC cell viability, proliferation, migration, and invasion in vitro, but its effect was rescued by miR-145-5p inhibition. These results demonstrate that SNHG1 contributes to NSCLC progression by modulating the miR-145-5p/ MTDH axis, and it could potentially be a therapeutic target as well as a diagnostic marker.-Lu, Q., Shan, S., Li, Y., Zhu, D., Jin, W., Ren, T. Long noncoding RNA SNHG1 promotes non-small cell lung cancer progression by up-regulating MTDH via sponging miR-145-5p.

  6. E-precision agriculture for small scale cash crops in Tobasa regency

    NASA Astrophysics Data System (ADS)

    Putra Simanjuntak, Panca; Tiurniari Napitupulu, Pangeran; Pratama Silalahi, Soni; Kisno; Pasaribu, Norlina; Valešová, Libuše

    2017-09-01

    Cash crop is a promising sector in Tobasa regency; however, the trend showed a negative change of the cash crop production in. This research aims to develop an application which is based on Arduino for watering and fertilizing corn land. The result of using e-precision agriculture based on embedded system is 100% higher than the conventional one and the risk of harvesting failure using the embedded system decreased to 50%. Embedded system in this study acquired critical environment measurements which at last affected the yield raising and risk reduction. As the result, the use of e-precision agriculture provided a framework to be used by different stakeholders to implement e-agriculture platform that supports marketing of agricultural production since the system is proven to save the material and time which finally reduces the risk of harvesting failure and increases the yield. In other words, the system is able to economize the use of water and fertilizer on a small corn land. The system will be developed for more efficiency in material loss and the mobile-based application development to reach sustainable rural development particularly for cash-crop farmers.

  7. Oasis 2: improved online analysis of small RNA-seq data.

    PubMed

    Rahman, Raza-Ur; Gautam, Abhivyakti; Bethune, Jörn; Sattar, Abdul; Fiosins, Maksims; Magruder, Daniel Sumner; Capece, Vincenzo; Shomroni, Orr; Bonn, Stefan

    2018-02-14

    Small RNA molecules play important roles in many biological processes and their dysregulation or dysfunction can cause disease. The current method of choice for genome-wide sRNA expression profiling is deep sequencing. Here we present Oasis 2, which is a new main release of the Oasis web application for the detection, differential expression, and classification of small RNAs in deep sequencing data. Compared to its predecessor Oasis, Oasis 2 features a novel and speed-optimized sRNA detection module that supports the identification of small RNAs in any organism with higher accuracy. Next to the improved detection of small RNAs in a target organism, the software now also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected samples. In addition, novel miRNAs can now be queried and visualized interactively, providing essential information for over 700 high-quality miRNA predictions across 14 organisms. Robust biomarker signatures can now be obtained using the novel enhanced classification module. Oasis 2 enables biologists and medical researchers to rapidly analyze and query small RNA deep sequencing data with improved precision, recall, and speed, in an interactive and user-friendly environment. Oasis 2 is implemented in Java, J2EE, mysql, Python, R, PHP and JavaScript. It is freely available at https://oasis.dzne.de.

  8. Ex vivo inhibition of Clostridium botulinum neurotoxin types B, C, E, and F by small molecular weight inhibitors.

    PubMed

    Montgomery, Vicki A; Ahmed, S Ashraf; Olson, Mark A; Mizanur, Rahman M; Stafford, Robert G; Roxas-Duncan, Virginia I; Smith, Leonard A

    2015-05-01

    Two small molecular weight inhibitors, compounds CB7969312 and CB7967495, that displayed inhibition of botulinum neurotoxin serotype A in a previous study, were evaluated for inhibition of botulinum neurotoxin serotypes B, C, E, and F. The small molecular weight inhibitors were assessed by molecular modeling, UPLC-based peptide cleavage assay; and an ex vivo assay, the mouse phrenic nerve - hemidiaphragm assay (MPNHDA). While both compounds were inhibitors of botulinum neurotoxin (BoNT) serotypes B, C, and F in the MPNHDA, compound CB7969312 was effective at lower molar concentrations than compound CB7967495. However, compound CB7967495 was significantly more effective at preventing BoNTE intoxication than compound CB7969312. In the UPLC-based peptide cleavage assay, CB7969312 was also more effective against LcC. Both compounds inhibited BoNTE, but not BoNTF, LcE, or LcF in the UPLC-based peptide cleavage assay. Molecular modeling studies predicted that both compounds would be effective inhibitors of BoNTs B, C, E, and F. But CB7967495 was predicted to be a more effective inhibitor of the four serotypes (B, C, E, and F) than CB7969312. This is the first report of a small molecular weight compound that inhibits serotypes B, C, E, and F in the ex vivo assay. Published by Elsevier Ltd.

  9. Positive Examples and Lessons Learned from Rural Small Business Adoption of E-Commerce Strategies

    ERIC Educational Resources Information Center

    Lamie, R. David; Barkley, David L.; Markley, Deborah M.

    2011-01-01

    Rural small businesses struggling against the current of competition from "big box" retailers, weak consumer demand, and on-line shopping options must find strategies that work. Many are finding that adoption of e-commerce strategies is a key to survival, even prosperity. This article highlights the lessons learned from a recent case study…

  10. THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL

    PubMed Central

    Stevens, Barbara J.

    1965-01-01

    The behavior of the nucleolus during mitosis was studied by electron microscopy in neuroblast cells of the grasshopper embryo, Chortophaga viridifasciata. Living neuroblast cells were observed in the light microscope, and their mitotic stages were identified and recorded. The cells were fixed and embedded; alternate thick and thin sections were made for light and electron microscopy. The interphase nucleolus consists of two fine structural components arranged in separate zones. Concentrations of 150 A granules form a dense peripheral zone, while the central regions are composed of a homogeneous background substance. Observations show that nucleolar dissolution in prophase occurs in two steps with a preliminary loss of the background substance followed by a dispersal of the granules. Nucleolar material reappears at anaphase as small clumps or layers at the chromosome surfaces. These later form into definite bodies, which disappear as the nucleolus grows in telophase. Evidence suggests both a collecting and a synthesizing role for the nucleolus-associated chromatin. The final, mature nucleolar form is produced by a rearrangement of the fine structural components and an increase in their mass. PMID:14326121

  11. Brd4 modulates the innate immune response through Mnk2-eIF4E pathway-dependent translational control of IκBα.

    PubMed

    Bao, Yan; Wu, Xuewei; Chen, Jinjing; Hu, Xiangming; Zeng, Fuxing; Cheng, Jianjun; Jin, Hong; Lin, Xin; Chen, Lin-Feng

    2017-05-16

    Bromodomain-containing factor Brd4 has emerged as an important transcriptional regulator of NF-κB-dependent inflammatory gene expression. However, the in vivo physiological function of Brd4 in the inflammatory response remains poorly defined. We now demonstrate that mice deficient for Brd4 in myeloid-lineage cells are resistant to LPS-induced sepsis but are more susceptible to bacterial infection. Gene-expression microarray analysis of bone marrow-derived macrophages (BMDMs) reveals that deletion of Brd4 decreases the expression of a significant amount of LPS-induced inflammatory genes while reversing the expression of a small subset of LPS-suppressed genes, including MAP kinase-interacting serine/threonine-protein kinase 2 ( Mknk2 ). Brd4 -deficient BMDMs display enhanced Mnk2 expression and the corresponding eukaryotic translation initiation factor 4E (eIF4E) activation after LPS stimulation, leading to an increased translation of IκBα mRNA in polysomes. The enhanced newly synthesized IκBα reduced the binding of NF-κB to the promoters of inflammatory genes, resulting in reduced inflammatory gene expression and cytokine production. By modulating the translation of IκBα via the Mnk2-eIF4E pathway, Brd4 provides an additional layer of control for NF-κB-dependent inflammatory gene expression and inflammatory response.

  12. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial.

    PubMed

    Planchard, David; Smit, Egbert F; Groen, Harry J M; Mazieres, Julien; Besse, Benjamin; Helland, Åslaug; Giannone, Vanessa; D'Amelio, Anthony M; Zhang, Pingkuan; Mookerjee, Bijoyesh; Johnson, Bruce E

    2017-10-01

    BRAF V600E mutation occurs in 1-2% of lung adenocarcinomas and acts as an oncogenic driver. Dabrafenib, alone or combined with trametinib, has shown substantial antitumour activity in patients with previously treated BRAF V600E -mutant metastatic non-small-cell lung cancer (NSCLC). We aimed to assess the activity and safety of dabrafenib plus trametinib treatment in previously untreated patients with BRAF V600E -mutant metastatic NSCLC. In this phase 2, sequentially enrolled, multicohort, multicentre, non-randomised, open-label study, adults (≥18 years of age) with previously untreated metastatic BRAF V600E -mutant NSCLC were enrolled into cohort C from 19 centres in eight countries within North America, Europe, and Asia. Patients received oral dabrafenib 150 mg twice per day plus oral trametinib 2 mg once per day until disease progression, unacceptable adverse events, consent withdrawal, or death. The primary endpoint was investigator-assessed overall response, defined as the percentage of patients who achieved a confirmed complete response or partial response per Response Evaluation Criteria In Solid Tumors version 1.1. The primary and safety analyses were by intention to treat in the protocol-defined population (previously untreated patients). The study is ongoing, but no longer recruiting patients. This trial is registered with ClinicalTrials.gov, number NCT01336634. Between April 16, 2014, and Dec 28, 2015, 36 patients were enrolled and treated with first-line dabrafenib plus trametinib. Median follow-up was 15·9 months (IQR 7·8-22·0) at the data cutoff (April 28, 2017). The proportion of patients with investigator-assessed confirmed overall response was 23 (64%, 95% CI 46-79), with two (6%) patients achieving a complete response and 21 (58%) a partial response. All patients had one or more adverse event of any grade, and 25 (69%) had one or more grade 3 or 4 event. The most common (occurring in more than two patients) grade 3 or 4 adverse events were

  13. Citizen Empowerment through e-Democracy: Patterns of E-Government Adoption for Small-Sized Cities in Missouri

    ERIC Educational Resources Information Center

    Massey, Floyd E., III

    2014-01-01

    E-government is one of the buzzwords in discussing modernizing public administration. Numerous researchers have conducted studies related to the implementation of e-government and e-government 2.0 programs. The main goal of e-government programs is to increase government efficiency and offer benefits to citizens. As the requirements of government…

  14. 40 CFR Figure E-2 to Subpart E of... - Product Manufacturing Checklist

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Product Manufacturing Checklist E Figure E-2 to Subpart E of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Fig. E-2 Figure E-2 to Subpart E of Part 53...

  15. 40 CFR Figure E-2 to Subpart E of... - Product Manufacturing Checklist

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Product Manufacturing Checklist E Figure E-2 to Subpart E of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Fig. E-2 Figure E-2 to Subpart E of Part 53...

  16. Fermilab | Mu2e

    Science.gov Websites

    Interactions.org Particle Physics News Image Bank Fermilab in the News Quantum Diaries Mu2e: muon-to-electron works The Mu2e detector is a particle physics detector embedded in a series of superconducting magnets advance research at the Intensity Frontier. The U.S. Particle Physics Project Prioritization Panel, P5

  17. La protein and its associated small nuclear and nucleolar precursor RNAs.

    PubMed

    Maraia, Richard J; Intine, Robert V

    2002-01-01

    After transcription by RNA polymerase (pol) III, nascent Pol III transcripts pass through RNA processing, modification, and transport machineries as part of their posttranscriptional maturation process. The first factor to interact with Pol III transcripts is La protein, which binds principally via its conserved N-terminal domain (NTD), to the UUU-OH motif that results from transcription termination. This review includes a sequence Logo of the most conserved region of La and its refined modeling as an RNA recognition motif (RRM). La protects RNAs from 3' exonucleolytic digestion and also contributes to their nuclear retention. The variety of modifications found on La-associated RNAs is reviewed in detail and considered in the contexts of how La may bind the termini of structured RNAs without interfering with recognition by modification enzymes, and its ability to chaperone RNAs through multiple parts of their maturation pathways. The CTD of human La recognizes the 5' end region of nascent RNA in a manner that is sensitive to serine 366 phosphorylation. Although the CTD can control pre-tRNA cleavage by RNase P, a rate-limiting step in tRNASerUGA maturation, the extent to which it acts in the maturation pathway(s) of other transcripts is unknown but considered here. Evidence that a fraction of La resides in the nucleolus together with recent findings that several Pol III transcripts pass through the nucleolus is also reviewed. An imminent goal is to understand how the bipartite RNA binding, intracellular trafficking, and signal transduction activities of La are integrated with the maturation pathways of the various RNAs with which it associates.

  18. E2 and SN2 Reactions of X(-) + CH3CH2X (X = F, Cl); an ab Initio and DFT Benchmark Study.

    PubMed

    Bento, A Patrícia; Solà, Miquel; Bickelhaupt, F Matthias

    2008-06-01

    We have computed consistent benchmark potential energy surfaces (PESs) for the anti-E2, syn-E2, and SN2 pathways of X(-) + CH3CH2X with X = F and Cl. This benchmark has been used to evaluate the performance of 31 popular density functionals, covering local-density approximation, generalized gradient approximation (GGA), meta-GGA, and hybrid density-functional theory (DFT). The ab initio benchmark has been obtained by exploring the PESs using a hierarchical series of ab initio methods [up to CCSD(T)] in combination with a hierarchical series of Gaussian-type basis sets (up to aug-cc-pVQZ). Our best CCSD(T) estimates show that the overall barriers for the various pathways increase in the order anti-E2 (X = F) < SN2 (X = F) < SN2 (X = Cl) ∼ syn-E2 (X = F) < anti-E2 (X = Cl) < syn-E2 (X = Cl). Thus, anti-E2 dominates for F(-) + CH3CH2F, and SN2 dominates for Cl(-) + CH3CH2Cl, while syn-E2 is in all cases the least favorable pathway. Best overall agreement with our ab initio benchmark is obtained by representatives from each of the three categories of functionals, GGA, meta-GGA, and hybrid DFT, with mean absolute errors in, for example, central barriers of 4.3 (OPBE), 2.2 (M06-L), and 2.0 kcal/mol (M06), respectively. Importantly, the hybrid functional BHandH and the meta-GGA M06-L yield incorrect trends and qualitative features of the PESs (in particular, an erroneous preference for SN2 over the anti-E2 in the case of F(-) + CH3CH2F) even though they are among the best functionals as measured by their small mean absolute errors of 3.3 and 2.2 kcal/mol in reaction barriers. OLYP and B3LYP have somewhat higher mean absolute errors in central barriers (5.6 and 4.8 kcal/mol, respectively), but the error distribution is somewhat more uniform, and as a consequence, the correct trends are reproduced.

  19. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator

    PubMed Central

    Shuda, Masahiro; Kwun, Hyun Jin; Feng, Huichen; Chang, Yuan; Moore, Patrick S.

    2011-01-01

    Merkel cell polyomavirus (MCV) is the recently discovered cause of most Merkel cell carcinomas (MCCs), an aggressive form of nonmelanoma skin cancer. Although MCV is known to integrate into the tumor cell genome and to undergo mutation, the molecular mechanisms used by this virus to cause cancer are unknown. Here, we show that MCV small T (sT) antigen is expressed in most MCC tumors, where it is required for tumor cell growth. Unlike the closely related SV40 sT, MCV sT transformed rodent fibroblasts to anchorage- and contact-independent growth and promoted serum-free proliferation of human cells. These effects did not involve protein phosphatase 2A (PP2A) inhibition. MCV sT was found to act downstream in the mammalian target of rapamycin (mTOR) signaling pathway to preserve eukaryotic translation initiation factor 4E–binding protein 1 (4E-BP1) hyperphosphorylation, resulting in dysregulated cap-dependent translation. MCV sT–associated 4E-BP1 serine 65 hyperphosphorylation was resistant to mTOR complex (mTORC1) and mTORC2 inhibitors. Steady-state phosphorylation of other downstream Akt-mTOR targets, including S6K and 4E-BP2, was also increased by MCV sT. Expression of a constitutively active 4E-BP1 that could not be phosphorylated antagonized the cell transformation activity of MCV sT. Taken together, these experiments showed that 4E-BP1 inhibition is required for MCV transformation. Thus, MCV sT is an oncoprotein, and its effects on dysregulated cap-dependent translation have clinical implications for the prevention, diagnosis, and treatment of MCV-related cancers. PMID:21841310

  20. Toward Effective and Compelling Instruction for High School eCommerce Students: Results from a Small Field Study

    ERIC Educational Resources Information Center

    Luterbach, Kenneth J.; Rodriguez, Diane; Love, Lakecia

    2012-01-01

    This paper describes an instructional development effort to create effective and compelling instruction for eCommerce students. Results from a small field study inform the development project. Four high school students in an eCommerce course completed the standalone tutorial developed to teach them how to create a web page in the HyperText Markup…

  1. A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA

    PubMed Central

    Brehm, Maria A.; Wundenberg, Torsten; Williams, Jason; Mayr, Georg W.; Shears, Stephen B.

    2013-01-01

    Summary Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K ‘moonlights’ as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number. PMID:23203802

  2. A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA.

    PubMed

    Brehm, Maria A; Wundenberg, Torsten; Williams, Jason; Mayr, Georg W; Shears, Stephen B

    2013-01-15

    Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K 'moonlights' as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number.

  3. SSX2-4 expression in early-stage non-small cell lung cancer.

    PubMed

    Greve, K B V; Pøhl, M; Olsen, K E; Nielsen, O; Ditzel, H J; Gjerstorff, M F

    2014-05-01

    The expression of cancer/testis antigens SSX2, SSX3, and SSX4 in non-small cell lung cancers (NSCLC) was examined, since they are considered promising targets for cancer immunotherapy due to their immunogenicity and testis-restricted normal tissue expression. We characterized three SSX antibodies and performed immunohistochemical staining of 25 different normal tissues and 143 NSCLCs. The antibodies differed in binding to two distinctive splice variants of SSX2 that exhibited different subcellular staining patterns, suggesting that the two splice variants display different functions. SSX2-4 expression was only detected in 5 of 143 early-stage NSCLCs, which is rare compared to other cancer/testis antigens (e.g. MAGE-A and GAGE). However, further studies are needed to determine whether SSX can be used as a prognostic or predictive biomarker in NSCLC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F Activity as Distinct Features of Tamoxifen Resistant Breast Tumors

    PubMed Central

    Huang, Lei; Zhao, Shuangping; Frasor, Jonna M.; Dai, Yang

    2011-01-01

    Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast tumors were identified from three different publically available microarray datasets. These differentially expressed (DE) genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors. The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers. PMID:21789246

  5. Half-life of the 15 /2+ state of 135I: A test of E 2 seniority relations

    NASA Astrophysics Data System (ADS)

    Spagnoletti, P.; Simpson, G. S.; Carroll, R.; Régis, J.-M.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; de France, G.; Ur, C. A.; Urban, W.; Bruce, A. M.; Drouet, F.; Fraile, L. M.; Gaffney, L. P.; Ghitǎ, D. G.; Ilieva, S.; Jolie, J.; Korten, W.; Kröll, T.; Larijarni, C.; Lalkovski, S.; Licǎ, R.; Mach, H.; Mǎrginean, N.; Paziy, V.; Podolyák, Zs.; Regan, P. H.; Scheck, M.; Saed-Samii, N.; Thiamova, G.; Townsley, C.; Vancraeyenest, A.; Vedia, V.; Gargano, A.; Van Isacker, P.

    2017-02-01

    The half-life of the 15 /21+ state of the 3-valence-proton nucleus 135I has been measured to be 1.74(8) ns using the EXILL-FATIMA mixed array of Ge and LaBr3 detectors. The nuclei were produced following the cold neutron-induced fission of a 235U target at the PF1B beam line of the Institut Laue-Langevin. The extracted B (E 2 ;15 /2+→11 /2+) value enabled a test of seniority relations for the first time between E 2 transition rates. Large-scale shell-model calculations were performed for 134Te and 135I, and reinterpreted in a single-orbit approach. The results show that the two-body component of the E 2 operator can be large whereas energy shifts due to the three-body component of the effective interaction are small.

  6. Studies of electron-molecule collisions - Applications to e-H2O

    NASA Technical Reports Server (NTRS)

    Brescansin, L. M.; Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.

    1986-01-01

    Elastic differential and momentum transfer cross sections for the elastic scattering of electrons by H2O are reported for collision energies from 2 to 20 eV. These fixed-nuclei static-exchange cross sections were obtained using the Schwinger variational approach. In these studies the exchange potential is directly evaluated and not approximated by local models. The calculated differential cross sections, obtained with a basis set expansion of the scattering wave function, agree well with available experimental data at intermediate and larger angles. As used here, the results cannot adequately describe the divergent cross sections at small angles. An interesting feature of the calculated cross sections, particularly at 15 and 20 eV, is their significant backward peaking. This peaking occurs in the experimentally inaccessible region beyond a scattering angle of 120 deg. The implication of this feature for the determination of momentum transfer cross sections is described.

  7. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    PubMed

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  8. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response

    PubMed Central

    Sidrauski, Carmela; Tsai, Jordan C; Kampmann, Martin; Hearn, Brian R; Vedantham, Punitha; Jaishankar, Priyadarshini; Sokabe, Masaaki; Mendez, Aaron S; Newton, Billy W; Tang, Edward L; Verschueren, Erik; Johnson, Jeffrey R; Krogan, Nevan J; Fraser, Christopher S; Weissman, Jonathan S; Renslo, Adam R; Walter, Peter

    2015-01-01

    The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.07314.001 PMID:25875391

  9. Structure of the Human FANCL RING-Ube2T Complex Reveals Determinants of Cognate E3-E2 Selection

    PubMed Central

    Hodson, Charlotte; Purkiss, Andrew; Miles, Jennifer Anne; Walden, Helen

    2014-01-01

    Summary The combination of an E2 ubiquitin-conjugating enzyme with an E3 ubiquitin-ligase is essential for ubiquitin modification of a substrate. Moreover, the pairing dictates both the substrate choice and the modification type. The molecular details of generic E3-E2 interactions are well established. Nevertheless, the determinants of selective, specific E3-E2 recognition are not understood. There are ∼40 E2s and ∼600 E3s giving rise to a possible ∼24,000 E3-E2 pairs. Using the Fanconi Anemia pathway exclusive E3-E2 pair, FANCL-Ube2T, we report the atomic structure of the FANCL RING-Ube2T complex, revealing a specific and extensive network of additional electrostatic and hydrophobic interactions. Furthermore, we show that these specific interactions are required for selection of Ube2T over other E2s by FANCL. PMID:24389026

  10. New perspective of Grodzins E × B(E2) ↑ product rule

    NASA Astrophysics Data System (ADS)

    Gupta, J. B.; Katoch, Vikas

    In the collective spectra of atomic nuclei, the level energy E(21+) varies with atomic number Z and neutron number N. Also the E2 decay-reduced transition probability B(E2, 01+ → 2 1+) is related to the energy E(21+). The product E(21+) × B(E2) ↑ is constant according to Grodzins product rule, independent of the vibration or rotational status of the nucleus. The product rule is often used for determining B(E2) from the known E(21+). However, the variation of the product with various parameters is also suggested in the literature. Hence, a detailed global study of this rule for (Z = 54‑‑78, 66 < N < 126) region is warranted. We use a novel method of displaying the linear relation of B(E2) ↑ with 1/E(21+) for the isotopes of each element (Xe-Pt), instead of their variation with N,Z or A. Through our work, we firmly establish the global validity of the Grodzins relation of B(E2), being proportional to the moment of inertia, except for the deviation in specific cases. Our B(E2) ↑ versus 1/E plots provide a transparent view of the variation of the low-energy nuclear structure. This gives a new perspective of their nuclear structure. Also the various theoretical interpretations of B(E2)s and the energy E(21+) are reviewed.

  11. Zebrafish have an ethanol-inducible hepatic 4-nitrophenol hydroxylase that is not CYP2E1-like.

    PubMed

    Hartman, Jessica H; Kozal, Jordan S; Di Giulio, Richard T; Meyer, Joel N

    2017-09-01

    Zebrafish are an attractive model organism for toxicology; however, an important consideration in translating between species is xenobiotic metabolism/bioactivation. CYP2E1 metabolizes small hydrophobic molecules, e.g. ethanol, cigarette smoke, and diesel exhaust components. CYP2E1 is thought to only be conserved in mammals, but recent reports identified homologous zebrafish cytochrome P450s. Herein, ex vivo biochemical measurements show that unlike mammals, zebrafish possess a low-affinity 4-nitrophenol hydroxylase (K m ∼0.6 mM) in hepatic microsomes and mitochondria that is inducible only 1.5- to 2-fold by ethanol and is insensitive to 4-methylpyrazole inhibition. In closing, we suggest creating improved models to study CYP2E1 in zebrafish. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Topographical Atlas of Shiga Toxin 2e Receptor Distribution in the Tissues of Weaned Piglets.

    PubMed

    Steil, Daniel; Bonse, Robert; Meisen, Iris; Pohlentz, Gottfried; Vallejo, German; Karch, Helge; Müthing, Johannes

    2016-11-30

    Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) is the primary virulence factor in the development of pig edema disease shortly after weaning. Stx2e binds to the globo-series glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer), the latter acting as the preferential Stx2e receptor. We determined Stx receptor profiles of 25 different tissues of a male and a female weaned piglet using immunochemical solid phase binding assays combined with mass spectrometry. All probed tissues harbored GSL receptors, ranging from high (category I) over moderate (category II) to low content (category III). Examples of Gb4Cer expression in category I tissues are small intestinal ileum, kidney pelvis and whole blood, followed by colon, small intestinal duodenum and jejunum belonging to category II, and kidney cortex, cerebrum and cerebellum as members of category III organs holding true for both genders. Dominant Gb3Cer and Gb4Cer lipoforms were those with ceramides carrying constant sphingosine (d18:1) and a variable C16:0, C22:0 or C24:1/C24:0 fatty acid. From the mapping data, we created a topographical atlas for Stx2e receptors in piglet tissues and organs, which might be helpful to further investigations on the molecular and cellular mechanisms that underlie infections of Stx2e-producing STEC in pigs and their zoonotic potential for humans.

  13. A Topographical Atlas of Shiga Toxin 2e Receptor Distribution in the Tissues of Weaned Piglets

    PubMed Central

    Steil, Daniel; Bonse, Robert; Meisen, Iris; Pohlentz, Gottfried; Vallejo, German; Karch, Helge; Müthing, Johannes

    2016-01-01

    Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) is the primary virulence factor in the development of pig edema disease shortly after weaning. Stx2e binds to the globo-series glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer), the latter acting as the preferential Stx2e receptor. We determined Stx receptor profiles of 25 different tissues of a male and a female weaned piglet using immunochemical solid phase binding assays combined with mass spectrometry. All probed tissues harbored GSL receptors, ranging from high (category I) over moderate (category II) to low content (category III). Examples of Gb4Cer expression in category I tissues are small intestinal ileum, kidney pelvis and whole blood, followed by colon, small intestinal duodenum and jejunum belonging to category II, and kidney cortex, cerebrum and cerebellum as members of category III organs holding true for both genders. Dominant Gb3Cer and Gb4Cer lipoforms were those with ceramides carrying constant sphingosine (d18:1) and a variable C16:0, C22:0 or C24:1/C24:0 fatty acid. From the mapping data, we created a topographical atlas for Stx2e receptors in piglet tissues and organs, which might be helpful to further investigations on the molecular and cellular mechanisms that underlie infections of Stx2e-producing STEC in pigs and their zoonotic potential for humans. PMID:27916888

  14. RIP-seq of BmAgo2-associated small RNAs reveal various types of small non-coding RNAs in the silkworm, Bombyx mori

    PubMed Central

    2013-01-01

    Background Small non-coding RNAs (ncRNAs) are important regulators of gene expression in eukaryotes. Previously, only microRNAs (miRNAs) and piRNAs have been identified in the silkworm, Bombyx mori. Furthermore, only ncRNAs (50-500nt) of intermediate size have been systematically identified in the silkworm. Results Here, we performed a systematic identification and analysis of small RNAs (18-50nt) associated with the Bombyx mori argonaute2 (BmAgo2) protein. Using RIP-seq, we identified various types of small ncRNAs associated with BmAGO2. These ncRNAs showed a multimodal length distribution, with three peaks at ~20nt, ~27nt and ~33nt, which included tRNA-, transposable element (TE)-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. The tRNA-derived fragments (tRFs) were found at an extremely high abundance and accounted for 69.90% of the BmAgo2-associated small RNAs. Northern blotting confirmed that many tRFs were expressed or up-regulated only in the BmNPV-infected cells, implying that the tRFs play a prominent role by binding to BmAgo2 during BmNPV infection. Additional evidence suggested that there are potential cleavage sites on the D, anti-codon and TψC loops of the tRNAs. TE-derived small RNAs and piRNAs also accounted for a significant proportion of the BmAgo2-associated small RNAs, suggesting that BmAgo2 could be involved in the maintenance of genome stability by suppressing the activities of transposons guided by these small RNAs. Finally, Northern blotting was also used to confirm the Bombyx 5.8 s rRNA-derived small RNAs, demonstrating that various novel small RNAs exist in the silkworm. Conclusions Using an RIP-seq method in combination with Northern blotting, we identified various types of small RNAs associated with the BmAgo2 protein, including tRNA-, TE-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. Our findings provide new clues for future functional studies of the role of small RNAs in insect

  15. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-mediated Adaptations.

    PubMed

    Danielczok, Jens G; Terriac, Emmanuel; Hertz, Laura; Petkova-Kirova, Polina; Lautenschläger, Franziska; Laschke, Matthias W; Kaestner, Lars

    2017-01-01

    When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca 2+ -signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca 2+ when RBCs were passing through small capillaries in vivo . Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca 2+ -signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca 2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K + , Cl - , and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction.

  16. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-mediated Adaptations

    PubMed Central

    Danielczok, Jens G.; Terriac, Emmanuel; Hertz, Laura; Petkova-Kirova, Polina; Lautenschläger, Franziska; Laschke, Matthias W.; Kaestner, Lars

    2017-01-01

    When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca2+-signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca2+ when RBCs were passing through small capillaries in vivo. Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca2+-signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K+, Cl−, and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction. PMID:29259557

  17. Coastal flood implications of 1.5°C, 2°C and 2.5°C global mean temperature stabilization targets for small island nations

    NASA Astrophysics Data System (ADS)

    Rasmussen, D.; Buchanan, M. K.; Kopp, R. E.; Oppenheimer, M.

    2017-12-01

    Sea-level rise (SLR) is magnifying the frequency and severity of flooding in coastal regions. The rate and amount of global-mean SLR is a function of the trajectory of the global mean surface temperature (GMST). Therefore, temperature stabilization targets (e.g., 1.5°C or 2°C, as from the Paris Agreement) have important implications for regulating coastal flood risk. Quantifying the differences in the impact from SLR between these and other GMST stabilization targets is necessary for assessing the benefits and harms of mitigation goals. Low-lying small island nations are particularly vulnerable to inundation and coastal flooding from SLR because building protective and resilient infrastructure may not be physically or economically feasible. For small island nations, keeping GMST below a specified threshold may be the only option for maintaining habitability. Here, we assess differences in the return levels of coastal floods for small island nations between 1.5°C, 2.0°C, and 2.5°C GMST stabilization. We employ probabilistic, localized SLR projections and long-term hourly tide gauge records to construct estimates of local flood risk. We then estimate the number of small island nations' inhabitants at risk for permanent inundation under different GMST stabilization targets.

  18. Abnormal response to the anorexic effect of GHS-R inhibitors and exenatide in male Snord116 deletion mouse model for Prader-Willi Syndrome

    USDA-ARS?s Scientific Manuscript database

    Prader-Willi syndrome (PWS) is a genetic disease characterized by persistent hunger and hyperphagia. The lack of the Snord116 small nucleolar RNA cluster has been identified as the major contributor to PWS symptoms. The Snord116 deletion (Snord116del) mouse model manifested a subset of PWS symptoms ...

  19. A universal small molecule, inorganic phosphate, restricts the substrate specificity of Dicer-2 in small RNA biogenesis

    PubMed Central

    Fukunaga, Ryuya; Zamore, Phillip D

    2014-01-01

    The enzyme Dicer is central to the production of small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Like other insects, Drosophila melanogaster uses different Dicers to make siRNAs and miRNAs: Dicer-1 produces miRNAs from pre-miRNAs, whereas Dicer-2 generates siRNAs from long double-stranded RNA (dsRNA). How do the 2 Dicers achieve their substrate specificity? Here, we review recent findings that inorganic phosphate restricts the substrate specificity of Dicer-2 to long dsRNA. Inorganic phosphate inhibits Dicer-2 from binding and cleaving pre-miRNAs, without affecting the processing of long dsRNA. Crystal structures of a fragment of human Dicer in complex with an RNA duplex identify a phosphate-binding pocket that recognizes both the 5′-monophosphate of a substrate RNA and inorganic phosphate. We propose that inorganic phosphate occupies the phosphate-binding pocket in the fly Dicer-2, blocking binding of pre-miRNA and restricting pre-miRNA processing to Dicer-1. Thus, a small molecule can alter the substrate specificity of a nucleic acid-processing enzyme. PMID:24787225

  20. The Opposing Roles of Nucleophosmin and the ARF Tumor Suppressor in Breast Cancer

    DTIC Science & Technology

    2007-04-01

    P ., R. K. Busch, B. C. Valdez, and H. Busch. 1996 . C23 interacts with B23, a putative nucleolar...beneficial anti-cancer activity of peptides in vivo. Injection of a peptide from the von Hippel -Lindau (VHL) tumor suppressor inhibited the growth and... 240 WT Arf -/- 1 2 3 4 5 0 C y to s o lic 3 H -M e th y l M e th io n in e c p m ( x 1 0 3 ) A 28S 18S WT chase (min): Arf -/- 120 240 120 240 N

  1. Characterisation of Translation Elongation Factor eEF1B Subunit Expression in Mammalian Cells and Tissues and Co-Localisation with eEF1A2

    PubMed Central

    Janikiewicz, Justyna; Doig, Jennifer; Abbott, Catherine M.

    2014-01-01

    Translation elongation is the stage of protein synthesis in which the translation factor eEF1A plays a pivotal role that is dependent on GTP exchange. In vertebrates, eEF1A can exist as two separately encoded tissue-specific isoforms, eEF1A1, which is almost ubiquitously expressed, and eEF1A2, which is confined to neurons and muscle. The GTP exchange factor for eEF1A1 is a complex called eEF1B made up of subunits eEF1Bα, eEF1Bδ and eEF1Bγ. Previous studies have cast doubt on the ability of eEF1B to interact with eEF1A2, suggesting that this isoform might use a different GTP exchange factor. We show that eEF1B subunits are all widely expressed to varying degrees in different cell lines and tissues, and at different stages of development. We show that ablation of any of the subunits in human cell lines has a small but significant impact on cell viability and cycling. Finally, we show that both eEF1A1 and eEF1A2 colocalise with all eEF1B subunits, in such close proximity that they are highly likely to be in a complex. PMID:25436608

  2. SNR 1E0102.2-7219 after Six Years with Chandra

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. J.; Schlegel, E. M.; Keohane, J.

    2005-12-01

    We present Chandra X-ray Observatory archived observations of the supernova remnant 1E0102.2-7219 in the Small Magellanic Cloud. Combining 22 ACIS-I observations for 230 ks of total exposure time, we present ACIS images with an unprecedented signal to noise ratio for this remnant. We present three upper limits on the X-ray flux for the remnant's elusive central compact object, which are consistent with current neutron star cooling models, based on a Cas A-like blackbody spectrum. Additionally, we discuss the elliptical structure of the remnant and the relative positions of the blast wave, the reverse shock, and the extent of 1E0102.2-7219's rim. This research was supported by the NSF REU Program at SAO under Eric Schlegel, whose research was supported by contract number NAS8-39073 from NASA to SAO for operation of the Chandra X-Ray Observatory. Jonathan Keohane's research was supported by Chandra award GO3-4070C.

  3. The intracellular distribution and heterogeneity of ribonucleic acid in starfish oocytes.

    PubMed

    EDSTROM, J E; GRAMPP, W; SCHOR, N

    1961-12-01

    A study has been made of the content and composition of RNA in cytoplasm, nucleoplasm, and nucleoli from growing oocytes of the starfish Asterias rubens. The determinations were carried out, using ultramicrochemical methods, on units isolated by microdissection from fixed sections. Macrochemical and interferometric control experiments show that RNA can be quantitatively evaluated in this way. The results show that the growing oocyte represents a system in which the relations between the quantities of nucleolar, nucleoplasmic, and cytoplasmic RNA undergo great changes. These changes are continuous for nucleolar and cytoplasmic RNA so that their amounts may be predicted from the size of the cell. Nucleoplasmic RNA, on the other hand, shows great variations among different cells, independent of cell size. Purine-pyrimidine analyses show that each cell component contains an RNA which differs significantly from that of the other two. Cytoplasmic and nucleolar RNA are closely related, the only difference being a slightly higher guanine/uracil quotient for the nucleolar RNA. They are both of the usual tissue RNA type, i.e., they show a preponderance of guanine and cytosine over adenine and uracil. Nucleoplasmic RNA deviates grossly from the RNA of the other two components. Here the concentrations of adenine and uracil are higher than those of guanine and cytosine, respectively. This RNA consequently shows some resemblance to the general type of animal DNA although the purine/pyrimidine ratio is far from unity. Our data favor a nucleolar origin for the stable part of the ribosomal RNA and a nucleoplasmic one for the unstable part (the messenger RNA).

  4. 48 CFR 719.270 - Small business policies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Office of Small and Disadvantaged Business Utilization (SDB) except those exempted by 719.271-6(a). (e... personnel to increase awards to small firms. The goals will be set by SDB after consultation with the... between SDB and the contracting officer concerning: (1) A recommended set-aside, or (2) a request for...

  5. 48 CFR 719.270 - Small business policies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Office of Small and Disadvantaged Business Utilization (SDB) except those exempted by 719.271-6(a). (e... personnel to increase awards to small firms. The goals will be set by SDB after consultation with the... between SDB and the contracting officer concerning: (1) A recommended set-aside, or (2) a request for...

  6. 48 CFR 719.270 - Small business policies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Office of Small and Disadvantaged Business Utilization (SDB) except those exempted by 719.271-6(a). (e... personnel to increase awards to small firms. The goals will be set by SDB after consultation with the... between SDB and the contracting officer concerning: (1) A recommended set-aside, or (2) a request for...

  7. 48 CFR 719.270 - Small business policies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Office of Small and Disadvantaged Business Utilization (SDB) except those exempted by 719.271-6(a). (e... personnel to increase awards to small firms. The goals will be set by SDB after consultation with the... between SDB and the contracting officer concerning: (1) A recommended set-aside, or (2) a request for...

  8. Small carry-on impactor of Hayabusa2 mission

    NASA Astrophysics Data System (ADS)

    Saiki, Takanao; Sawada, Hirotaka; Okamoto, Chisato; Yano, Hajime; Takagi, Yasuhiko; Akahoshi, Yasuhiro; Yoshikawa, Makoto

    2013-03-01

    A Japanese spacecraft, Hayabusa2, the successor of Hayabusa, which came back from the Asteroid Itokawa with sample materials after its 7-year-interplanetary journeys, is a current mission of Japan Aerospace Exploration Agency (JAXA) and scheduled to be launched in 2014. Although its design basically follows Hayabusa, some new components are planned to be equipped in Hayabusa2 mission. A Small Carry-on Impactor (SCI), a small explosive device, is one of the challenges that were not seen with Hayabusa. An important scientific objective of Hayabusa2 is to investigate chemical and physical properties of the internal materials and structures. SCI creates an artificial crater on the surface of the asteroid and the mother spacecraft observes the crater and tries to get sample materials. High kinetic energy is required to creating a meaningful crater. The SCI would become complicated and heavy if the traditional acceleration devices like thrusters and rocket motors are used to hit the asteroid because the acceleration distance is quite large and guidance system is necessary. In order to make the system simpler, a technology of special type of shaped charge is used for the acceleration of the impact head. By using this technology, it becomes possible to accelerate the impact head very quickly and to hit the asteroid without guidance system. However, the impact operation should be complicated because SCI uses powerful explosive and it scatters high speed debris at the detonation. This paper presents the overview of our new small carry-on impact system and the impact operation of Hayabusa2 mission.

  9. How alkyl halide structure affects E2 and SN2 reaction barriers: E2 reactions are as sensitive as SN2 reactions.

    PubMed

    Rablen, Paul R; McLarney, Brett D; Karlow, Brandon J; Schneider, Jean E

    2014-02-07

    High-level electronic structure calculations, including a continuum treatment of solvent, are employed to elucidate and quantify the effects of alkyl halide structure on the barriers of SN2 and E2 reactions. In cases where such comparisons are available, the results of these calculations show close agreement with solution experimental data. Structural factors investigated include α- and β-methylation, adjacency to unsaturated functionality (allyl, benzyl, propargyl, α to carbonyl), ring size, and α-halogenation and cyanation. While the influence of these factors on SN2 reactivity is mostly well-known, the present study attempts to provide a broad comparison of both SN2 and E2 reactivity across many cases using a single methodology, so as to quantify relative reactivity trends. Despite the fact that most organic chemistry textbooks say far more about how structure affects SN2 reactions than about how it affects E2 reactions, the latter are just as sensitive to structural variation as are the former. This sensitivity of E2 reactions to structure is often underappreciated.

  10. Photofragment Coincidence Imaging of Small I- (H2O)n Clusters Excited to the Charge-transfer-to-solvent State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumark, D. E. Szpunar, K. E. Kautzman, A. E. Faulhaber, and D. M.; Kautzman, K.E.; Faulhaber, A.E.

    2005-11-09

    The photodissociation dynamics of small I{sup -}(H{sub 2}O){sub n} (n = 2-5) clusters excited to their charge-transfer-to-solvent (CTTS) states have been studied using photofragment coincidence imaging. Upon excitation to the CTTS state, two photodissociation channels were observed. The major channel ({approx}90%) is a 2-body process forming neutral I + (H{sub 2}O){sub n} photofragments, and the minor channel is a 3-body process forming I + (H{sub 2}O){sub n-1} + H{sub 2}O fragments. Both process display translational energy (P(E{sub T})) distributions peaking at E{sub T} = 0 with little available energy partitioned into translation. Clusters excited to the detachment continuum rather thanmore » to the CTTS state display the same two channels with similar P(E{sub T}) distributions. The observation of similar P(E{sub T}) distributions from the two sets of experiments suggests that in the CTTS experiments, I atom loss occurs after autodetachment of the excited (I(H{sub 2}O){sub n}{sup -})* cluster, or, less probably, that the presence of the excess electron has little effect on the departing I atom.« less

  11. The Astro-E2 Mission

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.

    2004-01-01

    The Astro-E2 observatory is a rebuild of the original Astro-E observatory that was lost during launch in February 2000. It is scheduled for launch into low earth orbit on a Japanese M-V rocket in early 2005. The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, is developing the observatory with major contributions from the US. The three instruments on the observatory are the high-resolution x-ray spectrometer (the XRS) featuring a 30-pixel x-ray microcalorimeter array, a set of four CCD cameras (the XIS) and a combination photo-diode/scintillator detector system (the HXD) that will extend the band pass up to nearly 700 keV. A significant feature of Astro-E2 is that all of the instruments are coaligned and operated simultaneously. With its high spectral resolution and collecting area for spectroscopy above 1 keV, Astro-E2 should enable major discovery space and pioneer new technology for use in space. Prime areas for investigation are supernova remnants, active galaxies and the measurement of black hole properties via relativistically-broadened Fe-K emission galaxies. A number of enhancements have been made for the Astro-E2/XRS, including a higher resolution microcalorimeter array, ii mechanical cooler for longer cryogen life, and an improved in-flight calibration system. The Astro-E2/XIS has also been improved to include two back-side-illuminated CCDs to enhance the low energy response. Improvements have also been made to the x-ray mirrors used for both the XRS and XIS to sharpen the point spread function and reduce the effects of stray light. In this talk we will present the essential features of Astro-E2, paying particular attention to the enhancements, and describe the major scientific strengths of the observatory.

  12. The impact of e-marketing orientation on performance in Asian SMEs: a B2B perspective

    NASA Astrophysics Data System (ADS)

    Chong, Woon Kian; Man, Ka Lok; Kim, Mucheol

    2018-01-01

    Business-to-business (B2B) organisations are increasingly utilising electronic devices in their business operations in order to succeed in increasingly competitive markets. This trend is prevalent in the growing Asian markets, especially in the small and medium-sized enterprises (SMEs) sector. While prior research has focused on this issue in the context of large business-to-customer (B2C) organisations in Asia, there have hardly been any studies that have shed light on the B2B sector in the SME setting. This study aims to critically explore B2B e-marketing critical success factors (B2B-eM-CSFs) for SMEs operating in the Asian B2B marketplace. A key finding is the development of a theoretical framework for SMEs, emerging from the analysis of 406 companies from various industrial sectors. The study shows that interaction with the B2B-eM-CSFs is an important dimension and has a positive and significant impact on e-business efficiency and marketing improvements for Asian SMEs.

  13. The heterogeneity statistic I(2) can be biased in small meta-analyses.

    PubMed

    von Hippel, Paul T

    2015-04-14

    Estimated effects vary across studies, partly because of random sampling error and partly because of heterogeneity. In meta-analysis, the fraction of variance that is due to heterogeneity is estimated by the statistic I(2). We calculate the bias of I(2), focusing on the situation where the number of studies in the meta-analysis is small. Small meta-analyses are common; in the Cochrane Library, the median number of studies per meta-analysis is 7 or fewer. We use Mathematica software to calculate the expectation and bias of I(2). I(2) has a substantial bias when the number of studies is small. The bias is positive when the true fraction of heterogeneity is small, but the bias is typically negative when the true fraction of heterogeneity is large. For example, with 7 studies and no true heterogeneity, I(2) will overestimate heterogeneity by an average of 12 percentage points, but with 7 studies and 80 percent true heterogeneity, I(2) can underestimate heterogeneity by an average of 28 percentage points. Biases of 12-28 percentage points are not trivial when one considers that, in the Cochrane Library, the median I(2) estimate is 21 percent. The point estimate I(2) should be interpreted cautiously when a meta-analysis has few studies. In small meta-analyses, confidence intervals should supplement or replace the biased point estimate I(2).

  14. DEAD-box RNA helicase Dbp4 is required for small-subunit processome formation and function.

    PubMed

    Soltanieh, Sahar; Osheim, Yvonne N; Spasov, Krasimir; Trahan, Christian; Beyer, Ann L; Dragon, François

    2015-03-01

    DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5' end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. DEAD-Box RNA Helicase Dbp4 Is Required for Small-Subunit Processome Formation and Function

    PubMed Central

    Soltanieh, Sahar; Osheim, Yvonne N.; Spasov, Krasimir; Trahan, Christian; Beyer, Ann L.

    2014-01-01

    DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5′ end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA. PMID:25535329

  16. RNA processing: pocket guides to ribosomal RNA.

    PubMed

    Peculis, B

    1997-08-01

    The functional role of a recently identified class of small nucleolar (sno) RNAs has been elucidated: the 'box H/ACA' snoRNAs act as guide RNAs, specifying the position of evolutionarily conserved pseudouridines in ribosomal (r)RNA via an rRNA-snoRNA base-pairing interaction that forms a 'pseudouridine pocket'.

  17. Restricted Protein Phosphatase 2A Targeting by Merkel Cell Polyomavirus Small T Antigen

    PubMed Central

    Kwun, Hyun Jin; Shuda, Masahiro; Camacho, Carlos J.; Gamper, Armin M.; Thant, Mamie; Chang, Yuan

    2015-01-01

    ABSTRACT Merkel cell polyomavirus (MCV) is a newly discovered human cancer virus encoding a small T (sT) oncoprotein. We performed MCV sT FLAG-affinity purification followed by mass spectroscopy (MS) analysis, which identified several protein phosphatases (PP), including PP2A A and C subunits and PP4C, as potential cellular interacting proteins. PP2A targeting is critical for the transforming properties of nonhuman polyomaviruses, such as simian virus 40 (SV40), but is not required for MCV sT-induced rodent cell transformation. We compared similarities and differences in PP2A binding between MCV and SV40 sT. While SV40 sT coimmunopurified with subunits PP2A Aα and PP2A C, MCV sT coimmunopurified with PP2A Aα, PP2A Aβ, and PP2A C. Scanning alanine mutagenesis at 29 sites across the MCV sT protein revealed that PP2A-binding domains lie on the opposite molecular surface from a previously described large T stabilization domain (LSD) loop that binds E3 ligases, such as Fbw7. MCV sT-PP2A interactions can be functionally distinguished by mutagenesis from MCV sT LSD-dependent 4E-BP1 hyperphosphorylation and viral DNA replication enhancement. MCV sT has a restricted range for PP2A B subunit substitution, inhibiting only the assembly of B56α into the phosphatase holoenzyme. In contrast, SV40 sT inhibits the assembly of B55α, B56α and B56ε into PP2A. We conclude that MCV sT is required for Merkel cell carcinoma growth, but its in vitro transforming activity depends on LSD interactions rather than PP2A targeting. IMPORTANCE Merkel cell polyomavirus is a newly discovered human cancer virus that promotes cancer, in part, through expression of its small T (sT) oncoprotein. Animal polyomavirus sT oncoproteins have been found to cause experimental tumors by blocking the activities of a group of phosphatases called protein phosphatase 2A (PP2A). Our structural analysis reveals that MCV sT also displaces the B subunit of PP2A to inhibit PP2A activity. MCV sT, however, only

  18. The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk; Aliev, V. Sh.

    2014-02-17

    The origin of a blue luminescence band at 2.7 eV and a luminescence excitation band at 5.2 eV of hafnia has been studied in stoichiometric and non-stoichiometric hafnium oxide films. Experimental and calculated results from the first principles valence band spectra showed that the stoichiometry violation leads to the formation of the peak density of states in the band gap caused by oxygen vacancies. Cathodoluminescence in the non-stoichiometric film exhibits a band at 2.65 eV that is excited at the energy of 5.2 eV. The optical absorption spectrum calculated for the cubic phase of HfO{sub 2} with oxygen vacancies showsmore » a peak at 5.3 eV. Thus, it could be concluded that the blue luminescence band at 2.7 eV and HfO{sub x} excitation peak at 5.2eV are due to oxygen vacancies. The thermal trap energy in hafnia was estimated.« less

  19. SU-E-T-217: Intrinsic Respiratory Gating in Small Animal CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Smith, M; Mistry, N

    Purpose: Preclinical animal models of lung cancer can provide a controlled test-bed for testing dose escalation or function-based-treatment-planning studies. However, to extract lung function, i.e. ventilation, one needs to be able to image the lung at different phases of ventilation (in-hale / ex-hale). Most respiratory-gated imaging using micro-CT involves using an external ventilator and surgical intervention limiting the utility in longitudinal studies. A new intrinsic respiratory retrospective gating method was developed and tested in mice. Methods: A fixed region of interest (ROI) that covers the diaphragm was selected on all projection images to estimate the mean intensity (M). The meanmore » intensity depends on the projection angle and diaphragm position. A 3-point moving average (A) of consecutive M values: Mpre, Mcurrent and Mpost, was calculated to be subtracted from Mcurrent. A fixed threshold was used to enable amplitude based sorting into 4 different phases of respiration. Images at full-inhale and end-exhale phases of respiration were reconstructed using the open source OSCaR. Lung volumes estimated at the 2 phases of respiration were validated against literature values. Results: Intrinsic retrospective gating was accomplished without the use of any external breathing waveform. While projection images were acquired at 360 different angles. Only 138 and 104 projections were used to reconstruct images at full-inhale and end-exhale. This often results in non-uniform under-sampled angular projections leading to some minor streaking artifacts. The calculated expiratory, inspiratory and tidal lung volumes correlated well with the values known from the literature. Conclusion: Our initial result demonstrates an intrinsic gating method that is suitable for flat panel cone beam small animal CT systems. Reduction in streaking artifacts can be accomplished by oversampling the data or using iterative reconstruction methods. This initial experience will enable

  20. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells.

    PubMed

    Wang, Hsiang-Tsui; Chen, Tzu-Ying; Weng, Ching-Wen; Yang, Chun-Hsiang; Tang, Moon-Shong

    2016-12-06

    Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.

  1. The BPS spectrum of the 4d {N}=2 SCFT's H 1, H 2, D 4, E 6, E 7, E 8

    NASA Astrophysics Data System (ADS)

    Cecotti, Sergio; Del Zotto, Michele

    2013-06-01

    Extending results of 1112.3984, we show that all rank 1 {N}=2 SCFT's in the sequence H 1, H 2, D 4 E 6, E 7, E 8 have canonical finite BPS chambers containing precisely 2 h(F) = 12(∆ - 1) hypermultiplets. The BPS spectrum of the canonical BPS chambers saturates the conformal central charge c, and satisfies some intriguing numerology.

  2. MET-2-Dependent H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance.

    PubMed

    Lev, Itamar; Seroussi, Uri; Gingold, Hila; Bril, Roberta; Anava, Sarit; Rechavi, Oded

    2017-04-24

    In C. elegans, alterations to chromatin produce transgenerational effects, such as inherited increase in lifespan and gradual loss of fertility. Inheritance of histone modifications can be induced by double-stranded RNA-derived heritable small RNAs. Here, we show that the mortal germline phenotype, which is typical of met-2 mutants, defective in H3K9 methylation, depends on HRDE-1, an argonaute that carries small RNAs across generations, and is accompanied by accumulated transgenerational misexpression of heritable small RNAs. We discovered that MET-2 inhibits small RNA inheritance, and, as a consequence, induction of RNAi in met-2 mutants leads to permanent RNAi responses that do not terminate even after more than 30 generations. We found that potentiation of heritable RNAi in met-2 animals results from global hyperactivation of the small RNA inheritance machinery. Thus, changes in histone modifications can give rise to drastic transgenerational epigenetic effects, by controlling the overall potency of small RNA inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. EphA2 knockdown attenuates atherosclerotic lesion development in ApoE(-/-) mice.

    PubMed

    Jiang, Hong; Li, Xinyun; Zhang, Xiaoli; Liu, Yan; Huang, Shanying; Wang, Xiaowei

    2014-01-01

    The inflammatory response of vascular endothelial cells plays important roles in the initiation and progression of atherosclerotic lesions. EphA2 receptor activation promotes the endothelial cell inflammatory response, and its expression is increased in the endothelial cell layer of atherosclerotic plaques. However, the association between EphA2 and atherosclerosis has not been determined. Eight-week-old male ApoE(-/-) mice were systemically infected with adenoassociated virus serotype 9 carrying a small hairpin RNA specifically targeting the EphA2 gene to knock down EphA2 expression in aortic endothelial cells. These mice were then fed a high-cholesterol diet for 12 weeks. Blood was collected for the measurement of plasma lipids. The aortas were harvested to evaluate the atherosclerotic lesion size, macrophage components, and expression of proinflammatory genes using Oil Red O staining, immunofluorescence staining, and molecular biology analysis. The lesions formed in the entire aorta and aortic sinus of the ApoE(-/-) mice with EphA2 knockdown were significantly smaller than those in the control mice (10.7%±3.1% versus 25.1%±4.2%; 0.51±0.02mm(2) versus 0.85±0.03mm(2); n=10; P<.05). Furthermore, the lesions in the ApoE(-/-) mice with EphA2 knockdown displayed reduced inflammation compared with the control mice, as reflected by the decreased macrophage infiltration (8.22.9% versus 22.7%±4%; n=10; P<.05); decreased nuclear factor-κβ activation; and diminished expression of vascular cell adhesion molecule-1, E-selectin, and monocyte chemotactic protein-1 (all P<.05). Our data demonstrate that the EphA2 receptor silencing attenuates the extent and inflammation of atherosclerotic lesions in ApoE(-/-) mice. Thus, EphA2 knockdown in endothelial cells represents a novel therapeutic strategy for patients with atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli

    PubMed Central

    Kim, Sang Hyon; Spensley, Mark; Choi, Seung Kook; Calixto, Cristiane P. G.; Pendle, Ali F.; Koroleva, Olga; Shaw, Peter J.; Brown, John W. S.

    2010-01-01

    Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants. PMID:20081206

  5. The B(E2;4^+1->2^+1) / B(E2;2^+1->0^+1) Ratio in Even-Even Nuclei

    NASA Astrophysics Data System (ADS)

    Loelius, C.; Sharon, Y. Y.; Zamick, L.; G"Urdal, G.

    2009-10-01

    We considered 207 even-even nuclei throughout the chart of nuclides for which the NNDC Tables had data on the energies and lifetimes of the 2^+1 and 4^+1 states. Using these data we calculated for each nucleus the electric quadrupole transition strengths B(E2;4^+1->2^+1) and B(E2;2^+1->0^+1), as well as their ratio. The internal conversion coefficients were obtained by using the NNDC HSICC calculator. For each nucleus we plotted the B(E2) ratio against A, N, and Z. We found that for close to 90% of the nuclei considered the ratio had values between 0.5 and 2.5. Most of the outliers had magic numbers of protons or neutrons. Our ratio results were compared with the theoretical predictions for this ratio by different models--10/7 in the rotational model and 2 in the simplest vibrational model. In the rotational regions (for 150 < A < 180 and A > 220) the ratios were indeed close to 10/7. For the few nuclei thought to be vibrational the ratios were usually less than 2. Otherwise, we got a wide scatter of ratio values. Hence other models, including the NpNn scheme, must be considered in interpreting these results.

  6. Small-Gap Flows

    DTIC Science & Technology

    1984-04-01

    I TV N 4 NAVAL ARCIETUR & OFFSHORE ENGINEERING SMALL- GAP FLOWSti E 0.TUCK01 REPORT NO- M!AOL 34-1 CONTRACT NJU1-𔃾-K-0026 APRIL 1984 let.? UNIVERSMn...34’OF CALIFORNIA# BERKELEY, CA 5.1720 ft (45 642-141 SMALL- GAP FLOWS BY E. 0. TUCK REPORT No. NAUE 84-1 CONTRACT N00014-84-K-OU26 APRIL i984...34small- gap " theme.Chapters 1-4 were originally presented in the form of a lecture series in the Department of Naval Architecture and Offshore

  7. The Mu2e crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Happacher, F.

    2017-09-01

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ- + Al → e- +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμ e = μ- + A(Z,N) → e- +A(Z,N)/μ- + A(Z,N) → νμ - +A(Z-1,N) of <= 6 × 10-17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 1010 μ/ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.

  8. The Mu2e crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Danè, E.; Davidov, Y.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Mu2e Collaboration

    2017-09-01

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ- + Al → e- +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμe = μ- + A(Z,N) → e- + A(Z,N)/μ- + A(Z,N) → νμ- + A(Z-1,N) of <= 6 × 10-17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 1010 μ/sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.

  9. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    PubMed

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Msi2 Regulates the Aggressiveness of Non Small Cell Lung Cancer (NSCLC)

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0192 TITLE: Msi2 Regulates the Aggressiveness of Non -Small Cell Lung Cancer (NSCLC) PRINCIPAL INVESTIGATOR: Yanis...Annual 3. DATES COVERED (From - To) 15 Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE Msi2 Regulates the Aggressiveness of Non -Small Cell Lung Cancer...in vitro and in vivo are ongoing, while immunohistochemistry studies are starting Fall 2016. 15. SUBJECT TERMS Non -small cell lung cancer

  11. Neptune's small dark spot (D2)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the V-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  12. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  13. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    PubMed Central

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  14. Dual baseline search for muon neutrino disappearance at 0.5 eV 2 < Delta m 2 < 40 eV 2

    DOE PAGES

    Mahn, K B.M.

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a ν μ disappearance search in the &Delta'm 2 region of 0.5-40 eV 2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on ν μ disappearance in the 0.5-40 eV 2 Δm 2 region, with an improvement over previous experimental constraints between 10 and 30 eV 2

  15. Dual baseline search for muon neutrino disappearance at 0.5eV2<Δm2<40eV2

    NASA Astrophysics Data System (ADS)

    Mahn, K. B. M.; Nakajima, Y.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Catala-Perez, J.; Cheng, G.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Dore, U.; Finley, D. A.; Fleming, B. T.; Ford, R.; Franke, A. J.; Garcia, F. G.; Garvey, G. T.; Giganti, C.; Gomez-Cadenas, J. J.; Grange, J.; Green, C.; Green, J. A.; Guzowski, P.; Hanson, A.; Hart, T. L.; Hawker, E.; Hayato, Y.; Hiraide, K.; Huelsnitz, W.; Imlay, R.; Johnson, R. A.; Jones, B. J. P.; Jover-Manas, G.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Kubo, H.; Kurimoto, Y.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mariani, C.; Marsh, W.; Masuike, S.; Matsuoka, K.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nakaya, T.; Napora, R.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Orme, D.; Osmanov, B.; Otani, M.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sanchez, F.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shibata, T.-A.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Takei, H.; Tanaka, H. A.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Tzanov, M.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, D. H.; White, H. B.; Wilking, M. J.; Yokoyama, M.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2012-02-01

    The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the Δm2 region of 0.5-40eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30eV2.

  16. 26 CFR 1.50B-2 - Electing small business corporations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 1 2012-04-01 2012-04-01 false Electing small business corporations. 1.50B-2... business corporations. (a) General rule—(1) In general. In the case of an electing small business corporation (as defined in section 1371 (b)), WIN expenses (as defined in paragraph (a) of § 1.50B-1) shall be...

  17. 26 CFR 1.50B-2 - Electing small business corporations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Electing small business corporations. 1.50B-2... business corporations. (a) General rule—(1) In general. In the case of an electing small business corporation (as defined in section 1371 (b)), WIN expenses (as defined in paragraph (a) of § 1.50B-1) shall be...

  18. 26 CFR 1.50B-2 - Electing small business corporations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 1 2013-04-01 2013-04-01 false Electing small business corporations. 1.50B-2... business corporations. (a) General rule—(1) In general. In the case of an electing small business corporation (as defined in section 1371 (b)), WIN expenses (as defined in paragraph (a) of § 1.50B-1) shall be...

  19. Donor defects and small polarons on the TiO2(110) surface

    NASA Astrophysics Data System (ADS)

    Moses, P. G.; Janotti, A.; Franchini, C.; Kresse, G.; Van de Walle, C. G.

    2016-05-01

    The role of defects in the chemical activity of the rutile TiO2(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend to localize in the form of small polarons, which are the factual cause of the deep states ˜1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO2 and related oxides.

  20. Implementing the Small Business Innovation Development Act--The First 2 Years.

    DTIC Science & Technology

    1985-10-25

    GENERAL Report To The Congress OF THE UNITED STATES , Implementing The Small Business Innovation Development Act--The First 2 Years (AD I The 1982 act...seeks to encourage innovation and small business participation in federal Sresearch. Among other requirements, agen- cies spending more than $100...million annu- !* ally for external research must award por- tions of their external research dollars to small businesses . This first of several

  1. Antibacterial Effect of (2E,2E)-4,4-Trisulfanediylbis(but-2-enoic acid) against Staphylococcus aureus.

    PubMed

    Wu, Tao; Huang, Yina; Chen, Yijun; Zhang, Min

    2018-01-01

    A new highly active molecule, (2E, 2E)-4,4-trisulfanediylbis(but-2-enoic acid) (TSDB), was designed and synthesized through comparative molecular field analysis with the diallyl trisulfide structure of garlic. TSDB exerted a strong inhibitory effect against Staphylococcus aureus, with minimal inhibitory and minimal bactericidal concentrations of 16 and 128 μg/mL, respectively. TSDB destructed the integrity of the S. aureus cell membrane but weakly damaged the bacterial cell wall. TSDB also increased the conductivity and protein expression in microbial broth but minimally influenced the level of extracellular alkaline phosphatase. TSDB could be a novel food preservative.

  2. Small business support of youth physical activity opportunities.

    PubMed

    Suminski, Richard R; Ding, Ding

    2012-01-01

    Describe small business support for youth physical activity opportunities (YPAO) and identify factors associated with this support. Cross-sectional analysis of quantitative data relating business characteristics and support for YPAO. Eight demographically heterogeneous, urban neighborhoods in a Midwest metropolitan area. Adult small business owners (n = 90; 65% response rate; mean age 48.4 years; 73.3% male; 45.2% minority). Neighborhood demographics from the 2000 U.S. Census and self-reported business and owner characteristics. Multivariate analysis of variance was used to contrast business and owner characteristics between businesses that did and did not support YPAO. Businesses supporting YPAO had larger annual operating (F = 7.6; p = .018) and advertising budgets (F = 8.5; p = .009) and had younger owners (F = 6.1; p = .034), with sports backgrounds (χ(2) = 5.6; p = .018) and who felt businesses should support YPAO (χ(2) = 3.8; p = .048). Of the 46 businesses not supporting YPAO, 82.6% felt small businesses should support YPAO. The major reasons for nonsupport were difficulty identifying YPAO to support and not being asked for support. Business (e.g., budgets) and business owner characteristics (e.g., age), owner connectedness with YPAO, and the approach used for garnering support (active solicitation, clearly defined support mechanism) were associated with supporting YPAO. Additional business (e.g., annual revenues), owner (e.g., perceptions of YPAO), and environmental (e.g., crime rate, land use) factors should be examined as potential correlates.

  3. Estradiol-17β, prostaglandin E2 (PGE2) and the prostaglandin E2 receptor are involved in PGE2 positive feedback loop in the porcine endometrium

    PubMed Central

    Waclawik, Agnieszka; Jabbour, Henry N.; Blitek, Agnieszka; Ziecik, Adam J.

    2009-01-01

    Before implantation, the porcine endometrium and trophoblast synthesize elevated amounts of luteoprotective prostaglandin E2 (PGE2). We hypothesized that embryo signal, estradiol-17β (E2) and PGE2 modulate expression of key enzymes in PG synthesis: prostaglandin-endoperoxide synthase-2 (PTGS2), PGE synthase (mPGES-1), PGF synthase (PGFS), and prostaglandin 9-ketoreductase (CBR1); as well as PGE2 receptor (PTGER2 and 4) expression and signaling within the endometrium. We determinated the site of action of PGE2 in endometrium during the estrous cycle and pregnancy. Endometrial tissue explants obtained from gilts (n=6) on days 11-12 of the estrous cycle were treated with vehicle (control), PGE2 (100 nM), E2 (1-100 nM) or phorbol 12-myristate 13-acetate (100 nM, positive control). E2 increased PGE2 secretion through elevating expression of mPGES-1 mRNA and PTGS2 and mPGES-1 protein in endometrial explants. By contrast, E2 decreased PGFS and CBR1 protein expression. E2 also stimulated PTGER2 but not PTGER4 protein content. PGE2 enhanced mPGES-1 and PTGER2 mRNA as well as PTGS2, mPGES-1 and PTGER2 protein expression. PGE2 had no effect on PGFS, CBR1 and PTGER4 expression and PGF2α release. Treatment of endometrial tissue with PGE2 increased cAMP production. Co-treatment with PTGER2 antagonist (AH6809) but not PTGER4 antagonist (GW 627368X) inhibited significantly PGE2-mediated cAMP production. PTGER2 protein was localized in luminal and glandular epithelium and blood vessels of endometrium, and was significantly up-regulated on days 11-12 of pregnancy. Our results suggest that E2, prevents luteolysis through enzymatic modification of PG synthesis and that E2, PGE2 and endometrial PTGER2 are involved in PGE2 positive feedback loop in porcine endometrium. PMID:19359378

  4. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  5. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization.

    PubMed

    Beavers, David L; Wang, Wei; Ather, Sameer; Voigt, Niels; Garbino, Alejandro; Dixit, Sayali S; Landstrom, Andrew P; Li, Na; Wang, Qiongling; Olivotto, Iacopo; Dobrev, Dobromir; Ackerman, Michael J; Wehrens, Xander H T

    2013-11-19

    This study sought to study the role of junctophilin-2 (JPH2) in atrial fibrillation (AF). JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca(2+) handling and modulation of ryanodine receptor Ca(2+) channels (RyR2). Whereas defective RyR2-mediated Ca(2+) release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudoknock-in (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF than wild type (WT)-PKI mice, whereas A399S-PKI mice expressing a hypertrophic cardiomyopathy-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca(2+) release events. These changes were attributed to reduced binding of E169K-JPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca(2+) spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients and an increased frequency of spontaneous Ca(2+) release events. Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2/RyR2 ratios can promote SR Ca(2+) leak and atrial arrhythmias, representing a potential novel therapeutic target for AF. Copyright © 2013. Published by Elsevier Inc.

  6. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization

    PubMed Central

    Voigt, Niels; Garbino, Alejandro; Dixit, Sayali S.; Landstrom, Andrew P.; Li, Na; Wang, Qiongling; Olivotto, Iacopo; Dobrev, Dobromir; Ackerman, Michael J.; Wehrens, Xander H.T.

    2013-01-01

    Objectives To study the role of junctophilin 2 (JPH2) in atrial fibrillation (AF). Background JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca2+ handling and modulation of ryanodine receptor Ca2+ channels (RyR2). Whereas defective RyR2-mediated Ca2+ release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Methods Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudo-knockin (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. Results PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF compared with wildtype (WT)-PKI mice, while A399S-PKI mice expressing a HCM-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca2+ release events. These changes were attributed to reduced binding of E169KJPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca2+ spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients, and an increased frequency of spontaneous Ca2+ release events. Conclusions Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2:RyR2 ratios can promote SR Ca2+ leak and atrial arrhythmias, representing a potential novel therapeutic target for AF. PMID:23973696

  7. SugE belongs to the small multidrug resistance (SMR) protein family involved in tributyltin (TBT) biodegradation and bioremediation by alkaliphilic Stenotrophomonas chelatiphaga HS2.

    PubMed

    Hassan, Hamdy A

    2018-03-01

    Tributyltin (TBT) used in a variety of industrial processes, subsequent discharge into the environment, its fate, toxicity and human exposure are topics of current concern. TBT degradation by alkaliphilic bacteria may be a key factor in the remediation of TBT in high pH contaminated sites. In this study, Stenotrophomonas chelatiphaga HS2 were isolated and identified from TBT contaminated site in Mediterranean Sea. S. chelatiphaga HS2 has vigor capability to transform TBT into dibutyltin and monobutyltin (DBT and MBT) at pH 9 and 7% NaCl (w/v). A gene was amplified and characterized from strain HS2 as SugE protein belongs to SMR protein family, a reverse transcription polymerase chain reaction analysis confirmed that SugE protein involved in the TBT degradation by HS2 strain. TBT bioremediation was investigated in stimulated TBT contaminated sediment samples (pH 9) using S chelatiphaga HS2 in association with E. coli BL21 (DE3)-pET28a(+)-sugE instead of S chelatiphaga HS2 alone reduced significantly the TBT half-life from 12d to 5d, although no TBT degradation appeared using E. coli BL21 (DE3)-pET28a(+)-sugE alone. This finding indicated that SugE gene increased the rate and degraded amount of TBT and is necessary in enhancing TBT bioremediation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Mu2e crystal calorimeter

    DOE PAGES

    Happacher, Fabio

    2017-09-15

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ - + Al → e - +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates R μe = μ - + A(Z,N) → e - +A(Z,N)/μ - + A(Z,N) → ν μ - +A(Z-1,N) more » of ≤ 6 ×10 -17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 10 10 μ/ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. As a result, an overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.« less

  9. The Mu2e crystal calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happacher, Fabio

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ - + Al → e - +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates R μe = μ - + A(Z,N) → e - +A(Z,N)/μ - + A(Z,N) → ν μ - +A(Z-1,N) more » of ≤ 6 ×10 -17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 10 10 μ/ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. As a result, an overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.« less

  10. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model.

    PubMed

    Lian, Hua-Yu; Jiao, Guang-Zhong; Wang, Hui-Li; Tan, Xiu-Wen; Wang, Tian-Yang; Zheng, Liang-Liang; Kong, Qiao-Qiao; Tan, Jing-He

    2014-09-01

    Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF. © 2014 by the Society for the Study of Reproduction, Inc.

  11. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures.

    PubMed

    Heise, Christopher; Taha, Elham; Murru, Luca; Ponzoni, Luisa; Cattaneo, Angela; Guarnieri, Fabrizia C; Montani, Caterina; Mossa, Adele; Vezzoli, Elena; Ippolito, Giulio; Zapata, Jonathan; Barrera, Iliana; Ryazanov, Alexey G; Cook, James; Poe, Michael; Stephen, Michael Rajesh; Kopanitsa, Maksym; Benfante, Roberta; Rusconi, Francesco; Braida, Daniela; Francolini, Maura; Proud, Christopher G; Valtorta, Flavia; Passafaro, Maria; Sala, Mariaelvina; Bachi, Angela; Verpelli, Chiara; Rosenblum, Kobi; Sala, Carlo

    2017-03-01

    Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. HP-41CV Flight Performance Advisory System (FPAS) for the E-2C, E-2B, and C-2A Aircraft

    DTIC Science & Technology

    1982-06-01

    NPS67-82- 003 NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC HP-41CV FLIGHT PERFORMANCE ADVISORY SYSTEM (FPAS) FOR THE E-2C, E-2B, AND C-2A...A’P-𔃻"’f .00 ____________ 4. TITLE9 (and Subtil) SL TYPE OF REPORT & PERIOD COVERED H1P-41CV FLIGHT PERFORMANCE ADVISORY SYSTEM (FPAS) TECHNICAL REPORT...complement the original design of a Flight Performance Advisory System (FPAS) for the E-2C aircraft. The original design fulfilled the requirements of AE 3001

  13. Antibacterial Effect of (2E,2E)-4,4-Trisulfanediylbis(but-2-enoic acid) against Staphylococcus aureus

    PubMed Central

    Chen, Yijun; Zhang, Min

    2018-01-01

    A new highly active molecule, (2E, 2E)-4,4-trisulfanediylbis(but-2-enoic acid) (TSDB), was designed and synthesized through comparative molecular field analysis with the diallyl trisulfide structure of garlic. TSDB exerted a strong inhibitory effect against Staphylococcus aureus, with minimal inhibitory and minimal bactericidal concentrations of 16 and 128 μg/mL, respectively. TSDB destructed the integrity of the S. aureus cell membrane but weakly damaged the bacterial cell wall. TSDB also increased the conductivity and protein expression in microbial broth but minimally influenced the level of extracellular alkaline phosphatase. TSDB could be a novel food preservative. PMID:29795597

  14. A cytochemical note on nucleoli of granulocytic precursors and granulocytes in patients suffering from the refractory anemia with excess blasts (RAEB) of the myelodysplastic syndrome (MDS).

    PubMed

    Smetana, K; Jirásková, I; Malasková, V; Cermák, J

    2002-01-01

    Nucleoli were studied in the proliferation as well as maturation granulopoietic compartment in patients suffering from refractory anemia with excess blasts (RAEB) of the myelodysplastic syndrome (MDS) by means of simple cytochemical procedures for the demonstration of nucleolar RNA and silver stained proteins of nucleolus organizer regions. Regardless of the procedure used for the nucleolar visualization, early stages of the granulopoietic compartment and particularly myeloblasts of RAEB patients were characterized by reduction of the nucleolar number expressed by the nucleolar coefficient the values of which resembled those described previously in acute myeloid leukemias. The reduced values of the nucleolar coefficient of these cells in silver stained specimens of RAEB patients were accompanied by a decreased number of clusters of silver stained particles representing interphasic silver stained nucleolus organizer regions (AgNORs). The reduction of these clusters was also described previously in leukemic cells. In addition, the differences in the values of the nucleolar coefficient of granulocytic precursors between specimens stained for RNA and those stained with the silver reaction might reflect changing composition and proportions of nucleolar components in the course of the granulocytic development.

  15. Two-center interference effects in (e, 2e) ionization of H2 and CO2 at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masakazu; Nakajima, Isao; Satoh, Hironori; Watanabe, Noboru; Jones, Darryl; Takahashi, Masahiko

    2015-09-01

    In recent years, there has been considerable interest in understanding quantum mechanical interference effects in molecular ionization. Since this interference appears as a consequence of coherent electron emission from the different molecular centers, it should depend strongly on the nature of the ionized molecular orbital. Such molecular orbital patterns can be investigated by means of binary (e, 2e) spectroscopy, which is a kinematically-complete electron-impact ionization experiment performed under the high-energy Bethe ridge conditions. In this study, two-center interference effects in the (e, 2e) cross sections of H2 and CO2 at large momentum transfer are demonstrated with a high-statistics experiment, in order to elucidate the relationship between molecular orbital patterns and the interference structure. It is shown that the two-center interference is highly sensitive to the phase, spatial pattern, symmetry of constituent atomic orbital, and chemical bonding nature of the molecular orbital. This work was partially supported by Grant-in-Aids for Scientific Research (S) (No. 20225001) and for Young Scientists (B) (No. 21750005) from the Ministry of Education, Culture, Sports, Science and Technology.

  16. Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs.

    PubMed

    Kandeel, Mahmoud; Altaher, Abdullah; Kitade, Yukio; Abdelaziz, Magdi; Alnazawi, Mohamed; Elshazli, Kamal

    2016-10-01

    Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1. Copyright © 2016. Published by Elsevier Ltd.

  17. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    PubMed

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  18. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures

    PubMed Central

    Heise, Christopher; Taha, Elham; Murru, Luca; Ponzoni, Luisa; Cattaneo, Angela; Guarnieri, Fabrizia C.; Montani, Caterina; Mossa, Adele; Vezzoli, Elena; Ippolito, Giulio; Zapata, Jonathan; Barrera, Iliana; Ryazanov, Alexey G.; Cook, James; Poe, Michael; Stephen, Michael Rajesh; Kopanitsa, Maksym; Benfante, Roberta; Rusconi, Francesco; Braida, Daniela; Francolini, Maura; Proud, Christopher G.; Valtorta, Flavia; Passafaro, Maria; Sala, Mariaelvina; Bachi, Angela; Verpelli, Chiara; Rosenblum, Kobi; Sala, Carlo

    2017-01-01

    Abstract Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy. PMID:27005990

  19. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    DOE PAGES

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; ...

    2014-10-30

    We report that Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’smore » interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. We used surface plasmon resonance detection to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.« less

  20. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    PubMed Central

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; Saas, Laure; Dubuisson, Jean; Vielmetter, Jost; Marcotrigiano, Joseph; Khan, Abdul Ghafoor; Catalan, Felipe Vences; Perryman, Alexander L.; Freundlich, Joel S.; Forli, Stefano; Levy, Shoshana; Balhorn, Rod; Azzazy, Hassan M.

    2014-01-01

    Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’s interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. Surface plasmon resonance detection was used to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment. PMID:25357246

  1. Identification of a novel drug lead that inhibits HCV infection and cell-to-cell transmission by targeting the HCV E2 glycoprotein.

    PubMed

    Al Olaby, Reem R; Cocquerel, Laurence; Zemla, Adam; Saas, Laure; Dubuisson, Jean; Vielmetter, Jost; Marcotrigiano, Joseph; Khan, Abdul Ghafoor; Vences Catalan, Felipe; Perryman, Alexander L; Freundlich, Joel S; Forli, Stefano; Levy, Shoshana; Balhorn, Rod; Azzazy, Hassan M

    2014-01-01

    Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2's interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421-645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. Surface plasmon resonance detection was used to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50's ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.

  2. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam

    We report that Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’smore » interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. We used surface plasmon resonance detection to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.« less

  3. SU-F-E-06: Dosimetric Characterization of Small Photons Beams of a Novel Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almonte, A; Polanco, G; Sanchez, E

    2016-06-15

    Purpose: The aim of the present contribution was to measure the main dosimetric quantities of small fields produced by UNIQUE and evaluate its matching with the corresponding dosimetric data of one 21EX conventional linear accelerator (Varian) in operation at the same center. The second step was to evaluate comparative performance of the EDGE diode detector and the PinPoint micro-ionization chamber for dosimetry of small fields. Methods: UNIQUE is configured with MLC (120 leaves with 0.5 cm leaf width) and a single low photon energy of 6 MV. Beam data were measured with scanning EDGE diode detector (volume of 0.019 mm{supmore » 3}), a PinPoint micro-ionization chamber (PTW) and for larger fields (≥ 4×4cm{sup 2}) a PTW Semi flex chamber (0.125 cm{sup 3}) was used. The scanning system used was the 3D cylindrical tank manufactured by Sun Nuclear, Inc. The measurement of PDD and profiles were done at 100 cm SSD and 1.5 depth; the relative output factors were measured at 10 cm depth. Results: PDD and the profile data showed less than 1% variation between the two linear accelerators for fields size between 2×2 cm{sup 2} and 5×5cm{sup 2}. Output factor differences was less than 1% for field sizes between 3×3 cm{sup 2} and 10×10 cm{sup 2} and less of 1.5 % for fields of 1.5×1.5 cm{sup 2} and 2×2 cm{sup 2} respectively. The dmax value of the EDGE diode detector, measured from the PDD, was 8.347 mm for 0.5×0,5cm{sup 2} for UNIQUE. The performance of EDGE diode detector was comparable for all measurements in small fields. Conclusion: UNIQUE linear accelerator show similar dosimetrics characteristics as conventional 21EX Varian linear accelerator for small, medium and large field sizes.EDGE detector show good performance by measuring dosimetrics quantities in small fields typically used in IMRT and radiosurgery treatments.« less

  4. Small-size biofuel cell on paper.

    PubMed

    Zhang, Lingling; Zhou, Ming; Wen, Dan; Bai, Lu; Lou, Baohua; Dong, Shaojun

    2012-05-15

    In this work, we demonstrated a novel paper-based mediator-less and compartment-less biofuel cell (BFC) with small size (1.5 cm × 1.5 cm). Ionic liquid functionalized carbon nanotubes (CNTs-IL) nanocomposite was used as support for both stably confining the anodic biocatalyst (i.e., NAD(+)-dependent glucose dehydrogenase, GDH) for glucose electrooxidation and for facilitating direct electrochemistry of the cathodic biocatalyst (i.e., bilirubin oxidase, BOD) for O(2) electroreduction. Such BFC provided a simple approach to fabricate low-cost and portable power devices on small-size paper, which can harvest energy from a wide range of commercial beverages containing glucose (e.g., Nescafe instant coffee, Maidong vitamin water, Watermelon fresh juice, and Minute Maid grape juice). These made the low-cost paper-based biodevice potential for broad energy applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The Role of eIF4E Activity in Breast Cancer

    DTIC Science & Technology

    2010-08-01

    marker with some success. Furthermore, eIF4E is an established target for cancer therapy [3] and clinical trials of the efficacy and safety of cancer...individual group was small, for overall survival (OS), disease-free survival (DFS) and disease- specific survival ( DSS ) (Figure 2). High eIF4E scores were...indicative of poor prognosis. Prognosis seemed to worsen with each increasing eIF4E score for OS, whereas patterns for DFS and DSS sug- gested weaker

  6. Up-regulation of ribosome biogenesis by MIR196A2 genetic variation promotes endometriosis development and progression.

    PubMed

    Chang, Cherry Yin-Yi; Lai, Ming-Tsung; Chen, Yi; Yang, Ching-Wen; Chang, Hui-Wen; Lu, Cheng-Chan; Chen, Chih-Mei; Chan, Carmen; Chung, Ching; Tseng, Chun-Cheng; Hwang, Tritium; Sheu, Jim Jinn-Chyuan; Tsai, Fuu-Jen

    2016-11-22

    Aberrant miRNA expression has been reported in endometriosis and miRNA gene polymorphisms have been linked to cancer. Because certain ovarian cancers arise from endometriosis, we genotyped seven cancer-related miRNA single nucleotide polymorphisms (MiRSNPs) to investigate their possible roles in endometriosis. Genetic variants in MIR196A2 (rs11614913) and MIR100 (rs1834306) were found to be associated with endometriosis development and related clinical phenotypes, such as infertility and pain. Downstream analysis of the MIR196A2 risk allele revealed upregulation of rRNA editing and protein synthesis genes, suggesting hyper-activation of ribosome biogenesis as a driving force for endometriosis progression. Clinical studies confirmed higher levels of small nucleolar RNAs and ribosomal proteins in atypical endometriosis lesions, and this was more pronounced in the associated ovarian clear cell carcinomas. Treating ovarian clear cells with CX5461, an RNA polymerase I inhibitor, suppressed cell growth and mobility followed by cell cycle arrest at G2/M stage and apoptosis. Our study thus uncovered a novel tumorigenesis pathway triggered by the cancer-related MIR196A2 risk allele during endometriosis development and progression. We suggest that anti-RNA polymerase I therapy may be efficacious for treating endometriosis and associated malignancies.

  7. A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli.

    PubMed

    Musinova, Yana R; Kananykhina, Eugenia Y; Potashnikova, Daria M; Lisitsyna, Olga M; Sheval, Eugene V

    2015-01-01

    The majority of known nucleolar proteins are freely exchanged between the nucleolus and the surrounding nucleoplasm. One way proteins are retained in the nucleoli is by the presence of specific amino acid sequences, namely nucleolar localization signals (NoLSs). The mechanism by which NoLSs retain proteins inside the nucleoli is still unclear. Here, we present data showing that the charge-dependent (electrostatic) interactions of NoLSs with nucleolar components lead to nucleolar accumulation as follows: (i) known NoLSs are enriched in positively charged amino acids, but the NoLS structure is highly heterogeneous, and it is not possible to identify a consensus sequence for this type of signal; (ii) in two analyzed proteins (NF-κB-inducing kinase and HIV-1 Tat), the NoLS corresponds to a region that is enriched for positively charged amino acid residues; substituting charged amino acids with non-charged ones reduced the nucleolar accumulation in proportion to the charge reduction, and nucleolar accumulation efficiency was strongly correlated with the predicted charge of the tested sequences; and (iii) sequences containing only lysine or arginine residues (which were referred to as imitative NoLSs, or iNoLSs) are accumulated in the nucleoli in a charge-dependent manner. The results of experiments with iNoLSs suggested that charge-dependent accumulation inside the nucleoli was dependent on interactions with nucleolar RNAs. The results of this work are consistent with the hypothesis that nucleolar protein accumulation by NoLSs can be determined by the electrostatic interaction of positively charged regions with nucleolar RNAs rather than by any sequence-specific mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis.

    PubMed

    Kudinov, Alexander E; Deneka, Alexander; Nikonova, Anna S; Beck, Tim N; Ahn, Young-Ho; Liu, Xin; Martinez, Cathleen F; Schultz, Fred A; Reynolds, Samuel; Yang, Dong-Hua; Cai, Kathy Q; Yaghmour, Khaled M; Baker, Karmel A; Egleston, Brian L; Nicolas, Emmanuelle; Chikwem, Adaeze; Andrianov, Gregory; Singh, Shelly; Borghaei, Hossein; Serebriiskii, Ilya G; Gibbons, Don L; Kurie, Jonathan M; Golemis, Erica A; Boumber, Yanis

    2016-06-21

    Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.

  9. Picosecond excite-and-probe absorption measurement of the intra-2E(g)E(3/2)-state vibrational relaxation time in Ti(3+):Al2O3

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Yoo, K. M.; Alfano, R. R.

    1987-01-01

    The Ti(3+)-doped Al2O3 has been recently demonstrated to be a tunable solid-state laser system with Ti(3+) as the laser-active ion. In this paper, the kinetics of vibrational transitions in the 2E(g)E(3/2) electronic state of Ti(3+):Al2O3a (crucial for characterizing new host materials for the Ti ion) was investigated. A 527-nm 5-ps pulse was used to excite a band of higher vibrational levels of the 2E(g)E(3/2) state, and the subsequent growth of population in the zero vibrational level and lower vibrational levels was monitored by a 3.9-micron picosecond probe pulse. The time evolution curve in the excited 2E(g)E(3/2) state at room temperature was found to be characterized by a sharp rise followed by a long decay, the long lifetime decay reflecting the depopulation of the zero and the lower vibrational levels of the 2E(g)E(3/2) state via radiative transitions. An upper limit of 3.5 ps was estimated for intra-2E(g)E(3/2)-state vibrational relaxation time.

  10. The Nucleolar Fibrillarin Protein Is Required for Helper Virus-Independent Long-Distance Trafficking of a Subviral Satellite RNA in Plants[OPEN

    PubMed Central

    Chang, Chih-Hao; Lee, Shu-Chuan; Lo, Yih-Shan; Wang, Jiun-Da; Shaw, Jane; Chang, Ban-Yang

    2016-01-01

    RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking. PMID:27702772

  11. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    PubMed Central

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-01-01

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. DOI: http://dx.doi.org/10.7554/eLife.13571.001 PMID:26836305

  12. Minding Your Own Small Business. Simulation Game 2.

    ERIC Educational Resources Information Center

    Athena Corp., Bethesda, MD.

    Designed as an integral part of a one-semester course in small business ownership and management for high school students, this second of two simulation games is intended to be introduced at the end of Unit 2, "The Market is People," and completed in Unit 3, "Dollars and Decisions." The game is divided into two…

  13. The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain.

    PubMed

    Kitambi, Satish Srinivas; Hauptmann, Giselbert

    2007-02-01

    Mammalian Nr2e1 (Tailless, Mtll or Tlx) and Nr2e3 (photoreceptor-specific nuclear receptor, Pnr) are highly related orphan nuclear receptors, that are expressed in eye and forebrain-derived structures. In this study, we analyzed the developmental expression patterns of zebrafish nr2e1 and nr2e3. RT-PCR analysis showed that nr2e1 and nr2e3 are both expressed during embryonic and post-embryonic development. To examine the spatial distribution of nr2e1 and nr2e3 during development whole-mount in situ hybridization was performed. At tailbud stage, initial nr2e1 expression was localized to the rostral brain rudiment anterior to pax2.1 and eng2 expression at the prospective midbrain-hindbrain boundary. During subsequent stages, nr2e1 became widely expressed in fore- and midbrain primordia, eye and olfactory placodes. At 24hpf, strong nr2e1 expression was detected in telencephalon, hypothalamus, dorsal thalamus, pretectum, midbrain tectum, and retina. At 2dpf, the initially widespread nr2e1 expression became more restricted to distinct regions within the fore- and midbrain and to the retinal ciliary margin, the germinal zone which gives rise to retina and presumptive iris. Expression of nr2e3 was exclusively found in the developing retina and epiphysis. In both structures, nr2e3 expression was found in photoreceptor cells. The developmental expression profile of zebrafish nr2e1 and nr2e3 is consistent with evolutionary conserved functions in eye and rostral brain structures.

  14. The Treacher Collins syndrome (TCOF1) gene product, treacle, is targeted to the nucleolus by signals in its C-terminus.

    PubMed

    Winokur, S T; Shiang, R

    1998-11-01

    The TCOF1 gene product, treacle, responsible for the craniofacial disorder Treacher Collins syndrome, has been predicted to be a member of a class of nucleolar phosphoproteins based on its primary amino acid sequence. Treacle is a low complexity protein with ten repeating units of acidic and basic residues, each of which contains a large number of putative casein kinase 2 and protein kinase C phosphorylation sites. In addition, the C-terminus of treacle contains multiple putative nuclear localization signals. The overall structure of treacle, as well as sequence similarity to several nucleolar phosphoproteins, predicts that treacle is a member of this class of proteins. Using green fluorescent protein fusion constructs with the full-length and deleted domains of the murine homolog of treacle, we demonstrate that the cellular localization of treacle is nucleolar. This localization is mediated by the last 41 residues of the C-terminus (residues 1262-1302). At least two functional nuclear localization signals have been identified in the protein, one between residues 1176 and 1270 and the second within the last 32 residues of the protein (1271-1302). The nucleolar localization signal is disrupted by two constructs that split the C-terminal region between residues 1270 and 1271. This study provides the first direct analysis of treacle and demonstrates that the protein involved in TCOF1 is a nucleolar protein.

  15. Immunoglobulin E (IgE) and IgE-containing cells in human gastrointestinal fluids and tissues.

    PubMed Central

    Brown, W R; Borthistle, B K; Chen, S T

    1975-01-01

    Human gastric, small intestinal, colonic and rectal mucosae were examined for IgE-containing cells by single- and double-antibody immunofluorescence techniques, and IgE in intesinal fluids was measured by a double-antibody radioimmunoassay. IgE-containing cells were identified in all tissue specimens and comprised about 2% of all immunoglobulin-containing cells. Although less numerous than cells containing IgA, IgM or IgG, they were remarkably numerous in relation to the concentration of IgE in serum (about 0-001% of total immunoglobulin). IgE immunocytes were significantly more numerous in stomach and proximal small bowel than in colon and rectum, and were very numerous at bases of gastric and duodenal peptic ulcers. Measurable IgE was found in seventy-eight of eighty-five (92%) intestinal fluids. Sucrose gradient ultracentrifugation analysis of four of the fluids revealed that the immunologically reactive IgE was largely in fractions corresponding to molecules of lower molecular weight than that of albumin, which suggests that IgE in gut contents is degraded by proteolytic enzymes. The presence of IgE-forming cells in gastrointestinal tissues, and IgE or a fragment of IgE in intestinal fluids, suggests that IgE antibodies are available for participation in local reaginic-type reactions in the gut. Images FIG. 1 PMID:813925

  16. Unifying the 2e(-) and 4e(-) Reduction of Oxygen on Metal Surfaces.

    PubMed

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan; Nørskov, Jens K

    2012-10-18

    Understanding trends in selectivity is of paramount importance for multi-electron electrochemical reactions. The goal of this work is to address the issue of 2e(-) versus 4e(-) reduction of oxygen on metal surfaces. Using a detailed thermodynamic analysis based on density functional theory calculations, we show that to a first approximation an activity descriptor, ΔGOH*, the free energy of adsorbed OH*, can be used to describe trends for the 2e(-) and 4e(-) reduction of oxygen. While the weak binding of OOH* on Au(111) makes it an unsuitable catalyst for the 4e(-) reduction, this weak binding is optimal for the 2e(-) reduction to H2O2. We find quite a remarkable agreement between the predictions of the model and experimental results spanning nearly 30 years.

  17. High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2006-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.

  18. The calorimeter of the Mu2e experiment at Fermilab

    DOE PAGES

    Atanov, N.; Baranov, V.; Budagov, J.; ...

    2017-01-23

    Here, the Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: amore » straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10 -4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype.« less

  19. Increased alternate splicing of Htr2c in a mouse model for Prader-Willi syndrome leads disruption of 5HT2C receptor mediated appetite.

    PubMed

    Garfield, Alastair S; Davies, Jennifer R; Burke, Luke K; Furby, Hannah V; Wilkinson, Lawrence S; Heisler, Lora K; Isles, Anthony R

    2016-12-08

    Alternate splicing of serotonin (5-hydroxytryptamine; 5-HT) 2C receptor (5-HT 2C R) pre-RNA is negatively regulated by the small nucleolar RNA, Snord115, loss of which is observed in nearly all individuals with Prader-Willi Syndrome (PWS), a multigenic disorder characterised by hyperphagia and obesity. Given the role of the 5-HT 2C R in the regulation of ingestive behaviour we investigated the pathophysiological implications of Snord115 deficiency on 5-HT 2C R regulated appetite in a genotypically relevant PWS mouse model (PWS-IC). Specifically, we demonstrate that loss of Snord115 expression is associated with increased levels of hypothalamic truncated 5-HT 2C R pre-mRNA. The 5-HT 2C R promotes appetite suppression via engagement of the central melanocortin system. Pro-opiomelancortin (Pomc) mRNA levels within the arcuate nucleus of the hypothalamus (ARC) were reduced in PWS-IC mice. We then went on to assess the functional consequences of these molecular changes, demonstrating that PWS-IC mice are unresponsive to an anorectic doses of a 5-HT 2C R agonist and that this is associated with attenuated activation of POMC neurons within the ARC. These data provide new insight into the significance of Htr2c pre-mRNA processing to the physiological regulation of appetite and potentially the pathological manifestation of hyperphagia in PWS. Furthermore, these findings have translational relevance for individuals with PWS who may seek to control appetite with another 5-HT 2C R agonist, the new obesity treatment lorcaserin.

  20. Analysis of the internal nuclear matrix. Oligomers of a 38 kD nucleolar polypeptide stabilized by disulfide bonds.

    PubMed

    Fields, A P; Kaufmann, S H; Shaper, J H

    1986-05-01

    When rat liver nuclei are treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to nuclease treatment and extraction with 1.6 M NaCl, residual nucleoli and an extensive non-chromatin intranuclear network remain associated with the nuclear envelope. Subsequent treatment of this structure with 1 M NaCl containing 20 mM dithiothreitol (DTT) solubilizes the intranuclear material, while the nuclear envelope remains structurally intact. We have isolated and partially characterized a major polypeptide of the disulfide-stabilized internal nuclear matrix. The polypeptide, which has an apparent molecular mass 38 kD and isoelectric point 5.3, has been localized to the nucleolus of rat liver nuclei by indirect immunofluorescence using a specific polyclonal chicken antiserum. Based on its molecular mass, isoelectric point, intracellular localization and amino acid composition, the 38 kD polypeptide appears to be analogous to the nucleolar phosphoprotein B23 described by Prestayko et al. (Biochemistry 13 (1974) 1945) [20]. Immunologically related polypeptides have likewise been localized to the nucleoli of both hamster and human tissue culture cell lines as well as the cellular slime mold Physarum polycephalum. By immunoblotting, a single 38 kD polypeptide is recognized by the antiserum in rat, mouse, hamster and human cell lines. The antiserum has been utilized to investigate the oligomeric structure of the 38 kD polypeptide and the nature of its association with the rat liver nuclear matrix. By introducing varying numbers of disulfide bonds, we have found that the 38 kD polypeptide becomes incorporated into the internal nuclear matrix in a two-step process. Soluble disulfide-bonded homodimers of the polypeptide are first formed and then are rendered salt-insoluble by more extensive disulfide cross-linking.

  1. Defective pairing and synaptonemal complex formation in a Sordaria mutant (spo44) with a translocated segment of the nucleolar organizer.

    PubMed

    Zickler, D; de Lares, L; Moreau, P J; Leblon, G

    1985-01-01

    The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. - The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.

  2. Targeting the nucleolus for cancer intervention.

    PubMed

    Quin, Jaclyn E; Devlin, Jennifer R; Cameron, Donald; Hannan, Kate M; Pearson, Richard B; Hannan, Ross D

    2014-06-01

    The contribution of the nucleolus to cancer is well established with respect to its traditional role in facilitating ribosome biogenesis and proliferative capacity. More contemporary studies however, infer that nucleoli contribute a much broader role in malignant transformation. Specifically, extra-ribosomal functions of the nucleolus position it as a central integrator of cellular proliferation and stress signaling, and are emerging as important mechanisms for modulating how oncogenes and tumor suppressors operate in normal and malignant cells. The dependence of certain tumor cells to co-opt nucleolar processes to maintain their cancer phenotypes has now clearly been demonstrated by the application of small molecule inhibitors of RNA Polymerase I to block ribosomal DNA transcription and disrupt nucleolar function (Bywater et al., 2012 [1]). These drugs, which selectively kill tumor cells in vivo while sparing normal cells, have now progressed to clinical trials. It is likely that we have only just begun to scratch the surface of the potential of the nucleolus as a new target for cancer therapy, with "suppression of nucleolar stress" representing an emerging "hallmark" of cancer. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials.

    PubMed

    Li, Zhou Fang; Liang, Yi Min; Lau, Pui Ngan; Shen, Wei; Wang, Dai Kui; Cheung, Wing Tai; Xue, Chun Jason; Poon, Lit Man; Lam, Yun Wah

    2013-01-01

    Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.

  4. 26 CFR 1.503(e)-2 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 7 2014-04-01 2013-04-01 true Requirements. 1.503(e)-2 Section 1.503(e)-2...) INCOME TAXES (CONTINUED) Exempt Organizations § 1.503(e)-2 Requirements. (a) In general. The requirements... price may not be a valid price for 1,000 bonds and the purchase may therefore not meet the requirements...

  5. 26 CFR 1.503(e)-2 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 7 2011-04-01 2009-04-01 true Requirements. 1.503(e)-2 Section 1.503(e)-2...) INCOME TAXES (CONTINUED) Exempt Organizations § 1.503(e)-2 Requirements. (a) In general. The requirements... price may not be a valid price for 1,000 bonds and the purchase may therefore not meet the requirements...

  6. 26 CFR 1.503(e)-2 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 7 2013-04-01 2013-04-01 false Requirements. 1.503(e)-2 Section 1.503(e)-2...) INCOME TAXES (CONTINUED) Exempt Organizations § 1.503(e)-2 Requirements. (a) In general. The requirements... price may not be a valid price for 1,000 bonds and the purchase may therefore not meet the requirements...

  7. Donor defects and small polarons on the TiO{sub 2}(110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, P. G.; Janotti, A., E-mail: janotti@udel.edu; Van de Walle, C. G.

    2016-05-14

    The role of defects in the chemical activity of the rutile TiO{sub 2}(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend tomore » localize in the form of small polarons, which are the factual cause of the deep states ∼1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO{sub 2} and related oxides.« less

  8. Total reaction cross sections of electronic state-specified transition metal cations: V + +C2H6, C3H8, and C2H4 at 0.2 eV

    NASA Astrophysics Data System (ADS)

    Sanders, Lary; Hanton, Scott D.; Weisshaar, James C.

    1990-03-01

    We describe a crossed beam experiment which measures total cross sections for reaction of electronic state-specified V+ with small hydrocarbons at well-defined collision energy E=0.2 eV. The V+ state distribution created at each ionizing wavelength is directly measured by angle-integrated photoelectron spectroscopy (preceding paper). Reactant and product ions are collected and analyzed by pulsed time-of-flight mass spectrometry following a reaction time of 6 μs. Tests of the performance of the apparatus are described in detail. Our experiment defines the reactant V+ electronic state distribution and the collision energy much more precisely than previous work. For all three hydrocarbons C2H6, C3H8, and C2H4, H2 elimination products dominate at 0.2 eV. We observe a dramatic dependence of cross section on the V+ electronic term. The second excited term 3d34s(3F) is more reactive than either lower energy quintet term 3d4(5D) or 3d34s(5F) by a factor of ≥270, 80, and ≥6 for the C2H6, C3H8, and C2H4 reactions, respectively. The 3d34s(3F) reaction cross sections at 0.2 eV are 20±11 Å2, 37±19 Å2, and 2.7±1.6 Å2, respectively, compared with Langevin cross sections of ˜80 Å2. For the C2H6 and C3H8 reactions, cross sections are independent of initial spin-orbit level J within the 3F term to the limits of our accuracy. Comparison with earlier work by Armentrout and co-workers shows that electronic excitation to d3s(3F) is far more effective at promoting H2 elimination than addition of the same total kinetic energy to reactants. Electron spin is clearly a key determinant of V+ reactivity with small hydrocarbons. We suggest that triplet V+ reacts much more efficiently than quintet V+ because of its ability to conserve total electron spin along paths to insertion in a C-H bond of the hydrocarbon.

  9. Vitamin E-coated membrane dialyzer and beta2-microglobulin removal.

    PubMed

    Mandolfo, S; Bucci, R; Imbasciati, E

    2003-12-01

    This study was designed to test the removal of beta2-microglobulin (beta2M) in a vitamin E-modified membrane. We investigated in vivo the dialyzer (Excebrane, series EE, 1.8 m2) with respect to hydraulic permeability (Kuf), maximum ultrafiltration rate (UF max), sieving coefficient (Sc), and solute clearances in hemodialysis (HD) and in soft hemodiafiltration (HDF). Kuf was 18.4 ml/h/mmHg, UF max was 75 ml/min, and Sc for beta2M was 0.45. Clearance values at 400 ml/min of Qb in HD were 258 ml/min for urea, 201 ml/min for creatinine, and 135 ml/min for phosphate. In soft HDF, clearances were slightly higher. beta2M clearance was 26 ml/min in HD and 43 ml/min in soft HDF. In conclusion, Excebrane (series EE) procures a soft HDF with an amount of substitution fluid in post dilution mode of over 60 ml/min. Remarkable small solute clearances were obtained when the blood flow was raised to 400 ml/min. A significant reduction of beta2M is demonstrated by HDF.

  10. Human Placental Lactogen Induces CYP2E1 Expression via PI 3-Kinase Pathway in Female Human Hepatocytes

    PubMed Central

    Lee, Jin Kyung; Chung, Hye Jin; Fischer, Liam; Fischer, James; Gonzalez, Frank J.

    2014-01-01

    The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes. PMID:24408518

  11. Disinfection Alternatives for Small Communities in Puerto Rico

    EPA Science Inventory

    Disinfection Alternatives for Small Communities in Puerto Rico Craig Patterson1, Graciela Ramirez Toro2, Harvey Minnigh2, Cristina Maldonado3, and Rajib Sinha4 1U.S. EPA Office of Research and Development, 2Centro de Educación, Conservación e Interpretación Ambiental (CECIA),...

  12. CYP2E1 overexpression inhibits microsomal Ca2+-ATPase activity in HepG2 cells.

    PubMed

    Caro, Andres A; Evans, Kerry L; Cederbaum, Arthur I

    2009-01-31

    Cytochrome P450 2E1 (CYP2E1) is a microsomal enzyme that generates reactive oxygen species during its catalytic cycle. We previously found an important role for calcium in CYP2E1-potentiated injury in HepG2 cells. The possibility that CYP2E1 may oxidatively damage and inactivate the microsomal Ca2+-ATPase in intact liver cells was evaluated, in order to explain why calcium is elevated during CYP2E1 toxicity. Microsomes were isolated by differential centrifugation from two liver cell line: E47 cells (HepG2 cells transfected with the pCI neo expression vector containing the human CYP2E1 cDNA, which overexpress active microsomal CYP2E1), and control C34 cells (HepG2 cells transfected with the pCI neo expression vector alone, which do not express significantly any cytochrome P450). The Ca2+-dependent ATPase activity was determined by measuring the accumulation of inorganic phosphate from ATP hydrolysis. CYP2E1 overexpression produced a 45% decrease in Ca2+-dependent ATPase activity (8.6 nmol Pi/min/mg protein in C34 microsomes versus 4.7 nmol Pi/min/mg protein in microsomes). Saturation curves with Ca2+ or ATP showed that CYP2E1 overexpression produced a decrease in Vmax but did not affect the Km for either Ca2+ or ATP. The decrease in activity was not associated with a decrease in SERCA protein levels. The ATP-dependent microsomal calcium uptake was evaluated by fluorimetry using fluo-3 as the fluorogenic probe. Calcium uptake rate in E47 microsomes was 28% lower than in C34 microsomes. Treatment of E47 cells with 2mM N-acetylcysteine prevented the decrease in microsomal Ca2+-ATPase found in E47 cells. These results suggest that CYP2E1 overexpression produces a decrease in microsomal Ca2+-ATPase activity in HepG2 cells mediated by reactive oxygen species. This may contribute to elevated cytosolic calcium and to CYP2E1-potentiated injury.

  13. Competing E2 and SN2 Mechanisms for the F- + CH3CH2I Reaction.

    PubMed

    Yang, Li; Zhang, Jiaxu; Xie, Jing; Ma, Xinyou; Zhang, Linyao; Zhao, Chenyang; Hase, William L

    2017-02-09

    Anti-E2, syn-E2, inv-, and ret-S N 2 reaction channels for the gas-phase reaction of F - + CH 3 CH 2 I were characterized with a variety of electronic structure calculations. Geometrical analysis confirmed synchronous E2-type transition states for the elimination of the current reaction, instead of nonconcerted processes through E1cb-like and E1-like mechanisms. Importantly, the controversy concerning the reactant complex for anti-E2 and inv-S N 2 paths has been clarified in the present work. A positive barrier of +19.2 kcal/mol for ret-S N 2 shows the least feasibility to occur at room temperature. Negative activation energies (-16.9, -16.0, and -4.9 kcal/mol, respectively) for inv-S N 2, anti-E2, and syn-E2 indicate that inv-S N 2 and anti-E2 mechanisms significantly prevail over the eclipsed elimination. Varying the leaving group for a series of reactions F - + CH 3 CH 2 Y (Y = F, Cl, Br, and I) leads to monotonically decreasing barriers, which relates to the gradually looser TS structures following the order F > Cl > Br > I. The reactivity of each channel nearly holds unchanged except for the perturbation between anti-E2 and inv-S N 2. RRKM calculation reveals that the reaction of the fluorine ion with ethyl iodide occurs predominately via anti-E2 elimination, and the inv-S N 2 pathway is suppressed, although it is energetically favored. This phenomenon indicates that, in evaluating the competition between E2 and S N 2 processes, the kinetic or dynamical factors may play a significant role. By comparison with benchmark CCSD(T) energies, MP2, CAM-B3LYP, and M06 methods are recommended to perform dynamics simulations of the title reaction.

  14. Theoretical studies on all-metal binuclear sandwich-like complexes M2(η 4-E 4) 2 (M=Al, Ga, In; E=Sb, Bi).

    PubMed

    Wang, Congzhi; Zhang, Xiuhui; Lu, Jian; Li, Qianshu

    2012-08-01

    A series of all-metal binuclear sandwich-like complexes with the formula M(2)(η(4)-E(4))(2) (M=Al, Ga, In; E=Sb, Bi) was studied by density functional theory (DFT). The most stable conformer for each of the M(2)(η(4)-E(4))(2) species is the staggered one with D (4d) symmetry. The centred metal-metal bond in each M(2)(η(4)-E(4))(2) species is a covalent single bond, with the main contributors to these covalent bonds being the a(1) and e orbitals. For all these species, the interactions between the centred metal atoms and the all-metal ligands are covalent; η(4)-Sb (4) (2-) has a stronger ability to stabilize metal-metal bonds than η(4)-Bi (4) (2-). Nucleus-independent chemical shifts (NICS) values and molecular orbital (MO) analysis reveal that the all-metal η(4)-Sb (4) (2-) and η(4)-Bi (4) (2-) ligands in M(2)(η(4)-E(4))(2) possess conflicting aromaticity (σ antiaromaticity and π aromaticity), which differs from the all-metal multiple aromatic unit Al (4) (2-). In addition, all of these M(2)(η(4)-E(4))(2) species are stable according to the dissociation energies of M(2)(η(4)-E(4))(2) → 2 M(η(4)-E(4)) and M(2)(η(4)-E(4))(2) → 2 M + 2E(4), and these stable species can be synthesized by two-step substitution reactions: CpZnZnCp + 2E (4) (2-)  → [E(4)ZnZnE(4)](2-) + 2Cp(-) and [E(4)ZnZnE(4)](2-) + 2 M (2) (+)  → E(4)MME(4) + 2Zn(+).

  15. Conditional Inactivation of Upstream Binding Factor Reveals Its Epigenetic Functions and the Existence of a Somatic Nucleolar Precursor Body

    PubMed Central

    Hamdane, Nourdine; Stefanovsky, Victor Y.; Tremblay, Michel G.; Németh, Attila; Paquet, Eric; Lessard, Frédéric; Sanij, Elaine; Hannan, Ross; Moss, Tom

    2014-01-01

    Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB) of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs). PMID:25121932

  16. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions

    PubMed Central

    Kuligina, Elena V.; Bariakin, Dmitry N.; Kozlov, Vadim V.; Richter, Vladimir A.; Semenov, Dmitry V.

    2017-01-01

    Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches. PMID:28127559

  17. Msi2 Regulates the Aggressiveness of Non-Small Cell Lung Cancer (NSCLC)

    DTIC Science & Technology

    2016-12-01

    Non-small cell lung cancer, invasion, metastasis, pro-invasive signaling, RNA binding proteins, Musashi, TGF-beta, epithelial mesenchymal transition...Non-small cell lung cancer, invasion, metastasis, pro-invasive signaling, RNA binding proteins, Musashi, TGF- beta, epithelial mesenchymal...NOTCH-1 RNA and protein expression in 344SQ and 531LN2 cells (NICD protein level was tested in 344SQ cells as well), Fig. 2 D-F. Surprisingly

  18. Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour.

    PubMed

    Doe, Christine M; Relkovic, Dinko; Garfield, Alastair S; Dalley, Jeffrey W; Theobald, David E H; Humby, Trevor; Wilkinson, Lawrence S; Isles, Anthony R

    2009-06-15

    The Prader-Willi syndrome (PWS) genetic interval contains several brain-expressed small nucleolar (sno)RNA species that are subject to genomic imprinting. In vitro studies have shown that one of these snoRNA molecules, h/mbii-52, negatively regulates editing and alternative splicing of the serotonin 2C receptor (5htr2c) pre-RNA. However, the functional consequences of loss of h/mbii-52 and subsequent increased post-transcriptional modification of 5htr2c are unknown. 5HT2CRs are important in controlling aspects of cognition and the cessation of feeding, and disruption of their function may underlie some of the psychiatric and feeding abnormalities seen in PWS. In a mouse model for PWS lacking expression of mbii-52 (PWS-IC+/-), we show an increase in editing, but not alternative splicing, of the 5htr2c pre-RNA. This change in post-transcriptional modification is associated with alterations in a number of 5HT2CR-related behaviours, including impulsive responding, locomotor activity and reactivity to palatable foodstuffs. In a non-5HT2CR-related behaviour, marble burying, loss of mbii-52 was without effect. The specificity of the behavioural effects to changes in 5HT2CR function was further confirmed using drug challenges. These data illustrate, for the first time, the physiological consequences of altered RNA editing of 5htr2c linked to mbii-52 loss that may underlie specific aspects of the complex PWS phenotype and point to an important functional role for this imprinted snoRNA.

  19. Small angle x-ray scattering study on the conformation of polystyrene in toluene during adding anti-solvent CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Chen, Dong-Feng; Wang, Hong-Li; Chen, Na; Li, Dan; Han, Bu-Xing; Rong, Li-Xia; Zhao, Hui; Wang, Jun; Dong, Bao-Zhong

    2002-10-01

    The conformation of polystyrene in the anti-solvent process of supercritical fluids (compressed CO2 + polystyrene + toluene) has been studied by small angle x-ray scattering with synchrotron radiation as an x-ray source. Coil-to-globule transformation of the polystyrene chain was observed with the increase of the anti-solvent CO2 pressure; i.e. polystyrene coiled at a pressure lower than the cloud point pressure (Pc) and turned into a globule with a uniform density at pressures higher than Pc. Fractal behaviour was also found in the chain contraction and the mass fractal dimension increased with increasing CO2 pressure.

  20. Evaluation of anti-melanoma activities of (1S,2E,4R,6E,8R,11S,12R)-8,12-epoxy-2,6-cembradiene-4,11-diol, (1S,2E,4R,6E,8S,11R,12S)-8,11-epoxy-4,12-epoxy-2,6-cembradiene and (1S,4R,13S)-cembra-2E,7E,11E-trien-4,13-diol from the Red Sea soft coral Sarcophyton glaucum.

    PubMed

    Szymanski, Pawel T; Ahmed, Safwat A; Radwan, Mohamed M; Khalifa, Sherief I; Fahmy, Hesham

    2014-08-01

    Three natural cembranoids from the Red Sea soft coral Sarcophyton glaucum namely (1S,2E,4R,6E,8R,11S,12R)-8,12-epoxy-2,6-cembradiene-4,11-diol, (1S,2E,4R,6E,8S,11R,12S)-8,11-epoxy-4,12-epoxy-2,6-cembradiene and (1S,4R,13S)-cembra-2E,7E,11E-trien-4,13-diol were evaluated for their inhibitory effects on mouse melanoma B16F10 cell growth. Results show that all the cembranoids strongly inhibit viability of melanoma cells particularly during 48 -72 hrs treatment and also inhibit de novo DNA synthesis and PARP activity and stimulate fragmentation of DNA. (1S,2E,4R,6E,8R,11S,12R)-8,12-epoxy-2,6-cembradiene-4,11-diol was not cytotoxic to monkey kidney CV-1 cells at the concentration that produces the anti-melanoma effects which indicates that this compound may be a good candidate for further development. (1S,2E,4R,6E,8S,11R,12S)-8,11-epoxy-4,12-epoxy-2,6-cembradiene and (1S,4R,13S)-cembra-2E,7E,11E-trien-4,13-diol were found to be cytotoxic to healthy cells.