Sample records for e2 transition strengths

  1. Identification of significant E0 strength in the 22+ → 21+ transitions of 58,60,62Ni

    NASA Astrophysics Data System (ADS)

    Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Smallcombe, J.; Reed, M. W.; Brown, B. A.; Stuchbery, A. E.; Lane, G. J.; Eriksen, T. K.; Akber, A.; Alshahrani, B.; de Vries, M.; Gerathy, M. S. M.; Holt, J. D.; Lee, B. Q.; McCormick, B. P.; Mitchell, A. J.; Moukaddam, M.; Mukhopadhyay, S.; Palalani, N.; Palazzo, T.; Peters, E. E.; Ramirez, A. P. D.; Stroberg, S. R.; Tornyi, T.; Yates, S. W.

    2018-04-01

    The E0 transition strength in the 22+ →21 + transitions of 58,60,62Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). The CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the δ (E 2 / M 1) mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, δ (E 2 / M 1) mixing ratios and γ-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the E0 strengths. These are the first 2+ →2+E0 transition strengths measured in nuclei with spherical ground states and the E0 component is found to be unexpectedly large; in fact, these are amongst the largest E0 transition strengths in medium and heavy nuclei reported to date.

  2. E 3 and M 2 transition strengths in Bi20983

    NASA Astrophysics Data System (ADS)

    Roberts, O. J.; NiÅ£ǎ, C. R.; Bruce, A. M.; Mǎrginean, N.; Bucurescu, D.; Deleanu, D.; Filipescu, D.; Florea, N. M.; Gheorghe, I.; GhiÅ£ǎ, D.; Glodariu, T.; Lica, R.; Mǎrginean, R.; Mihai, C.; Negret, A.; Sava, T.; Stroe, L.; Şuvǎilǎ, R.; Toma, S.; Alharbi, T.; Alexander, T.; Aydin, S.; Brown, B. A.; Browne, F.; Carroll, R. J.; Mulholland, K.; Podolyák, Zs.; Regan, P. H.; Smith, J. F.; Smolen, M.; Townsley, C. M.

    2016-01-01

    The 1 i13/2→1 h9/2 (M 2 ) and 3 s1/22 f7/2 (E 3 ) reduced proton transition probabilities in Bi20983 have been determined from the direct half-life measurements of the 13/21+ and 1/21+ states using the Romanian array for γ -ray SPectroscopy in HEavy ion REactions (RoSPHERE). The 13/21+ and 1/21+ states were found to have T1/2=0.120 (15 ) ns and T1/2=9.02 (24 ) ns respectively. Angular distribution measurements were used to determine an E 3 /M 2 mixing ratio of δ =-0.184 (13 ) for the 1609 keV γ -ray transition deexciting the 13/21+ state. This value for δ was combined with the measured half-life to give reduced transition probabilities of B (E 3 ,13/21+→9/21-) =12 (2 ) ×103 e2fm6 and B (M 2 ,13/21+→9/21-) =38 (5 ) μN2fm2 . These values are in good agreement with calculations within the finite Fermi system. The extracted value of B (E 3 ,1/21+→7/21-) =6.3 (2 ) ×103 e2fm6 can be explained by a small (˜6 % ) admixture in the wave function of the 1/21+ state.

  3. Signatures for a nuclear quantum phase transition from E 0 and E 2 observables in Gd isotopes

    NASA Astrophysics Data System (ADS)

    Wiederhold, J.; Kern, R.; Lizarazo, C.; Pietralla, N.; Werner, V.; Jolos, R. V.; Bucurescu, D.; Florea, N.; Ghita, D.; Glodariu, T.; Lica, R.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Mitu, I. O.; Negret, A.; Nita, C.; Olacel, A.; Pascu, S.; Stroe, L.; Toma, S.; Turturica, A.

    2018-05-01

    Nuclei are complex quantum objects due to complex nucleon-nucleon interactions. They can undergo rather rapid changes in structure as a function of nucleon number. A well known region of such a shape transition is the rare-earth region around N = 90, where accessible nuclei range from spherical nuclei at the closed neutron shell at N = 82 to deformed nuclei. For a better understanding of this phenomenon, it is of interest to study empirical signatures like the E2 transition strength B(E2;{2}1+\\to {0}1+) or the E0 excitation strength {ρ }2(E0;{0}1+\\to {0}2+). The nuclide 152Gd with 88 neutrons is located close to the quantum phase transition at N = 90. The lifetime τ ({0}2+) of 152Gd has been measured using fast electronic scintillation timing (FEST) with an array of HPGe- and LaBr3- detectors. Excited states of 152Gd were populated via an (α,n)-reaction on a gold-backed 149Sm target. The measured lifetime of τ ({0}2+)=96(6)\\text{ps} corresponds to a reduced transition strength of B(E2;{0}2+\\to {2}1+)=111(7) W.u. and an E0 transition strength of ρ 2(E0) = 39(3) · 10‑3 to the ground state. This result provides experimental support for the validity of a correlation between E0 and E2 strengths that is a novel indicator for a quantum phase transition. This work was published as J. Wiederhold et al., Phys. Rev. C 94, 044302 (2016).

  4. Measuring the B(E2) of the 1/2- ->3/2- transition in 7 Be

    NASA Astrophysics Data System (ADS)

    Henderson, S. L.; Ahn, T.; Caprio, M. A.; Constantinou, Ch.; Simon, A.; Twinsol Collaboration

    2017-09-01

    Ab-initio methods have been successful in describing the structure of light nuclei using realistic nucleon-nucleon interactions, but more experimental data is needed for light unstable nuclei. Recent no-core configuration interaction calculations have made predictions for the ratio of E2 transition strengths for the first excited state transition in 7 Be and 7 Li . Additional calculations that include clustering effects show a significant difference in the 7 Be and 7 Li B(E2) value. The E2 transition strength of the 7 Be first excited state has never been measured, which provides an interesting opportunity to investigate the accuracy of these calculations. To measure this E2 transition strength, a Coulomb Excitation experiment was performed at the University of Notre Dame. 7 Be was produced and separated using TwinSol. A beam of 7 Be ions were scattered off a gold target and the gamma rays from the inelastically scattered ions were detected using six clover Ge detectors. The most recent results for the E2 transition strength and its comparison to the no-core configuration interaction approach will be shown. In addition, new systematic checks on the experiment will be presented including the first stages of a Geant4 simulation to help account for beam anisotropies. This work has been supported by US NSF Grant No. PHY 14-19765 and DOE Grant Number DE-FG02-95ER-40934.

  5. Electric Monopole Transition Strengths in 62Ni

    NASA Astrophysics Data System (ADS)

    Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Moukaddam, M.; Alshahrani, B.; Eriksen, T. K.; Holt, J. D.; Hota, S. S.; Lane, G. J.; Lee, B. Q.; McCormick, B. P.; Palalani, N.; Reed, M. W.; Stroberg, S. R.; Stuchbery, A. E.

    2016-09-01

    Excited states in 62Ni were populated with a (p, p') reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0), were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77-34+23 × 10-3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0) value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0) values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0) value for the 22+ to 21+ transition.

  6. Electric Monopole Transition Strengths in the Stable Nickel Isotopes

    NASA Astrophysics Data System (ADS)

    Evitts, Lee John

    A series of measurements of stable nickel isotopes were performed at the Australian National University in Canberra. Excited states in 58,60,62Ni were populated via inelastic scattering of proton beams delivered by the 14UD Pelletron accelerator. Multiple setups were used in order to determine the structure of low-lying states. The CAESAR array of Compton-suppressed HPGe detectors was used to measure the (E2/M1) mixing ratio of transitions from angular distributions of gamma rays. The Super-e spectrometer was used to measure conversion coefficients for a number of J to J transitions. The data obtained from both devices was combined with previously measured parent lifetimes and branching ratios to determine E0 transition strengths between J-pi transitions. The E0 transition strength for the second 0+ to first 0+ transitions in 60,62Ni have been measured for the first time through internal conversion electron detection. The experimental value of 132(+59,-70) for 62Ni agrees within 2 sigma of the previous result obtained from internal pair formation. However it is likely that the previous experimental results used an outdated theoretical model for internal pair formation emission. This work also represents the first measurements of E0 transition strengths between 2+ states in Ni isotopes. There is generally large E0 strength between the 2+ states, particularly in the second 2+ to first 2+ transition, however there is also a large uncertainty in the measurements owing to the difficulties involved in measuring conversion coefficients. In 62Ni, the E0 transition strength of 172(+62,-77) for the second 2+ to first 2+ transition gives further weight to the argument against the spherical vibrator model, as an E0 transition is forbidden if there is a change of only one phonon. The large measurement also indicates the presence of shape coexistence, complementing the recent experimental work carried out in the neutron-rich Ni isotopes.

  7. Evolution of E 2 transition strength in deformed hafnium isotopes from new measurements on 172Hf,174Hf, and 176Hf

    NASA Astrophysics Data System (ADS)

    Rudigier, M.; Nomura, K.; Dannhoff, M.; Gerst, R.-B.; Jolie, J.; Saed-Samii, N.; Stegemann, S.; Régis, J.-M.; Robledo, L. M.; Rodríguez-Guzmán, R.; Blazhev, A.; Fransen, Ch.; Warr, N.; Zell, K. O.

    2015-04-01

    Background: The available data for E 2 transition strengths in the region between neutron-deficient hafnium and platinum isotopes are far from complete. More and precise data are needed to enhance the picture of structure evolution in this region and to test state-of-the-art nuclear models. In a simple model, the maximum collectivity is expected at the middle of the major shell. However, for actual nuclei, particularly in heavy-mass regions, which should be highly complex, this picture may no longer be the case, and one should use a more realistic nuclear-structure model. We address this point by studying the spectroscopy of Hf as a representative case. Purpose: We remeasure the 21+ half-lives of 172,174,176Hf, for which there is some disagreement in the literature. The main goal is to measure, for the first time, the half-lives of higher-lying states of the rotational band. The new results are compared to a theoretical calculation for absolute transition strengths. Method: The half-lives were measured using γ -γ and conversion-electron-γ delayed coincidences with the fast timing method. For the determination of half-lives in the picosecond region, the generalized centroid difference method was applied. For the theoretical calculation of the spectroscopic properties, the interacting boson model is employed, whose Hamiltonian is determined based on microscopic energy-density functional calculations. Results: The measured 21+ half-lives disagree with results from earlier γ -γ fast timing measurements, but are in agreement with data from Coulomb excitation experiments and other methods. Half-lives of the 41+ and 61+ states were measured, as well as a lower limit for the 81+ states. Conclusions: This work shows the importance of a mass-dependent effective boson charge in the interacting boson model for the description of E 2 transition rates in chains of nuclei. It encourages further studies of the microscopic origin of this mass dependence. New experimental

  8. Energy levels, wavelengths, and transition rates of multipole transitions (E1, E2, M1, M2) in Au{sup 67+} and Au{sup 66+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamasha, Safeia, E-mail: safeia@hu.edu.jo

    2013-11-15

    The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are consideredmore » by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.« less

  9. Precision Measurements of the B(E1) Strengths in 11Be

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finley, A.; Garnsworthy, A.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.

    2014-09-01

    The electromagnetic transition strength between the two bound states were measured in the one-neutron halo nucleus 11Be from Coulomb excitation on 196Pt at projectile energies of 1.727 and 2.086 MeV/nucleon at TRIUMF. A B(E1) strength of 0.102(2) e2fm2, deduced from the forward-scattering data, is consistent with previous Coulomb excitation measurements at intermediate projectile energies with a model-dependent analysis.

  10. Effective Collision Strengths for Fine-structure Transitions in Si VII

    NASA Astrophysics Data System (ADS)

    Sossah, A. M.; Tayal, S. S.

    2014-05-01

    The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.

  11. Na(+) transport, and the E(1)P-E(2)P conformational transition of the Na(+)/K(+)-ATPase.

    PubMed Central

    Babes, A; Fendler, K

    2000-01-01

    We have used admittance analysis together with the black lipid membrane technique to analyze electrogenic reactions within the Na(+) branch of the reaction cycle of the Na(+)/K(+)-ATPase. ATP release by flash photolysis of caged ATP induced changes in the admittance of the compound membrane system that are associated with partial reactions of the Na(+)/K(+)-ATPase. Frequency spectra and the Na(+) dependence of the capacitive signal are consistent with an electrogenic or electroneutral E(1)P <--> E(2)P conformational transition which is rate limiting for a faster electrogenic Na(+) dissociation reaction. We determine the relaxation rate of the rate-limiting reaction and the equilibrium constants for both reactions at pH 6.2-8.5. The relaxation rate has a maximum value at pH 7.4 (approximately 320 s(-1)), which drops to acidic (approximately 190 s(-1)) and basic (approximately 110 s(-1)) pH. The E(1)P <--> E(2)P equilibrium is approximately at a midpoint position at pH 6.2 (equilibrium constant approximately 0.8) but moves more to the E(1)P side at basic pH 8.5 (equilibrium constant approximately 0.4). The Na(+) affinity at the extracellular binding site decreases from approximately 900 mM at pH 6.2 to approximately 200 mM at pH 8.5. The results suggest that during Na(+) transport the free energy supplied by the hydrolysis of ATP is mainly used for the generation of a low-affinity extracellular Na(+) discharge site. Ionic strength and lyotropic anions both decrease the relaxation rate. However, while ionic strength does not change the position of the conformational equilibrium E(1)P <--> E(2)P, lyotropic anions shift it to E(1)P. PMID:11053130

  12. Random matrix theory for transition strengths: Applications and open questions

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.

    2017-12-01

    Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different) and so on. Using embedded ensembles (EE), there are efforts to derive a good statistical theory for transition strengths. With m fermions (or bosons) in N mean-field single particle levels and interacting via two-body forces, we have with GOE embedding, the so called EGOE(1+2). Now, the transition strength density (transition strength multiplied by the density of states at the initial and final energies) is a convolution of the density generated by the mean-field one-body part with a bivariate spreading function due to the two-body interaction. Using the embedding U(N) algebra, it is established, for a variety of transition operators, that the spreading function, for sufficiently strong interactions, is close to a bivariate Gaussian. Also, as the interaction strength increases, the spreading function exhibits a transition from bivariate Breit-Wigner to bivariate Gaussian form. In appropriate limits, this EE theory reduces to the polynomial theory of Draayer, French and Wong on one hand and to the theory due to Flambaum and Izrailev for one-body transition operators on the other. Using spin-cutoff factors for projecting angular momentum, the theory is applied to nuclear matrix elements for neutrinoless double beta decay (NDBD). In this paper we will describe: (i) various developments in the EE theory for transition strengths; (ii) results for nuclear matrix elements for 130Te and 136Xe NDBD; (iii) important open questions in the current form of the EE theory.

  13. Electron impact excitation of the electronic states of N2. III - Transitions in the 12.5-14.2-eV energy-loss region at incident energies of 40 and 60 eV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Trajmar, S.; Cartwright, D. C.

    1977-01-01

    Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.

  14. Relativistic many-body calculations of excitation energies, oscillator strengths, transition rates, and lifetimes in samarium like ions

    NASA Astrophysics Data System (ADS)

    Safronova, Ulyana; Safronova, Alla; Beiersdorfer, Peter

    2013-05-01

    Excitation energies, oscillator strengths, transition probabilities, and lifetimes are calculated for (5s2 + 5p2 + 5d2 + 5 s 5 d + 5 s 5 g + 5 p 5 f) - (5 s 5 p + 5 s 5 f + 5 p 5 d + 5 p 5 g) electric dipole transitions in Sm-like ions with nuclear charge Z ranging from 74 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate coupling coefficients, and the second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are included in the second-order E1 matrix elements to achieve agreement between length-form and velocity-form amplitudes. The resulting transition energies and transition probabilities, and lifetimes for Sm-like W12+ are compared with results obtained by the relativistic Hartree-Fock approximation (COWAN code) to estimate contribution of the 4 f -core-excited states. Trends of excitation energies and oscillator strengths as function of nuclear charge Z are shown graphically for selected states and transitions. This work provides a number of yet unmeasured properti. This research was sponsored by the grant DE-FG02-08ER54951.

  15. Towards a critical transition theory under different temporal scales and noise strengths

    NASA Astrophysics Data System (ADS)

    Shi, Jifan; Li, Tiejun; Chen, Luonan

    2016-03-01

    The mechanism of critical phenomena or critical transitions has been recently studied from various aspects, in particular considering slow parameter change and small noise. In this article, we systematically classify critical transitions into three types based on temporal scales and noise strengths of dynamical systems. Specifically, the classification is made by comparing three important time scales τλ, τtran, and τergo, where τλ is the time scale of parameter change (e.g., the change of environment), τtran is the time scale when a particle or state transits from a metastable state into another, and τergo is the time scale when the system becomes ergodic. According to the time scales, we classify the critical transition behaviors as three types, i.e., state transition, basin transition, and distribution transition. Moreover, for each type of transition, there are two cases, i.e., single-trajectory transition and multitrajectory ensemble transition, which correspond to the transition of individual behavior and population behavior, respectively. We also define the critical point for each type of critical transition, derive several properties, and further propose the indicators for predicting critical transitions with numerical simulations. In addition, we show that the noise-to-signal ratio is effective to make the classification of critical transitions for real systems.

  16. Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2.2.2]oct-2-ene.

    PubMed

    Mohanty, Jyotirmayee; Nau, Werner M

    2004-01-01

    The photophysical properties of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) were determined in 15 solvents, two supramolecular hosts (cucurbit[7]uril and beta-cyclodextrin) as well as in the gas phase. The oscillator strength and radiative decay rate of DBO as a function of refractive index i.e. polarizability have been analyzed. The oscillator strength increases by a factor of 10 upon going from the gas phase to the most polarizable carbon disulfide, while the corresponding radiative decay rates increase by a factor of 40. There is a good empirical correlation between the oscillator strength of the weakly allowed n,pi* transition of DBO and the reciprocal bulk polarizability, which can be employed to assess the polarizability of unknown microheterogeneous environments. A satisfactory correlation between the radiative decay rate and the square of the refractive index is also found, as previously documented for chromophores with allowed transitions. However, the correlation improves significantly when the oscillator strength is included in the correlation, which demonstrates the importance of this factor in the Strickler-Berg equation for chromophores with forbidden or weakly allowed transitions, for which the oscillator strength may be strongly solvent dependent. The radiative decay rate of DBO in two supramolecular assemblies has been determined, confirming the very low polarizability inside the cucurbituril cavity, in between perfluorohexane and the gas phase. The fluorescence quantum yield of DBO in the gas phase has been remeasured (5.1 +/- 0.5%) and was found to fall one full order of magnitude below a previously reported value.

  17. Line strengths of QED-sensitive forbidden transitions in B-, Al-, F- and Cl-like ions

    NASA Astrophysics Data System (ADS)

    Bilal, M.; Volotka, A. V.; Beerwerth, R.; Fritzsche, S.

    2018-05-01

    The magnetic dipole (M 1 ) line strength between the fine-structure levels of the ground configurations in B-, F-, Al-, and Cl-like ions are calculated for the four elements argon, iron, molybdenum, and tungsten. Systematically enlarged multiconfiguration Dirac-Hartree-Fock (MCDHF) wave functions are employed to account for the interelectronic interaction with the Breit interaction included in first-order perturbation theory. The QED corrections are evaluated to all orders in α Z utilizing an effective potential approach. The calculated line strengths are compared with the results of other theories. The M 1 transition rates are reported using accurate energies from the literature. Moreover, the lifetimes in the range of millisecond to picosecond are predicted including the contributions from the transition rate due to the E 2 transition channel. The discrepancies of the predicted rates from those available from the literature are discussed and a benchmark data set of theoretical lifetimes is provided to support future experiments.

  18. Oscillator strength of symmetry-forbidden d-d absorption of octahedral transition metal complex: theoretical evaluation.

    PubMed

    Saito, Ken; Eishiro, Yoshinori; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi

    2012-03-05

    The theoretical evaluation of the oscillator strength of a symmetry-forbidden d-d transition is not easy even nowadays. A new approximate method is proposed here and applied to octahedral complexes [Co(NH(3))(6)](3+) and [Rh(NH(3))(6)](3+) as an example. Our method incorporates the effects of geometry distortion induced by molecular vibration and the thermal distribution of such distorted geometries but does not need the Herzberg-Teller approximation. The calculated oscillator strengths of [Co(NH(3))(6)](3+) agree well with the experimental values in both (1)A(1g) → (1)T(1g) and (1)A(1g) → (1)T(2g) transitions. In the Rh analogue, though the calculated oscillator strengths are somewhat smaller than the experimental values, computational results reproduce well the experimental trends that the oscillator strengths of [Rh(NH(3))(6)](3+) are much larger than those of the Co analogue and the oscillator strength of the (1)A(1g) → (1)T(1g) transition is larger than that of the (1)A(1g) → (1)T(2g) transition. It is clearly shown that the oscillator strength is not negligibly small even at 0 K because the distorted geometry (or the uncertainty in geometry) by zero-point vibration contributes to the oscillator strength at 0 K. These results are discussed in terms of frequency of molecular vibration, extent of distortion induced by molecular vibration, and charge-transfer character involved in the d-d transition. The computational results clearly show that our method is useful in evaluating and discussing the oscillator strength of symmetry-forbidden d-d absorption of transition metal complex.

  19. Effective collision strengths for fine-structure forbidden transitions among the 3s^23p^3 levels of AR IV

    NASA Astrophysics Data System (ADS)

    Ramsbottom, C. A.; Bell, K. L.; Keenan, F. P.

    1997-01-01

    The multichannel R-matrix method is used to compute electron impact excitation collision strengths in Ar iv for all fine-structure transitions among the ^4S^o, ^2D^o and ^2P^o levels in the 3s^23p^3 ground configuration. Included in the expansion of the total wavefunction are the lowest 13 LS target eigenstates of Ar iv formed from the 3s^23p^3, 3s3p^4 and 3s^23p^23d configurations. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are presented for all 10 fine-structure transitions over a wide range of electron temperatures of astrophysical interest (T_e=2000-100 000K). Comparisons are made with an earlier 7-state close-coupling calculation by Zeippen, Butler & Le Bourlot, and significant differences are found to occur for many of the forbidden transitions considered, in particular those involving the ^4S^o ground state, where discrepancies of up to a factor of 3 are found in the low-temperature region.

  20. Relativistic distorted-wave collision strengths for the 49 Δn=0 optically allowed transitions with n=2 in the 67 N-like ions with 26≤Z≤92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin

    2014-09-15

    Relativistic distorted-wave collision strengths have been calculated for the 49 Δn=0 optically allowed transitions with n=2 in the 67 N-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20, 0.42, 0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in the previous work by Zhangmore » and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 72 (1999) 153]. In that earlier work, collision strengths were also provided for N-like ions, but for a more comprehensive data set consisting of all possible 105 Δn=0 transitions, six scattered energies and the 81 ions with Z in the range 12≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 72 (1999) 153] and are presented here to replace those earlier results.« less

  1. Relativistic distorted-wave collision strengths for the 16 Δn=0 optically allowed transitions with n=2 in the 67 O-like ions with 26≤Z≤92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin

    2015-01-15

    Relativistic distorted-wave collision strengths have been calculated for the 16 Δn=0 optically allowed transitions with n=2 in the 67 O-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20,0.42,0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5.83. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang and Sampson [H.L.more » Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357]. In that earlier work, collision strengths were also provided for O-like ions, but for a more comprehensive data set consisting of all possible 45 Δn=0 transitions, six scattered energies, and the 79 ions with Z in the range 14≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357] and are presented here to replace those earlier results.« less

  2. Relativistic distorted-wave collision strengths for the 49 Δn=0 optically allowed transitions with n=2 in the 67 B-like ions with 26≤Z≤92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin

    2014-05-15

    Relativistic distorted-wave collision strengths have been calculated for the 49 Δn=0 optically allowed transitions with n=2 in the 67 B-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20, 0.42, 0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−3.33. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang andmore » Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 56 (1994) 41]. In that earlier work, collision strengths were also provided for B-like ions, but for a more comprehensive data set consisting of all 105 Δn=0 transitions, six scattered energies and the 85 ions with Z in the range 8≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 56 (1994) 41] and are presented here to replace those earlier results.« less

  3. Lifetimes and Oscillator Strengths for Ultraviolet Transitions Involving ns2nd 2D and nsnp2 2D terms in Pb II, Sn II, and Ge II

    NASA Astrophysics Data System (ADS)

    Federman, Steven Robert; Heidarian, Negar; Irving, Richard; Ellis, David; Ritchey, Adam M.; Cheng, Song; Curtis, Larry; Furman, Walter

    2017-06-01

    Radiative transitions of heavy elements are of great importance in astrophysics. Studying the transition rates and their corresponding oscillator strengths allows us to determine abundances of these heavy elements and therefore leads to better understanding of neutron capture processes. We provide the results of our studies on the transitions involving ns2nd 2D and nsnp2 2D terms to the ground term for Pb II, Sn II, and Ge II. These transitions are also of interest due to their strong mixing. Our studies involve experimental measurements performed at the Toledo Heavy Ion Accelerator and theoretical multi-configuration Dirac Hartree-Fock (MCDHF)1 calculations using the development version of the GRASP2K package2. The results are compared with Pb II lines seen in spectra acquired with the Hubble Space Telescope and with other values available in the literature. 1 P. Jönsson et al., The Computational Atomic Structure Group (2014).2 P. Jönsson et al., Comput. Phys. Commun. 184, 2197 (2013).

  4. Energy levels, oscillator strengths, line strengths, and transition probabilities in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhan-Bin, E-mail: chenzb008@qq.com; Ma, Kun; Wang, Hong-Jian

    2017-01-15

    Detailed calculations using the multi-configuration Dirac–Fock (MCDF) method are carried out for the lowest 64 fine-structure levels of the 3s{sup 2}3p{sup 2}, 3s{sup 2}3p3d, 3s3p{sup 3}, 3s3p{sup 2}3d, 3s{sup 2}3d{sup 2}, and 3p{sup 4} configurations in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI. Energies, oscillator strengths, wavelengths, line strengths, and radiative electric dipole transition rates are given for all ions. A parallel calculation using the many-body perturbation theory (MBPT) method is also carried out to assess the present energy levels accuracy. Comparisons are performed between these two sets of energy levels, as well as withmore » other available results, showing that they are in good agreement with each other within 0.5%. These high accuracy results can be used to the modeling and the interpretation of astrophysical objects and fusion plasmas. - Highlights: • Energy levels and E1 transition rates of Si-like ions are presented. • Breit interaction and Quantum Electrodynamics effects are discussed. • Present results should be useful in the astrophysical application and plasma modeling.« less

  5. Rates of E1, E2, M1, and M2 transitions in Ni II

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Hibbert, A.; Ramsbottom, C. A.

    2016-03-01

    Aims: We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation. Methods: The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation. Results: Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive. Conclusions: We believe that the present transition data are the best currently available. Full Table 4 and Tables 5-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A107

  6. Magnetic moments, E3 transitions and the structure of high-spin core excited states in 211Rn

    NASA Astrophysics Data System (ADS)

    Poletti, A. R.; Dracoulis, G. D.; Byrne, A. P.; Stuchbery, A. E.; Poletti, S. J.; Gerl, J.; Lewis, P. M.

    1985-05-01

    The results of g-factor measurements of high-spin states in 211Rn are: Ex = 8856 + Δ' keV (Jπ = 63/2-), g = 0.626(7); 6101 + Δ' KeV (49/2+), 0.766(8); 5347 + Δ' KeV (43/2-), 0.74(2); 3927 + Δ KeV (35/2+), 1.017(12); 1578 + Δ KeV (17/2-), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously.

  7. Oscillator Strengths of Allowed and Intercombination Transitions in Neutral Sulfur

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1998-01-01

    We have calculated oscillator strengths and transition probabilities of electric-dipole allowed and intercombination transitions from fine-structure levels of the ground 3s(sup 2)3p(sup 4) configuration to the levels belonging to configurations 3s(sup 2)3p(sup 3)4s, 3s(sup 2) 3p(sup 3)5s, 3(sup 2)3p(sup 3)3d, 3s(sup 2)3p(sup 3)4d of neutral sulfur. Extensive configuration-interaction wave functions are used to represent these levels. The relativistic corrections have been included through the Breit-Pauli Hamiltonian. The results are compared with previous theoretical calculations and with measurements.

  8. Ab initio computation of the transition temperature of the charge density wave transition in TiS e2

    NASA Astrophysics Data System (ADS)

    Duong, Dinh Loc; Burghard, Marko; Schön, J. Christian

    2015-12-01

    We present a density functional perturbation theory approach to estimate the transition temperature of the charge density wave transition of TiS e2 . The softening of the phonon mode at the L point where in TiS e2 a giant Kohn anomaly occurs, and the energy difference between the normal and distorted phase are analyzed. Both features are studied as functions of the electronic temperature, which corresponds to the Fermi-Dirac distribution smearing value in the calculation. The transition temperature is found to be 500 and 600 K by phonon and energy analysis, respectively, in reasonable agreement with the experimental value of 200 K.

  9. Electric Quadrupole E2- Transitions of 170-174 Yb Isotopes

    NASA Astrophysics Data System (ADS)

    Abu El Sheikh, Mohd Kh. M.; Okhunov, Abdurahim A.; Usmanov, Ph. N.; Hassan, Torla HJ

    2017-12-01

    The non-adiabatic effects which is manifested in the electric properties of low-lying states of even-even deformed nuclei are studied. A simple phenomenological model which takes into account the Coriolis mixing of {K}π ={0}n+,{2}n+ and {K}π ={1}ν + state bands. The Calculations for isotopes 170-174 Yb, are carried out. The reduced probability of electric quadrupole transitions from the states {0}ν + and {2}ν + - bands to the ground (gr) state band is calculated and non adiabatic effect is discussed. The ratio of E2- transitions RIK from {0}2+, {0}3+, {2}1+, and {2}2+ bands are calculated and compared with the experimental data.

  10. Lithospheric strength across the ocean-continent transition in the NW of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Martín-Velázquez, Silvia; Martín-González, Fidel

    2014-05-01

    The main objective of this work is to investigate the relation between the strength of the lithosphere and the observed pattern of seismicity across the ocean-continent transition in the NW margin of the Iberian Peninsula. The seismicity is diffuse in this intraplate area, far from the seismically active margin of the plate: the Eurasia-African plate boundary, where convergence occurs at a rate of 4-5mm/year. The earthquake epicentres are mainly limited to an E-W trending zone (onshore seismicity is more abundant than offshore), and most earthquakes occur at depths less than 30 km, however, offshore depths are up to 150 km). Moreover, one of the problems to unravel in this area is that the seismotectonic interpretations of the anomalous seismicity in the NW peninsular are contradictory. The temperature and strength profiles have been modelled in three domains along the non-volcanic rifted West Iberian Margin: 1) the oceanic lithosphere of the Iberian Abyssal Plain, 2) the oceanic lithosphere near the ocean-continent transition of the Galicia Bank, and 3) the continental lithosphere of the NW Iberian Massif. The average bathymetry and topography have been used to fit the thermal structures of the three types of lithospheres, given that the heat flow and heat production values show a varied range. The geotherms, together with the brittle and ductile rheological laws, have been used to calculate the strength envelopes in different stress regimes (compression, shear and tensile). The continental lithosphere-asthenosphere boundary is located at 123 km and several brittle-ductile transitions appear in the crust and the mantle. However, the oceanic lithospheres are thinner (110 km near the Galicia Bank and 87 km in the Iberian Abbysal Plain) and more simple (brittle behaviour in the crust and upper mantle). The earthquake distribution is best explained by lithospheres with dry compositions and shear or tensile stress regimes. These results are similar can be compared to

  11. Transition Probabilities for Hydrogen-Like Atoms

    NASA Astrophysics Data System (ADS)

    Jitrik, Oliverio; Bunge, Carlos F.

    2004-12-01

    E1, M1, E2, M2, E3, and M3 transition probabilities for hydrogen-like atoms are calculated with point-nucleus Dirac eigenfunctions for Z=1-118 and up to large quantum numbers l=25 and n=26, increasing existing data more than a thousandfold. A critical evaluation of the accuracy shows a higher reliability with respect to previous works. Tables for hydrogen containing a subset of the results are given explicitly, listing the states involved in each transition, wavelength, term energies, statistical weights, transition probabilities, oscillator strengths, and line strengths. The complete results, including 1 863 574 distinct transition probabilities, lifetimes, and branching fractions are available at http://www.fisica.unam.mx/research/tables/spectra/1el

  12. Can the oscillator strength of the quantum dot bandgap transition exceed unity?

    NASA Astrophysics Data System (ADS)

    Hens, Z.

    2008-10-01

    We discuss the apparent contradiction between the Thomas-Reiche-Kuhn sum rule for oscillator strengths and recent experimental data on the oscillator strength of the band gap transition of quantum dots. Starting from two simple single electron model systems, we show that the sum rule does not limit this oscillator strength to values below unity, or below the number of electrons in the highest occupied single electron state. The only upper limit the sum rule imposes on the oscillator strength of the quantum dot band gap transition is the total number of electrons in the quantum dot.

  13. Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-01-01

    This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: <4d75s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.

  14. Isospin symmetry of Tz =±3/2→±1/2 Gamow-Teller transitions in A=41 nuclei

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Shimbara, Y.; Adachi, T.; Berg, G. P.; Brown, B. A.; Fujita, H.; Hatanaka, K.; Kamiya, J.; Nakanishi, K.; Sakemi, Y.; Sasaki, S.; Shimizu, Y.; Tameshige, Y.; Uchida, M.; Wakasa, T.; Yosoi, M.

    2004-11-01

    Under the assumption that isospin T is a good quantum number, isobaric analog states and various analogous transitions are expected in isobars with mass number A . The strengths of Tz =±3/2→±1/2 analogous Gamow-Teller (GT) transitions and analogous M1 transitions within the A=41 isobar quartet are compared in detail. The Tz =+3/2→+1/2 GT transitions from the Jπ = 3/2+ ground state of 41K leading to excited Jπ = 1/2+ , 3/2+ , and 5/2+ states in 41Ca were measured using the ( 3He ,t) charge-exchange reaction. With a high energy resolution of 35 keV , many fragmented states were observed, and the GT strength distribution was determined up to 10 MeV excitation energy ( Ex ) . The main part of the strength was concentrated in the Ex =4 6 MeV region. A shell-model calculation could reproduce the concentration, but not so well details of the strength distribution. The obtained distribution was further compared with two results of 41Ti β decay studying the analogous Tz =-3/2→-1/2 GT strengths. They reported contradicting distributions. One-to-one correspondences of analogous transitions and analog states were assigned up to Ex =6 MeV in the comparison with one of these 41Ti β -decay results. Combining the spectroscopic information of the analog states in 41Ca and 41Sc , the most probable Jπ values were deduced for each pair of analog states. It was found that 5/2+ states carry the main part of the observed GT strength, while much less GT strength was carried by 1/2+ and 3/2+ states. The gross features of the GT strength distributions for each J were similar for the isospin analogous Tz =±3/2→±1/2 transitions, but the details were somewhat different. From the difference of the distributions, isospin-asymmetry matrix elements of ≈8 keV were deduced. The Coulomb displacement energy, which is sensitive to the configuration of states, showed a sudden increase of about 50 keV at the excitation energy of 3.8 MeV . The strengths of several M1 transitions to the

  15. High field induced magnetic transitions in the Y0.7E r0.3F e2D4.2 deuteride

    NASA Astrophysics Data System (ADS)

    Paul-Boncour, V.; Guillot, M.; Isnard, O.; Hoser, A.

    2017-09-01

    The influence of the partial Er for Y substitution on the crystal structure and magnetic properties of YF e2D4.2 has been investigated by high field magnetization and neutron diffraction experiments. Y0.7E r0.3F e2D4.2 compound crystallizes in the same monoclinic structure as YF e2D4.2 described in P c (P1c1) space group with D atoms located in 18 different tetrahedral interstitial sites. A cell volume contraction of 0.6% is observed upon Er substitution, inducing large modification of the magnetic properties. Electronic effect of D insertion as well as lowering of crystal symmetry are important factors determining the magnetic properties of Fe sublattice, which evolves towards more delocalized behavior and modifying the Er-Fe exchange interactions. In the ground state, the Er and Fe moments are arranged ferrimagnetically within the plane perpendicular to the monoclinic b axis and with average moments mEr=6.4 (3 ) μBEr-1 and mFe=2.0 (1 ) μBFe-1 at 10 K. Upon heating, mEr decreases progressively until TEr=55 K . Between 55 K and 75 K, the Fe sublattice undergoes a first-order ferromagnetic-antiferromagnetic (FM-AFM) transition with a cell volume contraction due to the itinerant metamagnetic behavior of one Fe site. In the AFM structure, mFe decreases until the Néel temperature TN=125 K . At high field, two different types of field induced transitions are observed. The Er moments become parallel to the Fe one and saturates to the E r3 + free ion value, leading to an unusual field induced FM arrangement at a transition field BTrans of only 78 kG below 30 K. Then above TM0=66 K , an AFM-FM transition of the Fe sublattice, accompanied by a cell volume increase is observed. BTrans increases linearly versus temperature and with a larger d BTrans/d T slope than for YF e2D4.2 . This has been explained by the additional contribution of Er induced moments above BTrans.

  16. Determination of the Oscillator Strengths for the Third and Fourth Vibrational Overtone Transitions in Simple Alcohols

    NASA Astrophysics Data System (ADS)

    Wallberg, Jens; Kjaergaard, Henrik G.

    2017-06-01

    Absolute measurements of the weak transitions require sensitive spectroscopic techniques. With our recently constructed pulsed cavity ring down (CRD) spectrometer, we have recorded the third and fourth vibrational overtone of the OH stretching vibration in a series of simple alcohols: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), 2-propanol (2-PrOH) and tert-butanol (tBuOH). The CRD setup (in a flow cell configuration) is combined with a conventional FTIR spectrometer to determine the partial pressure of the alcohols from the fundamental transitions of the OH-stretching vibration. The oscillator strengths of the overtone transitions are determined from the integrated absorbances of the overtone spectra and the partial pressures. Furthermore, the oscillator strengths were calculated using vibrational local mode theory with energies and dipole moments calculated at CCSD(T)/aug-cc-pVTZ level of theory. We find a good agreement between the observed and calculated oscillator strengths across the series of alcohols.

  17. Energy Levels and Oscillator Strengths for Allowed Transitions in S III

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1995-01-01

    We have calculated energy levels and oscillator strengths for dipole-allowed transitions between the terms belonging to the 3s(sup 2)3p(sup 2), 3s3p(sup 3), 3S(sup 2)3p3d, 3S(sup 2)3p4s, 3S(sup 2)3p4p and 3s(sup 2)3p4d configurations of S iii in the LS-coupling scheme. We used flexible radial functions and included a large number of configurations in the configuration-interaction expansions to ensure convergence. The calculated energy levels are in close agreement with the recent laboratory measurement. The present oscillator strengths are compared with other calculations and experiments and most of the existing discrepancies between the available calculations are resolved.

  18. The E(2) symmetry and quantum phase transition in the two-dimensional limit of the vibron model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Pan, Feng; Liu, Yu-Xin; Draayer, J. P.

    2010-11-01

    We study in detail the relation between the two-dimensional Euclidean dynamical E(2) symmetry and the quantum phase transition in the two-dimensional limit of the vibron model, called the U(3) vibron model. Both geometric and algebraic descriptions of the U(3) vibron model show that structures of low-lying states at the critical point of the model with a quartic potential as its classical limit can be approximately described by the E(2) symmetry. We also fit the finite-size scaling exponent of the energy levels and E1 transition rates in the F(2) model, which is exactly the E(2) model but with truncation in its Hilbert subspace, as well as those at the critical point in the U(3) vibron model. The N-scaling power law around the critical point shows that the E(2) symmetry is well preserved even for cases with finite number of bosons. In addition, two kinds of experimentally accessible effective order parameters, such as the energy ratios E_{2_1}/E_{1_1}, E_{3_1}/E_{1_1} and E1 transition ratios \\frac{B(E1;2_1\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, \\frac{B(E1;0_2\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, are proposed to identify the second-order phase transition in such systems. Possible empirical examples exhibiting approximate E(2) symmetry are also presented.

  19. A systematic review of consumer preference for e-cigarette attributes: Flavor, nicotine strength, and type

    PubMed Central

    Nemati, Mehdi; Zheng, Yuqing

    2018-01-01

    Objective Systematic review of research examining consumer preference for the main electronic cigarette (e-cigarette) attributes namely flavor, nicotine strength, and type. Method A systematic search of peer-reviewed articles resulted in a pool of 12,933 articles. We included only articles that meet all the selection criteria: (1) peer-reviewed, (2) written in English, and (3) addressed consumer preference for one or more of the e-cigarette attributes including flavor, strength, and type. Results 66 articles met the inclusion criteria for this review. Consumers preferred flavored e-cigarettes, and such preference varied with age groups and smoking status. We also found that several flavors were associated with decreased harm perception while tobacco flavor was associated with increased harm perception. In addition, some flavor chemicals and sweeteners used in e-cigarettes could be of toxicological concern. Finally, consumer preference for nicotine strength and types depended on smoking status, e-cigarette use history, and gender. Conclusion Adolescents could consider flavor the most important factor trying e-cigarettes and were more likely to initiate vaping through flavored e-cigarettes. Young adults overall preferred sweet, menthol, and cherry flavors, while non-smokers in particular preferred coffee and menthol flavors. Adults in general also preferred sweet flavors (though smokers like tobacco flavor the most) and disliked flavors that elicit bitterness or harshness. In terms of whether flavored e-cigarettes assisted quitting smoking, we found inconclusive evidence. E-cigarette users likely initiated use with a cigarette like product and transitioned to an advanced system with more features. Non-smokers and inexperienced e-cigarettes users tended to prefer no nicotine or low nicotine e-cigarettes while smokers and experienced e-cigarettes users preferred medium and high nicotine e-cigarettes. Weak evidence exists regarding a positive interaction between menthol

  20. A systematic review of consumer preference for e-cigarette attributes: Flavor, nicotine strength, and type.

    PubMed

    Zare, Samane; Nemati, Mehdi; Zheng, Yuqing

    2018-01-01

    Systematic review of research examining consumer preference for the main electronic cigarette (e-cigarette) attributes namely flavor, nicotine strength, and type. A systematic search of peer-reviewed articles resulted in a pool of 12,933 articles. We included only articles that meet all the selection criteria: (1) peer-reviewed, (2) written in English, and (3) addressed consumer preference for one or more of the e-cigarette attributes including flavor, strength, and type. 66 articles met the inclusion criteria for this review. Consumers preferred flavored e-cigarettes, and such preference varied with age groups and smoking status. We also found that several flavors were associated with decreased harm perception while tobacco flavor was associated with increased harm perception. In addition, some flavor chemicals and sweeteners used in e-cigarettes could be of toxicological concern. Finally, consumer preference for nicotine strength and types depended on smoking status, e-cigarette use history, and gender. Adolescents could consider flavor the most important factor trying e-cigarettes and were more likely to initiate vaping through flavored e-cigarettes. Young adults overall preferred sweet, menthol, and cherry flavors, while non-smokers in particular preferred coffee and menthol flavors. Adults in general also preferred sweet flavors (though smokers like tobacco flavor the most) and disliked flavors that elicit bitterness or harshness. In terms of whether flavored e-cigarettes assisted quitting smoking, we found inconclusive evidence. E-cigarette users likely initiated use with a cigarette like product and transitioned to an advanced system with more features. Non-smokers and inexperienced e-cigarettes users tended to prefer no nicotine or low nicotine e-cigarettes while smokers and experienced e-cigarettes users preferred medium and high nicotine e-cigarettes. Weak evidence exists regarding a positive interaction between menthol flavor and nicotine strength.

  1. 77 FR 5252 - Federal Travel Regulation; GSA E-Gov Travel Service (ETS) Transition to E-Gov Travel Service 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... Travel Regulation; GSA E-Gov Travel Service (ETS) Transition to E-Gov Travel Service 2 (ETS2) AGENCY... (QMC), at [email protected]gov or (703) 605-2151. SUPPLEMENTARY INFORMATION: The Federal Travel...-GOV TRAVEL SERVICE GSA Bulletin ETS 12-01 TO: Heads of Federal Agencies SUBJECT: GSA E-Gov Travel...

  2. Reduced probabilities for E2 transitions between excited collective states of triaxial even–even nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadyrbekov, M. S., E-mail: nodirbekov@inp.uz; Bozarov, O. A.

    Reduced probabilities for intra- and interband E2 transitions in excited collective states of even–even lanthanide and actinide nuclei are analyzed on the basis of a model that admits an arbitrary triaxiality. They are studied in detail in the energy spectra of {sup 154}Sm, {sup 156}Gd, {sup 158}Dy, {sup 162,164}Er, {sup 230,232}Th, and {sup 232,234,236,238}U even–even nuclei. Theoretical and experimental values of the reduced probabilities for the respective E2 transitions are compared. This comparison shows good agreement for all states, including high-spin ones. The ratios of the reduced probabilities for the E2 transitions in question are compared with results following frommore » the Alaga rules. These comparisons make it possible to assess the sensitivity of the probabilities being considered to the presence of quadrupole deformations.« less

  3. E1 and M1 strength functions at low energy

    NASA Astrophysics Data System (ADS)

    Schwengner, Ronald; Massarczyk, Ralph; Bemmerer, Daniel; Beyer, Roland; Junghans, Arnd R.; Kögler, Toni; Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner; Wagner, Andreas

    2017-09-01

    We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.

  4. Finite-size scaling with respect to interaction and disorder strength at the many-body localization transition

    NASA Astrophysics Data System (ADS)

    Kudo, Kazue; Deguchi, Tetsuo

    2018-06-01

    We present a finite-size scaling for both interaction and disorder strengths in the critical regime of the many-body localization (MBL) transition for a spin-1/2 X X Z spin chain with a random field by studying level statistics. We show how the dynamical transition from the thermal to MBL phase depends on interaction together with disorder by evaluating the ratio of adjacent level spacings, and thus, extend previous studies in which interaction coupling is fixed. We introduce an extra critical exponent in order to describe the nontrivial interaction dependence of the MBL transition. It is characterized by the ratio of the disorder strength to the power of the interaction coupling with respect to the extra critical exponent and not by the simple ratio between them.

  5. New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N I

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.

    2006-03-01

    The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N I lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strengths over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s22p3 4So, 2Do, 2Po, 2s2p4 4P, 2s22p23s 4P, and 2P terms and from these levels to the levels of the 2s22p23p 2So, 4Do, 4Po, 4So, 2Do, 2Po, 2s22p23s 2D, 2s22p24s 4P, 2P, 2s22p23d 2P, 4F, 2F, 4P, 4D, and 2D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.

  6. Origin of field-induced discontinuous phase transitions in N d2F e17

    NASA Astrophysics Data System (ADS)

    Diop, L. V. B.; Kuz'min, M. D.; Skokov, K. P.; Skourski, Y.; Gutfleisch, O.

    2018-02-01

    Magnetic properties of a trigonal ferromagnet N d2F e17 have been studied on single crystals in steady (14 T) and pulsed (32 T) magnetic fields. The easy-magnetization direction lies close to the [120] axis, deviating from the basal plane by 2 .9∘ (at T =5 K ). Of particular interest is the low-temperature magnetization process along the high-symmetry axis [001], which is the hard direction. This process is discontinuous and involves two first-order phase transitions (FOMPs). One of them (at 20 T) is a symmetry FOMP similar to that observed in S m2F e17 . The second transition (at 10.4 T) is unusual: as the magnetization turns abruptly toward the applied field, it also changes its azimuthal orientation (the angle φ ) by 60∘. Both transitions can be reasonably accounted for by the presence of a significant sixth-order trigonal anisotropy term.

  7. Relativistic distorted-wave collision strengths for Δn = 0 transitions in the 67 Li-like, F-like and Na-like ions with 26 ≤ Z ≤ 92

    DOE PAGES

    Fontes, Christopher J.; Zhang, Hong Lin

    2017-01-01

    We calculated relativistic distorted-wave collision strength for all possible Δn=0 transitions, where n denotes the valence shell of the ground level, in the 67 Li-like, F-like and Na-like ions with Z in the range 26 ≤ Z ≤92. This choice produces 3 transitions with n=2 in the Li-like and F-like ions, and 10 transitions with n=3 in the Na-like ions. Moreover, for the Li-like and F-like ions, the calculations were made for the six final, or scattered, electron energies E'=0.008,0.04,0.10,0.21,0.41, and 0.75, where E' is in units of Zmore » $$2\\atop{eff}$$ Ry with Z eff = Z- 1.66 for Li-like ions and Z eff= Z- 6.667 for F-like ions. For the Na-like ions, the calculations were made for the six final electron energies E'=0.0025,0.015,0.04,0.10,0.21, and 0.40, with Z eff = Z- 8.34. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous works by Zhang, Sampson and Fontes [H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 31; H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 48 (1991) 25; D.H. Sampson, H.L. Zhang, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 209]. In those previous works, collision strengths were also provided for Li-, F- and Na-like ions, but for a more comprehensive set of transitions. Finally, the collision strengths covered in the present work should be more accurate than the corresponding data given in those previous works and are presented here to replace those earlier results.« less

  8. Quadrupole decay strength of the M1 scissors mode

    NASA Astrophysics Data System (ADS)

    Beck, T.; Beller, J.; Derya, V.; Gayer, U.; Isaak, J.; Löher, B.; Mertes, L.; Pietralla, N.; Ries, P.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Weller, H. R.; Werner, V.; Zweidinger, M.

    2015-10-01

    The E2/M1 multipole mixing ratio δ1→2 of the 1sc +→21+ transition of Gd was determined using results from high-statistics photon scattering. This provides a possibility for a new approach on the search of Jsc + members of the rotational band built on the scissors mode. By application of Alaga's rule, which is justifiable as 156Gd is a well-deformed rotor with good K quantum number, a transition strength of B (E 2 ;2sc +→01+)=0.034 (13 ) W.u. is estimated.

  9. Pressure-induced phase transitions in the CdC r2S e4 spinel

    NASA Astrophysics Data System (ADS)

    Efthimiopoulos, I.; Liu, Z. T. Y.; Kucway, M.; Khare, S. V.; Sarin, P.; Tsurkan, V.; Loidl, A.; Wang, Y.

    2016-11-01

    We have conducted high-pressure x-ray diffraction and Raman spectroscopic studies on the CdC r2S e4 spinel at room temperature up to 42 GPa. We have resolved three structural transitions up to 42 GPa, i.e., the starting F d 3 ¯m phase transforms at ˜11 GPa into a tetragonal I 41/a m d structure, an orthorhombic distortion was observed at ˜15 GPa , whereas structural disorder initiates beyond 25 GPa. Our ab initio density functional theory studies successfully reproduced the observed crystalline-to-crystalline structural transitions. In addition, our calculations propose an antiferromagnetic ordering as a potential magnetic ground state for the high-pressure tetragonal and orthorhombic modifications, compared with the starting ferromagnetic phase. Furthermore, the computational results indicate that all phases remain insulating in their stability pressure range, with a direct-to-indirect band gap transition for the F d 3 ¯m phase taking place at 5 GPa. We attempted also to offer an explanation behind the peculiar first-order character of the F d 3 ¯m (cubic ) →I 41/a m d (tetragonal) transition observed for several relevant Cr spinels, i.e., the sizeable volume change at the transition point, which is not expected from space group symmetry considerations. We detected a clear correlation between the cubic-tetragonal transition pressures and the next-nearest-neighbor magnetic exchange interactions for the Cr-bearing sulfide and selenide members, a strong indication that the cubic-tetragonal transitions in these systems are principally governed by magnetic effects.

  10. Spin dependence of intra-ground-state-band E2 transitions in the SU(3) limit of the sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Long, G. L.; Ji, H. Y.

    1998-04-01

    B(E2, L+2-->L) transitions in the sdg interacting boson model SU(3) limit are studied with a general E2 transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when using transition operators of the form (d†g~+g†d~)2 or (g†g~)2, the B(E2, L+2-->L) values in the ground-state band have an L(L+3) dependent term. As L increases, the B(E2) values can be larger than the rigid rotor model value. Application to 236,238U is discussed.

  11. Core excitation effects on oscillator strengths for transitions in four electron atomic systems

    NASA Astrophysics Data System (ADS)

    Chang, T. N.; Luo, Yuxiang

    2007-06-01

    By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).

  12. New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N1

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2006-01-01

    The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N(I) lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strength over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s(sup 2)p(sup 3) (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0), 2s2p(sup 4) (sup 4)P, 2s(sup 2)2p(sup 2)3s (sup 4)P, and (sup 2)P terms and from these levels to the levels of the 2s(sup 2)2p(sup 2)3p (sup 2)S(sup 0), (sup 4)D(sup 0), (sup 4)P(sup 0), (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0),2s(sup 2)2p(sup 2)3s(sup 2)D, 2s(sup 2)2p(sup 2)4s(sup 4)P, (sup 2)P, 2s(sup 2)2p(sup 2)3d(sup 2)P, (sup 4)F,(sup 2)F,(sup 4)P, (sup 4)D, and (sup 2)D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.

  13. VizieR Online Data Catalog: Ba V, Ba VI, and Ba VII oscillator strengths (Rauch+, 2014)

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-04-01

    table1.dat contains calculated HFR oscillator strengths (loggf) and transition probabilities (gA, in 1/s) in Ba V. CF is the cancellation factor as defined by Cowan (1981). In columns 3 and 6, e is written for even and o for odd. table2.dat contains calculated HFR oscillator strengths (loggf) and transition probabilities (gA, in 1/s) in Ba VI. CF is the cancellation factor as defined by Cowan (1981). In columns 3 and 6, e is written for even and o for odd. table3.dat contains calculated HFR oscillator strengths (loggf) and transition probabilities (gA, in 1/s) in Ba VII. CF is the cancellation factor as defined by Cowan (1981). In columns 3 and 6, e is written for even and o for odd. (3 data files).

  14. Energy spectra and E2 transition rates of 124—130Ba

    NASA Astrophysics Data System (ADS)

    Sabri, H.; Seidi, M.

    2016-10-01

    In this paper, we have studied the energy spectra and B(E2) values of 124—130Ba isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes. We have used a transitional interacting Boson model (IBM), Hamiltonian which is based on affine SU(1,1) Lie algebra in the both IBM-1 and 2 versions and also the Catastrophe theory in combination with a coherent state formalism to generate energy surfaces and determine the exact values of control parameters. Our results for control parameters suggest a combination of U(5) and SO(6) dynamical symmetries in this isotopic chain. Also, the theoretical predictions can be rather well reproduce the experimental counterparts, when the control parameter is approached to the SO(6) limit.

  15. Oscillator strengths of selected resonance transitions in neutral sulfur

    NASA Technical Reports Server (NTRS)

    Beideck, D. J.; Schectman, R. M.; Federman, S. R.; Ellis, D. G.

    1994-01-01

    Mean lives and branching ratios for the 4s (3)S(sup 0 sub 1) and 4s(double prime) (3)P(sup 0 sub 1, 2) levels of neutral sulfur were determined at the Toledo Heavy Ion Accelerator using beam-foil spectroscopic techniques. The mean lives obtained for the 4s (3)S(sup 0 sub 1) 4s(double prime) (3)P(sup 0 sub 1), and (3)P(sup 0 sub 2) levels, 1.875 +/- 0.094 ns, 2.034 +/- 0.102 ns, and 2.146 +/- 0.129 ns, respectively, represent the most accurate results available to date. Oscillator strengths for the transitions 3p(sup 4)(3)P(sub 2, 1, 0)-4s (3)S(sup 0 sub 1) and 3p(sup 4)(3)P(sub 2, 1, 0)-4s(double prime) (3)P(sup 0 sub 1, 2) were derived from these mean lives together with the measured branching ratios. For comparison with published results which present only multiplet f-values, such f-values were computed from the measured individual line oscillator strengths. The value obtained for the 3p(sup 4)(3)P-4s(sup 3)S(sup 0) multiplet at 1814 A is 0.088 +/- 0.005, in good agreement with the mean of previous experimental measurements and theoretical calculations. With the mean life for the 4s(double prime) 3P(sup 0 sub 0) level set equal to the mean of our determination for the other two 4s(double prime) (3)P(sup 0) levels (a valid assumption for LS coupling conditions, and consistent with the observed equality of the mean lives within the accuracy of our measurement), an oscillator strength for the 1299 A multiplet of 0.121 +/- 0.004 was found. Both results are in good agreement with recent large-scale theoretical calculations that incorporate the effects of configuration interaction.

  16. The B(E2;4^+1->2^+1) / B(E2;2^+1->0^+1) Ratio in Even-Even Nuclei

    NASA Astrophysics Data System (ADS)

    Loelius, C.; Sharon, Y. Y.; Zamick, L.; G"Urdal, G.

    2009-10-01

    We considered 207 even-even nuclei throughout the chart of nuclides for which the NNDC Tables had data on the energies and lifetimes of the 2^+1 and 4^+1 states. Using these data we calculated for each nucleus the electric quadrupole transition strengths B(E2;4^+1->2^+1) and B(E2;2^+1->0^+1), as well as their ratio. The internal conversion coefficients were obtained by using the NNDC HSICC calculator. For each nucleus we plotted the B(E2) ratio against A, N, and Z. We found that for close to 90% of the nuclei considered the ratio had values between 0.5 and 2.5. Most of the outliers had magic numbers of protons or neutrons. Our ratio results were compared with the theoretical predictions for this ratio by different models--10/7 in the rotational model and 2 in the simplest vibrational model. In the rotational regions (for 150 < A < 180 and A > 220) the ratios were indeed close to 10/7. For the few nuclei thought to be vibrational the ratios were usually less than 2. Otherwise, we got a wide scatter of ratio values. Hence other models, including the NpNn scheme, must be considered in interpreting these results.

  17. Towards traceability in CO2 line strength measurements by TDLAS at 2.7 µm

    NASA Astrophysics Data System (ADS)

    Pogány, Andrea; Ott, Oliver; Werhahn, Olav; Ebert, Volker

    2013-11-01

    Direct tunable diode laser absorption spectroscopy (TDLAS) was combined in this study with metrological principles on the determination of uncertainties to measure the line strengths of the P36e and P34e line of 12C16O2 in the ν1+ν3 band at 2.7 μm. Special emphasis was put on traceability and a concise, well-documented uncertainty assessment. We have quantitatively analyzed the uncertainty contributions of different experimental parameters to the uncertainty of the line strength. Establishment of the wavenumber axis and the gas handling procedure proved to be the two major contributors to the final uncertainty. The obtained line strengths at 296 K are 1.593×10-20 cm/molecule for the P36e and 1.981×10-20 cm/molecule for the P34e line, with relative expanded uncertainties of 1.1% and 1.3%, respectively (k=2, corresponding to a 95% confidence level). The measured line strength values are in agreement with literature data (line strengths listed in the HITRAN and GEISA databases), but show an uncertainty, which is at least a factor of 2 lower.

  18. Phase transition at N = 92 in 158Dy

    NASA Astrophysics Data System (ADS)

    Gupta, J. B.

    2016-09-01

    Beyond the shape phase transition from the spherical vibrator to the deformed rotor regime at N = 90, the interplay of β- and γ-degrees of freedom becomes important, which affects the relative positions of the Kπ = 0+β- and Kπ = 2+γ-bands. In the microscopic approach of the dynamic pairing plus quadrupole model, a correlation of the strength of the quadrupole force and the formation of the β- and γ-bands in 158Dy is described. The role of the potential energy surface is illustrated. The E2 transition rates in the lower three K-bands and the multi-phonon bands with Kπ = 0+, 2+ and 4+ are well reproduced. The absolute B(E2, 2i+ = 0 2+) (i = 2, 3) serves as a good measure of the quadrupole strength. The role of the single particle Nilsson orbits is also described.

  19. Level Energies, Oscillator Strengths and Lifetimes for Transitions in Pb IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon, C.; Alonso-Medina, A.; Zanon, A.

    2008-10-22

    Oscillator strengths for several lines of astrophysical interest arising from some configurations and some levels radiative lifetimes of Pb IV have been calculated. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock calculations. We use for the IC calculations the standard method of least square fitting of experimental energy levels by means of computer codes from Cowan. Transition Probabilities and oscillator strengths obtained, although in general agreement with the rare experimental data, do present some noticeable discrepancies that are studied in the text.

  20. Theoretical transition probabilities, oscillator strengths, and radiative lifetimes of levels in Pb IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso-Medina, A.; Colon, C., E-mail: cristobal.colon@upm.e; Porcher, P.

    2011-01-15

    Transition probabilities and oscillator strengths of 176 spectral lines with astrophysical interest arising from 5d{sup 10}ns (n = 7,8), 5d{sup 10}np (n = 6,7), 5d{sup 10}nd (n = 6,7), 5d{sup 10}5f, 5d{sup 10}5g, 5d{sup 10}nh (n = 6,7,8), 5d{sup 9}6s{sup 2}, and 5d{sup 9}6s6p configurations, and radiative lifetimes for 43 levels of Pb IV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree-Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in thesemore » calculations of the 5d{sup 10}7p and 5d{sup 10}5f configurations has facilitated a complete assignment of the energy levels in the Pb IV. Transition probabilities, oscillator strengths, and radiative lifetimes obtained are generally in good agreement with the experimental data.« less

  1. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 2: Significance of transition zones on physical and mechanical properties of portland cement mortar; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.F.F.; Cohen, M.D.; Chen, W.F.

    1998-08-01

    The research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  2. A Longitudinal Study into Indicators of Mental Health, Strengths and Difficulties Reported by Boarding Students as They Transition from Primary School to Secondary Boarding Schools in Perth, Western Australia

    ERIC Educational Resources Information Center

    Mander, David J.; Lester, Leanne

    2017-01-01

    This study examined indicators of mental health, as well as strengths and difficulties, as reported by same-age boarding and non-boarding students spanning four time points over a 2-year period as they transitioned from primary to boarding school in Western Australia (i.e., at the end of Grade 7, beginning of Grade 8, end of Grade 8, and end of…

  3. Experimental tobacco marketplace: substitutability of e-cigarette liquid for cigarettes as a function of nicotine strength.

    PubMed

    Pope, Derek A; Poe, Lindsey; Stein, Jeffrey S; Kaplan, Brent A; Heckman, Bryan W; Epstein, Leonard H; Bickel, Warren K

    2018-04-18

    The experimental tobacco marketplace (ETM) provides a method to estimate, prior to implementation, the effects of new products or policies on purchasing across various products in a complex tobacco marketplace. We used the ETM to examine the relationship between nicotine strength and substitutability of alternative products for cigarettes to contribute to the literature on regulation of e-liquid nicotine strength. The present study contained four sampling and four ETM purchasing sessions. During sampling sessions, participants were provided 1 of 4 e-liquid strengths (randomised) to sample for 2 days followed by an ETM purchasing session. The nicotine strength sampled in the 2 days prior to an ETM session was the same strength available for purchase in the next ETM. Each participant sampled and could purchase 0 mg/mL, 6 mg/mL, 12 mg/mL and 24 mg/mL e-liquid, among other products, during the study. Cigarette demand was unaltered across e-liquid strength. E-liquid was the only product to substitute for cigarettes across more than one e-liquid strength. Substitutability increased as a function of e-liquid strength, with the 24 mg/mL displaying the greatest substitutability of all products. The present study found that e-liquid substitutability increased with nicotine strength, at least up to 24 mg/mL e-liquid. However, the effects of e-liquid nicotine strength on cigarette purchasing were marginal and total nicotine purchased increased as e-liquid nicotine strength increased. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Oscillator Strengths and Predissociation Widths for Rydberg Transitions in Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.; Sheffer, Y.; Eidelsberg, Michele; Lemaire, Jean-Louis; Fillion, Jean-Hugues; Rostas, Francois; Ruiz, J.

    2006-01-01

    CO is used as a probe of astronomical environments ranging from planetary atmospheres and comets to interstellar clouds and the envelopes surrounding stars near the end of their lives. One of the processes controlling the CO abundance and the ratio of its isotopomers is photodissociation. Accurate oscillator strengths for Rydberg transitions are needed for modeling this process. Absorption bands were analyzed by synthesizing the profiles with codes developed independently in Meudon and Toledo. Each synthetic spectrum was adjusted to match the experimental one in a non-linear least-squares fitting procedure with the band oscillator strength, the line width (instrumental and predissociation.

  5. Effective collision strengths for forbidden transitions among the 3s23p3 fine-structure levels of CL IIIIII

    NASA Astrophysics Data System (ADS)

    Ramsbottom, C. A.; Bell, K. L.; Keenan, F. P.

    1999-08-01

    Effective collision strengths for the 10 astrophysically important fine-structure forbidden transitions among the ^4S^o, ^2D^o and ^2P^o levels in the 3s^23p^3 configuration of Cliii are presented. The calculation employs the multichannel R-matrix method to compute the electron-impact excitation collision strengths in a close-coupling expansion, which incorporates the lowest 23 LS target eigenstates of Cliii. These states are formed from the 3s^23p^3, 3s3p^4, 3s^23p^23d and 3s^23p^24s configurations. The Maxwellian-averaged effective collision strengths are presented graphically for all 10 fine-structure transitions over a wide range of electron temperatures appropriate for astrophysical applications [logT(K)=3.3-logT(K)=5.9]. Comparisons are made with the earlier seven-state close-coupling calculation of Butler & Zeippen, and in general excellent agreement is found in the low-temperature region where a comparison is possible [logT(K)=3.3-logT(K)=4.7]. However, discrepancies of up to 30 per cent are found to occur for the forbidden transitions which involve the ^4S^o ground state level, particularly for the lowest temperatures considered. At the higher temperatures, the present data are the only reliable results currently available.

  6. Laboratory astrophysics under the ultraviolet, visible, and gravitational astrophysics research program: Oscillator strengths for ultraviolet atomic transitions

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.

    1992-01-01

    The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres.

  7. Absence of quantum anomalous Hall state in 4 d transition-metal-doped B i2S e3 : An ab initio study

    NASA Astrophysics Data System (ADS)

    Deng, Bei; Liu, Feng; Zhu, Junyi

    2017-11-01

    The realization of insulating ferromagnetic states in topological insulator (TI) systems, with sufficiently high Curie temperatures (TC) and large magnetically induced gaps, has been the key bottleneck towards the realization of the quantum anomalous Hall effect (QAHE). Despite the limited reports on 3 d or 4 f transition-metal (TM)-doped B i2S e3 , there remains a lack of systematic studies on 4 d TMs, which may be potential candidates since the atomic sizes of 4 d TMs and that of Bi are similar. Here, we report a theoretical work that probes the magnetic behaviors of the 4 d TM-doped B i2S e3 system. We discovered that among the 4 d TMs, Nb and Mo can create magnetic moments of 1.76 and 2.96 μ B in B i2S e3 , respectively. While Mo yields a stable gapless antiferromagnetic ground state, Nb favors a strong ferromagnetic order, with the magnetic coupling strength (TC) ˜6 times of that induced by the traditional Cr impurity. Yet, we found that Nb is still unfavorable to support the QAH state in B i2S e3 because of the reduced correlation in the t2 g band that gives a gapless character. This rationale is not only successful in interpreting why Nb, the strongest candidate among 4 d TMs for achieving ferromagnetism in B i2S e3 , actually cannot lead to QAHE in the B i2S e3 system even with the assistance of codoping but also is particularly important to fully understand the mechanism of acquisition of insulating ferromagnetic states inside TI. On the other hand, we discovered that Mo-doped B i2S e3 favors strong antiferromagnetic states and may lead to superconducting states.

  8. CC2 oscillator strengths within the local framework for calculating excitation energies (LoFEx).

    PubMed

    Baudin, Pablo; Kjærgaard, Thomas; Kristensen, Kasper

    2017-04-14

    In a recent work [P. Baudin and K. Kristensen, J. Chem. Phys. 144, 224106 (2016)], we introduced a local framework for calculating excitation energies (LoFEx), based on second-order approximated coupled cluster (CC2) linear-response theory. LoFEx is a black-box method in which a reduced excitation orbital space (XOS) is optimized to provide coupled cluster (CC) excitation energies at a reduced computational cost. In this article, we present an extension of the LoFEx algorithm to the calculation of CC2 oscillator strengths. Two different strategies are suggested, in which the size of the XOS is determined based on the excitation energy or the oscillator strength of the targeted transitions. The two strategies are applied to a set of medium-sized organic molecules in order to assess both the accuracy and the computational cost of the methods. The results show that CC2 excitation energies and oscillator strengths can be calculated at a reduced computational cost, provided that the targeted transitions are local compared to the size of the molecule. To illustrate the potential of LoFEx for large molecules, both strategies have been successfully applied to the lowest transition of the bivalirudin molecule (4255 basis functions) and compared with time-dependent density functional theory.

  9. Transition sum rules in the shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yi; Johnson, Calvin W.

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less

  10. Transition sum rules in the shell model

    DOE PAGES

    Lu, Yi; Johnson, Calvin W.

    2018-03-29

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less

  11. Transition sum rules in the shell model

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  12. Chairside CAD/CAM materials. Part 2: Flexural strength testing.

    PubMed

    Wendler, Michael; Belli, Renan; Petschelt, Anselm; Mevec, Daniel; Harrer, Walter; Lube, Tanja; Danzer, Robert; Lohbauer, Ulrich

    2017-01-01

    Strength is one of the preferred parameters used in dentistry for determining clinical indication of dental restoratives. However, small dimensions of CAD/CAM blocks limit reliable measurements with standardized uniaxial bending tests. The objective of this study was to introduce the ball-on-three-ball (B3B) biaxial strength test for dental for small CAD/CAM block in the context of the size effect on strength predicted by the Weibull theory. Eight representative chairside CAD/CAM materials ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Specimens were prepared with highly polished surfaces in rectangular plate (12×12×1.2mm 3 ) or round disc (Ø=12mm, thickness=1.2mm) geometries. Specimens were tested using the B3B assembly and the biaxial strength was determined using calculations derived from finite element analyses of the respective stress fields. Size effects on strength were determined based on results from 4-point-bending specimens. A good agreement was found between the biaxial strength results for the different geometries (plates vs. discs) using the B3B test. Strength values ranged from 110.9MPa (Vitablocs Mark II) to 1303.21MPa (e.max ZirCAD). The strength dependency on specimen size was demonstrated through the calculated effective volume/surface. The B3B test has shown to be a reliable and simple method for determining the biaxial strength restorative materials supplied as small CAD/CAM blocks. A flexible solution was made available for the B3B test in the rectangular plate geometry. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets

    PubMed Central

    Miller, Daniel S.; Abbott, Nicholas L.

    2012-01-01

    We report an investigation of ordering transitions that are induced in water-dispersed, micrometer-sized droplets of a thermotropic liquid crystal (LC) by the bacterial lipopolysaccharide endotoxin. We reveal that the ordering transitions induced by endotoxin – from a bipolar state of the droplets to a radial state – are strongly dependent on the size of the LC droplets. Specifically, as the diameters of the LC droplets increase from 2 μm to above 10 μm (in phosphate buffered saline with an ionic strength of 90 mM and a pH of 7.2), we measured the percentage of droplets exhibiting a radial configuration in the presence of 100 pg/mL endotoxin to decrease from 98 ± 1 % to 3 ± 2 %. In addition, we measured a decrease in either the ionic strength or pH of the aqueous phase to reduce the percentage of droplets exhibiting a radial configuration in the presence of endotoxin. These results, when interpreted within the context of a simple thermodynamic model that incorporates the contributions of elasticity and surface anchoring to the free energies of the LC droplets, lead us to conclude that (i) the elastic constant K24 plays a central role in determining the size-dependent response of the LC droplets to endotoxin, and (ii) endotoxin-triggered ordering transitions occur only under solution conditions (pH, ionic strength) where the combined contributions of elasticity and surface anchoring to the free energies of the bipolar and radial configurations of the LC droplets are similar in magnitude. Our analysis also suggests that the presence of endotoxin perturbs the free energies of the LC droplets by ~10−17 J/droplet, which is comparable to the standard free energy of self-association of ~103 endotoxin molecules. These results, when combined with prior reports of localization of endotoxin at the center of LC droplets, are consistent with the hypothesis that self-assembly of endotoxin within micrometer-sized LC droplets provides the driving force for the ordering

  14. Relative Band Oscillator Strengths for Carbon Monoxide: Alpha (1)Pi-Chi (1)Sigma(+) Transitions

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Menningen, K. L.; Lee, Wei; Stoll, J. B.

    1997-01-01

    Band oscillator strengths for CO transitions between the electronic states A (l)Pi and X(1)Sigma(+) were measured via absorption with a synchrotron radiation source. When referenced to the well-characterized (5,0) band oscillator strength, our relative values for the (7,0) to (11,0) bands are most consistent with the recent experiments of Chan et al. and the theoretical predictions of Kirby & Cooper. Since the results from various laboratory techniques and theory now agree, analyses of interstellar CO based on absorption from A-X bands are no longer hindered by uncertainties in oscillator strength.

  15. A measurement of the vibrational band strength for the v3 band of the HO2 radical

    NASA Technical Reports Server (NTRS)

    Zahniser, M. S.; Stanton, A. C.

    1984-01-01

    Laboratory measurements of the v(3) band strength of HO2 using a tunable diode laser to measure the absorption strength of a vibration-rotation line in the P branch near 1080/cm are reported. The HO2 is generated in a discharge-flow system by reaction of fluorine atoms with excess H2O2: F + H2O2 - HO2 + HF. The HO2 concentration is determined from measurements of F-atom concentrations using both chemical titration with Cl2 and tunable diode laser absorption by the F-atom spin-orbit transition near 404/cm. The experimental data are consistent with a value of k(3) = (1.6 + or - 0.3) x 10 to the 12th cu cm/s and a ratio k(4)/k(1) = 1.0 + or - 0.4. The line strength for the 6(15) - 7(16)F(1) transition is 2.9 x 10 to the -21 sq cm/molecule/cm, which corresponds to a v(3) band strength of 35 + or - 9/sq cm/(STP atm). This value is a factor of 1.6 to 6 lower than previous ab initio calculations.

  16. Oscillator strengths of the optical transitions in a semiconductor superlattice under an electric field

    NASA Astrophysics Data System (ADS)

    Tronc, P.

    1992-04-01

    The oscillator strengths of the optical transitions in a semiconductor superlattice under an electric field parallel to the growth axis can be calculated using a perturbative model with Bloch envelope functions. The applied electric field and the electron-hole interaction inducing formation of indirect excitons both induce strength asymmetry between the oblique +p and -p transitions of the Wannier-Stark ladder. Features of the photocurrent spectra recorded at low temperature can be accounted for by the present model in a very simple manner. Les forces d'oscillateur des transitions optiques dans un superréseau semiconducteur soumis à un champ électrique parallèle à la direction de croissance, peuvent être calculées à l'aide d'un modèle de perturbation avec des fonctions enveloppes de Bloch. Le champ électrique appliqué ainsi que l'interaction électron-trou, qui induit la formation d'excitons indirects, entraînent une asymétrie entre les forces d'oscillateur des transitions +p et -p dans l'échelle de Wannier-Stark. Certaines caractéristiques des spectres de photocourant enregistrés à basse température peuvent être prévues d'une manière très simple.

  17. Infrared and far-infrared transition frequencies for the CH2 radical. [in interstellar gas clouds

    NASA Technical Reports Server (NTRS)

    Sears, T. J.; Mckellar, A. R. W.; Bunker, P. R.; Evenson, K. M.; Brown, J. M.

    1984-01-01

    A list of frequencies and intensities for transitions of CH2 in the middle and far infrared regions is presented which should aid in the detection of CH2 and provide valuable information on the local physical and chemical environment. Results are presented for frequency, vacuum wavelength, and line strength for rotational transition frequencies and for the transition frequencies of the v(2) band.

  18. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    PubMed

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  19. FOUR WAVE MIXING SPECTROSCOPY OF THE NO_3 tilde{B} ^2E' - tilde{X} ^2A_2' transition

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaru; Ishiwata, Takashi

    2014-06-01

    The tilde{B} ^2E' - tilde{X} ^2A_2' electronic transition of NO_3 generated in a supersonic free jet expansion was investigated by four wave mixing ( 4WM ) spectroscopy. The degenerated 4WM and laser induced fluorescence ( LIF ) spectra around the 0_0^0 band region were measured simultaneously. The D4WM spectrum shows broad band features for the 0_0^0 band similar to that of the LIF spectrum. The broad 0_0^0 band does not consist of one sub-band, but of several bands. The intensity distribution of the sub-bands of the D4WM spectrum is similar, but not identical to that of the LIF spectrum.

  20. Monopole transition strength function of 12C in a three-α model

    NASA Astrophysics Data System (ADS)

    Ishikawa, Souichi

    2016-12-01

    The energy-level structure of the 12C nucleus at a few MeV above the three-α (3 α ) threshold is still unsatisfactorily known. For instance, most microscopic calculations predicted that there exist one 0+ state in this energy region besides the well-known Hoyle state, whereas some experimental and theoretical studies show the existence of two 0+ states. In this paper, I will take a 3 α -boson model for bound and continuum states in 12C and study a transition process from the 12C(01+) ground state to 3 α 0+ continuum states by the electric monopole (E 0 ) operator. The strength distribution of the process will be calculated as a function of 3 α energy using the Faddeev three-body theory. The Hamiltonian for the 3 α system consists of two- and three-α potentials, and some three-α potentials with different range parameters will be examined. Results of the strength function show a double-peaked bump at the low-energy region, which can be considered as two 0+ states. The peak at higher energy may originate from a 3 α resonant state. However, it is unlikely that the peak at the lower energy is related to a resonant state, which suggests that it may be due to a so-called "ghost anomaly." Distributions of decaying particles are also calculated.

  1. Development of ductile high-strength chromium alloys, phase 2

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1973-01-01

    Strength and ductility were evaluated for chromium alloys dispersion hardened with the putative TaC, TaB, CbC, and CbB compounds. TaC and TaB proved to be the most potent strengtheners, but when combined, their effect far outweighed that produced individually. Tests at 1422 K (2100 F) on an alloy containing these two compounds at the combined level of 0.5 m/o revealed a 495 MN/sq m (70 ksi) tensile strength for wrought material, and a 100 hour rupture strength of 208 MN/sq m (30 ksi) when solution annealed and aged to maximize creep resistance. These levels of high temperature strength greatly exceed that reported for any other chromium-base alloy. The ductile-to-brittle transition temperature (DBTT) of the two phase strengthened alloy occurred at approximately 588 K (600 F) when heat treated to optimize creep strength and was not improved by fabrication to produce a wrought and recovered microstructure. The lowest DBTT measured on any of the alloys investigated was 422 K (300 F). Strengthening phases actually formed in Cr-Ta-B and Cr-Cb-B compositions are probable M2CrB2 (M=Ta or Cb) compounds of tetragonal crystal structure. The likely habit relationship between these compounds and chromium is postulated. Cube habit coherency was identified for TaC precipitation in chromium by electron microscopy. In another study, the maximum solubility of carbon in chromium was indicated to lie between 3/4 and 1 a/o and that of boron to be 1/2 a/o.

  2. Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems.

    PubMed

    Angom, D; Ghosh, S; Kota, V K B

    2004-01-01

    We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.

  3. Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field

    NASA Astrophysics Data System (ADS)

    Sallabi, A. K.; Alkhttab, M.

    2014-12-01

    Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).

  4. Energy levels, oscillator strengths, and transition probabilities for sulfur-like scandium, Sc VI

    NASA Astrophysics Data System (ADS)

    El-Maaref, A. A.; Abou Halaka, M. M.; Saddeek, Yasser B.

    2017-09-01

    Energy levels, Oscillator strengths, and transition probabilities for sulfur-like scandium are calculated using CIV3 code. The calculations have been executed in an intermediate coupling scheme using Breit-Pauli Hamiltonian. The present calculations have been compared with the experimental data and other theoretical calculations. LANL code has been used to confirm the accuracy of the present calculations, where the calculations using CIV3 code agree well with the corresponding values by LANL code. The calculated energy levels and oscillator strengths are in reasonable agreement with the published experimental data and theoretical values. We have calculated lifetimes of some excited levels, as well.

  5. Interaction between 2',4-dihydroxychalcone and the N, f, e conformers of bovine serum albumin: influence of temperature and ionic strength.

    PubMed

    Curvale, Rolando A; Debattista, Nora B; Pappano, Nora B

    2012-04-01

    UV-Vis spectroscopy was used to study the interaction between the 2',4- dihydroxychalcone, flavonoid which is known to have anti-tumor activity in vitro, and others biological properties, and the N, F and E conformers of bovine serum albumin at different ionic strengths and temperatures. The Klotz model was found to be adequate to determine the constants and number of binding sites. The reaction was found to be exothermic and spontaneous. The number of binding sites decreases and the reaction is more exergonic along with the increase in ionic strength and the conformational change of N to E. The reactions were necessarily hydrophobic and followed by a process of ionic character.

  6. Thermal phase transition with full 2-loop effective potential

    NASA Astrophysics Data System (ADS)

    Laine, M.; Meyer, M.; Nardini, G.

    2017-07-01

    Theories with extended Higgs sectors constructed in view of cosmological ramifications (gravitational wave signal, baryogenesis, dark matter) are often faced with conflicting requirements for their couplings; in particular those influencing the strength of a phase transition may be large. Large couplings compromise perturbative studies, as well as the high-temperature expansion that is invoked in dimensionally reduced lattice investigations. With the example of the inert doublet extension of the Standard Model (IDM), we show how a resummed 2-loop effective potential can be computed without a high-T expansion, and use the result to scrutinize its accuracy. With the exception of Tc, which is sensitive to contributions from heavy modes, the high-T expansion is found to perform well. 2-loop corrections weaken the transition in IDM, but they are moderate, whereby a strong transition remains an option.

  7. Analysis of the E2 transitions for /sup 3/H-/alpha/ cluster states of /sup 7/Li by the resonating group method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Pu; Zhao Xuan; Zeng Fanan

    1989-07-01

    It is suggested that the ground state and the 1st, 2nd, and 3rd excited states of /sup 7/Li are /sup 3/H-/alpha/ cluster-structure states. Using the resonating group method (RGM), the eigenvalues and eigenfunctions of these states as well as the reduced E2 transition probabilities between these states are calculated and are consistent with the experimental values. The results show that the RGM is much better than the harmonic oscillator model used by Bernheim /ital et/ /ital al/. in predicting the E2 transition rates.

  8. E1 and M1 γ-strength functions in 144Nd

    DOE PAGES

    Voinov, A. V.; Grimes, S. M.

    2015-12-14

    Both E1 and M1 γ-strength functions below the neutron separation energy were analyzed based on experimental data from 143Nd(n,γ) 144Nd and 143Nd(n,γα) 140Ce reactions. It is confirmed that the commonly adopted E1 model based on the temperature dependence of the width of the giant dipole resonance works well. The popular M1 strength function due to the spin-flip magnetic resonance located near the neutron binding energy is not capable of reproducing experimental data. As a result, the low-energy enhancement of the M1 strength or the energy-independent model of Weisskopf, both leading to the low-energy strength sizable to E1 one, fit experimentalmore » data best.« less

  9. Radiative rates for forbidden M1 and E2 transitions of astrophysical interest in doubly ionized iron-peak elements

    NASA Astrophysics Data System (ADS)

    Fivet, V.; Quinet, P.; Bautista, M. A.

    2016-01-01

    Aims: Accurate and reliable atomic data for lowly ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are of paramount importance for analyzing the high-resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources, such as Herbig-Haro objects in the Orion Nebula and stars like Eta Carinae. However, forbidden M1 and E2 transitions between low-lying metastable levels of doubly charged iron-peak ions have been investigated very little so far, and radiative rates for those lines remain sparse or nonexistent. We attempt to fill that gap and provide transition probabilities for the most important forbidden lines of all doubly ionized iron-peak elements. Methods: We carried out a systematic study of the electronic structure of doubly ionized Fe-peak species. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities were computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan and the central Thomas-Fermi-Dirac-Amaldi potential approximation implemented in AUTOSTRUCTURE. This multiplatform approach allowed for consistency checks and intercomparison and has proven very useful in many previous works for estimating the uncertainties affecting the radiative data. Results: We present transition probabilities for the M1 and E2 forbidden lines depopulating the metastable even levels belonging to the 3dk and 3dk-14s configurations in Sc III (k = 1), Ti III (k = 2), V III (k = 3), Cr III (k = 4), Mn III (k = 5), Fe III (k = 6), Co III (k = 7), and Ni III (k = 8).

  10. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy 229Th Nuclear Isomeric Transition

    NASA Astrophysics Data System (ADS)

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T.; Rellergert, Wade G.; Mirzadeh, Saed; Cassanho, A.; Jenssen, H. P.; Tkalya, Eugene V.; Hudson, Eric R.

    2015-06-01

    We report the results of a direct search for the 229Th (Iπ=3 /2+←5 /2+ ) nuclear isomeric transition, performed by exposing 229Th -doped LiSrAlF6 crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s ≲τ ≲(2000 - 5600 ) s . This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  11. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy Th 229 Nuclear Isomeric Transition

    DOE PAGES

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T.; ...

    2015-06-23

    We report the results of a direct search for the 229Tn (I π = 3/2 + ← 5/2 +) nuclear isomeric transition, performed by exposing 229Tn-doped LiSrAlF 6 crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1–2) s≲τ≲ (2000-5600) s. Lastly, this measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  12. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy (229)Th Nuclear Isomeric Transition.

    PubMed

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T; Rellergert, Wade G; Mirzadeh, Saed; Cassanho, A; Jenssen, H P; Tkalya, Eugene V; Hudson, Eric R

    2015-06-26

    We report the results of a direct search for the (229)Th (I(π)=3/2(+)←5/2(+)) nuclear isomeric transition, performed by exposing (229)Th-doped LiSrAlF(6) crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s≲τ≲(2000-5600)  s. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  13. The CaCl2 transition in Stishovite

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.

    2001-12-01

    Rutile-structured SiO2, or stishovite, has been the subject of intense theoretical study for the development and testing of theoretical methods.1 The pressure induced phase transition of stishovite to the CaCl2 structure is one of the few cases of phase transitions predicted from first-principles electronic structure theory before being proven experimentally. Such tests are important, because one does not know to what level to trust theoretical predictions unless there are test predictions that are fulfilled. There were some indications of a phase transition from earlier ionic model calculations,3 but confidence in the predicted pressure was low because the model was not sufficiently accurate for the equation of state. Then, Linearized Augmented Plane Wave (LAPW) calculations, which make no assumptions abouyt ionicity, were performed for SiO2, and clearly showed an elastic instability at about 45 GPa.2 Non-hydrostatic experiments showed evidence for a transition, but at about 100 GPa.4 Raman experiments showed softening of the B1g Raman mode frequency, which, if extrapolated, would vanish at about 100 GPa.5 Theory predicted an transition, where the elastic anomaly c11-c12=0, at which point the Raman mode would begin to increase in frequency. A hydrostatic single crystal Raman experiment was done to higher pressures, and the transition was found at about 45-50 GPa, and the Raman spectra were in good agreement with the theoretical predictions.5 Single crystal hydrostatic x-ray studies have verified the transition, and showed that the transition is weakly first-order, with some hysteresis.7 Progress in theoretical studies of stishovite and the transition will be reviewed. 1 Cohen, R. E. In: Silica: Physical Behavior, Geochemistry, and Materials Applications. P. Heaney, C. T. Prewitt and G. V. Gibbs. Washington, D.C., Mineralogical Society of America. 29: 369-402, 1994. 2 Cohen, R. E., In: High Pressure Research in Mineral Physics: Application to Earth and Planetary

  14. The splitting and oscillator strengths for the 2S/2/S-2p/2/P/0/ doublet in lithium-like sulfur. [during Skylab observed solar flares

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Forester, J. P.; Elston, S. B.; Griffin, P. M.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Sellin, I. A.; Groeneveld, K.-O.

    1977-01-01

    The beam-foil technique has been used to study the 2S(2)S-2p(2)P(0) doublet in S XIV. The results confirm the doublet splitting measured aboard Skylab during solar flare events. In addition, the oscillator strengths for the resonance transitions comprising this doublet have been measured and found to agree well with recent relativistic f-value calculations.

  15. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength.

    PubMed

    Ho, Andrew T V; Palla, Adelaida R; Blake, Matthew R; Yucel, Nora D; Wang, Yu Xin; Magnusson, Klas E G; Holbrook, Colin A; Kraft, Peggy E; Delp, Scott L; Blau, Helen M

    2017-06-27

    Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.

  16. Theoretical investigation on the 2e/12c bond and second hyperpolarizability of azaphenalenyl radical dimers: strength and effect of dimerization.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Sun, Shi-Ling; Qiu, Yong-Qing; Zhao, Liang; Su, Zhong-Min

    2013-09-28

    An increasing number of chemists have focused on the investigations of two-electron/multicenter bond (2e/mc) that was first introduced to describe the structure of radical dimers. In this work, the dimerization of two isoelectronic radicals, triazaphenalenyl (TAP) and hexaazaphenalenyl (HAP) has been investigated in theory. Results show TAP2 is a stable dimer with stronger 2e/12c bond and larger interaction energy, while HAP2 is a less stable dimer with larger diradical character. Interestingly, the ultraviolet-visible absorption spectra suggest that the dimerization induces a longer wavelength absorption in visible area, which is dependent on the strength of dimerization. Significantly, the amplitude of second hyperpolarizability (γ(yyyy)) of HAP2 is 1.36 × 10(6) a.u. that is larger than 7.79 × 10(4) a.u. of TAP2 because of the larger diradical character of HAP2. Therefore, the results indicate that the strength of radical dimerization can be effectively detected by comparing the magnitude of third order non-linear optical response, which is beneficial for further theoretical and experimental studies on the properties of complexes formed by radical dimerization.

  17. Effective collision strengths for the electron impact excitation of Mg

    NASA Astrophysics Data System (ADS)

    Hudson, C. E.; Ramsbottom, C. A.; Norrington, P. H.; Scott, M. P.

    2008-05-01

    Electron impact excitation collision strengths for fine structure transitions of Mg,have been determined by a Breit-Pauli R-matrix calculation. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s^22p^4, 2s2p^5, 2p^6, 2s^22p^33s and 2s^22p^33p. These target states give rise to 37 fine structure levels and 666 possible transitions. The effective collision strengths are calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. Effective collision strengths for transitions between the fine structure levels are given for electron temperatures in the range 10Te(K) = 3.0 - 7.0. Results are compared with the previous R-matrix calculation of Butler & Zeippen (AASS, 1994) and the recent Distorted Wave evaluations of Bhatia, Landi & Eissner (ADNDT, 2006).

  18. Search for weak M 1 transitions in 48Ca with inelastic proton scattering

    NASA Astrophysics Data System (ADS)

    Mathy, M.; Birkhan, J.; Matsubara, H.; von Neumann-Cosel, P.; Pietralla, N.; Ponomarev, V. Yu.; Richter, A.; Tamii, A.

    2017-05-01

    Background: The quenching of spin-isospin modes in nuclei is an important field of research in nuclear structure. It has an impact on astrophysical reaction rates and on fundamental processes like neutrinoless double-β decay. Gamow-Teller (GT) and spin-flip M 1 strengths are quenched. Concerning the latter, the Jπ=1+ resonance in the doubly magic nucleus 48Ca, dominated by a single transition, serves as a reference case. Purpose: The aim of the present work is to search for weak M 1 transitions in 48Ca with a high-resolution (p ,p') experiment at 295 MeV and forward angles including 0∘ and a comparison with results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B (M 1 ) strength in 48Ca. Methods: The spin-M 1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis (MDA) and converted to reduced spin-M 1 transition strengths by using the unit cross-section method. For a comparison with electron-scattering results, corresponding reduced B (M 1 ) transition strengths are extracted following the approach outlined in Birkhan et al. [Phys. Rev. C 93, 041302(R) (2016), 10.1103/PhysRevC.93.041302]. Results: In total, 30 peaks containing a M 1 contribution are found in the excitation energy region 7-13 MeV. The resulting B (M 1 ) strength distribution compares well to the electron-scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.14(7) μN2 deduced assuming a nonquenched isoscalar part of the (p ,p') cross sections agrees with the (e ,e') result of 1.21(13) μN2. A bin-wise analysis above 10 MeV provides an upper limit of 1.51(17) μN2. Conclusions: The present results confirm the previous electron

  19. Transition-metal alloying of γ'-Ni3Al : Effects on the ideal uniaxial compressive strength from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Minru; Wang, Chong-Yu

    2018-01-01

    The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.

  20. Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII XXVIII)

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.

    2008-05-01

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n ⩽ 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.

  1. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    DOE PAGES

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; ...

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less

  2. Toward major evolutionary transitions theory 2.0.

    PubMed

    Szathmáry, Eörs

    2015-08-18

    The impressive body of work on the major evolutionary transitions in the last 20 y calls for a reconstruction of the theory although a 2D account (evolution of informational systems and transitions in individuality) remains. Significant advances include the concept of fraternal and egalitarian transitions (lower-level units like and unlike, respectively). Multilevel selection, first without, then with, the collectives in focus is an important explanatory mechanism. Transitions are decomposed into phases of origin, maintenance, and transformation (i.e., further evolution) of the higher level units, which helps reduce the number of transitions in the revised list by two so that it is less top-heavy. After the transition, units show strong cooperation and very limited realized conflict. The origins of cells, the emergence of the genetic code and translation, the evolution of the eukaryotic cell, multicellularity, and the origin of human groups with language are reconsidered in some detail in the light of new data and considerations. Arguments are given why sex is not in the revised list as a separate transition. Some of the transitions can be recursive (e.g., plastids, multicellularity) or limited (transitions that share the usual features of major transitions without a massive phylogenetic impact, such as the micro- and macronuclei in ciliates). During transitions, new units of reproduction emerge, and establishment of such units requires high fidelity of reproduction (as opposed to mere replication).

  3. E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure.

    PubMed

    Cox, Sharon; Kośmider, Leon; McRobbie, Hayden; Goniewicz, Maciej; Kimber, Catherine; Doig, Mira; Dawkins, Lynne

    2016-09-20

    Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs) or user behaviour (increasing the wattage) can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids) undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein). A counterbalanced repeated measures design. Non-tobacco smoking vapers; have used an e-cigarette for ≥3 months; currently using nicotine strength e-liquid ≥12mg/mL and a second or third generation device. This study will measure puffing patterns in vapers whilst they use high and low strength nicotine e-liquid under fixed and user-defined settings, each for a week. The 4 counterbalanced conditions are: i) low strength (6mg/mL), fixed settings; ii) low strength user-defined settings; iii) high strength (18mg/mL) fixed settings; iv) high strength user-defined settings. Biomarkers of exposure to toxicants and carcinogens will be measured in urine. In the second phase of this study, toxicant yields will be measured in aerosol generated using a smoking machine operated to replicate the puffing behaviours of each participant. i) Puffing patterns (mean puff number, puff duration, inter-puff interval and mL of liquid consumed) and user behaviour (changes to device settings: voltage and air-flow) associated with using high and low strength nicotine e-liquid. ii) Toxicant/carcinogen exposure associated with the puffing patterns/device settings used by our participants. i) Subjective effects. ii) comparisons with toxicant exposure from tobacco smoke (using documented evidence) and with recommended safety limits

  4. Rotational and vibrational transitions for Li + H2 collisions

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Tang, K. T.

    1977-01-01

    Close coupling calculations for integral and differential cross sections have been carried out for Li + H2 collisions with an ab initio Hartree-Fock potential energy surface. Rotational, vibrational, and vib-rotational excitation cross sections are reported at 0.4336 eV, 0.7 eV, and 0.8673 eV in the center of mass system. For pure rotational excitations, which dominate the inelastic scattering, coupling with vibrational states is not very important. For vibrational transitions, the influence of large multiquantum rotational transitions is far less than that found for Li(+) + H2 collisions.

  5. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2013-04-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.

  6. Toward major evolutionary transitions theory 2.0

    PubMed Central

    Szathmáry, Eörs

    2015-01-01

    The impressive body of work on the major evolutionary transitions in the last 20 y calls for a reconstruction of the theory although a 2D account (evolution of informational systems and transitions in individuality) remains. Significant advances include the concept of fraternal and egalitarian transitions (lower-level units like and unlike, respectively). Multilevel selection, first without, then with, the collectives in focus is an important explanatory mechanism. Transitions are decomposed into phases of origin, maintenance, and transformation (i.e., further evolution) of the higher level units, which helps reduce the number of transitions in the revised list by two so that it is less top-heavy. After the transition, units show strong cooperation and very limited realized conflict. The origins of cells, the emergence of the genetic code and translation, the evolution of the eukaryotic cell, multicellularity, and the origin of human groups with language are reconsidered in some detail in the light of new data and considerations. Arguments are given why sex is not in the revised list as a separate transition. Some of the transitions can be recursive (e.g., plastids, multicellularity) or limited (transitions that share the usual features of major transitions without a massive phylogenetic impact, such as the micro- and macronuclei in ciliates). During transitions, new units of reproduction emerge, and establishment of such units requires high fidelity of reproduction (as opposed to mere replication). PMID:25838283

  7. Improving the toughness of ultrahigh strength steel

    NASA Astrophysics Data System (ADS)

    Sato, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors. Chapter 1 reviews the mechanical properties of ultrahigh strength steels and the physical metallurgy of AerMet 100. It also describes the fracture mechanisms of steel, i.e. ductile microvoid coalescence, brittle transgranular cleavage, and intergranular separation. Chapter 2 examines the strength-toughness relationship for three heats of AerMet 100. A wide variation of toughness is obtained at the same strength level. The toughness varies despite the fact that all heat fracture in the ductile fracture mode. The difference originates from the inclusion content. Lower inclusion volume fraction and larger inclusion spacing gives rise to a greater void growth factor and subsequently a higher fracture toughness. The fracture toughness value, JIc, is proportional to the particle spacing of the large non-metallic inclusions. Chapter 3 examines the ductile-brittle transition of AerMet 100 and the effect of a higher austenitization temperature, using the Charpy V-notch test. The standard heat treatment condition of AerMet 100 shows a gradual ductile-brittle transition due to its fine effective grain size. Austenitization at higher temperature increases the prior austenite grain size and packet size, leading to a steeper transition at a higher temperature. Both transgranular cleavage and intergranular separation are observed in the brittle fracture mode. Chapter 4 examines the effect of inclusion content, prior austenite grain size, and the amount of austenite on the strength-toughness relationship. The highest toughness is achieved by low inclusion content, small prior austenite grain size

  8. Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films

    NASA Astrophysics Data System (ADS)

    Migas, D. B.; Bogorodz, V. O.; Filonov, A. B.; Borisenko, V. E.; Skorodumova, N. V.

    2018-04-01

    By means of ab initio calculations with hybrid functionals we show a possibility for quasi-2D silicon structures originated from semiconducting Mg2Si, Ca2Si, Sr2Si and Ba2Si silicides to exist. Such a 2D structure is similar to the one of transition metal chalcogenides where silicon atoms form a layer in between of metal atoms aligned in surface layers. These metal surface atoms act as pseudo passivation species stabilizing crystal structure and providing semiconducting properties. Considered 2D Mg2Si, Ca2Si, Sr2Si and Ba2Si have band gaps of 1.14 eV, 0.69 eV, 0.33 eV and 0.19 eV, respectively, while the former one is also characterized by a direct transition with appreciable oscillator strength. Electronic states of the surface atoms are found to suppress an influence of the quantum confinement on the band gaps. Additionally, we report Sr2Si bulk in the cubic structure to have a direct band gap of 0.85 eV as well as sizable oscillator strength of the first direct transition.

  9. Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Zhang, Jianzhong

    2007-11-01

    We report here a high-pressure phase-transition induced strengthening in ultrapure zirconium metal. The determined yield strength shows more than sixfold abrupt increase at the transition pressure of Pc=6GPa, from σyα≈180MPa in the low-pressure phase of α-Zr to σyω≈1180MPa in the high-pressure phase of ω-Zr. The observed enhancement provides an alternate route for material strengthening and is the most significant among the known strengthening techniques for metals. Our findings support the theoretical simulations of the substantial covalent bonding and "rougher" corrugation of slip planes for dislocations in the ω-phase of zirconium.

  10. E1 transitions from octupole vibration states

    NASA Astrophysics Data System (ADS)

    Cottle, P. D.

    1993-04-01

    Electric dipole moments are extracted from data for E1 transitions deexciting octupole vibration states in nineteen nuclei. The moments are then compared to values calculated using the droplet model prescription of Dorso, Myers, and Swiatecki. It is found that the E1 moments in quadrupole deformed nuclei can be reproduced with the droplet model using the same model parameters that reproduce atomic masses and fission barriers. This result supports the suggestion of Butler and Nazarewicz that single particle effects are usually much smaller than macroscopic effects in E1 transitions associated with octupole vibrations in reflection symmetric deformed nuclei.

  11. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.

    PubMed

    Lee, Jaewoong; Bartelt-Hunt, Shannon L; Li, Yusong; Gilrein, Erica Jeanne

    2016-07-01

    This study investigated the aggregation of n-TiO2 in the presence of humic acid (HA) and/or 17β-estradiol (E2) under high ionic strength conditions simulating levels detected in landfill leachate. Aggregation of n-TiO2 was strongly influenced by ionic strength as well as ionic valence in that divalent cations (Ca(2+)) were more effective than monovalent (Na(+)) at the surface modification. HA or E2 enhanced aggregation of n-TiO2 in 20 mM CaCl2, however little aggregation was observed in 100 mM NaCl. Similarly, we observed only the increased aggregation of n-TiO2 in the presence of HA/E2. These results showed the critical role of particles' surface charges on the aggregation behaviors of n-TiO2 that HA plays more significantly than E2. However, the slightly increased zeta potential and aggregation of n-TiO2 in the combination of HA and E2 at both 20 mM CaCl2 and 100 mM NaCl means that E2 has influenced on the surface modification of n-TiO2 by adsorption. Based on the aggregation of n-TiO2 under high ionic strength with HA and/or E2, we simulated the mobility of aggregated n-TiO2 in porous media. As a result, we observed that the mobility distance of aggregated n-TiO2 was dramatically influenced by the surface modification with both HA and/or E2 between particles and media. Furthermore, larger mobility distance was observed with larger aggregation of n-TiO2 particles that can be explained by clean bed filtration (CFT) theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. X-ray spectroscopy of E2 and M3 transitions in Ni-like W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, J.; Beiersdorfer, P.; Gu, M. F.

    2010-01-15

    The electric quadrupole (E2) and magnetic octupole (M3) ground-state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the LLNL electron-beam ion trap facility. The lines fall in the soft x-ray region near 7.93 A and were originally observed as an unresolved feature in tokamak plasmas. Using flat ammonium dihydrogen phosphate and quartz crystals, the wavelengths, intensities, and polarizations of the two lines have been measured for various electron-beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).

  13. X-ray Spectroscopy of E2 and M3 Transitions in Ni-like W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, J; Beiersdorfer, P; Gu, M F

    2009-11-09

    The electric quadrupole (E2) and magnetic octupole (M3) ground state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the Livermore electron beam ion trap facility. The lines fall in the soft x-ray region near 7.93 {angstrom} and were originally observed as an unresolved feature in tokamak plasmas. Using flat ADP and quartz crystals the wavelengths, intensities, and polarizations of the two lines have been measured for various electron beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).

  14. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abou El-Maaref, A., E-mail: aahmh@hotmail.com; Ahmad, Mahmoud; Allam, S.H.

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term,more » and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.« less

  15. 206Pb+n resonances for E=600-900 keV: Neutron strength functions

    NASA Astrophysics Data System (ADS)

    Horen, D. J.; Harvey, J. A.; Hill, N. W.

    1981-11-01

    Data from high resolution neutron transmission and differential scattering measurements performed on 206Pb have been analyzed for E=600-900 keV. Resonance parameters (i.e., E, l, J, and Γn) have been deduced for many of the 161 resonances observed. Strength functions and potential phase shifts for s-, p-, and d-wave neutrons for En-0-900 keV are compared with optical model calculations. It is found that the phase contributed by the external R function as well as the integrated neutron strength functions can be reproduced for the s and d waves with a well depth of V0=50.4 MeV for the real potential and WD=6.0 MeV for an imaginary surface potential. Somewhat smaller values (V0=48.7 MeV and WD=2.0 MeV) are required to reproduce the p-wave data. These values of the real potential are also found to give the experimentally observed binding energies for the 4s12, 3d32, and 3d52 single particle levels (V0=50.4 MeV), and the 3p12 single particle level (V0=48.7 MeV). Nuclear level densities for s and d waves are found to be well represented by a constant temperature model. However, the model under estimates the number of p-wave resonances. NUCLEAR REACTIONS 206Pb(n), (n,n), E=600-900 keV; measured σT(E), σ(E,θ). 207Pb deduced resonance parameters, Jπ, Γn, neutron strength functions, optical model parameters for l=0,1,2.

  16. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    DOE PAGES

    Velizhanin, Kirill A.

    2016-05-25

    We report that unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron–photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, asmore » such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. Lastly, as an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ~2.« less

  17. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics

    NASA Astrophysics Data System (ADS)

    Woo, Sun Young; Lee, Hwankyu

    2016-03-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.

  18. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics.

    PubMed

    Woo, Sun Young; Lee, Hwankyu

    2016-03-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.

  19. E2 decay strength of the M1 scissors mode of ^{156}Gd and its first excited rotational state.

    PubMed

    Beck, T; Beller, J; Pietralla, N; Bhike, M; Birkhan, J; Derya, V; Gayer, U; Hennig, A; Isaak, J; Löher, B; Ponomarev, V Yu; Richter, A; Romig, C; Savran, D; Scheck, M; Tornow, W; Werner, V; Zilges, A; Zweidinger, M

    2017-05-26

    The E2/M1 multipole mixing ratio δ_{1→2} of the 1_{sc}^{+}→2_{1}^{+} γ-ray decay in ^{156}Gd and hence the isovector E2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ-ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched ^{156}Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying J^{π}=2^{+} member of the rotational band of states on top of the 1^{+} band head is obtained, too, indicating a significant signature splitting in the K=1 scissors mode rotational band.

  20. Photon transitions in Upsilon(2S) and Upsilon(3S) decays.

    PubMed

    Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Pappas, S P; Weinstein, A J; Rosner, J L; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Stroiney, S; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Kubota, Y; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Arms, K; Gan, K K; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R

    2005-01-28

    We have studied the inclusive photon spectra in Upsilon(2S) and Upsilon(3S) decays using a large statistics data sample obtained with the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates and photon energies for Upsilon(2S) --> gammachi(bJ)(1P) and Upsilon(3S) --> gammachi(bJ)(2P) (J = 0, 1, 2). We measure the rate for a rare E1 transition Upsilon(3S) --> gammachi(b0)(1P) for the first time. We also set upper limits on the rates for the hindered magnetic dipole (M1) transitions to the eta(b)(1S) and eta(b)(2S) states.

  1. Effect of transition metal impurities on the strength of grain boundaries in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei

    2016-09-07

    Effects of 3d (Ti-Ni), 4d (Zr-Pd), and 5d (Hf-Pt) transition metal impurities on strength of two representative vanadium grain boundaries (GBs), symmetric Σ3(111) and asymmetric Σ5(210), were studied by first-principles calculations within the framework of the Rice-Wang thermodynamic model and within the computational tensile test. The desirable elements to increase the GB cohesion were predicted based on their segregation and strengthening behaviors across the different GB sites. It reveals that the elements Ti, Zr, Hf, Nb, and Ta are good choices for the GB cohesion enhancers. In addition, the GB strengthening by solutes is sensitive to the GB structures. Themore » elements Cr, Mn, Fe, Co, and Ni decrease the GB strength of the Σ3(111) GB but they can increase the cohesion of the Σ5(210) GB. Furthermore, the origin of Ti-induced change of the GB strength was uncovered by analyzing the atomic bonds and electronic structures as well as the tensile strength. This work provides a theoretical guidance to screen promising alloying elements in V-based materials with improved resistance to GB decohesion and also helps us to understand the formation mechanism of Ti-rich precipitates in the V-Cr-Ti alloys under neutron or ion irradiation environments.« less

  2. E 2 decay strength of the M 1 scissors mode of 156Gd and its first excited rotational state

    NASA Astrophysics Data System (ADS)

    Beck, T.; Beller, J.; Pietralla, N.; Bhike, M.; Birkhan, J.; Derya, V.; Gayer, U.; Hennig, A.; Isaak, J.; Löher, B.; Ponomarev, V. Yu.; Richter, A.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.

    2017-05-01

    The E 2 /M 1 multipole mixing ratio δ1 →2 of the 1sc+→21+ γ -ray decay in 156Gd and hence the isovector E 2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ -ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched 156Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying Jπ=2+ member of the rotational band of states on top of the 1+ band head is obtained, too, indicating a significant signature splitting in the K =1 scissors mode rotational band.

  3. STM studies of topological phase transition in (Bi,In)2Se3

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhan; Wang, Xueyun; Cheong, Sang-Wook; Wu, Weida; Weida Wu Team; Sang-Wook Cheong Collaboration

    Topological insulators (TI) are a class of materials with insulating bulk and metallic surface state, which is the result of band inversion induced by strong spin-orbit coupling (SOC). The transition from topological phase to non-topological phase is of great significance. In theory, topological phase transition is realized by tuning SOC strength. It is characterized by the process of gap closing and reopening. Experimentally it was observed in two systems: TlBi(S1-xSex)2 and (Bi1-xInx)2 Se3 where the transition is realized by varying isovalent elements doping concentration. However, none of the previous studies addressed the impact of disorder, which is inevitable in doped systems. Here, we present a systematic scanning tunneling microscopy/spectroscopy study on (Bi1-xInx)2 Se3 single crystals with different In concentrations across the transition. Our results reveal an electronic inhomogeneity due to the random distribution of In defects which locally suppress the topological surface states. Our study provides a new angle of understanding the topological transition in the presence of strong disorders. This work is supported by NSF DMR-1506618.

  4. Pressure-induced magnetic collapse and metallization of TlF e1.6S e2

    NASA Astrophysics Data System (ADS)

    Naumov, P. G.; Filsinger, K.; Shylin, S. I.; Barkalov, O. I.; Ksenofontov, V.; Qi, Y.; Palasyuk, T.; Schnelle, W.; Medvedev, S. A.; Greenblatt, M.; Felser, C.

    2017-08-01

    The crystal structure, magnetic ordering, and electrical resistivity of TlF e1.6S e2 were studied at high pressures. Below ˜7 GPa , TlF e1.6S e2 is an antiferromagnetically ordered semiconductor with a ThC r2S i2 -type structure. The insulator-to-metal transformation observed at a pressure of ˜7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ˜7.5 -11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.

  5. Oscillator strengths and integral cross sections for the valence-shell excitations of nitric oxide studied by fast electron impact.

    PubMed

    Xu, Xin; Xu, Long-Quan; Xiong, Tao; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-01-28

    The generalized oscillator strengths for the valence-shell excitations of A 2 Σ + , C 2 Π, and D 2 Σ + electronic-states of nitric oxide have been determined at an incident electron energy of 1500 eV with an energy resolution of 70 meV. The optical oscillator strengths for these transitions have been obtained by extrapolating the generalized oscillator strengths to the limit that the squared momentum transfer approaches to zero, which give an independent cross-check to the previous experimental and theoretical results. The integral cross sections for the valence-shell excitations of nitric oxide have been determined systematically from the threshold to 2500 eV with the aid of the newly developed BE-scaling method for the first time. The present optical oscillator strengths and integral cross sections of the valence-shell excitations of nitric oxide play an important role in understanding many physics and chemistry of the Earth's upper atmosphere such as the radiative cooling, ozone destruction, day glow, aurora, and so on.

  6. Strength anomaly in B2 FeAl single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimi, K.; Hanada, S.; Yoo, M.H.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). Themore » orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.« less

  7. Phase transition and strength of vanadium under shock compression up to 88 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yuying, E-mail: yuyinyu@caep.cn; Tan, Ye; Dai, Chengda

    A series of reverse-impact experiments were performed on vanadium at shock pressure ranging from 32 GPa to 88 GPa. Particle velocity profiles measured at sample/LiF window interface were used to estimate the sound velocities, shear modulus, and yield stress in shocked vanadium. A phase transition at ∼60.5 GPa that may be the body-centered cubic (BCC) to rhombohedral structure was identified by the discontinuity of the sound velocity against shock pressure. This transition pressure is consistent with the results from diamond anvil cell (DAC) experiments and first-principle calculations. However, present results show that the rhombohedral phase has higher strength and shear modulus than themore » BCC phase, which is contrast to the findings from DAC experiments and theoretical work.« less

  8. Strength and Deformation Behaviour of Cap Rocks Above the CO2SINK-Reservoir

    NASA Astrophysics Data System (ADS)

    Mutschler, T.; Triantafyllidis, T.; Balthasar, K.; Norden, B.

    2009-04-01

    The cap-rock of the CO2SINK storage site close to Ketzin consists of clay rich rocks which are typical for cap rock formations above CO2 storage reservoirs. The strength and deformation behaviour of such claystone samples are therefore of fundamental importance for the characterization of secure geological storage of CO2. The elastic and anelastic deformation behaviour limits the maximum injection pressure during CO2-injection and is part of the security measures for the long term storage of CO2. The laboratory experiments where performed on samples gathered from the injection well of the Ketzin pilot test site in Germany and are compared with the elastic and anelastic behaviour of samples from the same Keuper formation in a near-surface outcrop in the Southwest of Germany showing a similar lithology. The samples from the outcrop allowed drilling of samples with a standard size of 100 mm diameter and 200 mm height as well as large samples with a diameter of 550 mm and a height of 1200 mm. The investigations have a special emphasis on the viscous behaviour of the clay stones and its scaling behaviour. A special triaxial testing procedure is applied both on standard and large size samples allowing the determination of the strength, stiffness and viscosity behaviour of the rock in one experimental run. Multi-stage technique (stepwise variation of the confining pressure) gives the strength behaviour of each single sample while applying a constant deformation rate. Stepwise varied deformation rates on the other hand lead to steps in the stress-strain-curve from which the viscosity index is determined. The viscosity index is directly used in the Norton's constitutive relations for viscoplastic simulations. The combination of tests allows for the determination of a broad range of elastic and anelastic properties. The comparison of results - both for elastic and anelastic behaviour - from standard and large samples shows that for the examined rocks a scale effect is

  9. Spectra of 42S1/2→32D5/2 Transitions of a Single Trapped 40Ca+ Ion

    NASA Astrophysics Data System (ADS)

    Gong, Shi-Jie; Zhou, Fei; Wu, Hao-Yu; Wan, Wei; Chen, Liang; Feng, Mang

    2015-01-01

    We investigate the spectra of the electric quadrupole 42S1/2→32D5/2 transitions in a single 40Ca+ ion confined in a home-built linear trap. We probe the transitions with an ultra-narrow bandwidth laser at 729 nm. In a weak magnetic field, the quadrupole transition splits into ten components with the maximal line strength proportional to their squared Clebsch—Gordan factors. In a magnetic field of the order of Gauss, the observed equidistant sideband reflects the Zeeman substructure modulated by the quantized oscillation due to the secular motion in the trap. The temperature of the trapped ion can be determined by the envelope of the sideband spectrum. We also demonstrate the Rabi oscillation in a carrier transition after the ion has been Doppler cooled, which can be fitted by the model with the thermal state of motion.

  10. Thermodynamic Vortex-Lattice Phase Transitions in Bi_2Sr_2CaCu_2O_8

    NASA Astrophysics Data System (ADS)

    Majer, Daniel

    1996-03-01

    Recent measurements by the microscopic Hall-sensor arrays technique of the anomalous second magnetization peak and the magnetization step at the first-order transition in Bi_2Sr_2CaCu_2O8 (BSCCO)(B. Khaykovich, E. Zeldov, D. Majer, T.W. Li, P.H. Kes, and M. Konczykowski, (preprint).) have revealed new evidence, which suggest that these two phenomena are of related origin. The first-order transition(E. Zeldov, D. Majer, M. Konczykowski, V.B. Geshkenbein, V.M. Vinokur, and H. Shtrikman, Nature 375), 373 (1995). at higher temperatures ends at a critical point and it seems that a second-order transition (the fish-tail) continues to lower temperatures. Local magnetization measurements were carried out on several as-grown BSCCO crystals (T_c~= 90 K) and on two crystals annealed in air at 500^circC (over-doped with T_c~= 83.5 K) and at 800^circC (optimally-doped, T_c~= 89 K). The annealing was used to change the oxygen stoichiometry of the crystals and as a consequence their anisotropy. All as-grown crystals from two sources show practically identical phase diagrams. The first-order phase transition lines in the B-T phase diagram of the annealed crystals however, are shifted significantly. In the over-doped crystal the line is shifted to higher fields, and the optimally-doped crystal to lower fields as compared to the as-grown crystals. Theoretical predictions of both the melting and the decoupling transitions in HTSC are anisotropy dependent, and the observed shifts can not be used to distinguish between these theories. However, the temperature dependence of the transition line in the decoupling scenario fits the observed data much better than the melting scenario. The first-order transition step vanishes in all three types of crystals at a critical point which is anisotropy dependent. At lower temperatures the second magnetization peak is observed. The second peak line in the B-T phase diagram of all the crystals measured starts very close to the critical point and is

  11. Angular distributions in the reactions pp-->χ1,2-->γψ-->γe+e-

    NASA Astrophysics Data System (ADS)

    Baglin, C.; Baird, S.; Bassompierre, G.; Borreani, G.; Brient, J.-C.; Broll, C.; Brom, J.-M.; Bugge, L.; Buran, T.; Burq, J.-P.; Bussière, A.; Buzzo, A.; Cester, R.; Chemarin, M.; Chevallier, M.; Escoubes, B.; Fay, J.; Ferroni, S.; Gracco, V.; Guillad, J.-P.; Khan-Aronsen, E.; Kirsebom, K.; Kylling, A.; Ille, B.; Lambert, M.; Leistam, L.; Lundby, A.; Macri, M.; Marchetto, F.; Menichetti, E.; Morch, C.; Mouëllic, B.; Olsen, D.; Pastrone, N.; Petrillo, L.; Pia, M. G.; Poole, J.; Poulet, M.; Rinaudo, G.; Santroni, A.; Severi, M.; Skjevling, G.; Stugu, B.

    1987-08-01

    In the experiment R704 at the CERN Intersecting Storage Rings, the two p-wave charmonium states χ1 and χ2 were formed directly in proton-antiproton annihilation, and detected through the decay chain χj-->γ+J/ψ-->ψ+e+e-. The angular d istributions of the events found are studied here. A maximum likehood analysis shows that χ1 radiative transition to the J/ψ is compatible with a pure dipole. Indications of a nonzero, positive quadropole contribution to the χ2 radiative transition are found. Finally, it is found that the χ2 data are consistent with the conventional assumption that a single quark radiates the photon in the transition from the χ2 to the J/ψ.

  12. Atomic data from the IRON Project. XXXII. On the accuracy of the effective collision strength for the electron impact excitation of the quadrupole transition in AR III

    NASA Astrophysics Data System (ADS)

    Galavís, M. E.; Mendoza, C.; Zeippen, C. J.

    1998-12-01

    Since te[Burgess et al. (1997)]{bur97} have recently questioned the accuracy of the effective collision strength calculated in the IRON Project for the electron impact excitation of the 3ssp23p sp4 \\ sp1 D -sp1 S quadrupole transition in Ar iii, an extended R-matrix calculation has been performed for this transition. The original 24-state target model was maintained, but the energy regime was increased to 100 Ryd. It is shown that in order to ensure convergence of the partial wave expansion at such energies, it is necessary to take into account partial collision strengths up to L=30 and to ``top-up'' with a geometric series procedure. By comparing effective collision strengths, it is found that the differences from the original calculation are not greater than 25% around the upper end of the common temperature range and that they are much smaller than 20% over most of it. This is consistent with the accuracy rating (20%) previously assigned to transitions in this low ionisation system. Also the present high-temperature limit agrees fairly well (15%) with the Coulomb-Born limit estimated by Burgess et al., thus confirming our previous accuracy rating. It appears that Burgess et al., in their data assessment, have overextended the low-energy behaviour of our reduced effective collision strength to obtain an extrapolated high-temperature limit that appeared to be in error by a factor of 2.

  13. Picosecond excite-and-probe absorption measurement of the intra-2E(g)E(3/2)-state vibrational relaxation time in Ti(3+):Al2O3

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Yoo, K. M.; Alfano, R. R.

    1987-01-01

    The Ti(3+)-doped Al2O3 has been recently demonstrated to be a tunable solid-state laser system with Ti(3+) as the laser-active ion. In this paper, the kinetics of vibrational transitions in the 2E(g)E(3/2) electronic state of Ti(3+):Al2O3a (crucial for characterizing new host materials for the Ti ion) was investigated. A 527-nm 5-ps pulse was used to excite a band of higher vibrational levels of the 2E(g)E(3/2) state, and the subsequent growth of population in the zero vibrational level and lower vibrational levels was monitored by a 3.9-micron picosecond probe pulse. The time evolution curve in the excited 2E(g)E(3/2) state at room temperature was found to be characterized by a sharp rise followed by a long decay, the long lifetime decay reflecting the depopulation of the zero and the lower vibrational levels of the 2E(g)E(3/2) state via radiative transitions. An upper limit of 3.5 ps was estimated for intra-2E(g)E(3/2)-state vibrational relaxation time.

  14. Precision measurement of the electromagnetic dipole strengths in Be11

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finlay, A.; Garnsworthy, A. B.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Quaglioni, S.; Svensson, C. E.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.

    2014-05-01

    The electromagnetic dipole strength in Be11 between the bound states has been measured using low-energy projectile Coulomb excitation at bombarding energies of 1.73 and 2.09 MeV/nucleon on a Pt196 target. An electric dipole transition probability B(E1;1/2-→1/2+)=0.102(2) e2fm was determined using the semi-classical code Gosia, and a value of 0.098(4) e2fm was determined using the Extended Continuum Discretized Coupled Channels method with the quantum mechanical code FRESCO. These extracted B(E1) values are consistent with the average value determined by a model-dependent analysis of intermediate energy Coulomb excitation measurements and are approximately 14% lower than that determined by a lifetime measurement. The much-improved precisions of 2% and 4% in the measured B(E1) values between the bound states deduced using Gosia and the Extended Continuum Discretized Coupled Channels method, respectively, compared to the previous accuracy of ˜10% will help in our understanding of and better improve the realistic inter-nucleon interactions.

  15. Causal strength induction from time series data.

    PubMed

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Transition and Electron Impact Excitation Collision Rates for O III

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2017-12-01

    Transition probabilities, electron excitation collision strengths, and rate coefficients for a large number of O III lines over a broad wavelength range, from the infrared to ultraviolet, have been reported. The collision strengths have been calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in combination with B-spline expansions is employed for an accurate representation of the target wave functions. The close-coupling expansion contains 202 O2+ fine-structure levels of the 2{s}22{p}2,2s2{p}3, 2{p}4,2{s}22p3s,3p,3d, 4s,4p,4d,4f,5s, and 2s2{p}33s,3p,3d configurations. The effective collision strengths are obtained by averaging electron excitation collision strengths over a Maxwellian distribution of velocities at electron temperatures ranging from 100 to 100,000 K. The calculated effective collision strengths have been reported for the 20,302 transitions between all 202 fine-structure levels. There is an overall good agreement with the recent R-matrix calculations by Storey et al. for the transitions between all levels of the ground 2{s}22{p}2 configuration, but significant discrepancies have been found with Palay et al. for transitions to the 2{s}22{p}2 1 S 0 level. Line intensity ratios between the optical lines arising from the 2{s}22{p}2{}3{P}{0,1,2} - 1 D 2 transitions have been compared with other calculations and observations from the photoionized gaseous nebulae, and good agreement is found. The present calculations provide the most complete and accurate data sets, which should allow a more detailed treatment of the available measured spectra from different ground and space observatories.

  17. High-resolution study of Gamow-Teller transitions via the 54Fe(3He,t)54Co reaction

    NASA Astrophysics Data System (ADS)

    Adachi, T.; Fujita, Y.; Bacher, A. D.; Berg, G. P. A.; Black, T.; de Frenne, D.; Foster, C. C.; Fujita, H.; Fujita, K.; Hatanaka, K.; Honma, M.; Jacobs, E.; Jänecke, J.; Kanzaki, K.; Katori, K.; Nakanishi, K.; Negret, A.; Otsuka, T.; Popescu, L.; Roberts, D. A.; Sakemi, Y.; Shimbara, Y.; Shimizu, Y.; Stephenson, E. J.; Tameshige, Y.; Tamii, A.; Uchida, M.; Ueno, H.; Yamanaka, T.; Yosoi, M.; Zell, K. O.

    2012-02-01

    The Gamow-Teller transition strengths, B(GT), in pf-shell nuclei are of interest in nuclear physics as well as in nuclear astrophysics. A high-resolution (3He,t) charge-exchange (CE) reaction was performed on the Tz=+1 nucleus 54Fe at 0∘ and at an intermediate incident energy of 140 MeV/nucleon for the study of precise GT transition strengths to the final Tz=0 nucleus 54Co. By applying dispersion matching techniques for a high-quality 3He beam at RCNP, an energy resolution of 21 keV and an angular resolution of 5 mr were realized. The bumplike structure of the GT resonance observed in low-resolution CE reactions at around the excitation energy (Ex) of 10 MeV was resolved in individual L = 0, GT states. Excitation strengths were obtained for these GT states. If the R2 value that is defined by the ratio between GT and Fermi unit cross sections is known, the B(GT) values can be determined from the excitation strengths. For the derivation of the R2 value, the “merged analysis” combining the GT strength distribution from the 54Fe(3He,t)54Co study and the half-life from a 54Ni β decay was used, where T=1 isospin symmetry for A=54 isobars was assumed. The GT strengths were compared with a shell-model calculation using the GXPF1 interaction. The final GT states can have the isospin values T = 0, 1, and 2. The isospin T of each GT state observed in the 8.3≤Ex≤12.0 MeV region of the 54Fe(3He,t)54Co spectrum was identified by comparing the excitation strength with that of corresponding M1 state observed in a 54Fe(p,p')54Fe experiment. The B(GT) values of the states identified to have T=2, in particular, are of importance for the calculation of the electron capture rates at the core-collapse stage of presupernovae. The B(GT) strengths were further compared with B(M1) strengths measured in the 54Fe(e,e')54Fe reaction. In the M1 excitation using an electromagnetic probe, isoscalar (IS) and isovector (IV) orbital type operators are active in addition to the IV spin

  18. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

    DOE PAGES

    Coello Pérez, Eduardo A.; Papenbrock, Thomas F.

    2015-07-27

    In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 0 2 + band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less

  19. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  20. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 1: Theoretical study on influence of interfacial transition zone on properties of concrete materials; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Chen, W.F.

    1998-08-01

    This research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  1. Electron impact collision strengths in Ne VII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, L.; Shi, J.R.; Zhao, G., E-mail: gzhao@bao.ac.cn

    2012-07-15

    The lines of Ne VII have been observed in many astronomical objects, and some transitions from high energy levels were observed both in Seyfert galaxies and stellar coronae. Thus, the atomic data for these transitions are important for modeling. Using the code FAC we calculated the collision strengths based on the distorted-wave method with large configuration interactions included. The Maxwellian averaged effective collision strengths covering the typical temperature range of astronomical and laboratory hot plasmas are presented. We extend the calculation of the energy levels to n=4 and 5. The energy levels, wavelengths, spontaneous transition rates, weighted oscillator strengths, andmore » effective collision strengths were reported. Compared with the results from experiment or previous theoretical calculations a general agreement is found. It is found that the resonance effects are important in calculating the effective collision strengths.« less

  2. Relativistic distorted-wave collision strengths for Δn = 0 transitions in the 67 Li-like, F-like and Na-like ions with 26 ≤ Z ≤ 92

    NASA Astrophysics Data System (ADS)

    Fontes, Christopher J.; Zhang, Hong Lin

    2017-01-01

    Relativistic distorted-wave collision strengths have been calculated for all possible Δn = 0 transitions, where n denotes the valence shell of the ground level, in the 67 Li-like, F-like and Na-like ions with Z in the range 26 ≤ Z ≤ 92. This choice produces 3 transitions with n = 2 in the Li-like and F-like ions, and 10 transitions with n = 3 in the Na-like ions. For the Li-like and F-like ions, the calculations were made for the six final, or scattered, electron energies E‧ = 0.008 , 0.04 , 0.10 , 0.21 , 0.41, and 0.75, where E‧ is in units of Zeff2 Ry with Zeff = Z - 1.66 for Li-like ions and Zeff = Z - 6.667 for F-like ions. For the Na-like ions, the calculations were made for the six final electron energies E‧ = 0.0025 , 0.015 , 0.04 , 0.10 , 0.21, and 0.40, with Zeff = Z - 8.34. In the present calculations, an improved "top-up" method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb-Bethe approximation used in previous works by Zhang, Sampson and Fontes [H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 31; H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 48 (1991) 25; D.H. Sampson, H.L. Zhang, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 209]. In those previous works, collision strengths were also provided for Li-, F- and Na-like ions, but for a more comprehensive set of transitions. The collision strengths covered in the present work should be more accurate than the corresponding data given in those previous works and are presented here to replace those earlier results.

  3. Measurement of the ϕ → π0e+e- transition form factor with the KLOE detector

    NASA Astrophysics Data System (ADS)

    Anastasi, A.; Babusci, D.; Bencivenni, G.; Berlowski, M.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Cao, B.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; D'Agostini, G.; Danè, E.; De Leo, V.; De Lucia, E.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; D'Uffizi, A.; Fantini, A.; Felici, G.; Fiore, S.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Ikegami Andersson, W.; Johansson, T.; Kamińska, D.; Krzemien, W.; Kupsc, A.; Loffredo, S.; Mandaglio, G.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Papenbrock, M.; Passeri, A.; Patera, V.; Perez del Rio, E.; Ranieri, A.; Salabura, P.; Santangelo, P.; Sarra, I.; Schioppa, M.; Silarski, M.; Sirghi, F.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.

    2016-06-01

    A measurement of the vector to pseudoscalar conversion decay ϕ →π0e+e- with the KLOE experiment is presented. A sample of ˜9500 signal events was selected from a data set of 1.7 fb-1 of e+e- collisions at √{ s} ˜mϕ collected at the DAΦNE e+e- collider. These events were used to perform the first measurement of the transition form factor |Fϕπ0 (q2) | and a new measurement of the branching ratio of the decay: BR (ϕ →π0e+e-) = (1.35 ±0.05-0.10+0.05) ×10-5. The result improves significantly on previous measurements and is in agreement with theoretical predictions.

  4. Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra.

    PubMed

    Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N

    2016-03-24

    The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.

  5. Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.

    PubMed

    Brown, B Alex; Larsen, A C

    2014-12-19

    A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8  MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates.

  6. Calculations for energies, transition rates, and lifetimes in Al-like Kr XXIV

    NASA Astrophysics Data System (ADS)

    Zhang, C. Y.; Si, R.; Liu, Y. W.; Yao, K.; Wang, K.; Guo, X. L.; Li, S.; Chen, C. Y.

    2018-05-01

    Using the second-order many-body perturbation theory (MBPT) method, a complete and accurate data set of excitation energies, lifetimes, wavelengths, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) line strengths, transition rates, and oscillator strengths for the lowest 880 levels arising from the 3l3 (0 ≤ l ≤ 2), 3l2 4l‧ (0 ≤ l ≤ 2, 0 ≤l‧ ≤ 3), 3s2 5 l (0 ≤ l ≤ 4), 3p2 5 l (0 ≤ l ≤ 1), and 3s3p5 l (0 ≤ l ≤ 4) configurations in Al-like Kr XXIV is provided. Comparisons are made with available experimental and theoretical results. Our calculated energies are expected to be accurate enough to facilitate identifications of observed lines involving the n = 4 , 5 levels. The complete data set is also useful for modeling and diagnosing fusion plasma.

  7. Excitation rates for transitions in Kr XXXII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.

    2009-04-01

    In this paper we report our results for collision strengths and effective collision strengths for transitions among the lowest 125 levels of the 2s22p, 2s2p2, 2p3, 2s23ell, 2s2p3ell, and 2p23ell configurations of Kr XXXII. For our calculations both the FAC and DARC codes have been employed.

  8. Oscillator strengths and collision strengths for S v

    NASA Technical Reports Server (NTRS)

    Van Wyngaarden, W. L.; Henry, R. J. W.

    1981-01-01

    Observations of the optical extreme-ultraviolet spectrum of the Jupiter planetary system during the Voyager space mission revealed bright emission lines of some sulfur ions. The spectra of the torus at the orbit of Io are likely to contain S V lines. The described investigation provides oscillator strengths and collision strengths for the first four UV lines. The collision strengths from the ground state to four other excited states are also obtained. Use is made of a two-state calculation which is checked for convergence for some transitions by employing a three-state or a four-state approximation. Target wave functions for S V are calculated so that the oscillator strengths calculated in dipole length and dipole velocity approximations agree within 5%.

  9. Transitions in eigenvalue and wavefunction structure in (1+2) -body random matrix ensembles with spin.

    PubMed

    Vyas, Manan; Kota, V K B; Chavda, N D

    2010-03-01

    Finite interacting Fermi systems with a mean-field and a chaos generating two-body interaction are modeled by one plus two-body embedded Gaussian orthogonal ensemble of random matrices with spin degree of freedom [called EGOE(1+2)-s]. Numerical calculations are used to demonstrate that, as lambda , the strength of the interaction (measured in the units of the average spacing of the single-particle levels defining the mean-field), increases, generically there is Poisson to GOE transition in level fluctuations, Breit-Wigner to Gaussian transition in strength functions (also called local density of states) and also a duality region where information entropy will be the same in both the mean-field and interaction defined basis. Spin dependence of the transition points lambda_{c} , lambdaF, and lambdad , respectively, is described using the propagator for the spectral variances and the formula for the propagator is derived. We further establish that the duality region corresponds to a region of thermalization. For this purpose we compared the single-particle entropy defined by the occupancies of the single-particle orbitals with thermodynamic entropy and information entropy for various lambda values and they are very close to each other at lambda=lambdad.

  10. Radiative rates for E1, E2, M1, and M2 transitions in the Br-like ions Sr IV, Y V, Zr VI, Nb VII, and Mo VIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Kanti M., E-mail: K.Aggarwal@qub.ac.uk; Keenan, Francis P.

    Energies and lifetimes are reported for the lowest 375 levels of five Br-like ions, namely Sr IV, Y V, Zr VI, Nb VII, and Mo VIII, mostly belonging to the 4s{sup 2}4p{sup 5}, 4s{sup 2}4p{sup 4}4ℓ, 4s4p{sup 6}, 4s{sup 2}4p{sup 4}5ℓ, 4s{sup 2}4p{sup 3}4d{sup 2}, 4s4p{sup 5}4ℓ, and 4s4p{sup 5}5ℓ configurations. Extensive configuration interaction has been included and the general-purpose relativistic atomic structure package (GRASP) has been adopted for the calculations. Additionally, radiative rates are listed among these levels for all E1, E2, M1, and M2 transitions. From a comparison with the measurements, the majority of our energy levels are assessed to be accurate tomore » better than 2%, although discrepancies between theory and experiment for a few are up to 6%. An accuracy assessment of the calculated radiative rates (and lifetimes) is more difficult, because no prior results exist for these ions.« less

  11. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mooij, E. J. W.; López-Morales, M.; Karjalainen, R.

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in themore » data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.« less

  12. High-resolution electronic spectra of yttrium oxide (YO): The D2Σ+-X2Σ+ transition.

    PubMed

    Zhang, Deping; Zhang, Qiang; Zhu, Boxing; Gu, Jingwang; Suo, Bingbing; Chen, Yang; Zhao, Dongfeng

    2017-03-21

    The D 2 Σ + -X 2 Σ + electronic absorption spectrum of the astrophysically relevant yttrium oxide (YO) molecule has been recorded for the first time in the 400-440 nm region using laser induced fluorescence. YO molecules are produced by corona discharge of oxygen between the tips of two yttrium needles in a supersonic jet expansion. An unambiguous spectroscopic identification of the D 2 Σ + -X 2 Σ + transition becomes possible from a combined analysis of the moderate-resolution laser excitation spectrum and dispersed fluorescence spectrum. We have also performed multi-state complete active space second order perturbation theory calculations on the first six doublets of YO, and the results support our assignment of the D 2 Σ + state. Accurate spectroscopic constants for D 2 Σ + ν' = 0 and 1 levels have been determined from a rotational analysis of the high resolution spectra that are recorded with a resolution of ∼0.018 cm -1 . Severe perturbations are observed in the experimental spectra and are considered to originate from interactions with at least one nearby 2/4 Π electronic state, e.g., the undetected C 2 Π state. We have also measured the radiative lifetimes of B 2 Σ + ν' = 0, and D 2 Σ + ν' = 0 and 1 states, based on which the B 2 Σ + -X 2 Σ + (0, 0) and D 2 Σ + -X 2 Σ + (0/1, 0) band oscillator strengths have been determined.

  13. High-resolution electronic spectra of yttrium oxide (YO): The D2Σ+-X2Σ+ transition

    NASA Astrophysics Data System (ADS)

    Zhang, Deping; Zhang, Qiang; Zhu, Boxing; Gu, Jingwang; Suo, Bingbing; Chen, Yang; Zhao, Dongfeng

    2017-03-01

    The D2Σ+ -X2Σ+ electronic absorption spectrum of the astrophysically relevant yttrium oxide (YO) molecule has been recorded for the first time in the 400-440 nm region using laser induced fluorescence. YO molecules are produced by corona discharge of oxygen between the tips of two yttrium needles in a supersonic jet expansion. An unambiguous spectroscopic identification of the D2Σ+ -X2Σ+ transition becomes possible from a combined analysis of the moderate-resolution laser excitation spectrum and dispersed fluorescence spectrum. We have also performed multi-state complete active space second order perturbation theory calculations on the first six doublets of YO, and the results support our assignment of the D2Σ+ state. Accurate spectroscopic constants for D2Σ+ ν ' = 0 and 1 levels have been determined from a rotational analysis of the high resolution spectra that are recorded with a resolution of ˜0.018 cm-1. Severe perturbations are observed in the experimental spectra and are considered to originate from interactions with at least one nearby 2/4Π electronic state, e.g., the undetected C2Π state. We have also measured the radiative lifetimes of B2 Σ+ ν ' = 0, and D2 Σ+ ν ' = 0 and 1 states, based on which the B2Σ+ -X2Σ+ (0, 0) and D2Σ+ -X2Σ+ (0/1, 0) band oscillator strengths have been determined.

  14. Image Charge and Electric Field Effects on Hydrogen-like Impurity-bound Polaron Energies and Oscillator Strengths in a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Vardanyan, L. A.; Vartanian, A. L.; Asatryan, A. L.; Kirakosyan, A. A.

    2016-11-01

    By using Landau-Pekar variational method, the ground and the first excited state energies and the transition frequencies between the ground and the first excited states of a hydrogen-like impurity-bound polaron in a spherical quantum dot (QD) have been studied by taking into account the image charge effect (ICE). We employ the dielectric continuum model to describe the phonon confinement effects. The oscillator strengths (OSs) of transitions from the 1 s-like state to excited states of 2 s, 2 p x , and 2 p z symmetries are calculated as functions of the applied electric field and strength of the confinement potential. We have shown that with and without image charge effect, the increase of the strength of the parabolic confinement potential leads to the increase of the oscillator strengths of 1 s - 2 p x and 1 s - 2 p z transitions. This indicates that the energy differences between 1 s- and 2 p x - as well as 1 s- and 2 p z -like states have a dominant role determining the oscillator strength. Although there is almost no difference in the oscillator strengths for transitions 1 s - 2 p x and 1 s -2 p z when the image charge effect is not taken into account, it becomes significant with the image charge effect.

  15. Hadronic Transitions from Upsilon (2S) to Upsilon (1s) and Upsilon Dipion Transitions at Energies Near the Upsilon (4S)

    NASA Astrophysics Data System (ADS)

    Kotoy, Sergei Anatolievich

    This dissertation consists of two closely related analyses, both of which were performed using data collected with the CLEO II detector at the Cornell Electron Storage Ring. In the first analysis, using the world largest data sample of Υ(2 S) events, we have investigated the hadronic transitions between the Υ(2S) and the Υ(1S), i.e. decays of the Υ(2S) into the Υ(1S), plus a pair of pions ( p+p- or p0p0 ), a single η or a single p0 . The dipion transitions U(2S)-->U( 1S)pp were studied most closely, by using two different techniques: ``exclusive'' and ``inclusive''. In these measurements we determine the U(2S)-->U( 1S)pp branching ratios, and, by combining the exclusive and inclusive results, we derive the Υ(1S), leptonic branching ratios Bee and Bmm . Parameters of the ππ system in the dipion transitions (dipion invariant mass spectra, angular distributions) were analyzed and found to be consistent with current theoretical models. Lastly, we searched for the η and single π0 transitions and obtained upper limits on the branching ratios B(U(2S) -->U(1S)h ) and B(U(2S) -->U(1S)p 0) . In the second analysis, the data collected at the center of mass energies near the Υ(4S) were used to search for the dipion transition between pairs of Υ resonances. As a result of this search, we established upper limits on the branching ratios of the dipion transitions post='par'>p+p- and U(4S)-->U( 1S)p+p- , and measured the cross-sections for the radiative production of Υ(3 S) and Υ(2S) resonances e+e--->U(nS) g at the center of mass energies of Ecm = 10.58 GeV and Ecm = 10.52 GeV.

  16. Jet cooled cavity ringdown spectroscopy of the A ˜ 2 E ″ ← X ˜ 2 A2 ' transition of the NO3 radical

    NASA Astrophysics Data System (ADS)

    Codd, Terrance; Chen, Ming-Wei; Roudjane, Mourad; Stanton, John F.; Miller, Terry A.

    2015-05-01

    The A ˜ 2 E ″ ← X ˜ 2 A2 ' spectrum of NO3 radical from 7550 cm-1 to 9750 cm-1 has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 1 band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.

  17. Hadronic transitions Υ(2S)-->Υ(1S)

    NASA Astrophysics Data System (ADS)

    P. Alexander, J.; Baker, R.; Bebek, C.; Berger, B. E.; Berkelman, K.; Bloom, K.; Boisvert, V.; Cassel, D. G.; Crowcroft, D. S.; Dickson, M.; von Dombrowski, S.; Drell, P. S.; Ecklund, K. M.; Ehrlich, R.; Foland, A. D.; Gaidarev, P.; Galik, R. S.; Gibbons, L.; Gittelman, B.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hopman, P. I.; Kandaswamy, J.; Kim, P. C.; Kreinick, D. L.; Lee, T.; Liu, Y.; Mistry, N. B.; Ng, C. R.; Nordberg, E.; Ogg, M.; Patterson, J. R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C.; Athanas, M.; Avery, P.; Jones, C. D.; Lohner, M.; Patton, S.; Prescott, C.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R. A.; Ershov, A.; Gao, Y. S.; Kim, D. Y.-J.; Wilson, R.; Yamamoto, H.; Browder, T. E.; Li, Y.; Rodriguez, J. L.; Bergfeld, T.; Eisenstein, B. I.; Ernst, J.; Gladding, G. E.; Gollin, G. D.; Hans, R. M.; Johnson, E.; Karliner, I.; Marsh, M. A.; Palmer, M.; Selen, M.; Thaler, J. J.; Edwards, K. W.; Bellerive, A.; Janicek, R.; Macfarlane, D. B.; Patel, P. M.; Sadoff, A. J.; Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Darling, C.; Davis, R.; Kotov, S.; Kravchenko, I.; Kwak, N.; Zhou, L.; Anderson, S.; Kubota, Y.; Lee, S. J.; O'neill, J. J.; Poling, R.; Riehle, T.; Smith, A.; Alam, M. S.; Athar, S. B.; Ling, Z.; Mahmood, A. H.; Timm, S.; Wappler, F.; Anastassov, A.; Duboscq, J. E.; Fujino, D.; Gan, K. K.; Hart, T.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Spencer, M. B.; Sung, M.; Undrus, A.; Wanke, R.; Wolf, A.; Zoeller, M. M.; Nemati, B.; Richichi, S. J.; Ross, W. R.; Severini, H.; Skubic, P.; Bishai, M.; Fast, J.; Hinson, J. W.; Menon, N.; Miller, D. H.; Shibata, E. I.; Shipsey, I. P.; Yurko, M.; Glenn, S.; Johnson, S. D.; Kwon, Y.; Roberts, S.; Thorndike, E. H.; Jessop, C. P.; Lingel, K.; Marsiske, H.; Perl, M. L.; Savinov, V.; Ugolini, D.; Wang, R.; Zhou, X.; Coan, T. E.; Fadeyev, V.; Korolkov, I.; Maravin, Y.; Narsky, I.; Shelkov, V.; Staeck, J.; Stroynowski, R.; Volobouev, I.; Ye, J.; Artuso, M.; Azfar, F.; Efimov, A.; Goldberg, M.; He, D.; Kopp, S.; Moneti, G. C.; Mountain, R.; Schuh, S.; Skwarnicki, T.; Stone, S.; Viehhauser, G.; Xing, X.; Bartelt, J.; Csorna, S. E.; Jain, V.; McLean, K. W.; Marka, S.; Godang, R.; Kinoshita, K.; Lai, I. C.; Pomianowski, P.; Schrenk, S.; Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L. P.; Zhou, G. J.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J. S.; O'grady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A. J.; Würthwein, F.; Bliss, D. W.; Masek, G.; Paar, H. P.; Prell, S.; Sharma, V.; Asner, D. M.; Gronberg, J.; Hill, T. S.; Lange, D. J.; Morrison, R. J.; Nelson, H. N.; Nelson, T. K.; Roberts, D.; Ryd, A.; Balest, R.; Behrens, B. H.; Ford, W. T.; Gritsan, A.; Park, H.; Roy, J.; Smith, J. G.

    1998-09-01

    Using a 73.6 pb-1 data sample of Υ(2S) events collected with the CLEO II detector at the Cornell Electron Storage Ring, we have investigated the hadronic transitions between the Υ(2S) and the Υ(1S). The dipion transition Υ(2S)-->Υ(1S)π+π- was studied using two different analysis techniques. Selecting events in which Υ(1S)-->e+e-,μ+μ- (``exclusive'' analysis), and using the Υ(1S) leptonic branching fractions world averages from the PDG review, we obtained B(Υ(2S)-->Υ(1S)π+π-)=0.189+/-0.004+/-0.010, while using a method allowing Υ(1S)-->anything (``inclusive'' analysis) we obtained B(Υ(2S)-->Υ(1S)π+π-)=0.196+/-0.002+/-0.010. The appropriate weighted average of the two measurements gives B(Υ(2S)-->Υ(1S)π+π-)=0.192+/-0.002+/-0.010. Combining the exclusive and inclusive results we derive the Υ(1S) leptonic branching fractions Bee=0.0229+/-0.0008+/-0.0011 and Bμμ=0.0249+/-0.0008+/-0.0013. We also studied Υ(2S)-->Υ(1S)π0π0 and obtained B(Υ(2S)-->Υ(1S)π0π0)=0.092+/-0.006+/-0.008. Parameters of the ππ system (dipion invariant mass spectra, angular distributions) were analyzed and found to be consistent with current theoretical models. Lastly, we searched for the η and single π0 transitions and obtained the 90% confidence level upper limits B(Υ(2S)-->Υ(1S)η)<0.0028 and B(Υ(2S)-->Υ(1S)π0)<0.0011.

  18. Extensive computation of allowed and forbidden transition probabilities in the potassium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Deshmukh, Pranawa C.; Manson, Steven T.; Majumder, Sonjoy

    2007-06-01

    Our primary aim in this work is to present both allowed and forbidden transition amplitudes and corresponding wavelengths and oscillator strengths for a few ions in the 19-electron potassium isoelectronic sequence. All of these ions have the configuration [Ar] 3^2D3/2 as their ground state, except in the case of K and Ca^+, where it is [Ar] 4^2S1/2.This difference in ground state configuration arises due to strong contributions of correlation effects in the energy levels of these systems [1]. Allowed and forbidden transitions in these systems are of great importance in astrophysics [2] and in laboratory plasma research [3]. We apply in the present work the relativistic coupled-cluster (RCC) theory [4] to evaluate the energy levels and wave functions of these systems and study amplitudes for electric and magnetic dipole transition amplitudes and also the electric quadrupole transition amplitudes. The contributions of various electron correlation effects to the transition amplitudes are estimated in some detail using the RCC theory. [1] Gopal Dixit et al., Astrophys. J (submitted); arXiv.org: physics/0702066. [2] C. R. Cowley and G. M. Wahlgern, Astronomy & Astrophysics, 447, 681 (2002). [3] J. E. Vernazza, E. M. Reeves, Astrophys. J. Suppl. 37, 485 (1978) [4] I. Lindgren, Physics Scripta, 36, 591 (1987).

  19. High-resolution laser spectroscopy and magnetic effect of the B{sup ~2}E{sup ′}←X{sup ~2}A{sub 2}{sup ′} transition of the {sup 15}N substituted nitrate radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi

    2015-03-21

    Rotationally resolved high-resolution fluorescence excitation spectra of the 0–0 band of the B{sup ~2}E{sup ′}←X{sup ~2}A{sub 2}{sup ′} transition of the {sup 15}N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080–15 103 cm{sup −1} region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm{sup −1} spacing were assigned to the transitions from the X{supmore » ~2}A{sub 2}{sup ′} (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the {sup 2}E{sub 3/2}{sup ′} (J′ = 1.5), {sup 2}E{sub 1/2}{sup ′} (J′ = 0.5), and {sup 2}E{sub 1/2}{sup ′} (J′ = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B{sup ~2}E{sup ′} (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X{sup ~2}A{sub 2}{sup ′} (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B{sup ~2}E{sub 1/2}{sup ′} (υ = 0) state were estimated by a deperturbed analysis to be T{sub 0} = 15 098.20(4) cm{sup −1}, B = 0.4282(7) cm{sup −1}, and D{sub J} = 4 × 10{sup −4} cm{sup −1}. In the observed region, both the {sup 2}E{sub 1/2}{sup ′} and {sup 2}E{sub 3/2}{sup ′} spin-orbit components were identified, and the spin-orbit interaction constant of the B{sup ~2}E{sup ′} (υ = 0) state was estimated to be −12 cm{sup −1} as the lower limit.« less

  20. Pressure-induced topological insulator-to-metal transition and superconductivity in Sn-doped B i1.1S b0.9T e2S

    NASA Astrophysics Data System (ADS)

    An, Chao; Chen, Xuliang; Wu, Bin; Zhou, Yonghui; Zhou, Ying; Zhang, Ranran; Park, Changyong; Song, Fengqi; Yang, Zhaorong

    2018-05-01

    Tetradymite-type topological insulator Sn-doped B i1.1S b0.9T e2S (Sn-BSTS), with a surface state Dirac point energy well isolated from the bulk valence and conduction bands, is an ideal platform for studying the topological transport phenomena. Here, we present high-pressure transport studies on single-crystal Sn-BSTS, combined with Raman scattering and synchrotron x-ray diffraction measurements. Over the studied pressure range of 0.7-37.2 GPa, three critical pressure points can be observed: (i) At ˜9 GPa, a pressure-induced topological insulator-to-metal transition is revealed due to closure of the bulk band gap, which is accompanied by changes in slope of the Raman frequencies and a minimum in c /a within the pristine rhombohedral structure (R -3 m ); (ii) at ˜13 GPa, superconductivity is observed to emerge, along with the R -3 m to a C 2 /c (monoclinic) structural transition; (iii) at ˜24 GPa, the superconducting transition onset temperature TC reaches a maximum of ˜12 K , accompanied by a second structural transition from the C 2 /c to a body-centered cubic I m -3 m phase.

  1. Glass/Jamming Transition in Colloidal Aggregation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  2. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  3. Phase Transitions of the Polariton Condensate in 2D Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-01

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e -ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS2 or WSe2 . Specifically, in forming the polariton, the e -ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e -e ) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  4. Phase Transitions of the Polariton Condensate in 2D Dirac Materials.

    PubMed

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-13

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e-ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS_{2} or WSe_{2}. Specifically, in forming the polariton, the e-ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e-e) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  5. Benchmarking transition energies and emission strengths for X-ray astrophysics with measurements at the Livermore EBITs

    NASA Astrophysics Data System (ADS)

    Hell, Natalie

    2017-03-01

    measured the energies of K α transitions in L-shell ions of Si and S at EBIT using the EBIT calorimeter spectrometer (ECS) with 4.5-5.0 eV resolution, i.e., a similar resolution to the Astro-H /Hitomi SXS soft X-ray spectrometer. While these lines will become interesting also for L-shell ions of other astrophysically abundant elements, they have been observed most prominently from L-shell ions of Si and S in the X-ray spectra of a variety of astrophysical sources. The measured line centers have an accuracy of 0.5 eV for the strong transitions and 1 eV for the weaker ones. This accuracy translates to Doppler shifts of less than 90 km s -1 , i.e., less than the calibration uncertainty of the Chandra high-energy transmission gratings. The measured line centers are identified with my own calculations with the Flexible Atomic Code (FAC) and compared to these and calculations by Palmeri et al. (2008). I demonstrate the impact of these measurements by re-evaluating Doppler shifts for the high-mass X-ray binaries Vela X-1 and Cyg X-1 with the new reference data. Using the high-resolution, imaging focusing spherical crystal spectrometer EBHiX with a quartz 101 crystal, I verified the results from the ECS measurements on K α transitions in N- through Li-like S. The measurement has a spectral resolution of better than 0.52 eV. The derived transition energies have an accuracy of 0.2 eV, corresponding to Doppler shifts of < 30 km s -1 , i.e., within the requirements set by the planned Athena X-ray observatory. Secondly, I used the EBHiX crystal spectrometer with a quartz 110 crystal in second order to measure the strongly blended K α spectra of M-shell Fe ions around 6.4 keV. Contributions to the 6.4 keV line complex from these ions are important for transient plasmas such as those in supernova remnants. While a simple FAC model of Cl- through F-like Fe suggested it should be possible to resolve major contributions from different charge states to this complex at a 2 eV resolution

  6. CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training.

    PubMed

    Harmon, Brennan T; Orkunoglu-Suer, E Funda; Adham, Kasra; Larkin, Justin S; Gordish-Dressman, Heather; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hubal, Monica J; Tosi, Laura L; Hoffman, Eric P; Devaney, Joseph M

    2010-12-01

    Baseline muscle size and muscle adaptation to exercise are traits with high variability across individuals. Recent research has implicated several chemokines and their receptors in the pathogenesis of many conditions that are influenced by inflammatory processes, including muscle damage and repair. One specific chemokine, chemokine (C-C motif) ligand 2 (CCL2), is expressed by macrophages and muscle satellite cells, increases expression dramatically following muscle damage, and increases expression further with repeated bouts of exercise, suggesting that CCL2 plays a key role in muscle adaptation. The present study hypothesizes that genetic variations in CCL2 and its receptor (CCR2) may help explain muscle trait variability. College-aged subjects [n = 874, Functional Single-Nucleotide Polymorphisms Associated With Muscle Size and Strength (FAMUSS) cohort] underwent a 12-wk supervised strength-training program for the upper arm muscles. Muscle size (via MR imaging) and elbow flexion strength (1 repetition maximum and isometric) measurements were taken before and after training. The study participants were then genotyped for 11 genetic variants in CCL2 and five variants in CCR2. Variants in the CCL2 and CCR2 genes show strong associations with several pretraining muscle strength traits, indicating that inflammatory genes in skeletal muscle contribute to the polygenic system that determines muscle phenotypes. These associations extend across both sexes, and several of these genetic variants have been shown to influence gene regulation.

  7. Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).

    PubMed

    Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B

    2011-02-09

    The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.

  8. CI+MBPT calculations of Ar I energies, g factors, and transition line strengths

    NASA Astrophysics Data System (ADS)

    Savukov, I. M.

    2018-03-01

    Excited states of noble gas atoms present certain challenges to atomic theory for several reasons: first, relativistic effects are important and LS coupling is not optimal; second, energy intervals can be quite small, leading to strong mixing of states; third, many-body perturbation theory for hole states does not converge well. Previously, some attempts were made to solve this problem, using for example the all-order coupled-cluster approach and particle-hole configuration-interaction many-body perturbation theory (CI-MBPT) with modified denominators. However, while these approaches were promising, the accuracy was still limited. In this paper, we calculate Ar I energies, g factors, and transition amplitudes using ab initio CI-MBPT with eight valence electrons to avoid the problem of slow convergence of MBPT due to strong interaction between 3p and 3s states. We also included in CI many dominant states obtained by double excitations of the ground state configuration. Thus perturbation corrections were needed only for 1s, 2s, 2p core electrons non-included in valence-valence CI, which are quite small. We found that energy, g factors, and electric dipole matrix elements are in reasonable agreement with experiments. It is noteworthy that the theory agreed well with accurately measured g factors. Experimental oscillator strengths have large uncertainty, so in some cases we made a comparison with average values.

  9. Experimental Study of Exclusive H2(e,e'p)n Reaction Mechanisms at High Q2

    NASA Astrophysics Data System (ADS)

    Egiyan, K. S.; Asryan, G.; Gevorgyan, N.; Griffioen, K. A.; Laget, J. M.; Kuhn, S. E.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crede, V.; Cummings, J. P.; Dashyan, N.; de Masi, R.; de Vita, R.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Fersch, R.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hanretty, C.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Lu, H. Y.; MacCormick, M.; Marchand, C.; Markov, N.; Mattione, P.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Anefalos Pereira, S.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2007-06-01

    The reaction H2(e,e'p)n has been studied with full kinematic coverage for photon virtuality 1.752<5.5GeV2. Comparisons of experimental data with theory indicate that for very low values of neutron recoil momentum (pn<100MeV/c) the neutron is primarily a spectator and the reaction can be described by the plane-wave impulse approximation. For 100transition is the primary contribution at higher momenta.

  10. ScienceToGo.org: The Strengths and Weaknesses of Communicating Climate Change through Mass Transit Advertising Spaces

    NASA Astrophysics Data System (ADS)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.; Wilson, R.; Rabkin, D.; Thompson, S. R.

    2016-02-01

    Engaging urban populations with climate change science is a difficult challenge since cities can seem so removed from the `natural environment.' However, mass transit provides an inherent means of communicating environmental messages with a cross section of the urban population. The Out of Home Media (OHM) spaces found on platforms and inside train cars provide a potentially effective means of bringing informal science learning opportunities directly to an underserved STEM audience. Our team felt that any messaging curriculum for a coastal urban subway system must complement the scary reality of the impacts of a changing climate (i.e. rising sea levels) with current examples of how the city is preparing for a more sustainable future. Urban areas such as Boston must develop adaptation and mitigation strategies that will help them not only survive, but thrive in a changing environment. In 2013-14, ScienceToGo.org ran a series of 12 engaging posters and placards staring `Ozzie the Ostrich' on the Massachusetts Bay Transit Authority's Red and Orange subway lines targeting an audience of more than 400,000 riders per day. The 12 month curriculum was divided into three phases: reality, relevance, and hope. During the presentation, we will present the results of our quasi-experimental research which identifies, quantifies, and explains the observed impacts of the campaign on adult riders. The strengths and weaknesses of the communication strategy will be discussed. Finally, we will conclude with some recommendations for how this work could improve and inform other urban informal science learning initiatives.

  11. Repeatability and Reproducibility of Compression Strength Measurements Conducted According to ASTM E9

    NASA Technical Reports Server (NTRS)

    Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.

    2010-01-01

    Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.

  12. Branching fractions for psi(2S)-to-J/psi transitions.

    PubMed

    Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2005-06-17

    We describe new measurements of the inclusive and exclusive branching fractions for psi(2S) transitions to J/psi using e(+)e(-) collision data collected with the CLEO detector operating at CESR. All branching fractions and ratios of branching fractions reported here represent either the most precise measurements to date or the first direct measurements. Indirectly and in combination with other CLEO measurements, we determine B(chi(cJ) --> gamma(J/psi)) and B[psi(2S) --> light hadrons].

  13. E-H heating mode transition in inductive discharges with different antenna sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: flower4507@hanyang.ac.kr; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr

    The spatial distribution of plasma density and the transition power for capacitive (E) to inductive (H) mode transition are studied in planar type inductively coupled plasmas with different antenna sizes. The spatial plasma distribution has a relatively flat profile at a low gas pressure, while the plasma profile is affected by the antenna size at higher gas pressure. The transition power for the E to H mode transition is shown to be critically affected by the antenna size. When the discharge is sustained by a small one-turn antenna coil, the transition power has a minimum value at Ar gas ofmore » 20 mTorr. However, the minimum transition power is shown at a relatively high gas pressure (40–60 mTorr) in the case of a large one-turn antenna coil. This change in the transition power can be understood by the thermal transport of the energetic electrons with non-local kinetics to the chamber wall. This non-local kinetic effect indicates that the transition power can also increase even for a small antenna if the antenna is placed near the wall.« less

  14. Shear strength of metal - SiO2 contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1978-01-01

    The strength of the bond between metals and SiO2 is studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.

  15. Shear strength of metal - SiO2 contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1978-01-01

    The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.

  16. Direct optical transitions at K- and H-point of Brillouin zone in bulk MoS2, MoSe2, WS2, and WSe2

    NASA Astrophysics Data System (ADS)

    Kopaczek, J.; Polak, M. P.; Scharoch, P.; Wu, K.; Chen, B.; Tongay, S.; Kudrawiec, R.

    2016-06-01

    Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from the first principles within the density functional theory for various points of Brillouin zone including K and H points. It is clearly shown that the electronic band structure at H point of Brillouin zone is very symmetric and similar to the electronic band structure at K point, and therefore, direct optical transitions at H point should be expected in modulated reflectance spectra besides the direct optical transitions at the K point of Brillouin zone. This prediction is confirmed by experimental studies of the electronic band structure of MoS2, MoSe2, WS2, and WSe2 crystals by CER, PR, and PzR spectroscopy, i.e., techniques which are very sensitive to critical points of Brillouin zone. For the four crystals besides the A transition at K point, an AH transition at H point has been observed in CER, PR, and PzR spectra a few tens of meV above the A transition. The spectral difference between A and AH transition has been found to be in a very good agreement with theoretical predictions. The second transition at the H point of Brillouin zone (BH transition) overlaps spectrally with the B transition at K point because of small energy differences in the valence (conduction) band positions at H and K points. Therefore, an extra resonance which could be related to the BH transition is not resolved in modulated reflectance spectra at room temperature for the four crystals.

  17. Consequences of acid strength for isomerization and elimination catalysis on solid acids.

    PubMed

    Macht, Josef; Carr, Robert T; Iglesia, Enrique

    2009-05-13

    We address here the manner in which acid catalysis senses the strength of solid acids. Acid strengths for Keggin polyoxometalate (POM) clusters and zeolites, chosen because of their accurately known structures, are described rigorously by their deprotonation energies (DPE). Mechanistic interpretations of the measured dynamics of alkane isomerization and alkanol dehydration are used to obtain rate and equilibrium constants and energies for intermediates and transition states and to relate them to acid strength. n-Hexane isomerization rates were limited by isomerization of alkoxide intermediates on bifunctional metal-acid mixtures designed to maintain alkane-alkene equilibrium. Isomerization rate constants were normalized by the number of accessible protons, measured by titration with 2,6-di-tert-butylpyridine during catalysis. Equilibrium constants for alkoxides formed by protonation of n-hexene increased slightly with deprotonation energies (DPE), while isomerization rate constants decreased and activation barriers increased with increasing DPE, as also shown for alkanol dehydration reactions. These trends are consistent with thermochemical analyses of the transition states involved in isomerization and elimination steps. For all reactions, barriers increased by less than the concomitant increase in DPE upon changes in composition, because electrostatic stabilization of ion-pairs at the relevant transition states becomes more effective for weaker acids, as a result of their higher charge density at the anionic conjugate base. Alkoxide isomerization barriers were more sensitive to DPE than for elimination from H-bonded alkanols, the step that limits 2-butanol and 1-butanol dehydration rates; the latter two reactions showed similar DPE sensitivities, despite significant differences in their rates and activation barriers, indicating that slower reactions are not necessarily more sensitive to acid strength, but instead reflect the involvement of more unstable organic

  18. Electric dipole transitions for four-times ionized cerium (Ce V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usta, Betül Karaçoban, E-mail: bkaracoban@sakarya.edu.tr; Akgün, Elif, E-mail: elif.akgun@ogr.sakarya.edu.tr; Alparslan, Büşra, E-mail: busra.alparslan1@ogr.sakarya.edu.tr

    2016-03-25

    We have calculated the transition parameters, such as wavelengths, oscillator strengths, and transition probabilities (or rates), for the electric dipole (E1) transitions in four-times ionized cerium (Ce V, Z = 58) by using the multiconfiguration Hartree-Fock method within the framework of Breit-Pauli (MCHF+BP) relativistic corrections and the relativistic Hartree-Fock (HFR) method. The obtained results have been compared with other works available in literature. A discussion of these calculations for Ce V in this study has also been in view of the MCHF+BP and HFR methods.

  19. Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals

    DOE PAGES

    Yoon, Joonseok; Kim, Howon; Chen, Xian; ...

    2015-12-29

    Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less

  20. Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Joonseok; Kim, Howon; Chen, Xian

    Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less

  1. Effects of steaming treatment on crystallinity and glass transition temperature of Eucalyptuses grandis × E. urophylla

    NASA Astrophysics Data System (ADS)

    Kong, Lulu; Zhao, Zijian; He, Zhengbin; Yi, Songlin

    To investigate the effects of steaming treatment on crystallinity and glass transition temperature, samples of Eucalyptuses grandis × E. urophylla with moisture content of 50%, 70%, and 90% were steamed in saturated steam at 100 °C for 2, 4, 6, and 8 h. The degree of crystallinity (CrI) and glass transition temperature (Tg) were measured via X-ray diffraction and dynamic mechanical analysis, respectively. Results revealed a crystallinity degree of Eucalyptus of 29.9%-34.2%, and a glass transition temperature of 80-94 °C with moisture contents of steamed samples of 20%. Furthermore, steaming was revealed to have an obvious effect on crystallization and glass transition. Values of CrI and Tg showed similar changing characteristics: increasing initially, followed by a decrease with increasing steaming time, reaching a maximum at 2 h. Water within the wood seemed to promote crystallization and glass transition during steaming. All steamed samples tested in this study reached glass transition temperature after 50 min of steaming, and the residual growth stress was released.

  2. MgH Rydberg series: Transition energies from electron propagator theory and oscillator strengths from the molecular quantum defect orbital method

    NASA Astrophysics Data System (ADS)

    Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.

    2018-02-01

    Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.

  3. High-field study of UCo2Si2: Magnetostriction at metamagnetic transition and influence of Fe substitution

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Skourski, Y.; Gorbunov, D. I.; Prokeš, K.

    2018-05-01

    UCo2Si2 (tetragonal crystal structure) is antiferromagnet below TN = 83 K with ferromagnetic basal-plane layers of U magnetic moments oriented parallel to the c axis. The layers are coupled in +-+- sequence along this axis. In fields of 45 T applied along the c axis, UCo2Si2 exhibits very sharp metamagnetic transition to ++- uncompensated antiferromagnetic state. The transition is accompanied by pronounced magnetostriction effects. The crystal expands along the c axis by 1 * 10-4 and shrinks in the basal plane by 0.5 * 10-4 (at 1.5 K) resulting in negligible volume effect. Between 20 K and 40 K the transition changes from the first- to the second-order type. The Fe doping in UCo2Si2 reduces TN from 83 K to 80 K at x = 0.2 in U(Co1-xFex)2Si2. Metamagnetic transition shifts to higher fields (from 45 T at x = 0-56 T for x = 0.2). Magnetization jump over the transition remains practically the same which is in agreement with uranium magnetic moment determined by neutron diffraction on crystal with x = 0.1 as 1.29 μB, i.e. only slightly lower than that in UCo2Si2.

  4. Geometric structure and information change in phase transitions

    NASA Astrophysics Data System (ADS)

    Kim, Eun-jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L , which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD | and D-1 /2 in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  5. Geometric structure and information change in phase transitions.

    PubMed

    Kim, Eun-Jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L, which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD| and D^{-1/2} in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  6. The simultaneous mass and energy evaporation (SM2E) model.

    PubMed

    Choudhary, Rehan; Klauda, Jeffery B

    2016-01-01

    In this article, the Simultaneous Mass and Energy Evaporation (SM2E) model is presented. The SM2E model is based on theoretical models for mass and energy transfer. The theoretical models systematically under or over predicted at various flow conditions: laminar, transition, and turbulent. These models were harmonized with experimental measurements to eliminate systematic under or over predictions; a total of 113 measured evaporation rates were used. The SM2E model can be used to estimate evaporation rates for pure liquids as well as liquid mixtures at laminar, transition, and turbulent flow conditions. However, due to limited availability of evaporation data, the model has so far only been tested against data for pure liquids and binary mixtures. The model can take evaporative cooling into account and when the temperature of the evaporating liquid or liquid mixture is known (e.g., isothermal evaporation), the SM2E model reduces to a mass transfer-only model.

  7. Nonradiative transition dynamics in alexandrite

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Alfano, R. R.

    1986-01-01

    The first direct picosecond time-resolved measurement of the nonradiative transition dynamics between the excited 4T2 pump band and the metastable 2E storage level of the trivalent chromium ion in alexandrite is reported. The nonradiative relaxation times of 17 ps for intra-4T2 vibrational transitions, and 27 ps for 4T2-2E electronic transition are obtained. The thermal repopulation rate of the 4T2 state from the metastable 2E level is of the order 3.5 x 10 to the 9th per s.

  8. Etudes diélectriques de la transition ferroélectrique induite par application d'un champ électrique dans les céramiques PbMg{1/3}Nb{2/3}O3 (PMN)

    NASA Astrophysics Data System (ADS)

    Chabin, M.; Malki, M.; Husson, E.; Morell, A.

    1994-07-01

    The evolution of the dielectric permittivity and loss factor under an external applied electric field has been studied in PbMg{1/3}Nb{2/3}O3 ceramics between 80 and 420 K. For a threshold field of 4 kV.cm^{-1}, it is possible to induce a ferroelectric transition from the average cubic phase to a macroscopically polar phase. The poling and depoling temperatures depend on the various combinations of thermal treatments and on the applied field strength. The transition between the nanopolar state and the macropolar state is discussed L'évolution de la permittivité diélectrique et du facteur de pertes diélectriques sous un champ électrique extérieur a été étudiée dans des céramiques de PbMg{1/3}Nb{2/3}O3 enre 80 et 420 K. Pour un champ de seuil de 4 kV.cm^{-1} il est possible d'induire une transition ferroélectrique de la phase cubique moyenne en une phase macroscopiquement polaire. Les températures de polarisation et de dépolarisation dépendent des différentes combinaisons de traitements thermiques et de la valeur du champ appliqué. La transition entre la phase constituée de nanodomaines polaires et la phase constituée de macrodomaines polaires est discutée.

  9. Radiative transitions involving the (2p2)(3 Pe) metastable autodetaching of H(-)

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Bhatia, A. K.; Temkin, A.

    1974-01-01

    The absorption coefficient for the free-bound transition H (ls) + e(-)+ h omega yields H(-)(2 sq p,(3)P(e)) is calculated (together with the differential emission rate for the inverse process) using ls - 2s - 2p close coupling continuum wave functions and a Hylleraas bound state wave function. A maximum in the absorption and emission spectra is found to occur at a photon wavelength of 1219.5 A, which is 2 A closer to the Lyman alpha line than predicted by the calculations of Drake, and is in closer agreement with the stellar absorption feature identified by Heap and Stecher. The free-bound absorption process appears to be a significant source of continuous ultraviolet opacity.

  10. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z.

    2018-04-01

    The effects of quantum confinement on excitons in parabolic quantum dots of monolayer transition metal dichalcogenides (TMDC QDs) are investigated within a massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs is obtained, larger than that of monolayer TMDC sheets and consistent with recent experimental measurements. The exciton transition energy and the binding energy are calculated, and it is found that the strong quantum confinement results in extremely high exciton binding energies. The enormously large exciton binding energy in TMDC QDs (({{E}{{B2D}}}∼ 500 meV)<{{E}{{BQD}}}~≲ 1800 meV for different kinds of TMDC QDs) ensures that the many body interactions play a significant role in the investigation of the optical properties of these novel nanostructures. The estimated oscillator strength and radiative lifetime of excitons are strongly size-dependent and indicate a giant oscillator strength enhancement and ultrafast radiative annihilation of excitons, varying from a few tens of femtoseconds to a few picoseconds. We found that the spin-dependent band gap, spin-valley coupling, binding energy and excitonic effects can be tuned by quantum confinements, leading to tunable quantum dots in monolayer TMDCs. This finding offers new functionality in engineering the interaction of a 2D material with light and creates promise for the quantum manipulation of spin and valley degrees of freedom in TMDC nanostructures, enabling versatile novel 2D quantum photonic and optoelectronic nanodevices.

  11. Strength testing and training of rowers: a review.

    PubMed

    Lawton, Trent W; Cronin, John B; McGuigan, Michael R

    2011-05-01

    In the quest to maximize average propulsive stroke impulses over 2000-m racing, testing and training of various strength parameters have been incorporated into the physical conditioning plans of rowers. Thus, the purpose of this review was 2-fold: to identify strength tests that were reliable and valid correlates (predictors) of rowing performance; and, to establish the benefits gained when strength training was integrated into the physical preparation plans of rowers. The reliability of maximal strength and power tests involving leg extension (e.g. leg pressing) and arm pulling (e.g. prone bench pull) was high (intra-class correlations 0.82-0.99), revealing that elite rowers were significantly stronger than their less competitive peers. The greater strength of elite rowers was in part attributed to the correlation between strength and greater lean body mass (r = 0.57-0.63). Dynamic lower body strength tests that determined the maximal external load for a one-repetition maximum (1RM) leg press (kg), isokinetic leg extension peak force (N) or leg press peak power (W) proved to be moderately to strongly associated with 2000-m ergometer times (r = -0.54 to -0.68; p < 0.05). Repetition tests that assess muscular or strength endurance by quantifying the number of repetitions accrued at a fixed percentage of the strength maximum (e.g. 50-70% 1RM leg press) or set absolute load (e.g. 40 kg prone bench pulls) were less reliable and more time consuming when compared with briefer maximal strength tests. Only leg press repetition tests were correlated with 2000-m ergometer times (e.g. r = -0.67; p < 0.05). However, these tests differentiate training experience and muscle morphology, in that those individuals with greater training experience and/or proportions of slow twitch fibres performed more repetitions. Muscle balance ratios derived from strength data (e.g. hamstring-quadriceps ratio <45% or knee extensor-elbow flexor ratio around 4.2 ± 0.22 to

  12. Bonding strength of alkyl-2-cyanoacrylates to bone in vitro.

    PubMed

    Kilpikari, J; Lapinsuo, M; Törmälä, P; Pätiälä, H; Rokkanen, P

    1986-10-01

    This study measured the bonding strength between alkyl-2-cyanoacrylates and bone, and examined how treatment of the bone surface with acid, and prolonged exposure to moisture, affected this strength. The initial strength of all cyanoacrylates was high (9.6-11.2 N/mm2). In long-term experiments under water, n- and i-butylcyanoacrylates lost their strength at a far slower rate than ethylcyanoacrylates. However, the butylcyanoacrylates also showed a decrease of 15% in strength after three weeks. Pretreatment of the bone surface with acid did not have a marked effect on bonding strength, although SEM investigation revealed that the acid treatment had increased the porosity of the bone surface. A study of the fracture surface proved that the adhesive film tended to loosen or break after 3 to 6 weeks under water. The decrease in the bonding strength was probably due to the degradation of the adhesive film in water which loosened mechanical bonds between the bone and adhesive. Considering clinical use it would be necessary to achieve better long-term strength.

  13. Functional changes through the usage of 3D-printed transitional prostheses in children.

    PubMed

    Zuniga, Jorge M; Peck, Jean L; Srivastava, Rakesh; Pierce, James E; Dudley, Drew R; Than, Nicholas A; Stergiou, Nicholas

    2017-11-08

    There is limited knowledge on the use of 3 D-printed transitional prostheses, as they relate to changes in function and strength. Therefore, the purpose of this study was to identify functional and strength changes after usage of 3 D-printed transitional prostheses for multiple weeks for children with upper-limb differences. Gross manual dexterity was assessed using the Box and Block Test and wrist strength was measured using a dynamometer. This testing was conducted before and after a period of 24 ± 2.61 weeks of using a 3 D-printed transitional prosthesis. The 11 children (five girls and six boys; 3-15 years of age) who participated in the study, were fitted with a 3 D-printed transitional partial hand (n = 9) or an arm (n = 2) prosthesis. Separate two-way repeated measures ANOVAs were performed to analyze function and strength data. There was a significant hand by time interaction for function, but not for strength. Conclusion and relevance to the study of disability and rehabilitation: The increase in manual gross dexterity suggests that the Cyborg Beast 2 3 D-printed prosthesis can be used as a transitional device to improve function in children with traumatic or congenital upper-limb differences. Implications for Rehabilitation Children's prosthetic needs are complex due to their small size, rapid growth, and psychosocial development. Advancements in computer-aided design and additive manufacturing offer the possibility of designing and printing transitional prostheses at a very low cost, but there is limited knowledge on the function of this type of devices. The use of 3D printed transitional prostheses may improve manual gross dexterity in children after several weeks of using it.

  14. Strengths-based positive psychology interventions: a randomized placebo-controlled online trial on long-term effects for a signature strengths- vs. a lesser strengths-intervention.

    PubMed

    Proyer, René T; Gander, Fabian; Wellenzohn, Sara; Ruch, Willibald

    2015-01-01

    Recent years have seen an increasing interest in research in positive psychology interventions. There is broad evidence for their effectiveness in increasing well-being and ameliorating depression. Intentional activities that focus on those character strengths, which are most typical for a person (i.e., signature strengths, SS) and encourage their usage in a new way have been identified as highly effective. The current study aims at comparing an intervention aimed at using SS with one on using individual low scoring (or lesser) strengths in a randomized placebo-controlled trial. A total of 375 adults were randomly assigned to one of the two intervention conditions [i.e., using five signature vs. five lesser strengths (LS) in a new way] or a placebo control condition (i.e., early memories). We measured happiness and depressive symptoms at five time points (i.e., pre- and post-test, 1-, 3-, and 6-months follow-ups) and character strengths at pre-test. The main findings are that (1) there were increases in happiness for up to 3 months and decreases in depressive symptoms in the short term in both intervention conditions; (2) participants found working with strengths equally rewarding (enjoyment and benefit) in both conditions; (3) those participants that reported generally higher levels of strengths benefitted more from working on LS rather than SS and those with comparatively lower levels of strengths tended to benefit more from working on SS; and (4) deviations from an average profile derived from a large sample of German-speakers completing the Values-in-Action Inventory of Strengths were associated with greater benefit from the interventions in the SS-condition. We conclude that working on character strengths is effective for increasing happiness and discuss how these interventions could be tailored to the individual for promoting their effectiveness.

  15. Determination of magic wavelengths for the 7 s 1/2 2S -7 p 3/2, 1/2 2P transitions in Fr

    NASA Astrophysics Data System (ADS)

    Singh, Sukhjit; Sahoo, B. K.; Arora, Bindiya

    2016-08-01

    Magic wavelengths (λmagic) for the 7 S1 /2-7 P1 /2 ,3 /2 transitions (D lines) in Fr were reported by Dammalapati et al. [U. Dammalapati, K. Harada, and Y. Sakemi, Phys. Rev. A 93, 043407 (2016), 10.1103/PhysRevA.93.043407]. These λmagic were determined by plotting dynamic polarizabilities (α ) of the involved states with the above transitions against a desired range of wavelengths. Electric dipole (E1) matrix elements listed in [J. E. Sansonetti, J. Phys. Chem. Ref. Data 36, 497 (2007), 10.1063/1.2719251], from the measured lifetimes of the 7 P1 /2 ,3 /2 states and from the calculations considering core-polarization effects in the relativistic Hartree-Fock (HFR) method, were used to determine α . However, contributions from core correlation effects and from the E1 matrix elements of the 7 P -7 S , 7 P -8 S , and 7 P -6 D transitions to α of the 7 P states were ignored. In this work, we demonstrate importance of these contributions and improve accuracies of α further by replacing the E1 matrix elements taken from the HFR method by the values obtained employing relativistic coupled-cluster theory. Our static α are found to be in excellent agreement with the other available theoretical results, whereas substituting the E1 matrix elements used by Dammalapati et al. gives very small α values for the 7 P states. Owing to this, we find disagreement in λmagic reported by Dammalapati et al. for linearly polarized light, especially at wavelengths close to the D lines and in the infrared region. As a consequence, a λmagic reported at 797.75 nm which was seen supporting a blue detuned trap in their work is now estimated at 771.03 nm and is supporting a red detuned trap. Also, none of our results match with the earlier results for circularly polarized light. Moreover, our static values of α will be very useful for guiding experiments to carry out their measurements.

  16. Tables of E2 transition probabilities from the first 2 + states in even-even nuclei [B(E2) evaluation for 0 + 1 → 2 + 1 transitions in even-even nuclei

    DOE PAGES

    Pritychenko, B.; Birch, M.; Singh, B.; ...

    2015-11-03

    A complete B(E2)↑ evaluation and compilation for even-even nuclei has been presented. The present paper is a continuation of P.H. Stelson and L. Grodzins, and S. Raman et al. nuclear data evaluations and was motivated by a large number of new measurements. It extends the list of evaluated nuclides from 328 to 452, includes an extended list of nuclear reaction kinematics parameters and comprehensive shell model analysis. Evaluation policies for analysis of experimental data have been discussed and conclusions are given. Moreover, future plans for B(E2)↑ systematics and experimental technique analyses of even-even nuclei are outlined.

  17. Theoretical study of superionic phase transition in Li2S.

    PubMed

    Jand, Sara Panahian; Zhang, Qian; Kaghazchi, Payam

    2017-07-19

    We have studied temperature-induced superionic phase transition in Li 2 S, which is one of the most promising Li-S battery cathode material. Concentration of ionic carriers at low and high temperature was evaluated from thermodynamics of defects (using density functional theory) and detailed balance condition (using ab initio molecular dynamics (AIMD)), respectively. Diffusion coefficients were also obtained using AIMD simulations. Calculated ionic conductivity shows that superionic phase transition occurs at T = 900 K, which is in agreement with reported experimental values. The superionic behavior of Li 2 S is found to be due to thermodynamic reason (i.e. a large concentration of disordered defects).

  18. Tabulation of hybrid theory calculated e-N2 vibrational and rotational cross sections

    NASA Technical Reports Server (NTRS)

    Chandra, N.; Temkin, A.

    1976-01-01

    Vibrational excitation cross sections of N2 by electron impact are tabulated. Integrated cross sections are given for transitions v yields v prime where o=or v=or 8 in the energy range 0.1 eV=or E=or 10 eV. The energy grid is chosen to be most dense in the resonance region (2 to 4 eV) so that the substructure is present in the numerical results. Coefficients in the angular distribution formula (differential scattering cross section) for transitions v=0 yields v prime = or 8 are also numerically given over the same grid of energies. Simultaneous rotation-vibration coefficients are also given for transitions v=o,j=o; 1 yields v prime=o, j=o,2,4; 1,3,5. All results are obtained from the hybrid theory.

  19. Isometric strength training lowers the O2 cost of cycling during moderate-intensity exercise.

    PubMed

    Zoladz, Jerzy A; Szkutnik, Zbigniew; Majerczak, Joanna; Grandys, Marcin; Duda, Krzysztof; Grassi, Bruno

    2012-12-01

    The effect of maximal voluntary isometric strength training of knee extensor muscles on pulmonary V'O(2) on-kinetics, the O(2) cost of cycling and peak oxygen uptake (V'O(2peak)) in humans was studied. Seven healthy males (mean ± SD, age 22.3 ± 2.0 years, body weight 75.0 ± 9.2 kg, V'O(2peak) 49.5 ± 3.8 ml kg(-1) min(-1)) performed maximal isometric strength training lasting 7 weeks (4 sessions per week). Force during maximal voluntary contraction (MVC) increased by 15 % (P < 0.001) after 1 week of training, and by 19 % (P < 0.001) after 7 weeks of training. This increase in MVC was accompanied by no significant changes in the time constant of the V'O(2) on-kinetics during 6 min of moderate and heavy cycling intensities. Strength training resulted in a significant decrease (by ~7 %; P < 0.02) in the amplitude of the fundamental component of the V'O(2) on-kinetics, and therefore in a lower O(2) cost of cycling during moderate cycling intensity. The amplitude of the slow component of V'O(2) on-kinetics during heavy cycling intensity did not change with training. Training had no effect on the V'O(2peak), whereas the maximal power output reached at V'O(2peak) was slightly but significantly increased (P < 0.05). Isometric strength training rapidly (i.e., after 1 week) decreases the O(2) cost of cycling during moderate-intensity exercise, whereas it does not affect the amplitude of the slow component of the V'O(2) on-kinetics during heavy-intensity exercise. Isometric strength training can have beneficial effects on performance during endurance events.

  20. Thermodynamic evidence of flexibility in H2O and CO2 absorption of transition metal ion exchanged zeolite LTA.

    PubMed

    Guo, Xin; Wu, Lili; Navrotsky, Alexandra

    2018-02-07

    Gas absorption calorimetry has been employed to probe the intercation of water and carbon dioxide with transition metal ion (TM = Mn 2+ , Fe 2+ , Co 2+ , Cu 2+ , and Zn 2+ ) exchanged zeolite A samples. There appears to be a two-phase region, indicative of a guest-induced flexibility transition, separating hydrated zeolite A and its dehydrated form, both of which have variable water content in the single phase region. The differential enthalpy of absorption as a function of water loading directly identifies different strengths of multiple interactions along with possible binding mechanisms of Zn-A and Mn-A exhibiting the highest water absorption with most exothermic initial enthalpies of -125.28 ± 4.82 and -115.30 ± 2.56 kJ mol -1 . Zn-A and Mn-A also show moderately good capture ability for CO 2 with zero-coverage negative enthalpies of -55.59 ± 2.48 and -44.07 ± 1.53 kJ mol -1 . The thermodynamic information derived from differential enthalpy, chemical potential and differential entropy elucidated the multistage interactive behavior of small guest molecules (H 2 O/CO 2 ) and ion-exchanged frameworks.

  1. Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic.

    PubMed

    Tang, Fei; Ye, Honggang; Su, Zhicheng; Bao, Yitian; Guo, Wang; Xu, Shijie

    2017-12-20

    In this article, we present an in-depth optical study on luminescence spectral features and the thermal effect of the magnetic dipole (MD) transitions (e.g., the R lines of 2 E → 4 A 2 ) and the associated electric dipole transitions (e.g., phonon-induced sidebands of the R lines) of Cr 3+ ions in ytterbium-yttrium aluminum garnet polycrystalline transparent ceramic. The doubly split R lines predominately due to the doublet splitting of the 2 E level of the Cr 3+ ion in an octahedral crystal field are found to show a very large anisotropy in both emission intensity and thermal broadening. The large departure from the intensity equality between them could be interpreted in terms of large difference in coupling strength with phonons for the doubly split states of the 2 E level. For the large anisotropy in thermal broadening, very different effective Debye temperatures for the two split states may be responsible for it. Besides the 2 E excited state, the higher excited states, for example, 4 T 1 and 4 T 2 of the Cr 3+ ion, also exhibit a very large inequality in coupling strength with phonons at room temperature. By examining the Stokes phonon sidebands of the MD R lines at low temperatures with the existing ion-phonon coupling theory, we reveal that they indeed carry fundamental information of phonons. For example, their broad background primarily reflects Debye density of states of acoustic phonons. These new results significantly enrich our existing understanding on interesting but challenging luminescence mechanisms of ion-phonon coupling systems.

  2. Application of the Zero-Order Reaction Rate Model and Transition State Theory to predict porous Ti6Al4V bending strength.

    PubMed

    Reig, L; Amigó, V; Busquets, D; Calero, J A; Ortiz, J L

    2012-08-01

    Porous Ti6Al4V samples were produced by microsphere sintering. The Zero-Order Reaction Rate Model and Transition State Theory were used to model the sintering process and to estimate the bending strength of the porous samples developed. The evolution of the surface area during the sintering process was used to obtain sintering parameters (sintering constant, activation energy, frequency factor, constant of activation and Gibbs energy of activation). These were then correlated with the bending strength in order to obtain a simple model with which to estimate the evolution of the bending strength of the samples when the sintering temperature and time are modified: σY=P+B·[lnT·t-ΔGa/R·T]. Although the sintering parameters were obtained only for the microsphere sizes analysed here, the strength of intermediate sizes could easily be estimated following this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Collision strengths for FIR and UV transtions in P III and the phosphorus abundance

    NASA Astrophysics Data System (ADS)

    Naghma, Rahla; Nahar, Sultana N.; Pradhan, Anil K.

    2018-06-01

    Phosphorus abundance is crucial for DNA-based extraterrestrial life in exoplanets. Atomic data for observed spectral lines of P-ions are needed for its accurate determination. We present the first calculations for collision strengths for the forbidden [P III] fine structure transition 3s^23p (^2P^o_{1/2-3/2}) within the ground state at 17.9 μm , as well as allowed UV transitions in the 3s^23p (^2P^o_{1/2,3/2}) \\rArr 3s3p^2 (^2D_{3/2,5/2}, ^2S_{1/2}, ^2P_{1/2,3/2}) multiplets between 915-1345 Å. Collision strengths are computed using the Breit-Pauli R-Matrix method including the first 18 levels, and they exhibit extensive auto-ionizing resonance structures. In particular, the Maxwellian averaged effective collision strength for the FIR 17.9 μm transition shows a factor 3 temperature variation broadly peaking at typical nebular temperatures. Its theoretical emissivity with solar phosphorus abundance is computed relative to Hβ and found to be similar to observed intensties from planetary nebulae; the abundances derived in earlier works are 3-5 times sub-solar. The results pertain to the reported paucity of phosphorus from preferred production sites in supernovae, and abundances in planetary nebulae and supernova remnants.

  4. Origin of phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Sardar, Manas; Dhara, Sandip

    2018-04-01

    Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) along with a structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R via another two intermediate phases of monoclinic M2 and triclinic T at a technologically important temperature of 340K. In the present work, besides synthesizing M1 phase of VO2, we also stabilized M2 and T phases at room temperature by introducing native defects in the system and observed an increase in transition temperature with increase in native defects. Raman spectroscopic measurements were carried out to confirm the pure VO2 phases. Since the MIT is accompanied by SPT in these systems, the origin of the phase transition is still under debate. The controversy between MIT and SPT, whether electron-phonon coupling or strong electron-electron correlation triggers the phase transition in VO2 is also resolved by examining the presence of intermediate phase M2 during phase transition.

  5. High-resolution study of Gamow-Teller transitions in the 47Ti(3He,t)47V reaction

    NASA Astrophysics Data System (ADS)

    Ganioǧlu, E.; Fujita, H.; Fujita, Y.; Adachi, T.; Algora, A.; Csatlós, M.; Deaven, J. M.; Estevez-Aguado, E.; Guess, C. J.; Gulyás, J.; Hatanaka, K.; Hirota, K.; Honma, M.; Ishikawa, D.; Krasznahorkay, A.; Matsubara, H.; Meharchand, R.; Molina, F.; Okamura, H.; Ong, H. J.; Otsuka, T.; Perdikakis, G.; Rubio, B.; Scholl, C.; Shimbara, Y.; Susoy, G.; Suzuki, T.; Tamii, A.; Thies, J. H.; Zegers, R. G. T.; Zenihiro, J.

    2013-01-01

    Given the importance of Gamow-Teller (GT) transitions in nuclear structure and astrophysical nuclear processes, we have studied Tz=+3/2→+1/2, GT transitions starting from the 47Ti nucleus in the (3He,t) charge-exchange reaction at 0∘ and at an intermediate incident energy of 140 MeV/nucleon. The experiments were carried out at the Research Center for Nuclear Physics (RCNP), Osaka, using the high-resolution facility with a high-dispersion beam line and the Grand-Raiden spectrometer. With an energy resolution of 20 keV, individual GT transitions were observed and GT strength was derived for each state populated up to an excitation energy (Ex) of 12.5 MeV. The GT strength was widely distributed from low excitation energy up to 12.5 MeV, where we had to stop the analysis because of the high level density. The distribution of the GT strengths was compared with the results of shell model calculations using the GXPF1 interaction. The calculations could reproduce the experimental GT distributions well. The GT transitions from the ground state of 47Ti and the M1 transitions from the isobaric analog state in 47V to the same low-lying states in 47V are analogous. It was found that the ratios of GT transition strengths to the ground state, the 0.088-MeV state, and the 0.146-MeV state are similar to the ratios of the strengths of the analogous M1 transitions from the isobaric analog state (IAS) to these states. The measured distribution of the GT strengths was also compared with those starting from the Tz=+3/2 nucleus 41K to the Tz=+1/2 nucleus 41Ca.

  6. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S.; Narikovich, A. S.

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of themore » static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.« less

  7. Lunar soil strength estimation based on Chang'E-3 images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Spiteri, Conrad; Li, Chun-Lai; Zheng, Yong-Chun

    2016-11-01

    Chang'E-3 (CE-3) was the third mission by China to explore the Moon which had landed two spacecraft, the CE-3 lander and Yutu rover on the lunar surface in late 2013. The paper presents analytical results of high-resolution terrain data taken by CE-3's onboard cameras. The image data processing aims to extract sinkage profiles of the wheel tracks during the rover traverse. Further analysis leads to derivation or estimation of lunar soil physical properties (in terms of strength and stiffness) based on the wheel sinkage, despite the fact Yutu does not possess in situ soil measurement instruments. Our findings indicate that the lunar soil at the CE-3 landing site has similar stiffness to what is measured at the Luna 17 landing site but has much less strength compared to the Apollo 15 landing site.

  8. Transit Recovery of Kepler-167e: Providing JWST with an Unprecedented Jupiter-analog Exoplanet Target

    NASA Astrophysics Data System (ADS)

    Dalba, Paul; Muirhead, Philip; Tamburo, Patrick

    2018-05-01

    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit in the cold outer reaches of their systems, despite their low transit probabilities. Recent work suggests that cold gas giant exoplanet atmospheres are amenable to transmission spectroscopy (the analysis of the transit depth versus wavelength) enabling novel tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-167e, a low-eccentricity Jupiter-analog exoplanet with a 1,071-day orbital period residing well beyond the snow-line. Transmission spectroscopy of Kepler-167e from JWST can reveal the composition of this planet's atmosphere, constrain its heavy-element abundance, and identify atmospheric photochemical processes. JWST characterization also enables unprecedented direct comparison with Jupiter and Saturn, which show a striking diversity in physical properties that is best investigated through comparative exoplanetology. Since Kepler only observed two transits of Kepler-167e, it is not known if this exoplanet exhibits transit timing variations (TTVs). About half of Kepler's long-period exoplanets have TTVs of up to 40 hours. Such a large uncertainty jeopardizes attempts to characterize the atmosphere of this unique Jovian exoplanet with JWST. To mitigate this risk, the upcoming third transit of Kepler-167e must be observed to test for TTVs. We propose a simple 10-hour, single-channel observation to capture ingress or egress of the next transit of Kepler-167e in December 2018. In the absence of TTVs, our observation will reduce the ephemeris uncertainty from an unknown value to approximately 3 minutes, thereby removing the risk in future transit observations with JWST. The excellent photometric precision of Spitzer is sufficient to identify the transit of Kepler-167e. Given the timing and nature of this program, Spitzer is the only observatory--on the ground or in space--that can make this pivotal observation.

  9. E2/M1 and C2/M1 at Elsa

    NASA Astrophysics Data System (ADS)

    Gothe, R. W.

    2003-07-01

    At the ELectron Stretcher Accelerator ELSA the four momentum transfer dependence of the N to Δ transition has been investigated by measuring the \\vartheta {π }{*} and \\varphi {π }{*} angular distribution of the double differential pion production cross sections in a series of electron scattering coincidence experiments on hydrogen in the -K2-range from 0.04 GeV2 to 0.8 GeV2. The azimuthal angular dependence of the hadronic cross section is based on the polarization of the virtual photon and separates the response functions RT + ∈LRL, RLT and RTT. Whereas the individual \\vartheta {π }{*} -dependences of these response functions allow to form specific ratios, which are sensitive either to the electric transverse (E2 or E1+) or the Coulomb (C2 or S1+) quadrupole transition amplitudes. Preliminary results on the extraction of such multipole ratios have been previously reported in the NSTAR 2000 proceedings1. First results for a -K2 of 0.638 GeV2 obtained after radiative and resolution dependent corrections are described here and compared to other most recent experimental results.

  10. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium.

    PubMed

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-12-17

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.

  11. 34 CFR 300.43 - Transition services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., including postsecondary education, vocational education, integrated employment (including supported...; (2) Is based on the individual child's needs, taking into account the child's strengths, preferences..., acquisition of daily living skills and provision of a functional vocational evaluation. (b) Transition...

  12. Λ-enhanced grey molasses on the D2 transition of Rubidium-87 atoms.

    PubMed

    Rosi, Sara; Burchianti, Alessia; Conclave, Stefano; Naik, Devang S; Roati, Giacomo; Fort, Chiara; Minardi, Francesco

    2018-01-22

    Laser cooling based on dark states, i.e. states decoupled from light, has proven to be effective to increase the phase-space density of cold trapped atoms. Dark-states cooling requires open atomic transitions, in contrast to the ordinary laser cooling used for example in magneto-optical traps (MOTs), which operate on closed atomic transitions. For alkali atoms, dark-states cooling is therefore commonly operated on the D 1 transition nS 1/2  → nP 1/2 . We show that, for 87 Rb, thanks to the large hyperfine structure separations the use of this transition is not strictly necessary and that "quasi-dark state" cooling is efficient also on the D 2 line, 5S 1/2  → 5P 3/2 . We report temperatures as low as (4.0 ± 0.3) μK and an increase of almost an order of magnitude in the phase space density with respect to ordinary laser sub-Doppler cooling.

  13. Lifetimes and Oscillator Strengths for Ultraviolet Transitions in P II, Cl II and Cl III

    NASA Technical Reports Server (NTRS)

    Cheng, S.; Federman, S. R.; Schectman, R. M.; Brown, M.; Irving, R. E.; Fritts, M. C.; Gibson, N. D.

    2006-01-01

    Oscillator strengths for transitions in P II, Cl II and Cl III are derived from lifetimes and branching factions measured with beam-foil techniques. The focus is on the multiplets with a prominent interstellar line at 1153 A in P II which is seen in spectra of hot stars, and the lines at 1071 A in Cl II and 1011 A in Cl III whose lines are seen in spectra of diffuse interstellar clouds and the Io torus acquired with the Far Ultraviolet Spectroscopic Explorer. These data represent the first complete set of experimental f-values for the lines in the multiplets. Our results for P II (lambda)1153 agree well with Curtis semi-empirical predictions, as well as the large scale computations by Hibbert and by Tayal. The data for Cl II (lambda)1071 also agree very well with the most recent theoretical effort and with Morton s newest recommendations. For Cl III, however, our f-values are significantly larger than those given by Morton; instead, they are more consistent with recent large-scale theoretical calculations. Extensive tests provide confirmation that LS coupling rules apply to the transitions for the multiplets in Cl II and Cl III.

  14. Supporting Early Adolescent Learning and Social Strengths: Promoting Productive Contexts for Students At-Risk for EBD during the Transition to Middle School

    ERIC Educational Resources Information Center

    Farmer, Thomas W.; Hamm, Jill V.; Petrin, Robert A.; Robertson, Dylan; Murray, Robert A.; Meece, Judith L.; Brooks, Debbie Sprott

    2010-01-01

    This study involved a pilot examination of the impact of the Supporting Early Adolescent Learning and Social Strengths (SEALS) model on the 6th grade academic and social context following the transition to middle school. Two middle schools from a high poverty Appalachian school district were randomly assigned to the intervention and control…

  15. Disorder-driven topological phase transition in B i 2 S e 3 films

    DOE PAGES

    Brahlek, Matthew; Koirala, Nikesh; Salehi, Maryam; ...

    2016-10-03

    Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photo-emission spectroscopy and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI Bi 2Se 3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that theremore » is a change in material’s topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically-protected surface states, and will provoke new studies as to the fundamental nature of topological phase of matter in the presence of disorder.« less

  16. Pressure-dependent semiconductor to semimetal and Lifshitz transitions in 2H-MoTe2: Raman and first-principles studies

    NASA Astrophysics Data System (ADS)

    Bera, Achintya; Singh, Anjali; Muthu, D. V. S.; Waghmare, U. V.; Sood, A. K.

    2017-03-01

    High pressure Raman spectroscopy of bulk 2H-MoTe2 up to  ∼29 GPa is shown to reveal two phase transitions (at  ∼6 and 16.5 GPa), which are analyzed using first-principles density functional theoretical calculations. The transition at 6 GPa is marked by changes in the pressure coefficients of A 1g and E2g1 Raman mode frequencies as well as in their relative intensity. Our calculations show that this is an isostructural semiconductor to a semimetal transition. The transition at  ∼16.5 GPa is identified with the changes in linewidths of the Raman modes as well as in the pressure coefficients of their frequencies. Our theoretical analysis clearly shows that the structure remains the same up to 30 GPa. However, the topology of the Fermi-surface evolves as a function of pressure, and abrupt appearance of electron and hole pockets at P∼ 20 GPa marks a Lifshitz transition.

  17. Phase transition in the spin- 3 / 2 Blume-Emery-Griffiths model with antiferromagnetic second neighbor interactions

    NASA Astrophysics Data System (ADS)

    Yezli, M.; Bekhechi, S.; Hontinfinde, F.; EZ-Zahraouy, H.

    2016-04-01

    Two nonperturbative methods such as Monte-Carlo simulation (MC) and Transfer-Matrix Finite-Size-Scaling calculations (TMFSS) have been used to study the phase transition of the spin- 3 / 2 ​Blume-Emery-Griffiths model (BEG) with quadrupolar and antiferromagnetic next-nearest-neighbor exchange interactions. Ground state and finite temperature phase diagrams are obtained by means of these two methods. New degenerate phases are found and only second order phase transitions occur for all values of the parameter interactions. No sign of the intermediate phase is found from both methods. Critical exponents are also obtained from TMFSS calculations. Ising criticality and nonuniversal behaviors are observed depending on the strength of the second neighbor interaction.

  18. New perspective of Grodzins E × B(E2) ↑ product rule

    NASA Astrophysics Data System (ADS)

    Gupta, J. B.; Katoch, Vikas

    In the collective spectra of atomic nuclei, the level energy E(21+) varies with atomic number Z and neutron number N. Also the E2 decay-reduced transition probability B(E2, 01+ → 2 1+) is related to the energy E(21+). The product E(21+) × B(E2) ↑ is constant according to Grodzins product rule, independent of the vibration or rotational status of the nucleus. The product rule is often used for determining B(E2) from the known E(21+). However, the variation of the product with various parameters is also suggested in the literature. Hence, a detailed global study of this rule for (Z = 54‑‑78, 66 < N < 126) region is warranted. We use a novel method of displaying the linear relation of B(E2) ↑ with 1/E(21+) for the isotopes of each element (Xe-Pt), instead of their variation with N,Z or A. Through our work, we firmly establish the global validity of the Grodzins relation of B(E2), being proportional to the moment of inertia, except for the deviation in specific cases. Our B(E2) ↑ versus 1/E plots provide a transparent view of the variation of the low-energy nuclear structure. This gives a new perspective of their nuclear structure. Also the various theoretical interpretations of B(E2)s and the energy E(21+) are reviewed.

  19. Low-lying electric-dipole strengths of Ca, Ni, and Sn isotopes imprinted on total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2017-08-01

    Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.

  20. Stark Interference of Electric and Magnetic Dipole Transitions in the A-X Band of OH.

    PubMed

    Schewe, H Christian; Zhang, Dongdong; Meijer, Gerard; Field, Robert W; Sartakov, Boris G; Groenenboom, Gerrit C; van der Avoird, Ad; Vanhaecke, Nicolas

    2016-04-15

    An experimental method is demonstrated that allows determination of the ratio between the electric (E1) and magnetic (M1) transition dipole moments in the A-X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M1-to-E1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory.

  1. [Influences of R2O-Al2O3-B2O3-SiO2 system glass and superfine alpha-Al2O3 on the sintering and phase transition of hydroxyapatite ceramics].

    PubMed

    Wang, Zhiqiang; Chen, Xiaoxu; Cai, Yingji; Lü, Bingling

    2003-06-01

    The effects of R2O-Al2O3-B2O3-SiO2 system glass and superfine alpha-Al2O3 on the sintering and phase transition of hydroxyapatite (HAP) ceramics were assessed. The results showed that alpha-Al2O3 impeded the sintering of HAP and raised the sintering temperature. When glass and alpha-Al2O3 were used together to reinforce HAP ceramics, better results could be obtained; the bending strength of multiphase HAP ceramics approached 106 MPa when 10% (wt) alpha-Al2O3 and 20%(wt) glass were used and sintered at 1200 for 1 h.

  2. E2/M1 mixing ratios in transitions from the gamma vibrational bands to the ground state rotational bands of 102, 104, 106, 108Mo, 108, 110, 112Ru, and 112, 114, 116Pd

    NASA Astrophysics Data System (ADS)

    Eldridge, J. M.; Fenker, B.; Hamilton, J. H.; Goodin, C.; Zachary, C. J.; Wang, E.; Ramayya, A. V.; Daniel, A. V.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.

    2018-02-01

    E2/ M1 mixing ratios have been measured for transitions from states in the γ vibrational bands ( I+_{γ}) to states in the ground state bands (I+ or [I-1]+) of the neutron rich, even-even, deformed isotopes, 102, 104, 106, 108Mo, 108, 110, 112Ru, and 112, 114, 116Pd, including from states as high as 9+_{γ}. These measurements were done using the GAMMASPHERE detector array, which, at the time of the experiment, had 101 working HPGe detectors, arranged at 64 different angles. A 62 μCi source of 252Cf was placed inside GAMMASPHERE yielding 5.7× 10^{11} γ-γ-γ and higher coincidence events. The angular correlations between the transitions from the γ-bands to the ground bands, and the pure E2 transitions within the ground band were then measured. These angular correlations yielded the mixing ratios, demonstrating that these transitions are pure or nearly pure E2, in agreement with theory. In order to correct for possible attenuation due to the lifetime of the intermediate state in these correlations, the g-factors of the intermediate states needed to be known. Therefore, the g-factors of the 2+ states in the ground state band have been measured.

  3. Einstein A coefficients for rovibronic lines of the A2Π → X2Σ+ and B2Σ+ → X2Σ+ transitions of CaH and CaD

    NASA Astrophysics Data System (ADS)

    Alavi, S. Fatemeh; Shayesteh, Alireza

    2018-02-01

    Calcium monohydride is an important diatomic molecule appearing in the spectra of sunspots and M dwarfs. We report complete line lists with Einstein A coefficients for the A2Π-X2Σ+ and B2Σ+-X2Σ+ electronic transitions of CaH and CaD radicals. The most recent ab initio transition dipole moments and potential energy curves were used for the calculation of vibronic band intensities, taking the Herman-Wallis effect into account, and the rotational line strengths were calculated using the PGOPHER program of Western. For the A2Π and B2Σ+ excited states of CaH and CaD, new off-diagonal electronic matrix elements were included in the Hamiltonian matrix, and new sets of spectroscopic constants were determined in order to accurately reproduce the line positions and relative intensities of the observed branches in laboratory spectra. For both CaH and CaD isotopologues, Einstein A coefficients were calculated for all possible rovibronic transitions from the v΄ = 0-3 vibrational levels of the A2Π state and the v΄ = 0-2 vibrational levels of the B2Σ+ state to the v″ = 0-4 vibrational levels of the X2Σ+ ground state. The line lists and intensities reported here can be used to accurately determine the amounts of CaH and CaD in stellar environments.

  4. Stretch-collapse transition of polyelectrolyte brushes in a poor solvent

    NASA Astrophysics Data System (ADS)

    von Goeler, F.; Muthukumar, M.

    1996-12-01

    This paper describes the behavior of charged, polymer brushes in electrolyte solutions of varying solvent quality. The brush height, d, dependence on the chain length, L (=Nl, where l is the Kuhn length), the grafting density σ, and solvent conditions is determined. We consider a monomer-monomer potential consisting of three components: (1) a long-ranged, screened Coulombic component of strength v¯/l (l is the Kuhn length) and range κ-1; (2) a short-ranged, two-body component of strength w¯l; and (3) a short-ranged, three-body component of strength ūl3. In particular, we examine the transition from a stretched state to a collapsed state in a poor solvent (w¯<0) as the solvent quality is decreased. Using dimensional analysis, Monte Carlo methods, and a variational technique, a first order transition is observed as predicted by the scaling arguments of Ross et al. and Borisov et al. for high charge/grafting densities. Using a variational procedure, we derive an analytical expression for the brush size and determine, quantitatively, the critical conditions for a first order transition in terms of key dimensionless variables, vN5/2, κlN1/2, wN3/2, and uN2 (where v=2πσl2v¯, w=σl2w¯, and u=σ2l4ū).

  5. Collapsed tetragonal phase transition in LaRu2P2

    NASA Astrophysics Data System (ADS)

    Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; Kothapalli, Karunakar; Bud'ko, Sergey L.; Goldman, Alan I.; Kreyssig, Andreas; Canfield, Paul C.

    2017-11-01

    The structural properties of LaRu2P2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu2P2 (I4/mmm) has a tetragonal structure with a bulk modulus of B =105 (2 ) GPa and exhibits superconductivity at Tc=4.1 K. With the application of pressure, LaRu2P2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B =175 (5 ) GPa. At the transition, the c -lattice parameter exhibits a sharp decrease with a concurrent increase of the a -lattice parameter. The cT phase transition in LaRu2P2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P =3.9 (3 ) GPa at 160 K to P =4.6 (3 ) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu2P2 (R = Y, La -Er , Yb) isostructural series of compounds and find them to be analogous.

  6. Synthesis and some coordination chemistry of the PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4, attempts to prepare the PSiP analogue, and the effect of the E atom on the molecular structures of E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn).

    PubMed

    Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2018-03-26

    The non-donor-stabilized PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4 (1) has been prepared by treating SnCl2 with Li2(NCH2PtBu2)2C6H4. All attempts to synthesize the analogous PSiP silylene by reduction of the (previously unknown) silanes SiCl2(NCH2PtBu2)2C6H4 (2), SiHCl(NCH2PtBu2)2C6H4 (3) and SiH(HMDS)(NCH2PtBu2)2C6H4 (4; HMDS = N(SiMe3)2) have been unsuccessful. The almost planar (excluding the tert-butyl groups) molecular structure of stannylene 1 (determined by X-ray crystallography) has been rationalized with the help of DFT calculations, which have shown that, in the series of diphosphanetetrylenes E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn), the most stable conformation of the compounds with E = Ge and Sn has both P atoms very close to the EN2C6H4 plane, near (interacting with) the E atom, whereas for the compounds with E = C and Si, both phosphane groups are located at one side of the EN2C6H4 plane and far away from the E atom. The size of the E atom and the strength of stabilizing donor-acceptor PE interactions (both increase on going down in group 14) are key factors in determining the molecular structures of these diphosphanetetrylenes. The syntheses of the chloridostannyl complexes [Rh{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η4-cod)] (5), [RuCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η6-cym)] (6) and [IrCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η5-C5Me5)] (7) have demonstrated the tendency of stannylene 1 to insert its Sn atom into M-Cl bonds of transition metal complexes and the preference of the resulting PSnP chloridostannyl group to act as a κ2Sn,P-chelating ligand, maintaining an uncoordinated phosphane fragment. X-ray diffraction data (of 6), 31P{1H} NMR data (of 5-7) and DFT calculations (on 6) are consistent with the existence of a weak PSn interaction involving the non-coordinated P atom of complexes 5-7, similar to that found in stannylene 1.

  7. Local Complex Potential Based Time Dependent Wave Packet Approach to Calculation of Vibrational Excitation Cross-sections in e-N2, e-H2 and e-CO Scattering

    NASA Astrophysics Data System (ADS)

    Sarma, Manabendra; Singh, Raman K.; Mishra, Manoj K.

    2007-12-01

    Vibrational excitation cross-sections σn←m(E) in resonant e-N2, e-CO and e-H2 scattering are calculated from transition matrix elements Tn←m(E) obtained using Fourier transform of the cross correlation function <φn(R)|ψm(R,t)> where ψm(R,t); e-iHA-(R)t/ℏφm(R). Time evolution under the influence of the resonance anionic Hamiltonian HA-(A- = N2-/CO/H2-) is effected using Lanczos and fast Fourier transforms and the target (A) vibrational eigenfunctions φm(R) and φn(R) are calculated using Fourier grid Hamiltonian method applied to PE curve of the neutral target. The resulting vibrational excitation cross-section profiles provide reasonable agreement with experimental results and the cross correlation functions offer an unequivocal differentiation between the boomerang and impulse models.

  8. Pettit performs the EPIC Card Testing and X2R10 Software Transition

    NASA Image and Video Library

    2011-12-28

    ISS030-E-022574 (28 Dec. 2011) -- NASA astronaut Don Pettit (foreground),Expedition 30 flight engineer, performs the Enhanced Processor and Integrated Communications (EPIC) card testing and X2R10 software transition. The software transition work will include EPIC card testing and card installations, and monitoring of the upgraded Multiplexer/ Demultiplexer (MDM) computers. Dan Burbank, Expedition 30 commander, is setting up a camcorder in the background.

  9. Pettit performs the EPIC Card Testing and X2R10 Software Transition

    NASA Image and Video Library

    2011-12-28

    ISS030-E-022575 (28 Dec. 2011) -- NASA astronaut Don Pettit (foreground),Expedition 30 flight engineer, performs the Enhanced Processor and Integrated Communications (EPIC) card testing and X2R10 software transition. The software transition work will include EPIC card testing and card installations, and monitoring of the upgraded Multiplexer/ Demultiplexer (MDM) computers. Dan Burbank, Expedition 30 commander, is setting up a camcorder in the background.

  10. Laser-stimulated electric quadrupole transitions in the molecular hydrogen ion H2+

    NASA Astrophysics Data System (ADS)

    Korobov, V. I.; Danev, P.; Bakalov, D.; Schiller, S.

    2018-03-01

    Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H2+. The hyperfine and Zeeman structure of the E 2 transition spectrum and the effects of the laser polarization are treated in detail. The treatment is generally applicable to molecules in 2Σ states. We also present the nuclear spin-electron spin-coupling constants, computed with a precision ten times higher than previously obtained.

  11. Impacts of Irrigation on Land-Atmosphere Coupling Strength Under Different Evapotranspiration Characteristics

    NASA Astrophysics Data System (ADS)

    Liao, C. Y.; Lo, M. H.

    2017-12-01

    The Budyko curve displays that the magnitude of evapotranspiration (ET) is limited mainly by the availabilities of energy and water, i.e., under wet conditions, ET is primarily controlled by the available energy, while under dry conditions, ET is primarily controlled by the available water. Land-atmosphere coupling (LAC) strength, which relates to the Budyko curve, is widely discussed because of its contribution towards the improvement in seasonal climate forecasts. For example, the "hot spots" of LAC, where the soil moisture anomalies strongly affect the local precipitation, are found in the transition zones between wet and dry climates. ET of these transition zones is limited by the available water, but at the same time, the surface latent heat flux is large enough to trigger moist convection. Recently, the impacts of irrigation have gained lots of attention, including the change in LAC. Badger and Dirmeyer (2015) analyzed the climate response of Amazon forest replacement by crop with consideration of irrigation in model simulations, discovering negative relationship between added irrigation water and coupling between the soil moisture and the latent heat flux. In addition, Lu et al. (2017) found remarkable decreases of LAC strength with the increase of irrigated cropland percentage in the Great Plains of America. The two studies show that irrigation is possible to affect land-atmosphere coupling strength. However, whether the irrigation process leads to the reduction of coupling strength in other regions of the world remains unclear. This study aims to compare the differences of irrigation impact on land-atmosphere coupling strength between five selected locations undergoing intense irrigation: India, North China Plain, Southwest Europe, Great Plains and Middle East. The spatial divergence of the factor that limits the ET (e.g., either by the available energy or water) will be the focus in this study. Both offline simulation (Community Land Model) and couple

  12. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    NASA Astrophysics Data System (ADS)

    Aggarwal, Sunny; Singh, J.; Jha, A. K. S.; Mohan, Man

    2014-07-01

    Fine-structure energies of the 67 levels belonging to the 1s2, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  13. Collapsed tetragonal phase transition in LaRu 2 P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.

    Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less

  14. Collapsed tetragonal phase transition in LaRu 2 P 2

    DOE PAGES

    Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; ...

    2017-11-10

    Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less

  15. Strength and Deformation of Solid Krypton and Xenon to Mbar Pressures

    NASA Astrophysics Data System (ADS)

    Brugman, B. L.; Lv, M.; Liu, J.; Park, C.; Popov, D.; Prakapenka, V. B.; Dorfman, S.

    2017-12-01

    Studying phase equilibria and deformation of rare gas solids (RGS) under pressure provides insight into their behavior in planetary bodies. Their simple bonding properties make them useful analogs for materials with similar structures and other van der Waals bonded materials. He, Ne, and Ar are useful as pressure-transmitting media in diamond anvil cell (DAC) experiments due to their low strength and inert chemistry, and Xe has been proposed as a pressure medium as well, but relatively little is known about the strength of Kr and Xe. The strength of heavy RGS may be affected by a martensitic transition from fcc to hcp structure, which is observed at lower pressures with higher Z. The pressure ranges of this transition in Kr and Xe in previous experimental and computational studies vary from 5 to 29 GPa for Xe and as high as 130 GPa for Kr. The transition may be further complicated by kinetics and multiple transition mechanisms. Modeling of phase equilibria and evaluation of Kr and Xe as pressure media may be improved by examination of elastic and plastic properties at extreme pressure. We studied phase transitions and deformation of Kr and Xe using synchrotron x-ray diffraction at Advanced Photon Source beamlines 13-ID-D and 16-BM-D in the DAC at pressures up to 118 GPa. The martensitic fcc-hcp phase transition begins as peak asymmetry and weak peaks in both Kr and Xe at pressures as low as 5 GPa. Intensity of hcp peaks in Xe increases continuously to 118 GPa. Weak hcp peaks were evident in Kr alongside fcc peaks from 5 to 94 GPa, contrary to theoretical predictions that the hcp transition does not begin below 110-130 GPa. Strength and plasticity of Kr and Xe were obtained by complementary lattice strain and peak width analysis of diffraction patterns in both axial and radial geometries as well as observation of pressure gradients by ruby fluorescence. Xe is approximately hydrostatic with strength comparable to common pressure media at pressures up to 10-12 GPa

  16. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides

    PubMed Central

    Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.

    2016-01-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479

  17. Energy Levels, Lifetimes, and Transition Rates for P-like Ions from Cr X to Zn XVI from Large-scale Relativistic Multiconfiguration Calculations

    NASA Astrophysics Data System (ADS)

    Wang, K.; Jönsson, P.; Gaigalas, G.; Radžiūtė, L.; Rynkun, P.; Del Zanna, G.; Chen, C. Y.

    2018-04-01

    The fully relativistic multiconfiguration Dirac–Hartree–Fock method is used to compute excitation energies and lifetimes for the 143 lowest states of the 3{s}23{p}3, 3s3p 4, 3{s}23{p}23d, 3s3p 33d, 3p 5, 3{s}23p3{d}2 configurations in P-like ions from Cr X to Zn XVI. Multipole (E1, M1, E2, M2) transition rates, line strengths, oscillator strengths, and branching fractions among these states are also given. Valence–valence and core–valence electron correlation effects are systematically accounted for using large basis function expansions. Computed excitation energies are compared with the NIST ASD and CHIANTI compiled values and previous calculations. The mean average absolute difference, removing obvious outliers, between computed and observed energies for the 41 lowest identified levels in Fe XII, is only 0.057%, implying that the computed energies are accurate enough to aid identification of new emission lines from the Sun and other astrophysical sources. The amount of energy and transition data of high accuracy are significantly increased for several P-like ions of astrophysics interest, where experimental data are still very scarce.

  18. Trunk strength and mobility changes in children with slow transit constipation.

    PubMed

    Chase, Janet W; Stillman, Barry C; Gibb, Susan M; Clarke, Melanie C C; Robertson, Val J; Catto-Smith, Anthony G; Hutson, John M; Southwell, Bridget R

    2009-12-01

    It appears that there are no published reports on childhood slow transit constipation (STC) that have considered the state of the musculoskeletal components of the trunk in these children. The present study aimed to determine whether children with STC have different trunk musculoskeletal characteristics that might be related to their defecation difficulties, compared to controls. With the aid of computer-analyzed photographs and clinical testing, 41 children with STC and 41 age-matched controls were examined for Marfanoid features, sitting posture, spinal joint mobility and trunk muscle strength. The latter was assessed by measuring maximum voluntary abdominal bulging and retraction in sitting, and active trunk extension in prone-lying. Levels of general exercise and sedentary activities were evaluated by questionnaire. STC subjects were more slumped in relaxed sitting (P < or = 0.001), less able to bulge (P < or = 0.03) and less able to actively extend the trunk (P = 0.02) compared to controls. All subjects sat more erect during abdominal bulging (P < or = 0.03). The results show that STC children have reduced trunk control and posture, which indicates that clinicians should include training of trunk muscles and correction of sitting posture. There was no evidence that children with STC exercised less than the controls.

  19. Phase transitions in (NH4)2MoO2F4 crystal

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander; Laptash, Natalia; Vtyurin, Alexander; Krylova, Svetlana

    2016-11-01

    The mechanisms of temperature and high pressure phase transitions have been studied by Raman spectroscopy. Room temperature (295 K) experiments under high hydrostatic pressure up to 3.6 GPa for (NH4)2 MoO2 F4 have been carried out. Experimental data indicates a phase transition into a new high-pressure phase for (NH4)2 MoO2 F4 at 1.2 GPa. This phase transition is related to the ordering anion octahedron groups [MoO2 F4]2- and is not associated with ammonium group. Raman spectra of small non-oriented crystals ranging from 10 to 350 K have been observed. The experiment shows anion groups [MoO2 F4]2- and ammonium in high temperature phase are disordered. The phase transition at T1 = 269.8 K is of the first-order, close to the tricritical point. The first temperature phase transition is related to the ordering anion octahedron groups [MoO2 F4]2-. Second phase transitions T2 = 180 K are associated with the ordering of ammonium. The data presented within this study demonstrate that 2D correlation analysis combined with traditional Raman spectroscopy are powerful tool to study phase transitions in the crystals.

  20. E 2 / M 1 Mixing Ratios in Transitions From the Gamma-Vibrational-Bands to the Ground-State-Rotational-Bands of 102 , 104 , 106 , 108Mo, 108 , 110 , 112Ru, and 112 , 114 , 116Pd

    NASA Astrophysics Data System (ADS)

    Eldridge, Jonathan M.; Fenker, B.; Goodin, C.; Hamilton, J. H.; Wang, E. H.; Ramayya, A. V.; Daniel, A. V.; Ter-Akopian, G. M.; Luo, Y. X.; Rasmussen, J. O.; Oganesson, Yu. Ts.; Zhu, S. J.

    2017-09-01

    E 2 / M 1 mixing ratios have been measured for transitions from states in the γ-vibrational-bands (Iγ+) to states in the ground-state-bands (Ig+ or [I- 1 ] g +) of the neutron rich, deformed isotopes, 102 , 104 , 106 , 108Mo, 108 , 110 , 112Ru, and 112 , 114 , 116Pd, including from states as high as 9γ+. These measurements were done using the GAMMASPHERE detector array, which, at the time of the experiment, had 101 working HPGe detectors, arranged at 64 different angles. A 62 μCi source of 252Cf was placed inside GAMMASPHERE yielding 5.7 ×1011 γ - γ - γ and higher coincidence events. The angular correlation between the transitions from the γ-band to the ground band, and the pure E2 transitions within the ground band were then measured. These angular correlations yielded the mixing ratios, demonstrating that these transitions are all pure or nearly pure E2, in agreement with theory. In order to correct for possible attenuation due to the lifetime of the intermediate state in these correlations, the g-factors of the intermediate states needed to be known. Therefore, the g-factors of the 2g+ states in the ground state band have been measured. Supported by the US Department of Energy; Grant No. DE-FG0588ER40407, Contract No. DE-AC03-76SF00098.

  1. Energy levels and radiative rates for transitions in Co XI

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Msezane, A. Z.

    2007-10-01

    Aims: In this paper we report calculations for energy levels and radiative rates for transitions in Co xi. Methods: The General purpose Relativistic Atomic Structure Package (grasp) and the Flexible Atomic Code (fac) have been adopted for the calculations of energy levels and radiative rates. Results: Energies for the lowest 287 levels of Co xi, including those among the (1s^22s^22p^6) 3s^23p^5, 3s3p^6, 3s^23p^43d, 3s3p^53d, 3s^23p^33d^2, and 3s^23p^44s configurations, are reported. Additionally, radiative rates and oscillator strengths are reported for all electric dipole (E1) transitions with f ≥ 10-5 among these levels, and similar results for magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions are reported only for those with f≥10-8. Comparisons are made with the available results in the literature, and the accuracy of the present data is assessed. Finally, lifetimes for all excited levels are also listed, although measurements are presently available for only one of these. Tables 1 and 3-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/473/995

  2. The transition mechanisms of the E to H mode and the H to E mode in an inductively coupled argon-mercury mixture discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu

    2015-10-15

    In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less

  3. Meeting the Needs of Students with 2e: It Takes a Team

    ERIC Educational Resources Information Center

    Coleman, Mary Ruth; Gallagher, Shelagh

    2015-01-01

    The provision of flexible, multidimensional, customized supports and services for a twice-exceptional (2e) child requires a system of education that is capable of dynamic and personalized interventions that respond to a 2e student's learning strengths and challenges. We believe that this kind of educational response entails more than an excellent…

  4. Effect of etching time and resin bond on the flexural strength of IPS e.max Press glass ceramic.

    PubMed

    Xiaoping, Luo; Dongfeng, Ren; Silikas, Nick

    2014-12-01

    To evaluate the effect of hydrofluoric acid (HFA) etching time and resin cement bond on the flexural strength of IPS e.max(®) Press glass ceramic. Two hundred and ten bars, 25mm×3mm×2mm, were made from IPS e.max(®) Press ingots through lost-wax, hot-pressed ceramic fabrication technology and randomly divided into five groups with forty-two per group after polishing. The ceramic surfaces of different groups were etched by 9.5% hydrofluoric acid gel for 0, 20, 40, 60 and 120s respectively. Two specimens of each group were selected randomly to examine the surface roughness and 3-dimensional topography with atomic force microscope (AFM), and microstructure was analyzed by the field emission scanning electron microscope (FE-SEM). Then each group were subdivided into two subgroups (n=20). One subgroup of this material was selected to receive a thin (approximately 0.1mm) layer of resin luting agent (Variolink N) whereas the other subgroup remained unaltered. Half of subgroup's specimens were thermocycled 10,000 times before a 3-point bending test in order to determine the flexural strength. Interface between resin cement and ceramic was examined with field emission scanning electronic microscope. Roughness values increased with increasing etching time. The mean flexural strength values of group 0s, 20s, 40s, 60s and 120s were 384±33, 347±43, 330±53, 327±67 and 317±41MPa respectively. Increasing HF etching times reduced the mean flexural strength (p<0.05). However, the mean flexural strength of each group, except group 0s, increased significantly to 420±31, 435±50, 400±39 and 412±58MPa after the application of dual-curing resin cement. In the present investigation, no significant differences after thermocycling on the flexural strengths were evident. Overtime HF etching could have a wakening effect on IPS e.max(®) Press glass ceramic, but resin cement bonding to appropriately etched surface would strengthen the dental ceramic. Copyright © 2014 Academy of

  5. Enamel and dentin bond strength following gaseous ozone application.

    PubMed

    Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo

    2009-08-01

    To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p < 0.05). The use of ozone gas to disinfect the cavity before placing a restoration had no influence on immediate enamel and dentin bond strength.

  6. The Astro-E2 Mission

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.

    2004-01-01

    The Astro-E2 observatory is a rebuild of the original Astro-E observatory that was lost during launch in February 2000. It is scheduled for launch into low earth orbit on a Japanese M-V rocket in early 2005. The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, is developing the observatory with major contributions from the US. The three instruments on the observatory are the high-resolution x-ray spectrometer (the XRS) featuring a 30-pixel x-ray microcalorimeter array, a set of four CCD cameras (the XIS) and a combination photo-diode/scintillator detector system (the HXD) that will extend the band pass up to nearly 700 keV. A significant feature of Astro-E2 is that all of the instruments are coaligned and operated simultaneously. With its high spectral resolution and collecting area for spectroscopy above 1 keV, Astro-E2 should enable major discovery space and pioneer new technology for use in space. Prime areas for investigation are supernova remnants, active galaxies and the measurement of black hole properties via relativistically-broadened Fe-K emission galaxies. A number of enhancements have been made for the Astro-E2/XRS, including a higher resolution microcalorimeter array, ii mechanical cooler for longer cryogen life, and an improved in-flight calibration system. The Astro-E2/XIS has also been improved to include two back-side-illuminated CCDs to enhance the low energy response. Improvements have also been made to the x-ray mirrors used for both the XRS and XIS to sharpen the point spread function and reduce the effects of stray light. In this talk we will present the essential features of Astro-E2, paying particular attention to the enhancements, and describe the major scientific strengths of the observatory.

  7. Two-photon-absorption line strengths for nitric oxide: Comparison of theory and sub-Doppler, laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Kulatilaka, Waruna D.; Lucht, Robert P.

    2017-03-01

    We discuss the results of high-resolution, sub-Doppler two-photon-absorption laser-induced fluorescence (TPALIF) spectroscopy of nitric oxide at low pressure and room temperature. The measurements were performed using the single-longitudinal mode output of a diode-laser-seeded optical parametric generator (OPG) system with a measured frequency bandwidth of 220 MHz. The measurements were performed using a counter-propagating pump beam geometry, resulting in sub-Doppler TPALIF spectra of NO for various rotational transitions in the (0,0) vibrational band of the A2Σ+ - X2Π electronic transition. The experimental results are compared with the results of a perturbative treatment of the rotational line strengths for the 20 different rotational branches of the X2Π(v″ = 0) → A2Σ+(v' = 0) two-photon absorption band. In the derivation of the expressions for the two-photon transition absorption strength, the closure relation is used for rotational states in the intermediate levels of the two-photon transition in analogy with the Placzek treatment of Raman transitions. The theoretical treatment of the effect of angular momentum coupling on the two-photon rotational line strengths features the use of irreducible spherical tensors and 3j symbols. The final results are expressed in terms of the Hund's case (a) coupling coefficients aJ and bJ for the X2Π(v″ = 0) rotational level wavefunctions, which are intermediate between Hund's case (a) and case (b). Considerable physical insight is provided by this final form of the equations for the rotational line strengths. Corrections to the two-photon absorption rotational line strength for higher order effects such as centrifugal stretching can be included in a straightforward fashion in the analysis by incorporating higher order terms in these coupling coefficients aJ and bJ, although these corrections are essentially negligible for J < 50. The theoretical calculations of relative line intensities are in good agreement both

  8. Charge ordering in the metal-insulator transition of V-doped CrO2 in the rutile structure.

    PubMed

    Biswas, Sarajit

    2018-04-17

    Electronic, magnetic, and structural properties of pure and V-doped CrO 2 were extensively investigated utilizing density functional theory. Usually, pure CrO 2 is a half-metallic ferromagnet with conductive spin majority species and insulating spin minority species. This system remains in its half-metallic ferromagnetic phase even at 50% V-substitution for Cr within the crystal. The V-substituted compound Cr 0.5 V 0.5 O 2 encounters metal-insulator transition upon the application of on-site Coulomb repulsion U = 7 eV preserving its ferromagnetism in the insulating phase. It is revealed in this study that Cr 3+ -V 5+ charge ordering accompanied by the transfer of the single V-3d electron to the Cr-3dt 2g orbitals triggers metal-insulator transition in Cr 0.5 V 0.5 O 2 . The ferromagnetism of Cr 0.5 V 0.5 O 2 in the insulating phase arises predominantly due to strong Hund's coupling between the occupied electrons in the Cr-t 2g states. Besides this, the ferromagnetic Curie temperature (T c ) decreases significantly due to V-substitution. Interestingly, a structural distortion is observed due to tilting of CrO 6 or VO 6 octahedra across the metal-insulator transition of Cr 0.5 V 0.5 O 2 . Graphical abstract The V-doped compound Cr 0.5 V 0.5 O 2 is found a half-metallic ferromagnet (HMF) in the absence of on-site Coulomb interaction (U). This HMF behavor maintains up to U = 6 eV. Eventually, this system encounters metal-insulator transition (MIT) upon the application of U = 7 eV with a band gap of E g ~ 0.31 eV. Nevertheless, applications of higher U widen the band gaps. In this figure, calculated total (black), Cr-3d (red), V-3d (violet), and O-2p (blue) DOS of Cr 0.5 V 0.5 O 2 for U = 8 eV are illustrated. The system is insulating with a band gap of E g ~ 0.7 eV.

  9. IBM-2 calculation with configuration mixing for Ge isotopes

    NASA Astrophysics Data System (ADS)

    Padilla-Rodal, Elizabeth; Galindo-Uribarri, Alfredo

    2005-04-01

    Recent results on Coulomb excitation experiments of radioactive neutron-rich Ge isotopes at the Holifield Radioactive Ion Beam Facility allow the study of the systematic trend of B(E2; 0^+ ->2^+) between the sub-shell closures at N=40 and the N=50 [1]. The new information on the E2 transition strengths constitutes a stringent test for the nuclear models and has motivated us to revisit the use of Interacting Boson Model in this region. We show that the IBM-2 with configuration mixing is a successful model to describe the shape transition phenomena that take place around N=40 in stable germanium isotopes, as well as the predictions given by this model about the evolution of the structure for the radioactive ^78, 80, 82Ge nuclei. [1] E. Padilla-Rodal Ph.D. Thesis UNAM; submitted for publication.

  10. Frequency tunable near-infrared metamaterials based on VO2 phase transition.

    PubMed

    Dicken, Matthew J; Aydin, Koray; Pryce, Imogen M; Sweatlock, Luke A; Boyd, Elizabeth M; Walavalkar, Sameer; Ma, James; Atwater, Harry A

    2009-09-28

    Engineering metamaterials with tunable resonances from mid-infrared to near-infrared wavelengths could have far-reaching consequences for chip based optical devices, active filters, modulators, and sensors. Utilizing the metal-insulator phase transition in vanadium oxide (VO(2)), we demonstrate frequency-tunable metamaterials in the near-IR range, from 1.5 - 5 microns. Arrays of Ag split ring resonators (SRRs) are patterned with e-beam lithography onto planar VO(2) and etched via reactive ion etching to yield Ag/VO(2) hybrid SRRs. FTIR reflection data and FDTD simulation results show the resonant peak position red shifts upon heating above the phase transition temperature. We also show that, by including coupling elements in the design of these hybrid Ag/VO(2) bi-layer structures, we can achieve resonant peak position tuning of up to 110 nm.

  11. Observation of the Forbidden Magnetic Dipole Transition 6{sup 2}P{sub ?} --> 7{sup 2}P{sub ?} in Atomic Thallium

    DOE R&D Accomplishments Database

    Chu, S.

    1976-10-01

    A measurement of the 6{sup 2}P{sub ?} --> 7{sup 2}P{sub ?} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ?} ground state to the 7{sup 2}P{sub ?} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ?} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ?} and 7{sup 2}P{sub ?} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.

  12. Optical and Photophysical Investigation of (2E)-1-(2,5-Dimethylfuran-3-Yl)-3-(9-Ethyl-9H-Carbazol-3-Yl)Prop-2-en-1-One (DEPO) by Spectrofluorometer in Organized Medium.

    PubMed

    Asiri, Abdullah M; Al-Dies, Al-Anood M; Khan, Salman A

    2017-07-01

    (2E)-1-(2,5-dimethylfuran-3-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (DEPO) was prepared by the reaction of 9-ethyl-9H-carbazole-3-carbaldehyde with 1-(2,5-dimethylfuran-3-yl)ethanone under microwave irradiation. The structure of DEPO was established experimentally by EI-MS, FT-IR, 1 H and 13 C NMR spectral studies. Electronic absorption and emission spectra of DEPO were studied in different solvents on the basis of polarities, and the obtain data were used to determine the solvatochromic properties such as extinction coefficient, oscillator strength, transition dipole moment, stokes shift, fluorescence quantum yield and photochemical quantum yield. Photochemical quantum yield (Φ c ) of DEPO dye was determined in different solvent. The dye comparatively photostable in DMSO but undergoes photodecomposition in chloro methane solvents. The DEPO dye may be use as probe or quencher to determine critical micelle concentration (CMC) of cetyltri methyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS).

  13. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  14. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  15. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  16. Cystathionine β-Synthase (CBS) Domains 1 and 2 Fulfill Different Roles in Ionic Strength Sensing of the ATP-binding Cassette (ABC) Transporter OpuA*

    PubMed Central

    Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert

    2011-01-01

    The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634

  17. Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2001-01-01

    Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

  18. Structural properties of Sb 2S 3 under pressure: Evidence of an electronic topological transition

    DOE PAGES

    Efthimiopoulos, Ilias; Buchan, Cienna; Wang, Yuejian

    2016-04-06

    High-pressure Raman spectroscopy and x-ray diffraction of Sb 2S 3 up to 53 GPa reveals two phase transitions at 5 GPa and 15 GPa. The first transition is evidenced by noticeable compressibility changes in distinct Raman-active modes, in the lattice parameter axial ratios, the unit cell volume, as well as in specific interatomic bond lengths and bond angles. By taking into account relevant results from the literature, we assign these effects to a second-order isostructural transition arising from an electronic topological transition in Sb 2S 3 near 5 GPa. Close comparison between Sb 2S 3 and Sb 2S 3 upmore » to 10 GPa reveals a slightly diverse structural behavior for these two compounds after the isostructural transition pressure. This structural diversity appears to account for the different pressure-induced electronic behavior of Sb 2S 3 and Sb 2S 3 up to 10 GPa, i.e. the absence of an insulator-metal transition in Sb 2S 3 up to that pressure. Lastly, the second high-pressure modification appearing above 15 GPa appears to trigger a structural disorder at ~20 GPa; full decompression from 53 GPa leads to the recovery of an amorphous state.« less

  19. Biaxial flexural strength of CAD/CAM ceramics.

    PubMed

    Buso, L; Oliveira-Júnior, O B; Hiroshi Fujiy, F; Leão Lombardo, G H; Ramalho Sarmento, H; Campos, F; Assunção Souza, R O

    2011-06-01

    Aim of the study was to evaluate the biaxial flexural strength of ceramics processed using the Cerec inLab system. The hypothesis was that the flexural strength would be influenced by the type of ceramic. Ten samples (ISO 6872) of each ceramic (N.=50/n.=10) were made using Cerec inLab (software Cerec 3D) (Ø:15 mm, thickness: 1.2 mm). Three silica-based ceramics (Vita Mark II [VM], ProCad [PC] and e-max CAD ECAD]) and two yttria-stabilized tetragonal-zirconia-polycrystalline ceramics (Y-TZP) (e-max ZirCad [ZrCAD] and Vita In-Ceram 2000 YZ Cubes [VYZ]) were tested. The samples were finished with wet silicone carbide papers up to 1 200-grit and polished in a polishing machine with diamond paste (3 µm). The samples were then submitted to biaxial flexural strength testing in a universal testing machine (EMIC), 1 mm/min. The data (MPa) were analyzed using the Kruskal-Wallis and Dunn (5%) tests. Scanning electronic microscopy (SEM) was performed on a representative sample from each group. The values (median, mean±sd) obtained for the experimental groups were: VM (101.7, 102.1±13.65 MPa), PC (165.2, 160±34.7 MPa), ECAD (437.2, 416.1±50.1 MPa), ZrCAD (804.2, 800.8±64.47 MPa) and VYZ (792.7, 807±100.7 MPa). The type of ceramic influenced the flexural strength values (P=0.0001). The ceramics ECADa, e-max ZrCADa and VYZa presented similar flexural strength values which were significantly higher than the other groups (PCb and VM IIb), which were similar statistically between them (Dunn's test). The hypothesis was accepted. The polycrystalline ceramics (Y-TZP) should be material chosen for make FPDs because of their higher flexural strength values.

  20. Shape coexistence close to N = 50 in the neutron-rich isotope 80Ge investigated by IBM-2

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Li; Mu, Cheng-Fu

    2018-02-01

    The properties of the low-lying states, especially the relevant shape coexistence in 80Ge, close to one of most neutron-rich doubly magic nuclei at N = 50 and Z = 28, have been investigated within the framework of the proton-neutron interacting model (IBM-2). Based on the fact that the relative energy of the d neutron boson is different from that of the proton boson, the calculated energy levels of low-lying states and E2 transition strengths can reproduce the experimental data very well. Particularly, the first excited state {0}2+, which is intimately related to the shape coexistence phenomenon, is reproduced quite nicely. The {ρ }2(E0,{0}2+\\to {0}1+) transition strength is also predicted. The experimental data and theoretical results indicate that both collective spherical and γ-soft vibration structures coexist in 80Ge. Supported by National Natural Science Foundation of China (11475062, 11647306, 11147148)

  1. HI-to-H2 Transitions in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel; Lee, Min-Young; Le Petit, Franck; Roueff, Evelyne

    2015-08-01

    We use the Sternberg et al. theory for interstellar atomic to molecular hydrogen (H i-to-H2) conversion to analyze H i-to-H2 transitions in five (low-mass) star-forming and dark regions in the Perseus molecular cloud, B1, B1E, B5, IC348, and NGC1333. The observed H i mass surface densities of 6.3-9.2 {M}⊙ {{pc}}-2 are consistent with H i-to-H2 transitions dominated by H i-dust shielding in predominantly atomic envelopes. For each source, we constrain the dimensionless parameter α G, and the ratio {I}{UV}/n, of the FUV intensity to hydrogen gas density. We find α G values from 5.0 to 26.1, implying characteristic atomic hydrogen densities 11.8-1.8 cm-3, for {I}{UV}≈ 1 appropriate for Perseus. Our analysis implies that the dusty H i shielding layers are probably multiphased, with thermally unstable UNM gas in addition to cold CNM within the 21 cm kinematic radius.

  2. Liquid-liquid phase transition and anomalous diffusion in simulated liquid GeO 2

    NASA Astrophysics Data System (ADS)

    Hoang, Vo Van; Anh, Nguyen Huynh Tuan; Zung, Hoang

    2007-03-01

    We perform molecular dynamics (MD) simulation of diffusion in liquid GeO 2 at the temperatures ranged from 3000 to 5000 K and densities ranged from 3.65 to 7.90 g/cm 3. Simulations were done in a model containing 3000 particles with the new interatomic potentials for liquid and amorphous GeO 2, which have weak Coulomb interaction and Morse-type short-range interaction. We found a liquid-liquid phase transition in simulated liquid GeO 2 from a tetrahedral to an octahedral network structure upon compression. Moreover, such phase transition accompanied with an anomalous diffusion of particles in liquid GeO 2 that the diffusion constant of both Ge and O particles strongly increases with increasing density (e.g. with increasing pressure) and it shows a maximum at the density around 4.95 g/cm 3. The possible relation between anomalous diffusion of particles and structural phase transition in the system has been discussed.

  3. Mixing of t2 g-eg orbitals in 4 d and 5 d transition metal oxides

    NASA Astrophysics Data System (ADS)

    Stamokostas, Georgios L.; Fiete, Gregory A.

    2018-02-01

    Using exact diagonalization, we study the spin-orbit coupling and interaction-induced mixing between t2 g and egd -orbital states in a cubic crystalline environment, as commonly occurs in transition metal oxides. We make a direct comparison with the widely used t2 g-only or eg-only models, depending on electronic filling. We consider all electron fillings of the d shell and compute the total magnetic moment, the spin, the occupancy of each orbital, and the effective spin-orbit coupling strength (renormalized through interaction effects) in terms of the bare interaction parameters, spin-orbit coupling, and crystal-field splitting, focusing on the parameter ranges relevant to 4 d and 5 d transition metal oxides. In various limits, we provide perturbative results consistent with our numerical calculations. We find that the t2 g-eg mixing can be large, with up to 20% occupation of orbitals that are nominally "empty," which has experimental implications for the interpretation of the branching ratio in experiments, and can impact the effective local moment Hamiltonian used to study magnetic phases and magnetic excitations in transition metal oxides. Our results can aid the theoretical interpretation of experiments on these materials, which often fall in a regime of intermediate coupling with respect to electron-electron interactions.

  4. Cholesteric pitch transitions induced by mechanical strain.

    PubMed

    Lelidis, I; Barbero, G; Alexe-Ionescu, A L

    2013-02-01

    We investigate thickness and surface anchoring strength influence on pitch transitions in a planar cholesteric liquid crystal layer. The cholesteric-nematic transition is also investigated. We assume planar boundary conditions, with strong anchoring strength at one interface and weak anchoring strength at the other. The surface anchoring energy we consider to describe the deviation of the surface twist angle from the easy axis induced by a bulk deformation is a parabolic potential or Rapini and Papoular periodic potential, respectively. We show that under strain, all pitch transitions take place at a critical thickness that is equal to the quarter of the natural cholesteric pitch. The latter result does not depend on the anchoring strength, the particular surface potential, or material properties. The twist angle on the limiting surface characterized by weak anchoring varies with strain either by slipping and or in a discontinuous manner according to the thickness of the sample. The position of the bifurcation point depends only on the ratio of the extrapolation length over the layer thickness, but its value is model dependent. Multistability and multiplicity of the transition are discussed.

  5. Magnetic Excitations across the Metal-Insulator Transition in the Pyrochlore Iridate Eu2Ir2O7

    NASA Astrophysics Data System (ADS)

    Chun, Sae Hwan; Yuan, Bo; Casa, Diego; Kim, Jungho; Kim, Chang-Yong; Tian, Zhaoming; Qiu, Yang; Nakatsuji, Satoru; Kim, Young-June

    2018-04-01

    We report a resonant inelastic x-ray scattering study of the magnetic excitation spectrum in a highly insulating Eu2 Ir2 O7 single crystal that exhibits a metal-insulator transition at TMI=111 (7 ) K . A propagating magnon mode with a 20 meV bandwidth and a 28 meV magnon gap is found in the excitation spectrum at 7 K, which is expected in the all-in-all-out magnetically ordered state. This magnetic excitation exhibits substantial softening as the temperature is raised towards TMI and turns into a highly damped excitation in the paramagnetic phase. Remarkably, the softening occurs throughout the whole Brillouin zone including the zone boundary. This observation is inconsistent with the magnon renormalization expected in a local moment system and indicates that the strength of the electron correlation in Eu2 Ir2 O7 is only moderate, so that electron itinerancy should be taken into account in describing its magnetism.

  6. Warrior Transition Leader: Medical Rehabilitation Handbook

    DTIC Science & Technology

    2011-01-01

    serve. rE f E r E n c E S 1. http://www.army.mil/warriorcarenews/. Accessed January 24, 2011. 2. Warrior Transition Command Web site. http...www.wtc.army.mil/about_us/ ctp.html. Accessed January 24, 2011. 3. Leipold JD. Warrior Transition Command stands up at Pentagon. US Army Web site. Army...January 24, 2011. 4. Warrior Transition Command Web site. http://wtc.armylive.dodlive.mil/ about-wtu/. Accessed January 24, 2011. 5. Leipold JD

  7. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprini, Chiara, E-mail: chiara.caprini@cea.fr; Hindmarsh, Mark; Huber, Stephan

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-ordermore » cosmological phase transitions in the early Universe.« less

  8. Quantum phase transition in dimerised spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali

    2015-11-01

    Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

  9. Relationship of maximum strength to weightlifting performance.

    PubMed

    Stone, Michael H; Sands, William A; Pierce, Kyle C; Carlock, Jon; Cardinale, Marco; Newton, Robert U

    2005-06-01

    The primary objective was to assess the relationship of maximum strength to weightlifting ability using established scaling methods. The secondary objective was to compare men and women weightlifters on strength and weightlifting ability. Two correlational observations were carried out using Pearson's r. In the first observation (N = 65) the relationship of dynamic maximum strength (one-repetition maximum (1RM) squat) was compared with weightlifting ability; in the second observation (N = 16), isometric maximum strength (midthigh pull) was studied. Scaling methods for equating maximum strength and weightlifting results were used (load x (Ht), load x kg, load x lbm(-1), allometric, and Sinclair formula) to assess the association between measures of maximum strength and weightlifting performance. Using scaled values; correlations between maximum strength and weightlifting results were generally strong in both observations (e.g., using allometric scaling for the 1RM squat vs the 1RM snatch: r = 0.84, N = 65). Men were stronger than women (e.g., 1RM squat, N = 65: men = 188.1 +/- 48.6 kg; women = 126.7 +/- 28.3 kg); differences generally held when scaling was applied (e.g., 1RM squat scaled with the Sinclair formula: men = 224.7 +/- 36.5 kg; women = 144.2 +/- 25.4 kg). When collectively considering scaling methods, maximum strength is strongly related to weightlifting performance independent of body mass and height differences. Furthermore, men are stronger than women even when body mass and height are obviated by scaling methods.

  10. Use of the ( e , e prime n ) reaction to study the giant multipole resonances in sup 116 Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskimen, R.A.; Ammons, E.A.; Arruda-Neto, J.D.T.

    1991-04-01

    The giant multipole resonances in {sup 116}Sn have been studied using the ({ital e},{ital e}{prime}{ital n}) reaction. Data were taken at effective momentum transfers of 0.37, 0.45, and 0.55 fm{sup {minus}1} and a multipole analysis of the data was performed. The inferred multipole strength functions identify the {ital E}2 and {ital E}0 resonances as distinct peaks at 12.2 and 17.9 MeV, respectively. The energy-weighted sum-rule strengths for the {ital E}2 and {ital E}0 resonances, obtained using a Lorentzian fit to the data, are 34{plus minus}13% and 93{plus minus}37%. When compared with results from alpha scattering and pion scattering the sum-rulemore » strengths exhibit approximate agreement, but the {ital E}0 strength identified in this measurement lies at higher excitation energy, consistent with the trend observed in heavier nuclei. The ({ital e},{ital e}{prime}{ital n}) data are compared with a continuum random phase approximation (RPA) calculation of the {ital E}2 and {ital E}0 strengths, and with an open-shell RPA calculation of the {ital E}2 strength. Both calculations disagree with the data in the region of the {ital E}2 resonance.« less

  11. Anhydrous octyl-glucoside phase transition from lamellar to isotropic induced by electric and magnetic fields.

    PubMed

    Hashim, Rauzah; Sugimura, Akihiko; Nguan, Hock-Seng; Rahman, Matiur; Zimmermann, Herbert

    2017-02-28

    A static deuterium nuclear magnetic resonance ( 2 HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d 2 In the absence of an electric field, the 2 H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.

  12. 2D:4D, Lateralization and Strength in Handball Players

    ERIC Educational Resources Information Center

    Eler, Nebahat; Eler, Serdar

    2018-01-01

    Lateralization, which is also known as hand preference, and 2D:4D finger ratio is a sign of prenatal testosterone and known to be associated with strength. The aim of this study is to investigate the relationship between 2D:4D, lateralization and hand grip strength in relation to hand and forearm that are thought to be effective in handball in…

  13. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  14. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual, appendix 2

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    The FORTRAN programs RANDOM3 and RANDOM4 are documented. They are based on fatigue strength reduction, using a probabilistic constitutive model. They predict the random lifetime of an engine component to reach a given fatigue strength. Included in this user manual are details regarding the theoretical backgrounds of RANDOM3 and RANDOM4. Appendix A gives information on the physical quantities, their symbols, FORTRAN names, and both SI and U.S. Customary units. Appendix B and C include photocopies of the actual computer printout corresponding to the sample problems. Appendices D and E detail the IMSL, Version 10(1), subroutines and functions called by RANDOM3 and RANDOM4 and SAS/GRAPH(2) programs that can be used to plot both the probability density functions (p.d.f.) and the cumulative distribution functions (c.d.f.).

  15. The Transition Period in Soccer: A Window of Opportunity.

    PubMed

    Silva, Joao Renato; Brito, Joao; Akenhead, Richard; Nassis, George P

    2016-03-01

    The aim of this paper is to describe the physiological changes that occur during the transition period in soccer players. A secondary aim is to address the issue of utilizing the transition period to lay the foundation for the succeeding season. We reviewed published peer-reviewed studies if they met the following three selection criteria: (1) the studied population comprised adult soccer players (aged >18 years), (2) time points of physiological and performance assessments were provided, and (3) appropriate statistics for the calculation of effect sizes were reported. Following two selection phases, 12 scientific publications were considered, involving a total sample of 252 players. The transition period elicits small to moderate negative changes in body composition, a moderate decline in sprint performance with and without changes of direction, and small to moderate decrements in muscle power. Detraining effects are also evident for endurance-related physiological and performance outcomes: large decrements in maximal oxygen consumption V̇O2max) and time to exhaustion, and moderate to very large impairments have been observed in intermittent-running performance. Off-season programs should be characterized by clear training objectives, a low frequency of training sessions, and simple training tools in order to facilitate compliance. The program suggested here may constitute the 'minimum effective dose' to maintain or at least attenuate the decay of endurance- and neuromuscular-related performance parameters, as well as restore an adequate strength profile (reduce muscle strength imbalances). This periodization strategy may improve the ability of players to cope with the elevated training demands of pre-season training and therefore reduce the risk of injury. Moreover, this strategy will favor a more efficient development of other relevant facets of performance during the pre-competition phase (e.g., tactical organization). We contend that the transition period

  16. VizieR Online Data Catalog: Eu III oscillator strengths (Masonkina+, 2002)

    NASA Astrophysics Data System (ADS)

    Masonkina, L. I.; Ryabtsev, A. N.; Ryabchikova, T. A.

    2002-04-01

    The calculations of the spectrum and oscillator strengths for the 4f7-(4f65d+4f66s) Eu III transitions. The calculations were performed with Cowan's RCN-RCG-RCE codes in the single-configuration approximation. The new oscillator strengths were tested by analyzing the Europium abundances using Eu II and Eu III lines in the spectra of hot peculiar stars (α2 CVn is a typical representative) and a cool peculiar stars (β CrB is a typical representative). (3 data files).

  17. Electron Excitation Cross Sections for the 2s(sup 2)2p(sup 3) (sup 4)S -> 2s(sup 2)2p(sup 3) (sup 2d) ->2s2p(sup 4) (sup 4p) (Resonance) Transitions in Oil

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, S.; Chutjian, A.; Williams, I.; Tayal, S.; McLaughlin, B.

    1994-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition xxx and the first allowed (resonance) transition xxx in OII. Use is made of electron-energy loss and merged beams methods. The electron energy range covered is 3.33 eV (threshold) to 15 eV for the S->D transition, and 14.9 eV (threshold) to 40 eV for the S->P transition. Care was taken to assess and minimize the metastable fraction of the OII beam. An electron mirror was designed and tested to reflect inelastically back-scattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-Matrix calculations. Calculations are also presented for the xxx transition.

  18. Study of dipion transitions among Υ(3S), Υ(2S), and Υ(1S) states

    NASA Astrophysics Data System (ADS)

    Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Pappas, S. P.; Weinstein, A. J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.

    2007-10-01

    We present measurements of decay matrix elements for hadronic transitions of the form Υ(nS)→Υ(mS)ππ, where (n,m)=(3,1),(2,1),(3,2). We reconstruct charged and neutral pion modes with the final state Upsilon decaying to either μ+μ- or e+e-. Dalitz plot distributions for the 12 decay modes are fit individually as well as jointly assuming isospin symmetry, thereby measuring the matrix elements of the decay amplitude. We observe and account for the anomaly previously noted in the dipion invariant mass distribution for the Υ(3S)→Υ(1S)ππ transition and obtain good descriptions of the dynamics of the decay using the most general decay amplitude allowed by partial conservation of the axial-vector current considerations. The fits further indicate that the Υ(2S)→Υ(1S)ππ and Υ(3S)→Υ(2S)ππ transitions also show the presence of terms in the decay amplitude that were previously ignored, although at a relatively suppressed level.

  19. Effects of different strength training frequencies on maximum strength, body composition and functional capacity in healthy older individuals.

    PubMed

    Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon

    2017-11-01

    There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, P<0.05) and EX3 improved more than EX1 (P=0.007) at month 9. Compared to CON, EX3 improved in backward walk (P=0.047) and EX1 in timed-up-and-go (P=0.029) tests. No significant changes occurred in body composition. The present study found no evidence that higher training frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. First-principles study of defects and phase transition in UO(2).

    PubMed

    Yu, Jianguo; Devanathan, Ram; Weber, William J

    2009-10-28

    Defect properties and phase transition in UO(2) have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The generalized gradient approximation with empirical self-interaction correction, (GGA)+U, formalism has been used to account for the strong on-site Coulomb repulsion among the localized U 5f electrons. The Hubbard parameter U(eff), magnetic ordering, chemical potential and heat of formation have been systematically examined. By choosing an appropriate U(eff) = 3.0 eV it is possible to consistently describe structural properties of UO(2) and model the phase transition processes. The phase transition pressure for UO(2) is about 20 GPa, which is less than the experimental value of 42 GPa but better than the LDA+U value of 7.8 GPa. Meanwhile our results for the formation energies of intrinsic defects partly confirm earlier calculations for the intrinsic charge neutral defects but reveal large variations depending on the determination of the chemical potential and whether the environment is O-rich or U-rich. Moreover, the results for extrinsic defects of Xe, which are representative of mobile insoluble fission product in UO(2), are consistent with experimental data in which Xe prefers to be trapped by Schottky defects.

  1. Acoustic waves and the detectability of first-order phase transitions by eLISA

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2017-05-01

    In various extensions of the Standard Model it is possible that the electroweak phase transition was first order. This would have been a violent process, involving the formation of bubbles and associated shock waves. Not only would the collision of these bubbles and shock waves be a detectable source of gravitational waves, but persistent acoustic waves could enhance the signal and improve prospects of detection by eLISA. I summarise the results of a recent campaign to model such a phase transition based on large-scale hydrodynamical simulations, and its implications for the eLISA mission.

  2. Are only Emotional Strengths Emotional? Character Strengths and Disposition to Positive Emotions.

    PubMed

    Güsewell, Angelika; Ruch, Willibald

    2012-07-01

    This study aimed to examine the relations between character strengths and dispositional positive emotions (i.e. joy, contentment, pride, love, compassion, amusement, and awe). A sample of 574 German-speaking adults filled in the Dispositional Positive Emotion Scales (DPES; Shiota, Keltner, & John, 2006), and the Values in Action Inventory of Strengths (VIA-IS; Peterson, Park, & Seligman, 2005). The factorial structure of the DPES was examined on item level. Joy and contentment could not be clearly separated; the items of the other five emotions loaded on separate factors. A confirmatory factor analysis assuming two latent factors (self-oriented and object/situation specific) was computed on scale level. Results confirmed the existence of these factors, but also indicated that the seven emotions did not split up into two clearly separable families. Correlations between dispositional positive emotions and character strengths were positive and generally low to moderate; a few theoretically meaningful strengths-emotions pairs yielded coefficients>.40. Finally, the link between five character strengths factors (i.e. emotional strengths, interpersonal strengths, strengths of restraint, intellectual strengths, and theological strengths) and the emotional dispositions was examined. Each of the factors displayed a distinctive "emotional pattern"; emotional strengths evidenced the most numerous and strongest links to emotional dispositions. © 2012 The Authors. Applied Psychology: Health and Well-Being © 2012 The International Association of Applied Psychology.

  3. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    PubMed

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  4. Roles of strain and domain boundaries on the phase transition stability of VO2 thin films

    NASA Astrophysics Data System (ADS)

    Jian, Jie; Chen, Aiping; Chen, Youxing; Zhang, Xinghang; Wang, Haiyan

    2017-10-01

    The fundamental phase transition mechanism and the stability of the semiconductor-to-metal phase transition properties during multiple thermal cycles have been investigated on epitaxial vanadium dioxide (VO2) thin films via both ex situ heating and in situ heating by transmission electron microscopy (TEM). VO2 thin films were deposited on c-cut sapphire substrates by pulsed laser deposition. Ex situ studies show the broadening of transition sharpness (ΔT) and the width of thermal hysteresis (ΔH) after 60 cycles. In situ TEM heating studies reveal that during thermal cycles, large strain was accumulated around the domain boundaries, which was correlated with the phase transition induced lattice constant change and the thermal expansion. It suggests that the degradation of domain boundary structures in the VO2 films not only caused the transition property reduction (e.g., the decrease in ΔT and ΔH) but also played an important role in preventing the film from fracture during thermal cycles.

  5. Nanosecond lifetime measurements of Iπ=9/2- intrinsic excited states and low-lying B(E1) strengths in 183Re using combined HPGe-LaBr3 coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gurgi, L. A.; Regan, P. H.; Daniel, T.; Podolyák, Zs.; Bruce, A. M.; Mason, P. J. R.; Mǎrginean, N.; Mǎrginean, R.; Werner, V.; Alharbi, T.; Alkhomashi, N.; Bajoga, A. D.; Britton, R.; Cǎta-Danil, I.; Carroll, R. J.; Deleanu, D.; Bucurescu, D.; Florea, N.; Gheorghe, I.; Ghita, D. G.; Glodariu, T.; Lice, R.; Mihai, C.; Mulholland, K. F.; Negret, A.; Olacel, A.; Roberts, O. J.; Sava, T.; Söderström, P.-A.; Stroe, L.; Suvaila, R.; Toma, S.; Wilson, E.; Wood, R. T.

    2017-08-01

    This paper presents precision measurements of electromagnetic decay probabilities associated with electric dipole transitions in the prolate-deformed nucleus 183Re. The nucleus of interest was formed using the fusion evaporation reaction 180Hf(7Li,4n)183Re at a beam energy of 30 MeV at the tandem accelerator at the HH-IFIN Institute, Bucharest Romania. Coincident decay gamma rays from near-yrast cascades were detected using the combined HPGe-LaBr3 detector array ROSPHERE. The time differences between cascade gamma rays were measured using the LaBr3 detectors to determine the half-lives of the two lowest lying spin-parity 9/2- states at excitation energies of 496 and 617 keV to be 5.65(5) and 2.08(3) ns respectively. The deduced E1 transition rates from these two states are discussed in terms of the K-hindrance between the low-lying structures in this prolate-deformed nucleus.

  6. Flight and wind-tunnel correlation of boundary-layer transition on the AEDC transition cone

    NASA Technical Reports Server (NTRS)

    Fisher, D. L.; Dougherty, N. S., Jr.

    1982-01-01

    Transition and fluctuating surface pressure data were acquired on a 10 deg included angle cone, using the same instrumentation and technique over a wide range of Mach and Reynolds numbers in 23 wind tunnels and in flight. Transition was detected with a traversing pitot-pressure probe in contact with the surface. The surface pressure fluctuations were measured with microphones set flush in the cone surface. Good correlation of end of transition Reynolds number RE(T) was obtained between data from the lower disturbance wind tunnels and flight up to a boundary layer edge Mach number, M(e) = 1.2. Above M(e) = 1.2, however, this correlation deteriorates, with the flight Re(T) being 25 to 30% higher than the wind tunnel Re(T) at M(e) = 1.6. The end of transition Reynolds number correlated within + or - 20% with the surface pressure fluctuations, according to the equation used. Broad peaks in the power spectral density distributions indicated that Tollmien-Schlichting waves were the probable cause of transition in flight and in some of the wind tunnels.

  7. Strength and texture of sodium chloride to 56 GPa

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; Kavner, A.; Kiefer, B.; Wenk, H.-R.; Duffy, T. S.

    2018-04-01

    The strength and texture of sodium chloride in the B1 (rocksalt) and B2 (cesium chloride) phases were investigated in a diamond anvil cell using synchrotron X-ray diffraction in a radial geometry to 56 GPa. The measured differential stresses within the Reuss limit are in the range of 0.2 GPa for the B1 phase at pressure of 24 GPa and 1.6 GPa for the B2 phase at pressure of 56 GPa. A strength weakening is observed near the B1-B2 phase transition at about 30 GPa. The low strength of NaCl in the B1 phase confirms that it is an effective pressure-transmitting medium for high-pressure experiments to ˜30 GPa. The B2 phase can be also used as a pressure-transmitting medium although it exhibits a steeper increase in strength with pressure than the B1 phase. Deformation induces weak lattice preferred orientation in NaCl, showing a (100) texture in the B1 phase and a (110) texture in the B2 phase. The observed textures were evaluated by viscoplastic self-consistent model and our results suggest {110}⟨ 1 1 ¯ 0 ⟩ as the slip system for the B1 phase and {112} ⟨1 1 ¯ 0 ⟩ for the B2 phase.

  8. Transition from the Unipolar Region to the Sector Zone: Voyager 2, 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Ness, N. F.; Richardson, J. D.

    2017-05-01

    We discuss magnetic field and plasma observations of the heliosheath made by Voyager 2 (V2) during 2013 and 2014 near solar maximum. A transition from a unipolar region to a sector zone was observed in the azimuthal angle λ between ˜2012.45 and 2013.82. The distribution of λ was strongly singly peaked at 270^\\circ in the unipolar region and double peaked in the sector zone. The δ-distribution was strongly peaked in the unipolar region and very broad in the sector zone. The distribution of daily averages of the magnetic field strength B was Gaussian in the unipolar region and lognormal in the sector zone. The correlation function of B was exponential with an e-folding time of ˜5 days in both regions. The distribution of hourly increments of B was a Tsallis distribution with nonextensivity parameter q = 1.7 ± 0.04 in the unipolar region and q = 1.44 ± 0.12 in the sector zone. The CR-B relationship qualitatively describes the 2013 observations, but not the 2014 observations. A 40 km s-1 increase in the bulk speed associated with an increase in B near 2013.5 might have been produced by the merging of streams. A “D sheet” (a broad depression in B containing a current sheet moved past V2 from days 320 to 345, 2013. The R- and N-components of the plasma velocity changed across the current sheet.

  9. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training

    PubMed Central

    Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T

    2014-01-01

    This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day−1 and 235 mg day−1, respectively), or a placebo, for 10 weeks. During this period the participants’ training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. PMID:25384788

  10. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training.

    PubMed

    Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T

    2014-12-15

    This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  11. 26 CFR 31.3121(v)(2)-2 - Effective dates and transition rules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Effective dates and transition rules. 31.3121(v)(2)-2 Section 31.3121(v)(2)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Provisions § 31.3121(v)(2)-2 Effective dates and transition rules. (a) General statutory effective date...

  12. 26 CFR 31.3121(v)(2)-2 - Effective dates and transition rules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Effective dates and transition rules. 31.3121(v)(2)-2 Section 31.3121(v)(2)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Provisions § 31.3121(v)(2)-2 Effective dates and transition rules. (a) General statutory effective date...

  13. 26 CFR 31.3121(v)(2)-2 - Effective dates and transition rules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Effective dates and transition rules. 31.3121(v)(2)-2 Section 31.3121(v)(2)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Provisions § 31.3121(v)(2)-2 Effective dates and transition rules. (a) General statutory effective date...

  14. 26 CFR 31.3121(v)(2)-2 - Effective dates and transition rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 15 2011-04-01 2011-04-01 false Effective dates and transition rules. 31.3121(v)(2)-2 Section 31.3121(v)(2)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Provisions § 31.3121(v)(2)-2 Effective dates and transition rules. (a) General statutory effective date...

  15. Molecular-orbital model for metal-sapphire interfacial strength

    NASA Technical Reports Server (NTRS)

    Johnson, K. H.; Pepper, S. V.

    1982-01-01

    Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.

  16. F2 layer characteristics and electrojet strength over an equatorial station

    NASA Astrophysics Data System (ADS)

    Adebesin, B. O.; Adeniyi, J. O.; Adimula, I. A.; Reinisch, B. W.; Yumoto, K.

    2013-09-01

    The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27-35 nT (at 1400 LT) , 30-40 nT (at 1200 LT) and 35-45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.

  17. Tight regulation of a timed nuclear import wave of EKLF by PKCθ and FOE during Pro-E to Baso-E transition.

    PubMed

    Shyu, Yu-Chiau; Lee, Tung-Liang; Chen, Xin; Hsu, Pang-Hung; Wen, Shau-Ching; Liaw, Yi-Wei; Lu, Chi-Huan; Hsu, Po-Yen; Lu, Mu-Jie; Hwang, JauLang; Tsai, Ming-Daw; Hwang, Ming-Jing; Chen, Jim-Ray; Shen, Che-Kun James

    2014-02-24

    Erythropoiesis is a highly regulated process during which BFU-E are differentiated into RBCs through CFU-E, Pro-E, PolyCh-E, OrthoCh-E, and reticulocyte stages. Uniquely, most erythroid-specific genes are activated during the Pro-E to Baso-E transition. We show that a wave of nuclear import of the erythroid-specific transcription factor EKLF occurs during the Pro-E to Baso-E transition. We further demonstrate that this wave results from a series of finely tuned events, including timed activation of PKCθ, phosphorylation of EKLF at S68 by P-PKCθ(S676), and sumoylation of EKLF at K74. The latter EKLF modifications modulate its interactions with a cytoplasmic ankyrin-repeat-protein FOE and importinβ1, respectively. The role of FOE in the control of EKLF nuclear import is further supported by analysis of the subcellular distribution patterns of EKLF in FOE-knockout mice. This study reveals the regulatory mechanisms of the nuclear import of EKLF, which may also be utilized in the nuclear import of other factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Total edge irregularity strength of (n,t)-kite graph

    NASA Astrophysics Data System (ADS)

    Winarsih, Tri; Indriati, Diari

    2018-04-01

    Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .

  19. Dithieno[3,2-c:2',3'-e]-2,7-diketophosphepin: a unique building block for multifunctional π-conjugated materials.

    PubMed

    He, Xiaoming; Borau-Garcia, Javier; Woo, Alva Y Y; Trudel, Simon; Baumgartner, Thomas

    2013-01-23

    A series of conjugated materials based on the new dithieno[3,2-c:2',3'-e]-2,7-diketophosphepin (DTDKP) building block have been studied for the first time. Theoretical calculations predict DTDKP to be a better electron acceptor than the well-known dithienophosphole and the nitrogen analogue, bithiopheneimide. Cyclic voltammetry studies revealed two reduction processes that support their promising electron-acceptor properties, and modification of the P center with O or gold(I) further reduced the LUMO energy to ca. -3.6 eV. Expansion of the DTDKP core with various aromatic moieties has been realized using the Huisgen alkynyl click reaction, resulting in altered optical and electrochemical properties with compounds showing a high-energy absorption band at ca. 270-290 nm and a low-energy band at ca. 390-460 nm. The acceptor character of the DTDKP core was demonstrated by a red shift following the electron-donating strength of the appended aromatic moiety. Intriguing white-light emission from just a single species with the CIE coordinates of (0.33, 0.34) was observed for some of the extended species as the result of an unexpected dual-emission behavior. The high-energy emission in the blue-to-green region and the low-energy emission in the orange-to-red region are attributed to a π* → π transition of the DTDKP core and charge transfer from the triazole moiety to DTDKP, respectively. Apart from tuning of the molecular properties, this novel building block has also been applied in a self-assembled organogel, which exhibited pronounced luminescence. Scanning electron microscopy confirmed that the gel self-assembled by forming a network of entangled 1D fibrous structures on the micrometer scale.

  20. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    NASA Astrophysics Data System (ADS)

    Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.

    2014-06-01

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.

  1. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Hashim M.; Iedema, Martin J.; Yu, Xiao-Ying

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium particles was studied by utilizing a crossflow-mini reactor. The reaction kinetics was followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely SEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry’s law solubility of H2O2 to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to eventually a mixed NaHSO4 plus H2SO4more » brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted rates using previously established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the Henry’s law constant of H2O2 dependence on ionic strength.« less

  2. Dynamical transitions associated with turbulence in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Light, Adam D.; Tian, Li; Chakraborty Thakur, Saikat; Tynan, George R.

    2017-10-01

    Diagnostic capabilities are often cited as a limiting factor in our understanding of transport in fusion devices. Increasingly advanced multichannel diagnostics are being applied to classify transport regimes and to search for ``trigger'' features that signal an oncoming dynamical event, such as an ELM or an L-H transition. In this work, we explore a technique that yields information about global properties of plasma dynamics from a single time series of a relevant plasma quantity. Electrostatic probe data from the Controlled Shear Decorrelation eXperiment (CSDX) is analyzed using recurrence quantification analysis (RQA) in the context of previous work on the transition to weak drift-wave turbulence. The recurrence characteristics of a phase space trajectory provide a quantitative means to classify dynamics and identify transitions in a complex system. We present and quantify dynamical variations in the plasma variables as a function of the background magnetic field strength. A dynamical transition corresponding to the emergence of broadband fluctuations is identified using RQA measures.

  3. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature.

    PubMed

    Zhou, Jiadong; Gao, Yanfeng; Liu, Xinling; Chen, Zhang; Dai, Lei; Cao, Chuanxiang; Luo, Hongjie; Kanahira, Minoru; Sun, Chao; Yan, Liuming

    2013-05-28

    This paper reports the successful preparation of Mg-doped VO2 nanoparticles via hydrothermal synthesis. The metal-insulator transition temperature (T(c)) decreased by approximately 2 K per at% Mg. The Tc decreased to 54 °C with 7.0 at% dopant. The composite foils made from Mg-doped VO2 particles displayed excellent visible transmittance (up to 54.2%) and solar modulation ability (up to 10.6%). In addition, the absorption edge blue-shifted from 490 nm to 440 nm at a Mg content of 3.8 at%, representing a widened optical band gap from 2.0 eV for pure VO2 to 2.4 eV at 3.8 at% doping. As a result, the colour of the Mg-doped films was modified to increase their brightness and lighten the yellow colour over that of the undoped-VO2 film. A first principle calculation was conducted to understand how dopants affect the optical, Mott phase transition and structural properties of VO2.

  4. The detection of Rh antigens (D,C,c,E,e) on bloodstains by a micro-elution technique using low ionic strength solution (LISS) and papain-treated red cells.

    PubMed

    Bargagna, M; Sabelli, M; Giacomelli, C

    1982-01-01

    Ninety experimental bloodstains, were examined, with the intention of detecting the principal Rh antigens, by using a micro-elution method improved by the use of low ionic strength solution (LISS) and papain-treated red cells. This method makes it possible to employ most commercially produced sera in routine forensic haematology laboratory work. The antigens could regularly be detected in stains of the following ages: D, C and c in stains of at least 6 months, E in stains of at least 4 months, and e in stains of at least 2 months.

  5. Digit ratio (2D:4D), testosterone, cortisol, aggression, personality and hand-grip strength: Evidence for prenatal effects on strength.

    PubMed

    Ribeiro, Evaldo; Neave, Nick; Morais, Rosana Nogueiro; Kilduff, Liam; Taylor, Suzan R; Butovskaya, Marina; Fink, Bernhard; Manning, John T

    2016-09-01

    Digit ratio (2D:4D) is a putative marker for prenatal testosterone and is correlated with performance in many sports. Low 2D:4D has been linked to strength but the evidence is mixed and strength is also influenced by mass, testosterone, and behavioural factors. It has been hypothesised that the 2D:4D-strength correlation may be strongest in challenge conditions when short-term changes occur in steroid hormones. We tested this suggestion in men. We used a cross-over study design with a challenge (an aggressive video of rugby tackles) and control (a blank screen) condition. 89 healthy men. Finger lengths (2nd and 4th for both hands), hand-grip strength (HGS), testosterone (T), cortisol (C), aggression (Buss-Perry Aggression Questionnaire) and personality type (Ten Item Personality Measure). In both conditions participants provided saliva samples (for hormone assays). In the challenge condition there was a highly significant increase in HGS, and modest changes in T, physical aggression and emotional stability. HGS correlated negatively with left hand 2D:4D. In a multiple regression, left hand 2D:4D was negatively related to HGS and emotional stability was positively related to HGS. In the control condition HGS was not correlated with 2D:4D. In a multiple regression, BMI, physical aggression, and emotional stability were significantly related to HGS. 2D:4D is a negative correlate of strength in challenge situations. This finding may in part explain associations between 2D:4D and sports performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... For equipment operating on frequencies below 890 MHz, an open field test is normally required, with... either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurements required: Field strength of...

  7. Anderson transition in a multiply-twisted helix.

    PubMed

    Ugajin, R

    2001-06-01

    We investigated the Anderson transition in a multiply-twisted helix in which a helical chain of components, i.e., atoms or nanoclusters, is twisted to produce a doubly-twisted helix, which itself can be twisted to produce a triply-twisted helix, and so on, in which there are couplings between adjacent rounds of helices. As the strength of the on-site random potentials increases, an Anderson transition occurs, suggesting that the number of dimensions is 3 for electrons running along the multiply-twisted helix when the couplings between adjacent rounds are strong enough. If the couplings are weakened, the dimensionality becomes less, resulting in localization of electrons. The effect of random connections between adjacent rounds of helices and random magnetic fields that thread the structure is analyzed using the spectral statistics of a quantum particle.

  8. Effect of 2% Chlorhexidine Digluconate on the Bond Strength to Normal versus Caries-Affected Dentin

    PubMed Central

    Komori, Paula C. P.; Pashley, David H.; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; de Goes, Mario Fernando; Wang, Linda; Carrilho, Marcela R.

    2013-01-01

    SUMMARY This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. Flat surfaces of two types of dentin (i.e. ND and CAD) were prepared with a water-cooled high speed diamond disc, and then acid-etched, rinsed and air-dried. In control groups, dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or a two-step (Single Bond 2-SB) etch-and-rinse adhesive. In experimental groups, dentin was re-hydrated with 2% CHX (60 s), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. Specimens were prepared for microtensile bond testing in accordance with the non-trimming technique and then tested either immediately or after 6-month storage in artificial saliva. Data were analyzed by ANOVA/Bonferroni tests (α = 0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after 6 months seen in control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). Application of MP on CHX-treated ND or CAD produced bonds that did not change over 6 months of storage. PMID:19363971

  9. Inelastic neutron scattering investigation of low temperature phase transition in Rb2ZnCl4 and K2ZnCl4

    NASA Astrophysics Data System (ADS)

    Quilichini, M.; Dvořák, V.; Boutrouille, P.

    1991-09-01

    Inelastic scattering of neutrons has revealed soft optic modes at the T point frac{1}{2}({b}^*+{c}^*) of the Brillouin zone both in Rb2ZnCl4 and K2ZnCl4 which are responsible for the phase transition from the ferroelectric to the lowest temperature phase of these materials. Moreover, in K2ZnCl4 near the T point a minimum on the soft optic branch in the direction (μ{b}^*+frac{1}{2}{c}^*) has been found which confirms the existence of a new incommensurate phase recently discovered by Gesi. The origin of this incommensurate phase is discussed from a phenomenological point of view and formulae for elastic constants are derived describing their behaviour near transition into incommensurate phase. Des mesures de diffusion inélastique des neutrons ont mis en évidence l'existence d'un mode optique mou au point T(frac{1}{2}({b}^*+{c}^*)) de la zone de Brillouin responsable de la transition de la phase ferroélectrique vers la phase basse température dans les deux composés Rb2ZnCl4 and K2ZnCl4. Pour K2ZnCl4 on montre que la branche optique molle présente un minimum au voisinage de T dans la direction (μ{b}^*+frac{1}{2}{c}^*), ce qui confirme l'existence de la nouvelle phase incommensurable récemment trouvée par Gesi. L'origine de cette phase est discutée sur la base d'un modèle phénoménologique dont on dérive aussi les formules des constantes élastiques et leur comportement au voisinage de la transition vers la phase incommensurable.

  10. Abrupt shape transition at neutron number N =60 : B (E 2 ) values in 94,96,98Sr from fast γ -γ timing

    NASA Astrophysics Data System (ADS)

    Régis, J.-M.; Jolie, J.; Saed-Samii, N.; Warr, N.; Pfeiffer, M.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; Drouet, F.; Vancraeyenest, A.; de France, G.; Clément, E.; Stezowski, O.; Ur, C. A.; Urban, W.; Regan, P. H.; Podolyák, Zs.; Larijani, C.; Townsley, C.; Carroll, R.; Wilson, E.; Fraile, L. M.; Mach, H.; Paziy, V.; Olaizola, B.; Vedia, V.; Bruce, A. M.; Roberts, O. J.; Smith, J. F.; Scheck, M.; Kröll, T.; Hartig, A.-L.; Ignatov, A.; Ilieva, S.; Lalkovski, S.; Korten, W.; Mǎrginean, N.; Otsuka, T.; Shimizu, N.; Togashi, T.; Tsunoda, Y.

    2017-05-01

    Lifetimes of low-lying yrast states in neutron-rich 94,96,98Sr have been measured by Germanium-gated γ -γ fast timing with LaBr 3 (Ce ) detectors using the EXILL&FATIMA spectrometer at the Institut Laue-Langevin. Sr fission products were generated using cold-neutron-induced fission of 235U and stopped almost instantaneously within the thick target. The experimental B (E 2 ) values are compared with results of Monte Carlo shell-model calculations made without truncation on the occupation numbers of the orbits spanned by eight proton and eight neutron orbits and show good agreement. Similarly to the Zr isotopes, the abrupt shape transition in the Sr isotopes near neutron number N =60 is identified as being caused by many-proton excitations to its g9 /2 orbit.

  11. Transiting Exoplanet Monitoring Project (TEMP). IV. Refined System Parameters, Transit Timing Variations, and Orbital Stability of the Transiting Planetary System HAT-P-25

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Yu; Wang, Songhu; Hinse, Tobias C.; Li, Kai; Wang, Yong-Hao; Laughlin, Gregory; Liu, Hui-Gen; Zhang, Hui; Wu, Zhen-Yu; Zhou, Xu; Zhou, Ji-Lin; Hu, Shao-Ming; Wu, Dong-Hong; Peng, Xi-Yan; Chen, Yuan-Yuan

    2018-06-01

    We present eight new light curves of the transiting extra-solar planet HAT-P-25b obtained from 2013 to 2016 with three telescopes at two observatories. We use the new light curves, along with recent literature material, to estimate the physical and orbital parameters of the transiting planet. Specifically, we determine the mid-transit times (T C ) and update the linear ephemeris, T C[0] = 2456418.80996 ± 0.00025 [BJDTDB] and P = 3.65281572 ± 0.00000095 days. We carry out a search for transit timing variations (TTVs), and find no significant TTV signal at the ΔT = 80 s-level, placing a limit on the possible strength of planet–planet interactions (TTVG). In the course of our analysis, we calculate the upper mass-limits of the potential nearby perturbers. Near the 1:2, 2:1, and 3:1 resonances with HAT-P-25b, perturbers with masses greater than 0.5, 0.3, and 0.5 M ⊕ respectively, can be excluded. Furthermore, based on the analysis of TTVs caused by light travel time effect (LTTE) we also eliminate the possibility that a long-period perturber exists with M p > 3000 MJ within a = 11.2 au of the parent star.

  12. A new Morse-oscillator based Hamiltonian for H 3+: Calculation of line strengths

    NASA Astrophysics Data System (ADS)

    Jensen, Per; Špirko, V.

    1986-07-01

    In two recent publications [V. Špirko, P. Jensen, P. R. Bunker, and A. Čejchan, J. Mol. Spectrosc.112, 183-202 (1985); P. Jensen, V. Špirko, and P. R. Bunker, J. Mol. Spectrosc.115, 269-293 (1986)], we have described the development of Morse oscillator adapted rotation-vibration Hamiltonians for equilateral triangular X3 and Y2X molecules, and we have used these Hamiltonians to calculate the rotation-vibration energies for H 3+ and its X3+ and Y2X+ isotopes from ab initio potential energy functions. The present paper presents a method for calculating rotation-vibration line strengths of H 3+ and its isotopes using an ab initio dipole moment function [G. D. Carney and R. N. Porter, J. Chem. Phys.60, 4251-4264 (1974)] together with the energies and wave-functions obtained by diagonalization of the Morse oscillator adapted Hamiltonians. We use this method for calculating the vibrational transition moments involving the lowest vibrational states of H 3+, D 3+, H 2D +, and D 2H +. Further, we calculate the line strengths of the low- J transitions in the rotational spectra of H 3+ in the vibrational ground state and in the ν1 and ν2 states. We hope that the calculations presented will facilitate the search for further rotation-vibration transitions of H 3+ and its isotopes.

  13. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV.

  14. The Self-energy Of Growing Aggregates: "Strength Regime"

    NASA Astrophysics Data System (ADS)

    Guimaraes, Ana H. F.; Spahn, F.; Seiss, M.; Brilliantov, N. V.

    2009-09-01

    The vivid appearance of the outer regions of Saturn's rings points to a balance of ongoing fragmentation and coagulation processes. This idea finds support especially in the F-ring, where collisional processes occur on an almost daily basis stirred by perturbations of the satellites Prometheus and Pandora, and in addition due the presence of putative moonlets. In order to quantify this balance in a kinetic theory we propose to calculate the resistivity of small agglomerates ("dynamic ephemeral bodies") against rupture due collisional processes and tidal pull. Earlies studies have shown that the resistivity of an aggregate is divided into two phases: "strength regime" and "gravitational regime". Early in their formation, small agglomerates are supported basically by their "glue" between the particles (adhesion) - "strength regime". For larger agglomerates the "gravitational regime" takes over provided their sizes to be bigger than a threshold in which the self-gravitational energy exceeds the adhesive binding energy, in this case the cluster's constituents are held together gravitationally. We calculated the self-energy caused by adhesion and gravity of ring's aggregates which has been considered as the threshold of impact energy or of tidal work to disrupt the agglomerate. Using a Ballistic Particle Cluster Aggregate Model (BPCA) we varied the densities of the aggregates and the size distribution of their constituents (1-10cm), calculated their self-energy and identified the transition between the "strength" to "gravitational regime". The transition between the regimes occurs at house-size aggregates (diameter of approximately 20m), a fact, that fits to the cut-off on the dense rings' main population (cm - 5m in size). Acknowledgments: A.H.F.G. thanks Dr. E. Vieira-Neto for the discussions, and also the DAAD and Uni-Potsdam for the financial support of this project.

  15. Energies, Wavelengths, and Transition Rates for Ga-Like Ions (Nd XXX-Tb XXXV)

    NASA Astrophysics Data System (ADS)

    El-Sayed, Fatma; Attia, S. M.

    2016-03-01

    Energies, wavelengths, transition probabilities, oscillator strengths, and line strengths have been calculated for 4s24p-4s4p2 and 4s24p-4s24d transitions in gallium-like ions from Z = 60 to 65, for Nd XXX, Pm XXXI, Sm XXXII, Eu XXXIII, Gd XXXIV, and Tb XXXV using the fully relativistic multiconfi guration Dirac-Fock method. The correlation with the n = 4 complex and the quantum electrodynamic effects have been considered in the calculations. The obtained results have been compared with the available experimental and other theoretical results.

  16. Origins of the structural phase transitions in MoTe2 and WTe2

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jung; Kang, Seoung-Hun; Hamada, Ikutaro; Son, Young-Woo

    2017-05-01

    Layered transition metal dichalcogenides MoTe2 and WTe2 share almost similar lattice constants as well as topological electronic properties except their structural phase transitions. While the former shows a first-order phase transition between monoclinic and orthorhombic structures, the latter does not. Using a recently proposed van der Waals density functional method, we investigate structural stability of the two materials and uncover that the disparate phase transitions originate from delicate differences between their interlayer bonding states near the Fermi energy. By exploiting the relation between the structural phase transitions and the low energy electronic properties, we show that a charge doping can control the transition substantially, thereby suggesting a way to stabilize or to eliminate their topological electronic energy bands.

  17. Spectroscopy of 50Sc and ab initio calculations of B (M 3 ) strengths

    NASA Astrophysics Data System (ADS)

    Garnsworthy, A. B.; Bowry, M.; Olaizola, B.; Holt, J. D.; Stroberg, S. R.; Cruz, S.; Georges, S.; Hackman, G.; MacLean, A. D.; Measures, J.; Patel, H. P.; Pearson, C. J.; Svensson, C. E.

    2017-10-01

    The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states and transitions in 50Sc following the β decay of 50Ca. Branching ratios were determined from the measured γ -ray intensities, and angular correlations of γ rays have been used to firmly assign the spins of excited states. The presence of an isomeric state that decays by an M 3 transition with a B (M 3 ) strength of 13.6(7) W.u. has been confirmed. We compare the first ab initio calculations of B (M 3 ) strengths in light- and medium-mass nuclei from the valence-space in-medium similarity renormalization group approach, using consistently derived effective Hamiltonians and effective M 3 operator. The experimental data are well reproduced for isoscalar M 3 transitions when using bare g factors, but the strength of isovector M 3 transitions are found to be underestimated by an order of magnitude.

  18. Laser-assisted coplanar symmetric (e, 2e) triple differential cross sections

    NASA Astrophysics Data System (ADS)

    Khalil, D.; Tlidi, M.; Makhoute, A.; Ajana, I.

    2017-04-01

    The modification due to an external linearly polarized monochromatic laser field on the dynamics of the ionization process of an atomic hydrogen by electron-impact is studied theoretically for a coplanar symmetric geometry. The interaction of the laser field with the unbound electrons is treated in a non-perturbative way. The wave functions of the ingoing and outgoing electrons in the laser field are treated as non-relativistic Volkov waves, while the interaction of the bound electron with the laser field is treated by using first-order perturbation theory, assuming that the electric field strength associated with the external laser field is much less than the atomic unit e/{a}2=5× {10}9 {{V}} {{{cm}}}-1. The influence of the laser parameters on the angular distribution is analyzed and several illustrative examples are discussed. Significant changes are noted both in the shape and magnitude of the triple differential cross sections (TDCS) by the application of the laser field. Numerical results show that the TDCS are strongly dependent on the dressing of the projectile by the laser field at low frequency in (e, 2e) spectroscopy region.

  19. Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression

    NASA Astrophysics Data System (ADS)

    Yuan, Fuping; Tsai, Liren; Prakash, Vikas; Dandekar, Dattatraya P.; Rajendran, A. M.

    2008-05-01

    In the present paper, a series of plate impact shock-reshock and shock-release experiments were conducted to study the critical shear strength of a S2 glass fiber reinforced polymer (GRP) composite under shock compression levels ranging from 0.8 to 1.8 GPa. The GRP was fabricated at ARL, Aberdeen, using S2 glass woven roving in a Cycom 4102 polyester resin matrix. The experiments were conducted by using an 82.5 mm bore single-stage gas gun at Case Western Reserve University. In order to conduct shock-reshock and shock-release experiments a dual flyer plate assembly was utilized. The shock-reshock experiments were conducted by using a projectile faced with GRP and backed with a relatively high shock impedance Al 6061-T6 plate; while for the shock-release experiments the GRP was backed by a relatively lower impedance polymethyl methacrylate backup flyer plate. A multibeam velocity interferometer was used to measure the particle velocity profile at the rear surface of the target plate. By using self-consistent technique procedure described by Asay and Chabbildas [Shock Waves and High-Strain-Rate Phenomena, in Metals, edited by M. M. Myers and L. E. Murr (Plenum, New York, 1981), pp. 417-431], the critical shear strength of the GRP (2τc) was determined for impact stresses in the range of 0.8 to 1.8 GPa. The results show that the critical shear strength of the GRP is increased from 0.108 GPa to 0.682 GPa when the impact stress is increased from 0.8 to 1.8 GPa. The increase in critical shear strength may be attributed to rate-dependence and/or pressure dependent yield behavior of the GRP.

  20. Competing E2 and SN2 Mechanisms for the F- + CH3CH2I Reaction.

    PubMed

    Yang, Li; Zhang, Jiaxu; Xie, Jing; Ma, Xinyou; Zhang, Linyao; Zhao, Chenyang; Hase, William L

    2017-02-09

    Anti-E2, syn-E2, inv-, and ret-S N 2 reaction channels for the gas-phase reaction of F - + CH 3 CH 2 I were characterized with a variety of electronic structure calculations. Geometrical analysis confirmed synchronous E2-type transition states for the elimination of the current reaction, instead of nonconcerted processes through E1cb-like and E1-like mechanisms. Importantly, the controversy concerning the reactant complex for anti-E2 and inv-S N 2 paths has been clarified in the present work. A positive barrier of +19.2 kcal/mol for ret-S N 2 shows the least feasibility to occur at room temperature. Negative activation energies (-16.9, -16.0, and -4.9 kcal/mol, respectively) for inv-S N 2, anti-E2, and syn-E2 indicate that inv-S N 2 and anti-E2 mechanisms significantly prevail over the eclipsed elimination. Varying the leaving group for a series of reactions F - + CH 3 CH 2 Y (Y = F, Cl, Br, and I) leads to monotonically decreasing barriers, which relates to the gradually looser TS structures following the order F > Cl > Br > I. The reactivity of each channel nearly holds unchanged except for the perturbation between anti-E2 and inv-S N 2. RRKM calculation reveals that the reaction of the fluorine ion with ethyl iodide occurs predominately via anti-E2 elimination, and the inv-S N 2 pathway is suppressed, although it is energetically favored. This phenomenon indicates that, in evaluating the competition between E2 and S N 2 processes, the kinetic or dynamical factors may play a significant role. By comparison with benchmark CCSD(T) energies, MP2, CAM-B3LYP, and M06 methods are recommended to perform dynamics simulations of the title reaction.

  1. Leg Strength Comparison between Younger and Middle-age Adults

    PubMed Central

    Kim, Sukwon; Lockhart, Thurmon; Nam, Chang S.

    2009-01-01

    Although a risk of occupational musculoskeletal diseases has been identified with age-related strength degradation, strength measures from working group are somewhat sparse. This is especially true for the lower extremity strength measures in dynamic conditions (i.e., isokinetic). The objective of this study was to quantify the lower extremity muscle strength characteristics of three age groups (young, middle, and the elderly). Total of 42 subjects participated in the study: 14 subjects for each age group. A commercial dynamometer was used to evaluate isokinetic and isometric strength at ankle and knee joints. 2 × 2 (Age group (younger, middle-age, and older adult groups) × Gender (male and female)) between-subject design and Post-hoc analysis were performed to evaluate strength differences among three age groups. Post-hoc analysis indicated that, overall, middle-age workers’ leg strengths (i.e. ankle and knee muscles) were significantly different from younger adults while middle-age workers’ leg strengths were virtually identical to older adults’ leg strengths. These results suggested that, overall, 14 middle-age workers in the present study could be at a higher risk of musculoskeletal injuries. Future studies looking at the likelihood of musculoskeletal injuries at different work places and from different working postures at various age levels should be required to validate the current findings. The future study would be a valuable asset in finding intervention strategies such that middle-age workers could stay healthier longer. PMID:20436934

  2. Gamow-Teller strength observed in the 48Ti(n, p) 48Sc reaction: Implications for the double beta decay of 48Ca

    NASA Astrophysics Data System (ADS)

    Alford, W. P.; Helmer, R. L.; Abegg, R.; Celler, A.; Frekers, D.; Green, P.; Häusser, O.; Henderson, R.; Hicks, K.; Jackson, K. P.; Jeppesen, R.; Miller, C. A.; Trudel, A.; Vetterli, M.; Yen, S.; Pourang, R.; Watson, J.; Brown, B. A.; Engel, J.

    1990-07-01

    Cross sections for the 48Ti(n, p) reaction have been measured at angles of 0°, 6°, and 12° at an energy of 200 MeV. The measurements are compared with results of DWIA calculations to obtain estimates of transition strengths for L = 0, 1, and ⩾2 up to an excitation energy of 25 MeV. Gamow-Teller strength ( L = 0) is peaked between 3 and 4 MeV excitation energy, with a significant distribution extending to about 12 MeV. The L = 1 strength is found mainly between 6 and 20 MeV while the cross section for transitions with L ⩾2 increases from 10 MeV to the upper limit of the measurements. The distribution of Gamow-Teller strength is in poor agreement with theoretical distributions used to calculate the lifetime for double beta decay of 48Ca.

  3. Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2017-10-01

    The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.

  4. Design of Co/Pd multilayer system with antiferromagnetic-to-ferromagnetic phase transition

    NASA Astrophysics Data System (ADS)

    Thiele, Jan-Ulrich

    2009-03-01

    Among the known magnetic material systems there are only very few examples of materials that undergo a temperature dependent antiferromagnetic-to-ferromagnetic phase transition, and of these only the chemically ordered alloy FeRh exhibits this transition near room temperature [1, 2]. Here we present a perpendicular anisotropy multilayer structure that mimics FeRh. The basic idea is to use two stacks of Co/Pd multilayers with large perpendicular magnetic anisotropy and high Curie temperature, TC, separated by a layer providing antiferromagnetic coupling, and a CoNi/Pd multilayer with perpendicular anisotropy with a lower TC, interlayer, in the range of the desired AF-FM transition temperature, TAF-FM. At room temperature this system behaves as two antiferromagnetically coupled layers with a low perpendicular remanent magnetic moment. As the temperature is raised to approach TC, interlayer the magnetization of the interlayer is gradually reduced to zero, and consequently its coupling strength is reduced. Eventually, the effective coupling between the two high-KU, high-TC layers becomes dominated by their dipolar fields, resulting in a parallel alignment of their moments and a net remanent magnetic moment equal to the sum of the moments of the two high-TC layers [2]. [4pt] [1] J. S. Kouvel and C. C. Hartelius, J. Appl. Phys. 33 (1962) p1343 [0pt] [2] J.-U. Thiele, E. E. Fullerton, S. Maat, Appl. Phys. Lett. 82 (2003) p2859 [0pt] [3] J.-U. Thiele. T. Hauet. O. Hellwig, Appl. Phys. Lett. 92 (2008) 242502.

  5. Investigating the Effects of Typical Rowing Strength Training Practices on Strength and Power Development and 2,000 m Rowing Performance

    PubMed Central

    Caplan, Nicholas; Christian Gibbon, Karl; Howatson, Glyn; Grant Thompson, Kevin

    2016-01-01

    Abstract This study aimed to determine the effects of a short-term, strength training intervention, typically undertaken by club-standard rowers, on 2,000 m rowing performance and strength and power development. Twenty-eight male rowers were randomly assigned to intervention or control groups. All participants performed baseline testing involving assessments of muscle soreness, creatine kinase activity (CK), maximal voluntary contraction (leg-extensors) (MVC), static-squat jumps (SSJ), counter-movement jumps (CMJ), maximal rowing power strokes (PS) and a 2,000 m rowing ergometer time-trial (2,000 m) with accompanying respiratory-exchange and electromyography (EMG) analysis. Intervention group participants subsequently performed three identical strength training (ST) sessions, in the space of five days, repeating all assessments 24 h following the final ST. The control group completed the same testing procedure but with no ST. Following ST, the intervention group experienced significant elevations in soreness and CK activity, and decrements in MVC, SSJ, CMJ and PS (p < 0.01). However, 2,000 m rowing performance, pacing strategy and gas exchange were unchanged across trials in either condition. Following ST, significant increases occurred for EMG (p < 0.05), and there were non-significant trends for decreased blood lactate and anaerobic energy liberation (p = 0.063 – 0.086). In summary, club-standard rowers, following an intensive period of strength training, maintained their 2,000 m rowing performance despite suffering symptoms of muscle damage and disruption to muscle function. This disruption likely reflected the presence of acute residual fatigue, potentially in type II muscle fibres as strength and power development were affected. PMID:28149354

  6. Rovibrational transitions of H2 by collision with H+ at high temperature

    NASA Astrophysics Data System (ADS)

    González-Lezana, T.; Honvault, P.

    2017-05-01

    The H+ + H2 reaction is studied by means of both exact and statistical quantum methods. Integral cross-sections for processes initiated with rotationally excited H2(v, j = 1) to produce molecular hydrogen in its rotational ground state are reported up to a value of the collision energy of 3 eV. Rate constants for state-to-state transitions between different H2 rovibrational states are calculated up to 3000 K. Special emphasis is made on ortho/para conversion processes in which the parity j of the H2(j) states changes.

  7. On the nature of the Mott transition in multiorbital systems

    NASA Astrophysics Data System (ADS)

    Facio, Jorge I.; Vildosola, V.; García, D. J.; Cornaglia, Pablo S.

    2017-02-01

    We analyze the nature of a Mott metal-insulator transition in multiorbital systems using dynamical mean-field theory. The auxiliary multiorbital quantum impurity problem is solved using continuous-time quantum Monte Carlo and the rotationally invariant slave-boson (RISB) mean-field approximation. We focus our analysis on the Kanamori Hamiltonian and find that there are two markedly different regimes determined by the nature of the lowest-energy excitations of the atomic Hamiltonian. The RISB results at T →0 suggest the following rule of thumb for the order of the transition at zero temperature: a second-order transition is to be expected if the lowest-lying excitations of the atomic Hamiltonian are charge excitations, while the transition tends to be first order if the lowest-lying excitations are in the same charge sector as the atomic ground state. At finite temperatures, the transition is first order and its strength, as measured, e.g., by the jump in the quasiparticle weight at the transition, is stronger in the parameter regime where the RISB method predicts a first-order transition at zero temperature. Interestingly, these results seem to apply to a wide variety of models and parameter regimes.

  8. Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2.

    PubMed

    Luo, Kun; Roberts, Matthew R; Guerrini, Niccoló; Tapia-Ruiz, Nuria; Hao, Rong; Massel, Felix; Pickup, David M; Ramos, Silvia; Liu, Yi-Sheng; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-09-07

    Conventional intercalation cathodes for lithium batteries store charge in redox reactions associated with the transition metal cations, e.g., Mn(3+/4+) in LiMn2O4, and this limits the energy storage of Li-ion batteries. Compounds such as Li[Li0.2Ni0.2Mn0.6]O2 exhibit a capacity to store charge in excess of the transition metal redox reactions. The additional capacity occurs at and above 4.5 V versus Li(+)/Li. The capacity at 4.5 V is dominated by oxidation of the O(2-) anions accounting for ∼0.43 e(-)/formula unit, with an additional 0.06 e(-)/formula unit being associated with O loss from the lattice. In contrast, the capacity above 4.5 V is mainly O loss, ∼0.08 e(-)/formula. The O redox reaction involves the formation of localized hole states on O during charge, which are located on O coordinated by (Mn(4+)/Li(+)). The results have been obtained by combining operando electrochemical mass spec on (18)O labeled Li[Li0.2Ni0.2Mn0.6]O2 with XANES, soft X-ray spectroscopy, resonant inelastic X-ray spectroscopy, and Raman spectroscopy. Finally the general features of O redox are described with discussion about the role of comparatively ionic (less covalent) 3d metal-oxygen interaction on anion redox in lithium rich cathode materials.

  9. (Finite) statistical size effects on compressive strength.

    PubMed

    Weiss, Jérôme; Girard, Lucas; Gimbert, Florent; Amitrano, David; Vandembroucq, Damien

    2014-04-29

    The larger structures are, the lower their mechanical strength. Already discussed by Leonardo da Vinci and Edmé Mariotte several centuries ago, size effects on strength remain of crucial importance in modern engineering for the elaboration of safety regulations in structural design or the extrapolation of laboratory results to geophysical field scales. Under tensile loading, statistical size effects are traditionally modeled with a weakest-link approach. One of its prominent results is a prediction of vanishing strength at large scales that can be quantified in the framework of extreme value statistics. Despite a frequent use outside its range of validity, this approach remains the dominant tool in the field of statistical size effects. Here we focus on compressive failure, which concerns a wide range of geophysical and geotechnical situations. We show on historical and recent experimental data that weakest-link predictions are not obeyed. In particular, the mechanical strength saturates at a nonzero value toward large scales. Accounting explicitly for the elastic interactions between defects during the damage process, we build a formal analogy of compressive failure with the depinning transition of an elastic manifold. This critical transition interpretation naturally entails finite-size scaling laws for the mean strength and its associated variability. Theoretical predictions are in remarkable agreement with measurements reported for various materials such as rocks, ice, coal, or concrete. This formalism, which can also be extended to the flowing instability of granular media under multiaxial compression, has important practical consequences for future design rules.

  10. E2E: A Summary of the e2e Learning Framework.

    ERIC Educational Resources Information Center

    Learning and Skills Development Agency, London (England).

    This publication is a summary of the E2E (Entry to Employment) Learning Framework that provides guidance on program implementation. (E2E is a new learning program for young people not yet ready or able to enter Modern Apprenticeship programs, a Level 2 program, or employment directly.) Section 2 highlights core values to which all involved should…

  11. Photoluminescence of RbCaF3:Mn2+: the influence of phase transitions

    NASA Astrophysics Data System (ADS)

    Marcode Lucas, M. C.; Rodriguez, F.; Moreno, M.

    1993-03-01

    Precise photoluminescence measurements on an RbCaF3:Mn2+ sample containing only 400 p.p.m. of Mn2+ have been carried out in the 10-300 K temperature range. The results are compared with those obtained in other fluoroperovskites doped with Mn2+. The analysis of the 6A1g(S) to 4T1g(G) excitation peak at room temperature leads to a Mn2+-F- distance R=213.3 pm which is close to that derived from the experimental isotropic superhyperfine constant, As. The plot of the first moment of the emission band, M1, against temperature reveals a slight but sensible change of slope at T=193 K which is associated with the Oh1 to D4h18 structural phase transition of the host lattice. Furthermore, at T=40 K, M1 undergoes an abrupt increase of approximately 100 cm-1. This fact supports the existence of another phase transition involving an increase Delta R/R approximately=0.2% upon cooling, and thus a situation which is similar to that detected in the structural phase transition of KMnF3 at Tc3=81.5 K. To the authors' knowledge this is the first time that clear evidence of both phase transitions in RbCaF3 has been achieved through an optical probe. Finally the variation of the 4A1g(G), 4Eg(G) peak, E3, along the fluoroperovskite series is analysed.

  12. Decreased eIF3e/Int6 expression causes epithelial-to-mesenchymal transition in breast epithelial cells.

    PubMed

    Gillis, L D; Lewis, S M

    2013-08-01

    eIF3e/Int6 is a component of the multi-subunit eIF3 complex, which binds directly to the 40S ribosome to facilitate ribosome recruitment to mRNA and hence protein synthesis. Reduced expression of eIF3e/Int6 has been found in up to 37% of human breast cancers, and expression of a truncated mutant version of the mouse eIF3e/Int6 protein leads to malignant transformation of normal mammary cells. These findings suggest that eIF3e/Int6 is a tumor suppressor; however, a recent study has reported that a reduction of eIF3e/Int6 expression in breast cancer cells leads to reduced translation of oncogenes, suggesting that eIF3e/Int6 may in fact have an oncogenic role in breast cancer. To gain a better understanding of the role of eIF3e/Int6 in breast cancer, we have examined the effects of decreased eIF3e/Int6 expression in an immortalized breast epithelial cell line, MCF-10A. Surprisingly, we find that decreased expression of eIF3e/Int6 causes breast epithelial cells to undergo epithelial-to-mesenchymal transition (EMT). We show that EMT induced by a decrease in eIF3e/Int6 expression imparts invasive and migratory properties to breast epithelial cells, suggesting that regulation of EMT by eIF3e/Int6 may have an important role in breast cancer metastasis. Furthermore, we show that reduced eIF3e/Int6 expression in breast epithelial cells causes a specific increase in the expression of the key EMT regulators Snail1 and Zeb2, which occurs at both the transcriptional and post-transcriptional levels. Together, our data indicate a novel role of eIF3e/Int6 in the regulation of EMT in breast epithelial cells and support a tumor suppressor role of eIF3e/Int6.

  13. Diverse Reactivity of ECp* (E = Al, Ga) toward Low-Coordinate Transition Metal Amides [TM(N(SiMe3)2)2] (TM = Fe, Co, Zn): Insertion, Cp* Transfer, and Orthometalation.

    PubMed

    Weßing, Jana; Göbel, Christoph; Weber, Birgit; Gemel, Christian; Fischer, Roland A

    2017-03-20

    The reactivity of the carbenoid group 13 metal ligands ECp* (E = Al, Ga) toward low valent transition metal complexes [TM(btsa) 2 ] (TM = Fe, Co, Zn; btsa = bis(trimethylsilyl)amide) was investigated, revealing entirely different reaction patterns for E = Al and Ga. Treatment of [Co(btsa) 2 ] with AlCp* yields [Cp*Co(μ-H)(Al(κ 2 -(CH 2 SiMe 2 )NSiMe 3 )(btsa))] (1) featuring an unusual heterometallic bicyclic structure that results from the insertion of AlCp* into the TM-N bond with concomitant ligand rearrangement including C-H activation at one amide ligand. For [Fe(btsa) 2 ], complete ligand exchange gives FeCp* 2 , irrespective of the employed stoichiometric ratio of the reactants. In contrast, treatment of [TM(btsa) 2 ] (TM = Fe, Co) with GaCp* forms the 1:1 and 1:2 adducts [(GaCp*)Co(btsa) 2 ] (2) and [(GaCp*) 2 Fe(btsa) 2 ] (3), respectively. The tendency of AlCp* to undergo Cp* transfer to the TM center appears to be dependent on the nature of the TM center: For [Zn(btsa) 2 ], no Cp* transfer is observed on reaction with AlCp*; instead, the insertion product [Zn(Al(η 2 -Cp*)(btsa)) 2 ] (4) is formed. In the reaction of [Co(btsa) 2 ] with the trivalent [Cp*AlH 2 ], transfer of the amide ligands without further ligand rearrangement is observed, leading to [Co(μ-H) 4 (Al(η 2 -Cp*)(btsa)) 2 ] (5).

  14. The dopamine-D2-receptor agonist ropinirole dose-dependently blocks the Ca2+-triggered permeability transition of mitochondria.

    PubMed

    Parvez, Suhel; Winkler-Stuck, Kirstin; Hertel, Silvia; Schönfeld, Peter; Siemen, Detlef

    2010-01-01

    Ropinirole, an agonist of the post-synaptic dopamine D2-receptor, exerts neuroprotective activity. The mechanism is still under discussion. Assuming that this neuroprotection might be associated with inhibition of the apoptotic cascade underlying cell death, we examined a possible effect of ropinirole on the permeability transition pore (mtPTP) in the mitochondrial inner membrane. Using isolated rat liver mitochondria, the effect of ropinirole was studied on Ca2+-triggered large amplitude swelling, membrane depolarization and cytochrome c release. In addition, the effect of ropinirole on oxidation of added, membrane-impermeable NADH was investigated. The results revealed doubtlessly, that ropinirole can inhibit permeability transition. In patch-clamp experiments on mitoplasts, we show directly that ropinirole interacts with the mtPTP. Thus, ropinirole reversibly inhibits the opening of mtPTP with an IC50 of 3.4 microM and a Hill coefficient of 1.3. In both systems (i.e. energized mitochondria and mitoplasts) the inhibitory effect on permeability transition was attenuated by increasing concentrations of inorganic phosphate. In addition, we showed with antimycin A-treated mitochondria that ropinirole failed to suppress respiratory chain-linked reactive oxygen species release. In conclusion, our data suggest that the neuroprotective activity of ropinirole is due to the blockade of the Ca2+-triggered permeability transition. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    PubMed Central

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-01-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328

  16. Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments.

    PubMed

    Oh, S C; Dong, J K; Lüthy, H; Schärer, P

    2000-01-01

    This investigation was designed to determine whether heat pressing and/or simulated heat treatments affect the flexure strength and microstructure of the lithium disilicate glass-ceramic of the IPS Empress 2 system. Four groups of the lithium disilicate glass-ceramic were prepared as follows: group 1 = as-received material; group 2 = heat-pressed material; group 3 = heat-pressed and stimulated initial heat-treated material; and group 4 = heat-pressed and simulated heat-treated material with full firings for a final restoration. Three-point bending tests and scanning electron microscopy (SEM) analysis were conducted. The flexure strength of group 2 was significantly higher than that of group 1. However, there were no significant differences in strength among groups 2, 3, and 4, or between groups 1 and 4. The SEM micrographs of the lithium disilicate glass-ceramic showed a closely packed, multidirectionally interlocking microstructure of numerous lithium disilicate crystals protruding from the glass matrix. The crystals in the glass matrix of the heat-pressed materials (groups 2, 3, and 4) were a little more homogeneous and about 2 times bigger than those of the as-received material (group 1). These changes of the microstructure were greatest between groups 1 and 2. However, there were no marked differences among groups 2, 3, and 4. Although there were significant increases in the strength and some changes of the microstructure after the heat-pressing operation, the combination of heat pressing and simulated subsequent heat treatments did not produce an increase of strength of IPS Empress 2 glass-ceramic.

  17. Metal-Insulator Transition in W-doped VO2 Nanowires

    NASA Astrophysics Data System (ADS)

    Long, Gen; Parry, James; Whittaker, Luisa; Banerjee, Sarbajit; Zeng, Hao

    2010-03-01

    We report a systematic study of the metal-insulator transition in W-doped VO2 nanowires. Magnetic susceptibility were measured for a bulk amount of VO2 nanowire powder. The susceptibility shows a sharp drop with decreasing temperature corresponding to the metal-insulator transition. The transition shows large temperature hysteresis for cooling and heating. With increasing doping concentration, the transition temperatures decreases systematically from 320 K to 275K. Charge transport measurements on the same nanowires showed similar behavior. XRD and TEM measurements were taken to further determine the structure of the materials in study.

  18. Biaxial flexural strength and microstructure changes of two recycled pressable glass ceramics.

    PubMed

    Albakry, Mohammad; Guazzato, Massimiliano; Swain, Michael Vincent

    2004-09-01

    This study evaluated the biaxial flexural strength and identified the crystalline phases and the microstructural features of pressed and repressed materials of the glass ceramics, Empress 1 and Empress 2. Twenty pressed and 20 repressed disc specimens measuring 14 mm x 1 mm per material were prepared following the manufacturers' recommendations. Biaxial flexure (piston on 3-ball method) was used to assess strength. X-ray diffraction was performed to identify the crystalline phases, and a scanning electron microscope was used to disclose microstructural features. Biaxial flexural strength, for the pressed and repressed specimens, respectively, were E1 [148 (SD 18) and 149 (SD 35)] and E2 [340 (SD 40), 325 (SD 60)] MPa. There was no significant difference in strength between the pressed and the repressed groups of either material, Empress 1 and Empress 2 (p > 0.05). Weibull modulus values results were E1: (8, 4.7) and E2: (9, 5.8) for the same groups, respectively. X-ray diffraction revealed that leucite was the main crystalline phase for Empress 1 groups, and lithium disilicate for Empress 2 groups. No further peaks were observed in the X-ray diffraction patterns of either material after repressing. Dispersed leucite crystals and cracks within the leucite crystals and glass matrix were features observed in Empress 1 for pressed and repressed samples. Similar microstructure features--dense lithium disilicate crystals within a glass matrix--were observed in Empress 2 pressed and repressed materials. However, the repressed material showed larger lithium disilicate crystals than the singly pressed material. Second pressing had no significant effect on the biaxial flexural strength of Empress 1 or Empress 2; however, higher strength variations among the repressed samples of the materials may indicate less reliability of these materials after second pressing.

  19. An extrapolation method for compressive strength prediction of hydraulic cement products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira Tango, C.E. de

    1998-07-01

    The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late agemore » (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.« less

  20. Stellar Laboratories . [VI. New Mo IV - VII Oscillator Strengths and the Molybdenum Abundance in the Hot White Dwarfs G191-B2B and RE 0503-289

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Quinet, T.; Hoyer, D.; Werner, K.; Demleitner, M.; Kruk, J. W.

    2016-01-01

    For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To identify molybdenum lines in the ultraviolet (UV) spectra of the DA-type white dwarf G191B2B and the DO-type white dwarf RE 0503289 and, to determine their photospheric Mo abundances, reliable Mo iv-vii oscillator strengths are used. Methods: We newly calculated Mo iv-vii oscillator strengths to consider their radiative and collisional bound-bound transitions indetail in our NLTE stellar-atmosphere models for the analysis of Mo lines exhibited in high-resolution and high SN UV observations of RE 0503289.Results. We identified 12 Mo v and nine Mo vi lines in the UV spectrum of RE 0503289 and measured a photospheric Mo abundance of 1.2 3.0 104(mass fraction, 22 500 56 400 times the solar abundance). In addition, from the As v and Sn iv resonance lines,we measured mass fractions of arsenic (0.51.3 105, about 300 1200 times solar) and tin (1.33.2 104, about 14 300 35 200 times solar). For G191B2B, upper limits were determined for the abundances of Mo (5.3 107, 100 times solar) and, in addition, for Kr (1.1106, 10 times solar) and Xe (1.7107, 10 times solar). The arsenic abundance was determined (2.35.9 107, about 21 53 times solar). A new, registered German Astrophysical Virtual Observatory (GAVO) service, TOSS, has been constructed to provide weighted oscillator strengths and transition probabilities.Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Observed Mo v-vi line profiles in the UV spectrum of the white dwarf RE 0503289 were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed the photospheric Mo abundance in a white dwarf to be determined.

  1. Fatigue properties for the fracture strength of columnar accessory minerals embedded within metamorphic tectonites: implications for stress magnitude in continental crust at the depth of the brittle-plastic transition zone

    NASA Astrophysics Data System (ADS)

    Kimura, N.; Iwashita, N.; Masuda, T.

    2009-04-01

    1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0

  2. The influence of removing sizing on strength and stiffness of conventional and high modulus E-glass fibres

    NASA Astrophysics Data System (ADS)

    Nørgaard Petersen, Helga; Kusano, Yukihiro; Brøndsted, Povl; Almdal, Kristoffer

    2016-07-01

    Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing was removed by either burning at 565°C or soxhlet extraction with acetone. It was found that the density and the stiffness increased after removing the sizing by the two removal treatments whereas the diameter did not change significantly. The strength of the fibres decreased after burning as the sizing, protecting against water and fibre-fibre damage, had been removed. The strength of the fibres after extraction was not significantly different from the strength of the pristine fibres despite removing the sizing. This indicates that the bonded part of sizing is still protecting the glass fibre surface.

  3. Oxidation Behavior of Matrix Graphite and Its Effect on Compressive Strength

    DOE PAGES

    Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi; ...

    2017-01-01

    Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less

  4. Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons

    PubMed Central

    Michal, Vincent P.; Aleiner, Igor L.; Altshuler, Boris L.; Shlyapnikov, Georgy V.

    2016-01-01

    We consider the many-body localization–delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator–fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator → fluid transition, and, for large interactions, there is a reentrance to the insulator regime. It is feasible to experimentally verify these predictions by tuning the interaction strength with the use of Feshbach or confinement-induced resonances, for example, in 7Li or 39K. PMID:27436894

  5. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures

    PubMed Central

    Yuan, Long; Chung, Ting-Fung; Kuc, Agnieszka; Wan, Yan; Xu, Yang; Chen, Yong P.; Heine, Thomas; Huang, Libai

    2018-01-01

    Efficient interfacial carrier generation in van der Waals heterostructures is critical for their electronic and optoelectronic applications. We demonstrate broadband photocarrier generation in WS2-graphene heterostructures by imaging interlayer coupling–dependent charge generation using ultrafast transient absorption microscopy. Interlayer charge-transfer (CT) transitions and hot carrier injection from graphene allow carrier generation by excitation as low as 0.8 eV below the WS2 bandgap. The experimentally determined interlayer CT transition energies are consistent with those predicted from the first-principles band structure calculation. CT interactions also lead to additional carrier generation in the visible spectral range in the heterostructures compared to that in the single-layer WS2 alone. The lifetime of the charge-separated states is measured to be ~1 ps. These results suggest that interlayer interactions make graphene–two-dimensional semiconductor heterostructures very attractive for photovoltaic and photodetector applications because of the combined benefits of high carrier mobility and enhanced broadband photocarrier generation. PMID:29423439

  6. Sleep Stage Transition Dynamics Reveal Specific Stage 2 Vulnerability in Insomnia.

    PubMed

    Wei, Yishul; Colombo, Michele A; Ramautar, Jennifer R; Blanken, Tessa F; van der Werf, Ysbrand D; Spiegelhalder, Kai; Feige, Bernd; Riemann, Dieter; Van Someren, Eus J W

    2017-09-01

    Objective sleep impairments in insomnia disorder (ID) are insufficiently understood. The present study evaluated whether whole-night sleep stage dynamics derived from polysomnography (PSG) differ between people with ID and matched controls and whether sleep stage dynamic features discriminate them better than conventional sleep parameters. Eighty-eight participants aged 21-70 years, including 46 with ID and 42 age- and sex-matched controls without sleep complaints, were recruited through www.sleepregistry.nl and completed two nights of laboratory PSG. Data of 100 people with ID and 100 age- and sex-matched controls from a previously reported study were used to validate the generalizability of findings. The second night was used to obtain, in addition to conventional sleep parameters, probabilities of transitions between stages and bout duration distributions of each stage. Group differences were evaluated with nonparametric tests. People with ID showed higher empirical probabilities to transition from stage N2 to the lighter sleep stage N1 or wakefulness and a faster decaying stage N2 bout survival function. The increased transition probability from stage N2 to stage N1 discriminated people with ID better than any of their deviations in conventional sleep parameters, including less total sleep time, less sleep efficiency, more stage N1, and more wake after sleep onset. Moreover, adding this transition probability significantly improved the discriminating power of a multiple logistic regression model based on conventional sleep parameters. Quantification of sleep stage dynamics revealed a particular vulnerability of stage N2 in insomnia. The feature characterizes insomnia better than-and independently of-any conventional sleep parameter. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  7. Photon transitions in {psi}(2S) decays to {chi}{sub cJ}(1P) and {eta}{sub c}(1S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athar, S.B.; Avery, P.; Breva-Newell, L.

    2004-12-01

    We have studied the inclusive photon spectrum in {psi}(2S) decays using the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates for {psi}(2S){yields}{gamma}{chi}{sub cJ}(1P) (J=0,1,2). We also confirm the hindered magnetic dipole (M1) transition, {psi}(2S){yields}{gamma}{eta}{sub c}(1S). However, the direct M1 transition {psi}(2S){yields}{gamma}{eta}{sub c}(2S) observed by the Crystal Ball as a narrow peak at a photon energy of 91 MeV is not found in our data.

  8. Exoplanet Transits of Stellar Active Regions

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano

    2018-01-01

    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  9. Does on-water resisted rowing increase or maintain lower-body strength?

    PubMed

    Lawton, Trent W; Cronin, John B; McGuigan, Michael R

    2013-07-01

    Over the past 30 years, endurance volumes have increased by >20% among the rowing elite; therefore, informed decisions about the value of weight training over other possible activities in periodized training plans for rowing need to be made. The purpose of this study was to quantify the changes in lower-body strength development after two 14-week phases of intensive resisted on-water rowing, either incorporating weight training or rowing alone. Ten elite women performed 2 resisted rowing ("towing ropes," e.g., 8 × 3 minutes) plus 6 endurance (e.g., 16-28 km at 70-80% maximum heart rate) and 2 rate-regulated races (e.g., 8,000 m at 24 strokes per minute) on-water each week. After a 4-week washout phase, the 14-week phase was repeated with the addition of 2 weight-training sessions (e.g., 3-4 sets × 6-15 reps). Percent (±SD) and standardized differences in effects (effect size [ES] ± 90% confidence limit) for 5-repetition leg pressing and isometric pulling strength were calculated from data ratio scaled for body mass, log transformed and adjusted for pretest scores. Resisted rowing alone did not increase leg pressing (-1.0 ± 5.3%, p = 0.51) or isometric pulling (5.3 ± 13.4%, p = 0.28) strength. In contrast, after weight training, a moderately greater increase in leg pressing strength was observed (ES = 0.72 ± 0.49, p = 0.03), although differences in isometric pulling strength were unclear (ES = 0.56 ± 1.69, p = 0.52). In conclusion, intensive on-water training including resisted rowing maintained but did not increase lower-body strength. Elite rowers or coaches might consider the incorporation of high-intensity nonfatiguing weight training concurrent to endurance exercise if increases in lower-body strength without changes in body mass are desired.

  10. Theoretical electronic transition moments for the Ballik-Ramsay, Fox-Herzberg, and Swan systems of C2

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.

    1981-01-01

    Electronic transition moments and their variation with internuclear separation are calculated for the Ballik-Ramsay (b 3 Sigma g - a 3 Pi u), Fox-Herzberg (e 3 Pi g-a 3 Pi u) and Swan (d 3 Pi g-a 3 Pi u) band systems of C2, which appear in a variety of terrestrial and astrophysical sources. Electronic wave functions of the a 3 Pi u, b 2 Sigma g -, d 3 Pi g and e 3 Pi g states of C2 are obtained by means of a self-consistent field plus configuration interaction calculation using an atomic basis of 46 Slater-type orbitals, and theoretical potential energy curves and spectroscopic constants for the four electronic states were computed. The results obtained for both the potential energy curves and electronic transition moments are found to be in good agreement with experimental data.

  11. Nickel-induced Epithelial-Mesenchymal Transition by Reactive Oxygen Species Generation and E-cadherin Promoter Hypermethylation*

    PubMed Central

    Wu, Chih-Hsien; Tang, Sheau-Chung; Wang, Po-Hui; Lee, Huei; Ko, Jiunn-Liang

    2012-01-01

    Epithelial-mesenchymal transition (EMT) is considered a critical event in the pathogenesis of lung fibrosis and tumor metastasis. During EMT, the expression of differentiation markers switches from cell-cell junction proteins such as E-cadherin to mesenchymal markers such as fibronectin. Although nickel-containing compounds have been shown to be associated with lung carcinogenesis, the role of nickel in the EMT process in bronchial epithelial cells is not clear. The aim of this study was to examine whether nickel contributes to EMT in human bronchial epithelial cells. We also attempted to clarify the mechanisms involved in NiCl2-induced EMT. Our results showed that NiCl2 induced EMT phenotype marker alterations such as up-regulation of fibronectin and down-regulation of E-cadherin. In addition, the potent antioxidant N-acetylcysteine blocked EMT and expression of HIF-1α induced by NiCl2, whereas the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine restored the down-regulation of E-cadherin induced by NiCl2. Promoter hypermethylation of E-cadherin, determined by quantitative real time methyl-specific PCR and bisulfate sequencing, was also induced by NiCl2. These results shed new light on the contribution of NiCl2 to carcinogenesis. Specifically, NiCl2 induces down-regulation of E-cadherin by reactive oxygen species generation and promoter hypermethylation. This study demonstrates for the first time that nickel induces EMT in bronchial epithelial cells. PMID:22648416

  12. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength

    EPA Pesticide Factsheets

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  13. Understanding topological phase transition in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, K. J.

    2016-03-01

    Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as M X2 with M =(Mo ,W ) and X =(S ,Se ,Te ) , the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the nontrivial topology of electron bands in TMDs is caused by the band inversion between metal d - and chalcogen p -orbital bands where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, M S2 and M S e2 exhibits the opposite behavior of TPT such that the chalcogen p -orbital band moves down below the metal d -orbital band. More interestingly, in M T e2 , the band inversion occurs between the metal d -orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered.

  14. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  15. Enhancement of B(E2) Collectivity in the sdg-Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Long, GuiLu; Ji, HuaYing; Zhu, ShengJiang

    1999-12-01

    It is pointed out that the difficulty in boson models in explaining the large B(E2) experimental data is not due to the lack of collectivity in boson model wavefunction. This long standing problem of reduction in collectivity of wavefunction in boson models can be solved by choosing an appropriate E2 transition operator in the SU(3) limit of the sdg-interacting boson model. The ratio B(E2, L + 2 → L) / B(E2, 2 → 0) can be almost any large number. The project supported by The Science Fund of China Nuclear Industry under grant No. J95AY5021, National Natural Science Foundation of China under grant No. 19775026, Excellent Young University Teachers Fund of National Education Committee of China

  16. Photoreflectance study of the near-band-edge transitions of chemical vapor deposition-grown mono- and few-layer MoS{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Kuang-I, E-mail: kilin@mail.ncku.edu.tw; Chen, Yen-Jen; Wang, Bo-Yan

    2016-03-21

    Room-temperature photoreflectance (PR) and reflectance (R) spectroscopy are utilized to investigate the near-band-edge transitions of molybdenum disulfide (MoS{sub 2}) thin films grown on sapphire substrates by a hot-wall chemical vapor deposition system. The layer thickness and optical properties of the MoS{sub 2} thin films are confirmed by Raman spectroscopy, atomic force microscope, and photoluminescence (PL) analysis. The B exciton shows relatively weak PL intensity in comparing with the A exciton even for monolayer MoS{sub 2} films. In the R spectrum of few‐layer MoS{sub 2}, it is not possible to clearly observe exciton related features. The PR spectra have two sharp,more » derivative-like features on a featureless background. Throughout the PR lineshape fitting, the transition energies are designated as the A and B excitons at the K-point of the Brillouin zone, but at room temperature there seems to be no distinguishable feature corresponding to an H‐point transition for the mono- and few-layer MoS{sub 2} films unlike in bulk. These transition energies are slightly larger than those obtained by PL, which is attributed to the Stokes shifts related to doping level. The obtained values of valence-band spin-orbit splitting are in good agreement with those from other experimental methods. By comparing the PR lineshapes, the dominant modulation mechanism is attributed to variations of the exciton transition energies due to change in the built-in electric field. On the strength of this study, PR spectroscopy is demonstrated as a powerful technique for characterizing the near-band-edge transitions of MoS{sub 2} from monolayer to bulk.« less

  17. Description of transitional nuclei in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Lac, V.-S.; Kuyucak, S.

    1992-03-01

    We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei.

  18. Temperature Variations and N+/O+ in the Orion Nebula II. The Collision Strengths

    NASA Astrophysics Data System (ADS)

    Rubin, R. H.; Dufour, R. J.; Martin, P. G.; Ferland, G. J.; Baldwin, J. A.; Ortiz, C. O.; Walter, D. K.

    2001-03-01

    We continue an investigation of electron temperature (T[e]), mean-square T[e] variation (t2), and the N+/O+ abundance ratio. Our previous analysis of HST spectra of the Orion Nebula used collision strengths for N+ by Stafford et al. (1994). Here we examine the consequences of changing just these collision strengths by using those of Lennon & Burke (1994). Rather than utilize the standard analytical, low electron density (N[e]) regime treatment for the analysis, we develop a numerical technique that is valid at any density. With Stafford et al. collision strengths, we find the average N[e] for the (N+, O+)-zone is 7500 cm-3, the average T[e] is 9160 K, t2 is 0.045, and N+/O+ is 0.14. Using Lennon & Burke values, the ``best" solution is found when these respective quantities are: 9000 cm-3, 9920 K, 0.00073, and 0.15. The value for t2 is dramatically lower than that found using Stafford et al. data.

  19. REVISITING {rho}{sup 1} CANCRI e: A NEW MASS DETERMINATION OF THE TRANSITING SUPER-EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2012-11-01

    We present a mass determination for the transiting super-Earth {rho}{sup 1} Cancri e based on nearly 700 precise radial velocity (RV) measurements. This extensive RV data set consists of data collected by the McDonald Observatory planet search and published data from Lick and Keck observatories. We obtained 212 RV measurements with the Tull Coude Spectrograph at the Harlan J. Smith 2.7 m Telescope and combined them with a new Doppler reduction of the 131 spectra that we have taken in 2003-2004 with the High-Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope for the original discovery of {rho}{sup 1} Cancri e. Usingmore » this large data set we obtain a five-planet Keplerian orbital solution for the system and measure an RV semi-amplitude of K = 6.29 {+-} 0.21 m s{sup -1} for {rho}{sup 1} Cnc e and determine a mass of 8.37 {+-} 0.38 M {sub Circled-Plus }. The uncertainty in mass is thus less than 5%. This planet was previously found to transit its parent star, which allowed them to estimate its radius. Combined with the latest radius estimate from Gillon et al., we obtain a mean density of {rho} = 4.50 {+-} 0.20 g cm{sup -3}. The location of {rho}{sup 1} Cnc e in the mass-radius diagram suggests that the planet contains a significant amount of volatiles, possibly a water-rich envelope surrounding a rocky core.« less

  20. Laser-induced free-free transitions in elastic electron scattering from CO2

    NASA Astrophysics Data System (ADS)

    Musa, Mohamed; MacDonald, Amy; Tidswell, Lisa; Holmes, Jim; St. Francis Xavier Laser Scattering Lab Team

    2011-03-01

    This report presents measurements of laser-induced free-free transitions of electrons scattered from CO2 molecules in the ground electronic state at incident electron energies of 3.8 and 5.8 eV under pulsed CO2 laser field. The differential cross section of free-free transitions involving absorption and emission of up to two photons were measured at various scattering angles with the polarization of the laser either parallel with or perpendicular to the the momentum change vector of the scattered electrons. The results of the parallel geometry are found to be in qualitative agreement with the predictions of the Kroll-Watson approximation within the experimental uncertainty whereas those of the perpendicular geometry show marked discrepancy with the Kroll-Watson predictions. This work was supported by the Natural Sciences and Engineering Research Council of Canada and the St. Francis Xavier University Council for Research.

  1. Direct visualization of a two-dimensional topological insulator in the single-layer 1 T'-WT e2

    NASA Astrophysics Data System (ADS)

    Jia, Zhen-Yu; Song, Ye-Heng; Li, Xiang-Bing; Ran, Kejing; Lu, Pengchao; Zheng, Hui-Jun; Zhu, Xin-Yang; Shi, Zhi-Qiang; Sun, Jian; Wen, Jinsheng; Xing, Dingyu; Li, Shao-Chun

    2017-07-01

    We have grown nearly freestanding single-layer 1 T'-WT e2 on graphitized 6 H -SiC(0001) by using molecular beam epitaxy (MBE), and characterized its electronic structure with scanning tunneling microscopy/spectroscopy (STM/STS). The existence of topological edge states at the periphery of single-layer WT e2 islands was confirmed. Surprisingly, a bulk band gap at the Fermi level and insulating behaviors were also found in single-layer WT e2 at low temperature, which are likely associated with an incommensurate charge order transition. The realization of two-dimensional topological insulators (2D TIs) in single-layer transition-metal dichalcogenide provides a promising platform for further exploration of the 2D TIs' physics and related applications.

  2. High-pressure insulator-to-metal transition in Sr3Ir2O7 studied by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Donnerer, C.; Sala, M. Moretti; Pascarelli, S.; Rosa, A. D.; Andreev, S. N.; Mazurenko, V. V.; Irifune, T.; Hunter, E. C.; Perry, R. S.; McMorrow, D. F.

    2018-01-01

    High-pressure x-ray absorption spectroscopy was performed at the Ir L3 and L2 absorption edges of Sr3Ir2O7 . The branching ratio of white-line intensities continuously decreases with pressure, reflecting a reduction in the angular part of the expectation value of the spin-orbit coupling operator, 〈L .S 〉 . Up to the high-pressure structural transition at 53 GPa, this behavior can be explained within a single-ion model, where pressure increases the strength of the cubic crystal field, which suppresses the spin-orbit induced hybridization of Jeff=3 /2 and eg levels. We observe a further reduction of the branching ratio above the structural transition, which cannot be explained within a single-ion model of spin-orbit coupling and cubic crystal fields. This change in 〈L .S 〉 in the high-pressure, metallic phase of Sr3Ir2O7 could arise from noncubic crystal fields or a bandwidth-driven hybridization of Jeff=1 /2 ,3 /2 states and suggests that the electronic ground state significantly deviates from the Jeff=1 /2 limit.

  3. Strengths of serpentinite gouges at elevated temperatures

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Ma, S.; Summers, R.; Byerlee, J.D.

    1997-01-01

    Serpentinite has been proposed as a cause of both low strength and aseismic creep of fault zones. To test these hypotheses, we have measured the strength of chrysotile-, lizardite-, and antigorite-rich serpentinite gouges under hydrothermal conditions, with emphasis on chrysotile, which has thus far received little attention. At 25??C, the coefficient of friction, ??, of chrysotile gouge is roughly 0.2, whereas the lizardite- and antigorite-rich gouges are at least twice as strong. The very low room temperature strength of chrysotile is a consequence of its unusually high adsorbed water content. When the adsorbed water is removed, chrysotile is as strong as pure antigorite gouge at room temperature. Heating to ???200??C causes the frictional strengths of all three gouges to increase. Limited data suggest that different polytypes of a given serpentine mineral have similar strengths; thus deformation-induced changes in polytype should not affect fault strength. At 25??C, the chrysotile gouge has a transition from velocity strengthening at low velocities to velocity weakening at high velocities, consistent with previous studies. At temperatures up to ???200??C, however, chrysotile strength is essentially independent of velocity at low velocities. Overall, chrysotile has a restricted range of velocity-strengthening behavior that migrates to higher velocities with increasing temperature. Less information on velocity dependence is available for the lizardite and antigorite gouges, but their behavior is consistent with that outlined for chrysotile. The marked changes in velocity dependence and strength of chrysotile with heating underscore the hazards of using room temperature data to predict fault behavior at depth. The velocity behavior at elevated temperatures does not rule out serpentinite as a cause of aseismic slip, but in the presence of a hydrostatic fluid pressure gradient, all varieties of serpentine are too strong to explain the apparent weakness of faults such

  4. Transit timing analysis of the exoplanets TrES-1 and TrES-2

    NASA Astrophysics Data System (ADS)

    Rabus, M.; Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Almenara, J. M.

    2009-12-01

    Aims. The aim of this work is a detailed analysis of transit light curves from TrES-1 and TrES-2, obtained over a period of three to four years, in order to search for variabilities in observed mid-transit times and to set constraints on the presence of additional third bodies. Methods: Using the IAC 80 cm telescope, we observed transits of TrES-1 and TrES-2 over several years. Based on these new data and previously published work, we studied the observed light curves and searched for variations in the difference between observed and calculated (based on a fixed ephemeris) transit times. To model possible transit timing variations, we used polynomials of different orders, simulated O-C diagrams corresponding to a perturbing third mass, and we used sinusoidal fits. For each model we calculated the χ2 residuals and the false alarm probability (FAP). Results: For TrES-1, we can exclude planetary companions (>1 M⊕) in the 3:2 and 2:1 MMRs having high FAPs based on our transit observations from the ground. Likewise, a light time effect caused, e.g., by a 0.09 M_⊙ mass star at a distance of 7.8 AU is possible. As for TrES-2, we find a better ephemeris of Tc = 2 453 957.63512(28) + 2.4706101(18) × Epoch and a good fit for a sine function with a period of 0.2 days, compatible with a moon around TrES-2 and an amplitude of 57 s, but it is not a uniquely low χ2 value that would indicate a clear signal. In both cases, TrES-1 and TrES-2, we are able to put upper constraints on the presence of additional perturbers masses. We also conclude that any sinusoidal variations that might be indicative of exomoons need to be confirmed with higher statistical significance by further observations, noting that TrES-2 is in the field-of-view of the Kepler Space Telescope. Photometric data for TrES-1 and TrES-2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/508/1011

  5. Stochastic E2F activation and reconciliation of phenomenological cell-cycle models.

    PubMed

    Lee, Tae J; Yao, Guang; Bennett, Dorothy C; Nevins, Joseph R; You, Lingchong

    2010-09-21

    The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.

  6. Spatio-temporal transitions in the dynamics of bacterial populations

    NASA Astrophysics Data System (ADS)

    Lin, Anna; Lincoln, Bryan; Mann, Bernward; Torres, Gelsy; Kas, Josef; Swinney, Harry

    2001-03-01

    We experimentally investigate the population dynamics of a strain of E. coli bacteria living under spatially inhomogeneous growth conditions. A localized perturbation that moves with a well-defined drift velocity is imposed on the system. A reaction-diffusion model of this situation^1 predicts that an abrupt transition between spatial localization and extinction of the colony occurs for a fixed average growth rate when the drift velocity exceeds a critical value. Also, a transition between localized and delocalized populations is predicted to occur at a fixed drift velocity when the spatially averaged growth rate is varied. We create a spatially localized perturbation with UV light and vary the strength and drift velocity of the perturbation to investigate the existence of the different bacterial population distributions and the transitions between them. Numerical simulations of a 250 mm by 20 mm system guide our experiments. ^1K. A. Dahmen, D. R. Nelson, N. M. Shnerb, Jour. Math. Bio., 41 1 (2000).

  7. Individual responses to combined endurance and strength training in older adults.

    PubMed

    Karavirta, Laura; Häkkinen, Keijo; Kauhanen, Antti; Arija-Blázquez, Alfredo; Sillanpää, Elina; Rinkinen, Niina; Häkkinen, Arja

    2011-03-01

    A combination of endurance and strength training is generally used to seek further health benefits or enhanced physical performance in older adults compared with either of the training modes alone. The mean change within a training group, however, may conceal a wide range of individual differences in the responses. The purpose, therefore, was to examine the individual trainability of aerobic capacity and maximal strength, when endurance and strength training are performed separately or concurrently. For this study, 175 previously untrained volunteers, 89 men and 86 women between the ages of 40 and 67 yr, completed a 21-wk period of either strength training (S) twice a week, endurance training (E) twice a week, combined training (ES) four times per week, or served as controls. Training adaptations were quantified as peak oxygen uptake (VO2peak) in a bicycle ergometer test to exhaustion and maximal isometric bilateral leg extension force (MVC) in a dynamometer. A large range in training responses, similar to endurance or strength training alone, was also observed with combined endurance and strength training in both ΔVO2peak (from -8% to 42%) and ΔMVC (from -12% to 87%). There were no significant correlations between the training responses in VO2peak and MVC in the E, S, or especially in the ES group, suggesting that the same subjects did not systematically increase both aerobic capacity and maximal strength. The goal of combined endurance and strength training--increasing both aerobic capacity and maximal strength simultaneously--was only achieved by some of the older subjects. New means are needed to personalize endurance, strength, and especially combined endurance and strength training programs for optimal individual adaptations.

  8. Dielectric strength of irradiated fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Humer, Karl; Weber, Harald W.; Hastik, Ronald; Hauser, Hans; Gerstenberg, Heiko

    2001-05-01

    The insulation system for the toroidal field model coil of international thermonuclear experimental reactor is a fiber reinforced plastic (FRP) laminate, which consists of a combined Kapton/R-glass-fiber reinforcement tape, vacuum-impregnated with an epoxy DGEBA system. Pure disk-shaped laminates, disk-shaped FRP/stainless-steel sandwiches, and conductor insulation prototypes were irradiated at 5 K in a fission reactor up to a fast neutron fluence of 10 22 m -2 ( E>0.1 MeV) to investigate the radiation induced degradation of the dielectric strength of the insulation system. After warm-up to room temperature, swelling, weight loss, and the breakdown strength were measured at 77 K. The sandwich swells by 4% at a fluence of 5×10 21 m -2 and by 9% at 1×10 22 m -2. The weight loss of the FRP is 2% at 1×10 22 m -2. The dielectric strength remained unchanged over the whole dose range.

  9. A brief review of strength and ballistic assessment methodologies in sport.

    PubMed

    McMaster, Daniel Travis; Gill, Nicholas; Cronin, John; McGuigan, Michael

    2014-05-01

    An athletic profile should encompass the physiological, biomechanical, anthropometric and performance measures pertinent to the athlete's sport and discipline. The measurement systems and procedures used to create these profiles are constantly evolving and becoming more precise and practical. This is a review of strength and ballistic assessment methodologies used in sport, a critique of current maximum strength [one-repetition maximum (1RM) and isometric strength] and ballistic performance (bench throw and jump capabilities) assessments for the purpose of informing practitioners and evolving current assessment methodologies. The reliability of the various maximum strength and ballistic assessment methodologies were reported in the form of intra-class correlation coefficients (ICC) and coefficient of variation (%CV). Mean percent differences (Mdiff = [/Xmethod1 - Xmethod2/ / (Xmethod1 + Xmethod2)] x 100) and effect size (ES = [Xmethod2 - Xmethod1] ÷ SDmethod1) calculations were used to assess the magnitude and spread of methodological differences for a given performance measure of the included studies. Studies were grouped and compared according to their respective performance measure and movement pattern. The various measurement systems (e.g., force plates, position transducers, accelerometers, jump mats, optical motion sensors and jump-and-reach apparatuses) and assessment procedures (i.e., warm-up strategies, loading schemes and rest periods) currently used to assess maximum isometric squat and mid-thigh pull strength (ICC > 0.95; CV < 2.0%), 1RM bench press, back squat and clean strength (ICC > 0.91; CV < 4.3%), and ballistic (vertical jump and bench throw) capabilities (ICC > 0.82; CV < 6.5%) were deemed highly reliable. The measurement systems and assessment procedures employed to assess maximum isometric strength [M(Diff) = 2-71%; effect size (ES) = 0.13-4.37], 1RM strength (M(Diff) = 1-58%; ES = 0.01-5.43), vertical jump capabilities (M(Diff) = 2-57%; ES

  10. Accurate Calculation of Oscillator Strengths for CI II Lines Using Non-orthogonal Wavefunctions

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2004-01-01

    Non-orthogonal orbitals technique in the multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities for allowed and intercombination lines in Cl II. The relativistic corrections are included through the Breit-Pauli Hamiltonian. The Cl II wave functions show strong term dependence. The non-orthogonal orbitals are used to describe the term dependence of radial functions. Large sets of spectroscopic and correlation functions are chosen to describe adequately strong interactions in the 3s(sup 2)3p(sup 3)nl (sup 3)Po, (sup 1)Po and (sup 3)Do Rydberg series and to properly account for the important correlation and relaxation effects. The length and velocity forms of oscillator strength show good agreement for most transitions. The calculated radiative lifetime for the 3s3p(sup 5) (sup 3)Po state is in good agreement with experiment.

  11. E2C mechanism of elimination reactions. IX. Secondary deuterium isotope effects on rates of bimolecular reactions in alicyclic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.

    1976-06-11

    Secondary ..cap alpha..-deuterium isotope effects on the rates of NBu/sub 4/OAc and NBu/sub 4/Cl promoted bimolecular reactions (E2 and SN2) of cyclohexyl tosylate and cyclohexyl bromide have been studied. The E2 reactions, previously categorized as E2C-like, show ..cap alpha..-deuterium isotope effects in the range 1.14--1.22, while the related SN2 reactions give values in the range 1.05--1.08. The discrepancy in the magnitude of the ..cap alpha..-deuterium isotope effect for the E2 and SN2 processes is consistent with the view that E2C-like reactions use ''looser'' transition states than those used in the concurrent SN2 reactions. While the reported ..cap alpha..-d isotope effectsmore » do not provide positive evidence to support the idea that the base interacts with C/sub ..cap alpha../ in the E2 transition states of the reactions studied, neither do they substantiate claims for dismissal of the concept. A comparison of the secondary ..gamma..-deuterium and ..beta..'-deuterium isotope effects arising in the reaction of cyclohexyl tosylate with NBu/sub 4/OAc in acetone indicates the two isotope effects to be of equivalent magnitude (k/sub ..beta..'-d/k/sub ..gamma..-d/ = 0.98). This observation can only be rationalized for this reaction in terms of a transition state structure in which there is extensive double bond development. It provides compelling evidence against the involvement of any transition state structure which accommodates extensive positive charge development at C/sub ..cap alpha../.« less

  12. Short-ranged interaction effects on Z2 topological phase transitions: The perturbative mean-field method

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Hung, Hsiang-Hsuan

    2015-02-01

    Time-reversal symmetric topological insulator (TI) is a novel state of matter that a bulk-insulating state carries dissipationless spin transport along the surfaces, embedded by the Z2 topological invariant. In the noninteracting limit, this exotic state has been intensively studied and explored with realistic systems, such as HgTe/(Hg, Cd)Te quantum wells. On the other hand, electronic correlation plays a significant role in many solid-state systems, which further influences topological properties and triggers topological phase transitions. Yet an interacting TI is still an elusive subject and most related analyses rely on the mean-field approximation and numerical simulations. Among the approaches, the mean-field approximation fails to predict the topological phase transition, in particular at intermediate interaction strength without spontaneously breaking symmetry. In this paper, we develop an analytical approach based on a combined perturbative and self-consistent mean-field treatment of interactions that is capable of capturing topological phase transitions beyond either method when used independently. As an illustration of the method, we study the effects of short-ranged interactions on the Z2 TI phase, also known as the quantum spin Hall (QSH) phase, in three generalized versions of the Kane-Mele (KM) model at half-filling on the honeycomb lattice. The results are in excellent agreement with quantum Monte Carlo (QMC) calculations on the same model and cannot be reproduced by either a perturbative treatment or a self-consistent mean-field treatment of the interactions. Our analytical approach helps to clarify how the symmetries of the one-body terms of the Hamiltonian determine whether interactions tend to stabilize or destabilize a topological phase. Moreover, our method should be applicable to a wide class of models where topological transitions due to interactions are in principle possible, but are not correctly predicted by either perturbative or self

  13. p- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, Fabian, E-mail: fabian.langer@physik.uni-wuerzburg.de; Perl, Svenja; Kamp, Martin

    2015-02-09

    In this work, we report a p- to n-type conductivity transition of GaInNAs (1.0 eV bandgap) layers in p-i-n dilute nitride solar cells continuously controlled by the V/III ratio during growth. Near the transition region, we were able to produce GaInNAs layers with very low effective electrically active doping concentrations resulting in wide depleted areas. We obtained internal quantum efficiencies (IQEs) up to 85% at 0.2eV above the bandgap. However, the high IQE comes along with an increased dark current density resulting in a decreased open circuit voltage of about 0.2 V. This indicates the formation of non-radiant defect centers related tomore » the p-type to n-type transition. Rapid-thermal annealing of the solar cells on the one hand helps to anneal some of these defects but on the other hand increases the effective doping concentrations.« less

  14. Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Pradhan, Anil K.

    1993-01-01

    New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.

  15. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5.

    PubMed

    Lu, Y F; Kono, H; Larkin, T I; Rost, A W; Takayama, T; Boris, A V; Keimer, B; Takagi, H

    2017-02-16

    The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron-hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta 2 NiSe 5 is a narrow-gap semiconductor with a small one-electron bandgap E G of <50 meV. Below T C =326 K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap E op ∼0.16 eV below T C comparable to the estimated exciton binding energy E B . Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the T C -E G phase diagram tuning E G via chemical and physical pressure. The dome-like behaviour around E G ∼0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta 2 NiSe 5 .

  16. Giant Transiting Planets Observations GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.; Henning, Th.; Weldrake, D.; Mazeh, T.; Dreizler, S.

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last recent years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits ({ AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telescope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  17. E-Mobility and the Energy Transition.

    PubMed

    Schlögl, Robert

    2017-09-04

    Since the reduction of greenhouse gases is the top priority of the Energy Transition, primary electricity should be converted to material energy carriers. In this way electricity can be "stored" and made accessible for other applications. This Essay focuses on the integration of mobility in the Energy Transition and the development of sustainable alternatives to electricity-based transportation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  19. Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems.

    PubMed

    Suresh, R; Senthilkumar, D V; Lakshmanan, M; Kurths, J

    2012-07-01

    We report the nature of transitions from the nonsynchronous to a complete synchronization (CS) state in arrays of time-delay systems, where the systems are coupled with instantaneous diffusive coupling. We demonstrate that the transition to CS occurs distinctly for different coupling configurations. In particular, for unidirectional coupling, locally (microscopically) synchronization transition occurs in a very narrow range of coupling strength but for a global one (macroscopically) it occurs sequentially in a broad range of coupling strength preceded by an intermittent synchronization. On the other hand, in the case of mutual coupling, a very large value of coupling strength is required for local synchronization and, consequently, all the local subsystems synchronize immediately for the same value of the coupling strength and, hence, globally, synchronization also occurs in a narrow range of the coupling strength. In the transition regime, we observe a type of synchronization transition where long intervals of high-quality synchronization which are interrupted at irregular times by intermittent chaotic bursts simultaneously in all the systems and which we designate as global intermittent synchronization. We also relate our synchronization transition results to the above specific types using unstable periodic orbit theory. The above studies are carried out in a well-known piecewise linear time-delay system.

  20. Neuromuscular Adaptations to Same-Session Combined Endurance and Strength Training in Recreational Endurance Runners.

    PubMed

    Schumann, M; Pelttari, P; Doma, K; Karavirta, L; Häkkinen, K

    2016-12-01

    This study examined neuromuscular adaptations in recreational endurance runners during 24 weeks of same-session combined endurance and strength training (E+S, n=13) vs. endurance training only (E, n=14). Endurance training was similar in the 2 groups (4-6x/week). Additional maximal and explosive strength training was performed in E+S always after incremental endurance running sessions (35-45 min, 65-85% HR max ). Maximal dynamic leg press strength remained statistically unaltered in E+S but decreased in E at week 24 (-5±5%, p=0.014, btw-groups at week 12 and 24, p=0.014 and 0.011). Isometric leg press and unilateral knee extension force, EMG of knee extensors and voluntary activation remained statistically unaltered in E+S and E. The changes in muscle cross-sectional (CSA) differed between the 2 groups after 12 (E+S+6±8%, E -5±6%, p<0.001) and 24 (E+S+7±7%, E -6±5%, p<0.001) weeks. 1 000 m running time determined during an incremental field test decreased in E+S and E after 12 (-7±3%, p<0.001 and -8±5%, p=0.001) and 24 (-9±5%, p=0.001 and -13±5%, p<0.001) weeks. Strength training performed always after an endurance running session did not lead to increased maximal strength, CSA, EMG or voluntary activation. This possibly contributed to the finding of no endurance performance benefits in E+S compared to E. © Georg Thieme Verlag KG Stuttgart · New York.

  1. 2D transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras

    2017-08-01

    Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

  2. β2 adrenergic agonist suppresses eosinophil-induced epithelial-to-mesenchymal transition of bronchial epithelial cells.

    PubMed

    Kainuma, Keigo; Kobayashi, Tetsu; D'Alessandro-Gabazza, Corina N; Toda, Masaaki; Yasuma, Taro; Nishihama, Kota; Fujimoto, Hajime; Kuwabara, Yu; Hosoki, Koa; Nagao, Mizuho; Fujisawa, Takao; Gabazza, Esteban C

    2017-05-02

    Epithelial-mesenchymal transition is currently recognized as an important mechanism for the increased number of myofibroblasts in cancer and fibrotic diseases. We have already reported that epithelial-mesenchymal transition is involved in airway remodeling induced by eosinophils. Procaterol is a selective and full β 2 adrenergic agonist that is used as a rescue of asthmatic attack inhaler form and orally as a controller. In this study, we evaluated whether procaterol can suppress epithelial-mesenchymal transition of airway epithelial cells induced by eosinophils. Epithelial-mesenchymal transition was assessed using a co-culture system of human bronchial epithelial cells and primary human eosinophils or an eosinophilic leukemia cell line. Procaterol significantly inhibited co-culture associated morphological changes of bronchial epithelial cells, decreased the expression of vimentin, and increased the expression of E-cadherin compared to control. Butoxamine, a specific β 2 -adrenergic antagonist, significantly blocked changes induced by procaterol. In addition, procaterol inhibited the expression of adhesion molecules induced during the interaction between eosinophils and bronchial epithelial cells, suggesting the involvement of adhesion molecules in the process of epithelial-mesenchymal transition. Forskolin, a cyclic adenosine monophosphate-promoting agent, exhibits similar inhibitory activity of procaterol. Overall, these observations support the beneficial effect of procaterol on airway remodeling frequently associated with chronic obstructive pulmonary diseases.

  3. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te)

    NASA Astrophysics Data System (ADS)

    Fuh, Huei-Ru; Chang, Ching-Ray; Wang, Yin-Kuo; Evans, Richard F. L.; Chantrell, Roy W.; Jeng, Horng-Tay

    2016-09-01

    We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.22, and 0.20 eV, all with integer magnetic moments of 1.0 μB. The GGA plus on-site Coulomb interaction U (GGA + U) enhances the exchange splittings and raises the energy gap up to 0.38~0.65 eV. By adopting the GW approximation, we obtain converged G0W0 gaps of 1.3, 1.2, and 0.7 eV for VS2, VSe2, and VTe2 monolayers, respectively. They agree very well with our calculated HSE gaps of 1.1, 1.2, and 0.6 eV, respectively. The gap sizes as well as the metal-insulator transitions are tunable by applying the in-plane strain and/or changing the number of stacking layers. The Monte Carlo simulations illustrate very high Curie-temperatures of 292, 472, and 553 K for VS2, VSe2, and VTe2 monolayers, respectively. They are nearly or well beyond the room temperature. Combining the semiconducting energy gap, the 100% spin polarized valence and conduction bands, the room temperature TC, and the in-plane magnetic anisotropy together in a single layer VX2, this newtype 2D magnetic semiconductor shows great potential in future spintronics.

  4. E-H mode transition of a high-power inductively coupled plasma torch at atmospheric pressure with a metallic confinement tube

    NASA Astrophysics Data System (ADS)

    Altenberend, Jochen; Chichignoud, Guy; Delannoy, Yves

    2012-08-01

    Inductively coupled plasma torches need high ignition voltages for the E-H mode transition and are therefore difficult to operate. In order to reduce the ignition voltage of an RF plasma torch with a metallic confinement tube the E-H mode transition was studied. A Tesla coil was used to create a spark discharge and the E-H mode transition of the plasma was then filmed using a high-speed camera. The electrical potential of the metallic confinement tube was measured using a high-voltage probe. It was found that an arc between the grounded injector and the metallic confinement tube is maintained by the electric field (E-mode). The transition to H-mode occurred at high magnetic fields when the arc formed a loop. The ignition voltage could be reduced by connecting the metallic confinement tube with a capacitor to the RF generator.

  5. Direct Lentiviral-Cyclooxygenase 2 Application to the Tendon-Bone Interface Promotes Osteointegration and Enhances Return of the Pull-Out Tensile Strength of the Tendon Graft in a Rat Model of Biceps Tenodesis

    PubMed Central

    Wergedal, Jon E.; Stiffel, Virginia; Lau, Kin-Hing William

    2014-01-01

    This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to

  6. Transition probabilities of Br II

    NASA Technical Reports Server (NTRS)

    Bengtson, R. D.; Miller, M. H.

    1976-01-01

    Absolute transition probabilities of the three most prominent visible Br II lines are measured in emission. Results compare well with Coulomb approximations and with line strengths extrapolated from trends in homologous atoms.

  7. Optical activity and electronic absorption spectra of some simple nucleosides related to cytidine and uridine: all-valence-shell molecular orbital calculations.

    PubMed Central

    Miles, D W; Redington, P K; Miles, D L; Eyring, H

    1981-01-01

    The circular dichroism and electronic absorption of three simple model systems for cytidine and uridine have been measured to 190 nm. The molecular spectral properties (excitation wavelengths, oscillator strengths, rotational strengths, and polarization directions) and electronic transitional patterns were investigated by using wave functions of the entire nucleoside with the goal of establishing the reliability of the theoretical method. The computed electronic absorption quantities were shown to be in satisfactory agreement with experimental data. It was found that the computed optical rotatory strengths of the B2u and E1u electronic transitions and lowest observed n-pi transition are in good agreement with experimental values. Electronic transitions were characterized by their electronic transitional patterns derived from population analysis of the transition density matrix. The theoretical rotational strengths associated with the B2u and E1u transitions stabilize after the use of just a few singly excited configurations in the configuration interaction basis and, hypothetically, are more reliable as indicators of conformation in pyrimidine nucleosides related to cytidine. PMID:6950393

  8. Energy Levels and Spectral Lines of Li Atoms in White Dwarf Strength Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.

    2018-04-01

    A theoretical approach based on B-splines has been developed to calculate atomic structures and discrete spectra of Li atoms in a strong magnetic field typical of magnetic white dwarf stars. Energy levels are presented for 20 electronic states with the symmetries 20+, 20‑, 2(‑1)+, 2(‑1)‑, and 2(‑2)+. The magnetic field strengths involved range from 0 to 2350 MG. The wavelengths and oscillator strengths for the electric dipole transitions relevant to these magnetized atomic states are reported. The current results are compared to the limited theoretical data in the literature. A good agreement has been found for the lower energy levels, but a significant discrepancy is clearly visible for the higher energy levels. The existing discrepancies of the wavelengths and oscillator strengths are also discussed. Our investigation shows that the spectrum data of magnetized Li atoms previously published are obviously far from meeting requirements of analyzing discrete atomic spectra of magnetic white dwarfs with lithium atmospheres.

  9. CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm

    NASA Astrophysics Data System (ADS)

    Farooq, A.; Jeffries, J. B.; Hanson, R. K.

    2008-03-01

    A new tunable diode-laser sensor based on CO2 absorption near 2.7 μm is developed for high-resolution absorption measurements of CO2 concentration and temperature. The sensor probes the R(28) and P(70) transitions of the ν1+ν3 combination band of CO2 that has stronger absorption line-strengths than the bands near 1.5 μm and 2.0 μm used previously to sense CO2 in combustion gases. The increased absorption strength of transitions in this new wavelength range provides greatly enhanced sensitivity and the potential for accurate measurements in combustion gases with short optical path lengths. Simulated high-temperature spectra are surveyed to find candidate CO2 transitions isolated from water vapor interference. Measurements of line-strength, line position, and collisional broadening parameters are carried out for candidate CO2 transitions in a heated static cell as a function of temperature and compared to literature values. The accuracy of a fixed-wavelength CO2 absorption sensor is determined via measurement of known temperature and CO2 mole fraction in a static cell and shock-tube. Absorption measurements of CO2 are then made in a laboratory flat-flame burner and in ignition experiments of shock-heated n-heptane/O2/argon mixtures to illustrate the potential of this sensor for combustion and reacting-flow applications.

  10. Transitions of the type 2s-2p in oxygenlike Y, Zr, and Nb

    NASA Technical Reports Server (NTRS)

    Behring, W. E.; Brown, C. M.; Feldman, U.; Seely, J. F.; Reader, J.

    1986-01-01

    Transitions of the type 2s-2p in the oxygenlike ions Y XXXII, Zr XXXIII, and Nb XXXIV were identified in spectra recorded at the University of Rochester's Omega laser facility. Solid targets were spherically irradiated by 24 beams of frequency-tripled (351-nm) Nd-glass laser radiation. The spectra were photographed with a 3-m grazing-incidence spectrograph. The identified transitions of the oxygenlike ions are in the range 30 to 73 A. The wavelengths for the magnetic-dipole transitions within the 2s2p4 ground configurations of these ions are predicted from the experimental energy levels.

  11. Rupture complexity and the supershear transition on rough faults

    NASA Astrophysics Data System (ADS)

    Bruhat, Lucile; Fang, Zijun; Dunham, Eric M.

    2016-01-01

    Field investigations suggest that supershear earthquakes occur on geometrically simple, smooth fault segments. In contrast, dynamic rupture simulations show how heterogeneity of stress, strength, and fault geometry can trigger supershear transitions, as well as other complex rupture styles. Here we examine the Fang and Dunham (2013) ensemble of 2-D plane strain dynamic ruptures on fractally rough faults subject to strongly rate weakening friction laws to document the effect of fault roughness and prestress on rupture behavior. Roughness gives rise to extremely diverse rupture styles, such as rupture arrests, secondary slip pulses that rerupture previously slipped fault sections, and supershear transitions. Even when the prestress is below the Burridge-Andrews threshold for supershear on planar faults with uniform stress and strength conditions, supershear transitions are observed. A statistical analysis of the rupture velocity distribution reveals that supershear transients become increasingly likely at higher stress levels and on rougher faults. We examine individual ruptures and identify recurrent patterns for the supershear transition. While some transitions occur on fault segments that are favorably oriented in the background stress field, other transitions happen at the initiation of or after propagation through an unfavorable bend. We conclude that supershear transients are indeed favored by geometric complexity. In contrast, sustained supershear propagation is most common on segments that are locally smoother than average. Because rupture style is so sensitive to both background stress and small-scale details of the fault geometry, it seems unlikely that field maps of fault traces will provide reliable deterministic predictions of supershear propagation on specific fault segments.

  12. Long-range magnetic order in the Heisenberg pyrochlore antiferromagnets G d2G e2O7 and G d2P t2O7 synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Li, X.; Cai, Y. Q.; Cui, Q.; Lin, C. J.; Dun, Z. L.; Matsubayashi, K.; Uwatoko, Y.; Sato, Y.; Kawae, T.; Lv, S. J.; Jin, C. Q.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Cheng, J.-G.

    2016-12-01

    G d2S n2O7 and G d2T i2O7 have been regarded as good experimental realizations of the classical Heisenberg pyrochlore antiferromagnet with dipolar interaction. The former was found to adopt the Palmer-Chalker state via a single, first-order transition at TN≈1 K , while the latter enters a distinct, partially ordered state through two successive transitions at TN 1≈1 K and TN 2= 0.75 K . To shed more light on their distinct magnetic ground states, we have synthesized two more gadolinium-based pyrochlore oxides, G d2G e2O7 and G d2P t2O7 , under high-pressure conditions and performed detailed characterizations via x-ray powder diffraction, dc and ac magnetic susceptibility, and specific heat measurements down to 100 mK. We found that both compounds enter a long-range antiferromagnetically ordered state through a single, first-order transition at TN= 1.4 K for G d2G e2O7 and TN= 1.56 K for G d2P t2O7 , with the specific heat anomaly similar to that of G d2S n2O7 rather than G d2T i2O7 . Interestingly, the low-temperature magnetic specific heat values of both G d2G e2O7 and G d2P t2O7 were found to follow nicely the T3 dependence as expected for a three-dimensional antiferromagnet with gapless spin-wave excitations. We have rationalized the enhancement of TN in terms of the reduced Gd-Gd distances for the chemically pressurized G d2G e2O7 and the addition of extra superexchange pathways through the empty Pt -eg orbitals for G d2P t2O7 . Our current study has expanded the family of gadolinium-based pyrochlores and permits us to achieve a better understanding of their distinct magnetic properties in a more comprehensive perspective.

  13. THE E2/FRB PATHWAY REGULATION OF DNA REPLICATION AND PROTEIN BIOSYNTHESIS

    EPA Science Inventory

    The E2F/Rb pathway plays a pivotal role in the control of cell cycle progression and regulates the expression of genes required for Gl/S transition. Our study examines the genomic response in Drosophila embryos after overexpression and mutation of E2F/Rb pathway molecules. Hierar...

  14. Multifunctional Beta Ti Alloy with Improved Specific Strength

    NASA Astrophysics Data System (ADS)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  15. Kinetic mechanism for reversible structural transition in MoTe2 induced by excess charge carriers

    NASA Astrophysics Data System (ADS)

    Rubel, O.

    2018-06-01

    Kinetic of a reversible structural transition between insulating (2H) and metallic (1T ') phases in a monolayer MoTe2 due to an electrostatic doping is studied using first-principle calculations. The driving force for the structural transition is the energy gained by transferring excess electrons from the bottom of the conduction band to lower energy gapless states in the metallic phase as have been noticed in earlier studies. The corresponding structural transformation involves dissociation of Mo-Te bonds (one per formula unit), which results in a kinetic energy barrier of 0.83 eV. The transformation involves a consecutive movement of atoms similar to a domain wall motion. The presence of excess charge carriers modifies not only the total energy of the initial and final states, but also lowers an energy of the transition state. An experimentally observed hysteresis in the switching process can be attributed to changes in the kinetic energy barrier due to its dependence on the excess carrier density.

  16. Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system

    NASA Astrophysics Data System (ADS)

    Hamed, A. E.; El-Aziz, Y. M. Abd.; Madi, N. K.; Kassem, M. E.

    1995-12-01

    Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system was studied by measuring the specific heat at constant pressure, C p, as a function of temperature in the temperature range 300-800 K. For non-zero values of X ( X = 0.2%, 0.5%, 1% and 2%) the critical behaviour of the phase transition was found to change considerably compared with that of X = 0 or pure LiKSO 4. The observed change in the phase transition with increase of Cs 2SO 4 content ( X) was accompanied by a decrease in the thermodynamic parameters: the value of the specific heat at the transition point (Δ C P) max, the transition temperature, T1, and the value of the energy of ordering. The results were interpreted within the Landau thermodynamic theory of the phase transition.

  17. Observation of Upsilon(2S)-->etaUpsilon(1S) and search for related transitions.

    PubMed

    He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Xavier, J V; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Martin, L; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J

    2008-11-07

    We report the first observation of Upsilon(2S)-->etaUpsilon(1S), with a branching fraction B=(2.1(-0.6)+0.7(stat)+/-0.3(syst)) x 10(-4) and a statistical significance 5.3sigma. Data were acquired with the CLEO III detector at the CESR e+e(-) symmetric collider. This is the first process observed involving a b-quark spin flip. For related transitions, 90% confidence limits in units of 10(-4) are B(Upsilon(2S)-->pi0Upsilon(1S)) < 1.8, B(Upsilon(3S)-->etaUpsilon(1S)) < 1.8, B(Upsilon(3S)-->pi0Upsilon(1S)) < 0.7, and B(Upsilon(3S)-->pi0Upsilon(2S)) < 5.1.

  18. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    PubMed

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  19. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  20. The impact of electronic mail versus print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes.

    PubMed

    Taylor, J David

    2008-09-01

    Previous research indicates that the Internet, electronic mail (e-mail), and printed materials can be used to deliver interventions to improve physical activity in people with type 2 diabetes. However, no studies have been conducted investigating the effect of e-mail or print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. The purpose of this clinical trial was to investigate the impact of e-mail vs. print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. Nineteen participants with type 2 diabetes were allocated to either a group that was delivered a prescribed exercise program using e-mail (e-mail group, n = 10) or a group that was delivered the same prescribed exercise program in print form (print group, n = 9). Chest press and leg press estimated one-repetition maximum (1-RM) scores as well as estimated peak oxygen uptake ([latin capital V with dot above]O2peak) were measured at baseline and follow-up. Intention-to-treat analysis indicated significant improvements in chest press (mean = 7.00 kg, p = 0.001, effect size = 2.22) and leg press (mean = 19.32 kg, p = 0.002, effect size = 1.98) 1-RM scores and [latin capital V with dot above]O2peak (mean = 9.38 mL of oxygen uptake per kilogram of body mass per minute, p = 0.01, effect size = 1.45) within the e-mail group. Within the print group, significant improvements in chest press (mean = 9.13 kg, p = 0.01, effect size = 1.49) and leg press (mean = 16.68 kg, p = 0.01, effect size = 1.31) 1-RM scores and [latin capital V with dot above]O2peak (mean = 5.14 ml of oxygen uptake per kilogram of body mass per minute, p = 0.03, effect size = 1.14) were found. No significant between-group differences in improvements were found. Clinicians can deliver a prescribed exercise program, either by e-mail or in print form, to significantly improve muscular strength and aerobic capacity in people with type 2 diabetes

  1. Transition Summary, 1986.

    ERIC Educational Resources Information Center

    Transition Summary, 1986

    1986-01-01

    Two articles examine issues of transition for people with mental retardation. The first article describes how the Ohio Association for Retarded Citizens (ARC) developed a parent-based project to monitor the quality of residential placements. The project was intended to assess both the strengths and weaknesses of community residential programs, to…

  2. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng

    2018-03-01

    Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.

  3. Structural, vibrational, and electrical properties of 1 T -TiT e2 under hydrostatic pressure: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Rajaji, V.; Dutta, Utpal; Sreeparvathy, P. C.; Sarma, Saurav Ch.; Sorb, Y. A.; Joseph, B.; Sahoo, Subodha; Peter, Sebastian C.; Kanchana, V.; Narayana, Chandrabhas

    2018-02-01

    We report the structural, vibrational, and electrical transport properties up to ˜16 GPa of 1 T -TiT e2 , a prominent layered 2D system. We clearly show signatures of two isostructural transitions at ˜2 GPa and ˜4 GPa obtained from the minima in c /a ratio concomitant with the phonon linewidth anomalies of Eg and A1 g modes around the same pressures, providing a strong indication of unusual electron-phonon coupling associated with these transitions. Resistance measurements present nonlinear behavior over similar pressure ranges shedding light on the electronic origin of these pressure-driven isostructural transitions. These multiple indirect signatures of an electronic transition at ˜2 GPa and ˜4 GPa are discussed in connection with the recent theoretical proposal for 1 T -TiT e2 and also the possibility of an electronic topological transition from our electronic Fermi surface calculations. Between 4 GPa and ˜8 GPa , the c /a ratio shows a plateau suggesting a transformation from an anisotropic 2D layer to a quasi-3D crystal network. First-principles calculations suggest that the 2D to quasi-3D evolution without any structural phase transitions is mainly due to the increased interlayer Te-Te interactions (bridging) via the charge density overlap. In addition, we observed a first-order structural phase transition from the trigonal (P 3 ¯m 1 ) to monoclinic (C 2 /m ) phase at higher pressure regions. We estimate the start of this structural phase transition to be ˜8 GPa and also the coexistence of two phases [trigonal (P 3 ¯m 1 ) and monoclinic (C 2 /m )] was observed from ˜8 GPa to ˜16 GPa .

  4. High strength kiloampere Bi 2Sr 2CaCu 2O x cables for high-field magnet applications

    DOE PAGES

    Shen, Tengming; Li, Pei; Jiang, Jianyi; ...

    2015-04-17

    Multifilamentary Ag-sheathed Bi 2Sr 2CaCu 2O x (Bi-2212) wire can carry sufficient critical current density J c for the development of powerful superconducting magnets. But, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their J c. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact withmore » several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant J c loss, whereas Ni80-Cr caused little or no J c loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We then fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO 2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. Finally. we proposed new cable designs that take advantage of the chemical compatibility of Fe

  5. High Strength Steel Welding Research

    DTIC Science & Technology

    2005-05-27

    E.S.K. Menon, and M.G. Hall, "Sympathetic Nucleation: An Overview," Materials Science and Engineering B, Solid State Materials for Advanced Technology ...GTAW of Titanium Using Flux-cored Wire with Magnesium Fluoride Kook-soo Bang’, Greg Chirieleison 2, and Stephen Liu 2 1 Division of Advanced Materials...O CHAPTER I O INTRODUCTION * The application of advanced high strength low alloy (HSLA) steels has been * limited by the availability of suitable

  6. Effects of neck strength training on isometric neck strength in rugby union players.

    PubMed

    Geary, Kevin; Green, Brian S; Delahunt, Eamonn

    2014-11-01

    To investigate the effectiveness of a neck strengthening program on the isometric neck strength profile of male rugby union players. Controlled laboratory study. Professional rugby union club. Fifteen professional and 10 semiprofessional rugby union players. The 15 professional players undertook a 5-week neck strengthening intervention, which was performed twice per week, whereas the 10 semiprofessional players acted as the control group. Isometric strength of the neck musculature was tested using a hand-held dynamometer, for flexion (F), extension (E), left-side flexion (LSF), and right-side flexion (RSF). Preintervention and postintervention evaluations were undertaken. No significant between-group differences in isometric neck strength were noted preintervention. A significant main effect for time was observed (P < 0.05), whereby the intervention group increased isometric neck strength in all planes after the 5-week intervention (F preintervention = 334.45 ± 39.31 N vs F postintervention 396.05 ± 75.55 N; E preintervention = 606.19 ± 97.34 vs E postintervention = 733.88 ± 127.16 N; LSF preintervention = 555.56 ± 88.34 N vs LSF postintervention = 657.14 ± 122.99 N; RSF preintervention = 570.00 ± 106.53 N vs RSF postintervention = 668.00 ± 142.18 N). No significant improvement in neck strength was observed for control group participants. The results of the present study indicate that a 5-week neck strengthening program improves isometric neck strength in rugby union players, which may have implications for injury prevention, screening, and rehabilitation. The strengthening program described in the present study may facilitate rehabilitation specialists in the development of neck injury prevention, screening, and rehabilitation protocols.

  7. CYP2E1 Metabolism of Styrene Involves Allostery

    PubMed Central

    Hartman, Jessica H.; Boysen, Gunnar

    2012-01-01

    We are the first to report allosterism during styrene oxidation by recombinant CYP2E1 and human liver microsomes. At low styrene concentrations, oxidation is inefficient because of weak binding to CYP2E1 (Ks = 830 μM). A second styrene molecule then binds CYP2E1 with higher affinity (Kss = 110 μM) and significantly improves oxidation to achieve a kcat of 6.3 nmol · min−1 · nmol CYP2E1−1. The transition between these metabolic cycles coincides with reported styrene concentrations in blood from exposed workers; thus, this CYP2E1 mechanism may be relevant in vivo. Scaled modeling of the in vitro-positive allosteric mechanism for styrene metabolism to its in vivo clearance led to significant deviations from the traditional model based on Michaelis-Menten kinetics. Low styrene levels were notably much less toxic than generally assumed. We interrogated the allosteric mechanism using the CYP2E1-specific inhibitor and drug 4-methylpyrazole, which we have shown binds two CYP2E1 sites. From the current studies, styrene was a positive allosteric effector on 4-methylpyrazole binding, based on a 10-fold increase in 4-methylpyrazole binding affinity from Ki 0.51 to Ksi 0.043 μM. The inhibitor was a negative allosteric effector on styrene oxidation, because kcat decreased 6-fold to 0.98 nmol · min−1 · nmol CYP2E1−1. Consequently, mixtures of styrene and other molecules can induce allosteric effects on binding and metabolism by CYP2E1 and thus mitigate the efficiency of their metabolism and corresponding effects on human health. Taken together, our elucidation of mechanisms for these allosteric reactions provides a powerful tool for further investigating the complexities of CYP2E1 metabolism of drugs and pollutants. PMID:22807108

  8. Transition planning for youth with traumatic brain injury: findings from the National Longitudinal Transition Survey-2.

    PubMed

    Wehman, Paul; Chen, Chin-Chih; West, Michael; Cifu, Gabriella

    2014-01-01

    Despite of a growing body of research on vocational and educational difficulties for students with traumatic brain injury (TBI), only limited empirical studies specifically examined how school transition services facilitate later employment outcomes. This exploratory, prospective longitudinal study examined the prevalence of employment and characteristics of transition planning practices that promoted positive school-to-work transition for students with TBI. The participants (n = 200) was drawn from the National Longitudinal Transition Study-2 (NLTS-2), a ten-year study which followed a large nationally representative sample of youth with disabilities through secondary education in into young adulthood. Logistic regression was used to investigate the associations between student, school, and collaborative engagement in the planning process and employment outcomes up to 8 years after high school. Among youth with TBI, 51% held current employment at the time of interview and 73% had been employed at any time after high school. Findings showed that students with TBI who had transition goals for postsecondary education were more likely to be employed at some point since leaving high school. The findings also support active student engagement and leadership in the transition planning process, and the inclusion of outside organizations and individuals. Findings indicate the impact of student, school and adult service agency engagement in transition planning processes. Implications for educational practices and future research are discussed.

  9. THE SEARCH FOR A COMPLEX MOLECULE IN A SELECTED HOT CORE REGION: A RIGOROUS ATTEMPT TO CONFIRM TRANS-ETHYL METHYL ETHER TOWARD W51 e1/e2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, P. Brandon; McGuire, Brett A.; Blake, Geoffrey A.

    2015-01-20

    An extensive search has been conducted to confirm transitions of trans-ethyl methyl ether (tEME, C{sub 2}H{sub 5}OCH{sub 3}), toward the high-mass star forming region W51 e1/e2 using the 12 m Telescope of the Arizona Radio Observatory at wavelengths from 2 mm and 3 mm. In short, we cannot confirm the detection of tEME toward W51 e1/e2 and our results call into question the initial identification of this species by Fuchs et al. Additionally, re-evaluation of the data from the original detection indicates that tEME is not present toward W51 e1/e2 in the abundance reported by Fuchs and colleagues. Typical peak-to-peak noise levels for themore » present observations of W51 e1/e2 were between 10 and 30 mK, yielding an upper limit of the tEME column density of ≤1.5 × 10{sup 15} cm{sup –2}. This would make tEME at least a factor of two times less abundant than dimethyl ether (CH{sub 3}OCH{sub 3}) toward W51 e1/e2. We also performed an extensive search for this species toward the high-mass star forming region Sgr B2(N-LMH) with the National Radio Astronomy Observatory 100 m Green Bank Telescope. No transitions of tEME were detected and we were able to set an upper limit to the tEME column density of ≤4 × 10{sup 14} cm{sup –2} toward this source. Thus, we are able to show that tEME is not a new molecular component of the interstellar medium and that an exacting assessment must be carried out when assigning transitions of new molecular species to astronomical spectra to support the identification of large organic interstellar molecules.« less

  10. Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2010-09-01

    Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.

  11. Planetary transit observations at the University Observatory Jena: TrES-2

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Mugrauer, M.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Koeltzsch, A.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Tetzlaff, N.; Seifahrt, A.; Broeg, Ch.; Koppenhoefer, J.; Raetz, M.; Neuhäuser, R.

    2009-05-01

    We report on observations of several transit events of the transiting planet TrES-2 obtained with the Cassegrain-Teleskop-Kamera at the University Observatory Jena. Between March 2007 and November 2008 ten different transits and almost a complete orbital period were observed. Overall, in 40 nights of observation 4291 exposures (in total 71.52 h of observation) of the TrES-2 parent star were taken. With the transit timings for TrES-2 from the 34 events published by the TrES-network, the Transit Light Curve project and the Exoplanet Transit Database plus our own ten transits, we find that the orbital period is P=(2.470614± 0.000001) d, a slight change by ˜ 0.6 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we found a second dip after the transit which could either be due to a blended variable star or occultation of a second star or even an additional object in the system. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University Jena and the 80cm telescope of the Wendelstein Observatory of the Ludwig-Maximilians-University Munich.

  12. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.

    PubMed

    Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T

    2003-02-01

    The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.

  13. Revisiting ρ1 Cancri e: A New Mass Determination of the Transiting Super-Earth

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Caldwell, Caroline; Wittenmyer, Robert A.; Barnes, Stuart I.; Gullikson, Kevin

    2012-11-01

    We present a mass determination for the transiting super-Earth ρ1 Cancri e based on nearly 700 precise radial velocity (RV) measurements. This extensive RV data set consists of data collected by the McDonald Observatory planet search and published data from Lick and Keck observatories. We obtained 212 RV measurements with the Tull Coudé Spectrograph at the Harlan J. Smith 2.7 m Telescope and combined them with a new Doppler reduction of the 131 spectra that we have taken in 2003-2004 with the High-Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope for the original discovery of ρ1 Cancri e. Using this large data set we obtain a five-planet Keplerian orbital solution for the system and measure an RV semi-amplitude of K = 6.29 ± 0.21 m s-1 for ρ1 Cnc e and determine a mass of 8.37 ± 0.38 M ⊕. The uncertainty in mass is thus less than 5%. This planet was previously found to transit its parent star, which allowed them to estimate its radius. Combined with the latest radius estimate from Gillon et al., we obtain a mean density of ρ = 4.50 ± 0.20 g cm-3. The location of ρ1 Cnc e in the mass-radius diagram suggests that the planet contains a significant amount of volatiles, possibly a water-rich envelope surrounding a rocky core. Based partly on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  14. Infrared Rydberg Transitions in B Stars.

    NASA Astrophysics Data System (ADS)

    Sigut, Thomas Allan Aaron

    1995-01-01

    The infrared solar spectrum exhibits emission lines near 12 μm from the Mg scI high-l Rydberg transitions 6g - 7h and 6h - 7i. Chang et al. (1991) demonstrated that the emission arises from small deviations in the populations of these Rydberg levels from their thermodynamic equilibrium values. In this thesis, the possible operation of this emission mechanism is investigated in the B stars by performing non-LTE radiative transfer calculations for the high-l Rydberg transitions of Mg scII and O scI. Highly realistic atomic models are employed, complete in energy levels and radiative transitions far into the Rydberg regime. For Mg scII, the collisional excitation rates are improved by computing collision strengths in a 10 state close-coupling approximation using the R-matrix method. The collisional excitation rates derived from these collisions strengths include the full effects of autoionizing resonances and have an expected accuracy of +/-10% for transitions between levels lying low in energy in the close-coupling expansion. For Mg scII, wide-ranging infrared emission is found, spanning the entire range of B spectral types. The emission is caused by the same mechanism operative in the Rydberg levels of Mg scI in the sun. Small divergences between the Rydberg departure coefficients produce rising monochromatic source functions and emission. Flux profiles of the Mg scII high-l ( Delta n = +1) transitions from n = 4 and 5 show an emission peak superposed on wider absorption trough, similar in form to the solar Mg scI lines, while for higher n, the profiles are in full emission. The strongest emission is predicted for transitions from n = 5, 6, and 7 and strongly increases for lower surface gravities where the rates of thermalizing collisions are lower. The emission strengths reach maxima of Flambda /Fc ~ 1.15 and Wlambda ~ -0.1 A. Transitions from higher n exhibit progressively lower continuum contrasts due to the steep rise with wavelength of the continuous opacity

  15. Research and Process-Optimization on Mixed Crystal Caused Uneven-Performance of High-strength Structural Car Steel QStE500TM

    NASA Astrophysics Data System (ADS)

    Jian-wen, Li; Hong-yan, Liu

    Handan Iron and Steel production of high-strength structural car steel QStE500TM thin gauge products using Nb + Ti composite strengthening, with a small amount of Cr element to improve its hardenability, the process parameter control is inappropriate with Nb + Ti complex steel, it is easy to produce in the mixed crystal phenomenon, resulting in decreasing the toughness and uneven performance. In this paper, Gleeble 3500 thermal simulation testing machine for high-strength structural steel car QStE500TM product deformation austenite recrystallization behavior research, determined completely recrystallized, partial recrystallization and non-recrystallization region, provide theoretical basis and necessary data for reasonable controlled rolling process for production.

  16. [In vitro study on shear bond strength of veneering ceramics to zirconia].

    PubMed

    Hu, Xiaoping; Zhu, Hongshui; Zeng, Liwei

    2012-12-01

    To investigate the shear bond strength between veneering ceramic and zirconia core in different all-ceramic systems. Twenty disk-shaped specimens with 8 mm in diameter and 3 mm in height for each zirconia system (Lava, Cercon, IPS e.max ZirCAD, Procera) were fabricated respectively and divided into four groups: Lava group, Cercon group, IPS e.max ZirCAD group, Procera group. For each group, 10 specimens were sintered with 1 mm corresponding veneering ceramic, while the other were sintered with 2 mm corresponding veneering ceramic respectively. The shear bond strength and fracture mode of specimens were observed and determined. The values of shear bond strength for Lava, Cercon, IPS e.max ZirCAD and Procera were (13.82 +/- 3.71), (13.24 +/- 2.09), (6.37 +/- 4.15), (5.19 +/- 5.31) MPa in the group of 1 mm thicked veneering ceramics, respectively, while the values in the group of 2mm thicked veneering ceramics were (38.77 +/- 1.69), (21.67 +/- 3.34), (12.70 +/- 4.24), (9.94 +/- 6.67) MPa. The values of Lava and Cercon groups were significantly higher than that of IPS e.max ZirCAD and Procera groups (P < 0.05). And the values of 2 mm thicked veneering ceramic group were significantly higher than that in 1 mm thicked groups (P < 0.05). Adhesive fracture between core and veneering ceramics were observed in the fracture modes of most specimens. The shear bond strength of veneering ceramic to the zirconia framework are different from the zirconia system we chose, and the thickness of veneering ceramic has a great impact on its shear bond strength.

  17. Mapping strengths into virtues: the relation of the 24 VIA-strengths to six ubiquitous virtues

    PubMed Central

    Ruch, Willibald; Proyer, René T.

    2015-01-01

    The Values-in-Action-classification distinguishes six core virtues and 24 strengths. As the assignment of the strengths to the virtues was done on theoretical grounds it still needs empirical verification. As an alternative to factor analytic investigations the present study utilizes expert judgments. In a pilot study the conceptual overlap among five sources of knowledge (strength’s name including synonyms, short definitions, brief descriptions, longer theoretical elaborations, and item content) about a particular strength was examined. The results show that the five sources converged quite well, with the short definitions and the items being slightly different from the other. All strengths exceeded a cut-off value but the convergence was much better for some strengths (e.g., zest) than for others (e.g., perspective). In the main study 70 experts (from psychology, philosophy, theology, etc.) and 41 laypersons rated how prototypical the strengths are for each of the six virtues. The results showed that 10 were very good markers for their virtues, nine were good markers, four were acceptable markers, and only one strength failed to reach the cut-off score for its assigned virtue. However, strengths were often markers for two or even three virtues, and occasionally they marked the other virtue more strongly than the one they were assigned to. The virtue prototypicality ratings were slightly positively correlated with higher coefficients being found for justice and humanity. A factor analysis of the 24 strengths across the ratings yielded the six factors with an only slightly different composition of strengths and double loadings. It is proposed to adjust either the classification (by reassigning strengths and by allowing strengths to be subsumed under more than one virtue) or to change the definition of certain strengths so that they only exemplify one virtue. The results are discussed in the context of factor analytic attempts to verify the structural model. PMID

  18. Bond strength comparison of 2 self-etching primers over a 3-month storage period.

    PubMed

    Trites, Brian; Foley, Timothy F; Banting, David

    2004-12-01

    The purpose of this in vitro study was to evaluate the shear-peel bond strength of 2 self-etching primer systems, Transbond Plus (3M/ Unitek, Monrovia, Calif) and First Step (Reliance Orthodontic Products, Itasca, Ill), with their respective adhesives, and compare them with a control adhesive system (Transbond XT, 3M/ Unitek) over a 3-month period. Two hundred seventy extracted human premolars were obtained and randomly divided into 9 groups of 30 teeth. Metal orthodontic brackets were bonded to the enamel, and each adhesive group was stored for 24 horrs (T1), 30 days (T2), or 3 months (T3) in deionized water at 37 degrees C. All bonded specimens were thermocycled at 10 degrees C and 50 degrees C for 24 hours before debonding. Brackets were debonded by using a shear-peel load on a testing machine at a cross-head speed of 2 mm/min. Bond failure was also evaluated. The shear-peel bond strengths of the 3 bonding systems were clinically acceptable with the possible exception of First Step at 30-day storage. Repeated measures analysis of variance showed a statistically significant (P < .0001) difference in mean bond strengths between the 3 adhesive systems. The shear-peel bond strength of the adhesives over the 3 time intervals showed statistically significant (P = .005) changes. In each group, there were statistically significant differences in shear-peel bond strength between time intervals T1-T2 and T2-T3 for Transbond Plus and T2-T3 for First Step. The change in mean shear-peel bond strength of the 3 adhesives demonstrated a consistent pattern of behavior over the 3 storage intervals. The lowest mean shear-peel bond strength values were noted at the 30-day storage. Bond failure analysis (adhesive remnant index) demonstrated mainly cohesive bond failures.

  19. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation.

    PubMed

    Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  20. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    NASA Astrophysics Data System (ADS)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong

    2015-12-01

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  1. Ultrafast dynamics of an unoccupied surface resonance state in B i2T e2Se

    NASA Astrophysics Data System (ADS)

    Munisa, Nurmamat; Krasovskii, E. E.; Ishida, Y.; Sumida, K.; Chen, Jiahua; Yoshikawa, T.; Chulkov, E. V.; Kokh, K. A.; Tereshchenko, O. E.; Shin, S.; Kimura, Akio

    2018-03-01

    Electronic structure and electron dynamics in the ternary topological insulator B i2T e2Se are studied with time- and angle-resolved photoemission spectroscopy using optical pumping. An unoccupied surface resonance split off from the bulk conduction band previously indirectly observed in scanning tunneling measurements is spectroscopically identified. Furthermore, an unoccupied topological surface state (TSS) is found, which is serendipitously located at about 1.5 eV above the occupied TSS, thereby facilitating direct optical transitions between the two surface states at ℏ ω =1.5 eV in an n -type topological insulator. An appreciable nonequilibrium population of the bottom of the bulk conduction band is observed for longer than 15 ps after the pump pulse. This leads to a long recovery time of the lower TSS, which is constantly populated by the electrons coming from the bulk conduction band. Our results demonstrate B i2T e2Se to be an ideal platform for designing future optoelectronic devices based on topological insulators.

  2. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys

    NASA Astrophysics Data System (ADS)

    Vinod, E. M.; Ramesh, K.; Sangunni, K. S.

    2015-01-01

    Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.

  3. Theoretical Study of the Jahn-Teller effect in CH3CN+ (X2E) and CD3CN+ (X2E): multimode spin-vibronic energy level calculations.

    PubMed

    Zhang, Shiyang; Mo, Yuxiang

    2009-10-15

    The spin-vibronic energy levels for CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) have been calculated using a diabatic model including multimode vibronic couplings and spin-orbit interaction without adjusting any parameter. The diabatic potential energy surfaces are represented by the Taylor expansions including linear, quadratic and bilinear vibronic coupling terms. The normal coordinates used in the Taylor expansion were expressed by the mass-weighted Cartesian coordinates. The adiabatic potential energy surfaces for CH(3)CN(+) and CD(3)CN(+) were calculated at the level of CASPT2/cc-pvtz, and the spin-orbit coupling constant was calculated at the level of MRCI/CAS/cc-pvtz. The spin-orbit energy splittings for the ground vibrational states of CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) are 20 and 16 cm(-1), respectively, which are resulted from the quenching of the spin-orbit coupling strength of 51 cm(-1). The calculated spin-vibronic levels are in good agreement with the experimental data. The calculation results show that the Jahn-Teller effects in CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) are essential to understand their spin-vibronic energy structure.

  4. The fracture strength and frictional strength of Weber Sandstone

    USGS Publications Warehouse

    Byerlee, J.D.

    1975-01-01

    The fracture strength and frictional strength of Weber Sandstone have been measured as a function of confining pressure and pore pressure. Both the fracture strength and the frictional strength obey the law of effective stress, that is, the strength is determined not by the confining pressure alone but by the difference between the confining pressure and the pore pressure. The fracture strength of the rock varies by as much as 20 per cent depending on the cement between the grains, but the frictional strength is independent of lithology. Over the range 0 2 kb, ??=0??5 + 0??6??n. This relationship also holds for other rocks such as gabbro, dunite, serpentinite, granite and limestone. ?? 1975.

  5. Theoretical energies, transition rates, lifetimes, hyperfine interaction constants and Lande´ gJ-factors for the Se XXVII spectrum of fusion interest

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Guo, Xue-Ling; Wang, Kai

    2018-02-01

    An extensive set of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, hyperfine structures, Lande´ gJ-factors, electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) radiative transition rates among the lowest 318 states arising from the 2s22p4, 2s2p5, 2p6, 2s22p33l (l = 0, 1, 2), 2s2p43l (l = 0, 1, 2), 2p53l (l = 0, 1, 2), and 2s22p34l (l = 0, 1, 2, 3) configurations has been obtained for Se XXVII. These new data, calculated within the frameworks of the multi-configuration Dirac-Hartree-Fock method and the second-order many-body perturbation theory, fill in the gap existing in the atomic data needed for the diagnostic processes of tokamak plasmas. Using two methods allowed us to make an intercomparison and to estimate the uncertainties on the obtained data. The results arising in the two sets of calculations are quite close, suggesting that there is a high degree of convergence achieved in our work. i.e., our two sets of energies agree to better than 0.02%, and the lifetimes mostly agree to within 2%. Comparison is also made with the limited number of experimental data and previous computations to assess the accuracy of our calculations.

  6. Superconductor-to-insulator transition and transport properties of underdoped YBa2Cu3O(y) crystals.

    PubMed

    Semba, K; Matsuda, A

    2001-01-15

    The carrier-concentration-driven superconductor-to-insulator (SI) transition as well as transport properties in underdoped YBa2Cu3O(y) twinned crystals is studied. The SI transition takes place at y approximately 6.3, carrier concentration n(SI)H approximately 3x10(20) cm(-3), anisotropy rho(c)/rho(ab) approximately 10(3), and the threshold resistivity rho(SI)ab approximately 0.8 mOmega cm which corresponds to a critical sheet resistance h/4e2 approximately 6.5 kOmega per CuO2 bilayer. The evolution of a carrier, nH infiniti y - 6.2, is clearly observed in the underdoped region. The resistivity and Hall coefficient abruptly acquire strong temperature dependence at y approximately 6.5 indicating a radical change in the electronic state.

  7. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  8. The strength and rheology of methane clathrate hydrate

    USGS Publications Warehouse

    Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.

    2003-01-01

    Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.

  9. Exploring the Reactivity Trends in the E2 and SN2 Reactions of X(-) + CH3CH2Cl (X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3).

    PubMed

    Wu, Xiao-Peng; Sun, Xiao-Ming; Wei, Xi-Guang; Ren, Yi; Wong, Ning-Bew; Li, Wai-Kee

    2009-06-09

    The reactivity order of 12 anions toward ethyl chloride has been investigated by using the G2(+) method, and the competitive E2 and SN2 reactions are discussed and compared. The reactions studied are X(-) + CH3CH2Cl → HX + CH2═CH2 + Cl(-) and X(-) + CH3CH2Cl → CH3CH2X + Cl(-), with X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3. Our results indicate that there is no general and straightforward relationship between the overall barriers and the proton affinity (PA) of X(-); instead, discernible linear correlations only exist for the X's within the same group of the periodic table. Similar correlations are also found with the electronegativity of central atoms in X, deformation energy of the E2 transition state (TS), and the overall enthalpy of reaction. It is revealed that the electronegativity will significantly affect the barrier height, and a more electronegative X will stabilize the E2 and SN2 transition states. Multiple linear regression analysis shows that there is a reasonable linear correlation between E2 (or SN2) overall barriers and the linear combination of PA of X(-) and electronegativity of the central atom.

  10. Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets.

    PubMed

    Griffith, Caitlin A

    2014-04-28

    Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here, we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of 'hot Jupiter' exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly four atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius of the planet at a reference pressure. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius and mass causes an uncertainty of a factor of approximately 100-10,000 in the derived gas mixing ratios. The degree of sensitivity depends on how the line strength increases with the optical depth (i.e. the curve of growth) and the atmospheric scale height. Temperature degeneracies in the solutions of the primary transit data, which manifest their effects through the scale height and absorption coefficients, are smaller. We argue that these challenges can be partially surmounted by a combination of selected wavelength sampling of optical and infrared measurements and, when possible, the joint analysis of transit and secondary eclipse data of exoplanets. However, additional work is needed to constrain other effects, such as those owing to planetary clouds and star spots. Given the current range of open questions in the field, both observations and theory, there is a need for detailed measurements with space-based large mirror platforms (e.g. James web space telescope) and smaller broad survey

  11. A comparative study of the magnetization in transition metal ion doped CeO2, TiO2 and SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2018-05-01

    Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.

  12. High pressure spectroscopic studies of phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Mishra, K. K.; Ravindran, T. R.; Dhara, Sandip

    2018-04-01

    Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) at a technologically important temperature of 340K. A structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R is also reported via another two intermediate phases of monoclinic M2 and triclinic T. Metastable monoclinic M2 phase of VO2 was synthesized by Mg doping in the vapour transport process. Raman spectroscopic measurements were carried out at high pressure on V1-xMgxO2 microrods. Two reversible structural phase transitions from monoclinic M2 to triclinic T at 1.6 GPa and T to monoclinic M1 at 3.2 GPa are observed and are explained by structural relaxation of the strained phases.

  13. Domain structure and reorientation in CoF e2O4

    NASA Astrophysics Data System (ADS)

    Abes, M.; Koops, C. T.; Hrkac, S. B.; McCord, J.; Urs, N. O.; Wolff, N.; Kienle, L.; Ren, W. J.; Bouchenoire, L.; Murphy, B. M.; Magnussen, O. M.

    2016-05-01

    The microscopic processes underlying magnetostriction in ferrites were studied for the case of CoF e2O4 single crystals by high-resolution in situ x-ray diffraction and complementary magnetic microscopy techniques. The data support the reports of Yang and Ren [Phys. Rev. B 77, 014407 (2008), 10.1103/PhysRevB.77.014407] that magnetostriction in these materials originates from the switching of crystallographic domains, similar to ferroelastic or ferroelectric domain switching, and reveals the presence of two coexisting tetragonal spinel structures, corresponding to domains of high and of low strain. The latter alternate in the crystal, separated by 90° domain boundaries, and can be explained by the effect of internal stress emerging during the transition into the ferrimagnetic phase. During magnetization of the sample two structural transitions are observed: a conversion of the transversal into axial domains at 1.95 kOe and a growth of the high-strain domains at the cost of the low-strain axial domains at 2.8 kOe. These microscopic changes are in good agreement with the macroscopic magnetization and magnetostriction behavior of CoF e2O4 .

  14. Isotope shift of 40,42,44,48Ca in the 4s 2S1/2 → 4p 2P3/2 transition

    NASA Astrophysics Data System (ADS)

    Gorges, C.; Blaum, K.; Frömmgen, N.; Geppert, Ch; Hammen, M.; Kaufmann, S.; Krämer, J.; Krieger, A.; Neugart, R.; Sánchez, R.; Nörtershäuser, W.

    2015-12-01

    We report on improved isotope shift measurements of the isotopes {}{40,42,{44,48}}Ca in the 4{{s}}{ }2{{{S}}}1/2\\to 4{{p}}{ }2{{{P}}}3/2 (D2) transition using collinear laser spectroscopy. Accurately known isotope shifts in the 4{{s}}{ }2{{{S}}}1/2\\to 4{{p}}{ }2{{{P}}}1/2(D1) transition were used to calibrate the ion beam energy with an uncertainty of {{Δ }}U≈ +/- 0.25 {{V}}. The accuracy in the D2 transition was improved by a factor of 5-10. A King-plot analysis of the two transitions revealed that the field shift factor in the D2 line is about 1.8(13)% larger than in the D1 transition which is ascribed to relativistic contributions of the 4{{{p}}}1/2 wave function.

  15. Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength.

    PubMed

    Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Newman, Anne B; Strotmeyer, Elsa S

    2015-04-01

    Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age = 76.3 ± 2.8, body mass index = 27.2 ± 4.6kg/m(2), strength = 96.3 ± 34.7 Nm, 51.0% female, 34.8% black) from the Health ABC study. Isokinetic quadriceps strength was measured semiannually over 6 years. Peroneal motor nerve conduction amplitude and velocity were recorded. Sensory nerve function was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower strength, respectively, in women. Initial 10-g monofilament insensitivity predicted 14.2% lower strength and faster strength decline in women and 6.6% lower strength in men (all p < .05). Poor nerve function predicted lower strength and faster strength decline. Future work should examine interventions aimed at preventing declines in strength in older adults with impaired nerve function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice.

    PubMed

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-05-16

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.

  17. Tunable 0-π transition by interband coupling in iron-based superconductor Josephson junctions

    NASA Astrophysics Data System (ADS)

    Tao, Y. C.; Liu, S. Y.; Bu, N.; Wang, J.; Di, Y. S.

    2016-01-01

    An extended four-component Bogoliubov-de Gennes equation is applied to study the Josephson effect in ballistic limit between either two iron-based superconductors (SCs) or an iron-based SC and a conventional s-wave SC, separated by a normal metal. A 0-π transition as a function of interband coupling strength α is always exhibited, arising from the tuning of mixing between the two trajectories with opposite phases. The novel property can be experimentally used to discriminate the {s}+/- -wave pairing symmetry in the iron-based SCs from the {s}++-wave one in MgB2. The effect of interface transparency on the 0-π transition is also presented. The 0-π transition as a function of α is wholly distinct from that as a function of barrier strength or temperature in recent theories (Linder et al 2009 Phys. Rev. B 80 020503(R)). The possible experimental probe of the phase-shift effect in iron-based SC Josephson junctions is commented on as well.

  18. Association Between Maximal Bench Press Strength and Isometric Handgrip Strength Among Breast Cancer Survivors.

    PubMed

    Rogers, Benjamin H; Brown, Justin C; Gater, David R; Schmitz, Kathryn H

    2017-02-01

    To characterize the relationship between 1-repetition maximum (1-RM) bench press strength and isometric handgrip strength among breast cancer survivors. Cross-sectional study. Laboratory. Community-dwelling breast cancer survivors (N=295). Not applicable. 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer, with 3 maximal contractions of the left and right hands. All measures were conducted by staff with training in clinical exercise testing. Among 295 breast cancer survivors, 1-RM bench press strength was 18.2±6.1kg (range, 2.2-43.0kg), and isometric handgrip strength was 23.5±5.8kg (range, 9.0-43.0kg). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=.399; P<.0001). Mean difference analysis suggested that the average isometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7kg (95% limits of agreement, -8.2 to 17.6kg). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=.31; P<.0001) and age (β=-.20; P<.0001) were positively correlated with 1-RM bench press strength (R 2 =.23). Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among breast cancer survivors. 1-RM bench press strength and isometric handgrip strength quantify distinct components of muscular strength. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less

  20. Fermi Surface Properties, Metamagnetic Transition and Quantum Phase Transition of CeRu2Si2 and Its Alloys Probed by the dHvA Effect

    NASA Astrophysics Data System (ADS)

    Aoki, Haruyoshi; Kimura, Noriaki; Terashima, Taichi

    2014-07-01

    This article describes the Fermi surface properties of CeRu2Si2 and its alloy systems CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 studied by the de Haas-van Alphen (dHvA) effect. We pay particular attention to how the Fermi surface properties and the f electron state change with magnetic properties, in particular how they change associated with metamagnetic transition and quantum phase transition. After summarizing the important physical properties of CeRu2Si2, we present the magnetic phase diagrams of CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as a function of temperature, magnetic field and concentration x. From the characteristic features of the magnetic phase diagram, we argue that the ferromagnetic interaction in addition to the antiferromagnetic interaction and the Kondo effect is responsible for the magnetic properties and that the metamagnetic transitions in these systems are relevant to the ferromagnetic interaction. We summarize the Fermi surface properties of CeRu2Si2 in fields below the metamagnetic transition where the f electron state is now well understood theoretically as well as experimentally. We present experimental results in fields above the metamagnetic transitions in CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as well as CeRu2Si2 to show that the Fermi surface properties above the metamagnetic transitions are significantly different from those below in many important aspects. We argue that the Fermi surface properties above the metamagnetic transitions are not appropriately described in terms of either itinerant or localized f electron. The experimental results in fields below the metamagnetic transitions in CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 are presented to discuss the f electron state in the ground state. The Fermi surface properties of dilute Kondo alloys of CexLa1-xRu2Si2 have been revealed as a function of Ce concentration and temperature. We show that the f electron state can be regarded as itinerant in the ground state together with the definition of the

  1. Electronic Griffiths Phases and Quantum Criticality at Disordered Mott Transitions

    NASA Astrophysics Data System (ADS)

    Dobrosavljevic, Vladimir

    2012-02-01

    The effects of disorder are investigated in strongly correlated electronic systems near the Mott metal-insulator transition. Correlation effects are foundootnotetextE. C. Andrade, E. Miranda, and V. Dobrosavljevic, Phys. Rev. Lett., 102, 206403 (2009). to lead to strong disorder screening, a mechanism restricted to low-lying electronic states, very similar to what is observed in underdoped cuprates. These results suggest, however, that this effect is not specific to disordered d-wave superconductors, but is a generic feature of all disordered Mott systems. In addition, the resulting spatial inhomogeneity rapidly increasesootnotetextE. C. Andrade, E. Miranda, and V. Dobrosavljevic, Phys. Rev. Lett., 104 (23), 236401 (2010). as the Mott insulator is approached at fixed disorder strength. This behavior, which can be described as an Electronic Griffiths Phase, displays all the features expected for disorder-dominated Infinite-Randomness Fixed Point scenario of quantum criticality.

  2. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    NASA Astrophysics Data System (ADS)

    Pope, Benjamin J. S.; Parviainen, Hannu; Aigrain, Suzanne

    2016-10-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the box-least-squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically generated transit fits and assorted diagnostic tests to inform the vetting. We detect 145 single-planet system candidates and 5 multi-planet systems, independently recovering the previously published hot Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spectroscopy carried out for all candidates with Kepler magnitude Kp ≤ 13, identifying 12 targets as likely false positives. We compare our results to those of other K2 transit search pipelines, noting that ours performs particularly well for variable and/or active stars, but that the results are very similar overall. All the light curves and code used in the transit search and vetting process are publicly available, as are the follow-up spectra.

  3. Strain glass transition in a multifunctional β-type Ti alloy

    PubMed Central

    Wang, Yu; Gao, Jinghui; Wu, Haijun; Yang, Sen; Ding, Xiangdong; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi; Song, Xiaoping; Gao, Jianrong

    2014-01-01

    Recently, a class of multifunctional Ti alloys called GUM metals attracts tremendous attentions for their superior mechanical behaviors (high strength, high ductility and superelasticity) and novel physical properties (Invar effect, Elinvar effect and low modulus). The Invar and Elinvar effects are known to originate from structural or magnetic transitions, but none of these transitions were found in the GUM metals. This challenges our fundamental understanding of their physical properties. In this study, we show that the typical GUM metal Ti-23Nb-0.7Ta-2Zr-1.2O (at%) alloy undergoes a strain glass transition, where martensitic nano-domains are frozen gradually over a broad temperature range by random point defects. These nano-domains develop strong texture after cold rolling, which causes the lattice elongation in the rolling direction associated with the transition upon cooling and leads to its Invar effect. Moreover, its Elinvar effect and low modulus can also be explained by the nano-domain structure of strain glass. PMID:24500779

  4. Effects of Microstructure on CVN Impact Toughness in Thermomechanically Processed High Strength Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Zhou, Yanlei; Jia, Xiaoxiao; Wang, Zhaodong

    2017-02-01

    Investigation on the correlation between microstructure and CVN impact toughness is of practical importance for the microstructure design of high strength microalloyed steels. In this work, three steels with characteristic microstructures were produced by cooling path control, i.e., steel A with granular bainite (GB), steel B with polygonal ferrite (PF) and martensite-austenite (M-A) constituent, and steel C with the mixture of bainitic ferrite (BF), acicular ferrite (AF), and M-A constituent. Under the same alloy composition and controlled rolling, similar ductile-to-brittle transition temperatures were obtained for the three steels. Steel A achieved the highest upper shelf energy (USE), while large variation of impact absorbed energy has been observed in the ductile-to-brittle transition region. With apparently large-sized PF and M-A constituent, steel B shows the lowest USE and delamination phenomenon in the ductile-to-brittle transition region. Steel C exhibits an extended upper shelf region, intermediate USE, and the fastest decrease of impact absorbed energy in the ductile-to-brittle transition region. The detailed CVN impact behavior is studied and then linked to the microstructural features.

  5. Non-equilibrium quantum phase transition via entanglement decoherence dynamics.

    PubMed

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-07

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  6. Applying Hope Theory to Support Middle School Transitions

    ERIC Educational Resources Information Center

    Akos, Patrick; Kurz, Maureen Shields

    2016-01-01

    Middle grades transitions pose challenges to many students who meet these tasks with varying levels of success. Contemporary developmental and strengths-based literature offers Hope Theory (Snyder, 2002), a research supported approach that can mitigate risks in school transitions. This article describes how middle grades educators can apply the…

  7. Superconducting and charge density wave transition in single crystalline LaPt2Si2

    NASA Astrophysics Data System (ADS)

    Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.

    2017-06-01

    We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.

  8. In Vitro Tensile Strength Study on Suturing Technique and Material.

    PubMed

    González-Barnadas, Albert; Camps-Font, Octavi; Espanya-Grifoll, Dunia; España-Tost, Antoni; Figueiredo, Rui; Valmaseda-Castellón, Eduard

    2017-06-01

    Suture technique and materials are important in preventing complications such as wound dehiscences. The purpose of this study was to determine the tensile strength of different suturing techniques, comparing several materials with different diameters. One hundred sixty sutures were performed using silk, e-PTFE, and 2 types of polyamide (monofilament and Supramid). Ten simple, 10 horizontal mattress, and 10 combinations of the two stitches were performed with 4-0 gauge of each material. Additionally, 10 simple sutures were performed with the 5-0 gauge of each material. The maximum tensile force resisted by each suture was recorded. When 5 mm of traction was applied, the polyamide monofilament resisted significantly better without untying or breaking compared with Supramid or silk, while the e-PTFE was superior to all the others. However, the force when e-PTFE 4-0 sutures untied or broke was lower than for either type of polyamide. The combined technique withstood a significantly higher tensile force before unknotting or breaking than did the simple and mattress stitches. The 5-0 gauges of silk and both types of polyamide showed lower tensile strengths than the 4-0 materials. Among the 5-0 sutures, Supramid showed a higher tensile strength than silk. The combined suture technique possessed greater tensile strength than did a simple or a horizontal mattress suture, and e-PTFE 4-0 withstood more traction without untying or breaking than did all the other materials, although at a lower tensile force. With the exception of e-PTFE, 4-0 sutures had greater tensile strength than did 5-0 sutures.

  9. Cyclotron transitions of bound ions

    NASA Astrophysics Data System (ADS)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  10. Benchmarking the Performance of Exchange-Correlation Functionals for Predicting Two-Photon Absorption Strengths.

    PubMed

    Beerepoot, Maarten T P; Alam, Md Mehboob; Bednarska, Joanna; Bartkowiak, Wojciech; Ruud, Kenneth; Zaleśny, Robert

    2018-06-15

    The present work investigates the performance of exchange-correlation functionals in the prediction of two-photon absorption (2PA) strengths. For this purpose, we considered six common functionals used for studying 2PA processes and tested these on six organoboron chelates. The set consisted of two semilocal (PBE and BLYP), two hybrid (B3LYP and PBE0), and two range-separated (LC-BLYP and CAM-B3LYP) functionals. The RI-CC2 method was chosen as a reference level and was found to give results consistent with the experimental data that are available for three of the molecules considered. Of the six exchange-correlation functionals studied, only the range-separated functionals predict an ordering of the 2PA strengths that is consistent with experimental and RI-CC2 results. Even though the range-separated functionals predict correct relative trends, the absolute values for the 2PA strengths are underestimated by a factor of 2-6 for the molecules considered. An in-depth analysis, on the basis of the derived generalized few-state model expression for the 2PA strength for a coupled-cluster wave function, reveals that the problem with these functionals can be linked to underestimated excited-state dipole moments and, to a lesser extent, overestimated excitation energies. The semilocal and hybrid functionals exhibit less predictable errors and a variation in the 2PA strengths in disagreement with the reference results. The semilocal and hybrid functionals show smaller average errors than the range-separated functionals, but our analysis reveals that this is due to fortuitous error cancellation between excitation energies and the transition dipole moments. Our results constitute a warning against using currently available exchange-correlation functionals in the prediction of 2PA strengths and highlight the need for functionals that correctly describe the electron density of excited electronic states.

  11. Hydroxyl X2Pi pure rotational transitions

    NASA Astrophysics Data System (ADS)

    Goorvitch, D.; Goldman, A.; Dothe, Hoang; Tipping, R. H.; Chackerian, C., Jr.

    1992-12-01

    We present a list of frequencies, term values, Einstein A values, and assignments for the pure rotational transitions of the X2Pi state of the OH molecule. This list includes transitions from 3 to 2015/cm for Delta-v = 0, v-double-prime = 0-4, and J-double-prime = 0.5-49.5. The A values were computed using recent advances in calculating wave functions for a coupled system and an experimentally derived electric dipole moment function (Nelson et al., 1990) which exhibits curvature.

  12. Lifetime measurements and oscillator strengths in singly ionized scandium and the solar abundance of scandium

    NASA Astrophysics Data System (ADS)

    Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.

    2017-12-01

    The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.

  13. Giant Transiting Planets Observations - GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.

    2006-08-01

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits (< 0.05 AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telecope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  14. X-ray scattering studies of structural phase transitions in pyrochlore Cd2Nb2O7

    NASA Astrophysics Data System (ADS)

    Tachibana, Makoto; Fritsch, Katharina; Gaulin, Bruce D.

    2013-10-01

    Structural phase transitions in pyrochlore Cd2Nb2O7 were studied by means of single crystal x-ray scattering. On cooling below the ferroelastic transition at T1 = 204 K, the cubic Bragg peaks broaden in a manner consistent with weak orthorhombic distortion. The distortion evolves rather smoothly through the ferroelectric transition at T2 = 196 K, which explains the absence of sharp anomalies in the heat capacity and dielectric constant at this transition. At lower temperatures, the anomalous relaxor-like character of this compound is evident as a gradual reduction in the Bragg peak intensities, which continues down to the onset of another transition at T3 = 85 K. The studies of two Bragg peaks that are forbidden within the cubic phase reveal an interesting disparity: while the intensity for one of them increases in a classical mean-field manner below T1, the other shows unconventional behavior that is reminiscent of the pyrochlore superconductor Cd2Re2O7.

  15. Experimental and theoretical oscillator strengths of Mg I for accurate abundance analysis

    NASA Astrophysics Data System (ADS)

    Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.

    2017-02-01

    Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg I lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg I optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg I optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.

  16. The Rydberg electronic transitions of the hydrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babb, J.F.; Chang, E.S.

    1992-01-01

    Transition energies and relative line strengths, without Boltzmann weighting, for the electric dipole transitions between Rydberg states n{prime}L{prime} and nL of the hydrogen molecule (one electron in a near-hydrogenic state of high n and L, with n the principal quantum number and L the orbital angular momentum quantum number of the electron) are calculated. Since the H{sup +}{sub 2} core is loosely coupled to the Rydberg electron, numerous lines occur, depending on the vector sum of L and the core rotational angular momentum. For the core vibrational quantum numbers v = 0 to 5 the strongest lines among the P,more » Q, and R branches for the lowest 12 core rotational levels are given for the particular transition arrays 6h-5g, 8i-6h, 7i-6h, 8k-7i, and 9l-8k, for which transitions occur in the wave number range 350 to 1,400 cm {sup {minus}1}.« less

  17. K2-140b - an eccentric 6.57 d transiting hot Jupiter in Virgo

    NASA Astrophysics Data System (ADS)

    Giles, H. A. C.; Bayliss, D.; Espinoza, N.; Brahm, R.; Blanco-Cuaresma, S.; Shporer, A.; Armstrong, D.; Lovis, C.; Udry, S.; Bouchy, F.; Marmier, M.; Jordán, A.; Bento, J.; Cameron, A. Collier; Sefako, R.; Cochran, W. D.; Rojas, F.; Rabus, M.; Jenkins, J. S.; Jones, M.; Pantoja, B.; Soto, M.; Jensen-Clem, R.; Duev, D. A.; Salama, M.; Riddle, R.; Baranec, C.; Law, N. M.

    2018-04-01

    We present the discovery of K2-140b, a P = 6.57 d Jupiter-mass (MP = 1.019 ± 0.070MJup) planet transiting a V = 12.5 (G5-spectral type) star in an eccentric orbit (e = 0.120^{+0.056}_{-0.046}) detected using a combination of K2 photometry and ground-based observations. With a radius of 1.095 ± 0.018 RJup, the planet has a bulk density of 0.726 ± 0.062 ρJup. The host star has a [Fe/H] of 0.12 ± 0.045, and from the K2 light curve, we find a rotation period for the star of 16.3 ± 0.1 d. This discovery is the 9th hot Jupiter from K2 and highlights K2's ability to detect transiting giant planets at periods slightly longer than traditional, ground-based surveys. This planet is slightly inflated, but much less than others with similar incident fluxes. These are of interest for investigating the inflation mechanism of hot Jupiters.

  18. Transition from amplitude to oscillation death in a network of oscillators

    NASA Astrophysics Data System (ADS)

    Nandan, Mauparna; Hens, C. R.; Pal, Pinaki; Dana, Syamal K.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  19. Microstructural evolution and mechanical characterization for the A508-3 steel before and after phase transition

    NASA Astrophysics Data System (ADS)

    Lu, Chuanyang; He, Yanming; Gao, Zengliang; Yang, Jianguo; Jin, Weiya; Xie, Zhigang

    2017-11-01

    Nuclear power, as a reliable clean and economical energy source, has gained great attention from all over the world. The A508-3 steel will be introduced as the structural materials for Chinese nuclear reactor pressure vessels (RPVs). This work investigated the temperature-dependence microstructural evolution during high-temperature heat treatments, and built the relationship between the microstructure and mechanical properties for the steel before and after phase transition. The results show that the original steel consists of the bainite, allotriomorphic ferrite, retained austenite and few Mo-rich M2C carbides. The phase-transition temperature of the steel is determined to be 750 °C. The tensile tests performed at 20-1000 °C indicate that both of the yield strength and ultimate tensile strength decrease monotonously with increasing the temperature. Before phase transition, precipitation of cementite from the retained austenite and coarsening of cementite at the austenite-ferrite interphases should be responsible for their sharp decrease. After phase transition, the growth of austenite grain reduces the strength moderately. As for the elongation, however, it increases dramatically when the testing temperature is over 750 °C, due to the dissolution of cementite and formation of austenite. The obtained results will provide some fundamental data to understand and implement the In-Vessel Retention strategy.

  20. A Systematic Transport and Thermodynamic Study of Heavy Transition Metal Oxides with Hexagonal Structure

    NASA Astrophysics Data System (ADS)

    Butrouna, Kamal

    There is no apparent, dominant interaction in heavy transition metal oxides (TMO), especially in 5d-TMO, where all relevant interactions are of comparable energy scales, and therefore strongly compete. In particular, the spin-orbit interaction (SOI) strongly competes with the electron-lattice and on-site Coulomb interaction (U). Therefore, any tool that allows one to tune the relative strengths of SOI and U is expected to offer an opportunity for the discovery and study of novel materials. BaIrO3 is a magnetic insulator driven by SOI, whereas the isostructural BaRuO3 is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of SOI in the iridate. This dissertation thoroughly examines a wide array of newly observed novel phenomena induced by adjusting the relative strengths of SOI and U via a systematic chemical substitution of the Ru4+(4d 4) ions for Ir4+(5d5) ions in BaIrO3, i.e., in high quality single crystals of BaIr1--x RuxO3(0.0 ≤ x ≤ 1.0). Our investigation of structural, magnetic, transport and thermal properties reveals that Ru substitution directly rebalances the competing energies so profoundly that it generates a rich phase diagram for BaIr 1--xRuxO 3 featuring two major effects: (1) Light Ru doping (0 ≤ x ≤ 0.15) prompts a simultaneous and precipitous drop in both the magnetic ordering temperature TC and the electrical resistivity, which exhibits metal-insulator transition at around TC. (2) Heavier Ru doping (0.41 ≤ x ≤ 0.82) induces a robust metallic and spin frustration state. For comparison and contrast, we also substituted Rh4+(4d 5) ions for Ir4+(5d5) ions in BaIrO3, i.e. in BaIr1--xRhxO 3(0.0 ≤ x ≤ 0.1), where Rh only reduces the SOI, but without altering the band filling. Hence, this system remains tuned at the Mott instability and is very susceptible to disorder scattering which gives rise to Anderson localization. KEYWORDS: spin-orbit interaction, heavy transition metal oxides

  1. ASD Transition to Mainstream Secondary: A Positive Experience?

    ERIC Educational Resources Information Center

    Neal, Sinead; Frederickson, Norah

    2016-01-01

    The transition to secondary school is considered difficult for children with autistic spectrum disorder (ASD), yet there has been little strength-based investigation of positive experiences of this population and the types of support they value most in managing anxiety about transition. The current article presents a qualitative exploration of the…

  2. Relativistic many-body calculation of energies, transition rates, lifetimes, and multipole polarizabilities in Cs-like La iii

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, M. S.

    2014-05-01

    Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.

  3. Fine Structure of Beta Decay Strength Function and Anisotropy of Isovector Nuclear Dencity Component Oscillations in Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.

    2018-05-01

    The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.

  4. Measurement of Exciton Binding Energy of Monolayer WS2

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  5. A Discrete Ubiquitin-Mediated Network Regulates the Strength of NOD2 Signaling

    PubMed Central

    Tigno-Aranjuez, Justine T.; Bai, Xiaodong

    2013-01-01

    Dysregulation of NOD2 signaling is implicated in the pathology of various inflammatory diseases, including Crohn's disease, asthma, and sarcoidosis, making signaling proteins downstream of NOD2 potential therapeutic targets. Inhibitor-of-apoptosis (IAP) proteins, particularly cIAP1, are essential mediators of NOD2 signaling, and in this work, we describe a molecular mechanism for cIAP1's regulation in the NOD2 signaling pathway. While cIAP1 promotes RIP2's tyrosine phosphorylation and subsequent NOD2 signaling, this positive regulation is countered by another E3 ubiquitin ligase, ITCH, through direct ubiquitination of cIAP1. This ITCH-mediated ubiquitination leads to cIAP1's lysosomal degradation. Pharmacologic inhibition of cIAP1 expression in ITCH−/− macrophages attenuates heightened ITCH−/− macrophage muramyl dipeptide-induced responses. Transcriptome analysis, combined with pharmacologic inhibition of cIAP1, further defines specific pathways within the NOD2 signaling pathway that are targeted by cIAP1. This information provides genetic signatures that may be useful in repurposing cIAP1-targeted therapies to correct NOD2-hyperactive states and identifies a ubiquitin-regulated signaling network centered on ITCH and cIAP1 that controls the strength of NOD2 signaling. PMID:23109427

  6. Personality Typology in Relation to Muscle Strength

    PubMed Central

    Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi

    2011-01-01

    Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (E<45), and “low conscientiousness” (C<45) have been associated with multiple risky health behaviors but have not been investigated with regards to muscle strength. Purpose The purpose of this study is to investigate associations between individual and combined typologies consisting of high N, low E, and low C and muscle strength, and whether physical activity and body mass index act as mediators. Method This cross-sectional study includes 1,220 participants from the Baltimore Longitudinal Study of Aging. Results High N was found among 18%, low E among 31%, and low C among 26% of the sample. High levels of N, particularly when combined with either low E or low C, were associated with lower muscle strength compared with having only one or none of these personality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452

  7. Effect of strain on structure and charge order transitions in epitaxial Bi0.4Ca0.6MnO3 films on perovskite (001) and (011) substrates

    NASA Astrophysics Data System (ADS)

    Kim, Dae Ho; Christen, Hans M.; Varela, Maria; Lee, Ho Nyung; Lowndes, Douglas H.

    2006-05-01

    The effect of epitaxial strain on the charge order (CO) transition in Bi0.4Ca0.6MnO3 films was studied by varying the strain's strength and symmetry via the use of SrTiO3 and LaAlO3 substrates having different crystallographic orientations. The film on pseudocubic (001) LaAlO3, under symmetric compressive strain, exhibits a clear CO transition. In the film on a (001) SrTiO3 substrate, under symmetric tensile strain, highly segregated line-shaped features in the Bi distribution are seen in Z-contrast scanning transmission microscopy, accompanied by a strongly broadened CO transition. The asymmetric tensile stress on (011) SrTiO3 results in an apparent compressive strain state with a deviation from tetragonality (i.e., γ ≠90°), accompanied by the sharpest CO transition. These comparisons illustrate the importance of considering both the strength and symmetry of epitaxial strain.

  8. Oscillatory mode transition for supersonic open cavity flows

    NASA Astrophysics Data System (ADS)

    Kumar, Mayank; Vaidyanathan, Aravind

    2018-02-01

    The transition in the primary oscillatory mode in an open cavity has been experimentally investigated and the associated characteristics in a Mach 1.71 flow has been analyzed. The length-to-depth (L/D) ratios of the rectangular cavities are varied from 1.67 to 3.33. Unsteady pressure measurement and flow visualization are employed to understand the transitional flow physics. Flow visualization revealed the change in oscillation pattern from longitudinal mode to transverse mode and is also characterized by the presence of two bow shocks at the trailing edge instead of one. The transition is found to occur between L/D 1.67 and 2, marked by a change in the feedback mechanism, resulting in a shift from the vortex circulation driven transverse feedback mode to the oscillating shear layer driven longitudinal feedback mode. Cavities oscillating in the transition mode exhibit multiple tones of comparable strength. Correlation analysis indicated the shift in the feedback mechanism. Wavelet analysis revealed the temporal behaviour of tones during transition. Tone switching is observed in deeper cavities and is attributed to the occurrence of two bow shocks as evident from the temporo-spectral characteristics of transition that affects the shear layer modal shape.

  9. First-principles comparative study on the interlayer adhesion and shear strength of transition-metal dichalcogenides and graphene

    NASA Astrophysics Data System (ADS)

    Levita, Giacomo; Molinari, Elisa; Polcar, Tomas; Righi, Maria Clelia

    2015-08-01

    Due to their layered structure, graphene and transition-metal dichalcogenides (TMDs) are easily sheared along the basal planes. Despite a growing attention towards their use as solid lubricants, so far no head-to-head comparison has been carried out. By means of ab initio modeling of a bilayer sliding motion, we show that graphene is characterized by a shallower potential energy landscape while more similarities are attained when considering the sliding forces; we propose that the calculated interfacial ideal shear strengths afford the most accurate information on the intrinsic sliding capability of layered materials. We also investigate the effect of an applied uniaxial load: in graphene, this introduces a limited increase in the sliding barrier while in TMDs it has a substantially different impact on the possible polytypes. The polytype presenting a parallel orientation of the layers (R 0 ) bears more similarities to graphene while that with antiparallel orientation (R 180 ) shows deep changes in the potential energy landscape and consequently a sharper increase of its sliding barrier.

  10. 27Al-NMR studies of the structural phase transition in LaPd2Al2

    NASA Astrophysics Data System (ADS)

    Aoyama, Taisuke; Kobayashi, Fumiaki; Kotegawa, Hisashi; Tou, Hideki; Doležal, Petr; Kriegner, Dominik; Javorský, Pavel; Uhlířová, Klára

    2018-05-01

    We performed 27Al-NMR measurements for the CaBe2Ge2 type single crystalline LaPd2Al2 in the temperature range from 100 K to 5 K to investigate the origin of the structural phase transition. We found that the line profile of the 27Al-NMR spectrum does not change entirely on passing through the structural phase transition at Tst. Meanwhile, the peak position of the central line slightly change (≈ 30 ppm) below 70 K, suggesting the orbital shift changes below Tst. The present 27Al-NMR studies evidence that the local electronic state at Al site is hardly affected by the structural phase transition.

  11. Modulus, strength and thermal exposure studies of FP-Al2O3/aluminum and FP-Al2O3/magnesium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1981-01-01

    The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites.

  12. Barriers and motivators for strength training among women of color and Caucasian women.

    PubMed

    O'Dougherty, Maureen; Dallman, Amber; Turcotte, Lucie; Patterson, Joan; Napolitano, Melissa A; Schmitz, Kathryn H

    2008-01-01

    The present study examined factors associated with adherence to a strength training (ST) intervention in a randomized controlled intervention trial testing whether twice-weekly strength training over 2 years could prevent age-associated increases in body fat in 80 overweight to mildly obese women, aged 25-44 years. Two sets of focus groups (FGs) were conducted with 25 women of color and 24 Caucasian participants, representing 60% of intervention participants. Fifty-five percent of FG participants had low adherence (defined as < or = 80% adherence to twice-weekly gym-based strength training). Demographic data indicated that marital status and childcare responsibilities affected adherence. Participants' perceptions of experiences in the ST intervention did not correspond to adherence levels or vary by race/ethnicity. Major impediments to adherence included competing obligations and related scheduling difficulties; life transitions; and declining or insufficient social motivators.

  13. Modified Coulomb-Dipole Theory for 2e Photoionization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the light of recent experiment on 2e photoionization of Li near threshold, we have considered a modification of the Coulomb-dipole theory, retaining the basic assumption that the threshold is dominated by asymmetric events in phase space [implies r(sub 1), k(sub 1)) greater than or equal to 2(r(sub 2), k(sub )]. In this region [in a collinear model, 2/r(sub 12) approached + 2/(r(sub 1)+r(sub 2)] the interaction reduces to V(rIsub 1) is greater than or equal to 2r(sub 2) is identically equal to [(-Z/r(sub 2)-(A-1)/r(sub 1)] + [(-2r(sub 2)/r(sub 1 exp 2)] is identically equal to V(sub c)+[V(sub d)]. For two electron emission Z = 2, thus both electrons see a Coulomb potential (V(sub c)) asymptotically, albeit each seeing a different charge. The residual potential (V(sub d)) is dipole in character. Writing the total psi = psi (sub c) + psi(sub d) = delta psi, and noting that. (T+V(sub c)-E)psy(sub c) = 0 and (T+V(sub c))psi(sub d) = 0 can be solved exactly, we find, substituting psi into the complete Schrod. Eq., that delta psi = -(H-E)(exp -1)(V(sub d) psi(sub 0)+V(sub c psi (sub 1). Using the fact that the absolute value of V(sub c) is much more than the absolute value of V(sub d) in almost all of configuration space, we can replace H by H(sub 0) in 9H-E)(exp -1) to obtain an improved approximation psi (improved) = psi(sub c) + psi(sub d) -(H(sub 0)-E)(exp -1) (V(sub c) psi (sub 0) + V(sub c) psi(sub 1). Here's the Green's function (H(sub 0)-E)(exp -1), can be exhibited explicitly, but the last term in psi (improved) is small, compared to the first two terms. Inserting them into the transition matrix element, which one handles in the usual way, we obtain in the limit E approaches 0, the threshold law: Q(E) alpha E + M(E)E(exp 5/4) + higher order (Eq. 1a). The modulation function, M(E), is a well-defined (but very non-trivial integral, but it is expected to be well approximated by a sinusoidal function containing a dipole phase term (M(E) = c sin[alpha log (E

  14. Folding mechanism of β-hairpin trpzip2: heterogeneity, transition state and folding pathways.

    PubMed

    Xiao, Yi; Chen, Changjun; He, Yi

    2009-06-22

    We review the studies on the folding mechanism of the beta-hairpin tryptophan zipper 2 (trpzip2) and present some additional computational results to refine the picture of folding heterogeneity and pathways. We show that trpzip2 can have a two-state or a multi-state folding pattern, depending on whether it folds within the native basin or through local state basins on the high-dimensional free energy surface; Trpzip2 can fold along different pathways according to the packing order of tryptophan pairs. We also point out some important problems related to the folding mechanism of trpzip2 that still need clarification, e.g., a wide distribution of the computed conformations for the transition state ensemble.

  15. The Kepler and K2 Near-Infrared Transit Survey (KNITS)

    NASA Astrophysics Data System (ADS)

    Colon, Knicole; Rodriguez, Joseph E.; Barentsen, Geert; Cardoso, Jose Vinicius de Miranda; Vanderburg, Andrew

    2018-01-01

    NASA's Kepler mission discovered a plethora of transiting exoplanets after observing a single region of the Galaxy for four years. After a second reaction wheel failed, NASA's Kepler spacecraft was repurposed as K2 to observe different fields along the ecliptic in ~80 day campaigns. To date, K2 has discovered ~130 exoplanets along with another ~400 candidates. The exoplanets that have been confirmed or validated from Kepler and K2 have been primarily subject to spectroscopic observations, high-resolution imaging, or statistical methods. However, most of these, along with all the remaining candidate exoplanets, have had no follow-up transit photometry. In addition, recent studies have shown that for single-planet systems, statistical validation alone can be unreliable and additional follow-up observations are required to reveal the true nature of the system. I will present the latest results from an ongoing program to use the 3.5-meter WIYN telescope at Kitt Peak National Observatory for near-infrared transit photometry of Kepler and K2 exoplanets and candidates. Our program of high-precision, high-cadence, high-spatial-resolution near-infrared transit photometry is providing new measurements of the transit ephemerides and planetary radii as well as weeding out false positives lurking within the candidate lists. To date, 25 K2 and 5 Kepler targets have been observed with WIYN. I will also describe upcoming observations with WIYN that will take place in January 2018 as part of a campaign to observe exoplanet transits in the near-infrared simultaneously with the Kepler spacecraft during K2 Campaign 16. Our program ultimately provides a vetted sample of exoplanets that could be targeted in the future by NASA’s James Webb Space Telescope (JWST) and also demonstrates WIYN’s capabilities for observations of exoplanets to be discovered by NASA's all-sky Transiting Exoplanet Survey Satellite (TESS).Data presented herein were obtained at the WIYN Observatory from

  16. Probing the E2 properties of the scissors mode with real photons

    NASA Astrophysics Data System (ADS)

    Beck, Tobias; Pietralla, Norbert; Beller, Jacob; Derya, Vera; Löher, Bastian; Savran, Deniz; Tornow, Werner; Werner, Volker; Zilges, Andreas

    2018-05-01

    The E2/M1 multipole mixing ratio δ1→2 of the 1+ sc → 2+ 1 γ-ray transition of 156Gd and 164Dy has been measured using the linearly polarized photon beams of the HIγS facility. The employed method of photonscattering experiments in combination with polarized, quasi-monochromatic beams and a dedicated detector setup is highly sensitive to the electric quadrupole-decay properties of the scissors mode.

  17. The Association between Maximal Bench Press Strength and Isometric Handgrip Strength among Breast Cancer Survivors

    PubMed Central

    Rogers, Benjamin H.; Brown, Justin C.; Gater, David R.; Schmitz, Kathryn H.

    2016-01-01

    Objective One-repetition maximum (1-RM) bench press strength is considered the gold standard to quantify upper-body muscular strength. Isometric handgrip strength is frequently used as a surrogate for 1-RM bench press strength among breast cancer (BrCa) survivors. The relationship between 1-RM bench press strength and isometric handgrip strength, however, has not been characterized among BrCa survivors. Design Cross-sectional study. Setting Laboratory. Participants Community-dwelling BrCa survivors. Interventions Not applicable. Main Outcome Measure 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer with three maximal contractions of left and right hands. All measures were conducted by staff with training in clinical exercise testing. Results Among 295 BrCa survivors, 1-RM bench press strength was 18.2±6.1 kg (range: 2.2-43.0) and isometric handgrip strength was 23.5±5.8 kg (range: 9.0-43.0). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=0.399; P<0.0001). Mean-difference analysis suggested that the average isometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7 kg (95% limits of agreement: −8.2 to 17.6). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=0.31; P<0.0001) and age (β=−0.20; P<0.0001) were positively correlated with 1-RM bench press strength (R2=0.23). Conclusions Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among BrCa survivors. 1-RM bench press and isometric handgrip strength quantify distinct components of muscular strength. PMID:27543047

  18. High strength films from oriented, hydrogen-bonded "graphamid" 2D polymer molecular ensembles.

    PubMed

    Sandoz-Rosado, Emil; Beaudet, Todd D; Andzelm, Jan W; Wetzel, Eric D

    2018-02-27

    The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6-8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1-0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.

  19. Unexpected distribution of ν 1 f 7 / 2 strength in Ca 49

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, H. L.; Macchiavelli, A. O.; Fallon, P.

    Here, the calcium isotopes have emerged as a critical testing ground for new microscopically derived shell-model interactions, and a great deal of experimental and theoretical focus has been directed toward this region. We investigate the relative spectroscopic strengths associated with 1f 7/2 neutron hole states in 47,49Ca following one-neutron knockout reactions from 48,50Ca. The observed reduction of strength populating the 7/2 – 1 state in 49Ca, as compared to 47Ca, is inconsistent with shell-model calculations using both phenomenological interactions such as GXPF1, and interactions derived from microscopically based two- and three-nucleon forces. The result suggests a fragmentation of the lmore » = 3 strength to higher-lying states as suggested by the microscopic calculations, but the observed magnitude of the reduction is not reproduced in any shell-model description.« less

  20. Unexpected distribution of ν 1 f 7 / 2 strength in Ca 49

    DOE PAGES

    Crawford, H. L.; Macchiavelli, A. O.; Fallon, P.; ...

    2017-06-21

    Here, the calcium isotopes have emerged as a critical testing ground for new microscopically derived shell-model interactions, and a great deal of experimental and theoretical focus has been directed toward this region. We investigate the relative spectroscopic strengths associated with 1f 7/2 neutron hole states in 47,49Ca following one-neutron knockout reactions from 48,50Ca. The observed reduction of strength populating the 7/2 – 1 state in 49Ca, as compared to 47Ca, is inconsistent with shell-model calculations using both phenomenological interactions such as GXPF1, and interactions derived from microscopically based two- and three-nucleon forces. The result suggests a fragmentation of the lmore » = 3 strength to higher-lying states as suggested by the microscopic calculations, but the observed magnitude of the reduction is not reproduced in any shell-model description.« less

  1. Pressure and magnetic field effects on the valence transition of EuRh2Si2

    NASA Astrophysics Data System (ADS)

    Mitsuda, Akihiro; Kishaba, Eigo; Fujimoto, Takumi; Oyama, Kohei; Wada, Hirofumi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki

    2018-05-01

    We have measured the X-ray absorption spectra (XAS), electrical resistivity and magnetic susceptibility of EuRh2Si2, which undergoes a valence transition under high pressures. A sharp decrease in the Eu valence determined from the XAS was observed at around 70 K in the temperature dependence at P = 1.2-1.9 GPa. In the temperature dependence of electrical resistivity and magnetic susceptibility, we observed jumps associated with the temperature-induced valence transition under high pressures. The magnetoresistance detected a field-induced valence transition. The results are discussed from the thermodynamic point of view.

  2. Experimental investigation of the Jahn-Teller effect in the ground and excited electronic states of the tropyl radical. Part II. Vibrational analysis of the A 2E"3-X 2E"2 electronic transition.

    PubMed

    Sioutis, Ilias; Stakhursky, Vadim L; Tarczay, György; Miller, Terry A

    2008-02-28

    Laser-induced fluorescence (LIF) and laser-excited dispersed fluorescence (LEDF) spectra of the cycloheptatrienyl (tropyl) radical C7H7 have been observed under supersonic jet-cooling conditions. Assignment of the LIF excitation spectrum yields detailed information about the A-state vibronic structure. The LEDF emission was collected by pumping different vibronic bands of the A 2E"3<--X 2E"2 electronic spectrum. Analysis of the LEDF spectra yields valuable information about the vibronic levels of the X 2E"2 state. The X- and A-state vibronic structures characterize the Jahn-Teller distortion of the respective potential energy surfaces. A thorough analysis reveals observable Jahn-Teller activity in three of the four e'3 modes for the X 2E"2 state and two of the three e'1 modes for the A 2E"3 state and provides values for their deperturbed vibrational frequencies as well as linear Jahn-Teller coupling constants. The molecular parameters characterizing the Jahn-Teller interaction in the X and A states of C7H7 are compared to theoretical results and to those previously obtained for C5H5 and C6H6+.

  3. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing.

    PubMed

    Bhattacharjee, T; Wani, I S; Sheikh, S; Clark, I T; Okawa, T; Guo, S; Bhattacharjee, P P; Tsuji, N

    2018-02-19

    Nano-lamellar (L1 2  + B2) AlCoCrFeNi 2.1 eutectic high entropy alloy (EHEA) was processed by cryo-rolling and annealing. The EHEA developed a novel hierarchical microstructure featured by fine lamellar regions consisting of FCC lamellae filled with ultrafine FCC grains (average size ~200-250 nm) and B2 lamellae, and coarse non-lamellar regions consisting of ultrafine FCC (average size ~200-250 nm), few coarse recrystallized FCC grains and rather coarse unrecrystallized B2 phase (~2.5 µm). This complex and hierarchical microstructure originated from differences in strain-partitioning amongst the constituent phases, affecting the driving force for recrystallization. The hierarchical microstructure of the cryo-rolled and annealed material resulted in simultaneous enhancement in strength (Yield Strength/YS: 1437 ± 26 MPa, Ultimate Tensile Strength/UTS: 1562 ± 33 MPa) and ductility (elongation to failure/e f  ~ 14 ± 1%) as compared to the as-cast as well as cold-rolled and annealed materials. The present study for the first time demonstrated that cryo-deformation and annealing could be a novel microstructural design strategy for overcoming strength-ductility trade off in multiphase high entropy alloys.

  4. An Improved Transit Measurement for a 2.4 R ⊕ Planet Orbiting A Bright Mid-M Dwarf K2–28

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Knutson, Heather A.; Dressing, Courtney D.; Morley, Caroline V.; Werner, Michael; Gorjian, Varoujan; Beichman, Charles; Benneke, Björn; Christiansen, Jessie L.; Ciardi, David; Crossfield, Ian; Howell, Steve B.; Krick, Jessica E.; Livingston, John; Morales, Farisa Y.; Schlieder, Joshua E.

    2018-05-01

    We present a new Spitzer transit observation of K2–28b, a sub-Neptune (R p = 2.45 ± 0.28 R ⊕) orbiting a relatively bright (V mag = 16.06, K mag = 10.75) metal-rich M4 dwarf (EPIC 206318379). This star is one of only seven with masses less than 0.2 {M}ȯ known to host transiting planets, and the planet appears to be a slightly smaller analogue of GJ 1214b (2.85+/- 0.20 {R}\\oplus ). Our new Spitzer observations were taken two years after the original K2 discovery data and have a significantly higher cadence, allowing us to derive improved estimates for this planet’s radius, semimajor axis, and orbital period, which greatly reduce the uncertainty in the prediction of near future transit times for the James Webb Space Telescope (JWST) observations. We also evaluate the system’s suitability for atmospheric characterization with JWST and find that it is currently the only small (< 3 {R}\\oplus ) and cool (<600 K) planet aside from GJ 1214b with a potentially detectable secondary eclipse. We also note that this system is a favorable target for near-infrared radial velocity instruments on larger telescopes (e.g., the Habitable Planet Finder on the Hobby–Eberly Telescope), making it one of only a handful of small, cool planets accessible with this technique. Finally, we compare our results with the simulated catalog of the Transiting Exoplanet Survey Satellite (TESS) and find K2–28b to be representative of the kind of mid-M systems that should be detectable in the TESS sample.

  5. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases

    PubMed Central

    Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M; ArRejaie, Aws S

    2016-01-01

    Background Repeated fracture of the denture base is a common problem in prosthodontics, and it represents a nuisance and a time sink for the clinician. Therefore, the possibility of increasing repair strength using new reinforcement materials is of great interest to prosthodontists. Aim of the study This study aimed to evaluate the effects of incorporation of zirconia nanoparticles (nano-ZrO2) on the flexural strength and impact strength of repaired polymethyl methacrylate (PMMA) denture bases. Materials and methods One hundred eighty specimens of heat-polymerized acrylic resin were fabricated (90 for each test) and divided into three main groups: one control group (intact specimens) and two groups divided according to surface design (45° bevels and butt joints), in which specimens were prepared in pairs to create 2.5 mm gaps. Nano-ZrO2 was added to repair resin in 2.5 wt%, 5 wt%, and 7.5 wt% concentrations of acrylic powder. A three-point bending test was used to measure flexural strength, and a Charpy-type test was used to measure impact strength. Scanning electron microscopy was used to analyze the fracture surfaces and nano-ZrO2 distribution. The results were analyzed with a paired sample t-test and an unpaired t-test, with a P-value of ≤0.05 being significant. Results Incorporation of nano-ZrO2 into the repair resin significantly increased flexural strength (P<0.05). The highest value was found in the bevel group reinforced with 7.5% nano-ZrO2, whereas the lowest value was found in the butt group reinforced with 2.5% nano-ZrO2. The impact strength values of all repaired groups were significantly lower than those of the control group (P<0.05). Among repaired groups, the higher impact strength value was seen in the butt group reinforced with 2.5% nano-ZrO2. The bevel joint demonstrated mainly cohesive failure, whereas the butt joint demonstrated mainly adhesive failure. Conclusion Incorporation of nano-ZrO2 into the repair resin improved the flexural strength

  6. Enhanced low-energy γ -decay strength of 70Ni and its robustness within the shell model

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Midtbø, J. E.; Guttormsen, M.; Renstrøm, T.; Liddick, S. N.; Spyrou, A.; Karampagia, S.; Brown, B. A.; Achakovskiy, O.; Kamerdzhiev, S.; Bleuel, D. L.; Couture, A.; Campo, L. Crespo; Crider, B. P.; Dombos, A. C.; Lewis, R.; Mosby, S.; Naqvi, F.; Perdikakis, G.; Prokop, C. J.; Quinn, S. J.; Siem, S.

    2018-05-01

    Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their γ -emission probability at very low γ energies. In this work, we present measurements of the γ -decay strength of 70Ni over the wide range 1.3 ≤Eγ≤8 MeV. A significant enhancement is found in the γ -decay strength for transitions with Eγ<3 MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed E 1 -strength calculations within the quasiparticle time-blocking approximation, which describe our data above Eγ≃5 MeV very well. Moreover, large-scale shell-model calculations indicate an M 1 nature of the low-energy γ strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation, and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich Ni 72 ,74 ,76 .

  7. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents.

    PubMed

    Arrese-Igor, S; Alegría, A; Colmenero, J

    2015-06-07

    We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.

  8. Phase Transitions in Living Neural Networks

    NASA Astrophysics Data System (ADS)

    Williams-Garcia, Rashid Vladimir

    Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.

  9. Structures of (2E,5E)-2-(4-cyanobenzylidene)-5-(4-dimethylaminobenzylidene)cyclopentanone and (2E,5E)-2-benzylidene-5-cinnamylidenecyclopentanone

    NASA Astrophysics Data System (ADS)

    Zoto, Christopher A.; MacDonald, John C.

    2017-10-01

    The X-ray crystal structures of (2E,5E)-2-(4-cyanobenzylidene)-5-(4-dimethylaminobenzylidene)cyclopentanone (I) and (2E,5E)-2-benzylidene-5-cinnamylidenecyclopentanone (II) are presented, compared to the gas phase structures calculated using density functional theory, and discussed in the context of the photophysical behavior exhibited by I and II. Compound I crystallizes in the triclinic space group P 1 bar with a = 6.8743(2) Å, b = 8.8115(2) Å, c = 14.9664(4) Å, α = 77.135(2)°, β = 81.351(2)°, γ = 80.975(2)°, and Z = 2, and exhibits a planar structure. Compound II crystallizes in the monoclinic space group C2/c with a = 33.4281(10) Å, b = 11.9668(4) Å, c = 7.8031(2) Å, β = 92.785(2)°, and Z = 8, and adopts a nonplanar structure in the solid state and calculated structure.

  10. 75 FR 43197 - Public Housing Assessment System (PHAS): Asset Management Transition Year 2 Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ...): Asset Management Transition Year 2 Information (75 FR 1632), dated January 12, 2010, for PHAs with... only. B. PHAS Scoring During Transition Year 2 The Transition Year 2 notice (75 FR 1632, January 12... System (PHAS): Asset Management Transition Year 2 Extension AGENCY: Office of the Assistant Secretary for...

  11. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  12. Non-Congruence of Thermally Induced Structural and Electronic Transitions in VO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Joyeeta; HaglundJr., Richard F; Payzant, E Andrew

    2012-01-01

    The multifunctional properties of vanadium dioxide (VO2) arise from coupled first-order phase transitions: an insulator-to-metal transition (IMT) and a structural phase transition (SPT) from monoclinic to tetragonal. The characteristic signatures of the IMT and SPT are the hysteresis loops that track the phase transition from nucleation to stabilization of a new phase and back. A long-standing question about the mechanism of the VO2 phase transition is whether and how the almost-simultaneous electronic and structural transitions are related. Here we report independent measurements of the IMT and SPT hystereses in epitaxial VO2 films with differing morphologies. We show that, in bothmore » cases, the hystereses are not congruent, that the structural change requires more energy to reach completion. This result is independent of nanoscale morphology, so that the non- congruence is an intrinsic property of the VO2 phase transition. Our conclusion is supported by effective-medium calculations of the dielectric function incorporating the measured volume fractions of the monoclinic and tetragonal states. The results are consistent with the existence of an monoclinic correlated metallic state in which the electron- electron correlations characteristic of the monoclinic state begin to disappear before the transition to the tetragonal structural state.« less

  13. Frequency measurement of the 2S(1/2)-2D(3/2) electric quadrupole transition in a single 171Yb+ ion.

    PubMed

    Webster, Stephen; Godun, Rachel; King, Steven; Huang, Guilong; Walton, Barney; Tsatourian, Veronika; Margolis, Helen; Lea, Stephen; Gill, Patrick

    2010-03-01

    We report on precision laser spectroscopy of the 2S(1/2)(F = 0)-2D(3/2) (F = 2, m(F) = 0) clock transition in a single ion of 171Yb+. The absolute value of the transition frequency, determined using an optical frequency comb referenced to a hydrogen maser, is 688358979309310 +/- 9 Hz. This corresponds to a fractional frequency uncertainty of 1.3 x 10(-14).

  14. 26 CFR 301.7704-2 - Transition provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADMINISTRATION PROCEDURE AND ADMINISTRATION Definitions § 301.7704-2 Transition provisions. See the regulations under section 7704 contained in part 1 of this chapter for a definition of the “substantial new line of...

  15. Disruption of the G1/S Transition in Human Papillomavirus Type 16 E7-Expressing Human Cells Is Associated with Altered Regulation of Cyclin E

    PubMed Central

    Martin, Larry G.; Demers, G. William; Galloway, Denise A.

    1998-01-01

    The development of neoplasia frequently involves inactivation of the p53 and retinoblastoma (Rb) tumor suppressor pathways and disruption of cell cycle checkpoints that monitor the integrity of replication and cell division. The human papillomavirus type 16 (HPV-16) oncoproteins, E6 and E7, have been shown to bind p53 and Rb, respectively. To further delineate the mechanisms by which E6 and E7 affect cell cycle control, we examined various aspects of the cell cycle machinery. The low-risk HPV-6 E6 and E7 proteins did not cause any significant change in the levels of cell cycle proteins analyzed. HPV-16 E6 resulted in very low levels of p53 and p21 and globally elevated cyclin-dependent kinase (CDK) activity. In contrast, HPV-16 E7 had a profound effect on several aspects of the cell cycle machinery. A number of cyclins and CDKs were elevated, and despite the elevation of the levels of at least two CDK inhibitors, p21 and p16, CDK activity was globally increased. Most strikingly, cyclin E expression was deregulated both transcriptionally and posttranscriptionally and persisted at high levels in S and G2/M. Transit through G1 was shortened by the premature activation of cyclin E-associated kinase activity. Elevation of cyclin E levels required both the CR1 and CR2 domains of E7. These data suggest that cyclin E may be a critical target of HPV-16 E7 in the disruption of G1/S cell cycle progression and that the ability of E7 to regulate cyclin E involves activities in addition to the release of E2F. PMID:9444990

  16. Radiative one- and two-electron transitions into the empty K shell of He-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadrekar, Riddhi; Natarajan, L.

    2011-12-15

    The branching ratios between the single and double electron radiative transitions to empty K shell in He-like ions with 2s2p configuration are evaluated for 15 ions with 4{<=}Z{<=}26 using fully relativistic multiconfiguration Dirac-Fock wavefunctions in the active space approximation. The effects of configuration interaction and Breit contributions on the transition parameters have been analyzed in detail. Though the influence of Breit interaction on the electric dipole allowed one-electron radiative transitions is negligible, it substantially changes the spin-forbidden rates and the two-electron one-photon transition probabilities. Also, while the single electron transition rates are gauge independent, the correlated double-electron probabilities are foundmore » to be gauge sensitive. The probable uncertainties in the computed transition rates have been evaluated by considering the line strengths and the differences between the calculated and experimental transition energies as accuracy indicators. The present results are compared with other available experimental and theoretical data.« less

  17. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    PubMed

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  18. Pre-transition effects mediate forces of assembly between transmembrane proteins

    PubMed Central

    Katira, Shachi; Mandadapu, Kranthi K; Vaikuntanathan, Suriyanarayanan; Smit, Berend; Chandler, David

    2016-01-01

    We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order–disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to this phenomenon as the 'orderphobic effect'. The effect is mediated by proximity to the order–disorder phase transition and the size and hydrophobic mismatch of the protein. The strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered. DOI: http://dx.doi.org/10.7554/eLife.13150.001 PMID:26910009

  19. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study.

    PubMed

    Chen, Shi; Zhang, Jia-Qiang; Chen, Jiang-Zhi; Chen, Hui-Xing; Qiu, Fu-Nan; Yan, Mao-Lin; Chen, Yan-Ling; Peng, Cheng-Hong; Tian, Yi-Feng; Wang, Yao-Dong

    2017-09-01

    This study aims to investigate the roles of lncRNA ANRIL in epithelial-mesenchymal transition (EMT) by regulating the ATM-E2F1 signaling pathway in pancreatic cancer (PC). PC rat models were established and ANRIL overexpression and interference plasmids were transfected. The expression of ANRIL, EMT markers (E-cadherin, N-cadherin and Vimentin) and ATM-E2F1 signaling pathway-related proteins (ATM, E2F1, INK4A, INK4B and ARF) were detected. Small molecule drugs were applied to activate and inhibit the ATM-E2F1 signaling pathway. Transwell assay and the scratch test were adopted to detect cell invasion and migration abilities. ANRIL expression in the PC cells was higher than in normal pancreatic duct epithelial cells. In the PC rat models and PC cells, ANRIL interference promoted the expressions of INK4B, INK4A, ARF and E-cadherin, while reduced N-cadherin and Vimentin expression. Over-expressed ANRIL decreased the expression of INK4B, INK4A, ARF and E-cadherin, but raised N-cadherin and Vimentin expressions. By inhibiting the ATM-E2F1 signaling pathway in PC cells, E-cadherin expression increased but N-cadherin and Vimentin expressions decreased. After ANRIL was silenced or the ATM-E2F1 signaling pathway inhibited, PC cell migration and invasion abilities were decreased. In conclusion, over-expression of lncRNA ANRIL can promote EMT of PC cells by activating the ATM-E2F1 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evolution of E × B shear and coherent fluctuations prior to H-L transitions in DIII-D and control strategies for H-L transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldon, David; Boivin, Rejean L.; Chrystal, Colin

    While operating a magnetic fusion device in H-mode has many advantages, care must be taken to understand and control the release of energy during the H-L back transition, as the extra energy stored within the H-mode transport barrier will have the potential to cause damage to material components of a large future tokamak such as ITER. Examining a scenario where the H-L back transition sequence begins before the E × B shearing layer decays on its own, we identify a long-lived precursor mode that is tied to the events of the H-L sequence and we develop a robust control strategymore » for ensuring gradual release of energy during the transition sequence. Back transitions in this scenario commonly begin with a rapid relaxation of the pedestal, which was previously shown to be inconsistent with ideal peeling-ballooning instability as the trigger, despite being otherwise similar to a large type-I Edge Localized Mode (ELM). Here, this so-called transient occurs when the E × B shearing rate ω E×B is significantly larger than the turbulence decorrelation rate ωT, indicating that this is not the result of runaway turbulence recovery. The transient is always synchronous with amplitude and propagation velocity modulations of the precursor mode, which has been dubbed the Modulating Pedestal Mode (MPM).The MPM is a coherent density fluctuation, which, in our scenario at least, reliably appears in the steep gradient region with f ≈ 70 kHz, k θ ≈ 0.3 cm –1, and it exists for ≳100 ms before the onset of back transitions. The transient may be reliably eliminated by reducing toroidal rotation in the co-current direction by the application of torque from counter-injecting neutral beams. The transient in these “soft” H-L transitions is then replaced by a small type-III ELM, which is also always synchronous with the MPM, and MPM shows the same behavior in both hard and soft cases.« less