Sample records for e2-induced cell proliferation

  1. Black cohosh inhibits 17β-estradiol-induced cell proliferation of endometrial adenocarcinoma cells.

    PubMed

    Park, So Yun; Kim, Hee Ja; Lee, Sa Ra; Choi, Youn-Hee; Jeong, Kyungah; Chung, Hyewon

    2016-10-01

    This study was conducted to investigate the effect of black cohosh (BC) extract on the proliferation and apoptosis of Ishikawa cells. Ishikawa human endometrial adenocarcinoma cells were treated with or without BC (1, 5, 10 and 25 μM) and cell proliferation and cytotoxicity were measured by CCK-8 assays and flow cytometry analysis. Additionally, Ishikawa cells were treated with 17β-estradiol (E2), E2 + progesterone and E2 + BC (5 and 10 μM) and the effect of BC and progesterone on E2-induced cell proliferation was analyzed. BC decreased the proliferation of Ishikawa cells at a dose-dependent rate compared with the control group (p < 0.05). The proliferation of Ishikawa cells increased in the presence of E2, whereas the subsequent addition of progesterone or BC decreased proliferation to the level of the control group (p < 0.05). The inhibitory effect of BC on E2-induced cell proliferation was greater than the inhibitory effect of progesterone. In conclusion, BC induces apoptosis in Ishikawa cells and suppresses E2-induced cell proliferation in Ishikawa cells. BC could be considered a candidate co-treatment agent of estrogen-dependent tumors, especially those involving endometrial cells.

  2. ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells.

    PubMed

    Xie, Huaying; Wang, Jiayue; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Mei, Dan; Zhao, Lian; Cao, Jun

    2016-08-01

    Cadmium (Cd) is a heavy metal widely found in a number of environmental matrices, and the exposure to Cd is increasing nowadays. In this study, the role of high mobility group A2 (HMGA2) in Cd-induced proliferation was investigated in MRC-5 cells. Exposure to Cd (2μM) for 48h significantly enhanced the growth of MRC-5 cells, increased reactive oxygen species (ROS) production, and induced both mRNA and protein expression of HMGA2. Evidence for Cd-induced reduction of the number of G0/G1 phase cells and an increase in the number of cells in S phase and G2/M phase was sought by flow cytometric analysis. Western blot analysis showed that cyclin D1, cyclin B1, and cyclin E were upregulated in Cd-treated cells. Further study revealed that N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of MRC-5 cells, ROS generation, and the increasing protein level of HMGA2. Silencing of HMGA2 gene by siRNA blocked Cd-induced cyclin D1, cyclin B1, and cyclin E expression and reduction of the number of G0/G1 phase cells. Combining, our data showed that Cd-induced ROS formation provoked HMGA2 upregulation, caused cell cycle changes, and led to cell proliferation. This suggests that HMGA2 might be an important biomarker in Cd-induced cell proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Oxytocin stimulates cell proliferation in vaginal cell line Vk2E6E7.

    PubMed

    Kallak, Theodora K; Uvnäs-Moberg, Kerstin

    2017-03-01

    Objective During and after menopause, the symptoms of vaginal atrophy cause great discomfort and necessitate effective treatment options. Currently, vaginally applied oxytocin is being investigated as a treatment for the symptoms of vaginal atrophy in postmenopausal women. To clarify the mechanisms behind oxytocins effects on vaginal atrophy, the present study investigated the effects of oxytocin on cell proliferation in the cells of the Vk2E6E7 line, a non-tumour vaginal cell line. The study also compared the effects of oxytocin with those of estradiol (E2). Study design The effects of both oxytocin and E2 on the proliferation of Vk2E6E7 cells were investigated using Cell Proliferation ELISA BrdU Colorimetric Assay. The expression of both oxytocin and oxytocin receptor was studied in Vk2E6E7 cells using quantitative real-time polymerase chain reaction and immunofluorescent staining. Main outcome measures Cell proliferation and gene expression. Results Oxytocin increased cell proliferation both time dependently and dose dependently. This differed from the effect pattern observed in cells treated with E2. In addition, in oxytocin-treated cells, the oxytocin receptor was found to be co-localized with caveolin-1, indicating pro-proliferative signalling within the cell. Conclusions Oxytocin stimulates cell proliferation and the co-localization of oxytocin receptor with caveolin-1 in oxytocin-treated cells, supporting the role of oxytocin signalling in cell proliferation. In addition, these findings suggest that increased cell proliferation is one mechanism by which local vaginal oxytocin treatment increases vaginal thickness and relieves vaginal symptoms in postmenopausal women with vaginal atrophy.

  4. PPARδ INDUCES CELL PROLIFERATION BY A CYCLIN E1-DEPENDENT MECHANISM AND IS UPREGULATED IN THYROID TUMORS

    PubMed Central

    Zeng, Lingchun; Geng, Yan; Tretiakova, Maria; Yu, Xuemei; Sicinski, Peter; Kroll, Todd G.

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) are lipid sensing nuclear receptors that have been implicated in multiple physiologic processes including cancer. Here, we determine that PPARδ induces cell proliferation through a novel cyclin E1-dependent mechanism and is upregulated in many human thyroid tumors. The expression of PPARδ was induced coordinately with proliferation in primary human thyroid cells by activation of serum, TSH/cAMP/pKa or EGF/MEK/ERK mitogenic signaling pathways. Engineered overexpression of PPARδ increased thyroid cell number, the incorporation of BrdU and the phosphorylation of Rb 40–45% in just 2 days, one usual cell population doubling. The synthetic PPARδ agonist GW501516 augmented these PPARδ proliferation effects in a dose-dependent manner. Overexpression of PPARδ increased cyclin E1 protein 9-fold, whereas knock down of PPARδ by siRNA reduced both cyclin E1 protein and cell proliferation 2-fold. Induction of proliferation by PPARδ wasabrogated by knockdown of cyclin E1 by siRNA in primary thyroid cells and by knockout of cyclin E1 in mouse embryo fibroblasts, confirming a cyclin E1 dependence for this PPARδ pathway. In addition, the mean expression of native PPARδ was increased 2- to 5-fold (p<0.0001) and correlated with that of the in situ proliferation marker Ki67 (R=0.8571; p=0.02381) in six different classes of benign and malignant human thyroid tumors. Our experiments identify a PPARδ mechanism that induces cell proliferation through cyclin E1 and is regulated by growth factor and lipid signals. The data argue for systematic investigation of PPARδ antagonists as anti-neoplastic agents and implicate altered PPARδ-cyclin E1 signaling in thyroid and other carcinomas. PMID:18701481

  5. Overexpression of E2F3 promotes proliferation of functional human β cells without induction of apoptosis

    PubMed Central

    Rady, Brian; Chen, Yanmei; Vaca, Pilar; Wang, Qian; Wang, Yong; Salmon, Patrick; Oberholzer, José

    2013-01-01

    The mechanisms that control proliferation, or lack thereof, in adult human β cells are poorly understood. Controlled induction of proliferation could dramatically expand the clinical application of islet cell transplantation and represents an important component of regenerative approaches to a functional cure of diabetes. Adult human β cells are particularly resistant to common proliferative targets and often dedifferentiate during proliferation. Here we show that expression of the transcription factor E2F3 has a role in regulating β-cell quiescence and proliferation. We found human islets have virtually no expression of the pro-proliferative G1/S transcription factors E2F1–3, but an abundance of inhibitory E2Fs 4–6. In proliferative human insulinomas, inhibitory E2Fs were absent, while E2F3 is expressed. Using this pattern as a “roadmap” for proliferation, we demonstrated that ectopic expression of nuclear E2F3 induced significant expansion of insulin-positive cells in both rat and human islets. These cells did not undergo apoptosis and retained their glucose-responsive insulin secretion, showing the ability to reverse diabetes in mice. Our results suggest that E2F4–6 may help maintain quiescence in human β cells and identify E2F3 as a novel target to induce proliferation of functional β cells. Refinement of this approach may increase the islets available for cell-based therapies and research and could provide important cues for understanding in vivo proliferation of β cells. PMID:23907129

  6. Lyt-2+ cells. Requirements for concanavalin A-induced proliferation and interleukin 2 production.

    PubMed

    Kern, D E; Lachmann, L B; Greenberg, P D

    1987-11-01

    The requirements for inducing Lyt-2+ T cell proliferation in response to concanavalin A (Con A) were examined. Purified Lyt-2+ or L3T4+ spleen cells of C57BL/6 origin were stimulated with Con A and syngeneic macrophages (MO) in the presence of monoclonal antibodies to T cell markers or to polymorphic determinants on major histocompatibility complex molecules, and assessed for the ability to proliferate and to produce interleukin (IL) 2. alpha I-Ab failed to inhibit the Con A response of Lyt-2+ cells at dilutions that significantly inhibited the response of L3T4+ cells. In contrast, alphaKb/Db or alpha Lyt-2.2 specifically inhibited the response of Lyt-2+ cells, but not L3T4+ cells. The ability of alpha Kb/Db and of alpha Lyt-2.2 to inhibit the response of Lyt-2+ cells was dependent upon the concentration of Con A. These data demonstrate that optimal triggering of T cell subsets to proliferate and to produce IL-2 in response to Con A requires interactions with the appropriate restricting major histocompatibility complex molecule. The role of accessory cells in Lyt-2+ Con A-induced proliferation and IL-2 production was also investigated. Purified Lyt-2+ cells and purified L3T4+ cells failed to respond to Con A in the absence of MO. IL-1 reconstituted the response when MO were limiting, but failed to restore the response of either Lyt-2+ or L3T4+ cells when T cells were rigorously purified to remove all MO. These results demonstrate that triggering Lyt-2+ T cells, like L3T4+ T cells, requires accessory cells, and that this does not merely reflect a requirement for IL-1 production. Thus, Con A-induced proliferation and IL-2 production by Lyt-2+ T cells requires intimate contact with accessory cells and interactions dependent upon the class I-restricting element.

  7. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation.

    PubMed

    Li, Shuzhen; Sun, Zhenzhen; Zhang, Yue; Ruan, Yuan; Chen, Qiuxia; Gong, Wei; Yu, Jing; Xia, Weiwei; He, John Ci-Jiang; Huang, Songming; Zhang, Aihua; Ding, Guixia; Jia, Zhanjun

    2017-02-07

    Hyperuricemia is not only the main feature of gout but also a cause of gout-related organ injuries including glomerular hypertrophy and sclerosis. Uric acid (UA) has been proven to directly cause mesangial cell (MC) proliferation with elusive mechanisms. The present study was undertaken to examined the role of inflammatory cascade of COX-2/mPGES-1/PGE2 in UA-induced MC proliferation. In the dose- and time-dependent experiments, UA increased cell proliferation shown by the increased total cell number, DNA synthesis rate, and the number of cells in S and G2 phases in parallel with the upregulation of cyclin A2 and cyclin D1. Interestingly, UA-induced cell proliferation was accompanied with the upregulation of COX-2 and mPGES-1 at both mRNA and protein levels. Strikingly, inhibition of COX-2 via a specific COX-2 inhibitor NS-398 markedly blocked UA-induced MC proliferation. Meanwhile, UA-induced PGE2 production was almost entirely abolished. Furthermore, inhibiting mPGES-1 by a siRNA approach in MCs also ameliorated UA-induced MC proliferation in line with a significant blockade of PGE2 secretion. More importantly, in gout patients, we observed a significant elevation of urinary PGE2 excretion compared with healthy controls, indicating a translational potential of this study to the clinic. In conclusion, our findings indicated that COX-2/mPGES-1/PGE2 cascade activation mediated UA-induced MC proliferation. This study offered new insights into the understanding and the intervention of UA-related glomerular injury.

  8. Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway.

    PubMed

    Jing, Jun; Chen, Li; Fu, Hai-Yan; Fan, Kai; Yao, Qi; Ge, Yi-Feng; Lu, Jin-Chun; Yao, Bing

    2015-03-24

    This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway.

  9. Leptin activates STAT and ERK2 pathways and induces gastric cancer cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Rama; Lin Cal; Tran, Teresa

    2005-06-17

    Although leptin is known to induce proliferative response in gastric cancer cells, the mechanism(s) underlying this action remains poorly understood. Here, we provide evidence that leptin-induced gastric cancer cell proliferation involves activation of STAT and ERK2 signaling pathways. Leptin-induced STAT3 phosphorylation is independent of ERK2 activation. Leptin increases SHP2 phosphorylation and enhances binding of Grb2 to SHP2. Inhibition of SHP2 expression with siRNA but not SHP2 phosphatase activity abolished leptin-induced ERK2 activation. While JAK inhibition with AG490 significantly reduced leptin-induced ERK2, STAT3 phosphorylation, and cell proliferation, SHP2 inhibition only partially reduced cancer cell proliferation. Immunostaining of gastric cancer tissues displayedmore » local overexpression of leptin and its receptor indicating that leptin might be produced and act locally in a paracrine or autocrine manner. These findings indicate that leptin promotes cancer growth by activating multiple signaling pathways and therefore blocking its action at the receptor level could be a rational therapeutic strategy.« less

  10. Uropathogenic E.coli (UPEC) Infection Induces Proliferation through Enhancer of Zeste Homologue 2 (EZH2)

    PubMed Central

    Penna, Frank; Samiei, Alaleh Najdi; Sidler, Martin; Jiang, Jia-Xin; Ibrahim, Fadi; Tolg, Cornelia; Delgado-Olguin, Paul; Rosenblum, Norman; Bägli, Darius J.

    2016-01-01

    Host-pathogen interactions can induce epigenetic changes in the host directly, as well as indirectly through secreted factors. Previously, uropathogenic Escherichia coli (UPEC) was shown to increase DNA methyltransferase activity and expression, which was associated with methylation-dependent alterations in the urothelial expression of CDKN2A. Here, we showed that paracrine factors from infected cells alter expression of another epigenetic writer, EZH2, coordinate with proliferation. Urothelial cells were inoculated with UPEC, UPEC derivatives, or vehicle (mock infection) at low moi, washed, then maintained in media with Gentamycin. Urothelial conditioned media (CM) and extracellular vesicles (EV) were isolated after the inoculations and used to treat naïve urothelial cells. EZH2 increased with UPEC infection, inoculation-induced CM, and inoculation-induced EV vs. parallel stimulation derived from mock-inoculated urothelial cells. We found that infection also increased proliferation at one day post-infection, which was blocked by the EZH2 inhibitor UNC1999. Inhibition of demethylation at H3K27me3 had the opposite effect and augmented proliferation. CONCLUSION: Uropathogen-induced paracrine factors act epigenetically by altering expression of EZH2, which plays a key role in early host cell proliferative responses to infection. PMID:26964089

  11. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    PubMed Central

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  12. Repressive effect of the phytoestrogen genistein on estradiol-induced uterine leiomyoma cell proliferation.

    PubMed

    Miyake, Asako; Takeda, Takashi; Isobe, Aki; Wakabayashi, Atsuko; Nishimoto, Fumihito; Morishige, Ken-Ichirou; Sakata, Masahiro; Kimura, Tadashi

    2009-06-01

    Uterine leiomyomas are the most common gynecological benign tumor and greatly affect reproductive health and well-being. They are the predominant indication for hysterectomy in premenopausal women. Current epidemiological study reported that soy products intake is inversely associated with diseases leading to hysterectomy. Genistein is a soy-derived phytoestrogen and its inhibitory effect on leiomyoma cell proliferation is reported. In this study, we investigated the siginificant inhibitory effect of genistein on estradiol (E(2))-induced leiomyoma cells proliferation. The Eker rat-derived uterine leiomyoma cell line ELT-3 cells were used. Cell proliferation was assessed by counting the number of cells. The expression of estrogen receptors and peroxisome proliferator-activated receptor-gamma (PPARgamma) was evaluated by Western blot analysis. PPARgamma was expressed in ELT-3 cells and genistein acted as PPARgamma ligand. This inhibitory effect of genistein was attenuated by the treatment of cells with PPARgamma antagonist bisphenol A diglycidyl ether (BADGE) or GW9662. These experimental findings in vitro show that the repressive effect of genistein on E(2)-induced ELT-3 cell proliferation is through the activation of PPARgamma. Genistein may be useful as an alternative therapy for leiomyoma.

  13. TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Ricci-Vitiani, Lucia; Caprodossi, Sara; Arcella, Antonella; Santoni, Matteo; Giangaspero, Felice; De Maria, Ruggero; Santoni, Giorgio

    2010-05-01

    The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 2 (TRPV2) in human glioma cells. By Real-Time-PCR and western blot analysis, we found that TRPV2 messenger RNA (mRNA) and protein were expressed in benign astrocyte tissues, and its expression progressively declined in high-grade glioma tissues as histological grade increased (n = 49 cases), and in U87MG cells and in MZC, FCL and FSL primary glioma cells. To investigate the function of TRPV2 in glioma, small RNA interfering was used to silence TRPV2 expression in U87MG cells. As evaluated by RT-Profiler PCR array, siTRPV2-U87MG transfected cells displayed a marked downregulation of Fas and procaspase-8 mRNA expression, associated with upregulation of cyclin E1, cyclin-dependent kinase 2, E2F1 transcriptor factor 1, V-raf-1 murine leukemia viral oncogene homolog 1 and Bcl-2-associated X protein (Bcl-X(L)) mRNA expression. TRPV2 silencing increased U87MG cell proliferation as shown by the increased percentage of cells incorporating 5-bromo-2-deoxyuridine expressing beta(III)-tubulin and rescued glioma cells to Fas-induced apoptosis. These events were dependent on extracellular signal-regulated kinase (ERK) activation: indeed inhibition of ERK activation in siTRPV2-U87MG transfected cells by treatment with PD98059, a specific mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor, reduced Bcl-X(L) protein levels, promoted Fas expression, and restored Akt/protein kinase B pathway activation leading to reduced U87MG cell survival and proliferation, and increased sensitivity to Fas-induced apoptosis. In addition, transfection of TRPV2 in MZC glioma cells, by inducing Fas overexpression, resulted in a reduced viability and an increased spontaneous and Fas-induced apoptosis. Overall, our findings indicate that TRPV2 negatively controls glioma cell survival and proliferation, as well as resistance to Fas-induced apoptotic cell

  14. Osteosarcoma cells induce endothelial cell proliferation during neo-angiogenesis.

    PubMed

    de Nigris, Filomena; Mancini, Francesco Paolo; Schiano, Concetta; Infante, Teresa; Zullo, Alberto; Minucci, Pellegrino Biagio; Al-Omran, Mohammed; Giordano, Antonio; Napoli, Claudio

    2013-04-01

    Understanding the mechanisms inducing endothelial cell (EC) proliferation following tumor microenvironment stimuli may be important for the development of antiangiogenic therapies. Here, we show that cyclin-dependent kinase 2 and 5 (Cdk2, Cdk5) are important mediators of neoangiogenesis in in vitro and in vivo systems. Furthermore, we demonstrate that a specific Yin Yang 1 (YY1) protein-dependent signal from osteosarcoma (SaOS) cells determines proliferation of human aortic endothelial cells (HAECs). Following tumor cell stimuli, HAECs overexpress Cdk2 and Cdk5, display increased Cdk2 activity, undergo enhanced proliferation, and form capillary-like structures. Moreover, Roscovitine, an inhibitor of Cdks, blunted overexpression of Cdk2 and Cdk5 and Cdk2 activity induced by the YY1-dependent signal secreted by SaOS cells. Furthermore, Roscovitine decreased HAEC proliferation and angiogenesis (the latter by 70% in in vitro and 50% in in vivo systems; P < 0.01 vs. control). Finally, the finding that Roscovitine triggers apoptosis in SaOS cells as well as in HAECs by activating caspase-3/7 indicates multiple mechanisms for the potential antitumoral effect of Roscovitine. Present work suggests that Cdk2 and Cdk5 might be pharmacologically accessible targets for both antiangiogenic and antitumor therapy. Copyright © 2012 Wiley Periodicals, Inc.

  15. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    PubMed

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  16. lncRNA-HIT promotes cell proliferation of non-small cell lung cancer by association with E2F1.

    PubMed

    Yu, L; Fang, F; Lu, S; Li, X; Yang, Y; Wang, Z

    2017-05-01

    Lung cancer is the leading cause of cancer-related death around the world. Long noncoding RNA (lncRNA) has pivotal roles in cancer occurrence and development. However, only a few lncRNAs have been functionally characterized. In the present study, we investigated the effects of lncRNA-HIT (HOXA transcript induced by TGFβ) expression on non-small cell lung cancer (NSCLC) cell phenotype with the gain-of-function and loss-of-function assays. We found that ectopic expression or knockdown of lncRNA-HIT markedly increased or decreased NSCLC cell proliferation, respectively. Moreover, we also showed that lncRNA-HIT interacted with E2F1 to regulate its target genes, such as Survivin, FOXM1, SKP2, NELL2 and DOK1. Collectively, our findings indicated that lncRNA-HIT affected the proliferation of NSCLC cells at least in part via regulating the occupancy of E2F1 in the promoter regions of its target genes. The lncRNA-HIT-E2F1 complex may be a potential target for NSCLC treatment.

  17. Cord blood versus age 5 mononuclear cell proliferation on IgE and asthma

    PubMed Central

    2010-01-01

    Background Fetal immune responses following exposure of mothers to allergens during pregnancy may influence the subsequent risk of childhood asthma. However, the association of allergen-induced cord blood mononuclear cell (CBMC) proliferation and cytokine production with later allergic immune responses and asthma has been controversial. Our objective was to compare indoor allergen-induced CBMC with age 5 peripheral blood mononuclear cell (PBMC) proliferation and determine which may be associated with age 5 allergic immune responses and asthma in an inner city cohort. Methods As part of an ongoing cohort study of the Columbia Center for Children's Environmental Health (CCCEH), CBMCs and age 5 PBMCs were cultured with cockroach, mouse, and dust mite protein extracts. CBMC proliferation and cytokine (IL-5 and IFN-γ) responses, and age 5 PBMC proliferation responses, were compared to anti-cockroach, anti-mouse, and anti-dust mite IgE levels, wheeze, cough, eczema and asthma. Results Correlations between CBMC and age 5 PBMC proliferation in response to cockroach, mouse, and dust mite antigens were nonsignificant. Cockroach-, mouse-, and dust mite-induced CBMC proliferation and cytokine responses were not associated with allergen-specific IgE at ages 2, 3, and 5, or with asthma and eczema at age 5. However, after adjusting for potential confounders, age 5 cockroach-induced PBMC proliferation was associated with anti-cockroach IgE, total IgE, and asthma (p < 0.05). Conclusion In contrast to allergen-induced CBMC proliferation, age 5 cockroach-induced PBMC proliferation was associated with age 5 specific and total IgE, and asthma, in an inner-city cohort where cockroach allergens are prevalent and exposure can be high. PMID:20684781

  18. Zinc Oxide Nanoparticles Demoted MDM2 Expression to Suppress TSLP-Induced Mast Cell Proliferation.

    PubMed

    Kim, Min-Ho; Jeong, Hyun-Ja

    2016-03-01

    Activation of murine double minute 2 (MDM2) through thymic stromal lymphopoietin (TSLP)-induced signal transducers and activators of transcription (STAT6) phosphorylation plays a critical role in proliferation and survival of mast cells. Previously, we reported that zinc oxide nanoparticles (ZnO-NP) effectively decrease the mast cell-mediated allergic inflammatory reactions. Here, we evaluated the effect of ZnO-NP on TSLP-induced proliferation of mast cells. ZnO-NP significantly reduced the number of BrdU-incorporating mast cells increased by TSLP. ZnO-NP decreased the expression of MDM2 through the blockade of STAT6 phosphorylation. TSLP increased the production and mRNA expression of interleukin-13 (a growth factor of mast cells), its increase was significantly decreased by ZnO-NP (10 μg/mL). ZnO-NP induced the down-regulation of Bcl2 (an anti-apoptotic factor) and up-regulation of Bax (an apoptotic factor) through the stabilization of p53 protein. However, ZnO-NP has no effect on caspase-3 activation, cytochrome c release into cytosol, and apoptosis-inducing factor translocation into nucleus in TSLP-stimulated cells. The results of the present study demonstrated that ZnO-NP inhibited the proliferation of mast cells through the regulation of MDM2 and p53 protein levels. These finding suggest that ZnO-NP could be improved mast cell-mediated various diseases.

  19. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  20. 17beta-estradiol promotes breast cancer cell proliferation-inducing stromal cell-derived factor-1-mediated epidermal growth factor receptor transactivation: reversal by gefitinib pretreatment.

    PubMed

    Pattarozzi, Alessandra; Gatti, Monica; Barbieri, Federica; Würth, Roberto; Porcile, Carola; Lunardi, Gianluigi; Ratto, Alessandra; Favoni, Roberto; Bajetto, Adriana; Ferrari, Angelo; Florio, Tullio

    2008-01-01

    The coordinated activity of estrogens and epidermal growth factor receptor (EGFR) family agonists represents the main determinant of breast cancer cell proliferation. Stromal cell-derived factor-1 (SDF-1) enhances extracellular signal-regulated kinases 1 and 2 (ERK1/2) activity via the transactivation of EGFR and 17beta-estradiol (E2) induces SDF-1 production to exert autocrine proliferative effects. On this basis, we evaluated whether the inhibition of the tyrosine kinase (TK) activity of EGFR may control different mitogenic stimuli in breast tumors using the EGFR-TK inhibitor gefitinib to antagonize the proliferation induced by E2 in T47D human breast cancer cells. EGF, E2, and SDF-1 induced a dose-dependent T47D cell proliferation, that being nonadditive suggested the activation of common intracellular pathways. Gefitinib treatment inhibited not only the EGF-dependent proliferation and ERK1/2 activation but also the effects of SDF-1 and E2, suggesting that these activities were mediated by EGFR transactivation. Indeed, both SDF-1 and E2 caused EGFR tyrosine phosphorylation. The molecular link between E2 and SDF-1 proliferative effects was identified because 1,1'-(1,4-phenylenebis(methylene))-bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist, inhibited SDF-1- and E2-dependent proliferation and EGFR and ERK1/2 phosphorylation. EGFR transactivation was dependent on c-Src activation. E2 treatment caused a powerful SDF-1 release from T47D cells. Finally, in SKBR3, E2-resistant cells, EGFR was constitutively activated, and AMD3100 reduced EGFR phosphorylation and cell proliferation, whereas HER2-neu was transactivated by SDF-1 in SKBR3 but not in T47D cells. In conclusion, we show that activation of CXCR4 transduces proliferative signals from the E2 receptor to EGFR, whose inhibition is able to revert breast cancer cell proliferation induced by multiple receptor activation.

  1. Molecular imaging of low-power laser irradiation induced cell proliferation

    NASA Astrophysics Data System (ADS)

    Gao, Xuejuan; Wang, Fang; Da, Xing

    2006-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Studying the signaling pathways involved in the laser irradiation is important for understanding these processes. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. Protein kinase Cs (PKCs) have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In present study, to monitor the direct interaction between Ras and Raf and PKCs activation after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. Our results show that the direct interaction between Ras and Raf is monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope, and that the increasing dynamics of PKCs activity is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved ASTC-a-1 cells expressing CKAR reporter using the similar way. Taken together, LPLI induces the ASTC-a-1 cell proliferation by activated Ras directly interacting with Raf and by specifically activating PKCs.

  2. Estradiol-17β-Induced Human Neural Progenitor Cell Proliferation Is Mediated by an Estrogen Receptor β-Phosphorylated Extracellularly Regulated Kinase Pathway

    PubMed Central

    Wang, Jun Ming; Liu, Lifei; Brinton, Roberta Diaz

    2008-01-01

    Estradiol-17β (E2) induces rodent hippocampal neural progenitor cell (NPC) proliferation in vitro, in vivo, and after brain injury. The purpose of the present investigation was to determine whether E2-induced proliferation observed in rodent model systems generalized to cells of human neural origin and the signaling pathway by which E2 promotes mitosis of human NPCs (hNPCs). Results of these analyses indicate that E2 induced a significant increase in hNPC proliferation in a time- and dose-dependent manner. E2-induced hNPC DNA replication was paralleled by elevated cell cycle protein expression and centrosome amplification, which was associated with augmentation of total cell number. To determine whether estrogen receptor (ER) and which ER subtype were required for E2-induced hNPC proliferation, ER expression was first determined by real-time RT-PCR, followed by Western blot analysis, and subsequently verified pharmacologically using ERα or β-selective ligands. Results of these analyses indicated that ERβ expression was predominant relative to ERα, which was barely detectable in hNPCs. Activation of ERβ by the ERβ-selective ligand, diarylpropionitrile, led to an increase in phosphorylated extracellular signal-regulated kinase, and subsequent centrosome amplification and hNPC proliferation, which were blocked by the MEKK antagonist, UO126, but not its inactive analog, UO124. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2-induced hNPC proliferation in vitro. Therapeutic implications of these findings relevant to hormone therapy and prevention of neurodegenerative disease are discussed. PMID:17962344

  3. Osthole inhibits proliferation and induces apoptosis in human osteosarcoma cells.

    PubMed

    Ding, Yong; Lu, Xiongwei; Hu, Xiaopeng; Ma, Jie; Ding, Huan

    2014-02-01

    The purpose of this study was to investigate the effect of osthole on osteosarcoma cell proliferation and apoptosis. Cell counting Kit-8 assay was performed to establish the effects of osthole on osteosarcoma MG-63 cell proliferation. Annexin V-FITC/PI was performed to analyze the apoptotic rate of the cells. The inhibitory effects of osthole on the expression of BCL-2, BAX, and caspase-3 were detected by Western blotting. Osthole inhibited the growth of human osteosarcoma MG-63 cells by inhibiting cell proliferation and induced cell apoptosis. Western blotting demonstrated that osthole downregulated the expressions of BCL-2 and caspase-3 and upregulated the expression of BAX in human osteosarcoma cells. Osthole can inhibit osteosarcoma cell proliferation and induced apoptosis effectively in a dose-dependent manner through downregulating the expression of BCL-2 and caspase-3 proteins levels and upregulating the expression of BAX proteins levels.

  4. Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, P.-S., E-mail: pslediting@mail.scu.edu.t; Chen, C.-Y.

    2010-05-01

    Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu and Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in humanmore » osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.« less

  5. G protein-coupled estrogen receptor 1 (GPER 1) mediates estrogen-induced, proliferation of leiomyoma cells.

    PubMed

    Jiang, Xiuxiu; Ye, Xiaolei; Ma, Junyan; Li, Wen; Wu, Ruijin; Jun, Lin

    2015-01-01

    G protein-coupled estrogen receptor 1 (GPER-1, formerly known as GPR30) has been proposed as the receptor for estrogen-induced, growth of leiomyomas though its precise mechanisms of action are not clear. We obtained leiomyoma cells (LC) and normal smooth muscle cells from 28 women (n = 28, median age 38 years, median parity 1.0). We incubated them with 17-β estradiol (E(2)), after blocking, or upregulating, expression of GPER-1 with ICI182,780 (a GPER-1 agonist) and siGPR30, respectively. We evaluated the role of GPER-1 in the mitogen-activated protein kinase (MAPK) signaling pathway using Western blot analysis. We studied cell proliferation with 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide, and, mitotic activity with phosphohistone H3 (PPH3) expression in leiomyoma, and, matched, normal, smooth muscle tissues using standard immunohistochemistry. Downregulation of GPER-1 expression with siGPR30 partially attenuated the E(2)-activated MAPK signaling pathway (p < 0.01). Upregulation of GPER-1 with ICI182,780 enhanced the E(2)-activated MAPK signaling pathway (p < 0.01). ICI182,780 enhanced E(2)-induced proliferation of LC (p < 0.01), while knock down of the GPER-1 gene with GPER-1 small interfering RNA partially inhibited E(2)-induced cell proliferation (p < 0.01). There were no significant differences in PPH3 expression between LCs and normal smooth muscle tissues (p > 0.05). Neither ICI182,780 nor siGPR30 increased mitosis in LCs (p > 0.05). Our results indicate that GPER-1 mediates proliferation of estrogen-induced, LC by activating the MAPK pathway, and, not by promoting mitosis.

  6. Emodin Inhibits ATP-Induced Proliferation and Migration by Suppressing P2Y Receptors in Human Lung Adenocarcinoma Cells.

    PubMed

    Wang, Xia; Li, Long; Guan, Ruijuan; Zhu, Danian; Song, Nana; Shen, Linlin

    2017-01-01

    Extracellular ATP performs multiple important functions via activation of P2 receptors on the cell surface. P2Y receptors play critical roles in ATP evoked response in human lung adenocarcinoma cells (A549 cells). Emodin is an anthraquinone derivative originally isolated from Chinese rhubarb, possesses anticancer properties. In this study we examined the inhibiting effects of emodin on proliferation, migration and epithelial-mesenchymal transition (EMT) by suppressing P2Y receptors-dependent Ca2+ increase and nuclear factor-κB (NF-KB) signaling in A549 cells. A549 cells were pretreated with emodin before stimulation with ATP for the indicated time. Then, intracellular Ca2+ concentration ([Ca2+]i) was measured by Fluo-8/AM staining. Cell proliferation and cell cycle progression were tested by CCK8 assay and flow cytometry In addition, wound healing and western blot were performed to determine cell migration and related protein levels (Bcl-2, Bax, claudin-1, NF-κB). Emodin blunted ATP/UTP-induced increase of [Ca2+]i and cell proliferation concentration-dependently Meanwhile, it decreased ATP-induced cells accumulation in the S phase. Furthermore, emodin altered protein abundance of Bcl-2, Bax and claudin-1 and attenuated EMT caused by ATP. Such ATP-induced cellular reactions were also inhibited by a nonselective P2Y receptors antagonist, suramin, in a similar way to emodin. Besides, emodin could inhibit activation of NF-κB, thus suppressed ATP-induced proliferation, migration and EMT. Our results demonstrated that emodin inhibits ATP-induced proliferation, migration, EMT by suppressing P2Y receptors-mediated [Ca2+]i increase and NF-κB signaling in A549 cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Simultaneous Study of Mechanical Stretch-Induced Cell Proliferation and Apoptosis on C2C12 Myoblasts.

    PubMed

    Feng, Yu; Tian, Xiang-Yang; Sun, Peng; Cheng, Ze-Peng; Shi, Reng-Fei

    2018-06-27

    Mechanical stretch may cause myoblasts to either proliferate or undergo apoptosis. Identifying the molecular events that switch the fate of a stretched cell from proliferation to apoptosis is practically important in the field of regenerative medicine. A recent study on vascular smooth muscle cells illustrated that identification of these events may be achieved by addressing the stretch-induced opposite cellular outcomes simultaneously within a single investigation. To define conditions or a model in which both proliferation and apoptosis can be studied at the same time, we exposed in vitro cultured C2C12 myoblasts to a cyclic mechanical stretch regimen of 15% elongation at a stretching frequency of 1 Hz for 0, 2, 4, 6, or 8 h every day, consecutively, for 3 days. Both proliferation and apoptosis were observed. Moreover, as the duration of the stretch was prolonged, cell proliferation increased until it peaked at the optimal stretching duration. Afterwards, apoptosis gradually prevailed. Therefore, we established a model in which stretch-induced cell proliferation and apoptosis can be studied simultaneously. © 2018 S. Karger AG, Basel.

  8. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology.

    PubMed

    Gutsch, Romina; Kandemir, Judith D; Pietsch, Daniel; Cappello, Christian; Meyer, Johann; Simanowski, Kathrin; Huber, René; Brand, Korbinian

    2011-07-01

    Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβ(WT) macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβ(KO). The typical macrophage morphology was only observed in C/EBPβ(WT), whereas C/EBPβ(KO) stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβ(KO) macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβ(WT) cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E

  9. Trans, trans-2,4-decadienal induced cell proliferation via p27 pathway in human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.-C.; Lin Pinpin

    2008-04-01

    Lung cancer is the leading cause of cancer deaths worldwide. Epidemiological studies have shown that exposure to cooking oil fumes (COF) is a risk factor for lung cancer. Trans, trans-2,4-decadienal (tt-DDE), a dienaldehyde, is abundant in heated oils and COF. Previously, we found that long-term exposure (45 days) to a sub-lethal dose (1 {mu}M) of tt-DDE significantly increased growth of human bronchial epithelial cells (BEAS-2B). Aims of this study are to understand the mechanism of tt-DDE-induced cell proliferation and possible protective effects of antioxidant, vitamin C and N-acetylcysteine (NAC) in BEAS-2B cells. Utilizing the real-time RT-PCR and Western immunoblotting, wemore » found that p27 mRNA and protein levels were significantly increased by 1 {mu}M tt-DDE treatment. Co-treatment with vitamin C or NAC partially prevented tt-DDE-induced cell proliferation. In addition, the downstream targets of p27, including CDK4, cyclin D{sub 1} and phosphorylated-Rb proteins, increased in 1 {mu}M tt-DDE-treated cells and these changes were prevented by NAC co-treatment. Therefore, these results suggest that tt-DDE increased cell proliferation via inhibition of p27 expression, increase in CDK4/cyclin D{sub 1} protein accumulation and enhancement of Rb phosphorylation. Increased cell proliferation is considered as the early stages of lung carcinogenesis. Administration of antioxidants may prevent COF-associated lung carcinogenesis.« less

  10. Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells.

    PubMed

    Paruchuri, Sailaja; Jiang, Yongfeng; Feng, Chunli; Francis, Sanjeev A; Plutzky, Jorge; Boyce, Joshua A

    2008-06-13

    Cysteinyl leukotrienes (cys-LTs) are potent inflammatory lipid mediators, of which leukotriene (LT) E(4) is the most stable and abundant in vivo. Although only a weak agonist of established G protein-coupled receptors (GPCRs) for cys-LTs, LTE(4) potentiates airway hyper-responsiveness (AHR) by a cyclooxygenase (COX)-dependent mechanism and induces bronchial eosinophilia. We now report that LTE(4) activates human mast cells (MCs) by a pathway involving cooperation between an MK571-sensitive GPCR and peroxisome proliferator-activated receptor (PPAR)gamma, a nuclear receptor for dietary lipids. Although LTD(4) is more potent than LTE(4) for inducing calcium flux by the human MC sarcoma line LAD2, LTE(4) is more potent for inducing proliferation and chemokine generation, and is at least as potent for upregulating COX-2 expression and causing prostaglandin D(2) (PGD(2)) generation. LTE(4) caused phosphorylation of extracellular signal-regulated kinase (ERK), p90RSK, and cyclic AMP-regulated-binding protein (CREB). ERK activation in response to LTE(4), but not to LTD(4), was resistant to inhibitors of phosphoinositol 3-kinase. LTE(4)-mediated COX-2 induction, PGD(2) generation, and ERK phosphorylation were all sensitive to interference by the PPARgamma antagonist GW9662 and to targeted knockdown of PPARgamma. Although LTE(4)-mediated PGD(2) production was also sensitive to MK571, an antagonist for the type 1 receptor for cys-LTs (CysLT(1)R), it was resistant to knockdown of this receptor. This LTE(4)-selective receptor-mediated pathway may explain the unique physiologic responses of human airways to LTE(4) in vivo.

  11. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2

  12. Halomethane-induced cytotoxicity and cell proliferation in human lung MRC-5 fibroblasts and NL20-TA epithelial cells.

    PubMed

    Nájera-Martínez, Minerva; García-Latorre, Ethel A; Reyes-Maldonado, Elba; Domínguez-López, M Lilia; Vega-López, Armando

    2012-09-01

    Halomethanes (HMs) can be formed during the chlorination process to obtain drinking water. In liver cells, HMs had been shown to be mutagenic and carcinogenic; however, their bioactivation by CYP 2E1 and GSTT1 is required. Although inhalation is the most common pathway of exposure, reports on the toxic effects induced by HMs in human lung are contradictory. The aim of this study was therefore to evaluate in vitro cytotoxicity and cell proliferation induced by CH(2)Cl(2), CHCl(3) and BrCHCl(2) in human lung NL20-TA epithelial cells and MRC-5 fibroblasts, and their relationship with CYP 2E1 and GSTT1 activity. High concentrations of these HMs induced cytotoxicity, particularly in cells treated with BrCHCl(2). Low concentrations of BrCHCl(2) stimulated hyperproliferation of fibroblasts, the most probable consequence of which is regenerative proliferation related to collagen induction. Fibroblasts exposed to BrCHCl(2) exhibited low levels of CYP 2E1 activity suggesting that released bromine is able to alter this activity by affecting the active site or auto regulating the activity itself. GSTT1 was up to ten times more active than CYP 2E1 in both cell lines, indicating that potential lung damage is due to formation of pro-carcinogens such as formaldehyde.

  13. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells

    PubMed Central

    Tian, Hang; Hou, Lei; Xiong, Yu-Mei; Huang, Jun-Xiang; Zhang, Wen-Hua; Pan, Yong-Ying; Song, Xing-Rong

    2016-01-01

    Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples. Then, we found that introduction of miR-132 significantly suppressed the proliferation, colony formation, migration and invasion of ovarian cancer cells. Mechanism investigation revealed that miR-132 inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3’UTR. Moreover, the expression level of E2F5 was significantly increased in ovarian cancer tissues than in the adjacent normal tissues, and its expression was inversely correlated with miR-132 expression in clinical ovarian cancer tissues. Additionally, silencing E2F5 was able to inhibit the proliferation, colony formation, migration and invasion of ovarian cancer cells, parallel to the effect of miR-132 overexpression on the ovarian cancer cells. Meanwhile, overexpression of E2F5 reversed the inhibition effect mediated by miR-132 overexpression. These results indicate that miR-132 suppresses the cell proliferation, invasion, migration in ovarian cancer cells by targeting E2F5. PMID:27186275

  14. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells.

    PubMed

    Tian, Hang; Hou, Lei; Xiong, Yu-Mei; Huang, Jun-Xiang; Zhang, Wen-Hua; Pan, Yong-Ying; Song, Xing-Rong

    2016-01-01

    Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples. Then, we found that introduction of miR-132 significantly suppressed the proliferation, colony formation, migration and invasion of ovarian cancer cells. Mechanism investigation revealed that miR-132 inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3'UTR. Moreover, the expression level of E2F5 was significantly increased in ovarian cancer tissues than in the adjacent normal tissues, and its expression was inversely correlated with miR-132 expression in clinical ovarian cancer tissues. Additionally, silencing E2F5 was able to inhibit the proliferation, colony formation, migration and invasion of ovarian cancer cells, parallel to the effect of miR-132 overexpression on the ovarian cancer cells. Meanwhile, overexpression of E2F5 reversed the inhibition effect mediated by miR-132 overexpression. These results indicate that miR-132 suppresses the cell proliferation, invasion, migration in ovarian cancer cells by targeting E2F5.

  15. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis.

    PubMed

    Piqueras, Laura; Reynolds, Andrew R; Hodivala-Dilke, Kairbaan M; Alfranca, Arántzazu; Redondo, Juan M; Hatae, Toshihisa; Tanabe, Tadashi; Warner, Timothy D; Bishop-Bailey, David

    2007-01-01

    The role of the nuclear receptor peroxisome-proliferator activated receptor (PPAR)-beta/delta in endothelial cells remains unclear. Interestingly, the selective PPARbeta/delta ligand GW501516 is in phase II clinical trials for dyslipidemia. Here, using GW501516, we have assessed the involvement of PPARbeta/delta in endothelial cell proliferation and angiogenesis. Western blot analysis indicated PPARbeta/delta was expressed in primary human umbilical and aortic endothelial cells, and in the endothelial cell line, EAHy926. Treatment with GW501516 increased human endothelial cell proliferation and morphogenesis in cultures in vitro, endothelial cell outgrowth from murine aortic vessels in vitro, and angiogenesis in a murine matrigel plug assay in vivo. GW501516 induced vascular endothelial cell growth factor mRNA and peptide release, as well as adipose differentiation-related protein (ADRP), a PPARbeta/delta target gene. GW501516-induced proliferation, morphogenesis, vascular endothelial growth factor (VEGF), and ADRP were absent in endothelial cells transfected with dominant-negative PPARbeta/delta. Furthermore, treatment of cells with cyclo-VEGFI, a VEGF receptor1/2 antagonist, abolished GW501516-induced endothelial cell proliferation and tube formation. PPARbeta/delta is a novel regulator of endothelial cell proliferation and angiogenesis through VEGF. The use of GW501516 to treat dyslipidemia may need to be carefully monitored in patients susceptible to angiogenic disorders.

  16. Peroxisome proliferators induce apoptosis in hepatoma cells.

    PubMed

    Canuto, R A; Muzio, G; Bonelli, G; Maggiora, M; Autelli, R; Barbiero, G; Costelli, P; Brossa, O; Baccino, F M

    1998-01-01

    In the AH-130 hepatoma, a poorly differentiated tumor, maintained by weekly transplantations in rats, a low percentage of cells spontaneously underwent apoptosis, mainly during the transition from logarithmic- to stationary-growth phase. It was possible to induce massive apoptosis of cells by treating them with clofibrate, a peroxisome proliferator and hypolipidemic drug. Similar results were obtained with HepG2 cells. With 1 mM clofibrate, apoptosis began to manifest itself after 1 h of treatment in vitro, and was assessed by morphological analysis, by DNA fragmentation carried out with agarose gel electrophoresis, and with flow cytometric determination of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling. The mechanisms whereby clofibrate induces apoptosis are still unclear. Since the peroxisome proliferator-activated receptor was expressed at a very low level and was not stimulated by clofibrate in the AH-130 hepatoma cells, its involvement seems unlikely. Moreover, lipid peroxidation was not increased after clofibrate treatment. Phospholipids and cholesterol were significantly decreased. The decreased cholesterol content might suggest an inhibition of the mevalonate pathway and, therefore, of isoprenylation of proteins involved in cell proliferation.

  17. Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts.

    PubMed

    Soltow, Quinlyn A; Lira, Vitor A; Betters, Jenna L; Long, Jodi H D; Sellman, Jeff E; Zeanah, Elizabeth H; Criswell, David S

    2010-09-01

    Mechanical stretch of skeletal muscle activates nitric oxide (NO) production and is an important stimulator of satellite cell proliferation. Further, cyclooxygenase (COX) activity has been shown to promote satellite cell proliferation in response to stretch. Since COX-2 expression in skeletal muscle can be regulated by NO we sought to determine if NO is required for stretch-induced myoblast proliferation and whether supplemental NO can counter the effects of COX-2 and NF-kappaB inhibitors. C2C12 myoblasts were cultured for 24 h, then switched to medium containing either the NOS inhibitor, L-NAME (200 microM), the COX-2 specific inhibitor NS-398 (100 microM), the NF-kappaB inhibiting antioxidant, PDTC (5 mM), the nitric oxide donor, DETA-NONOate (10-100 microM) or no supplement (control) for 24 h. Subgroups of each treatment were exposed to 1 h of 15% cyclic stretch (1 Hz), and were then allowed to proliferate for 24 h before fixing. Proliferation was measured by BrdU incorporation during the last hour before fixing, and DAPI stain. Stretch induced a twofold increase in nuclear number compared to control, and this effect was completely inhibited by L-NAME, NS-398 or PDTC (P < 0.05). Although DETA-NONOate (10 microM) did not affect basal proliferation, the NO-donor augmented the stretch-induced increase in proliferation and rescued stretch-induced proliferation in NS-398-treated cells, but not in PDTC-treated cells. In conclusion, NO, COX-2, and NF-kappaB are necessary for stretch-induced proliferation of myoblasts. Although COX-2 and NF-kappaB are both involved in basal proliferation, NO does not affect basal growth. Thus, NO requires the synergistic effect of stretch in order to induce muscle cell proliferation.

  18. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wen-Zhu; Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853; Miao, Yu-Liang

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation ofmore » hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.« less

  19. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoproteinmore » (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of

  20. Inhibition of anti-CD3 monoclonal antibody-induced T-cell proliferation and interleukin-2 secretion by physiologic combinations of dexamethasone and prostaglandin E2.

    PubMed

    Elliott, L; Brooks, W; Roszman, T

    1993-12-01

    1. The purpose of these studies was to characterize further previous observations from our laboratory indicating that physiologic concentrations of dexamethasone (DEX) and prostaglandin E2 (PGE2) added together result in synergistic inhibition of the proliferative response of T cells stimulated via the T-cell receptor CD3 signaling complex (TCR/CD3). 2. Various physiologic concentrations of DEX and PGE2 were added to T cells stimulated with immobilized anti-CD3 monoclonal antibody (mAb) and cultured at optimal and suboptimal cell densities. The results demonstrate that the proliferative response of anti-CD3 mAb-stimulated T cells cultured at a suboptimal cell density is more suppressed than that of T cells cultured at optimal concentrations. 3. The proliferative response of CD4+ T cells to immobilized anti-CD3 mAb was also determined in the presence of PGE2 and DEX. The data indicate that the CD4+ subset of T cells is more sensitive to the synergistic antiproliferative effects of DEX and PGE2 compared to whole T-cell populations. 4. Various concentrations of DEX and/or PGE2 were added to T cells stimulated with anti-CD3 mAb and the secretion of interleukin-2 (IL-2) was determined. The results demonstrate that concentrations of DEX and PGE2 which individually do not significantly suppress IL-2 synthesis act together to inhibit the synthesis of IL-2 synergistically. 5. The addition of an exogenous source of recombinant IL-2 (rIL-2) to T cells stimulated in the presence of DEX and PGE2 completely reversed the synergistic antiproliferative effect of these two compounds. This reversal was even more pronounced with T cells cultured at a suboptimal cell density. Additionally, PGE2 and DEX did not affect expression of the IL-2 receptor (IL-2R), as measured by upregulation of the alpha chain, on anti-CD3 mAb stimulated T cells. 6. Collectively these data indicate that physiologic concentrations of PGE2 and DEX, which alone have no effect on anti-CD3 mAb-induced T-cell

  1. Single cell analysis of low-power laser irradiation-induced activation of signaling pathway in cell proliferation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan

    2007-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.

  2. Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qin-Qin; Qinghai Provincial People's Hospital, Xining; Xiao, Feng-Jun

    Hypoxia provokes metabolism misbalance, mitochondrial dysfunction and oxidative stress in both human and animal cells. However, the mechanisms which hypoxia causes mitochondrial dysfunction and energy metabolism misbalance still remain unclear. In this study, we presented evidence that mitochondrial phosphatase Ptpmt1 is a hypoxia response molecule that regulates cell proliferation, survival and glucose metabolism in human erythroleukemia TF-1 cells. Exposure to hypoxia or DFO treatment results in upregulation of HIF1-α, HIF-2α and Ptpmt1. Only inhibition of HIF-2α by shRNA transduction reduces Ptpmt1 expression in TF-1 cells under hypoxia. Ptpmt1 inhibitor suppresses the growth and induces apoptosis of TF-1 cells. Furthermore, we demonstrated that Ptpmt1more » inhibition reduces the Glut1 and Glut3 expression and decreases the glucose consumption in TF-1 cells. In additional, Ptpmt1 knockdown also results in the mitochondrial dysfunction determined by JC1 staining. These results delineate a key role for HIF-2α-induced Ptpmt1 upregulation in proliferation, survival and glucose metabolism of erythroleukemia cells. It is indicated that Ptpmt1 plays important roles in hypoxia-induced cell metabolism and mitochondrial dysfunction. - Highlights: • Hypoxia induces upregulation of HIF-1α, HIF-2α and Ptpmt1; HIF-2a induces Ptpmt1 upregulation in TF-1 cells. • PTPMT-1 inhibition reduces growth and induces apoptosis of TF-1 cells. • PTPMT1 inhibition downregulates Glut-1, Glut-3 expression and reduces glucose consumption.« less

  3. The NAMPT/E2F2/SIRT1 axis promotes proliferation and inhibits p53-dependent apoptosis in human melanoma cells.

    PubMed

    Zhao, Hailong; Tang, Weiwei; Chen, Xiaowen; Wang, Siyu; Wang, Xianyan; Xu, Haiyan; Li, Lijuan

    2017-11-04

    Melanoma is the most common primary malignant neoplasm in adults, causing more deaths than any other skin cancer, necessitating the development of new target-based approaches. Current evidence suggests SIRT1, the mammalian nicotinamide adenine dinucleotide (NAD + )-dependent protein deacetylase, and nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting NAD + biosynthetic enzyme, together comprise a novel systemic regulatory network to play a pivotal role in cell proliferation and apoptosis. Nevertheless, how the regulation of this cofactor interfaces with signal transduction network remains poorly understood in melanoma. Here, we report NAMPT is highly expressed in melanomaassociated with poor overall survival in patients. Pharmacological and genetic inhibition of NAMPT decreased NAD + levels and melanoma cell proliferation capacity, and NAMPT knockdown induced apoptosis through the activity of the tumor suppressor p53. Next, we demonstrate NAMPT regulates the transcription factor E2F family member 2 (E2F2) in the apoptosis process. Downstream, E2F2 control the mRNA and protein levels of SIRT1. Finally, we find NAMPT mediates the apoptosis resistance of melanoma cells through NAMPT-E2F2-SIRT1 axis, more than NAD + -driven transcriptional program. Accordingly, our results demonstrated that NAMPT is a prognostic marker in melanoma, and the identificationofNAMPT-E2F2-SIRT1 pathway establishes another link between NAMPT and apoptosis events in melanoma, with therapeutic implications for this deadly cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busk, Peter K.; Hinrichsen, Rebecca; Bartkova, Jirina

    2005-03-10

    The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic undermore » such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27{sup Kip1}. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2.« less

  5. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors

    PubMed Central

    Anton, Olga M.; Vielkind, Susina; Peterson, Mary E.; Tagaya, Yutaka; Long, Eric O.

    2015-01-01

    IL-15 bound to the IL-15 receptor α chain (IL-15Rα) is presented in trans to cells bearing the IL-2 receptor β and γc chains. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor–ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR–HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to down-regulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A+ cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Co-engagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15 dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. PMID:26453750

  6. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors.

    PubMed

    Anton, Olga M; Vielkind, Susina; Peterson, Mary E; Tagaya, Yutaka; Long, Eric O

    2015-11-15

    IL-15 bound to the IL-15Rα-chain (IL-15Rα) is presented in trans to cells bearing the IL-2Rβ-chain and common γ-chain. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor-ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR-HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to downregulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A(+) cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Coengagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across, inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15-dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression

    PubMed Central

    Liberati, Sonia; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Santoni, Matteo; Conti, Alessandro; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2014-01-01

    Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy. PMID:24709905

  8. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression.

    PubMed

    Liberati, Sonia; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Santoni, Matteo; Conti, Alessandro; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2014-02-19

    Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.

  9. Nandrolone and stanozolol induce Leydig cell tumor proliferation through an estrogen-dependent mechanism involving IGF-I system.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Zolea, Fabiana; De Luca, Arianna; Lanzino, Marilena; Catalano, Stefania; Andò, Sebastiano; Pezzi, Vincenzo

    2012-05-01

    Several substances such as anabolic androgenic steroids (AAS), peptide hormones like insulin-like growth factor-I (IGF-I), aromatase inhibitors and estrogen antagonists are offered via the Internet, and are assumed without considering the potential deleterious effects that can be caused by their administration. In this study we aimed to determine if nandrolone and stanozolol, two commonly used AAS, could have an effect on Leydig cell tumor proliferation and if their effects could be potentiated by the concomitant use of IGF-I. Using a rat Leydig tumor cell line, R2C cells, as experimental model we found that nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and estradiol (E2) production. When used in combination with IGF-I they were more effective than single molecules in inducing aromatase expression. AAS exhibited estrogenic activity and induced rapid estrogen receptor (ER)-dependent pathways involving IGF1R, AKT, and ERK1/2 phosphorylation. Inhibitors for these kinases decreased AAS-dependent aromatase expression. Up-regulated aromatase levels and related E2 production increased cell proliferation as a consequence of increased cyclin E expression. The observation that ER antagonist ICI182,780 was also able to significantly reduce ASS- and AAS + IGF-induced cell proliferation, confirmed a role for estrogens in AAS-dependent proliferative effects. Taken together these data clearly indicate that the use of high doses of AAS, as it occurs in doping practice, enhances Leydig cell proliferation, increasing the risk of tumor development. This risk is higher when AAS are used in association with IGF-I. To our knowledge this is the first report directly associating AAS and testicular cancer. Copyright © 2011 Wiley Periodicals, Inc.

  10. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qing-Mei, E-mail: 34713316@qq.com; Jiang, Ping, E-mail: jiangping@163.com; Yang, Min, E-mail: YangMin@163.com

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferationmore » and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and

  11. Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway.

    PubMed

    Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin

    2015-03-15

    Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Enhancer of Zeste Homolog 2 Induces Pulmonary Artery Smooth Muscle Cell Proliferation

    PubMed Central

    Aljubran, Salman A.; Rajanbabu, Venugopal; Bao, Huynh; Mohapatra, Shyam M.; Lockey, Richard; Kolliputi, Narasaiah

    2012-01-01

    Introduction Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs. Methods In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay. Results EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control. Conclusion These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH. PMID:22662197

  13. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2.

    PubMed

    Lim, Tae-Gyu; Lee, Sung-Young; Huang, Zunnan; Lim, Do Young; Chen, Hanyong; Jung, Sung Keun; Bode, Ann M; Lee, Ki Won; Dong, Zigang

    2014-04-01

    Curcumin, the yellow pigment of turmeric found in Southeast Indian food, is one of the most popular phytochemicals for cancer prevention. Numerous reports have demonstrated modulation of multiple cellular signaling pathways by curcumin and its molecular targets in various cancer cell lines. To identify a new molecular target of curcumin, we used shape screening and reverse docking to screen the Protein Data Bank against curcumin. Cyclin-dependent kinase 2 (CDK2), a major cell-cycle protein, was identified as a potential molecular target of curcumin. Indeed, in vitro and ex vivo kinase assay data revealed a dramatic suppressive effect of curcumin on CDK2 kinase activity. Furthermore, curcumin induced G1 cell-cycle arrest, which is regulated by CDK2 in HCT116 cells. Although the expression levels of CDK2 and its regulatory subunit, cyclin E, were not changed, the phosphorylation of retinoblastoma (Rb), a well-known CDK2 substrate, was reduced by curcumin. Because curcumin induced cell-cycle arrest, we investigated the antiproliferative effect of curcumin on HCT116 colon cancer cells. In this experiment, curcumin suppressed HCT116 cell proliferation effectively. To determine whether CDK2 is a direct target of curcumin, CDK2 expression was knocked down in HCT116 cells. As expected, HCT116 sh-CDK2 cells exhibited G1 arrest and reduced proliferation. Because of the low levels of CDK2 in HCT116 sh-CDK2 cells, the effects of curcumin on G1 arrest and cell proliferation were not substantially relative to HCT116 sh-control cells. From these results, we identified CDK2 as a direct target of curcumin in colon cancer cells.

  14. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2

    PubMed Central

    Lim, Tae-Gyu; Lee, Sung-Young; Huang, Zunnan; Lim, Do Young; Chen, Hanyong; Jung, Sung Keun; Bode, Ann M.; Lee, Ki Won; Dong, Zigang

    2014-01-01

    Curcumin, the yellow pigment of turmeric found in Southeast Indian food, is one of the most popular phytochemicals for cancer prevention. Numerous reports have demonstrated modulation of multiple cellular signaling pathways by curcumin and its molecular targets in various cancer cell lines. To identify a new molecular target of curcumin, we used shape screening and reverse docking to screen the protein data bank against curcumin. Cyclin dependent kinase 2 (CDK2), a major cell cycle protein, was identified as a potential molecular target of curcumin. Indeed, in vitro and ex vivo kinase assay data revealed a dramatic suppressive effect of curcumin on CDK2 kinase activity. Furthermore, curcumin induced G1 cell cycle arrest, which is regulated by CDK2 in HCT116 cells. Although the expression levels of CDK2 and its regulatory subunit, cyclin E, were not changed, the phosphorylation of Rb, a well-known CDK2 substrate, was reduced by curcumin. Because curcumin induced cell cycle arrest, we investigated the anti-proliferative effect of curcumin on HCT116 colon cancer cells. In this experiment, curcumin suppressed HCT116 cell proliferation effectively. To determine if CDK2 is a direct target of curcumin, CDK2 expression was knocked down in HCT116 cells. As expected, HCT116 sh-CDK2 cells exhibited G1 arrest and reduced proliferation. Because of the low levels of CDK2 in HCT116 sh-CDK2 cells, the effects of curcumin on G1 arrest and cell proliferation were not substantial relative to HCT116 sh-control cells. From these results, we identified CDK2 as a direct target of curcumin in colon cancer cells. PMID:24550143

  15. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp; Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522; Ota, Hiroyo

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned mediummore » significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell.

  16. TWEAK induces liver progenitor cell proliferation

    PubMed Central

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  17. Multipotent Adult Progenitor Cells Suppress T Cell Activation in In Vivo Models of Homeostatic Proliferation in a Prostaglandin E2-Dependent Manner

    PubMed Central

    Carty, Fiona; Corbett, Jennifer M.; Cunha, João Paulo M. C. M.; Reading, James L.; Tree, Timothy I. M.; Ting, Anthony E.; Stubblefield, Samantha R.; English, Karen

    2018-01-01

    Lymphodepletion strategies are used in the setting of transplantation (including bone marrow, hematopoietic cell, and solid organ) to create space or to prevent allograft rejection and graft versus host disease. Following lymphodepletion, there is an excess of IL-7 available, and T cells that escape depletion respond to this cytokine undergoing accelerated proliferation. Moreover, this environment promotes the skew of T cells to a Th1 pro-inflammatory phenotype. Existing immunosuppressive regimens fail to control this homeostatic proliferative (HP) response, and thus the development of strategies to successfully control HP while sparing T cell reconstitution (providing a functioning immune system) represents a significant unmet need in patients requiring lymphodepletion. Multipotent adult progenitor cells (MAPC®) have the capacity to control T cell proliferation and Th1 cytokine production. Herein, this study shows that MAPC cells suppressed anti-thymocyte globulin-induced cytokine production but spared T cell reconstitution in a pre-clinical model of lymphodepletion. Importantly, MAPC cells administered intraperitoneally were efficacious in suppressing interferon-γ production and in promoting the expansion of regulatory T cells in the lymph nodes. MAPC cells administered intraperitoneally accumulated in the omentum but were not present in the spleen suggesting a role for soluble factors. MAPC cells suppressed lymphopenia-induced cytokine production in a prostaglandin E2-dependent manner. This study suggests that MAPC cell therapy may be useful as a novel strategy to target lymphopenia-induced pathogenic T cell responses in lymphodepleted patients. PMID:29740426

  18. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    PubMed

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    cells. PCR array experiments showed that the expression of cyclin B2 and E2F1, two key cell cycle regulators, was markedly downregulated by LPS in the circumvallate and foliate epithelia. Our results show that LPS-induced inflammation inhibits taste progenitor cell proliferation and interferes with taste cell renewal. LPS accelerates cell turnover and modestly shortens the average life span of taste cells. These effects of inflammation may contribute to the development of taste disorders associated with infections.

  19. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling.

    PubMed

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.

  20. Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18.

    PubMed

    Pascoe, Jordan; Hollern, Douglas; Stamateris, Rachel; Abbasi, Munira; Romano, Lia C; Zou, Baobo; O'Donnell, Christopher P; Garcia-Ocana, Adolfo; Alonso, Laura C

    2012-03-01

    Pancreatic β-cell proliferation is infrequent in adult humans and is not increased in type 2 diabetes despite obesity and insulin resistance, suggesting the existence of inhibitory factors. Free fatty acids (FFAs) may influence proliferation. In order to test whether FFAs restrict β-cell proliferation in vivo, mice were intravenously infused with saline, Liposyn II, glucose, or both, continuously for 4 days. Lipid infusion did not alter basal β-cell proliferation, but blocked glucose-stimulated proliferation, without inducing excess β-cell death. In vitro exposure to FFAs inhibited proliferation in both primary mouse β-cells and in rat insulinoma (INS-1) cells, indicating a direct effect on β-cells. Two of the fatty acids present in Liposyn II, linoleic acid and palmitic acid, both reduced proliferation. FFAs did not interfere with cyclin D2 induction or nuclear localization by glucose, but increased expression of inhibitor of cyclin dependent kinase 4 (INK4) family cell cycle inhibitors p16 and p18. Knockdown of either p16 or p18 rescued the antiproliferative effect of FFAs. These data provide evidence for a novel antiproliferative form of β-cell glucolipotoxicity: FFAs restrain glucose-stimulated β-cell proliferation in vivo and in vitro through cell cycle inhibitors p16 and p18. If FFAs reduce proliferation induced by obesity and insulin resistance, targeting this pathway may lead to new treatment approaches to prevent diabetes.

  1. [Effect of ERK/AP-1 signaling pathway on proliferation of hepatoma cells induced by PAR-2 agonists].

    PubMed

    Zheng, Yan-min; Xie, Li-qun; Li, Xuan; Zhao, Jun-yan; Chen, Xiao-yi; Chen, Li; Zhou, Jing; Li, Fei

    2009-12-01

    To investigate the expression of protease activated receptor-2 (PAR-2) in human HepG2 hepatoma cells and elucidate the effects of trypsin and PAR-2 agonist peptide SLIGKV-NH(2) upon the proliferation of hepatoma cells and its intracellular signaling mechanism. PAR-2 protein and mRNA expression were detected by immunofluorescence and RT-PCR. The cells were treated with SLIGKV-NH(2), trypsin, reverse PAR-2 agonist peptide VKGILS-NH(2) or PD98059. The changes of cell cycle distribution were evaluated by flow cytometry. The proliferative potential of HepG2 cells was estimated by MTT. The changes of PAR-2, c-fos and PCNA mRNA expression were detected by RT-PCR. The changes of c-fos and PCNA protein expression were detected by Western blotting. PAR-2 protein and mRNA were expressed in HepG2 cells. PAR-2 mRNA expression (PAR-2/beta-actin) were 0.70 +/- 0.04 and 0.99 +/- 0.05 respectively in cells treated with trypsin and SLIGKV-NH(2). They were both significantly higher than that in the control group (0.35 +/- 0.05, F = 135.534, P < 0.01). Percent G(0)/G(1) phase of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly lower than those in the control group [(56.11 +/- 0.85)%, (57.85 +/- 0.46)% vs (79.12 +/- 0.67)%, both P < 0.01] Percent S phase, G(2)/M phase and proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly elevated (P < 0.01). The proliferation-enhancing effects and the up-regulation of mRNA and protein of c-fos and PCNA induced by trypsin or SLIGKV-NH(2) were significantly blocked by pretreatment with PD98059 (P < 0.01). There was no statistical significance in proliferation of HepG2 cells between the reverse PAR-2 agonist peptide VKGILS-NH(2) and control group (P > 0.05). PAR-2 is expressed in HepG2 hepatoma cells. PAR-2 activation induced by trypsin or SLIGKV-NH(2) promotes the proliferation of HepG2 cells partially via the ERK/AP-1 pathway.

  2. Extracellular NAMPT/Visfatin induces proliferation through ERK1/2 and AKT and inhibits apoptosis in breast cancer cells.

    PubMed

    Gholinejad, Zafar; Kheiripour, Nejat; Nourbakhsh, Mitra; Ilbeigi, Davod; Behroozfar, Kiarash; Hesari, Zahra; Golestani, Abolfazl; Shabani, Mohammad; Einollahi, Nahid

    2017-06-01

    Visfatin is a novel adipokine and proinflammatory cytokine which is implicated in breast cancer progression. The exact proliferative and anti-apoptotic mechanisms of visfatin are still under debate. In this study, the effect of extracellular visfatin on proliferation and apoptosis of breast cancer cells were investigated considering key regulatory molecules in these procedures. BrdU (Bromodeoxyuridine) experiment was used to assess cell proliferation in response to visfatin treatment. Cell viability and apoptosis were assessed using MTT assay and flowcytometry, respectively. Phosphorylation levels of AKT and ERK1/2 as well as survivin levels and Poly ADP ribose polymerase (PARP) cleavage were investigated by western blot analysis. Visfatin induced proliferation of MCF-7 and MDA-MB-231 cells, an effect that was repressed by using AKT and ERK1/2 inhibitors, indicating involvement of these two signaling pathways in the proliferative effect of visfatin. Similarly, phosphorylation of AKT and ERK1/2 were elevated by visfatin treatment. On the other hand, visfatin improved cell viability and prevented TNF-α-induced apoptosis as well as PARP cleavage. Visfatin also exerted a protective effect on survivin. The results of this study suggest that visfatin induces breast cancer cell proliferation through AKT/PI3K and ERK/MAPK activation and protects against apoptosis in these cells. Thus increased visfatin levels may augment breast cancer development and attenuate treatment efficiency in breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric

    2007-02-15

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression.more » Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines.« less

  4. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

    PubMed Central

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041

  5. Estrogen and progesterone promote breast cancer cell proliferation by inducing cyclin G1 expression.

    PubMed

    Tian, J-M; Ran, B; Zhang, C-L; Yan, D-M; Li, X-H

    2018-01-23

    Breast cancer is the most common cause of cancer among women in most countries (WHO). Ovarian hormone disorder is thought to be associated with breast tumorigenesis. The present study investigated the effects of estrogen and progesterone administration on cell proliferation and underlying mechanisms in breast cancer MCF-7 cells. It was found that a single administration of estradiol (E2) or progesterone increased MCF-7 cell viability in a dose-dependent manner and promoted cell cycle progression by increasing the percentage of cells in the G2/M phase. A combination of E2 and progesterone led to a stronger effect than single treatment. Moreover, cyclin G1 was up-regulated by E2 and/or progesterone in MCF-7 cells. After knockdown of cyclin G1 in MCF-7 cells using a specific shRNA, estradiol- and progesterone-mediated cell viability and clonogenic ability were significantly limited. Additionally, estradiol- and progesterone-promoted cell accumulation in the G2/M phase was reversed after knockdown of cyclin G1. These data indicated that estrogen and progesterone promoted breast cancer cell proliferation by inducing the expression of cyclin G1. Our data indicated that novel therapeutics against cyclin G1 are promising for the treatment of estrogen- and progesterone-mediated breast cancer progression.

  6. Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells.

    PubMed

    Yong-Xian, Gui; Xiao-Huan, Li; Fan, Zhang; Guo-Fang, Tian

    2016-10-01

    The aim of the study is to investigate the underlying molecular mechanisms by which gemcitabine (gem) inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells in vitro. After PANC-1 cells had been treated by indicated concentration (0, 5, and 25 mg/L) of gem for 48 h, cell proliferation was evaluated by 3'-(4, 5 dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay; cell morphology was observed by transmission electron microscopy; Expression of c-IAP2 and Bcl-2 proteins was analyzed by Western blot; the activity of caspase-3 and -9 was detected by spectrophotometry. Gem significantly inhibited cell proliferation and could induce apoptosis of human pancreatic cancer PANC-1 cells, with a dose-dependent manner. Western blot analysis showed that gem significantly reduced c-IAP2 and Bcl-2 proteins expression level (P < 0.05). Spectrophotometric assay showed that gem significantly increased caspase-3 and -9 activity in PANC-1 cells. Gem could induce apoptosis of human pancreatic cancer PANC-1 cells, probably through downregulating c-IAP2 and Bcl-2 expression levels, and at the same time activating caspase-3 and -9.

  7. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells.

    PubMed

    Pan, J-L; Yuan, D-Z; Zhao, Y-B; Nie, L; Lei, Y; Liu, M; Long, Y; Zhang, J-H; Blok, L J; Burger, C W; Yue, L-M

    2017-03-01

    This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G 1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. Effect of PGE2 on thymocyte proliferation induced by Con A or IL-4 + PMA.

    PubMed

    Daculsi, R; Vaillier, D; Bezian, J H; Gualde, N

    1993-02-01

    Prostaglandin E2 (PGE2) is known to inhibit peripheral T-lymphocyte and thymocyte proliferation activated by antigens, mitogens or anti-CD3 antibodies. In this study, we have investigated, the effect of PGE2 on thymocyte proliferation induced by the combination of IL-4 plus PMA. PGE2 inhibits the proliferation of thymocytes activated by ConA, whatever the culture period; in contrast PGE2 shifts the kinetics of thymocyte proliferation after stimulation by IL-4 plus PMA, but does not sustain the proliferation beyond day 3. This effect depends upon cell density, IL-4 concentration and on the time that PGE2 is added to the culture. By use of the cAMP inducer, forskolin, or a cAMP analog, db-cAMP, we observed the same results, PGE2 increases the proliferation of CD8+ corticoresistant thymocytes (CRT) activated by IL-4 plus PMA, but inhibits that of CD4+ CRT. These results suggest that PGE2 can regulate thymocyte proliferation differently according to the activation pathway and the thymic subpopulations.

  9. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Cell proliferation in dimethylhydrazine-induced colonic adenocarcinomata following cytotoxic drug treatment.

    PubMed

    Tutton, P J; Barkla, D H

    1978-08-25

    A stathmokinetic technique was used to study cell proliferation in dimethylhydrazine-induced adenocarcinomata of rat colon following treatment with cytotoxic drugs. The rate of cell division was significantly increased three days after treatment with 5,7-dihydroxytryptamine and seven days after treatment with 5-fluorouracil. Acceleration of tumour cell proliferation following 5,7-dihydroxytryptamine treatment was inhibited by treating animals with the antiseritoninergic drug Xylamidine Tosylate. Acceleration of tumour cell proliferation following 5-fluorouracil treatment was inhibited by treating animals either with the antiseritoninergic drug BW501 or with the histamine H2-receptor blocking drug Cimetidine.

  11. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Yanhong; Chen Kuanghueih; Gao Wei

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% andmore » 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.« less

  12. Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated With Trichomonas vaginalis via Crosstalk With Mast Cell.

    PubMed

    Kim, Jung-Hyun; Kim, Sang-Su; Han, Ik-Hwan; Sim, Seobo; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-11-01

    Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. The inflammatory mediators released by BPH epithelial cells in response to infection by

  13. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling.

    PubMed

    Senavirathna, Lakmini Kumari; Huang, Chaoqun; Yang, Xiaoyun; Munteanu, Maria Cristina; Sathiaseelan, Roshini; Xu, Dao; Henke, Craig A; Liu, Lin

    2018-02-09

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3-6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.

  14. α-Lipoic acid inhibits human lung cancer cell proliferation through Grb2-mediated EGFR downregulation.

    PubMed

    Yang, Lan; Wen, Ya; Lv, Guoqing; Lin, Yuntao; Tang, Junlong; Lu, Jingxiao; Zhang, Manqiao; Liu, Wen; Sun, Xiaojuan

    2017-12-09

    Alpha lipoic acid (α -LA) is a naturally occurring antioxidant and metabolic enzyme co-factor. Recently, α -LA has been reported to inhibit the growth of various cancer cells, but the precise signaling pathways that mediate the effects of α -LA on non-small cell lung cancer (NSCLC) development remain unclear. The CCK-8 assay was used to assess cell proliferation in NSCLC cell lines after α -LA treatment. The expression of growth factor receptor-bound protein 2 (Grb2), cyclin-dependent kinase (CDK)-2, CDK4, CDK6, Cyclin D3, Cyclin E1, Ras, c-Raf, epidermal growth factor receptor (EGFR), ERK1/2 and activated EGFR and ERK1/2 was evaluated by western blotting. Grb2 levels were restored in α-LA-treated cells by transfection of a plasmid carrying Grb2 and were reduced in NSCLC cells via specific siRNA-mediated knockdown. α -LA dramatically decreased NSCLC cell proliferation by downregulating Grb2; in contrast, Grb2 overexpression significantly prevented α-LA-induced decrease in cell growth in vitro. Western blot analysis indicated that α-LA decreased the levels of phospho-EGFR, CDK2/4/6, Cyclins D3 and E1, which are associated with the inhibition of G1/S-phase transition. Additional experiments indicated that Grb2 inhibition partially abolished EGF-induced phospho-EGFR and phospho-ERK1/2 activity. In addition, α-LA exerted greater inhibitory effects than gefitinib on NSCLC cells by preventing EGF-induced EGFR activation. For the first time, these findings provide the first evidence that α-LA inhibits cell proliferation through Grb2 by suppressing EGFR phosphorylation and that MAPK/ERK is involved in this pathway. Copyright © 2017. Published by Elsevier Inc.

  15. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4; Cheng, Jung-Chien

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited.more » In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.« less

  16. Osthole induces apoptosis, suppresses cell-cycle progression and proliferation of cancer cells.

    PubMed

    Jarząb, Agata; Grabarska, Aneta; Kiełbus, Michał; Jeleniewicz, Witold; Dmoszyńska-Graniczka, Magdalena; Skalicka-Woźniak, Krystyna; Sieniawska, Elwira; Polberg, Krzysztof; Stepulak, Andrzej

    2014-11-01

    The aim of the present study was to determine the effects of osthole on cell proliferation and viability, cell-cycle progression and induction of apoptosis in human laryngeal cancer RK33 and human medulloblastoma TE671 cell lines. Cell viability was measured by means of the MTT method and cell proliferation by the 5-bromo-2-deoxyuridine (BrdU) incorporation assay. Cell-cycle progression was determined by flow cytometry, and induction of apoptosis by release of oligonucleosomes to the cytosol. The gene expression was estimated by a quantitative polymerase chain reaction (qPCR) method. High-performance counter-current chromatography (HPCCC) was applied for isolation of osthole from fruits of Mutellina purpurea. Osthole decreased proliferation and cell viability of cancer cells in a dose-dependent manner. The tested compound induced apoptosis, increased the cell numbers in G1 and decreased cell number in S/G2 phases of the cell cycle, differentially regulating CDKN1A and TP53 gene expression depending on cancer cell type. Osthole could be considered as a potential compound for cancer therapy and chemoprevention. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. hCLCA2 is a p53-inducible inhibitor of breast cancer cell proliferation

    PubMed Central

    Walia, Vijay; Ding, Ming; Kumar, Sumit; Nie, Daotai; Premkumar, Louis; Elble, Randolph C.

    2009-01-01

    hCLCA2 is frequently downregulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours post-infection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl- channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl- current in breast cancer cells and reduces pH to ∼6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its downregulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications. PMID:19654313

  18. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells

    PubMed Central

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3′ -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. PMID:26788032

  19. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen

    PubMed Central

    Wang, Jianling; Wang, Gangduo; Ma, Huaxian; Khan, M. Firoze

    2010-01-01

    Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and cyclin E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic

  20. Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4.

    PubMed

    Murn, Jernej; Alibert, Olivier; Wu, Ning; Tendil, Simon; Gidrol, Xavier

    2008-12-22

    B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2-EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies.

  1. Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4

    PubMed Central

    Murn, Jernej; Alibert, Olivier; Wu, Ning; Tendil, Simon; Gidrol, Xavier

    2008-01-01

    B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2–EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies. PMID:19075289

  2. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells: Importance of ERK1/2 and AKT Signaling Pathways.

    PubMed

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu; Cui, Jiuwei; Li, Wei

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3' -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.

  3. Protein phosphatase 2A in stretch-induced endothelial cell proliferation

    NASA Technical Reports Server (NTRS)

    Murata, K.; Mills, I.; Sumpio, B. E.

    1996-01-01

    We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic stain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C.

  4. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  5. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation

    PubMed Central

    Raisch, Jennifer; Buc, Emmanuel; Bonnet, Mathilde; Sauvanet, Pierre; Vazeille, Emilie; de Vallée, Amélie; Déchelotte, Pierre; Darcha, Claude; Pezet, Denis; Bonnet, Richard; Bringer, Marie-Agnès; Darfeuille-Michaud, Arlette

    2014-01-01

    AIM: To provide further insight into the characterization of mucosa-associated Escherichia coli (E. coli) isolated from the colonic mucosa of cancer patients. METHODS: Phylogroups and the presence of cyclomodulin-encoding genes of mucosa-associated E. coli from colon cancer and diverticulosis specimens were determined by PCR. Adhesion and invasion experiments were performed with I-407 intestinal epithelial cells using gentamicin protection assay. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) expression in T84 intestinal epithelial cells was measured by enzyme-linked immunosorbent assay and by Western Blot. Gut colonization, inflammation and pro-carcinogenic potential were assessed in a chronic infection model using CEABAC10 transgenic mice. Cell proliferation was analyzed by real-time mRNA quantification of PCNA and immunohistochemistry staining of Ki67. RESULTS: Analysis of mucosa-associated E. coli from colon cancer and diverticulosis specimens showed that whatever the origin of the E. coli strains, 86% of cyclomodulin-positive E. coli belonged to B2 phylogroup and most harbored polyketide synthase (pks) island, which encodes colibactin, and/or cytotoxic necrotizing factor (cnf) genes. In vitro assays using I-407 intestinal epithelial cells revealed that mucosa-associated B2 E. coli strains were poorly adherent and invasive. However, mucosa-associated B2 E. coli similarly to Crohn’s disease-associated E. coli are able to induce CEACAM6 expression in T84 intestinal epithelial cells. In addition, in vivo experiments using a chronic infection model of CEACAM6 expressing mice showed that B2 E. coli strain 11G5 isolated from colon cancer is able to highly persist in the gut, and to induce colon inflammation, epithelial damages and cell proliferation. CONCLUSION: In conclusion, these data bring new insights into the ability of E. coli isolated from patients with colon cancer to establish persistent colonization, exacerbate inflammation and

  6. Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling.

    PubMed

    Li, Ming Yue; Mi, Chunliu; Wang, Ke Si; Wang, Zhe; Zuo, Hong Xiang; Piao, Lian Xun; Xu, Guang Hua; Li, Xuezheng; Ma, Juan; Jin, Xuejun

    2017-08-25

    Hypoxia enhances the development of solid tumors. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor of tumor regulation. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, and cell proliferation, as well as imparting resistance to cancer treatment. In this study, we assessed shikonin, which derives from the traditional medical herb Lithospermum erythrorhizon, for its anti-cancer effects in hypoxia-induced human colon cancer cell lines. Shikonin showed potent inhibitory activity against hypoxia-induced HIF-1α activation in various human cancer cell lines and efficient scavenging activity of hypoxia-induced reactive oxygen species in tumor cells. Further analysis revealed that shikonin inhibited HIF-1α protein synthesis without affecting the expression of HIF-1α mRNA or degrading HIF-1α protein. It was subsequently shown to attenuate the activation of downstream mTOR/p70S6K/4E-BP1/eIF4E kinase. Shikonin also dose-dependently caused the cell cycle arrest of activated HCT116 cells and inhibited the proliferation of HCT116 and SW620 cells. Moreover, it significantly inhibited tumor growth in a xenograft modal. These findings suggest that shikonin could be considered for use as a potential drug in human colon cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    PubMed

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Peroxisome Proliferator-Activated Receptor β/δ Cross Talks with E2F and Attenuates Mitosis in HRAS-Expressing Cells

    PubMed Central

    Zhu, Bokai; Khozoie, Combiz; Bility, Moses T.; Ferry, Christina H.; Blazanin, Nicholas; Glick, Adam B.; Gonzalez, Frank J.

    2012-01-01

    The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G2/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis. PMID:22473992

  9. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway.

    PubMed

    Girona, Josefa; Rosales, Roser; Plana, Núria; Saavedra, Paula; Masana, Lluís; Vallvé, Joan-Carles

    2013-01-01

    The migration and proliferation of vascular smooth muscle cells play crucial roles in the development of atherosclerotic lesions. This study examined the effects of fatty acid binding protein 4 (FABP4), an adipokine that is associated with cardiovascular risk, endothelial dysfunction and proinflammatory effects, on the migration and proliferation of human coronary artery smooth muscle cells (HCASMCs). A DNA 5-bromo-2'-deoxy-uridine (BrdU) incorporation assay indicated that FABP4 significantly induced the dose-dependent proliferation of HCASMCs with a maximum stimulatory effect at 120 ng/ml (13% vs. unstimulated cells, p<0.05). An anti-FABP4 antibody (40 ng/ml) significantly inhibited the induced cell proliferation, demonstrating the specificity of the FABP4 proliferative effect. FABP4 significantly induced HCASMC migration in a dose-dependent manner with an initial effect at 60 ng/ml (12% vs. unstimulated cells, p<0.05). Time-course studies demonstrated that FABP4 significantly increased cell migration compared with unstimulated cells from 4 h (23%vs. 17%, p<0.05) to 12 h (74%vs. 59%, p<0.05). Pretreatment with LY-294002 (5 µM) and PD98059 (10 µM) blocked the FABP4-induced proliferation and migration of HCASMCs, suggesting the activation of a kinase pathway. On a molecular level, we observed an up-regulation of the MAPK pathway without activation of Akt. We found that FABP4 induced the active forms of the nuclear transcription factors c-jun and c-myc, which are regulated by MAPK cascades, and increased the expression of the downstream genes cyclin D1 and MMP2, CCL2, and fibulin 4 and 5, which are involved in cell cycle regulation and cell migration. These findings indicate a direct effect of FABP4 on the migration and proliferation of HCASMCs, suggesting a role for this adipokine in vascular remodelling. Taken together, these results demonstrate that the FABP4-induced DNA synthesis and cell migration are mediated primarily through a MAPK-dependent pathway that

  10. Adenylate kinase 2 (AK2) promotes cell proliferation in insect development

    PubMed Central

    2012-01-01

    Background Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms. Results This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown. Conclusion These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development. PMID:23020757

  11. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. Black-Right-Pointing-Pointer DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. Black-Right-Pointing-Pointer We produced in vitro and in vivo model to better understand the role of DDR2. Black-Right-Pointing-Pointer DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but themore » functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2's molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal

  12. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways.

    PubMed

    Leve, Fernanda; Peres-Moreira, Rubem J; Binato, Renata; Abdelhay, Eliana; Morgado-Díaz, José A

    2015-01-01

    Lysophosphatidic acid (LPA) plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by LPA to regulate the mechanisms involved in the progression of colorectal cancer (CRC). We have used three cell line models of CRC, and initially analyzed the expression profile of LPA receptors (LPAR). Then, we treated the cells with LPA and events related to their tumorigenic potential, such as migration, invasion, anchorage-independent growth, proliferation as well as apoptosis and cell cycle were evaluated. We used the Chip array technique to analyze the global gene expression profiling that occurs after LPA treatment, and we identified cell signaling pathways related to the cell cycle. The inhibition of these pathways verified the conclusions of the transcriptomic analysis. We found that the cell lines expressed LPAR1, -2 and -3 in a differential manner and that 10 μM LPA did not affect cell migration, invasion and anchorage-independent growth, but it did induce proliferation and cell cycle progression in HCT-116 cells. Although LPA in this concentration did not induce transcriptional activity of β-catenin, it promoted the activation of Rho and STAT-3. Moreover, ROCK and STAT-3 inhibitors prevented LPA-induced proliferation, but ROCK inhibition did not prevent STAT-3 activation. Finally, we observed that LPA regulates the expression of genes related to the cell cycle and that the combined inhibition of ROCK and STAT-3 prevented cell cycle progression and increased the LPA-induced expression of cyclins E1, A2 and B1 to a greater degree than either inhibitor alone. Overall, these results demonstrate that LPA increases the proliferative potential of colon adenocarcinoma HCT-116 cells through a mechanism involving cooperation between the Rho-ROCK and STAT3 pathways involved in cell

  13. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolidemore » significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.« less

  14. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahara, Kiyoshi; Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp; Inamoto, Teruo

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferationmore » of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.« less

  15. Human papillomavirus (HPV) oncoprotein E6 facilitates Calcineurin-Nuclear factor for activated T cells 2 (NFAT2) signaling to promote cellular proliferation in cervical cell carcinoma.

    PubMed

    Ram, Babul Moni; Dolpady, Jayashree; Kulkarni, Rakesh; Usha, R; Bhoria, Usha; Poli, Usha Rani; Islam, Mojahidul; Trehanpati, Nirupma; Ramakrishna, Gayatri

    2018-01-01

    The calcineurin-NFAT signaling pathway regulates cell proliferation, differentiation, and development in diverse cell types and organ systems. Deregulation of calcineurin-NFAT signaling has been reported in leukaemias and few solid tumors such as breast and colon. In the present study, we found elevated calcineurin protein levels and phosphatase activity in cervical cancer cell lines and depletion of the same attenuated cell proliferation. Additionally, nuclear levels of NFAT2, a downstream target of calcineurin, viz, was found elevated in human papillomavirus (HPV) infected cells, HeLa and SiHa, compared to the HPV negative cells, HaCaT and C33A, indicative of its higher DNA binding activity. The nuclear levels of both NFAT1 and NFAT3 remain unaltered implicating they have little role in cervical carcinogenesis. Similar to the in vitro studies, the HPV infected human squamous cell carcinoma specimens showed higher NFAT2 levels compared to the normal cervical epithelium. Depletion of NFAT2 by RNAi attenuated growth of SiHa cells. Overexpression of HPV16 oncoproteins viz, E6 and E7 increased NFAT2 expression levels and DNA binding activity, while knockdown of E6 by RNAi decreased the same. Briefly, we now report an activation of calcineurin-NFAT2 axis in cervical cancer and a novel role of HPV oncoprotein in facilitating NFAT2 dependent cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cordyceps sinensis extract suppresses hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells.

    PubMed

    Gao, Bao-an; Yang, Jun; Huang, Ji; Cui, Xiang-jun; Chen, Shi-xiong; Den, Hong-yan; Xiang, Guang-ming

    2010-09-01

    To investigate the effects of a Chinese herb Cordyceps sinensis (C. sinensis) extract on hypoxia-induced proliferation and the underlying mechanisms involved. This prospective study was carried out at the Central Laboratory of Yichang Central People's Hospital, Yichang, China from March 2008 to April 2010. The C. sinensis was extracted from the Chinese herb C. sinensis using aqueous alcohol extraction techniques. Forty healthy adult male Sprague Dawley rats were used in the study. The proliferation of pulmonary artery smooth muscle cells (PASMCs) was measured using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell viability was determined by trypan blue exclusion. Cell cycles were analyzed using FACSort flow cytometric analysis. The expression of proliferating cell nuclear antigen (PCNA), c-jun, and c-fos in rat PASMCs was determined by immunohistochemistry. We found an increased proliferation of PASMCs and increased expression of transcription factors, c-jun and c-fos in PASMCs cultured under hypoxic conditions. The C. sinensis extract significantly inhibited hypoxia-induced cell proliferation in a dose-dependent manner. In addition, C. sinensis extract also significantly inhibited the expression of PCNA, c-jun, and c-fos in these PASMCs. Our results indicated that C. sinensis extract inhibits hypoxia-induced proliferation of rat PASMCs, probably by suppressing the expression of PCNA, c-fos, c-jun, and decreasing the percentage of cells in synthesis phase, second gap phase, and mitotic phase in cell cycle (S+G2/M) phase. Our results therefore, provided novel evidence that C. sinensis extract may be used as a therapeutic reagent in the treatment of hypoxic pulmonary hypertension.

  17. Role of canonical transient receptor potential channel-3 in acetylcholine-induced mouse airway smooth muscle cell proliferation.

    PubMed

    Chen, Xiao-Xu; Zhang, Jia-Hua; Pan, Bin-Hua; Ren, Hui-Li; Feng, Xiu-Ling; Wang, Jia-Ling; Xiao, Jun-Hua

    2017-10-15

    Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca 2+ -permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca 2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca 2+ ] i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. TRPC3 blocker Gd 3+ , antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca 2+ ] i and KCl-induced changes in [Ca 2+ ] i , eventually inhibiting ACh-induced ASMC proliferation. Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. IGF-1 Regulates Cyr61 Induced Breast Cancer Cell Proliferation and Invasion

    PubMed Central

    Sarkissyan, Suren; Sarkissyan, Marianna; Wu, Yanyuan; Cardenas, Jessica; Koeffler, H. Phillip; Vadgama, Jaydutt V.

    2014-01-01

    Background Studies from our laboratory and others have shown that cysteine-rich 61 (Cyr61) may be involved in tumor proliferation and invasion. In earlier studies, we demonstrated increased insulin-like growth factor-I (IGF-1) is associated with breast tumor formation and poor clinical outcomes. In our current study we have investigated IGF-1 regulation of Cyr61 and whether targeting IGF-1 could inhibit Cyr61 induced tumor growth and proliferation. Methods Several ATCC derived normal and breast cancer cell lines were used in this study: MDA-MB231, BT474, MCF-7, and SKBR3. We also tested cells stably transfected in our laboratory with active Akt1 (pAkt; SKBR3/AA and MCF-7/AA) and dominant negative Akt1 (SKBR3/DN and MCF-7/DN). In addition, we used MCF-7 cells transfected with full length Cyr61 (CYA). Monolayer cultures treated with IGF-1 were analyzed for Cyr61 expression by RT-PCR and immunohistochemical staining. Migration assays and MTT based proliferation assays were used to determine invasive characteristics in response to IGF-1/Cyr61 activation. Results Cells with activated Akt have increased levels of Cyr61. Conversely, cells with inactive Akt have decreased levels of Cyr61. IGF-1 treatment increased Cyr61 expression significantly and cells with high level of Cyr61 demonstrate increased invasiveness and proliferation. Cyr61 overexpression and activation led to decrease in E-cadherin and decrease in FOXO1. Inhibition of the PI3K and MAPK pathways resulted in significant decrease in invasiveness and proliferation, most notably in the PI3K pathway inhibited cells. Conclusion The findings of this study show that IGF-1 upregulates Cyr61 primarily through activation of the Akt-PI3K pathway. IGF-1 induced MAPK plays a partial role. Increase in Cyr61 leads to increase in breast cancer cell growth and invasion. Hence, targeting Cyr61 and associated pathways may offer an opportunity to inhibit IGF-1 mediated Cyr61 induced breast cancer growth and invasion. PMID

  19. Role of Spm-Cer-S1P signalling pathway in MMP-2 mediated U46619-induced proliferation of pulmonary artery smooth muscle cells: protective role of epigallocatechin-3-gallate.

    PubMed

    Chowdhury, Animesh; Sarkar, Jaganmay; Chakraborti, Tapati; Chakraborti, Sajal

    2015-10-01

    During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occurs, which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin-3-gallate (EGCG) on the TxA2 mimetic, U46619-induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p(38)MAPK, NF-κB and MMP-2 significantly inhibit U46619-induced cell proliferation. EGCG markedly abrogate U46619-induced p(38)MAPK phosphorylation, NF-κB activation, proMMP-2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619-induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP-2 markedly abrogate U46619-induced SMase activity and S1P level. EGCG markedly inhibit U46619-induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline-Ceramide-Sphingosine-1-phosphate (Spm-Cer-S1P) signalling axis plays an important role in MMP-2 mediated U46619-induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP-2 activation by modulating p(38)MAPK-NFκB pathway and subsequently prevents the cell proliferation. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    PubMed

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tongxin; Li, Qi; Sun, Quanquan

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediatedmore » by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.« less

  2. Rapamycin attenuates BAFF-extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Qin, Shanshan; Zhang, Hai; Liu, Beibei; Qin, Jiamin; Wang, Xiaoxue; Zhang, Ruijie; Liu, Chunxiao; Dong, Xiaoqing; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2018-01-01

    B cell activating factor from the TNF family (BAFF) stimulates B-cell proliferation and survival, but excessive BAFF promotes the development of aggressive B cells leading to malignant and autoimmune diseases. Recently, we have reported that rapamycin, a macrocyclic lactone, attenuates human soluble BAFF (hsBAFF)-stimulated B-cell proliferation/survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway. Here, we show that the inhibitory effect of rapamycin on hsBAFF-promoted B cell proliferation/survival is also related to blocking hsBAFF-stimulated phosphorylation of Akt, S6K1, and 4E-BP1, as well as expression of survivin in normal and B-lymphoid (Raji and Daudi) cells. It appeared that both mTORC1 and mTORC2 were involved in the inhibitory activity of rapamycin, as silencing raptor or rictor enhanced rapamycin's suppression of hsBAFF-induced survivin expression and proliferation/viability in B cells. Also, PP242, an mTORC1/2 kinase inhibitor, repressed survivin expression, and cell proliferation/viability more potently than rapamycin (mTORC1 inhibitor) in B cells in response to hsBAFF. Of interest, ectopic expression of constitutively active Akt (myr-Akt) or constitutively active S6K1 (S6K1-ca), or downregulation of 4E-BP1 conferred resistance to rapamycin's attenuation of hsBAFF-induced survivin expression and B-cell proliferation/viability, whereas overexpression of dominant negative Akt (dn-Akt) or constitutively hypophosphorylated 4E-BP1 (4EBP1-5A), or downregulation of S6K1, or co-treatment with Akt inhibitor potentiated the inhibitory effects of rapamycin. The findings indicate that rapamycin attenuates excessive hsBAFF-induced cell proliferation/survival via blocking mTORC1/2 signaling in normal and neoplastic B-lymphoid cells. Our data underscore that rapamycin may be a potential agent for preventing excessive BAFF-evoked aggressive B-cell malignancies and autoimmune diseases. © 2017 Wiley Periodicals, Inc.

  3. Curcumin (Diferuloylmethane) Inhibits Cell Proliferation, Induces Apoptosis, and Decreases Hormone Levels and Secretion in Pituitary Tumor Cells

    PubMed Central

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-01-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas. PMID:18450960

  4. Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells.

    PubMed

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-08-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas.

  5. CRMP2 Phosphorylation Drives Glioblastoma Cell Proliferation.

    PubMed

    Moutal, Aubin; Villa, Lex Salas; Yeon, Seul Ki; Householder, Kyle T; Park, Ki Duk; Sirianni, Rachael W; Khanna, Rajesh

    2018-05-01

    Glioblastoma (GBM) is an aggressive primary brain tumor. The rapid growth and the privileged provenance of the tumor within the brain contribute to its aggressivity and poor therapeutic targeting. A poor prognostic factor in glioblastoma is the deletion or mutation of the Nf1 gene. This gene codes for the protein neurofibromin, a tumor suppressor gene that is known to interact with the collapsin response mediator protein 2 (CRMP2). CRMP2 expression and elevated expression of nuclear phosphorylated CRMP2 have recently been implicated in cancer progression. The CRMP2-neurofibromin interaction protects CRMP2 from its phosphorylation by cyclin-dependent kinase 5 (Cdk5), an event linked to cancer progression. In three human glioblastoma cell lines (GL15, A172, and U87), we observed an inverse correlation between neurofibromin expression and CRMP2 phosphorylation levels. Glioblastoma cell proliferation was dependent on CRMP2 expression and phosphorylation by Cdk5 and glycogen synthase kinase 3 beta (GSK3β). The CRMP2 phosphorylation inhibitor (S)-lacosamide reduces, in a concentration-dependent manner, glioblastoma cell proliferation and induced apoptosis in all three GBM cell lines tested. Since (S)-lacosamide is bioavailable in the brain, we tested its utility in an in vivo orthotopic model of GBM using GL261-LucNeo glioma cells. (S)-lacosamide decreased tumor size, as measured via in vivo bioluminescence imaging, by ~54% compared to vehicle control. Our results introduce CRMP2 expression and phosphorylation as a novel player in GBM proliferation and survival, which is enhanced by loss of Nf1.

  6. Water extract of Semecarpus parvifolia Thw. leaves inhibits cell proliferation and induces apoptosis on HEp-2 cells.

    PubMed

    Soysa, Preethi; Jayarthne, Panchima; Ranathunga, Imali

    2018-03-05

    Semecarpus parvifolia Thw is used as an ingredient of poly herbal decoctions to treat cancer in traditional medicine. The present study aims to investigate the antiproliferative activity on HEp 2 cells by the water extract of S. parvifolia leaves and to evaluate potential mechanisms. The plant extract was exposed to S. parvifolia for 24 hours and antiproliferative activity was quantified by Sulforhodamine B (SRB), 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and Lactate dehydrogenase (LDH) assays. Morphological changes were observed after staining cells with ethidium bromide/acridine orange (EB/AO) and Giemsa dye. Comet assay was performed to evaluate the DNA damage. The toxicity of the plant extract was determined by brine shrimp lethality assay. S. parvifolia leaves reduced the cell proliferation in a dose and time dependent manner. A two fold increase in NO level was observed at higher concentrations. Morphological changes characteristic to apoptosis were observed in light microscopy, Giemsa and EB/AO stained cells. Fragmented DNA further confirmed its capacity to induce apoptosis. No lethality was observed with brine shrimps. The results suggest that Semecarpus parvifolia Thw induces apoptosis in HEp-2 cells through a NO dependent pathway.

  7. Inhibition of Pirfenidone on TGF-beta2 Induced Proliferation, Migration and Epithlial-Mesenchymal Transition of Human Lens Epithelial Cells Line SRA01/04

    PubMed Central

    Yang, Yangfan; Ye, Yiming; Lin, Xianchai; Wu, Kaili; Yu, Minbin

    2013-01-01

    Background Posterior capsular opacification (PCO) is a common complication of cataract surgery. Transforming growth factor-β2 (TGF-β2) plays important roles in the development of PCO. The existing pharmacological treatments are not satisfactory and can have toxic side effects. Methodologies/Principal Findings We evaluated the effect of pirfenidone on proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cell line SRA01/04 (HLECs) in vitro. After treatment with 0, 0.25, and 0.5 mg/ml pirfenidone, cell proliferation was measured by MTT assay. Cell viability was determined by trypan blue exclusion assay and measurement of lactate dehydrogenase (LDH) activity released from the damaged cells. And cell migration was measured by scratch assay in the absence or presence of transforming growth factor-β2 (TGF-β2). The expressions of TGF-β2 and SMADs were evaluated with real-time RT-PCR, western blot, and immunofluorescence analyses. The mesenchymal phenotypic marker fibronectin (FN) was demonstrated by Immunocytofluorescence analyses. The cells had high viability, which did not vary across different concentrations of pirfenidone (0 [control] 0.3, 0.5 or 1.0 mg/ml) after 24 hours. Pirfenidone (0∼0.5 mg/ml) had no significant cytotoxicity effect on SRA01/04 by LDH assay. Pirfenidone significantly inhibited the proliferation and TGF-β2-induced cell migration and the effects were dose-dependent, and inhibited TGF-β2-induced fibroblastic phenotypes and TGF-β2-induced expression of FN in SRA01/04 cells. The cells showed dose-dependent decreases in mRNA and protein levels of TGF-β2 and SMADs. Pirfenidone also depressed the TGF-β2-induced expression of SMADs and blocked the nuclear translocation of SMADs in cells. Conclusion Pirfenidone inhibits TGF-β2-induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04 at nontoxic concentrations. This effect may be achieved by down

  8. A role for Hippo/YAP-signaling in FGF-induced lens epithelial cell proliferation and fibre differentiation.

    PubMed

    Dawes, L J; Shelley, E J; McAvoy, J W; Lovicu, F J

    2018-04-01

    Recent studies indicate an important role for the transcriptional co-activator Yes-associated protein (YAP), and its regulatory pathway Hippo, in controlling cell growth and fate during lens development; however, the exogenous factors that promote this pathway are yet to be identified. Given that fibroblast growth factor (FGF)-signaling is an established regulator of lens cell behavior, the current study investigates the relationship between this pathway and Hippo/YAP-signaling during lens cell proliferation and fibre differentiation. Rat lens epithelial explants were cultured with FGF2 to induce epithelial cell proliferation or fibre differentiation. Immunolabeling methods were used to detect the expression of Hippo-signaling components, Total and Phosphorylated YAP, as well as fibre cell markers, Prox-1 and β-crystallin. FGF-induced lens cell proliferation was associated with a strong nuclear localisation of Total-YAP and low-level immuno-staining for phosphorylated-YAP. FGF-induced lens fibre differentiation was associated with a significant increase in cytoplasmic phosphorylated YAP (inactive state) and enhanced expression of core Hippo-signaling components. Inhibition of YAP with Verteporfin suppressed FGF-induced lens cell proliferation and ablated cell elongation during lens fibre differentiation. Inhibition of either FGFR- or MEK/ERK-signaling suppressed FGF-promoted YAP nuclear translocation. Here we propose that FGF promotes Hippo/YAP-signaling during lens cell proliferation and differentiation, with FGF-induced nuclear-YAP expression playing an essential role in promoting the proliferation of lens epithelial cells. An FGF-induced switch from proliferation to differentiation, hence regulation of lens growth, may play a key role in mediating Hippo suppression of YAP transcriptional activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Gefitinib targets EGFR dimerization and ERK1/2 phosphorylation to inhibit pleural mesothelioma cell proliferation.

    PubMed

    Favoni, Roberto E; Pattarozzi, Alessandra; Lo Casto, Michele; Barbieri, Federica; Gatti, Monica; Paleari, Laura; Bajetto, Adriana; Porcile, Carola; Gaudino, Giovanni; Mutti, Luciano; Corte, Giorgio; Florio, Tullio

    2010-03-01

    Altered EGFR activity is a causal factor for human tumor development, including malignant pleural mesotheliomas. The aim of the present study was the evaluation of the effects of Gefitinib on EGF-induced mesothelioma cell proliferation and the intracellular mechanisms involved. Cell proliferation, DNA synthesis and apoptosis were measured by MTT, thymidine incorporation and FACS analysis; EGFR, ERK1/2 and Akt expression and phosphorylation by Western blot, whereas receptor sites were analyzed by binding studies. Gefitinib inhibited EGF-induced proliferation in two mesothelioma cell lines, derived from pleural effusion (IST-Mes2) or tumor biopsy (ZL55). The treatment with Gefitinib induced cell cycle arrest in both cell lines, while apoptosis was observed only for high concentrations and prolonged drug exposure. EGF-dependent mesothelioma cell proliferation was mediated by EGFR and ERK1/2 phosphorylation, while Akt was not affected. Gefitinib inhibited both EGFR and ERK1/2 activation, being maximal at drug concentrations that induce cytostatic effects, suggesting that the proapoptotic activity of Gefitinib is independent from EGFR inhibition. Gefitinib treatment increased EGFR Bmax, possibly through membrane stabilization of inactive receptor dimers that we show to be induced by the drug also in the absence of EGF. EGFR activation of ERK1/2 represents a key pathway for pleural mesothelioma cell proliferation. Low concentrations of Gefitinib cause mesothelioma cell cycle arrest through the blockade of EGFR activity while high concentrations induce apoptosis. Finally, we propose that the formation of inactive EGFR dimers may contribute to the antitumoral activity of Gefitinib.

  10. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation andmore » migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that

  11. 17β-Estradiol inhibits TNF-α-induced proliferation and migration of vascular smooth muscle cells via suppression of TRAIL.

    PubMed

    Li, Hengchang; Cheng, Yang; Simoncini, Tommaso; Xu, Shiyuan

    2016-07-01

    Atherosclerosis is an inflammatory disease and involves migration of vascular smooth muscle cells (VSMCs). Estrogen inhibits VSMCs migration, while the underlying mechanism remains to be revealed. Recent years, there is emerging evidence showing that TNF-related apoptosis-inducing ligand (TRAIL) increases proliferation and migration of VSMCs. In this study, we investigated the regulatory effect of estrogen on TRAIL expression in VSMCs. TNF-α greatly enhanced TRAIL protein expression and stimulated VSMCs proliferation and migration. This effect was partially inhibited by the addition of TRAIL neutralizing antibody, suggesting that TRAIL is important in TNF-α-induced migration. 17β-estradiol (E2) inhibited TRAIL expression under TNF-α stimulation in a time- and concentration-dependent manner. This effect was was mimicked by ERα agonist 4',4″,4‴-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), but not ERβ agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN), indicating that ERα is involved in this action. TNF-α led to nuclear factor kappa B (NF-κB) p65 phosphorylation and the inhibitor pyrrolidine dithiocarbama (PDTC) inhibited TRAIL expression, suggesting that NF-κB signaling is crucial for TARIL production. E2 suppressed p65 phosphorylation in VSMCs and the overexpression of p65 subunit reversed the inhibitory effect of E2 on TRAIL expression and cell proliferation and migration. Taken together, our results indicate that E2 inhibits VSMCs proliferation and migration by downregulation of TRAIL expression via suppression of NF-κB pathway.

  12. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation.

    PubMed

    Hamaoka, Yuho; Negishi, Manabu; Katoh, Hironori

    2016-08-01

    EphA2, a member of the Eph receptor tyrosine kinases, is frequently overexpressed in a variety of malignancies, including glioblastoma, and its expression is correlated with poor prognosis. EphA2 acts as a tumor promoter through a ligand ephrin-independent mechanism, which requires phosphorylation of EphA2 on serine 897 (S897), leading to increased cell migration and invasion. In this study, we show that ligand-independent EphA2 signaling occurs downstream of the MEK/ERK/RSK pathway and mediates epidermal growth factor (EGF)-induced cell proliferation in glioblastoma cells. Suppression of EphA2 expression by long-term exposure to ligand ephrinA1 or EphA2-targeted shRNA inhibited EGF-induced cell proliferation. Stimulation of the cells with EGF induced EphA2 S897 phosphorylation, which was suppressed by MEK and RSK inhibitors, but not by phosphatidylinositol 3-kinase (PI3K) and Akt inhibitors. The RSK inhibitor or RSK2-targeted shRNA also suppressed EGF-induced cell proliferation. Furthermore, overexpression of wild-type EphA2 promoted cell proliferation without EGF stimulation, whereas overexpression of EphA2-S897A mutant suppressed EGF- or RSK2-induced proliferation. Taken together, these results suggest that EphA2 is a key downstream target of the MEK/ERK/RSK signaling pathway in the regulation of glioblastoma cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Curcumin and docosahexaenoic acid block insulin-induced colon carcinoma cell proliferation.

    PubMed

    Fenton, Jenifer I; McCaskey, Sarah J

    2013-03-01

    Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. FABP4 Induces Vascular Smooth Muscle Cell Proliferation and Migration through a MAPK-Dependent Pathway

    PubMed Central

    Girona, Josefa; Rosales, Roser; Plana, Núria; Saavedra, Paula; Masana, Lluís; Vallvé, Joan-Carles

    2013-01-01

    Purpose The migration and proliferation of vascular smooth muscle cells play crucial roles in the development of atherosclerotic lesions. This study examined the effects of fatty acid binding protein 4 (FABP4), an adipokine that is associated with cardiovascular risk, endothelial dysfunction and proinflammatory effects, on the migration and proliferation of human coronary artery smooth muscle cells (HCASMCs). Methods and Results A DNA 5-bromo-2′-deoxy-uridine (BrdU) incorporation assay indicated that FABP4 significantly induced the dose-dependent proliferation of HCASMCs with a maximum stimulatory effect at 120 ng/ml (13% vs. unstimulated cells, p<0.05). An anti-FABP4 antibody (40 ng/ml) significantly inhibited the induced cell proliferation, demonstrating the specificity of the FABP4 proliferative effect. FABP4 significantly induced HCASMC migration in a dose-dependent manner with an initial effect at 60 ng/ml (12% vs. unstimulated cells, p<0.05). Time-course studies demonstrated that FABP4 significantly increased cell migration compared with unstimulated cells from 4 h (23%vs. 17%, p<0.05) to 12 h (74%vs. 59%, p<0.05). Pretreatment with LY-294002 (5 µM) and PD98059 (10 µM) blocked the FABP4-induced proliferation and migration of HCASMCs, suggesting the activation of a kinase pathway. On a molecular level, we observed an up-regulation of the MAPK pathway without activation of Akt. We found that FABP4 induced the active forms of the nuclear transcription factors c-jun and c-myc, which are regulated by MAPK cascades, and increased the expression of the downstream genes cyclin D1 and MMP2, CCL2, and fibulin 4 and 5, which are involved in cell cycle regulation and cell migration. Conclusions These findings indicate a direct effect of FABP4 on the migration and proliferation of HCASMCs, suggesting a role for this adipokine in vascular remodelling. Taken together, these results demonstrate that the FABP4-induced DNA synthesis and cell migration are mediated

  15. Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells)

    PubMed Central

    Perucca, Simone; Di Palma, Andrea; Piccaluga, Pier Paolo; Gemelli, Claudia; Zoratti, Elisa; Bassi, Giulio; Giacopuzzi, Edoardo; Lojacono, Andrea; Borsani, Giuseppe; Tagliafico, Enrico; Scupoli, Maria Teresa; Bernardi, Simona; Zanaglio, Camilla; Cattina, Federica; Cancelli, Valeria; Malagola, Michele; Krampera, Mauro; Marini, Mirella; Almici, Camillo; Ferrari, Sergio; Russo, Domenico

    2017-01-01

    A human bone marrow-derived mesenchymal stromal cell (MSCs) and cord blood-derived CD34+ stem cell co-culture system was set up in order to evaluate the proliferative and differentiative effects induced by MSCs on CD34+ stem cells, and the reciprocal influences on gene expression profiles. After 10 days of co-culture, non-adherent (SN-fraction) and adherent (AD-fraction) CD34+ stem cells were collected and analysed separately. In the presence of MSCs, a significant increase in CD34+ cell number was observed (fold increase = 14.68), mostly in the SN-fraction (fold increase = 13.20). This was combined with a significant increase in CD34+ cell differentiation towards the BFU-E colonies and with a decrease in the CFU-GM. These observations were confirmed by microarray analysis. Through gene set enrichment analysis (GSEA), we noted a significant enrichment in genes involved in heme metabolism (e.g. LAMP2, CLCN3, BMP2K), mitotic spindle formation and proliferation (e.g. PALLD, SOS1, CCNA1) and TGF-beta signalling (e.g. ID1) and a down-modulation of genes participating in myeloid and lymphoid differentiation (e.g. PCGF2) in the co-cultured CD34+ stem cells. On the other hand, a significant enrichment in genes involved in oxygen-level response (e.g. TNFAIP3, SLC2A3, KLF6) and angiogenesis (e.g. VEGFA, IGF1, ID1) was found in the co-cultured MSCs. Taken together, our results suggest that MSCs can exert a priming effect on CD34+ stem cells, regulating their proliferation and erythroid differentiation. In turn, CD34+ stem cells seem to be able to polarise the BM-niche towards the vascular compartment by modulating molecular pathways related to hypoxia and angiogenesis. PMID:28231331

  16. [Profiles of cell proliferation and apoptosis in the mouse epithelial regeneration model K6b-E6/E7].

    PubMed

    Bonilla-Delgado, José; Rodríguez-Uribe, Genaro; Cortés-Malagón, Enoc Mariano; Sierra Martínez, Mónica; Acosta-Altamirano, Gustavo; Gariglio-Vidal, Patricio

    2012-01-01

    Mammals have limited epithelial regeneration capacity. The K6b-E6/E7 mice model has been described as useful for the study of epithelial regeneration. The objective of this study is to compare the expression of E6/E7 oncogenes with those of cell proliferation and apoptosis during epithelization. The hypothesis of this study is that alterations in cell proliferation and apoptosis in K6b-E6/E7 mice will only occur during epithelization. Deep 2 mm punches were performed in the middle of transgenic and control mice's ears. A biopsy was collected from the epithelization zone 72 hours and 2 weeks post-injury. Assays for cell proliferation and apoptosis were carried out by immunohistochemistry and TUNEL techniques, respectively. RT-PCR in situ was performed to compare E6/E7 expressions in the areas studied. Transgenic strain K6b-E6/E7 presented more proliferative cells and less apoptotic cells in epithelizated zones. This effect was limited to suprabasal stratum only, and correlates with E6/E7 oncogenes expression. Two weeks post-injury, cell proliferation and apoptosis were similar in both samples as the E6/E7 expression went down. K6b-E6/E7 mouse model is useful for epithelial regeneration. Its mechanisms should be considered for the treatment of deep wounds.

  17. T-kininogen induces endothelial cell proliferation.

    PubMed

    Pérez, Viviana; Leiva-Salcedo, Elías; Acuña-Castillo, Claudio; Aravena, Mauricio; Gómez, Christian; Sabaj, Valeria; Colombo, Alicia; Nishimura, Sumiyo; Pérez, Claudio; Walter, Robin; Sierra, Felipe

    2006-03-01

    Basal proliferation of endothelial cells increases with age, and this might play a role in the etiology of age-related vascular diseases, as well as angiogenesis. Serum kininogen levels increase during aging in rats and humans, and T-kininogen (T-KG) can affect proliferative homeostasis in several cell models. Both kinins and kininogens have been shown previously to be angiogenic through activation of endothelial cell proliferation, and here we show that exposure of endothelial cells to T-KG results in vigorous cell proliferation, accompanied by ERK/AKT activation. In our experiments, the proliferative response requires B1 and B2 kinin receptors, even though kinins are not released from the precursor. We hypothesize that the age-related increase in T-KG could play a significant role in the age-related dysregulation of vascular physiology and function.

  18. Fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation

    PubMed Central

    Yan, Weixin; Chen, Shouhui; Zhao, Yiyang; Ye, Xiaoyu

    2018-01-01

    The present study aimed to investigate the effect of fisetin on proliferation and apoptosis of gastric cancer cells, as well as the underlying mechanism. Proliferation in SGC7901 cancer and GES-1 normal cells was analyzed using a CCK-8 assay. Apoptosis was analyzed using an Annexin V/Propidium Iodide apoptosis kit and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was analyzed by western blot assay. Treatment of SGC7901 cells with various concentrations (1, 5, 10, 15 and 20 µM) of fisetin for 48 h resulted in a concentration dependent reduction in proliferation. Flow cytometry revealed a marked increase in apoptosis from 5 µM concentration of fisetin after 48 h. The percentage of apoptotic cells increased to 87% following treatment with 15 µM fisetin for 48 h, compared with 2% in control. Treatment of SGC7901 cells with fisetin for 48 h resulted in a reduction in the activation of ERK 1/2 in a concentration-dependent manner. The reduction in activation of ERK 1/2 was significant following treatment with 15 µM fisetin for 48 h. The inhibitory effect of fisetin on activation of ERK 1/2 was further demonstrated using the ERK 1/2 inhibitor, PD98059. The results indicated a significant reduction in the proliferation of SGC7901 cells following treatment with PD98059 (P<0.002). The reduction by PD98059 administration was comparable to that observed following fisetin treatment for 48 h. In conclusion, the current study demonstrates that fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation. Thus, fisetin may have therapeutic applications in the treatment of gastric cancer. PMID:29805580

  19. Fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation.

    PubMed

    Yan, Weixin; Chen, Shouhui; Zhao, Yiyang; Ye, Xiaoyu

    2018-06-01

    The present study aimed to investigate the effect of fisetin on proliferation and apoptosis of gastric cancer cells, as well as the underlying mechanism. Proliferation in SGC7901 cancer and GES-1 normal cells was analyzed using a CCK-8 assay. Apoptosis was analyzed using an Annexin V/Propidium Iodide apoptosis kit and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was analyzed by western blot assay. Treatment of SGC7901 cells with various concentrations (1, 5, 10, 15 and 20 µM) of fisetin for 48 h resulted in a concentration dependent reduction in proliferation. Flow cytometry revealed a marked increase in apoptosis from 5 µM concentration of fisetin after 48 h. The percentage of apoptotic cells increased to 87% following treatment with 15 µM fisetin for 48 h, compared with 2% in control. Treatment of SGC7901 cells with fisetin for 48 h resulted in a reduction in the activation of ERK 1/2 in a concentration-dependent manner. The reduction in activation of ERK 1/2 was significant following treatment with 15 µM fisetin for 48 h. The inhibitory effect of fisetin on activation of ERK 1/2 was further demonstrated using the ERK 1/2 inhibitor, PD98059. The results indicated a significant reduction in the proliferation of SGC7901 cells following treatment with PD98059 (P<0.002). The reduction by PD98059 administration was comparable to that observed following fisetin treatment for 48 h. In conclusion, the current study demonstrates that fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation. Thus, fisetin may have therapeutic applications in the treatment of gastric cancer.

  20. HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4+ T cells

    PubMed Central

    Kawatsuki, A; Yasunaga, J-i; Mitobe, Y; Green, PL; Matsuoka, M

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4+ T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3+ T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4+ T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4+ T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4+ T cells infected with HTLV-1. PMID:26804169

  1. Fluoxetine Induces Proliferation and Inhibits Differentiation of Hypothalamic Neuroprogenitor Cells In Vitro

    PubMed Central

    Sousa-Ferreira, Lígia; Aveleira, Célia; Botelho, Mariana; Álvaro, Ana Rita; Pereira de Almeida, Luís; Cavadas, Cláudia

    2014-01-01

    A significant number of children undergo maternal exposure to antidepressants and they often present low birth weight. Therefore, it is important to understand how selective serotonin reuptake inhibitors (SSRIs) affect the development of the hypothalamus, the key center for metabolism regulation. In this study we investigated the proliferative actions of fluoxetine in fetal hypothalamic neuroprogenitor cells and demonstrate that fluoxetine induces the proliferation of these cells, as shown by increased neurospheres size and number of proliferative cells (Ki-67+ cells). Moreover, fluoxetine inhibits the differentiation of hypothalamic neuroprogenitor cells, as demonstrated by decreased number of mature neurons (Neu-N+ cells) and increased number of undifferentiated cells (SOX-2+ cells). Additionally, fluoxetine-induced proliferation and maintenance of hypothalamic neuroprogenitor cells leads to changes in the mRNA levels of appetite regulator neuropeptides, including Neuropeptide Y (NPY) and Cocaine-and-Amphetamine-Regulated-Transcript (CART). This study provides the first evidence that SSRIs affect the development of hypothalamic neuroprogenitor cells in vitro with consequent alterations on appetite neuropeptides. PMID:24598761

  2. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  3. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cellmore » cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.« less

  4. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; College of Basic Medicine, Tianjin Medical University, 300070 Tianjin; Li, Jinru

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by whichmore » Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.« less

  5. Myocilin Regulates Cell Proliferation and Survival*

    PubMed Central

    Joe, Myung Kuk; Kwon, Heung Sun; Cojocaru, Radu; Tomarev, Stanislav I.

    2014-01-01

    Myocilin, a causative gene for open angle glaucoma, encodes a secreted glycoprotein with poorly understood functions. To gain insight into its functions, we produced a stably transfected HEK293 cell line expressing myocilin under an inducible promoter and compared gene expression profiles between myocilin-expressing and vector control cell lines by a microarray analysis. A significant fraction of differentially expressed genes in myocilin-expressing cells was associated with cell growth and cell death, suggesting that myocilin may have a role in the regulation of cell growth and survival. Increased proliferation of myocilin-expressing cells was demonstrated by the WST-1 proliferation assay, direct cell counting, and immunostaining with antibodies against Ki-67, a cellular proliferation marker. Myocilin-containing conditioned medium also increased proliferation of unmodified HEK293 cells. Myocilin-expressing cells were more resistant to serum starvation-induced apoptosis than control cells. TUNEL-positive apoptotic cells were dramatically decreased, and two apoptotic marker proteins, cleaved caspase 7 and cleaved poly(ADP-ribose) polymerase, were significantly reduced in myocilin-expressing cells as compared with control cells under apoptotic conditions. In addition, myocilin-deficient mesenchymal stem cells exhibited reduced proliferation and enhanced susceptibility to serum starvation-induced apoptosis as compared with wild-type mesenchymal stem cells. Phosphorylation of ERK1/2 and its upstream kinases, c-Raf and MEK, was increased in myocilin-expressing cells compared with control cells. Elevated phosphorylation of ERK1/2 was also observed in the trabecular meshwork of transgenic mice expressing 6-fold higher levels of myocilin when compared with their wild-type littermates. These results suggest that myocilin promotes cell proliferation and resistance to apoptosis via the ERK1/2 MAPK signaling pathway. PMID:24563482

  6. E-cadherin interactions regulate beta-cell proliferation in islet-like structures.

    PubMed

    Carvell, Melanie J; Marsh, Phil J; Persaud, Shanta J; Jones, Peter M

    2007-01-01

    Islet function is dependent on cells within the islet interacting with each other. E-cadherin (ECAD) mediates Ca(2+)-dependent homophilic cell adhesion between b-cells within islets and has been identified as a tumour suppressor. We generated clones of the MIN6 beta-cell line that stably over- (S) and under-express (alphaS) ECAD. Modified expression of ECAD was confirmed by quantitative RT-PCR, immunoblotting and immunocytochemistry. Preproinsulin mRNA, insulin content and basal rates of insulin secretion were higher in S cells compared to aS and control (V) cells. However, stimulated insulin secretory responses were unaffected by ECAD expression levels. ECAD expression did affect proliferation, with enhanced ECAD expression being associated with reduced proliferation and vice versa. Formation of islet-like structures was associated with a significant reduction in proliferation of V and S cells but not alphaS cells. These data suggest that ECAD expression levels do not modulate insulin secretory function but are consistent with a role for ECAD in the regulation of beta-cell proliferation. Copyright (c) 2007 S. Karger AG, Basel.

  7. Interrupted E2F1-miR-34c-SCF negative feedback loop by hyper-methylation promotes colorectal cancer cell proliferation

    PubMed Central

    Yang, Shu; Wu, Bo; Sun, Haimei; Ji, Fengqing; Sun, Tingyi; Zhao, Yan; Zhou, Deshan

    2015-01-01

    Tumour suppressor miR-34c deficiency resulted from hyper-methylation in its promoter is believed to be one of the main causes of colorectal cancer (CRC). Till date, miR-34c has been validated as a direct target of p53; but previous evidence suggested other transcription factor(s) must be involved in miR-34c transcription. In the present study, we in the first place identified a core promoter region (−1118 to −883 bp) of pre-miR-34c which was embedded within a hyper-methylated CpG island. Secondly, E2F1 promoted miR-34c transcription by physical interaction with the miR-34c promoter at site −897 to −889 bp. The transcriptional activating effect of E2F1 on miR-34c was in a p53 independent manner but profoundly promoted in the presence of p53 with exposure to 5-aza-2′-deoxycytidine (DAC). Thirdly, stem cell factor (SCF), a miR-34c target, was specifically reduced upon an introduction of E2F1 which lead to suppression of CRC cell proliferation. The E2F1-suppressed cell proliferation was partially abrogated by additional miR-34c inhibitor, indicating that the anti-proliferation effect of E2F1 was probably through activating miR-34c-SCF axis. Finally, SCF/KIT signalling increased E2F1 production by reducing its proteosomal degradation dependent on PI3K/Akt-GSK3β pathway. In conclusion, our results suggested the existence of E2F1-miR-34c-SCF negative feedback loop which was interrupted by the hyper-methylation of miR-34c promoter in CRC cells and increased cell proliferation. PMID:26704889

  8. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Mi Hee; Min, Do Sik, E-mail: minds@pusan.ac.kr

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety ofmore » cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.« less

  9. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells.

    PubMed

    Zhang, Ting; Chen, Xiaolan; Qu, Lingbo; Wu, Jinglan; Cui, Ran; Zhao, Yufen

    2004-12-01

    To improve the biological activities of chrysin (CR), we synthesize Diethyl Chysin-7-yl phosphate (CPE: C(19)H(19)O(7)P) and tetraethyl bis-phosphoric ester of chrysin (CP: C(23)H(28)O(10)P(2)) through a simplified Atheron-Todd reaction. The interactions of the CR and CPE with lysozyme were explored by electrospray ionization mass spectrometry (ESI) and fluorescence spectrometry method. Experimental results indicate that CPE could form the noncovalent compound with lysozyme, while the interaction of the CR with lysozyme was not detected. In addition, whether and how the compounds CPE and CP affect proliferation and apoptosis in human cervical cancer Hela cells were investigated. Moreover, the effects of CPE and CP in Hela cells were compared with that of the nonmodified CR compound. The Hela cells were co-cultured with CR, CP, and CPE as experimental groups, respectively, and corresponding control groups treated without CR, CP, and CPE. The proliferation and apoptosis were detected using MTT assay, HCl denatured-methyl green-pyronin staining, PCNA immunohistochemistry and TUNEL techniques. The cell growth IC(50), relative absorbance (RA), proliferating index (PI), PCNA-IR (immunoreactivity IR) integration value (IV), and apoptosis index (AI) were calculated and their correlation was analyzed in each group. The results show that all CR, CP, and CPE could inhibit proliferation and induce apoptosis in Hela cells. Moreover, the effects of CP and CPE were more potent than that of CR. The CP and CPE were proved to be a kind of stronger apoptosis inducers than nonphosphated CR. There was a negative correlation between proliferation and apoptosis. In conclusion, the CR, CP, and CPE could effectively inhibit growth by down-regulated expression of PCNA, and induce apoptosis in Hela cells. The efficiency of the modified CP and CPE preceded nonmodified CR compounds. The CP and CPE may be a new potential anti-cancer drug for therapy of human cervical carcinoma.

  10. A novel PKC-ι inhibitor abrogates cell proliferation and induces apoptosis in neuroblastoma.

    PubMed

    Pillai, Prajit; Desai, Shraddha; Patel, Rekha; Sajan, Mini; Farese, Robert; Ostrov, David; Acevedo-Duncan, Mildred

    2011-05-01

    Protein Kinase C-iota (PKC-ι), an atypical protein kinase C isoform manifests its potential as an oncogene by targeting various aspects of cancer cells such as growth, invasion and survival. PKC-ι confers resistance to drug-induced apoptosis in cancer cells. The acquisition of drug resistance is a major obstacle to good prognosis in neuroblastoma. The focus of this research was to identify the efficacy of [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1) as a novel PKC-ι inhibitor in neuroblastoma cell proliferation and apoptosis. ICA-1 specifically inhibits the activity of PKC-ι but not that of PKC-zeta (PKC-ζ), the closely related atypical PKC family member. The IC(50) for the kinase activity assay was approximately 0.1μM which is 1000 times less than that of aurothiomalate, a known PKC-ι inhibitor. Cyclin dependent kinase 7 (Cdk7) phosphorylates cyclin dependent kinases (cdks) and promotes cell proliferation. Our data shows that PKC-ι is an in vitro Cdk7 kinase and the phosphorylation of Cdk7 by PKC-ι was potently inhibited by ICA-1. Furthermore, our data shows that neuroblastoma cells proliferate via a PKC-ι/Cdk7/cdk2 cell signaling pathway and ICA-1 mediates its antiproliferative effects by inhibiting this pathway. ICA-1 (0.1μM) inhibited the in vitro proliferation of BE(2)-C neuroblastoma cells by 58% (P=0.01). Additionally, ICA-1 also induced apoptosis in neuroblastoma cells. Interestingly, ICA-1 did not affect the proliferation of normal neuronal cells suggesting its potential as chemotherapeutic with low toxicity. Hence, our results emphasize the potential of ICA-1 as a novel PKC-ι inhibitor and chemotherapeutic agent for neuroblastoma. Published by Elsevier Ltd.

  11. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2

    PubMed Central

    Bylund, Jeffery B.; Trinh, Linh T.; Awgulewitsch, Cassandra P.; Paik, David T.; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B.; Kamp, Timothy J.

    2017-01-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling. PMID:28125926

  12. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    PubMed

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  13. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    PubMed

    Carcagno, Abel L; Marazita, Mariela C; Ogara, María F; Ceruti, Julieta M; Sonzogni, Silvina V; Scassa, María E; Giono, Luciana E; Cánepa, Eduardo T

    2011-01-01

    A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity.

  14. E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation

    PubMed Central

    Carcagno, Abel L.; Marazita, Mariela C.; Ogara, María F.; Ceruti, Julieta M.; Sonzogni, Silvina V.; Scassa, María E.; Giono, Luciana E.; Cánepa, Eduardo T.

    2011-01-01

    Background A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. Methodology/Principal Findings In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. Conclusions/Significance The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an

  15. [Knockdown of STAT3 inhibits proliferation and migration of HepG2 hepatoma cells induced by IFN1].

    PubMed

    Li, Xiaofang; Wang, Yuqi; Yan, Ben; Fang, Peipei; Ma, Chao; Xu, Ning; Fu, Xiaoyan; Liang, Shujuan

    2018-02-01

    Objective To prepare lentiviruses expressing shRNA sequences targeting human signal transducer and activator of transcription 3 (STAT3) and detect the effect of STAT3 knockdown on type I interferon (IFN1)-induced proliferation and migration in HepG2 cells. Methods Four STAT3-targeting shRNA sequences (shRNA1-shRNA4) and one control sequence (Ctrl shRNA) were selected and cloned respectively into pLKO.1-sp6-pgk-GFP to construct shRNA-expressing vectors. Along with backbone psPAX2 and pMD2.G vectors, they were separately transfected into HEK293T cells to prepare lentiviruses. HepG2 cells were infected with the lentiviruses. Cytoplastic STAT3 level was detected by Western blotting to screen effective shRNA sequence(s) targeting STAT3. Proliferation and migration of HepG2 cells were analyzed by CCK-8 assay and Transwell TM migration and scratching assay, respectively. To detect the effect of IFN1 on cell proliferation and migration of HepG2 cells, the cells were treated with 2000 U/mL IFNα2b for indicated time and the activation of IFN-triggered STAT1 signal transduction was assayed by Western blotting. Results Two most effective STAT3-targeting shRNA sequences shRNA1 and shRNA2 were selected, and the expression of both STAT3 shRNA significantly decreased proliferation and migration of HepG2 cells. When treated with IFNα2b, 2000 U/mL of IFN1 showed more competent in attenuating growth and migration of HepG2 cells. Our data further proved that knockdown of STAT3 increased the phosphorylation of STAT1, and IFNα2b further enhanced the activation of STAT1 signaling in HepG2 cells. Conclusion Knockdown of STAT3 inhibits cell migration and growth, and rescues IFN response through up-regulating STAT1 signal transduction in HepG2 hepatoma cells.

  16. Carbachol induces TGF-alpha expression and colonic epithelial cell proliferation in sensory-desensitised rats.

    PubMed

    Bulut, Kerem; Felderbauer, Peter; Hoeck, Karoline; Schmidt, Wolfgang E; Hoffmann, Peter

    2010-03-01

    Signals for the expression of the peptide growth factors epidermal growth factor and transforming growth factor-alpha (TGFalpha) in the gastrointestinal mucosa are largely unknown. We have shown earlier that extrinsic afferents in the gastrointestinal tract induce TGFalpha expression in colonic mucosa via the deliberation of neurotransmitters substance P and calcitonin gene-related peptide. The aim of our present study was to determine the effects of carbachol on mucosal TGFalpha expression and epithelial cell proliferation in vivo. Rats were divided in three groups. Group 1 was treated with vehicle only, group 2 received one single subcutaneous injection of 250 microg/kg of carbachol and animals in group 3 were sensory-desensitised prior to the injection of 250 microg/kg carbachol. TGFalpha expression and epithelial cell proliferation was evaluated by polymerase chain reaction, Western blot analysis and bromodeoxyuridine staining. Carbachol induced a significant increase in mucosal epithelial cell proliferation and TGFalpha expression. Sensory desensitisation did neither abolish the increased TGFalpha expression nor the increase in epithelial cell proliferation. Parasympathetic pathways are involved in the control of TGFalpha expression in gastrointestinal mucosa as well as in epithelial cell proliferation.

  17. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3more » mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.« less

  18. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells

    PubMed Central

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-01-01

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells. PMID:27806344

  19. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells.

    PubMed

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-12-06

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells.

  20. Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins.

    PubMed Central

    Saito, H; Hatake, K; Dvorak, A M; Leiferman, K M; Donnenberg, A D; Arai, N; Ishizaka, K; Ishizaka, T

    1988-01-01

    Effects of recombinant human interleukins on hematopoiesis were explored by using suspension cultures of mononuclear cells of human umbilical-cord blood and bone marrow. The results showed that interleukin 5 induced the selective differentiation and proliferation of eosinophils. After 3 weeks in culture with interleukin 5, essentially all nonadherent cells in both bone marrow and cord blood cell cultures became eosinophilic myelocytes. Culture of the same cells with interleukin 4 resulted in the selective growth of OKT3+ lymphocytes. However, OKT3+ cells did not develop if the bone marrow cells were depleted of OKT3+/OKT11+ cells prior to the culture, indicating that interleukin 4 induced the proliferation of a subpopulation of resting T cells present in cord blood and bone marrow cell preparations. In suspension cultures of bone marrow cells and cord blood cells grown in the presence of interleukin 3, basophilic, eosinophilic, and neutrophilic myelocytes and macrophages developed within 2 weeks. By 3 weeks, however, the majority of nonadherent cells became eosinophilic myelocytes. In contrast to mouse bone marrow cell cultures, neither interleukin 3 nor a combination of interleukins 3 and 4 induced the differentiation of mast cells in human bone marrow or cord blood cell cultures. Images PMID:3258425

  1. Inhibition of murine splenic T lymphocyte proliferation by 2-deoxy-D-glucose-induced metabolic stress

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Klinger, J. C.; Akin, C.; Koebel, D. A.; Sonnenfeld, G.

    1994-01-01

    Female Swiss-Webster mice were injected with the glucose analogue 2-deoxy-D-glucose (2-DG), which when administered to rodents induces acute periods of metabolic stress. A single or multiple injections of 2-DG invoked a stress response, as evidenced by increases in serum corticosterone levels. The influence of this metabolic stressor on the blastogenic potential of splenic T lymphocytes was then examined. It was found that one, two, or three injections of 2-DG resulted in depressed T cell proliferative responses, with an attenuation of the effect occurring by the fifth injection. The 2-DG-induced inhibition of T cell proliferation was not attributable to 2-DG-induced cytolysis, as in vitro incubation of naive T cells with varying concentrations of 2-DG did not result in a reduction in cell number or viability, and flow cytometric analysis demonstrated that percentages of CD3, CD4, and CD8 splenic T cells were not altered as a result of 2-DG-induced stress. Incubating naive T cells in varying concentrations of 2-DG resulted in a dose-dependent inhibition of T cell blastogenic potential. Following in vivo exposure to 2-DG, T cell proliferation did not return to normal levels until 3 days after the cessation of 2-DG injections. Administering the beta-adrenergic receptor antagonist propranolol did not reverse the inhibited lymphoproliferation in 2-DG-treated mice. The inhibition in T cell proliferation was not observed, however, in mice that had been adrenalectomized or hypophysectomized and injected with 2-DG.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation

    PubMed Central

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N.; Vainchenker, William; Solary, Eric

    2014-01-01

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. PMID:25143485

  3. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  4. Apigenin inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells.

    PubMed

    Li, Li-Hua; Lu, Bin; Wu, Hong-Ke; Zhang, Hao; Yao, Fei-Fei

    2015-01-01

    It is well known that the proliferation and migration of ASM cells (ASMCs) plays an important role in the pathogenesis of airway remodeling in asthma. Previous studies reported that apigenin can inhibit airway remodeling in a mouse asthma model. However, its effects on the proliferation and migration of ASMCs in asthma remain unknown. Therefore, the aim of our present study was to investigate the effects of apigenin on ASMC proliferation and migration, and explore the possible molecular mechanism. We found that apigenin inhibited transforming growth factor-β1 (TGF-β1)-induced ASMC proliferation. The cell cycle was blocked at G1/S-interphase by apigenin. It also suppressed TGF-β1-induced ASMCs migration. Furthermore, apigenin inhibited TGF-β1-induced Smad 2 and Smad 3 phosphorylation in ASMCs. Taken together, these results suggested that apigenin inhibited the proliferation and migration of TGF-β1-stimulated ASMCs by inhibiting Smad signaling pathway. These data might provide useful information for treating asthma and show that apigenin has potential for attenuating airway remodeling.

  5. GPER/ERK&AKT/NF-κB pathway is involved in cadmium-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells.

    PubMed

    Zhu, Ping; Liao, Ling-Yao; Zhao, Ting-Ting; Mo, Xiao-Mei; Chen, George G; Liu, Zhi-Min

    2017-02-15

    The higher incidence of thyroid cancer in women during reproductive years compared with men and the increased risk associated with the therapeutic use of estrogen have strongly suggested that estrogen may be involved in the occurrence and development of thyroid cancer. Cadmium (Cd) is a potent metalloestrogen that disrupts the endocrine system by mimicking the effects of 17β-estradiol (E2). In the present study, we demonstrate that similar to E2 and G1, a specific agonist for G protein-coupled estrogen receptor (GPER), Cd induces the proliferation, invasion and migration of human WRO and FRO thyroid cancer cells that have endogenous GPER. Moreover, like E2 and G1, Cd leads to a rapid activation of ERK/AKT, and then nuclear translocation of NF-κB, increased expression of cyclin A and D1, and secretion of IL-8, all of which are significantly attenuated by GPER blockage or knock-down in both WRO and FRO cells. Furthermore, the Cd-induced proliferation, invasion and migration are suppressed either by specific inhibitors for GPER, ERK, AKT and NF-κB, or by knock-down of GPER. These results suggest that GPER/ERK&AKT/NF-κB signaling pathway is involved in the Cd-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function.

    PubMed

    Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun

    2012-07-01

    Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.

  7. Adipose-derived stem cells were impaired in restricting CD4+T cell proliferation and polarization in type 2 diabetic ApoE-/- mouse.

    PubMed

    Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming

    2017-07-01

    Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Verteporfin inhibits papillary thyroid cancer cells proliferation and cell cycle through ERK1/2 signaling pathway

    PubMed Central

    Liao, Tian; Wei, Wen-Jun; Wen, Duo; Hu, Jia-Qian; Wang, Yu; Ma, Ben; Cao, Yi-Min; Xiang, Jun; Guan, Qing; Chen, Jia-Ying; Sun, Guo-Hua; Zhu, Yong-Xue; Li, Duan-Shu; Ji, Qing-Hai

    2018-01-01

    Verteporfin, a FDA approved second-generation photosensitizer, has been demonstrated to have anticancer activity in various tumors, but not including papillary thyroid cancer (PTC). In current pre-clinical pilot study, we investigate the effect of verteporfin on proliferation, apoptosis, cell cycle and tumor growth of PTC. Our results indicate verteporfin attenuates cell proliferation, arrests cell cycle in G2/S phase and induces apoptosis of PTC cells. Moreover, treatment of verteporfin dramatically suppresses tumor growth from PTC cells in xenograft mouse model. We further illustrate that exposure to MEK inhibitor U0126 inactivates phosphorylation of ERK1/2 and MEK in verteporfin-treated PTC cells. These data suggest verteporfin exhibits inhibitory effect on PTC cells proliferation and cell cycle partially via ERK1/2 signalling pathway, which strongly encourages the further application of verteporfin in the treatment against PTC. PMID:29721041

  9. Effects and underlying mechanisms of curcumin on the proliferation of vascular smooth muscle cells induced by Chol:M{beta}CD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Li; Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001; Yang Yunbo

    Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from Curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:M{beta}CD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:M{beta}CD treatment. Moreover, curcumin abrogatedmore » the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:M{beta}CD, which led to a suppression of AP-1 promoter activity stimulated by Chol:M{beta}CD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:M{beta}CD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:M{beta}CD. Taking together, our data suggest curcumin inhibits Chol:M{beta}CD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease.« less

  10. Estrogens promote proliferation of the seminoma-like TCam-2 cell line through a GPER-dependent ERα36 induction.

    PubMed

    Wallacides, Angelina; Chesnel, Amand; Ajj, Hussein; Chillet, Martine; Flament, Stéphane; Dumond, Héène

    2012-03-05

    Seminoma, originated from carcinoma in situ cells (CIS), is one of the main causes of cancer in young men. Postpubertal development of these testicular germ cell tumors suggests a hormone-sensitive way of CIS cell proliferation induction. Using the unique seminoma TCam-2 cell line, we demonstrate that both estradiol and testosterone can stimulate TCam-2 cell proliferation in the absence of the estradiol receptor ERα. We establish that estradiol can activate GPER-cAMP/PKA signalling pathway. TCam-2 cells express ERα36, a truncated isoform of the canonical ERα receptor, the expression of which is rapidly induced after estrogen treatment in a GPER-dependent manner. ERα36 knockdown indicates that ERα36 is (i) a downstream target of E(2)-activated GPER/PKA/CREB pathway, (ii) required for estradiol-dependent EGFR expression, (iii) necessary for cell proliferation. Colocalization of ERα36 with cytoskeleton microfilaments suggests a role of estrogens in cell motility. Our results highlight the functional role of ERα36 in context of seminoma cell proliferation and the importance of testing ERα36 in vivo as a possible future prognostic marker. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis.more » Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.« less

  12. Tyrosine kinase activity of EphA2 promotes its S897 phosphorylation and glioblastoma cell proliferation.

    PubMed

    Hamaoka, Yuho; Negishi, Manabu; Katoh, Hironori

    2018-05-23

    EphA2, a member of the Eph family of receptor tyrosine kinases, has been reported to promote tumor malignancy through phosphorylation of serine 897 (S897). Here, we found that overexpression of wild-type EphA2 induced S897 phosphorylation through ERK activation without growth factors or cytokines and promoted glioblastoma cell proliferation. However, overexpression of a kinase-inactive mutant of EphA2 failed to induce ERK activation, S897 phosphorylation, and promotion of glioblastoma cell proliferation. These data suggest that when overexpressed, EphA2 induces ERK activation through its tyrosine kinase activity, leading to S897 phosphorylation and promotion of glioblastoma cell proliferation. Our findings provide a new insight into how EphA2 mediates glioblastoma progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Deletion of eIF2β lysine stretches creates a dominant negative that affects the translation and proliferation in human cell line: A tool for arresting the cell growth.

    PubMed

    Salton, Gabrielle Dias; Laurino, Claudia Cilene Fernandes Correia; Mega, Nicolás Oliveira; Delgado-Cañedo, Andrés; Setterblad, Niclas; Carmagnat, Maryvonnick; Xavier, Ricardo Machado; Cirne-Lima, Elizabeth; Lenz, Guido; Henriques, João Antonio Pêgas; Laurino, Jomar Pereira

    2017-08-03

    Eukaryote initiation factor 2 subunit β (eIF2β) plays a crucial role in regulation protein synthesis, which mediates the interaction of eIF2 with mRNA. eIF2β contains evolutionarily conserved polylysine stretches in amino-terminal region and a zinc finger motif in the carboxy-terminus. The gene eIF2β was cloned under tetracycline transcription control and the polylysine stretches were deleted by site-directed mutagenesis (eIF2βΔ3K). The plasmid was transfected into HEK 293 TetR cells. These cells were analyzed for their proliferative and translation capacities as well as cell death rate. Experiments were performed using gene reporter assays, western blotting, flow cytometry, cell sorting, cell proliferation assays and confocal immunofluorescence. eIF2βΔ3K affected negatively the protein synthesis, cell proliferation and cell survival causing G2 cell cycle arrest and increased cell death, acting in a negative dominant manner against the native protein. Polylysine stretches are also essential for eIF2β translocated from the cytoplasm to the nucleus, accumulating in the nucleolus and eIF2βΔ3K did not make this translocation. eIF2β is involved in the protein synthesis process and should act in nuclear processes as well. eIF2βΔ3K reduces cell proliferation and causes cell death. Since translation control is essential for normal cell function and survival, the development of drugs or molecules that inhibit translation has become of great interest in the scenario of proliferative disorders. In conclusion, our results suggest the dominant negative eIF2βΔ3K as a therapeutic strategy for the treatment of proliferative disorders and that eIF2β polylysine stretch domains are promising targets for this.

  14. Neural control of colonic cell proliferation.

    PubMed

    Tutton, P J; Barkla, D H

    1980-03-15

    The mitotic rate in rat colonic crypts and in dimethylhydrazine-induced colonic carcinomas was measured using a stathmokinetic technique. In sympathectomized animals cell proliferation was retarded in the crypts but not in the tumors, whereas in animals treated with Metaraminol, a drug which releases norepinephrine from nerve terminals, crypt cell but not tumor cell proliferation was accelerated. Blockade of alpha-adrenoceptors also inhibited crypt cell proliferation. However, stimulation of beta-adrenoceptors inhibited and blockade of beta-adrenoceptors accelerated tumor cell proliferation without influencing crypt cell proliferation. Injection of either serotonin or histamine stimulated tumor but not crypt cell proliferation and blockade or serotonin receptors or histamine H2-receptors inhibited tumor cell proliferation. It is postulated that cell proliferation in the colonic crypts, like that in the jejunal crypts, is under both endocrine and autonomic neural control whereas colonic tumor cell division is subject to endocrine regulation alone.

  15. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation.

    PubMed

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N; Vainchenker, William; Solary, Eric; Giraudier, Stéphane

    2014-09-25

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. © 2014 by The American Society of Hematology.

  16. Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice.

    PubMed

    Jojima, Teruo; Uchida, Kohsuke; Akimoto, Kazumi; Tomotsune, Takanori; Yanagi, Kazunori; Iijima, Toshie; Suzuki, Kunihiro; Kasai, Kikuo; Aso, Yoshimasa

    2017-06-01

    Several studies have demonstrated that both native glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists suppress the progression of atherosclerosis in animal models. We investigated whether liraglutide, a GLP-1 analogue, could prevent the development of atherosclerosis in apolipoprotein E knockout mice (ApoE -/- ) on a high-fat diet. We also examined the influence of liraglutide on angiotensin II-induced proliferation of rat vascular smooth muscle cells (VSMCs) via enhancement of AMP-activated protein kinase (AMPK) signaling and regulation of cell cycle progression. Treatment of ApoE -/- mice with liraglutide (400 μg/day for 4 weeks) suppressed atherosclerotic lesions and increased AMPK phosphorylation in the aortic wall. Liraglutide also improved the endothelial function of thoracic aortas harvested from ApoE -/- mice in an ex vivo study. Furthermore, liraglutide increased AMPK phosphorylation in rat VSMCs, while liraglutide-induced activation of AMPK was abolished by exendin 9-39, a GLP-1 antagonist. Moreover, angiotensin (Ang) II-induced proliferation of VSMCs was suppressed by liraglutide in a dose-dependent manner, and flow cytometry of Ang II-stimulated VSMCs showed that liraglutide reduced the percentage of cells in G2/M phase (by arrest in G0/G1 phase). These findings suggest that liraglutide may inhibit Ang II-induced VSMC proliferation by activating AMPK signaling and inducing cell cycle arrest, thus delaying the progression of atherosclerosis independently of its glucose-lowering effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression.

    PubMed

    Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S; Li, Wanda Y; Dominguez, Carmen; Sylvester, Jennifer; Su, Yu-Wen; Lin, Gloria H Y; Snow, Bryan E; Brenner, Dirk; You-Ten, Annick; Haight, Jillian; Inoue, Satoshi; Wakeham, Andrew; Elford, Alisha; Hamilton, Sara; Liang, Yi; Zúñiga-Pflücker, Juan C; He, Housheng Hansen; Ohashi, Pamela S; Mak, Tak W

    2017-01-13

    T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.

  18. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cellmore » proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.« less

  19. Overexpression of microRNA-375 impedes platelet-derived growth factor-induced proliferation and migration of human fetal airway smooth muscle cells by targeting Janus kinase 2.

    PubMed

    Ji, Yamei; Yang, Xin; Su, Huixia

    2018-02-01

    The abnormal proliferation and migration of airway smooth muscle (ASM) cells play a critical role in airway remodeling during the development of asthma. MicroRNAs (miRNAs) have emerged as critical regulators of ASM cell proliferation and migration in airway remodeling. In this study, we aimed to investigate the potential role of miR-375 in the regulation of platelet-derived growth factor (PDGF)-induced fetal ASM cell proliferation and migration. Our results showed that miR-375 expression was significantly decreased in fetal ASM cells that were treated with PDGF. Functional data showed that overexpression of miR-375 inhibited the proliferation and migration of fetal ASM cells, whereas inhibition of miR-375 enhanced the proliferation and migration of fetal ASM cells. The results of bioinformatics analysis and a dual-luciferase reporter assay showed that miR-375 binds directly to the 3'-untranslated region of Janus kinase 2 (JAK2). Further data confirmed that miR-375 negatively regulates the expression of JAK2 in fetal ASM cells. Moreover, miR-375 also impeded the PDGF-induced activation of signal transducer and activator of transcription 3 (STAT3) in fetal ASM cells. However, restoration of JAK2 expression partially reversed the inhibitory effect of miR-375 on fetal ASM cell proliferation and migration. Overall, our results demonstrate that miR-375 inhibits fetal ASM cell proliferation and migration by targeting JAK2/STAT3 signaling. Our study provides a potential therapeutic target for the development of novel treatment strategies for pediatric asthma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Proliferation of the human urothelium is induced by atypical β1 -adrenoceptors.

    PubMed

    Winder, M; Wasén, C; Aronsson, P; Giglio, D

    2015-09-01

    We wanted to assess whether β-adrenoceptors mediate proliferation in the normal and malignant urothelial cell lines UROtsa and T24, respectively. Urothelial cells were cultured for 24 h in the presence of the β-adrenoceptor agonists isoprenaline (β1/2/3 ), dobutamine (β1 ), salbutamol (β2 ), BRL 37344 (β3 ), CGP 12177 (a partial β-agonist) or β-adrenoceptor antagonists (metoprolol; β1 , propranolol; β1/2 ). Phosphorylation of kinases was screened with a Human Phospho-Kinase Array Kit (R&D systems). Intracellular pathways activated by proliferation of urothelial cells were characterized by incubating cells with the MEK1/2 inhibitor PD 98,059, the p38 kinase inhibitor losmapimod or with the Akt 1/2 kinase inhibitor. Proliferation was assessed with the MTT proliferation assay (ATCC). Western blot and immunocytochemistry were used for detection of the β1 -adrenoceptor. Isoprenaline and dobutamine induced proliferation, while salbutamol and BRL 37344 did not. Dobutamine-induced proliferation was not affected by metoprolol or propranolol but was instead antagonized by CGP 12177 in T24 but not in UROtsa. In response to stimulation with dobutamine, Akt1/2/3 was phosphorylated in UROtsa, while ERK1/2 and p38 were phosphorylated in T24. MEK1/2 inhibition blocked basal and dobutamine-induced proliferation in T24 but only basal proliferation in UROtsa. Losmapimod slightly inhibited basal proliferation in T24 but not dobutamine-induced proliferation. Akt 1/2 inhibitor blocked basal and dobutamine-induced proliferation in UROtsa. Immunocytochemistry and Western blot revealed expression of β1 -adrenoceptors in both urothelial cell lines. The present data show that the urothelium expresses atypical β1-adrenoceptors that activate intracellular kinases inducing urothelial proliferation. © 2016 John Wiley & Sons Ltd.

  1. CD147-induced cell proliferation is associated with Smad4 signal inhibition.

    PubMed

    Qin, Hui; Rasul, Azhar; Li, Xin; Masood, Muqaddas; Yang, Guang; Wang, Na; Wei, Wei; He, Xi; Watanabe, Nobumoto; Li, Jiang; Li, Xiaomeng

    2017-09-15

    CD147 is a multifunctional trans-membrane glycoprotein, which is highly expressed in many cancers. However, the mechanism by which CD147 modulates cell proliferation is not fully understood. The aim of this study is to investigate the role of CD147 in cell proliferation associated with the TGF-β/Smad4 signaling pathway. Here, we used cell viability and clone formation assays in LNCaP prostate cancer cells to demonstrate that CD147 promotes cell proliferation. The luciferase assay and western blotting show that silencing CD147 using shRNA enhances transcription and expression of p21 WAF1 . Using immunofluorescence and nuclear-cytoplasmic separation, we show that this is primarily attributed to transport of Smad4 from the cytoplasm to nucleus. Other assays (GST pull-down, co-immunoprecipitation and immunofluorescence) demonstrate that Smad4 is a new interaction partner of CD147, with the Smad4 MH2 domain and CD147 intracellular domain (CD147-ICD) being involved in the interaction. Furthermore, we report that a phosphoserine (pSer) in CD147 (pSer252) is responsible for this interaction and inhibition of the Smad4/p21 WAF1 signal that promotes cell proliferation. Our results provide a novel molecular mechanism for CD147-induced cell proliferation associated with Smad4 signal inhibition. Copyright © 2017. Published by Elsevier Inc.

  2. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells.

    PubMed

    Yu, Ya-Mei; Tsai, Chiang-Chin; Tzeng, Yu-Wen; Chang, Weng-Cheng; Chiang, Su-Yin; Lee, Ming-Fen

    2017-07-01

    Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation and vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.

  3. Upregulation of LYAR induces neuroblastoma cell proliferation and survival.

    PubMed

    Sun, Yuting; Atmadibrata, Bernard; Yu, Denise; Wong, Matthew; Liu, Bing; Ho, Nicholas; Ling, Dora; Tee, Andrew E; Wang, Jenny; Mungrue, Imran N; Liu, Pei Y; Liu, Tao

    2017-09-01

    The N-Myc oncoprotein induces neuroblastoma by regulating gene transcription and consequently causing cell proliferation. Paradoxically, N-Myc is well known to induce apoptosis by upregulating pro-apoptosis genes, and it is not clear how N-Myc overexpressing neuroblastoma cells escape N-Myc-mediated apoptosis. The nuclear zinc finger protein LYAR has recently been shown to modulate gene expression by forming a protein complex with the protein arginine methyltransferase PRMT5. Here we showed that N-Myc upregulated LYAR gene expression by binding to its gene promoter. Genome-wide differential gene expression studies revealed that knocking down LYAR considerably upregulated the expression of oxidative stress genes including CHAC1, which depletes intracellular glutathione and induces oxidative stress. Although knocking down LYAR expression with siRNAs induced oxidative stress, neuroblastoma cell growth inhibition and apoptosis, co-treatment with the glutathione supplement N-acetyl-l-cysteine or co-transfection with CHAC1 siRNAs blocked the effect of LYAR siRNAs. Importantly, high levels of LYAR gene expression in human neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma patients, independent of the best current markers for poor prognosis. Taken together, our data suggest that LYAR induces proliferation and promotes survival of neuroblastoma cells by repressing the expression of oxidative stress genes such as CHAC1 and suppressing oxidative stress, and identify LYAR as a novel co-factor in N-Myc oncogenesis.

  4. Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, María Soledad; Fernandez-Alvarez, Ana; Cucarella, Carme

    2014-04-25

    Highlights: • SGBS cells mostly expressed SREBP-1a variant. • SREBP-1a knockdown decreased the proliferation of SGBS cells without inducing senescence. • We have identified RBBP8 and CDKN3 genes as potential SREBP-1a targets. - Abstract: Sterol regulatory element binding proteins (SREBP), encoded by the Srebf1 and Srebf2 genes, are important regulators of genes involved in cholesterol and fatty acid metabolism. Whereas SREBP-2 controls the cholesterol synthesis, SREBP-1 proteins (-1a and -1c) function as the central hubs in lipid metabolism. Despite the key function of these transcription factors to promote adipocyte differentiation, the roles of SREBP-1 proteins during the preadipocyte state remainmore » unknown. Here, we evaluate the role of SREBP-1 in preadipocyte proliferation using RNA interference technology. Knockdown of the SREBP-1a gene decreased the proliferation rate in human SGBS preadipocyte cell strain without inducing senescence. Furthermore, our data identified retinoblastoma binding protein 8 and cyclin-dependent kinase inhibitor 3 genes as new potential SREBP-1 targets, in addition to cyclin-dependent kinase inhibitor 1A which had already been described as a gene regulated by SREBP-1a. These data suggested a new role of SREBP-1 in adipogenesis via regulation of preadipocyte proliferation.« less

  5. Influence of prostaglandin analogues on epithelial cell proliferation and xenograft growth.

    PubMed Central

    Tutton, P. J.; Barkla, D. H.

    1980-01-01

    The influence of two prostaglandin (PG) analogues, 16,16-dimethyl PG E2 and 16,16-dimethyl PG F2 alpha and of the cyclo-oxygenase inhibitor, flurbiprofen, on epithelial cell proliferation was assessed using a stathmokinetic technique. The epithelia examined were those of the jejunal crypts, the colonic crypts and that of dimethylhydrazine-induced adenocarcinomas of rat colon. The influence of the two prostaglandin analogues, and of flurbiprofen, on the growth of a human colorectal tumour propagated as xenografts in immune-deprived mice was also assessed. The PG E2 analogue transiently inhibited xenograft growth, but was without effect on the mitotic rate in the rat tissues. The PG F2 alpha analogue was also found to inhibit xenograft growth but, unlike the PG E2 analogue, it was found to be a strong inhibitor of cell proliferation in rat colonic tumours, and an accelerator of proliferation in jejunal-crypt cells. The only statistically significant effect of flurbiprofen was to accelerate cell division in the rat colonic tumours. PMID:7362778

  6. Influence of prostaglandin analogues on epithelial cell proliferation and xenograft growth.

    PubMed

    Tutton, P J; Barkla, D H

    1980-01-01

    The influence of two prostaglandin (PG) analogues, 16,16-dimethyl PG E2 and 16,16-dimethyl PG F2 alpha and of the cyclo-oxygenase inhibitor, flurbiprofen, on epithelial cell proliferation was assessed using a stathmokinetic technique. The epithelia examined were those of the jejunal crypts, the colonic crypts and that of dimethylhydrazine-induced adenocarcinomas of rat colon. The influence of the two prostaglandin analogues, and of flurbiprofen, on the growth of a human colorectal tumour propagated as xenografts in immune-deprived mice was also assessed. The PG E2 analogue transiently inhibited xenograft growth, but was without effect on the mitotic rate in the rat tissues. The PG F2 alpha analogue was also found to inhibit xenograft growth but, unlike the PG E2 analogue, it was found to be a strong inhibitor of cell proliferation in rat colonic tumours, and an accelerator of proliferation in jejunal-crypt cells. The only statistically significant effect of flurbiprofen was to accelerate cell division in the rat colonic tumours.

  7. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    PubMed Central

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  8. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation.

    PubMed

    Jain, Manish; Singh, Ankita; Singh, Vishal; Maurya, Preeti; Barthwal, Manoj Kumar

    2016-03-01

    Gingerol inhibits growth of cancerous cells; however, its role in vascular smooth muscle cell (VSMC) proliferation is not known. The present study investigated the effect of gingerol on VSMC proliferation in cell culture and during neointima formation after balloon injury. Rat VSMCs or carotid arteries were harvested at 15 minutes, 30 minutes, 1, 6, 12, and 24 hours of fetal bovine serum (FBS; 10%) stimulation or balloon injury, respectively. Gingerol prevented FBS (10%)-induced proliferation of VSMCs in a dose-dependent manner (50 μmol/L-400 μmol/L). The FBS-induced proliferating cell nuclear antigen (PCNA) upregulation and p27(Kip1) downregulation were also attenuated in gingerol (200 μmol/L) pretreated cells. Fetal bovine serum-induced p38 mitogen-activated protein kinase (MAPK) activation, PCNA upregulation, and p27(Kip1) downregulation were abrogated in gingerol (200 μmol/L) and p38 MAPK inhibitor (SB203580, 10 μmol/L) pretreated cells. Balloon injury induced time-dependent p38 MAPK activation in the carotid artery. Pretreatment with gingerol (200 μmol/L) significantly attenuated injury-induced p38 MAPK activation, PCNA upregulation, and p27(Kip1) downregulation. After 14 days of balloon injury, intimal thickening, neointimal proliferation, and endothelial dysfunction were significantly prevented in gingerol pretreated arteries. In isolated organ bath studies, gingerol (30 nmol/L-300 μmol/L) inhibited phenylephrine-induced contractions and induced dose-dependent relaxation of rat thoracic aortic rings in a partially endothelium-dependent manner. Gingerol prevented FBS-induced VSMC proliferation and balloon injury-induced neointima formation by regulating p38 MAPK. Vasodilator effect of gingerol observed in the thoracic aorta was partially endothelium dependent. Gingerol is thus proposed as an attractive agent for modulating VSMC proliferation, vascular reactivity, and progression of vascular proliferative diseases. © The Author(s) 2015.

  9. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells.

    PubMed

    de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura

    2015-10-02

    Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects

  10. Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells

    PubMed Central

    Gao, Yang; Romero-Aleshire, Melissa J.; Cai, Qi; Price, Theodore J.

    2013-01-01

    Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1. PMID:23884148

  11. Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation.

    PubMed

    Chowdhury, Animesh; Sarkar, Jaganmay; Pramanik, Pijush Kanti; Chakraborti, Tapati; Chakraborti, Sajal

    2016-08-01

    The aim of the present study is to establish the mechanism associated with the proliferation of PASMCs under ANG II stimulation. The results showed that treatment of PASMCs with ANG II induces an increase in cell proliferation and 100 nM was the optimum concentration for maximum increase in proliferation of the cells. Pretreatment of the cells with AT1, but not AT2, receptor antagonist inhibited ANG II induced cell proliferation. Pretreatment with pharmacological and genetic inhibitors of sphingomyelinase (SMase) and sphingosine kinase (SPHK) prevented ANG II-induced cell proliferation. ANG II has also been shown to induce SMase activity, SPHK phosphorylation and S1P production. In addition, ANG II caused an increase in proMMP-2 expression and activation, ERK1/2 phosphorylation and NADPH oxidase activation. Upon inhibition of MMP-2, SMase activity and S1P level were curbed leading to inhibition of cell proliferation. SPHK was phosphorylated by ERK1/2 during ET-1 stimulation of the cells. ANG II-induced ERK1/2 phosphorylation and proMMP-2 expression and activation in the cells were abrogated upon inhibition of NADPH oxidase activity. Overall, NADPH oxidase plays an important role in proMMP-2 expression and activation and that MMP-2 mediated SMC proliferation occurs through the involvement of Spm-Cer-S1P signaling axis under ANG II stimulation of PASMCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Progesterone and DNA Damage Encourage Uterine Cell Proliferation and Decidualization through Up-regulating Ribonucleotide Reductase 2 Expression during Early Pregnancy in Mice*

    PubMed Central

    Lei, Wei; Feng, Xu-Hui; Deng, Wen-Bo; Ni, Hua; Zhang, Zhi-Rong; Jia, Bo; Yang, Xin-Ling; Wang, Tong-Song; Liu, Ji-Long; Su, Ren-Wei; Liang, Xiao-Huan; Qi, Qian-Rong; Yang, Zeng-Ming

    2012-01-01

    Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus. PMID:22403396

  13. Cell proliferation during hair cell regeneration induced by Math1 in vestibular epithelia in vitro

    PubMed Central

    Huang, Yi-bo; Ma, Rui; Yang, Juan-mei; Han, Zhao; Cong, Ning; Gao, Zhen; Ren, Dongdong; Wang, Jing; Chi, Fang-lu

    2018-01-01

    Hair cell regeneration is the fundamental method of correcting hearing loss and balance disorders caused by hair cell damage or loss. How to promote hair cell regeneration is a hot focus in current research. In mammals, cochlear hair cells cannot be regenerated and few vestibular hair cells can be renewed through spontaneous regeneration. However, Math1 gene transfer allows a few inner ear cells to be transformed into hair cells in vitro or in vivo. Hair cells can be renewed through two possible means in birds: supporting cell differentiation and transdifferentiation with or without cell division. Hair cell regeneration is strongly associated with cell proliferation. Therefore, this study explored the relationship between Math1-induced vestibular hair cell regeneration and cell division in mammals. The mouse vestibule was isolated to harvest vestibular epithelial cells. Ad-Math1-enhanced green fluorescent protein (EGFP) was used to track cell division during hair cell transformation. 5-Bromo-2′-deoxyuridine (BrdU) was added to track cell proliferation at various time points. Immunocytochemistry was utilized to determine cell differentiation and proliferation. Results demonstrated that when epithelial cells were in a higher proliferative stage, more of these cells differentiated into hair cells by Math1 gene transfer. However, in the low proliferation stage, no BrdU-positive cells were seen after Math1 gene transfer. Cell division always occurred before Math1 transfection but not during or after Math1 transfection, when cells were labeled with BrdU before and after Ad-Math1-EGFP transfection. These results confirm that vestibular epithelial cells with high proliferative potential can differentiate into new hair cells by Math1 gene transfer, but this process is independent of cell proliferation. PMID:29623936

  14. Role of the p50 subunit of NF-κB in vitamin E-induced changes in mice treated with the peroxisome proliferator, ciprofibrate

    PubMed Central

    Calfee-Mason, Karen G.; Lee, Eun Y.; Spear, Brett T.; Glauert, Howard P.

    2008-01-01

    Peroxisome proliferators (PPs) are a diverse class of chemicals, which cause a dramatic increase in the size and number of hepatic peroxisomes in rodents and eventually lead to the development of hepatic tumors. Nuclear factor-κB (NF-κB) is a transcription factor activated by reactive oxygen and is involved in cell proliferation and apoptosis. Previously we found that the peroxisome proliferator ciprofibrate (CIP) activates NF-κB and that dietary vitamin E decreases CIP-induced NF-κB DNA binding. We therefore hypothesized that inhibition of NF-κB by vitamin E is necessary for effects of vitamin E on CIP-induced cell proliferation and the inhibition of apoptosis by CIP. Sixteen B6129 female mice (p50+/+) and twenty mice deficient in the p50 subunit of NF-κB (p50−/−) were fed a purified diet containing 10 or 250 mg/kg vitamin E (α-tocopherol acetate) for 28 days. At that time, half of the mice were placed on the same diet with 0.01% CIP for 10 days. CIP treatment increased the DNA binding activity of NF-κB and cell proliferation, but had no significant effect on apoptosis. Compared to wild-type mice, the p50−/− mice had lower NF-κB activation, higher basal levels of cell proliferation and apoptosis, and a lower ratio of reduced glutathione to oxidized glutathione (GSH/GSSG). There was approximately a 60% reduction in cell proliferation in the CIP-treated p50−/− mice fed higher vitamin E in comparison to the p50−/− mice fed lower vitamin E. Dietary vitamin E also inhibited the DNA binding activity of NF-κB, increased apoptosis, and increased the GSH/GSSG ratio. This study shows the effects of vitamin E on cell growth parameters do not appear to be solely through decreased NF-κB activation, suggesting that vitamin E is acting by other molecular mechanisms. PMID:18336980

  15. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    PubMed

    Zhuang, Mingzhu; Zhao, Mouming; Qiu, Huijuan; Shi, Dingbo; Wang, Jingshu; Tian, Yun; Lin, Lianzhu; Deng, Wuguo

    2014-01-01

    Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC) cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate) had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides) abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  16. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  17. miRNA-1297 induces cell proliferation by targeting phosphatase and tensin homolog in testicular germ cell tumor cells.

    PubMed

    Yang, Nian-Qin; Zhang, Jian; Tang, Qun-Ye; Guo, Jian-Ming; Wang, Guo-Min

    2014-01-01

    To investigate the role of miR-1297 and the tumor suppressor gene PTEN in cell proliferation of testicular germ cell tumors (TGCT). MTT assays were used to test the effect of miR-1297 on proliferation of the NCCIT testicular germ cell tumor cell line. In NCCIT cells, the expression of PTEN was assessed by Western blotting further. In order to confirm target association between miR-1297 and 3'-UTR of PTEN, a luciferase reporter activity assay was employed. Moreover, roles of PTEN in proliferation of NCCIT cells were evaluated by transfection of PTEN siRNA. Proliferation of NCCIT cells was promoted by miR-1297 in a concentration-dependent manner. In addition, miR-1297 could bind to the 3'-UTR of PTEN based on luciferase reporter activity assay, and reduced expression of PTEN at protein level was found. Proliferation of NCCIT cells was significantly enhanced after knockdown of PTEN by siRNA. miR-1297 as a potential oncogene could induce cell proliferation by targeting PTEN in NCCIT cells.

  18. Polydatin inhibits cell proliferation and induces apoptosis in laryngeal cancer and HeLa cells via suppression of the PDGF/AKT signaling pathway.

    PubMed

    Li, Haixia; Shi, Baoyuan; Li, Yanyun; Yin, Fengfang

    2017-07-01

    Polydatin (PD), a stilbene compound extracted from Polygonum cuspidatum, is suggested to possess anti-cancer activities, including inhibition of cell proliferation, cell cycle arrest, and induction of apoptosis. The platelet-derived growth factor (PDGF)/AKT signaling pathway plays complex roles in tumor suppression. However, the effect of PD on the PDGF/AKT signaling pathway in laryngeal cancer and HeLa cells has not been explored. MTT assay and flow cytometry showed that PD inhibited cell proliferation and induced apoptosis in Hep-2 and AMC-HN-8 cells. Western blot analysis indicated that PD inhibited the expression levels of PDGF-B and phosphorylated AKT (p-AKT) in both cells. Treatment of PDGF-B siRNA or PDGFR inhibitor found that after the PDGF signaling was inactivated, p-AKT expression was significantly decreased in Hep-2 cells. Tumor xenograft experiment in nude mice indicated PD significantly inhibited the growth of Hep-2 cells in vivo. In conclusion, PD inhibited cell proliferation and induced apoptosis in laryngeal cancer and HeLa cells via inactivation of the PDGF/AKT signaling pathway. © 2017 Wiley Periodicals, Inc.

  19. The Influence of Endocrine Disrupting Chemicals on the Proliferation of ERα Knockdown-Human Breast Cancer Cell Line MCF-7; New Attempts by RNAi Technology

    PubMed Central

    Miyakoshi, Takashi; Miyajima, Katsuhiro; Takekoshi, Susumu; Osamura, Robert Yoshiyuki

    2009-01-01

    Bisphenol A (BPA) is a monomer use in manufacturing a wide range of chemical products which include epoxy resins and polycarbonate. It has been reported that BPA increases the cell proliferation activity of human breast cancer MCF-7 cells as well as 17-β estradiol (E2) and diethylstilbestrol (DES). However, BPA induces target genes through ER-dependent and ER-independent manners which are different from the actions induced by E2. Therefore, BPA may be unique in estrogen-dependent cell proliferation compared to other endocrine disrupting chemicals (EDCs). In the present study, to test whether ERα is essential to the BPA-induced proliferation on MCF-7 cells, we suppressed the ERα expression of MCF-7 cells by RNA interference (RNAi). Proliferation effects in the presence of E2, DES and BPA were not observed in ERα-knockdown MCF-7 cells in comparison with control MCF-7. In addition, a marker of proliferative potential, MIB-1 labeling index (LI), showed no change in BPA-treated groups compared with vehicle-treated groups on ERα-knockdown MCF-7 cells. In conclusion, we demonstrated that ERα has a role in BPA-induced cell proliferation as well as E2 and DES. Moreover, this study indicated that the direct knockdown of ERα using RNAi serves as an additional tool to evaluate, in parallel with MCF-7 cell proliferation assay, for potential EDCs. PMID:19492024

  20. Apigenin inhibits renal cell carcinoma cell proliferation

    PubMed Central

    Meng, Shuai; Zhu, Yi; Li, Jiang-Feng; Wang, Xiao; Liang, Zhen; Li, Shi-Qi; Xu, Xin; Chen, Hong; Liu, Ben; Zheng, Xiang-Yi; Xie, Li-Ping

    2017-01-01

    Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC. PMID:28423637

  1. Apigenin inhibits renal cell carcinoma cell proliferation.

    PubMed

    Meng, Shuai; Zhu, Yi; Li, Jiang-Feng; Wang, Xiao; Liang, Zhen; Li, Shi-Qi; Xu, Xin; Chen, Hong; Liu, Ben; Zheng, Xiang-Yi; Xie, Li-Ping

    2017-03-21

    Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC.

  2. PPAR{gamma} activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Kyung-Sun; Department of Pharmacy, Chungnam National University, Yuseong, Daejeon; Kim, Dong-Uk

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPAR{alpha} activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPAR{gamma} activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H{sub 2}O{sub 2}, but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G{sub 1}-S progression to controlmore » levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21{sup Cip1} expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation.« less

  3. [Effect of forced E-cadherin expression on adhesion and proliferation of human breast carcinoma cells].

    PubMed

    Yang, Li-Juan; Liu, Yu-Qin; Gu, Bei; Bian, Xiao-Cui; Feng, Hai-Liang; Yang, Zhen-Li; Liu, Yan-Yan

    2010-12-01

    To investigate the role that E-cadherin (E-cad) plays on cell adhesion and proliferation of human breast carcinoma. E-cad expression vector was transfected into an E-cad-negative human breast carcinoma MDA-MB-231 cells. G418 was used to screen positive clones. E-cad, β-catenin (β-cat) and cyclin D1 expressions of these clones were confirmed by Western blot. Their cell-cell and cell-matrix adhesion abilities were detected. E-cad/β-catenin interaction was confirmed by immunoprecipitation. Cell proliferation was evaluated by MTT. Cell apoptosis was analyzed by flow cytometry. Direct two-step immunocytochemistry was used to detect the localization of β-cat. E-cad(+) cell strains Ecad-231-7 and Ecad-231-9 were established. When cultured in ultra-low-binding dishes Ecad-231 cells grow in suspension while Ecad-231-7 and Ecad-231-9 cells grow in large clamps. When co-cultured with HCT116 cells, the average adhesion rates at 30 min are 39.0%, 60.0% and 59.5% for MDA-MB-231, Ecad-231-7 and Ecad-231-9 respectively. The average detachment rates by EDTA for 5 min are 37.4%, 4.2% and 7.4% respectively. So E-cad expression enhanced hemotypic and heterotypic cell-cell adhesion and cell-matrix adhesion. Forced exogenously expressed E-cad could combine with endogenous β-cat, whereas down stream cyclin D1 expression was significantly decreased, as evidenced by Western blot. The rates of cell apoptosis of MDA-MB-231, Ecad-231-7 and Ecad-231-9 were 1.8%, 2.0% and 2.1%. Expression of E-cad had no obvious effect on the apoptosis of tumor cells with regular culture. β-cat increased in the cytoplasma. Two monoclonal tumor cell strains (Ecad-231-7 and Ecad-231-9) stably expressing E-cad were successfully established. E-cad could enhance adhesion and inhibit proliferation of human breast carcinoma cells through a pathway involving β-cat and cyclin D1.

  4. Group X Phospholipase A2 Stimulates the Proliferation of Colon Cancer Cells by Producing Various Lipid Mediators

    PubMed Central

    Surrel, Fanny; Jemel, Ikram; Boilard, Eric; Bollinger, James G.; Payré, Christine; Mounier, Carine M.; Talvinen, Kati A.; Laine, Veli J. O.; Nevalainen, Timo J.; Gelb, Michael H.

    2009-01-01

    Among mammalian secreted phospholipases A2 (sPLA2s), the group X enzyme has the most potent hydrolyzing capacity toward phosphatidylcholine, the major phospholipid of cell membrane and lipoproteins. This enzyme has recently been implicated in chronic inflammatory diseases such as atherosclerosis and asthma and may also play a role in colon tumorigenesis. We show here that group X sPLA2 [mouse (m)GX] is one of the most highly expressed PLA2 in the mouse colon and that recombinant mouse and human enzymes stimulate proliferation and mitogen-activated protein kinase activation of various colon cell lines, including Colon-26 cancer cells. Among various recombinant sPLA2s, mGX is the most potent enzyme to stimulate cell proliferation. Based on the use of sPLA2 inhibitors, catalytic site mutants, and small interfering RNA silencing of cytosolic PLA2α and M-type sPLA2 receptor, we demonstrate that mGX promotes cell proliferation independently of the receptor and via its intrinsic catalytic activity and production of free arachidonic acid and lysophospholipids, which are mitogenic by themselves. mGX can also elicit the production of large amounts of prostaglandin E2 and other eicosanoids from Colon-26 cells, but these lipid mediators do not play a role in mGX-induced cell proliferation because inhibitors of cyclooxygenases and lipoxygenases do not prevent sPLA2 mitogenic effects. Together, our results indicate that group X sPLA2 may play an important role in colon tumorigenesis by promoting cancer cell proliferation and releasing various lipid mediators involved in other key events in cancer progression. PMID:19602573

  5. Group X phospholipase A2 stimulates the proliferation of colon cancer cells by producing various lipid mediators.

    PubMed

    Surrel, Fanny; Jemel, Ikram; Boilard, Eric; Bollinger, James G; Payré, Christine; Mounier, Carine M; Talvinen, Kati A; Laine, Veli J O; Nevalainen, Timo J; Gelb, Michael H; Lambeau, Gérard

    2009-10-01

    Among mammalian secreted phospholipases A2 (sPLA(2)s), the group X enzyme has the most potent hydrolyzing capacity toward phosphatidylcholine, the major phospholipid of cell membrane and lipoproteins. This enzyme has recently been implicated in chronic inflammatory diseases such as atherosclerosis and asthma and may also play a role in colon tumorigenesis. We show here that group X sPLA(2) [mouse (m)GX] is one of the most highly expressed PLA(2) in the mouse colon and that recombinant mouse and human enzymes stimulate proliferation and mitogen-activated protein kinase activation of various colon cell lines, including Colon-26 cancer cells. Among various recombinant sPLA(2)s, mGX is the most potent enzyme to stimulate cell proliferation. Based on the use of sPLA(2) inhibitors, catalytic site mutants, and small interfering RNA silencing of cytosolic PLA(2)alpha and M-type sPLA(2) receptor, we demonstrate that mGX promotes cell proliferation independently of the receptor and via its intrinsic catalytic activity and production of free arachidonic acid and lysophospholipids, which are mitogenic by themselves. mGX can also elicit the production of large amounts of prostaglandin E2 and other eicosanoids from Colon-26 cells, but these lipid mediators do not play a role in mGX-induced cell proliferation because inhibitors of cyclooxygenases and lipoxygenases do not prevent sPLA(2) mitogenic effects. Together, our results indicate that group X sPLA(2) may play an important role in colon tumorigenesis by promoting cancer cell proliferation and releasing various lipid mediators involved in other key events in cancer progression.

  6. Benzene and its metabolite decreases cell proliferation via LncRNA-OBFC2A-mediated anti-proliferation effect involving NOTCH1 and KLF15

    PubMed Central

    Sun, Pengling; Wang, Jing; Guo, Xiaoli; Chen, Yujiao; Xing, Caihong; Gao, Ai

    2017-01-01

    LncRNA has been considered to play a crucial role in the progression of several diseases by affecting cell proliferation. However, its role in benzene toxicity remains unclear. Our study showed that the expression of lncRNA-OBFC2A increased accompanied with the change of cell proliferation related-genes in benzene-exposed workers. In vitro experiments, 1,4-Benzoquinone dose-dependently inhibited cell proliferation and simultaneously caused the decrease of NOTCH1 expression and the increase of KLF15 in AHH-1 cell lines. Meanwhile, 1, 4-Benzoquinone obviously increased the expression of lncRNA-OBFC2A, which was consistent with our previous population results. Therefore, we propose that lncRNA-OBFC2A is involved in benzene toxicity by regulating cell proliferation. Further, we successfully constructed a lentivirus model of interfering the expression of lncRNA-OBFC2A. After interfering lncRNA-OBFC2A, the cell proliferation inhibition and the expression of NOTCH1 and KLF15 induced by 1, 4-Benzoquinone were reversed. Subsequently, RNA fluorescence in situ Hybridization assay showed that lncRNA-OBFC2A was located in cell nuclei. These results suggest that benzene and its metabolite decreases cell proliferation via LncRNA-OBFC2A-mediated anti-proliferation effect involving NOTCH1 and KLF15. LncRNA-OBFC2A can be a potential biomarker for benzene toxicity. PMID:28388563

  7. Benzene and its metabolite decreases cell proliferation via LncRNA-OBFC2A-mediated anti-proliferation effect involving NOTCH1 and KLF15.

    PubMed

    Sun, Pengling; Wang, Jing; Guo, Xiaoli; Chen, Yujiao; Xing, Caihong; Gao, Ai

    2017-06-20

    LncRNA has been considered to play a crucial role in the progression of several diseases by affecting cell proliferation. However, its role in benzene toxicity remains unclear. Our study showed that the expression of lncRNA-OBFC2A increased accompanied with the change of cell proliferation related-genes in benzene-exposed workers. In vitro experiments, 1,4-Benzoquinone dose-dependently inhibited cell proliferation and simultaneously caused the decrease of NOTCH1 expression and the increase of KLF15 in AHH-1 cell lines. Meanwhile, 1, 4-Benzoquinone obviously increased the expression of lncRNA-OBFC2A, which was consistent with our previous population results. Therefore, we propose that lncRNA-OBFC2A is involved in benzene toxicity by regulating cell proliferation. Further, we successfully constructed a lentivirus model of interfering the expression of lncRNA-OBFC2A. After interfering lncRNA-OBFC2A, the cell proliferation inhibition and the expression of NOTCH1 and KLF15 induced by 1, 4-Benzoquinone were reversed. Subsequently, RNA fluorescence in situ Hybridization assay showed that lncRNA-OBFC2A was located in cell nuclei. These results suggest that benzene and its metabolite decreases cell proliferation via LncRNA-OBFC2A-mediated anti-proliferation effect involving NOTCH1 and KLF15. LncRNA-OBFC2A can be a potential biomarker for benzene toxicity.

  8. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr; Yoon, Hye-Jin; Yoon, Kyung-Ae

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstreammore » signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.« less

  9. The selective progesterone receptor modulator CDB4124 inhibits proliferation and induces apoptosis in uterine leiomyoma cells.

    PubMed

    Luo, Xia; Yin, Ping; Coon V, John S; Cheng, You-Hong; Wiehle, Ronald D; Bulun, Serdar E

    2010-05-15

    To evaluate the effects of selective P receptor (PR) modulator CDB4124 on cell proliferation and apoptosis in cultured human uterine leiomyoma smooth muscle (LSM) cells and control myometrial smooth muscle (MSM) cells in matched uteri. Laboratory research. Academic medical center. Premenopausal women (n = 12) undergoing hysterectomy for leiomyoma-related symptoms. Treatment of primary LSM and MSM cells with CDB4124 (10(-8)-10(-6) M) or vehicle for 24, 48, or 72 hours. Western blot for protein expression of proliferating cell nuclear antigen, cleaved polyadenosine 5'-diphosphate-ribose polymerase, Bcl-2, and Krüppel-like transcription factor 11; 93-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate viable cell numbers; and real-time polymerase chain reaction (PCR) to quantify messenger RNA (mRNA) levels. Treatment with CDB4124 significantly decreased levels of the proliferation marker proliferating cell nuclear antigen, the number of viable LSM cells, and the antiapoptotic protein Bcl-2. On the other hand, treatment with CDB4124 increased levels of the apoptosis marker cleaved polyadenosine 5'-diphosphate-ribose polymerase and the tumor suppressor Krüppel-like transcription factor 11 in a dose- and time-dependent manner in LSM cells. In matched MSM cells, however, CDB4124 did not affect cell proliferation or apoptosis. CDB4124 selectively inhibits proliferation and induces apoptosis in LSM but not in MSM cells. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Betacellulin-Induced Beta Cell Proliferation and Regeneration Is Mediated by Activation of ErbB-1 and ErbB-2 Receptors

    PubMed Central

    Oh, Yoon Sin; Shin, Seungjin; Lee, Youn-Jung; Kim, Eung Hwi; Jun, Hee-Sook

    2011-01-01

    Background Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation. Methodology/Principal Findings The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes. Conclusions/Significance These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells. PMID:21897861

  11. Effect of sodium butyrate on cell proliferation and cell cycle in porcine intestinal epithelial (IPEC-J2) cells.

    PubMed

    Qiu, Yueqin; Ma, Xianyong; Yang, Xuefen; Wang, Li; Jiang, Zongyong

    2017-04-01

    Conflicting results have been reported that butyrate in normal piglets leads either to an increase or to a decrease of jejunal villus length, implying a possible effect on the proliferation of enterocytes. No definitive study was found for the biological effects of butyrate in porcine jejunal epithelial cells. The present study used IPEC-J2 cells, a non-transformed jejunal epithelial line to evaluate the direct effects of sodium butyrate on cell proliferation, cell cycle regulation, and apoptosis. Low concentrations (0.5 and 1 mM) of butyrate had no effect on cell proliferation. However, at 5 and 10 mM, sodium butyrate significantly decreased cell viability, accompanied by reduced levels of p-mTOR and PCNA protein. Sodium butyrate, in a dose-dependent manner, induced cell cycle arrest in G0/G1 phase and reduced the numbers of cells in S phase. In addition, relative expression of p21, p27, and pro-apoptosis bak genes, and protein levels of p21Waf1/Cip1, p27Kip1, cyclinD3, CDK4, and Cleave-caspase3 were increased by higher concentrations of sodium butyrate (1, 5, 10 mM), and the levels of cyclinD1 and CDK6 were reduced by 5 and 10 mM butyrate. Butyrate increased the phosphorylated form of the signaling molecule p38 and phosphorylated JNK. In conclusion, the present in vitro study indicated that sodium butyrate inhibited the proliferation of IPEC-J2 cells by inducing cell cycle arrest in the G0/G1 phase of cell cycles and by increasing apoptosis at high concentrations.

  12. Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie

    A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CMmore » treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration.« less

  13. PI3K is required for both basal and LPA-induced DNA synthesis in oral carcinoma cells.

    PubMed

    Aasrum, Monica; Tjomsland, Vegard; Thoresen, G Hege; De Angelis, Paula M; Christoffersen, Thoralf; Brusevold, Ingvild J

    2016-07-01

    The glycerophospholipid lysophosphatidic acid (LPA), which is present in most tissues and in high concentrations in saliva, may exert profound effects on oral cancer cells. We have investigated mitogenic signalling induced by LPA in the two oral carcinoma cell lines, D2 and E10, focusing on the role of EGFR transactivation and downstream pathways. Two oral squamous carcinoma cell lines, D2 and E10, were analysed for effects of LPA on signalling pathways and induction of DNA synthesis. Pathway activation was investigated by examining phosphorylation of signalling proteins and by the use of specific pathway inhibitors. The D2 cells had higher levels of activated signalling proteins and higher DNA synthesis activity in the basal condition than E10 cells. EGF did not induce proliferation in D2 cells, whereas LPA induced proliferation in both cell lines, by mechanisms depending on EGFR transactivation. Release of EGFR ligands was involved in basal and LPA-induced proliferation in both D2 and E10 cells. The proliferation in D2 cells was dependent on the PI3K/Akt pathway, but not the MEK/ERK pathway. In E10 cells, the PI3K/Akt, MEK/ERK and p38 pathways were all involved in the proliferation. Transactivation of EGFR is required for LPA-induced DNA synthesis in D2 and E10 cells. Our results also show that although proliferation of oral carcinoma cells is regulated by several pathways, and differentially in E10 and D2 cells, the PI3K pathway has a crucial role in both cell lines. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells

    PubMed Central

    Brocker, Chad N.; Yue, Jiang; Kim, Donghwan; Qu, Aijuan; Bonzo, Jessica A.

    2017-01-01

    Peroxisome proliferator-activated receptor-α (PPARA) is a nuclear transcription factor and key mediator of systemic lipid metabolism. Prolonged activation in rodents causes hepatocyte proliferation and hepatocellular carcinoma. Little is known about the contribution of nonparenchymal cells (NPCs) to PPARA-mediated cell proliferation. NPC contribution to PPARA agonist-induced hepatomegaly was assessed in hepatocyte (Ppara△Hep)- and macrophage (Ppara△Mac)-specific Ppara null mice. Mice were treated with the agonist Wy-14643 for 14 days, and response of conditional null mice was compared with conventional knockout mice (Ppara−/−). Wy-14643 treatment caused weight loss and severe hepatomegaly in wild-type and Ppara△Mac mice, and histological analysis revealed characteristic hepatocyte swelling; Ppara△Hep and Ppara−/− mice were protected from these effects. Ppara△Mac serum chemistries, as well as aspartate aminotransferase and alanine aminotransferase levels, matched wild-type mice. Agonist-treated Ppara△Hep mice had elevated serum cholesterol, phospholipids, and triglycerides when compared with Ppara−/− mice, indicating a possible role for extrahepatic PPARA in regulating circulating lipid levels. BrdU labeling confirmed increased cell proliferation only in wild-type and Ppara△Mac mice. Macrophage PPARA disruption did not impact agonist-induced upregulation of lipid metabolism, cell proliferation, or DNA damage and repair-related gene expression, whereas gene expression was repressed in Ppara△Hep mice. Interestingly, downregulation of inflammatory cytokines IL-15 and IL-18 was dependent on macrophage PPARA. Cell type-specific regulation of target genes was confirmed in primary hepatocytes and Kupffer cells. These studies conclusively show that cell proliferation is mediated exclusively by PPARA activation in hepatocytes and that Kupffer cell PPARA has an important role in mediating the anti-inflammatory effects of PPARA agonists. PMID

  15. The role of S1PR2 in bile acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice

    PubMed Central

    Wang, Yongqing; Aoki, Hiroaki; Yang, Jing; Peng, Kesong; Liu, Runping; Li, Xiaojiaoyang; Qiang, Xiaoyan; Sun, Lixin; Gurley, Emily C; Lai, Guanhua; Zhang, Luyong; Liang, Guang; Nagahashi, Masayuki; Takabe, Kazuaki; Pandak, William M; Hylemon, Phillip B.; Zhou, Huiping

    2017-01-01

    Bile duct obstruction is a potent stimulus for cholangiocyte proliferation, especially for large cholangiocytes. Our previous studies reported that conjugated bile acids (CBAs) activate the AKT and ERK1/2 signaling pathways via the sphingosine 1-phosphate receptor 2 (S1PR2) in hepatocytes and cholangiocarcinoma cells. It also has been reported that taurocholate (TCA) promotes large cholangiocyte proliferation and protects cholangiocytes from bile duct ligation (BDL)-induced apoptosis. However, the role of S1PR2 in bile acid-mediated cholangiocyte proliferation and cholestatic liver injury has not been elucidated. Here we report that S1PR2 is the predominant S1PR expressed in cholangiocytes. Both TCA- and S1P-induced activation of ERK1/2 and AKT were inhibited by JTE-013, a specific antagonist of S1PR2, in cholangiocytes. In addition, TCA- and S1P-induced cell proliferation and migration were inhibited by JTE-013 and a specific shRNA of S1PR2 as well as chemical inhibitors of ERK1/2 and AKT in mouse cholangiocytes. In BDL mice, the expression of S1PR2 was upregulated in whole liver and cholangiocytes. S1PR2 deficiency significantly reduced BDL-induced cholangiocyte proliferation and cholestatic injury as indicated by significant reduction of inflammation and liver fibrosis in S1PR2−/− mice. Treatment of BDL mice with JTE-013 significantly reduced total bile acid levels in the serum and cholestatic liver injury. This study suggests that the CBA-induced activation of S1PR2-mediated signaling pathways plays a critical role in obstructive cholestasis and may represent a novel therapeutic target for cholestatic liver diseases. PMID:28120434

  16. OPC-12759 increases proliferation of cultured rat conjunctival goblet cells.

    PubMed

    Ríos, José D; Shatos, Marie; Urashima, Hiroki; Tran, Hao; Dartt, Darlene A

    2006-06-01

    To determine if the gastroprotective drug OPC-12759 increased proliferation of rat conjunctival goblet cells in culture. Cultured goblet cells were incubated with 10(-12) to 10(-8) M OPC-12759 for 1 to 7 days. Fetal bovine serum (FBS) was used as a positive control. Cell proliferation was determined by a MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] colorimetric assay and by immunohistochemical staining with anti-Ki-67, a marker of cell division. Goblet cells were identified by double-labeling with anti-Ki-67, a marker of cell division, and Ulex europaeus agglutinin I lectin, anti-MUC5AC and anticytokeratin 7. Stratified squamous cells were identified by using Griffonia (Bandeiraea) simplicifolia lectin and anticytokeratin 4 antibody. As determined by MTT conversion to formazan, OPC-12579 at 10(-11) M induced an almost 2-fold increase in goblet cell proliferation on Days 1 and 3 of incubation but not on Days 5 and 7. The FBS at 10% increased cell proliferation by 2- to 3-fold at each time point. Daily replenishment of OPC-12579 for 3 consecutive days induced cell proliferation at all concentrations. Proliferation as determined by the number of Ki-67 positive cells increased by 4- and 3-fold at Days 1 and 3, respectively with addition of 10(-11) M OPC-12579. The FBS at 10% induced a 10-fold increase in goblet cell proliferation on Days 1, 3, and 5. Colocalization of Ulex europaeus agglutinin I, MUC5AC and anticytokeratin 7 with Ki-67 indicated that proliferating cells were goblet cells. Proliferating cells were negative for the nongoblet cell markers Bandeiraea lectin and anticytokeratin 4. The OPC-12759 stimulates proliferation of conjunctival goblet cells in primary culture.

  17. Role of magnolol in the proliferation of vascular smooth muscle cells.

    PubMed

    Wu, L; Zou, H; Xia, W; Dong, Q; Wang, L

    2015-05-01

    Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of vascular remodeling. Recently, magnolol has been reported to have a potential role in regulating tumor necrosis factor α-induced proliferation of VSMCs. However, the role of magnolol in platelet-derived growth factor (PDGF)-induced proliferation of VSMCs remains unknown. Our purpose was to elucidate the effect of magnolol on the proliferation of VSMCs induced by PDGF-BB and to investigate the underlying molecular mechanisms. Our data demonstrated that magnolol inhibited rat VSMC proliferation and DNA synthesis stimulated by 20 ng/ml PDGF-BB without causing cell cytotoxicity. Flow cytometric analysis showed that magnolol inhibited S-phase entry of VSMCs. We also demonstrated that magnolol caused this effect by inhibiting the mRNA and protein expression of cyclin D1, cyclin E, and cyclin-dependent kinases 2 and 4 in PDGF-BB-stimulated VSMCs. Further analysis showed that the inhibitory effect of magnolol on the proliferation of VSMCs was associated with the inhibition of the PDGF-BB-stimulated production of intracellular reactive oxygen species (ROS) and Ras, MEK, and ERK1/2 activation. These results demonstrate that magnolol can block the proliferation of VSMCs through inhibition of intracellular ROS production and Ras-MEK-ERK1/2 pathways. Magnolol, therefore, has a potential application in preventing atherosclerosis and restenosis.

  18. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading.

    PubMed

    Zhang, Chongxu; Adamos, Crystal; Oh, Myung-Jin; Baruah, Jugajyoti; Ayee, Manuela A A; Mehta, Dolly; Wary, Kishore K; Levitan, Irena

    2017-09-01

    Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu 2+ -oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu 2+ -oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu 2+ -oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27 kip1 ). Both Cu 2+ -oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu 2+ - and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27 kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis. Copyright © 2017 the American Physiological Society.

  19. MiR-30e suppresses proliferation of hepatoma cells via targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Guoxing; Shi, Hui; Li, Jiong

    Aberrant microRNA expression has been shown to be characteristic of many cancers. It has been reported that the expression levels of miR-30e are decreased in liver cancer tissues. However, the role of miR-30e in hepatocellular carcinoma remains poorly understood. In the present study, we investigated the significance of miR-30e in hepatocarcinogenesis. Bioinformatics analysis reveals a putative target site of miR-30e in the 3′-untranslated region (3′UTR) of prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA. Moreover, luciferase reporter gene assays verified that miR-30e directly targeted 3′UTR of P4HA1 mRNA. Then, we demonstrated that miR-30e was able to reduce the expression of P4HA1 atmore » the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis. Enforced expression of miR-30e suppressed proliferation of HepG2 cells by 5-ethynyl-2-deoxyuridine (EdU) assay and reduced colony formation of these cells by colony formation analysis. Conversely, anti-miR-30e enhanced the proliferation of hepatoma cells in vitro. Interestingly, the ectopic expression of P4HA1 could efficiently rescue the inhibition of cell proliferation mediated by miR-30e in HepG2 cells. Meanwhile, silencing of P4HA1 abolished the anti-miR-30e-induced proliferation of cells. Clinically, quantitative real-time PCR showed that miR-30e was down-regulated in liver tumor tissues relative to their peritumor tissues. The expression levels of miR-30e were negatively correlated to those of P4HA1 mRNA in clinical liver tumor tissues. Thus, we conclude that miR-30e suppresses proliferation of hepatoma cells through targeting P4HA1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • P4HA1 is a novel target gene of miR-30e. • P4HA1 is increased in clinical HCC tissues. • MiR-30e is negatively correlated with P4HA1 in clinical HCC tissues. • MiR-30e suppresses the proliferation of HCC cells

  20. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahni, Abha; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; Wang, Nadan

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reportedmore » that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.« less

  1. Crocin prevents platelet‑derived growth factor BB‑induced vascular smooth muscle cells proliferation and phenotypic switch.

    PubMed

    Tong, Lijian; Qi, Guoxian

    2018-06-01

    The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet‑derived growth factor‑BB (PDGF‑BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF‑BB‑induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF‑BB‑induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit‑8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF‑BB‑induced VSMCs proliferation compared with the PDGF‑BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF‑BB‑induced increase in contractile protein α‑smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF‑BB‑induced Janus kinase (JAK)‑signal transducer and activator of transcription 3 (STAT3) and extracellular signal‑regulated kinase (ERK)/Kruppel‑like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF‑BB‑induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF‑BB‑induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.

  2. New iridoids from Verbascum nobile and their effect on lectin-induced T cell activation and proliferation.

    PubMed

    Dimitrova, Petya; Alipieva, Kalina; Grozdanova, Tsvetinka; Simova, Svetlana; Bankova, Vassya; Georgiev, Milen I; Popova, Milena P

    2018-01-01

    The Verbascum species are widely used traditional herb remedies against respiratory, inflammatory conditions and disorders. In the present study methanol extract of the aerial parts of the endemic Verbascum nobile Velen, was investigated and two novel iridoid glycosides 1 and 2, together with nine known constituents: iridoids, phenylethanoids, and saponins characteristic of Verbascum genus were identified. Further, the biological activity of the extract and selected isolated compounds on concanavalin (Con A)-induced T cell proliferation and activation of human Jurkat T cell line and splenic murine CD3 T cells was evaluated. T cell growth was studied by colorimetric-based WST proliferation assay while DNA content, cell cycling, dynamic of cell proliferation, expression of activation markers, intracellular expression of cytokine IFN-γ, and phosphorylation of ERK were analyzed by flow cytometry. Caspase-mediated apoptosis resulting in a poly (ADP-ribose) polymerase (PARP) cleavage was assessed by colorimetric in-cell kit. It was found that the extract, and all tested compounds (1, 2, 3 and 9) inhibited lectin-induced cell growth of Jurkat T cell line. The novel compounds decreased the frequencies of cells in S phase without causing a significant cell cycle arrest at G1 phase, caspases-mediated apoptosis and/or a profound change in the dynamic of splenic murine CD3 + T cell proliferation. Both compounds showed stronger inhibitory effect on Con A-induced ERK phosphorylation than the known bioactive compounds 3 and 9, and suppressed the expression of early activation marker CD69, the intracellular level of IFN-γ, and the generation of CD3 + IFN-γ + effectors. Our data suggest that the novel iridoid glycosides might have a potential to modulate T cell-related pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop.

    PubMed

    Carroll, Molly J; Kapur, Arvinder; Felder, Mildred; Patankar, Manish S; Kreeger, Pamela K

    2016-12-27

    In ovarian cancer, a high ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages correlates with poor patient prognosis. The mechanisms driving poor tumor outcome as a result of the presence of M2 macrophages in the tumor microenvironment remain unclear and are challenging to study with current techniques. Therefore, in this study we utilized a micro-culture device previously developed by our lab to model concentrated paracrine signaling in order to address our hypothesis that interactions between M2 macrophages and ovarian cancer cells induce tumor cell proliferation. Using the micro-culture device, we determined that co-culture with M2-differentiated primary macrophages or THP-1 increased OVCA433 proliferation by 10-12%. This effect was eliminated with epidermal growth factor receptor (EGFR) or heparin-bound epidermal growth factor (HB-EGF) neutralizing antibodies and HBEGF expression in peripheral blood mononuclear cells from ovarian cancer patients was 9-fold higher than healthy individuals, suggesting a role for HB-EGF in tumor progression. However, addition of HB-EGF at levels secreted by macrophages or macrophage-conditioned media did not induce proliferation to the same extent, indicating a role for other factors in this process. Matrix metalloproteinase-9, MMP-9, which cleaves membrane-bound HB-EGF, was elevated in co-culture and its inhibition decreased proliferation. Utilizing inhibitors and siRNA against MMP9 in each population, we determined that macrophage-secreted MMP-9 released HB-EGF from macrophages, which increased MMP9 in OVCA433, resulting in a positive feedback loop to drive HB-EGF release and increase proliferation in co-culture. Identification of multi-cellular interactions such as this may provide insight into how to most effectively control ovarian cancer progression.

  4. E2F mediates enhanced alternative polyadenylation in proliferation.

    PubMed

    Elkon, Ran; Drost, Jarno; van Haaften, Gijs; Jenal, Mathias; Schrier, Mariette; Oude Vrielink, Joachim A F; Agami, Reuven

    2012-07-02

    The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation.

  5. E2F mediates enhanced alternative polyadenylation in proliferation

    PubMed Central

    2012-01-01

    Background The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Results Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Conclusions Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation. PMID:22747694

  6. Disorder of G2-M Checkpoint Control in Aniline-Induced Cell Proliferation in Rat Spleen.

    PubMed

    Wang, Jianling; Wang, Gangduo; Khan, M Firoze

    2015-01-01

    Aniline, a toxic aromatic amine, is known to cause hemopoietic toxicity both in humans and animals. Aniline exposure also leads to toxic response in spleen which is characterized by splenomegaly, hyperplasia, fibrosis and the eventual formation of tumors on chronic in vivo exposure. Previously, we have shown that aniline exposure leads to iron overload, oxidative DNA damage, and increased cell proliferation, which could eventually contribute to a tumorigenic response in the spleen. Despite our demonstration that cell proliferation was associated with deregulation of G1 phase cyclins and increased expression of G1 phase cyclin-dependent kinases (CDKs), molecular mechanisms, especially the regulation of G2 phase and contribution of epigenetic mechanisms in aniline-induced splenic cellular proliferation remain largely unclear. This study therefore, mainly focused on the regulation of G2 phase in an animal model preceding a tumorigenic response. Male Sprague-Dawley rats were given aniline (0.5 mmol/kg/day) in drinking water or drinking water only (controls) for 30 days, and expression of G2 phase cyclins, CDK1, CDK inhibitors and miRNAs were measured in the spleen. Aniline treatment resulted in significant increases in cell cycle regulatory proteins, including cyclins A, B and CDK1, particularly phosphor-CDK1, and decreases in CDK inhibitors p21 and p27, which could promote the splenocytes to go through G2/M transition. Our data also showed upregulation of tumor markers Trx-1 and Ref-1 in rats treated with aniline. More importantly, we observed lower expression of miRNAs including Let-7a, miR-15b, miR24, miR-100 and miR-125, and greater expression of CDK inhibitor regulatory miRNAs such as miR-181a, miR-221 and miR-222 in the spleens of aniline-treated animals. Our findings suggest that significant increases in the expression of cyclins, CDK1 and aberrant regulation of miRNAs could lead to an accelerated G2/M transition of the splenocytes, and potentially to a

  7. Anisomycin-induced GATA-6 degradation accompanying a decrease of proliferation of colorectal cancer cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushijima, Hironori; Horyozaki, Akiko; Maeda, Masatomo, E-mail: mmaeda@nupals.ac.jp

    Transcription factor GATA-6 plays a key role in normal cell differentiation of the mesoderm and endoderm. On the other hand, GATA-6 is abnormally overexpressed in many clinical gastrointestinal cancer tissue samples, and accelerates cell proliferation or an anti-apoptotic response in cancerous tissues. We previously showed that activation of the JNK signaling cascade causes proteolysis of GATA-6. In this study, we demonstrated that anisomycin, a JNK activator, stimulates nuclear export of GATA-6 in a colorectal cancer cell line, DLD-1. Concomitantly, anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest in a plate culture. However, it did not induce apoptosis undermore » growth arrest conditions. Furthermore, the growth of DLD-1 cells in a spheroid culture was suppressed by anisomycin. Although 5-FU showed only a slight inhibitory effect on 3D spheroid cultures, the same concentration of 5-FU together with a low concentration of anisomycin exhibited strong growth inhibition. These results suggest that the induction of GATA-6 dysfunction may be more effective for chemotherapy for colorectal cancer, although the mechanism underlying the synergistic effect of 5-FU and anisomycin remains unknown. - Highlights: • Anisomycin induces proteolysis of GATA-6 in DLD-1 cells. • Anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest. • Anisomycin suppresses the growth of spheroids of DLD-1, and enhances the effect of 5-FU.« less

  8. GBP3 promotes glioma cell proliferation via SQSTM1/p62-ERK1/2 axis.

    PubMed

    Xu, Hui; Sun, Lili; Zheng, Yanwen; Yu, Shuye; Ou-Yang, Jia; Han, Hui; Dai, Xingliang; Yu, Xiaoting; Li, Ming; Lan, Qing

    2018-01-01

    Guanylate binding proteins (GBPs) are interferon-inducible large GTPases and play a crucial role in cell-autonomous immunity. However, the biology function of GBPs in cancer remains elusive. GBP3 is specifically expressed in adult brain. Here we show that GBP3 is highly elevated in human glioma tumors and glioma cell lines. Overexpression of GBP3 dramatically increased glioma cell proliferation whereas silencing GBP3 by RNA interference produced opposite effects. We further showed that GBP3 expression was able to induce sequestosome-1(SQSTM1, also named p62) expression and activate extracellular signal-regulated kinase (ERK1/2). The SQSTM1-ERK1/2 signaling cascade was essential for GBP3-promoted cell growth because depletion of SQSTM1 markedly reduced the phosphorylated ERK1/2 levels and GBP3-mediated cell growth, and inhibition of mitogen-activated protein kinase/ERK kinase abolished GBP3-induced glioma cell proliferation. Consistently, GBP3 overexpression significantly promoted glioma tumor growth in vivo and its expression was inversely correlated with the survival rate of glioma patients. Taken together, these results for the first time suggest that GBP3 contributes to the proliferation of glioma cells via regulating SQSTM1-ERK1/2 pathway, and GBP3 might represent as a new potential therapeutic target against glioma. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1more » plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.« less

  10. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    PubMed

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. HPV16 E6 Promotes Breast Cancer Proliferation via Upregulation of COX-2 Expression

    PubMed Central

    Li, Y. Z.; Zhang, Z. Y.; Wang, J. Q.

    2017-01-01

    Background. Breast cancer remains the leading cause of cancer-related mortality worldwide. It has been indicated that human papillomaviruses 16 (HPV16) might participate in the pathogenesis and development of breast cancer. However, the detected rate of HPV16 varies with region. We will investigate HPV16 E6 expression in North China and explore the effects and mechanism of HPV16 E6 on breast cancer proliferation in this study. Methods. The expressions of HPV16 E6 and COX-2 in paraffin-embedded tissues of the invasive ductal breast cancer were detected by qPCR and IHC. The effects of HPV16 E6 on breast cancer proliferation were determined by function studies. The mechanism of HPV16 E6 in promoting breast cancer proliferation was explored by Western blot and Dual-Luciferase Reporter Assay. Results. HPV16 E6 was positive in 28% invasive ductal breast carcinoma in North China; HPV16 E6 promoted breast cancer proliferation. Inhibition of COX-2 by siCOX-2 or Celecoxib attenuated the proliferation of breast cancer cells with HPV16 E6 expression; and the upregulation of COX-2 could be suppressed by the inhibition of NF-κB activity. Conclusion. HPV16 E6 promotes breast cancer proliferation by activation of NF-κB signaling pathway and increase of COX-2 expression. COX-2 will be a potential target for HPV16 E6-associated breast cancer. PMID:29250535

  12. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    PubMed

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2017-05-01

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  13. DEC1 regulates breast cancer cell proliferation by stabilizing cyclin E protein and delays the progression of cell cycle S phase

    PubMed Central

    Bi, H; Li, S; Qu, X; Wang, M; Bai, X; Xu, Z; Ao, X; Jia, Z; Jiang, X; Yang, Y; Wu, H

    2015-01-01

    Breast cancer that is accompanied by a high level of cyclin E expression usually exhibits poor prognosis and clinical outcome. Several factors are known to regulate the level of cyclin E during the cell cycle progression. The transcription factor DEC1 (also known as STRA13 and SHARP2) plays an important role in cell proliferation and apoptosis. Nevertheless, the mechanism of its role in cell proliferation is poorly understood. In this study, using the breast cancer cell lines MCF-7 and T47D, we showed that DEC1 could inhibit the cell cycle progression of breast cancer cells independently of its transcriptional activity. The cell cycle-dependent timing of DEC1 overexpression could affect the progression of the cell cycle through regulating the level of cyclin E protein. DEC1 stabilized cyclin E at the protein level by interacting with cyclin E. Overexpression of DEC1 repressed the interaction between cyclin E and its E3 ligase Fbw7α, consequently reducing the level of polyunbiquitinated cyclin E and increased the accumulation of non-ubiquitinated cyclin E. Furthermore, DEC1 also promoted the nuclear accumulation of Cdk2 and the formation of cyclin E/Cdk2 complex, as well as upregulating the activity of the cyclin E/Cdk2 complex, which inhibited the subsequent association of cyclin A with Cdk2. This had the effect of prolonging the S phase and suppressing the growth of breast cancers in a mouse xenograft model. These events probably constitute the essential steps in DEC1-regulated cell proliferation, thus opening up the possibility of a protein-based molecular strategy for eliminating cancer cells that manifest a high-level expression of cyclin E. PMID:26402517

  14. Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation

    PubMed Central

    Magaldi, Thomas G.; Almstead, Laura L.; Bellone, Stefania; Prevatt, Edward G.; Santin, Alessandro D.; DiMaio, Daniel

    2011-01-01

    Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells. PMID:22056390

  15. Adipokine regulation of colon cancer: adiponectin attenuates interleukin-6-induced colon carcinoma cell proliferation via STAT-3

    PubMed Central

    Fenton, Jenifer I; Birmingham, Janette M

    2010-01-01

    Obesity results in increased circulating levels of specific adipokines which are associated with colon cancer risk. The disease state is associated with increased leptin, insulin, IGF-1, and IL-6. Conversely, adiponectin levels are decreased in obese individuals. Previously, we demonstrated adipokine-enhanced cell proliferation in preneoplastic, but not normal, colon epithelial cells, demonstrating a differential effect of adipokines on colon cancer progression in vitro. Using a model of late stage carcinoma cancer cell, namely murine MC-38 colon carcinoma cells, we compared the effect of obesity-associated adipokines (leptin, insulin and IGF-1 and IL-6) on MC-38 cell proliferation and determined whether adiponectin (full length or globular) could modulate adipokine-induced cell proliferation. We show that insulin and IL-6, but not leptin and IGF-1, induce proliferation in MC-38 cells. Adiponectin treatment of MC-38 cells did not inhibit insulin-induced cell proliferation but did inhibit IL-6-induced cell proliferation by decreasing STAT-3 phosphorylation and activation. Nitric oxide (NO) production was increased in MC-38 cells treated with IL-6; co-treatment with adiponectin blocked IL-6 induced iNOS and subsequent NO production. These data are compared to previously reported findings from our laboratory using the YAMC (model normal colon epithelial cells) and IMCE (model preneoplastic) cells. The cell lines are utilized to construct a model summarizing the hormonal consequences of obesity and the impact on the differential regulation of colon epithelial cells along the continuum to carcinoma. These data, taken together, highlight mechanisms involved in obesity-associated cancers and may lead to potential targeted therapies. PMID:20564347

  16. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  17. Hypoxia-induced PLOD2 promotes proliferation, migration and invasion via PI3K/Akt signaling in glioma.

    PubMed

    Song, Ye; Zheng, Shihao; Wang, Jizhou; Long, Hao; Fang, Luxiong; Wang, Gang; Li, Zhiyong; Que, Tianshi; Liu, Yi; Li, Yilei; Zhang, Xi'an; Fang, Weiyi; Qi, Songtao

    2017-06-27

    Gliomas are the most common form of malignant primary brain tumors with poor 5-year survival rate. Dysregulation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was observed in gliomas, but the specific role and molecular mechanism of PLOD2 in glioma have not been reported yet. In this study, PLOD2 was found to be frequently up-regulated in glioma and could serve as an independent prognostic marker to identify patients with poor clinical outcome. Knockdown of PLOD2 inhibited proliferation, migration and invasion of glioma cells in vitro and in vivo. Mechanistically, inhibition of PLOD2 inactivated PI3K/AKT signaling pathway and thus regulated the expression of its downstream epithelial-mesenchymal transition (EMT)-associated regulators, including E-cadherin, vimentin, N-cadherin, β-catenin, snail and slug in glioma cells. Moreover, PLOD2 could be induced by hypoxia-inducible factor-1α (HIF-1α) via hypoxia, thereby promoting hypoxia-induced EMT in glioma cells. Our data suggests that PLOD2 may be a potential therapeutic target for patients with glioma.

  18. Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRγ signals.

    PubMed

    Song, Haixing; Zhang, Tao; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Du, Jun; Pan, Kejian; Zhang, Kun

    2015-12-25

    The effects and mechanisms of bisphenol A (BPA) on the development of breast cancer are still not well illustrated. The present study revealed that nanomolar BPA significantly promoted the proliferation of both estrogen receptor (ER) positive (MCF-7) and negative (SkBr3) breast cancer cells, which was confirmed by up regulation of proliferating cell nuclear antigen (PCNA) and Bcl-2. Neither ERα nor G-protein-coupled estrogen receptor (GPER) mediated this effect of BPA because their inhibitors had no effect on the BPA induced cell proliferation. However, silencing of estrogen related receptor gamma (ERRγ) by its specific siRNA significantly abolished BPA induced proliferation of breast cancer cells, while si-ERRα had no similar effect. Moreover, nanomolar BPA up regulated the mRNA and protein levels of ERRγ and triggered its nuclear translocation via a time dependent manner. Further studies revealed that 10(-8)M BPA obviously increased the phosphorylation of ERK1/2, while had no similar effect on the phosphorylation of JNK and p38 MAPK. Further, PD 98059, the inhibitor of ERK1/2, significantly abolished the BPA induced up regulation of ERRγ and proliferation of breast cancer cells. Collectively, our results revealed that nanomolar BPA can trigger the proliferation of breast cancer cells via ERK1/2/ERRγ signals. Given that nanomolar BPA has been widely detected in human tissues, the clinical relevance of BPA and breast cancer progression should be further investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells.

    PubMed

    Kim, Sun-Jung; Lee, Jae Kyoo; Kim, Jin Won; Jung, Ji-Won; Seo, Kwangwon; Park, Sang-Bum; Roh, Kyung-Hwan; Lee, Sae-Rom; Hong, Yun Hwa; Kim, Sang Jeong; Lee, Yong-Soon; Kim, Sung June; Kang, Kyung-Sun

    2008-08-01

    Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.

  20. MELK and EZH2 Cooperate to Regulate Medulloblastoma Cancer Stem-like Cell Proliferation and Differentiation.

    PubMed

    Liu, Hailong; Sun, Qianwen; Sun, Youliang; Zhang, Junping; Yuan, Hongyu; Pang, Shuhuan; Qi, Xueling; Wang, Haoran; Zhang, Mingshan; Zhang, Hongwei; Yu, Chunjiang; Gu, Chunyu

    2017-09-01

    Medulloblastoma is the most common malignant brain tumor in children. Although accumulated research has suggested that cancer stem-like cells play a key role in medulloblastoma tumorigenesis, the specific molecular mechanism regarding proliferation remains elusive. Here, we reported more abundant expression of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) in medulloblastoma stem-like cells than in neural stem cells and the interaction between the two proteins could mediate the self-renewal of sonic hedgehog subtype medulloblastoma. In human medulloblastoma, extensive nodularity and large-cell/anaplastic subgroups differed according to the staining levels of MELK and EZH2 from the other two subgroups. The proportion of MELK- or EZH2-positive staining status could be considered as a potential indicator for survival. Mechanistically, MELK bound to and phosphorylated EZH2, and its methylation was induced by EZH2 in medulloblastoma, which could regulate the proliferation of cancer stem-like cells. In xenografts, loss of MELK or EZH2 attenuated medulloblastoma stem-like cell-derived tumor growth and promoted differentiation. These findings indicate that MELK-induced phosphorylation and EZH2-mediated methylation in MELK/EZH2 pathway are essential for medulloblastoma stem-like cell-derived tumor proliferation, thereby identifying a potential therapeutic strategy for these patients. Implications: This study demonstrates that the interaction occurring between MELK and EZH2 promotes self-proliferation and stemness, thus representing an attractive therapeutic target and potential candidate for diagnosis of medulloblastoma. Mol Cancer Res; 15(9); 1275-86. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Mechanism study of low-energy laser irradiation-induced lung adenocarcinoma cell proliferation by FRET in living cell

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chen, Xiao-Chuan; Xing, Da

    2004-07-01

    Low-energy laser irradiation (LELI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. The Ras/Raf/MEK (mitogen-activated protein kinase)ERK kinase)/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that govern proliferation, differentiation and cell survival. Recent studies suggested that Ras/Raf/MEK/ERK pathway is involved in the LELI-induced cell proliferation. Here, we utilized fluorescence resonance energy transfer (FRET) technique to investigate the effect of LELI on Ras/Raf signaling pathway in living cells. Raichu-Ras reporter plasmid was utilized which consisted of fusions of H-ras, the Ras-binding domain of Raf(RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP), so that intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) were transfected with the plasmid (pRaichu-Ras) and then were treated by LELI. The living cell imaging showed the increase of FRET at different time points after LELI at the dose of 1.8 J/cm2, which corresponds to the Ras/Raf activation assayed by Western Blotting. Furthermore, this dose of LELI enhanced the proliferation of ASTC-a-1 cells. Taken together, these in vivo imaging data provide direct evidences with temporal or spatial resolution that Ras/Raf/MEK/ pathway plays an important role in LELI-promoted cell proliferation.

  2. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines.

    PubMed

    Emadi Baygi, Modjtaba; Soheili, Zahra-Soheila; Essmann, Frank; Deezagi, Abdolkhaleg; Engers, Rainer; Goering, Wolfgang; Schulz, Wolfgang A

    2010-08-01

    Many metastatic cancers recapitulate the epithelial-to-mesenchymal transition (EMT) resulting in enhanced cell motility and invasiveness. The EMT is regulated by several transcription factors, including the zinc finger protein SNAI2, also named Slug, which appears to exert additional functions during development and cancer progression. We have studied the function of SNAI2 in prostate cancer cells. Quantitative RT-PCR analysis showed strong SNAI2 expression particularly in the PC-3 and PC3-16 prostate carcinoma cell lines. Knockdown of SNAI2 by specific siRNA induced changes in EMT markers and inhibited invasion of both cell lines into a matrigel matrix. SNAI2 siRNA-treated cells did not tolerate detachment from the culture plates, likely at least in part due to downregulation of integrin alpha6beta4. SNAI2 knockdown disturbed the microtubular and actin cytoskeletons, especially severely in PC-3 cells, resulting in grossly enlarged, flattened, and sometimes multinuclear cells. Knockdown also decreased cell proliferation, with a prominent G0/G1 arrest in PC3-16. Together, our data imply that SNAI2 exerts strong effects on the cytoskeleton and adhesion of those prostate cancer cells that express it and is necessary for their proliferation and invasiveness.

  3. Tangeretin, a citrus flavonoid, inhibits PGDF-BB-induced proliferation and migration of aortic smooth muscle cells by blocking AKT activation.

    PubMed

    Seo, Juhee; Lee, Hyun Sun; Ryoo, Sungwoo; Seo, Jee Hee; Min, Byung-Sun; Lee, Jeong-Hyung

    2011-12-30

    Tangeretin, a natural polymethoxylated flavone concentrated in the peel of citrus fruits, is known to have antiproliferative, antiinvasive, antimetastatic and antioxidant activities. However, the effect of tangeretin on vascular smooth muscle cells (VSMCs) is unknown. This study examined the effect of tangeretin on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of rat aortic smooth muscle cells (RASMCs) as well as its underlying mechanisms. Tangeretin significantly inhibited proliferation, DNA synthesis and migration of PDGF-BB-stimulated RASMCs without inducing cell death. Treatment with tangeretin-induced cell-cycle arrest in the G₀/G₁ phase was associated with down-regulation of cyclin D1 and cyclin E in addition to up-regulation of p27(kip1). We also showed that tangeretin inhibited PDGF-BB-induced phosphorylation of AKT, while it had no effect on the phosphorylation of phospholipase Cγ (PLCγ), PDGF receptor β-chain (PDGF-Rβ) and extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). An in vitro kinase assay revealed that tangeretin inhibited AKT activity in a dose-dependent manner. Moreover, treatment of LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, had similar effects than that of tangeretin on the expression of p27(kip1) and cyclin D1, as well as cell migration in PDFG-BB-stimulated RASMCs. Taken together, these findings suggest that tangeretin could suppress PDGF-BB-induced proliferation and migration of RASMCs through the suppression of PI3K/AKT signaling pathway, and may be a potential candidate for preventing or treating vascular diseases, such as atherosclerosis and restenosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Saxagliptin Induces β-Cell Proliferation through Increasing Stromal Cell-Derived Factor-1α In Vivo and In Vitro.

    PubMed

    Li, Chun-Jun; Sun, Bei; Fang, Qian-Hua; Ding, Min; Xing, Yun-Zhi; Chen, Li-Ming; Yu, De-Min

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors, such as saxagliptin, have been reported to have beneficial effects on β-cell function, but the specific underlying mechanism remains unclear. Stromal cell-derived factor-1α (SDF-1α), a chemokine produced in multiple organs, has been considered as a crucial regulator in promoting β-cell survival. Here, we speculate that SDF-1α might mediate the effect of saxagliptin on improving β-cell function. After 12-week saxagliptin treatment in high-fat diet/streptozotocin-induced diabetic rats, significant improvement in pancreas insulin secretion capacity evaluated by hyperglycemia clamp and increased β-cell to α-cell areas ratio were observed. Saxagliptin significantly induced β-cell proliferation and upregulated the expression of proliferation-related factors including c-myc and cyclind D1 determined with western blotting from the isolated islets. The expression/activity of DPP-4 was significantly reduced and paralleled with the restoration of SDF-1α levels in the saxagliptin-treated diabetic rats, subsequently the key WNT-signaling regulators, β-catenin, and AKT were activated. However, the effect of saxagliptin inducing β-cell proliferation was attenuated when we silenced the SDF-1α receptor (CXCR4) with RNAi in INS cell lines. Collectively, our data indicate that SDF-1α mediates the protective effect of saxagliptin on β-cell proliferation, suggesting that DPP-4 inhibitors have the potential role on delaying β-cell failure and SDF-1α could be a therapeutic target of β-cell regeneration.

  5. Saxagliptin Induces β-Cell Proliferation through Increasing Stromal Cell-Derived Factor-1α In Vivo and In Vitro

    PubMed Central

    Li, Chun-Jun; Sun, Bei; Fang, Qian-Hua; Ding, Min; Xing, Yun-Zhi; Chen, Li-Ming; Yu, De-Min

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors, such as saxagliptin, have been reported to have beneficial effects on β-cell function, but the specific underlying mechanism remains unclear. Stromal cell-derived factor-1α (SDF-1α), a chemokine produced in multiple organs, has been considered as a crucial regulator in promoting β-cell survival. Here, we speculate that SDF-1α might mediate the effect of saxagliptin on improving β-cell function. After 12-week saxagliptin treatment in high-fat diet/streptozotocin-induced diabetic rats, significant improvement in pancreas insulin secretion capacity evaluated by hyperglycemia clamp and increased β-cell to α-cell areas ratio were observed. Saxagliptin significantly induced β-cell proliferation and upregulated the expression of proliferation-related factors including c-myc and cyclind D1 determined with western blotting from the isolated islets. The expression/activity of DPP-4 was significantly reduced and paralleled with the restoration of SDF-1α levels in the saxagliptin-treated diabetic rats, subsequently the key WNT-signaling regulators, β-catenin, and AKT were activated. However, the effect of saxagliptin inducing β-cell proliferation was attenuated when we silenced the SDF-1α receptor (CXCR4) with RNAi in INS cell lines. Collectively, our data indicate that SDF-1α mediates the protective effect of saxagliptin on β-cell proliferation, suggesting that DPP-4 inhibitors have the potential role on delaying β-cell failure and SDF-1α could be a therapeutic target of β-cell regeneration. PMID:29230196

  6. Cold inducible RNA binding protein upregulation in pituitary corticotroph adenoma induces corticotroph cell proliferation via Erk signaling pathway

    PubMed Central

    Fu, Wei; Tang, Hao; Chen, Xiao; Zhao, Yao; Zheng, Lili; Pan, Sijian; Wang, Weiqing; Bian, Liuguan; Sun, Qingfang

    2016-01-01

    Cushing's disease is caused by pituitary corticotroph adenoma, and the pathogenesis of it has remained obscure. Here, we showed that cold inducible RNA binding protein (CIRP) was markedly elevated in corticotroph tumors. Forced overexpression of CIRP in murine AtT20 pituitary corticotroph cell line increased corticotroph precursor hormone proopiomelanocortin (POMC) transcription, ACTH secretion and cellular proliferation. In vivo, CIRP overexpression promotes murine corticotroph tumor growth and enhances ACTH production. Mechanistically, we show that CIRP could promote AtT20 cells proliferation by inducing cyclinD1 and decreasing p27 expression via Erk1/2 signaling pathway. Clinically, CIRP overexpression is significantly correlated with Cushing's disease recurrence. CIRP appears to play a critical tumorigenesis function in Cushing's disease and its expression might be a useful biomarker for tumor recurrence. PMID:26824322

  7. MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2.

    PubMed

    Ling, Lan; Zhang, Shan-Hong; Zhi, Li-Da; Li, Hong; Wen, Qian-Kuan; Li, Gang; Zhang, Wen-Jia

    2018-05-19

    Hepatocyte proliferation and apoptosis are critical cellular behaviors in rat liver as a result of a liver injury. Herein, we performed this study in order to evaluate the role of miR-30e and its target Fos-Related Antigen-2 (FOSL2) in septic rats through the JAK/STAT signaling pathway. Rat models of sepsis were induced by cecal ligation and puncture. Enzyme-linked immunosorbent assay (ELISA) was performed to access serum levels of lipopolysaccharide (LPS), inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to confirm the successful establishment of the model. The hepatocytes were subject to miR-30e mimics, miR-30e inhibitors or siRNA-FOSL2. The expressions of miR-30e, FOSL2, apoptosis- and, JAK/STAT signaling pathway-related genes in liver tissues and hepatocytes were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. MTT assay and flow cytometry were performed to evaluate hepatocyte viability and apoptosis, respectively. The results obtained revealed that in the septic rats, serum levels of inflammatory factors, LPS, ALT and AST, as well as the expression of FOSL2 were elevated and the JAK/STAT signaling pathway was activated, while there was a reduction in the expression of miR-30e. An initial bioinformatics prediction followed by a confirmatory dual-luciferase reporter assay determined that miR-30e targeted and negatively regulated FOSL2 expression. MiR-30e inhibited the activation of JSK2/STAT3 signaling pathway by reducing FOSL2 expression, while miR-30e enhanced hepatocyte proliferation and decreased hepatocyte cell apoptosis in septic rats. These findings indicated that miR-30e may serve as an independent therapeutic target for sepsis, due to its ability to inhibit apoptosis and induce proliferation of hepatocytes by targeted inhibition of FOSL2 through the JAK/STAT signaling pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells.

    PubMed

    Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka

    2017-02-15

    Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Mesothelial cell proliferation induced by intrapleural instillation of man-made fibers in rats and hamsters.

    PubMed

    Rutten, A A; Bermudez, E; Mangum, J B; Wong, B A; Moss, O R; Everitt, J I

    1994-07-01

    Long-term inhalation exposure to a biopersistent man-made ceramic fiber (RCF 1) results in a high incidence of pleural mesotheliomas in Syrian golden hamsters but not in identically exposed rats. To understand better the mechanisms involved in the intraspecies pathobiology of fiber-exposed mesothelium, the ability of the two different man-made fibers to induce cell proliferation in hamster and rat pleural mesothelial cells was investigated. Three dose levels of either glass fibers (MMVF 10) or ceramic fibers (RCF 1) were instilled intrapleurally into male Fischer 344 rats and male Syrian Golden hamsters. Rats and hamsters were exposed to approximately equal numbers of long thin fibers per kilogram of body weight using a single intrapleural instillation. Bromodeoxyuridine (BrdU) was administered via an implanted osmotic pump, and mesothelial cell proliferation was assessed at 7 and 28 days postinstillation (PI) using immunocytochemical visualization of labeled S-phase cells. Both rats and hamsters exhibited dose-dependent increases in proliferation of pleural mesothelial cells following exposure to both fiber types. Interspecies differences in mesothelial cell proliferation were noted for fiber type and pleural site. At 28 days PI, RCF-induced mesothelial cell proliferation was found to be more pronounced in hamsters than in rats in the caudal visceral pleural. Comparing both fibers either by equal mass or by equal fiber numbers, mesothelial cell proliferation in RCF 1-treated animals was higher than in animals exposed to MMVF 10, especially in hamsters, and may be a factor in the difference in mesothelioma induced by the two fibers. The higher sustained (28 day) mesothelial cell proliferation in the visceral pleural of hamsters exposed to RCF may contribute to the species-specific differences in mesothelioma incidence found in long-term rodent inhalation studies.

  10. 17betaE2 promotes cell proliferation in endometriosis by decreasing PTEN via NFkappaB-dependent pathway.

    PubMed

    Zhang, Hui; Zhao, Xingbo; Liu, Shu; Li, Jijun; Wen, Zeqing; Li, Mingjiang

    2010-04-12

    The objective of this study was to explore the mechanism of phosphatase and tensin homolog (PTEN) loss in endometriosis. We found that aberrant PTEN expression and mitogen-activated protein kinases (MAPK)/ERK, phosphoinositide 3-kinase (PI3K)/AKt, and nuclear factor-kappaB (NFkappaB) signaling overactivities coexisted in endometriosis. In vitro, 17beta-estradiol rapidly activated the 3 pathways in endometriotic cells and specific inhibitions on the 3 pathways respectively blocked 17beta-estradiol-induced cell proliferation. 17beta-estradiol suppressed PTEN transcription and expression in endometriotic cells which was abolished by specific NFkappaB inhibition. Total/nuclear PTEN-loss and MAPK/ERK, PI3K/AKt, and NFkappaB signal overactivities coexist in endometriosis. In vitro, 17beta-estradiol can promotes cell proliferation in endometriosis by activating PI3K/AKt pathway via an NFkappaB/PTEN-dependent pathway. For the first time we propose the possibility of the presence of a positive feedback-loop: 17beta-estradiol-->high NFkappaB-->low PTEN-->high PI3K-->high NFkappaB, in endometriosis, which may finally promote the proliferation of ectopic endometrial epithelial cells and in turn contributes to the progression of the disease.

  11. Peptostreptococcus anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice.

    PubMed

    Tsoi, Ho; Chu, Eagle S H; Zhang, Xiang; Sheng, Jianqiu; Nakatsu, Geicho; Ng, Siew C; Chan, Anthony W H; Chan, Francis K L; Sung, Joseph J Y; Yu, Jun

    2017-05-01

    Stool samples from patients with colorectal cancer (CRC) have a higher abundance of Peptostreptococcus anaerobius than stool from individuals without CRC, based on metagenome sequencing. We investigated whether P anaerobius contributes to colon tumor formation in mice and its possible mechanisms of carcinogenesis. We performed quantitative polymerase chain reaction analyses to measure P anaerobius in 112 stool samples and 255 colon biopsies from patients with CRC or advanced adenoma and from healthy individuals (controls) undergoing colonoscopy examination at hospitals in Hong Kong and Beijing. C57BL/6 mice were given broad-spectrum antibiotics, followed by a single dose of azoxymethane, to induce colon tumor formation. Three days later, mice were given P anaerobius or Esherichia coli MG1655 (control bacteria), via gavage, for 6 weeks. Some mice were also given the nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin. Intestine tissues were collected and analyzed histologically. The colon epithelial cell line NCM460 and colon cancer cell lines HT-29 and Caco-2 were exposed to P anaerobius or control bacteria; cells were analyzed by immunoblot, proliferation, and bacterial attachment analyses and compared in gene expression profiling studies. Gene expression was knocked down in these cell lines with small interfering RNAs. P anaerobius was significantly enriched in stool samples from patients with CRC and in biopsies from patients with colorectal adenoma or CRC compared with controls. Mice depleted of bacteria and exposed to azoxymethane and P anaerobius had a higher incidence of intestinal dysplasia (63%) compared with mice not given the bacteria (8.3%; P < .01). P anaerobius mainly colonized the colon compared with the rest of the intestine. Colon cells exposed to P anaerobius had significantly higher levels of proliferation than control cells. We found genes that regulate cholesterol biosynthesis, Toll-like receptor (TLR) signaling, and AMP

  12. Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells.

    PubMed

    Pant, Kishor; Gupta, Parul; Damania, Preeti; Yadav, Ajay K; Gupta, Aanchal; Ashraf, Anam; Venugopal, Senthil K

    2016-05-27

    Mineral Pitch (MP) is a dark brown coloured humic matter originating from high altitude rocks. It is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. The Huh-7 cells were treated with different concentrations of MP for 24 h, and both apoptosis and proliferation was determined by the TUNEL and MTT assays respectively. The formation of ROS and nitric oxide was analysed by DCFH-DA and Griess reagent respectively. The expression of miRNA-21 and miRNA-22 were checked by the real time PCR. Effect of miRNA-22 on proliferation and c-myc was studied by over-expressing miRNA-22 premiRs in Huh-7 cells. We found that MP enhanced anti-cancer effects by inducing apoptosis and inhibiting proliferation. MP induced both ROS and NO, upon neutralizing them, there was a partial recovery of apoptosis and proliferation. MP also induced miRNA-22 expression, while miRNA-21 expression was inhibited. Over-expression of miRNA-22 resulted in a significant inhibition of proliferation. miRNA-22 directly targeted c-myc gene, thereby inhibited proliferation. These results clearly show that MP induces its anti-cancer activity by more than one pathway. The data clearly indicate that MP induced apoptosis via the production of ROS, and inhibited proliferation by inducing miRNA-22 and inhibiting miRNA-21 in Huh-7 cells.

  13. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E,more » a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.« less

  14. Cathepsin D non-proteolytically induces proliferation and migration in human omental microvascular endothelial cells via activation of the ERK1/2 and PI3K/AKT pathways.

    PubMed

    Pranjol, Md Zahidul I; Gutowski, Nicholas J; Hannemann, Michael; Whatmore, Jacqueline L

    2018-01-01

    Epithelial ovarian cancer (EOC) frequently metastasises to the omentum, a process that requires pro-angiogenic activation of human omental microvascular endothelial cells (HOMECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete a range of factors that induce pro-angiogenic responses e.g. migration, in HOMECs including the lysosomal protease cathepsin D (CathD). However, the cellular mechanism by which CathD induces these cellular responses is not understood. The aim of this study was to further examine the pro-angiogenic effects of CathD in HOMECs i.e. proliferation and migration, to investigate whether these effects are dependent on CathD catalytic activity and to delineate the intracellular signalling kinases activated by CathD. We report, for the first time, that CathD significantly increases HOMEC proliferation and migration via a non-proteolytic mechanism resulting in activation of ERK1/2 and AKT. These data suggest that EOC cancer secreted CathD acts as an extracellular ligand and may play an important pro-angiogenic, and thus pro-metastatic, role by activating the omental microvasculature during EOC metastasis to the omentum. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Relationship of Metabolism and Cell Proliferation to the Mode of Action of Fluensulfone-Induced Mouse Lung Tumors. II: Additional Mechanistic Studies.

    PubMed

    Strupp, Christian; Bomann, Werner; Cohen, Samuel M; Weber, Klaus

    2016-12-01

    Fluensulfone is a nematicide for agricultural use. Chronic dietary exposure led to bronchiolo-alveolar hyperplasia and bronchiolo-alveolar adenomas in CD-1 mice but not in rats. Genotoxicity could be excluded as a mode of action (MOA). An earlier publication (Strupp, C., Banas, D. A., Cohen, S. M., Gordon, E. B., Jaeger, M., and Weber, K. (2012). Relationship of metabolism and cell proliferation to the mode of action of fluensulfone-induced mouse lung tumors: analysis of their human relevance using the IPCS framework. Toxicol. Sci. 128, 284-294.) reported MOA studies identifying the following key events: increased metabolism of fluensulfone by CYP2f2 in mouse lung Club cells, followed by local proliferation, finally leading to adenoma formation. Human lung microsomes were found not to metabolize fluensulfone. The Joint FAO/WHO Meeting on Pesticide Residues has reviewed the previous data and concluded that the MOA is plausible however some areas of uncertainty were identified. This publication provides additional data to address these. New cell proliferation studies in mice showed that the MOA is functionally independent of sex. A threshold of cell proliferation in Club cells correlating with the dose response for adenoma formation was shown. CYP2f2 knockout mice did not react to fluensulfone exposure with cell proliferation like wild-type mice, confirming the key role of this enzyme. The collective data for fluensulfone were evaluated according to the International Programme on Chemical Safety (IPCS) Mode of Action Framework which leads to the conclusion that the mouse-specific lung tumors after fluensulfone are not relevant to humans. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Tsuyoshi; Abe, Takahiro; Nakamoto, Norimichi

    Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblasticmore » cells.« less

  17. The Selective Progesterone Receptor Modulator CDB4124 Inhibits Proliferation and Induces Apoptosis in Uterine Leiomyoma Cells

    PubMed Central

    Luo, Xia; Yin, Ping; Coon V., John S.; Cheng, You-Hong; Wiehle, Ronald D.; Bulun, Serdar E.

    2009-01-01

    Objective To evaluate the effects of selective progesterone receptor modulator CDB4124 on cell proliferation and apoptosis in cultured human uterine leiomyoma smooth muscle (LSM) cells and control myometrial smooth muscle (MSM) cells in matched uteri. Design Laboratory research. Setting Academic medical center. Patient(s) Premenopausal women (n=12) undergoing hysterectomy for leiomyoma-related symptoms. Intervention(s) Treatment of primary LSM and MSM cells with CDB4124 (10-8-10-6M) or vehicle for 24, 48 or 72 hours. Main Outcome Measure(s) Western blot for protein expression of proliferating cell nuclear antigen (PCNA), cleaved poly-adenosine 5’-diphosphate-ribose polymerase (PARP), Bcl-2 and Krüppel-like transcription factor 11 (KLF11); MTT assay to evaluate viable cell numbers; and real-time polymerase chain reaction to quantify mRNA levels. Result(s) Treatment with CDB4124 significantly decreased levels of the proliferation marker PCNA, the number of viable LSM cells, and the anti-apoptotic protein Bcl-2. On the other hand, treatment with CDB4124 increased levels of the apoptosis marker cleaved PARP and the tumor suppressor KLF11 in a dose- and time-dependent manner in LSM cells. In matched MSM cells, however, CDB4124 did not affect cell proliferation or apoptosis. Conclusion(s) CDB4124 selectively inhibits proliferation and induces apoptosis in LSM but not in MSM cells. PMID:20056218

  18. DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.

    PubMed

    Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi

    2017-08-26

    DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Retinoic acid and nitric oxide promote cell proliferation and differentially induce neuronal differentiation in vitro in the cnidarian Renilla koellikeri.

    PubMed

    Estephane, Djoyce; Anctil, Michel

    2010-10-01

    Retinoic acid (RA) and nitric oxide (NO) are known to promote neuronal development in both vertebrates and invertebrates. Retinoic acid receptors appear to be present in cnidarians and NO plays various physiological roles in several cnidarians, but there is as yet no evidence that these agents have a role in neural development in this basal metazoan phylum. We used primary cultures of cells from the sea pansy Renilla koellikeri to investigate the involvement of these signaling molecules in cnidarian cell differentiation. We found that 9-cis RA induce cell proliferation in dose- and time-dependent manners in dishes coated with polylysine from the onset of culture. Cells in cultures exposed to RA in dishes devoid of polylysine were observed to differentiate into epithelium-associated cells, including sensory cells, without net gain in cell density. NO donors also induce cell proliferation in polylysine-coated dishes, but induce neuronal differentiation and neurite outgrowth in uncoated dishes. No other cell type undergoes differentiation in the presence of NO. These observations suggest that in the sea pansy (1) cell adhesion promotes proliferation without morphogenesis and this proliferation is modulated positively by 9-cis RA and NO, (2) 9-cis RA and NO differentially induce neuronal differentiation in nonadherent cells while repressing proliferation, and (3) the involvement of RA and NO in neuronal differentiation appeared early during the evolutionary emergence of nervous systems. 2010 Wiley Periodicals, Inc.

  20. Polyamine analog TBP inhibits proliferation of human K562 chronic myelogenous leukemia cells by induced apoptosis

    PubMed Central

    WANG, QING; WANG, YAN-LIN; WANG, KAI; YANG, JIAN-LIN; CAO, CHUN-YU

    2015-01-01

    The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML. PMID:25435975

  1. Cordyceps sinensis polysaccharide CPS-2 protects human mesangial cells from PDGF-BB-induced proliferation through the PDGF/ERK and TGF-β1/Smad pathways.

    PubMed

    Wang, Ying; Liu, Dan; Zhao, Huan; Jiang, Huixing; Luo, Chen; Wang, Min; Yin, Hongping

    2014-02-15

    CPS-2, a Cordyceps sinensis polysaccharide, has been demonstrated to have significant therapeutic activity against chronic renal failure. However, little is known about the underlying molecular mechanism. In this study, we found that CPS-2 could inhibit PDGF-BB-induced human mesangial cells (HMCs) proliferation in a dose-dependent manner. In addition, CPS-2 notably suppressed the expression of α-SMA, PDGF receptor-beta (PDGFRβ), TGF-β1, and Smad 3 in PDGF-BB-treated HMCs. Furthermore, PDGF-BB-stimulated ERK activation was significantly inhibited by CPS-2, and this inhibitory effect was synergistically potentiated by U0126. CPS-2 could prevent the PDGFRβ promoter activity induced by PDGF-BB, and return expression of PDGFRβ, TGF-β1, and TGFβRI to normal levels while cells were under PDGFRβ and ERK silencing conditions and transfected with DN-ERK. Taken together, these findings demonstrated that CPS-2 reduces PDGF-BB-induced cell proliferation through the PDGF/ERK and TGF-β1/Smad pathways, and it may have bi-directional regulatory effects on the PDGF/ERK cellular signaling pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling

    PubMed Central

    Bivik, Caroline; MacDonald, Ryan B.; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-01-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  3. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previouslymore » identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.« less

  4. Hydrogen peroxide generated by xanthine/xanthine oxidase system represses the proliferation of colorectal cancer cell line Caco-2.

    PubMed

    Sakuma, Satoru; Abe, Muneyuki; Kohda, Tetsuya; Fujimoto, Yohko

    2015-01-01

    The twin character of reactive oxygen species is substantiated by a growing body of evidence that reactive oxygen species within cells act as inducers and accelerators of the oncogenic phenotype of cancer cells, while reactive oxygen species can also induce cancer cell death and can therefore function as anti-tumorigenic species. The aim of this study was to assess a possible influence of xanthine/xanthine oxidase on the proliferation of colorectal cancer cell line Caco-2. xanthine/xanthine oxidase (2.5 µM/0.25 mU/ml-25 µM/2.5 mU/ml) dose-dependently inhibited the proliferation of Caco-2 cells. Experiments utilizing reactive oxygen species scavengers (superoxide dismutase, catalase and mannitol) and exogenous hydrogen peroxide revealed a major role of hydrogen peroxide in the xanthine/xanthine oxidase effect. Investigations utilizing annexin V-fluorescein/PI assay using flow cytometry, and the lactate dehydrogenase extracellular release assay indicated that hydrogen peroxide induced necrosis, but not apoptosis, in Caco-2 cells. These results suggest that hydrogen peroxide generated by xanthine/xanthine oxidase has the potential to suppress colorectal cancer cell proliferation.

  5. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract.

    PubMed Central

    Housley, R M; Morris, C F; Boyle, W; Ring, B; Biltz, R; Tarpley, J E; Aukerman, S L; Devine, P L; Whitehead, R H; Pierce, G F

    1994-01-01

    Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, was identified as a specific keratinocyte mitogen after isolation from a lung fibroblast line. Recently, recombinant (r)KGF was found to influence proliferation and differentiation patterns of multiple epithelial cell lineages within skin, lung, and the reproductive tract. In the present study, we designed experiments to identify additional target tissues, and focused on the rat gastrointestinal (GI) system, since a putative receptor, K-sam, was originally identified in a gastric carcinoma. Expression of KGF receptor and KGF mRNA was detected within the entire GI tract, suggesting the gut both synthesized and responded to KGF. Therefore, rKGF was administered to adult rats and was found to induce markedly increased proliferation of epithelial cells from the foregut to the colon, and of hepatocytes, one day after systemic treatment. Daily treatment resulted in the marked selective induction of mucin-producing cell lineages throughout the GI tract in a dose-dependent fashion. Other cell lineages were either unaffected (e.g., Paneth cells), or relatively decreased (e.g., parietal cells, enterocytes) in rKGF-treated rats. The direct effect of rKGF was confirmed by demonstrating markedly increased carcinoembryonic antigen production in a human colon carcinoma cell line, LIM1899. Serum levels of albumin were specifically and significantly elevated after daily treatment. These results demonstrate rKGF can induce epithelial cell activation throughout the GI tract and liver. Further, endogenous KGF may be a normal paracrine mediator of growth within the gut. Images PMID:7962522

  6. Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model.

    PubMed

    Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong

    2013-07-01

    NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.

  7. The mechanism of retrovirus suppression of human T cell proliferation in vitro.

    PubMed

    Copelan, E A; Rinehart, J J; Lewis, M; Mathes, L; Olsen, R; Sagone, A

    1983-10-01

    Immunosuppression is commonly associated with retrovirus-induced animal tumors. Studies in the murine and feline retrovirus systems suggest that the 15,000-dalton envelope protein (p15E) of the virion may contribute to immunosuppression by interfering with normal lymphocyte function. We examined the effect of inactivated feline leukemia virus (UV-FeLV) and p15E derived from this virus on concanavalin A (Con A) driven human T cell proliferation. Virus and p15E markedly suppressed mononuclear cell proliferative response to Con A. Suppression was not due to inhibition of monocyte accessory cell function, or interleukin 1 (IL 1) secretion. In fact, the presence of monocytes partially protected T cells from UV-FeLV suppression. UV-FeLV, however, suppressed T cell secretion of and response to interleukin 2 (IL 2). We conclude that UV-FeLV and derived p15E inhibit T cell proliferation by direct inhibition of T cell function. These findings, extended to the in vivo situations, suggest that retrovirus-associated suppression of the immune response involves the induction of T cell but not monocyte dysfunction.

  8. NADPH oxidase activation contributes to native low-density lipoprotein-induced proliferation of human aortic smooth muscle cells.

    PubMed

    Park, Il Hwan; Hwang, Hye Mi; Jeon, Byeong Hwa; Kwon, Hyung-Joo; Hoe, Kwang Lae; Kim, Young Myeong; Ryoo, Sungwoo

    2015-06-12

    Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-θ (PKCθ) and protein kinase C-β (PKCβ) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCθ and PKCβ stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox(-/-) mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated hAoSMCs.

  9. Nucleotide-binding oligomerization domain 2 (NOD2) activation induces apoptosis of human oral squamous cell carcinoma cells.

    PubMed

    Yoon, Hyo-Eun; Ahn, Mee-Young; Kwon, Seong-Min; Kim, Dong-Jae; Lee, Jun; Yoon, Jung-Hoon

    2016-04-01

    Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner.

    PubMed

    Zhao, Chuanke; She, Tiantian; Wang, Lixin; Su, Yahui; Qu, Like; Gao, Yujing; Xu, Shuo; Cai, Shaoqing; Shou, Chengchao

    2015-09-15

    This study aims to evaluate the anti-cancer effect of daucosterol and explore its possible mechanism. MTT and colony formation assay were performed to determine the effect of daucosterol on cancer cell proliferation in vitro. H22 allograft model was used for the assessment of its anti-cancer activity in vivo. Intracellular generation of reactive oxygen species (ROS) was measured using DCFH-DA probe with flow cytometry system and a laser scanning confocal microscope. LC3 (microtubule-associated protein 1 light chain 3)-II conversion was monitored with immunofluorescence and immunoblotting to demonstrate daucosterol-induced autophagy. We found that daucosterol inhibits the proliferation of human breast cancer cell line MCF-7 and gastric cancer cell lines MGC803, BGC823 and AGS in a dose-dependent manner. Furthermore, daucosterol inhibits murine hepatoma H22 cell growth in ICR mice. Daucosterol treatment induces intracellular ROS generation and autophagy, but not apoptotic cell death. Treatment with ROS scavenger GSH (reduced glutathione), NAC (N-acetyl-l-cysteine) or autophagy inhibitor 3-Methyladenine (3-MA) counteracted daucosterol-induced autophagy and growth inhibition in BGC823 and MCF-7 cancer cells. Daucosterol inhibits cancer cell proliferation by inducing autophagy through ROS-dependent manner and could be potentially developed as an anti-cancer agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells.

    PubMed

    Karki, Rajendra; Ho, Oak-Min; Kim, Dong-Wook

    2013-03-01

    Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.

  12. Kindlin-2 Modulates the Survival, Differentiation, and Migration of Induced Pluripotent Cell-Derived Mesenchymal Stromal Cells

    PubMed Central

    Eggenschwiler, Reto; Wichmann, Christian; Buhmann, Raymund; Cantz, Tobias

    2017-01-01

    Kindlin-2 is a multidomain intracellular protein that can be recruited to β-integrin domains to activate signaling, initiate transcriptional programs, and bind to E-cadherin. To explore its involvement in cell fate decisions in mesenchymal cells, we studied the effects of Kindlin-2 modification (overexpression/knockdown) in induced pluripotent cell-derived mesenchymal stromal cells (iPSC-MSCs). Kindlin-2 overexpression resulted in increased proliferation and reduced apoptosis of iPSC-MSCs, as well as inhibition of their differentiation towards osteocytes, adipocytes, and chondrocytes. In contrast, siRNA-mediated Kindlin-2 knockdown induced increased apoptosis and increased differentiation response in iPSC-MSCs. The ability of iPSC-MSCs to adhere to VCAM-1/SDF-1α under shear stress and to migrate in a wound scratch assay was significantly increased after Kindlin-2 overexpression. In contrast, inhibition of mixed lymphocyte reaction (MLR) was generally independent of Kindlin-2 modulation in iPSC-MSCs, except for decreased production of interleukin-2 (IL-2) after Kindlin-2 overexpression in iPS-MSCs. Thus, Kindlin-2 upregulates survival, proliferation, stemness, and migration potential in iPSC-MSCs and may therefore be beneficial in optimizing performance of iPSC-MSC in therapies. PMID:28163724

  13. Protein kinase A-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI{sub 3}K and mTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanling; Sato, Masaaki; Guo, Yuan

    2014-10-15

    The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI{sub 3}K system and the mTOR complexes were all activated by cAMP, but these activations weremore » not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI{sub 3}K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias.« less

  14. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor.

    PubMed

    Perez, Jessica; Hill, Bradford G; Benavides, Gloria A; Dranka, Brian P; Darley-Usmar, Victor M

    2010-05-13

    Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.

  15. Disorder of G2-M Checkpoint Control in Aniline-Induced Cell Proliferation in Rat Spleen

    PubMed Central

    Wang, Jianling; Wang, Gangduo; Khan, M. Firoze

    2015-01-01

    Aniline, a toxic aromatic amine, is known to cause hemopoietic toxicity both in humans and animals. Aniline exposure also leads to toxic response in spleen which is characterized by splenomegaly, hyperplasia, fibrosis and the eventual formation of tumors on chronic in vivo exposure. Previously, we have shown that aniline exposure leads to iron overload, oxidative DNA damage, and increased cell proliferation, which could eventually contribute to a tumorigenic response in the spleen. Despite our demonstration that cell proliferation was associated with deregulation of G1 phase cyclins and increased expression of G1 phase cyclin-dependent kinases (CDKs), molecular mechanisms, especially the regulation of G2 phase and contribution of epigenetic mechanisms in aniline-induced splenic cellular proliferation remain largely unclear. This study therefore, mainly focused on the regulation of G2 phase in an animal model preceding a tumorigenic response. Male Sprague-Dawley rats were given aniline (0.5 mmol/kg/day) in drinking water or drinking water only (controls) for 30 days, and expression of G2 phase cyclins, CDK1, CDK inhibitors and miRNAs were measured in the spleen. Aniline treatment resulted in significant increases in cell cycle regulatory proteins, including cyclins A, B and CDK1, particularly phosphor-CDK1, and decreases in CDK inhibitors p21 and p27, which could promote the splenocytes to go through G2/M transition. Our data also showed upregulation of tumor markers Trx-1 and Ref-1 in rats treated with aniline. More importantly, we observed lower expression of miRNAs including Let-7a, miR-15b, miR24, miR-100 and miR-125, and greater expression of CDK inhibitor regulatory miRNAs such as miR-181a, miR-221 and miR-222 in the spleens of aniline-treated animals. Our findings suggest that significant increases in the expression of cyclins, CDK1 and aberrant regulation of miRNAs could lead to an accelerated G2/M transition of the splenocytes, and potentially to a

  16. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Yue; Wang, Handong, E-mail: njhdwang@hotmail.com; Wang, Qiang

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluatedmore » the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.« less

  17. Persistence of γ-H2AX and 53BP1 foci in proliferating and non-proliferating human mammary epithelial cells after exposure to γ-rays or iron ions.

    PubMed

    Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V; Helen Barcellos-Hoff, Mary; Parvin, Bahram; Rydberg, Bjorn

    2011-07-01

    To investigate γ-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionising radiation under different cell culture conditions. HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced γ-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both γ-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after γ-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. The disappearance of radiation-induced γ-H2AX and 53BP1 foci in HMEC has different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent γ-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double-strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodelling.

  18. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ling, E-mail: fangling_1984@126.com; Zhan, Shuxiang; Huang, Cheng

    2013-11-01

    TRPM7, a non-selective cation channel of the TRP channel superfamily, is implicated in diverse physiological and pathological processes including cell proliferation. Recently, TRPM7 has been reported in hepatic stellate cells (HSCs). Here, we investigated the contribution role of TRPM7 in activated HSC-T6 cell (a rat hepatic stellate cell line) proliferation. TRPM7 mRNA and protein were measured by RT-PCR and Western blot in rat model of liver fibrosis in vivo and PDGF-BB-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPM7 were dramatically increased in CCl{sub 4}-treated rat livers. Stimulation of HSC-T6 cells with PDGF-BB resulted in a time-dependent increasemore » of TRPM7 mRNA and protein. However, PDGF-BB-induced HSC-T6 cell proliferation was inhibited by non-specific TRPM7 blocker 2-aminoethoxydiphenyl borate (2-APB) or synthetic siRNA targeting TRPM7, and this was accompanied by downregulation of cell cycle proteins, cyclin D1, PCNA and CDK4. Blockade of TRPM7 channels also attenuated PDGF-BB induced expression of myofibroblast markers as measured by the induction of α-SMA and Col1α1. Furthermore, the phosphorylation of ERK and AKT, associated with cell proliferation, decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TRPM7 channels contribute to perpetuated fibroblast activation and proliferation of PDGF-BB induced HSC-T6 cells via the activation of ERK and PI3K pathways. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 mRNA and protein in the fibrotic livers from CCl{sub 4}-treated rats. • Increasing expression of TRPM7 mRNA and protein during HSC activation. • Blockade of TRPM7 inhibited the PDGF-BB induced proliferation of HSC-T6 cells. • Blockade of TRPM7 decreased α-SMA and Col1α1 expressions in activated HSC-T6 cells. • TRPM7 up-regulation contributes to the activation of ERK and AKT pathways.« less

  19. ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice.

    PubMed

    Oh, Yeong Seok; Koh, Il Kyoo; Choi, Bomi; Gye, Myung Chan

    2017-03-07

    Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation.

  20. ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice

    PubMed Central

    Oh, Yeong Seok; Koh, Il Kyoo; Choi, Bomi; Gye, Myung Chan

    2017-01-01

    Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation. PMID:28266530

  1. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells.

    PubMed

    Uosaki, Hideki; Magadum, Ajit; Seo, Kinya; Fukushima, Hiroyuki; Takeuchi, Ayako; Nakagawa, Yasuaki; Moyes, Kara White; Narazaki, Genta; Kuwahara, Koichiro; Laflamme, Michael; Matsuoka, Satoshi; Nakatsuji, Norio; Nakao, Kazuwa; Kwon, Chulan; Kass, David A; Engel, Felix B; Yamashita, Jun K

    2013-12-01

    The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provides therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells. The combination of stem cell and chemical biology can provide novel approaches to investigate the molecular mechanisms and manipulation of cardiomyocyte proliferation. To identify chemicals that regulate cardiomyocyte proliferation, we performed a screening of a defined chemical library based on proliferation of mouse pluripotent stem cell-derived cardiomyocytes and identified 4 chemical compound groups: inhibitors of glycogen synthase kinase-3, p38 mitogen-activated protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II, and activators of extracellular signal-regulated kinase. Several appropriate combinations of chemicals synergistically enhanced proliferation of cardiomyocytes derived from both mouse and human pluripotent stem cells, notably up to a 14-fold increase in mouse cardiomyocytes. We also examined the effects of identified chemicals on cardiomyocytes in various developmental stages and species. Whereas extracellular signal-regulated kinase activators and Ca(2+)/calmodulin-dependent protein kinase II inhibitors showed proliferative effects only on cardiomyocytes in early developmental stages, glycogen synthase kinase-3 and p38 mitogen-activated protein kinase inhibitors substantially and synergistically induced re-entry and progression of cell cycle in neonatal but also as well as adult cardiomyocytes. Our approach successfully uncovered novel molecular targets and mechanisms controlling cardiomyocyte proliferation in distinct developmental stages and offered pluripotent stem cell-derived cardiomyocytes

  2. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Jin Young; Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr

    Highlights: {yields} Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. {yields} Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. {yields} Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. {yields} Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. {yields} Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effectsmore » via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.« less

  3. Toll-like receptor-4 is a target for suppression of proliferation and chemoresistance in HepG2 hepatoblastoma cells.

    PubMed

    Hsiao, Chih-Cheng; Chen, Po-Han; Cheng, Cheng-I; Tsai, Ming-Shian; Chang, Chih-Yang; Lu, Shang-Chieh; Hsieh, Ming-Chu; Lin, Yu-Chun; Lee, Po-Huang; Kao, Ying-Hsien

    2015-11-01

    Toll-like receptor-4 (TLR4) is known to influence growth and migration of hepatocellular tumors; however, its role in hepatoblastoma remains poorly understood. This study investigated the regulatory role of TLR4 in proliferation and chemoresistance of HepG2 hepatoblastoma cells. Treatment with lipopolysaccharide (LPS), a TLR4 agonist, was found to significantly upregulate TLR4 expression in HepG2 cells, but not in malignant Huh-7 and Sk-Hep1 hepatocellular carcinoma cells. Additionally, IL-6 enhanced LPS-induced TLR4 upregulation. LPS-stimulated TLR4 activation increased proliferation, nitric oxide synthase (NOS) expression, and NO production in HepG2 cells. Chemotherapeutic agents, cisplatin and doxorubicin, effectively inhibited TLR4 expression in HepG2 cells. Characterization of LPS-induced signaling activation and blockade with kinase inhibitors revealed the involvement of Akt and MAPK pathways in LPS-enhanced NO release from, and proliferation of HepG2 cells. Mechanistically, gene modifications as a result of TLR4 transfection and siRNA-mediated knockdown further demonstrated a crucial role for TLR4 in the regulation of NOS expression, cell proliferation, and chemoresistance in HepG2 cells. These findings suggest that targeting TLR4 expression and its cognate signaling may modulate proliferation and chemosensitivity in hepatoblastoma cells and serve as a potential therapeutic target. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. The biologic properties of recombinant human thrombopoietin in the proliferation and megakaryocytic differentiation of acute myeloblastic leukemia cells.

    PubMed

    Matsumura, I; Kanakura, Y; Kato, T; Ikeda, H; Horikawa, Y; Ishikawa, J; Kitayama, H; Nishiura, T; Tomiyama, Y; Miyazaki, H; Matsuzawa, Y

    1996-10-15

    Thrombopoietin (TPO) is implicated as a primary regulator of megakaryopoiesis and thrombopoiesis. However, the biologic effects of TPO on human acute myeloblastic leukemia (AML) cells are largely unknown. To determine if recombinant human (rh) TPO has proliferation-supporting and differentiation-inducing activities in AML cells, 15 cases of AML cells that were exclusively composed of undifferentiated leukemia cells and showed growth response to rhTPO in a short-term culture (72 hours) were subjected to long-term suspension culture with or without rhTPO. Of 15 cases, rhTPO supported proliferation of AML cells for 2 to 4 weeks in 4 cases whose French-American-British subtypes were M0, M2, M4, and M7, respectively. In addition to the proliferation-supporting activity, rhTPO was found to induce AML cells to progress to some degree of megakaryocytic differentiation at both morphologic and surface-phenotypic level in 2 AML cases with M0 and M7 subtypes. The treatment of AML cells with rhTPO resulted in rapid tyrosine phosphorylation of the TPO-receptor, c-mpl, and STAT3 in all of cases tested. By contrast, the expression of erythroid/megakaryocyte-specific transcription factors (GATA-1, GATA-2, and NF-E2) was markedly induced or enhanced in only 2 AML cases that showed megakaryocytic differentiation in response to rhTPO. These results suggested that, at least in a fraction of AML cases, TPO could not only support the proliferation of AML cells irrespective of AML subtypes, but could also induce megakaryocytic differentiation, possibly through activation of GATA-1, GATA-2, and NF-E2.

  5. ALG2 regulates glioblastoma cell proliferation, migration and tumorigenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dunke; Wang, Feng; Pang, Yi

    Apoptosis-linked gene-2 (ALG-2), also known as programmed cell death 6 (PDCD6), has recently been reported to be aberrantly expressed in various tumors and required for tumor cell viability. The aim of the present study was to investigate whether ALG-2 plays a crucial role in tumor cell proliferation, migration and tumorigenicity. In this study, we examined the expression of PDCD6 in glioblastoma cell lines and found that ALG-2 was generally expressed in glioblastoma cell lines. We also performed an analysis of an online database and found that high expression of ALG-2 was associated with poor prognosis (p = 0.039). We found that over-expressionmore » of ALG2 in glioblastoma could inhibit cell proliferation and, conversely, that down-regulation of ALG2 could promote cell proliferation. Further studies showed that over-expression of ALG2 inhibited the migration of tumor cells, whereas down-regulation of ALG2 promoted tumor cell migration. Finally, in vitro and in vivo studies showed that over-expression of ALG2 inhibited the tumorigenic ability of tumor cells, while down-regulation of ALG2 promoted tumor cell tumorigenic ability. In conclusion, ALG2 has a tumor suppressive role in glioblastoma and might be a potential target for the treatment of glioblastoma. - Highlights: • Low ALG2 expression is indicative of poor prognosis in glioblastoma patients. • ALG2 is required for cell proliferation in GBM cells. • ALG2 is involved in GBM cell migration. • ALG2 is involved in GBM cell self-renewal and tumorigenesis in vitro and in vivo.« less

  6. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zanhua; The Chest Hospital of Jiangxi Province Department of Respiration; Jiang, Xunsheng

    2016-01-29

    Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan–Meier survival analysis revealed that high TROP2 expression correlated with poor prognosismore » (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.« less

  7. Gingival cell proliferation induced by use of a sonic toothbrush with warmed silicone rubber bristles.

    PubMed

    Tomofuji, Takaaki; Kusano, Hiroki; Azuma, Tetsuji; Ekuni, Daisuke; Yamamoto, Tatsuo; Watanabe, Tatsuo; Kishimoto, Takashi

    2004-12-01

    Toothbrushing promotes gingival cell proliferation, which may occur as the result of the physical stimulation of the gingiva. The present study evaluated the effects of temperature and silicone rubber bristles of a sonic toothbrush on gingival cell proliferation in dogs. During the 5-week experimental period, one quadrant in each of eight dogs received a different toothbrushing regimen: a manual toothbrush or a sonic toothbrush with 1) nylon, 2) silicone rubber, or 3) warmed silicone rubber bristles. The proliferative activity of gingival cells was evaluated based on expression of proliferating cell nuclear antigen (PCNA). Use of the sonic toothbrushes produced a higher density of PCNA-positive and total fibroblasts than did use of a manual toothbrush. The warm silicone rubber bristles resulted in a higher density of PCNA-positive fibroblasts compared with the cooler silicone rubber bristle. The number of PCNA-positive basal cells in the junctional epithelium also increased following electric toothbrushing with warmed silicone rubber bristles. The sonic toothbrush with silicone rubber bristles induced gingival fibroblast proliferation to a greater degree than a manual toothbrush. Warming the silicone rubber bristles increased their stimulatory effects on the proliferative activity of gingival cells.

  8. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset.

    PubMed

    Gualde, N; Goodwin, J S

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [3H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [3H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  9. Overexpression of the growth arrest-specific homeobox gene Gax inhibits proliferation, migration, cell cycle progression, and apoptosis in serum-induced vascular smooth muscle cells.

    PubMed

    Zheng, H; Xue, S; Hu, Z L; Shan, J G; Yang, W G

    2014-03-24

    The Gax gene has been implicated in a variety of cell-developmental and biological processes, and aberrant Gax expression is linked to many diseases. In this study, to provide important insights for Gax-based gene therapy in vein graft restenosis and its anti-restenotic mechanism, we used rabbit vascular smooth muscle cells (VSMCs) to investigate the effects of Gax overexpression on proliferation, migration, cell cycle, and apoptosis in a serum-stimulated culture. Rabbit VSMC lines that stably overexpressed Gax were established by transfection with recombinant adenoviral vector Ad5-Gax. The effect of Gax overexpression on in vitro serum-induced VSMCs proliferation, migration, cell cycle, and apoptosis was assessed by MTT, wound healing, and flow cytometry assays, respectively. To investigate the effect of Gax overexpression on PCNA and MMP-2 in serum-induced VSMCs, immunocytochemistry, RT-PCR, and gelatin zymography were performed. The results clearly showed that Gax overexpression decreases PCNA expression in serum-induced VSMCs. Gax overexpression also significantly inhibited cell proliferation by blocking entry into the S-phase of the cell cycle, promoted cell apoptosis, and reduced cell migration activity by downregulating MMP-2 release and activity. These findings indicate that Gax would be an optimal target gene for gene therapy to treat vein graft restenosis.

  10. Gab1 Is Required for Cell Cycle Transition, Cell Proliferation, and Transformation Induced by an Oncogenic Met Receptor

    PubMed Central

    Mood, Kathleen; Saucier, Caroline; Bong, Yong-Sik; Lee, Hyun-Shik; Park, Morag

    2006-01-01

    We have shown previously that either Grb2- or Shc-mediated signaling from the oncogenic Met receptor Tpr-Met is sufficient to trigger cell cycle progression in Xenopus oocytes. However, direct binding of these adaptors to Tpr-Met is dispensable, implying that another Met binding partner mediates these responses. In this study, we show that overexpression of Grb2-associated binder 1 (Gab1) promotes cell cycle progression when Tpr-Met is expressed at suboptimal levels. This response requires that Gab1 possess an intact Met-binding motif, the pleckstrin homology domain, and the binding sites for phosphatidylinositol 3-kinase and tyrosine phosphatase SHP-2, but not the Grb2 and CrkII/phospholipase Cγ binding sites. Importantly, we establish that Gab1-mediated signals are critical for cell cycle transition promoted by the oncogenic Met and fibroblast growth factor receptors, but not by progesterone, the natural inducer of cell cycle transition in Xenopus oocytes. Moreover, Gab1 is essential for Tpr-Met–mediated morphological transformation and proliferation of fibroblasts. This study provides the first evidence that Gab1 is a key binding partner of the Met receptor for induction of cell cycle progression, proliferation, and oncogenic morphological transformation. This study identifies Gab1 and its associated signaling partners as potential therapeutic targets to impair proliferation or transformation of cancer cells in human malignancies harboring a deregulated Met receptor. PMID:16775003

  11. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells.

    PubMed

    Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A; de Boer, Jan; Watt, Fiona M

    2016-01-13

    It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation.

  12. IL-7 splicing variant IL-7{delta}5 induces human breast cancer cell proliferation via activation of PI3K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Deshun; Department of Pharmaceutical science, Guangdong Pharmaceutical University, Guangzhou, Guangdong; Liu, Bing

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer This study confirms the role of IL-7{delta}5 in breast cancer cell proliferation. Black-Right-Pointing-Pointer IL-7{delta}5 promotes breast cancer cell proliferation and cell cycle progression. Black-Right-Pointing-Pointer IL-7{delta}5 promotes cell proliferation via activation of PI3K/Akt pathway. -- Abstract: Various tumor cells express interleukin 7 (IL-7) and IL-7 variants. IL-7 has been confirmed to stimulate solid tumor cell proliferation. However, the effect of IL-7 variants on tumor cell proliferation remains unclear. In this study, we evaluated the role of IL-7{delta}5 (an IL-7 variant lacking exon 5) on proliferation and cell cycle progression of human MDA-MB-231 and MCF-7 breast cancer cells. The resultsmore » showed that IL-7{delta}5 promoted cell proliferation and cell cycle progression from G1 phase to G2/M phase, associated with upregulation of cyclin D1 expression and the downregulation of p27{sup kip1} expression. Mechanistically, we found that IL-7{delta}5 induced the activation of Akt. Inhibition of PI3K/Akt pathway by LY294002 reversed the proliferation and cell cycle progression of MDA-MB-231 and MCF-7 cells induced by IL-7{delta}5. In conclusion, our findings demonstrate that IL-7{delta}5 variant induces human breast cancer cell proliferation and cell cycle progression via activation of PI3K/Akt pathway. Thus, IL-7{delta}5 may be a potential target for human breast cancer therapeutics intervention.« less

  13. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclinmore » D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.« less

  14. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells

    PubMed Central

    Beck, Daniela; Niessner, Heike; Smalley, Keiran S.M.; Flaherty, Keith; Paraiso, Kim H.T.; Busch, Christian; Sinnberg, Tobias; Vasseur, Sophie; Iovanna, Juan Lucio; Drießen, Stefan; Stork, Björn; Wesselborg, Sebastian; Schaller, Martin; Biedermann, Tilo; Bauer, Jürgen; Lasithiotakis, Konstantinos; Weide, Benjamin; Eberle, Jürgen; Schittek, Birgit; Schadendorf, Dirk; Garbe, Claus; Kulms, Dagmar; Meier, Friedegund

    2013-01-01

    The V600E mutation in the kinase BRAF is frequently detected in melanomas and results in constitutive activation of BRAF, which then promotes cell proliferation by the mitogen-activated protein kinase (MAPK) signaling pathway. Although the BRAFV600E kinase inhibitor vemurafenib has remarkable antitumor activity in patients with BRAFV600E-mutated melanoma, its effects are limited by the onset of drug resistance. We found that exposure of melanoma cell lines with the BRAFV600E mutation to vemurafenib decreased the abundance of anti-apoptotic proteins and induced intrinsic mitochondrial apoptosis. Vemurafenib-treated melanoma cells showed increased cytosolic concentration of calcium, a potential trigger for endoplasmic reticulum (ER) stress, which can lead to apoptosis. Consistent with an ER stress-induced response, vemurafenib decreased the abundance of the ER chaperone protein GRP78, increased the abundance of the spliced isoform of the transcription factor X-box protein 1 (XBP1) (which transcriptionally activates genes involved in ER stress responses), increased the phosphorylation of the translation initiation factor eIF2α (which would be expected to inhibit protein synthesis), and induced the expression of ER stress-related genes. Knockdown of the ER stress response protein ATF4 significantly reduced vemurafenib-induced apoptosis. Moreover, the ER stress inducer thapsigargin prevented invasive growth of tumors formed from vemurafenib-sensitive melanoma cells in vivo. In melanoma cells with low sensitivity or resistance to vemurafenib, combination treatment with thapsigargin augmented or induced apoptosis. Thus, thapsigargin or other inducers of ER stress may be useful in combination therapies to overcome vemurafenib resistance. PMID:23362240

  15. Oxymatrine Inhibits Proliferation and Migration While Inducing Apoptosis in Human Glioblastoma Cells

    PubMed Central

    Wang, Baocheng; Wang, Jiajia; Li, Qifeng; Meng, Wei

    2016-01-01

    Oxymatrine (OMT), an alkaloid derived from the traditional Chinese medicine herb Sophora flavescens Aiton, has been shown to exhibit anticancer properties on various types of cancer cells. In this study, we investigate the anticancer properties of OMT on human glioblastoma (GBM) cells and evaluate their underlying mechanisms. MTT assays were performed and demonstrated that OMT significantly inhibits the proliferation of GBM cells. Flow cytometry suggested that OMT at a concentration of 10−5 M may induce apoptosis in U251 and A172 cells. Western blot analyses demonstrated a significant increase in the expression of Bax and caspase-3 and a significant decrease in expression of Bcl-2 in both U251 and A172 cells. Additionally, OMT was found by transwell and high-content screening assays to decrease the migratory ability of the evaluated GBM cells. These findings suggest that the antitumor effects of OMT may be the result of inhibition of cell proliferation and migration and the induction of apoptosis by regulating the expression of apoptosis-associated proteins. OMT may represent a novel anticancer therapy for the treatment of GBM. PMID:27957488

  16. Rebamipide-induced downregulation of phospholipase D inhibits inflammation and proliferation in gastric cancer cells

    PubMed Central

    Kang, Dong Woo; Min, Gyesik; Park, Do Yoon; Hong, Ki Whan

    2010-01-01

    Rebamipide a gastroprotective drug, is clinically used for the treatment of gastric ulcers and gastritis, but its actions on gastric cancer are not clearly understood. Phospholipase D (PLD) is overexpressed in various types of cancer tissues and has been implicated as a critical factor in inflammation and carcinogenesis. However, whether rebamipide is involved in the regulation of PLD in gastric cancer cells is not known. In this study, we showed that rebamipide significantly suppressed the expression of both PLD1 and PLD2 at a transcriptional level in AGS and MKN-1 gastric cancer cells. Downregulation of PLD expression by rebamipide inhibited its enzymatic activity. In addition, rebamipide inhibited the transactivation of nuclear factor kappa B (NFκB), which increased PLD1 expression. Rebamipide or PLD knockdown significantly suppressed the expression of genes involved in inflammation and proliferation and inhibited the proliferation of gastric cancer cells. In conclusion, rebamipide-induced downregulation of PLD may contribute to the inhibition of inflammation and proliferation in gastric cancer. PMID:20625243

  17. Glyphosate induces growth of estrogen receptor alpha positive cholangiocarcinoma cells via non-genomic estrogen receptor/ERK1/2 signaling pathway.

    PubMed

    Sritana, Narongrit; Suriyo, Tawit; Kanitwithayanun, Jantamas; Songvasin, Benjaporn Homkajorn; Thiantanawat, Apinya; Satayavivad, Jutamaad

    2018-06-08

    Previous studies showed that glyphosate stimulates breast cancer cell growth via estrogen receptors. The present study investigated the effect of glyphosate on the estrogen signaling pathway involved in the induction of cholangiocarcinoma (CCA) cell growth. HuCCA-1, RMCCA-1 and MMNK-1 were chosen for comparison. The effects of glyphosate on cell growth, cell cycle and molecular signaling pathways were measured. The results showed that HuCCA-1 cells expressed estrogen receptor alpha (ERα), while ERα was not detected in RMCCA-1 and MMNK-1 cells. ERα was mostly expressed in cytoplasmic compartment of HuCCA-1 cells. Estradiol (E2) (10 -11 -10 -5  M) induced cell proliferation in HuCCA-1 but not in RMCCA-1 and MMNK-1 cells. Glyphosate at the same concentration range also induced HuCCA-1 cell proliferation. The S phase of the cell cycle, and protein levels of the cyclin family were significantly increased after treatment of glyphosate or E2. Both compounds also induced the expression of proliferative signaling-related proteins including ERα, VEGFR2, pERK, PI3K(p85), and PCNA. These effects of glyphosate and E2 were abolished by the ER antagonist, 4-hydroxytamoxifen and U0126, a MEK inhibitor. The data from this study indicate that glyphosate can induce cell growth in ERα positive CCA cells through non-genomic estrogen receptor/ERK1/2 signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. IL1{beta}-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc, Miami, FL 33173; Zhu, Min

    2012-11-15

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts withmore » or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.« less

  19. Pancreatic β-cell proliferation in obesity.

    PubMed

    Linnemann, Amelia K; Baan, Mieke; Davis, Dawn Belt

    2014-05-01

    Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study. © 2014 American Society for Nutrition.

  20. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-01-01

    Prostaglandin E2 (PGE2) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1, PTGS2, MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE2-induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression. PMID:29599917

  1. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    PubMed

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  2. Stem cells for murine interstitial cells of cajal suppress cellular immunity and colitis via prostaglandin E2 secretion.

    PubMed

    Dave, Maneesh; Hayashi, Yujiro; Gajdos, Gabriella B; Smyrk, Thomas C; Svingen, Phyllis A; Kvasha, Sergiy M; Lorincz, Andrea; Dong, Haidong; Faubion, William A; Ordog, Tamas

    2015-05-01

    After allogeneic transplantation, murine stem cells (SCs) for interstitial cells of Cajal (ICCs), electrical pacemaker, and neuromodulator cells of the gut, were incorporated into gastric ICC networks, indicating in vivo immunosuppression. Immunosuppression is characteristic of bone marrow- and other non-gut-derived mesenchymal stem cells (MSCs), which are emerging as potential therapeutic agents against autoimmune diseases, including inflammatory bowel disease. Therefore, we investigated whether gut-derived ICC-SCs could also mitigate experimental colitis and studied the mechanisms of ICC-SC-mediated immunosuppression in relation to MSC-induced pathways. Isolated ICC-SCs were studied by transcriptome profiling, cytokine assays, flow cytometry, mixed lymphocyte reaction, and T-cell proliferation assay. Mice with acute and chronic colitis induced by dextran sulfate sodium and T-cell transfer, respectively, were administered ICC-SCs intraperitoneally and evaluated for disease activity by clinical and pathological assessment and for ICC-SC homing by live imaging. Unlike strain-matched dermal fibroblasts, intraperitoneally administered ICC-SCs preferentially homed to the colon and reduced the severity of both acute and chronic colitis assessed by clinical and blind pathological scoring. ICC-SCs profoundly suppressed T-cell proliferation in vitro. Similar to MSCs, ICC-SCs strongly expressed cyclooxygenase 1/2 and basally secreted prostaglandin E2. Indomethacin, a cyclooxygenase inhibitor, countered the ICC-SC-mediated suppression of T-cell proliferation. In contrast, we found no role for regulatory T-cell-, programmed death receptor-, and transforming growth factor-β-mediated mechanisms reported in MSCs; and transcriptome profiling did not support a relationship between ICC-SCs and MSCs. Murine ICC-SCs belong to a class different from MSCs and potently mitigate experimental colitis via prostaglandin E2-mediated immunosuppression. Copyright © 2015 AGA Institute

  3. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    PubMed Central

    Wang, Lintao; Peng, Yanyan; Shi, Kaikai; Wang, Haixiao; Lu, Jianlei; Li, Yanli; Ma, Changyan

    2015-01-01

    Abstract Recent studies have revealed that osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, a traditional Chinese medicine, possesses anticancer activity. However, its effect on breast cancer cells so far has not been elucidated clearly. In the present study, we evaluated the effects of osthole on the proliferation, cell cycle and apoptosis of human breast cancer cells MDA-MB 435. We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells, The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole, as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation. The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression. Were observed taken together, these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer. PMID:25859268

  4. [6]-Gingerol Induces Caspase-Dependent Apoptosis and Prevents PMA-Induced Proliferation in Colon Cancer Cells by Inhibiting MAPK/AP-1 Signaling

    PubMed Central

    Narayanan, Sai Shyam; Nath, Lekshmi R.; Thulasidasan, Arun Kumar T.; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer. PMID:25157570

  5. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    PubMed

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  6. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, bothmore » DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.« less

  7. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio

    2015-10-15

    Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs. © 2015 UICC.

  8. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul

    2011-06-24

    Highlights: {yields} Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. {yields} UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. {yields} UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation ({lambda} = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, wemore » demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm{sup 2}) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.« less

  9. Decorin-loaded poly lactic-co-glycolic acid nanoparticles modified by anti-alpha fetoprotein antibody: preparation, proliferation inhibition and induced apoptosis effects on HepG2 cells in vitro.

    PubMed

    Yang, Qiaoli; Wang, Shuyue; Wang, Yuan; Qu, Yane; Xue, Jun; Mi, Yang; Wang, Yanhong; Luo, Xuguang; Deng, Zhihua; Wang, Guiqin

    2017-06-01

    Decorin (DCN) is a negative regulatory factor for the growth of cancer cells and can inhibit the proliferation, metastasis of cancer cells and angiogenesis in cancer tissues. The aims of this study were to prepare the nanoparticles consisting of DCN and poly lactic-co-glycolic acid (PLGA) modified by anti-alpha fetoprotein (AFP) monoclonal antibody (mAb) and to examine the conventional physical properties, the in-vitro release of DCN and the targeting effect of these nanoparticles on HepG2 cells. The encapsulated plasmid was slowly and steadily released from the nanoparticles. The targeted PLGA nanoparticles were initiatively taken in HepG2 cells high-efficiently. According to the results of RT-PCR, DCN gene in AFPmAb-PLGA-rhDCN nanoparticles can be expressed in HepG2 cells successfully. These nanoparticles significantly inhibited the proliferation of HepG2 cells and induced apoptosis. The mRNA expression of Bcl-2 gene in the AFPmAb-PLGA-rhDCN-treated groups appeared significantly to decrease and the caspase-3 gene had the opposite trend as compared with that of control group (P < 0.01). These studies revealed that these nanoparticles were capable of specifically targeting the HepG2 cells and inhibiting the proliferation and they induce apoptosis of HepG2 cells in vitro, which was in a dose- and time-dependent manner. © 2017 Royal Pharmaceutical Society.

  10. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via α7 nAChR.

    PubMed

    Hong, Wei; Peng, Gongyong; Hao, Binwei; Liao, Baoling; Zhao, Zhuxiang; Zhou, Yumin; Peng, Fang; Ye, Xiuqin; Huang, Lingmei; Zheng, Mengning; Pu, Jinding; Liang, Chunxiao; Yi, Erkang; Peng, Huanhuan; Li, Bing; Ran, Pixin

    2017-01-01

    The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor (α7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. Effect of nickel chloride on cell proliferation.

    PubMed

    D'Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico

    2012-01-01

    Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl(2)) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl(2) on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey's test. NiCl(2) induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl(2) caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl(2) concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl(2) caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl(2) exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death.

  12. Plant-originated glycoprotein (24 kDa) has an inhibitory effect on proliferation of BNL CL.2 cells in response to di(2-ethylhexyl)phthalate.

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2011-08-01

    Di(2-ethylhexyl)phthalate (DEHP) is one of the many environmental chemicals that are widely used in polyvinyl chloride products, vinyl flooring, food packaging and infant toys. They cause cell proliferation or dysfunction of human liver. The purpose of this study is to investigate the inhibitory effect of a glycoprotein (24 kDa) isolated from Zanthoxylum piperitum DC (ZPDC) on proliferation of liver cell in the DEHP-induced BNL CL. 2 cells. [³H]-thymidine incorporation, intracellular reactive oxygen species (ROS), intracellular Ca²⁺ mobilization and activity of protein kinase C (PKC) were measured using radioactivity and fluorescence method respectively. The expression of mitogen-activated protein kinases [extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK)], activator protein (AP)-1 (c-Jun and c-Fos), proliferating cell nuclear antigen (PCNA) and cell cycle-related factors (cyclin D1/cyclin-dependent kinase [CDK] 4) were evaluated using Western blotting or electrophoretic mobility shift assay. The results in this study showed that the levels of [³H]-thymidine incorporation, intracellular ROS, intracellular Ca²⁺ mobilization and activity of PKCα were inhibited by ZPDC glycoprotein (100 µg/ml) in the DEHP-induced BNL CL. 2 cells. Also, activities of ERK, JNK and AP-1 were reduced by ZPDC glycoprotein (100 µg/ml). With regard to cell proliferation, activities of PCNA and cyclin D1/CDK4 were significantly suppressed at treatment with ZPDC glycoprotein (100 µg/ml) in the presence of DEHP. Taken together, these findings suggest that ZPDC glycoprotein significantly normalized activities of PCNA and cyclin D1/CDK4, which relate to cell proliferation factors. Thus, ZPDC glycoprotein appears to be one of the compounds derived from natural products that are able to inhibit cell proliferation in the phthalate-induced BNL CL. 2 cells. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), andmore » OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.« less

  14. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  15. Phytocalpain controls the proliferation and differentiation fates of cells in plant organ development.

    PubMed

    Ahn, Joon-Woo; Kim, Moonil; Lim, Jeong Hwa; Kim, Gyung-Tae; Pai, Hyun-Sook

    2004-06-01

    Calpain, a calcium-dependent cysteine protease, plays an essential role in basic cellular processes in animal cells, including cell proliferation, apoptosis, and differentiation. NbDEK encodes the calpain homolog of N. benthamiana. In this study, virus-induced gene silencing (VIGS) of NbDEK resulted in arrested organ development and hyperplasia in all the major plant organs examined. The epidermal layers of the leaves and stems were covered with hyperproliferating cell masses, and stomata and trichome development was severely inhibited. During flower development, a single dome-like structure was grown from the flower meristem to generate a large cylinder-shaped flower lacking any floral organs. At the cellular level, cell division was sustained in tissues that were otherwise already differentiated, and cell differentiation was severely hampered. NbDEK is ubiquitously expressed in all the plant tissues examined. In the abnormal organs of the NbDEK VIGS lines, protein levels of D-type cyclins (CycD)2, CycD3, and proliferating cell nuclear antigen (PCNA) were greatly elevated, and transcription of E2F (E2 promoter binding factor), E2F-regulated genes, retinoblastoma (Rb), and KNOTTED1 (KN1)-type homeobox genes was also stimulated. These results suggest that phytocalpain is a key regulator of cell proliferation and differentiation during plant organogenesis, and that it acts partly by controlling the CycD/Rb pathway.

  16. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke

    2008-03-21

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca{sup 2+} concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation.more » Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.« less

  17. Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation.

    PubMed

    Hsu, Hsi-Hsien; Chen, Ming-Cheng; Day, Cecilia Hsuan; Lin, Yueh-Min; Li, Shin-Yi; Tu, Chuan-Chou; Padma, Viswanadha Vijaya; Shih, Hui-Nung; Kuo, Wei-Wen; Huang, Chih-Yang

    2017-02-21

    To identify potential anti-cancer constituents in natural extracts that inhibit cancer cell growth and migration. Our experiments used high dose thymoquinone (TQ) as an inhibitor to arrest LoVo (a human colon adenocarcinoma cell line) cancer cell growth, which was detected by cell proliferation assay and immunoblotting assay. Low dose TQ did not significantly reduce LoVo cancer cell growth. Cyclooxygenase 2 (COX-2) is an enzyme that is involved in the conversion of arachidonic acid into prostaglandin E2 (PGE2) in humans. PGE2 can promote COX-2 protein expression and tumor cell proliferation and was used as a control. Our results showed that 20 μmol/L TQ significantly reduced human LoVo colon cancer cell proliferation. TQ treatment reduced the levels of p-PI3K, p-Akt, p-GSK3β, and β-catenin and thereby inhibited the downstream COX-2 expression. Results also showed that the reduction in COX-2 expression resulted in a reduction in PGE2 levels and the suppression of EP2 and EP4 activation. Further analysis showed that TG treatment inhibited the nuclear translocation of β-catenin in LoVo cancer cells. The levels of the cofactors LEF-1 and TCF-4 were also decreased in the nucleus following TQ treatment in a dose-dependent manner. Treatment with low dose TQ inhibited the COX-2 expression at the transcriptional level and the regulation of COX-2 expression efficiently reduced LoVo cell migration. The results were further verified in vivo by confirming the effects of TQ and/or PGE2 using tumor xenografts in nude mice. TQ inhibits LoVo cancer cell growth and migration, and this result highlights the therapeutic advantage of using TQ in combination therapy against colorectal cancer.

  18. Decursin inhibited proliferation and angiogenesis of endothelial cells to suppress diabetic retinopathy via VEGFR2.

    PubMed

    Yang, Ying; Yang, Ke; Li, Yiping; Li, Xianli; Sun, Qiangming; Meng, Hua; Zeng, Ying; Hu, Yong; Zhang, Ying

    2013-09-25

    Diabetes induces pathologic proliferation and angiogenesis in the retina that leads to catastrophic loss of vision. Decursin is a novel therapeutic that targets the vascular endothelial growth factor (VEGF) receptor (VEGFR) with putative anti-proliferative and anti-angiogenic activities. Thereby we utilized human retinal microvascular endothelial cells (HRMEC) and human umbilical vein endothelial cells (HUVEC) under conditions of excess glucose to explore dose-dependent responses of decursin on markers of migration, angiogenesis, and proliferation. Decursin dose-dependently inhibited tube formation, VEGFR-2 expression, along with relative metabolic activity and 5-bromo-2'-deoxy-uridine (BrdU) activity in both cell lines. We then correlated our findings to the streptozotocin-induced rat model of diabetes. Following three months of decursin treatment VEGFR-2 expression was significantly inhibited. Our data would suggest that decursin may be a potent anti-angiogenic and anti-proliferative agent targeting the VEGFR-2 signaling pathway, which significantly inhibits diabetic retinal neovascularization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. HBV core promoter mutations promote cellular proliferation through E2F1-mediated upregulation of S-phase kinase-associated protein 2 transcription.

    PubMed

    Huang, Yuehua; Tai, Andrew W; Tong, Shuping; Lok, Anna S F

    2013-06-01

    Hepatitis B virus (HBV) core promoter (CP) mutations have been associated with an increased risk of hepatocellular carcinoma (HCC) in clinical studies. We previously reported that a combination of CP mutations seen in HCC patients, expressed in HBx gene, increased SKP2 (S-phase kinase-associated protein 2) expression, thereby promoting cellular proliferation. Here, we investigate the possible mechanisms by which CP mutations upregulate SKP2. We used immunoblotting and ATPlite assay to validate the effect of CP mutations in full-length HBV genome on cell cycle regulator levels and cell proliferation. Activation of SKP2 mRNA was assessed by quantitative real-time PCR in primary human hepatocytes (PHH) and HCC cell lines. Effect of CP mutations on SKP2 promoter activity was determined by luciferase assay. Target regulation of E2F1 on SKP2 was analyzed by siRNAs. CP mutations in full-length HBV genome upregulated SKP2 expression, thereby downregulating cell cycle inhibitors and accelerating cellular proliferation. CP mutations enhanced SKP2 promoter activity but had no effect on SKP2 protein stability. Mapping of the SKP2 promoter identified a region necessary for activation by CP mutations that contains an E2F1 response element. Knocking down E2F1 reduced the effects of CP mutations on SKP2 and cellular proliferation. The effect of CP mutations on E2F1 might be mediated through hyperphosphorylation of RB. HBV CP mutations enhance SKP2 transcription by activating the E2F1 transcription factor and in turn downregulate cell cycle inhibitors, thus providing a potential mechanism for an association between CP mutations and HCC. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells

    PubMed Central

    Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A.; de Boer, Jan; Watt, Fiona M.

    2016-01-01

    It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation. PMID:26757610

  1. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A.

    PubMed

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-04-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21(Cip1) and p27(Kip1). Akt involvement was demonstrated by decreased phosphorylation of its substrate, p21(Cip1), and reduced Akt catalytic activity and phosphorylation at essential activation sites. Synemin silencing, however, did not affect the activities of PDPK1 and mTOR complex 2, which directly phosphorylate Akt activation sites, but instead enhanced the activity of the major regulator of Akt dephosphorylation, protein phosphatase type 2A (PP2A). This was accompanied by changes in PP2A subcellular distribution resulting in increased physical interactions between PP2A and Akt, as shown by proximity ligation assays (PLAs). PLAs and immunoprecipitation experiments further revealed that synemin and PP2A form a protein complex. In addition, treatment of synemin-silenced cells with the PP2A inhibitor cantharidic acid resulted in proliferation and pAkt and pRb levels similar to those of controls. Collectively these results indicate that synemin positively regulates glioblastoma cell proliferation by helping sequester PP2A away from Akt, thereby favoring Akt activation.

  2. Prostaglandin E(2) and insulin-like growth factor I interact to enhance proliferation of theca externa cells from chicken prehierarchical follicles.

    PubMed

    Jia, Yudong; Lin, Jinxing; Mi, Yuling; Zhang, Caiqiao

    2013-10-01

    The interactive effect of insulin-like growth factor I (IGF-I) and prostaglandin E2 (PGE2) on the proliferation of theca externa cells (TECs) was investigated in the prehierarchical small yellow follicles of laying hens. IGF-I manifested a proliferating effect like PGE2 on TECs, but this stimulating effect was restrained by AG1024 (IGF-IR inhibitor), KP372-1 (PKB/AKT inhibitor) or NS398 (COX-2 inhibitor). AG1024, KP372-1 or NS398 abolished IGF-I-stimulated COX-2 expression and PGE2 production. Meanwhile, KP372-1, NS398 or AG1024 depressed the PGE2-stimulated expression of COX-2 and IGF-IR mRNA. Therefore, the IGF-I receptor pathway up-regulates COX-2 expression and PGE2 synthesis via PKB signaling cascade, and then PGE2 stimulates IGF-IR mRNA expression to promote TEC proliferation in an autocrine pattern. Overall, the reciprocal stimulation of intracellular PGE2 and IGF-I may enhance TEC proliferation and facilitate the development of chicken prehierarchical follicles. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. SerpinE2, a poor biomarker of endometrial cancer, promotes the proliferation and mobility of EC cells.

    PubMed

    Shen, Yuan; Wang, Xiaoyu; Xu, Jianping; Lu, Lin

    2017-07-04

    The SerpinE2 pathway is evolutionarily conserved and plays an important role in tumorigenesis. SerpinE2 (a small ubiquitin-related modifier), like ubiquitin, conjugates SerpinE2 proteins onto lysine residues of target proteins. SerpinE2 over-expression has been found in several tumors. Here, we detected the level of SerpinE2 in 72 samples of EC tissue using immunohistochemistry to assess the role of SerpinE2 in EC prognosis. Meanwhile, we knocked down SerpinE2 by siRNA in the HTB-111 and Ishikawa EC cell lines and analyzed the viability and mobility change using an MTT assay, an annexin V/PI apoptosis assay, a wound scratch test and a transwell assay. A Kaplan-Meier analysis indicated a negative correlation between the level of SerpinE2 and the EC prognosis. Silencing SerpinE2 induced cell apoptosis and reduced the migration ability. Our data suggest SerpinE2 works as an oncogene in EC.

  4. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation.

    PubMed

    Ambhore, Nilesh Sudhakar; Katragadda, Rathnavali; Raju Kalidhindi, Rama Satyanarayana; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S; Sathish, Venkatachalem

    2018-04-20

    Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways

  5. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts.

    PubMed

    Chen, Joseph C; Johnson, Brittni A; Erikson, David W; Piltonen, Terhi T; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C; Greene, Warner C; Giudice, Linda C; Roan, Nadia R

    2014-06-01

    How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and

  6. Short-term environmental enrichment exposure induces proliferation and maturation of doublecortin-positive cells in the prefrontal cortex

    PubMed Central

    Fan, Chunling; Zhang, Mengqi; Shang, Lei; Cynthia, Ngobe Akume; Li, Zhi; Yang, Zhenyu; Chen, Dan; Huang, Jufang; Xiong, Kun

    2014-01-01

    Previous studies have demonstrated that doublecortin-positive immature neurons exist predominantly in the superficial layer of the cerebral cortex of adult mammals such as guinea pigs, and these neurons exhibit very weak properties of self-proliferation during adulthood under physiological conditions. To verify whether environmental enrichment has an impact on the proliferation and maturation of these immature neurons in the prefrontal cortex of adult guinea pigs, healthy adult guinea pigs were subjected to short-term environmental enrichment. Animals were allowed to play with various cognitive and physical stimulating objects over a period of 2 weeks, twice per day, for 60 minutes each. Immunofluorescence staining results indicated that the number of doublecortin-positive cells in layer II of the prefrontal cortex was significantly increased after short-term environmental enrichment exposure. In addition, these doublecortin-positive cells co-expressed 5-bromo-2-deoxyuridine (a marker of cell proliferation), c-Fos (a marker of cell viability) and NeuN (a marker of mature neurons). Experimental findings showed that short-term environmental enrichment can induce proliferation, activation and maturation of doublecortin-positive cells in layer II of the prefrontal cortex of adult guinea pigs. PMID:25206818

  7. IL-4-secreting eosinophils promote endometrial stromal cell proliferation and prevent Chlamydia-induced upper genital tract damage.

    PubMed

    Vicetti Miguel, Rodolfo D; Quispe Calla, Nirk E; Dixon, Darlene; Foster, Robert A; Gambotto, Andrea; Pavelko, Stephen D; Hall-Stoodley, Luanne; Cherpes, Thomas L

    2017-08-15

    Genital Chlamydia trachomatis infections in women typically are asymptomatic and do not cause permanent upper genital tract (UGT) damage. Consistent with this presentation, type 2 innate and T H 2 adaptive immune responses associated with dampened inflammation and tissue repair are elicited in the UGT of Chlamydia -infected women. Primary C. trachomatis infection of mice also causes no genital pathology, but unlike women, does not generate Chlamydia -specific T H 2 immunity. Herein, we explored the significance of type 2 innate immunity for restricting UGT tissue damage in Chlamydia -infected mice, and in initial studies intravaginally infected wild-type, IL-10 -/- , IL-4 -/- , and IL-4Rα -/- mice with low-dose C. trachomatis inoculums. Whereas Chlamydia was comparably cleared in all groups, IL-4 -/- and IL-4Rα -/- mice displayed endometrial damage not seen in wild-type or IL-10 -/- mice. Congruent with the aberrant tissue repair in mice with deficient IL-4 signaling, we found that IL-4Rα and STAT6 signaling mediated IL-4-induced endometrial stromal cell (ESC) proliferation ex vivo, and that genital administration of an IL-4-expressing adenoviral vector greatly increased in vivo ESC proliferation. Studies with IL-4-IRES-eGFP (4get) reporter mice showed eosinophils were the main IL-4-producing endometrial leukocyte (constitutively and during Chlamydia infection), whereas studies with eosinophil-deficient mice identified this innate immune cell as essential for endometrial repair during Chlamydia infection. Together, our studies reveal IL-4-producing eosinophils stimulate ESC proliferation and prevent Chlamydia -induced endometrial damage. Based on these results, it seems possible that the robust type 2 immunity elicited by Chlamydia infection of human genital tissue may analogously promote repair processes that reduce phenotypic disease expression.

  8. Adenovirus type 5 E1A and E6 proteins of low-risk cutaneous beta-human papillomaviruses suppress cell transformation through interaction with FOXK1/K2 transcription factors.

    PubMed

    Komorek, Jessica; Kuppuswamy, Mohan; Subramanian, T; Vijayalingam, S; Lomonosova, Elena; Zhao, Ling-Jun; Mymryk, Joe S; Schmitt, Kimberly; Chinnadurai, G

    2010-03-01

    The adenovirus (Adv) oncoprotein E1A stimulates cell proliferation and inhibits differentiation. These activities are primarily linked to the N-terminal region (exon 1) of E1A, which interacts with multiple cellular protein complexes. The C terminus (exon 2) of E1A antagonizes these processes, mediated in part through interaction with C-terminal binding proteins 1 and 2 (CtBP1/2). To identify additional cellular E1A targets that are involved in the modulation of E1A C-terminus-mediated activities, we undertook tandem affinity purification of E1A-associated proteins. Through mass spectrometric analysis, we identified several known E1A-interacting proteins as well as novel E1A targets, such as the forkhead transcription factors, FOXK1/K2. We identified a Ser/Thr-containing sequence motif in E1A that mediated interaction with FOXK1/K2. We demonstrated that the E6 proteins of two beta-human papillomaviruses (HPV14 and HPV21) associated with epidermodysplasia verruciformis also interacted with FOXK1/K2 through a motif similar to that of E1A. The E1A mutants deficient in interaction with FOXK1/K2 induced enhanced cell proliferation and oncogenic transformation. The hypertransforming activity of the mutant E1A was suppressed by HPV21 E6. An E1A-E6 chimeric protein containing the Ser/Thr domain of the E6 protein in E1A interacted efficiently with FOXK1/K2 and inhibited cell transformation. Our results suggest that targeting FOXK1/K2 may be a common mechanism for certain beta-HPVs and Adv5. E1A exon 2 mutants deficient in interaction with the dual-specificity kinases DYRK1A/1B and their cofactor HAN11 also induced increased cell proliferation and transformation. Our results suggest that the E1A C-terminal region may suppress cell proliferation and oncogenic transformation through interaction with three different cellular protein complexes: FOXK1/K2, DYRK(1A/1B)/HAN11, and CtBP1/2.

  9. Role of medullary progenitor cells in epithelial cell migration and proliferation

    PubMed Central

    Chen, Dong; Chen, Zhiyong; Zhang, Yuning; Park, Chanyoung; Al-Omari, Ahmed

    2014-01-01

    This study is aimed at characterizing medullary interstitial progenitor cells and to examine their capacity to induce tubular epithelial cell migration and proliferation. We have isolated a progenitor cell side population from a primary medullary interstitial cell line. We show that the medullary progenitor cells (MPCs) express CD24, CD44, CXCR7, CXCR4, nestin, and PAX7. MPCs are CD34 negative, which indicates that they are not bone marrow-derived stem cells. MPCs survive >50 passages, and when grown in epithelial differentiation medium develop phenotypic characteristics of epithelial cells. Inner medulla collecting duct (IMCD3) cells treated with conditioned medium from MPCs show significantly accelerated cell proliferation and migration. Conditioned medium from PGE2-treated MPCs induce tubule formation in IMCD3 cells grown in 3D Matrigel. Moreover, most of the MPCs express the pericyte marker PDGFR-b. Our study shows that the medullary interstitium harbors a side population of progenitor cells that can differentiate to epithelial cells and can stimulate tubular epithelial cell migration and proliferation. The findings of this study suggest that medullary pericyte/progenitor cells may play a critical role in collecting duct cell injury repair. PMID:24808539

  10. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    PubMed

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-06-01

    The remarkable regeneration capability of skeletal muscle depends on the coordinated proliferation and differentiation of satellite cells (SCs). The self-renewal of SCs is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in SCs in vivo remains largely unknown. Here, we demonstrate that SCs are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of SCs by maintaining their quiescence, increasing their self-renewal, and blocking their myogenic differentiation. HIF2A stabilization in SCs cultured under normoxia augments their engraftment potential in regenerative muscle. Conversely, HIF2A ablation leads to the depletion of SCs and their consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerates muscle regeneration by increasing SC proliferation and differentiation. Mechanistically, HIF2A induces the quiescence and self-renewal of SCs by binding the promoter of the Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in SCs and may be therapeutically targeted to improve muscle regeneration.

  11. Intermedin Enlarges the Vascular Lumen by Inducing the Quiescent Endothelial Cell Proliferation.

    PubMed

    Wang, Li-Jun; Xiao, Fei; Kong, Ling-Miao; Wang, De-Nian; Li, Hong-Yu; Wei, Yong-Gang; Tan, Chun; Zhao, Huan; Zhang, Ting; Cao, Gui-Qun; Zhang, Kang; Wei, Yu-Quan; Yang, Han-Shuo; Zhang, Wei

    2018-02-01

    Intermedin plays an important role in vascular remodeling and significantly improves blood perfusion, but the precise mechanism remains unclear. Herein, we aimed to define whether vascular lumen enlargement is responsible for the intermedin-increased blood perfusion and explore the underlying cellular and molecular mechanisms. To study the role of intermedin, we generated the IMD-KO ( Adm2 -/- ) mice using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) system. Intermedin significantly promoted vascular lumen enlargement in vitro (fibrin beads assay) and in vivo (murine retinas), which contributed to the improved blood perfusion in both physiological (retinal) and pathological (tumor) angiogenic models. We designed experiments to calculate the endothelial cell (EC) size and found that the lumen enlargement is because of EC proliferation but not because of a change in cell shape. ECs that construct vessel walls are considered quiescent cells because they are in a state of contact inhibition and show reduced responsiveness to VEGF (vascular endothelial growth factor). Using immunoprecipitation, Western blot assay, and fluorescent microscopy, we found that intermedin induced the formation of a signaling complex containing CRLR (calcitonin receptor-like receptor)/β-arr1 (β-arrestin1)/Src in ECs and promoted it internalizing into cytoplasm in a clathrin-dependent manner to activate downstream ERK1/2 (extracellular signal-regulated kinase 1/2). Importantly, this effect was not abrogated by cell-cell contacts of ECs. Through this mechanism, intermedin could reactivate the quiescent ECs to proliferate, resulting in continuous lumen expanding and a more effective blood perfusion. Our findings suggest a novel mechanism that may explain how quiescent ECs overcome the contact inhibition and regain the ability to proliferate for continuous vascular lumen enlargement. © 2017 American

  12. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.

    PubMed

    Nguyen, Van Thi; Cancedda, Ranieri; Descalzi, Fiorella

    2018-03-01

    The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Sepsis-induced alteration in T-cell Ca(2+) signaling in neonatal rats.

    PubMed

    Alattar, M H; Ravindranath, T M; Choudhry, M A; Muraskas, J K; Namak, S Y; Dallal, O; Sayeed, M M

    2001-01-01

    Sepsis-induced suppression in T-cell proliferation follows deranged Ca(2+) signaling in adult rats. In preliminary studies, we observed suppression in T-cell proliferation in septic neonatal rats as well. In this study, we assessed splenic T-cell cytosolic Ca(2+) concentration, [Ca(2+)](i), as its elevation plays an important role in T-cell proliferation. Also, we investigated the role of PGE(2) in sepsis-related changes in T-cell [Ca(2+)](i) in animals pretreated with cyclooxygenase-1 (COX-1) inhibitor (resveratrol) and cyclooxygenase-2 (COX-2) inhibitor (NS-398). Sepsis was induced in 15-day-old rat pups by intraperitoneal implantation of fecal pellets containing Escherichia coli and Bacteroides fragilis. The sham group consisted of pups implanted with sterile fecal pellets. Septic and sham pups were sacrificed 24 h after implantation and their spleens were removed. The spleens from sham and septic pups, along with spleens from unoperated control pups, were processed for single cell suspensions, and T cells were isolated using nylon wool columns. Fura-2 fluorophotometry was employed for the measurement of [Ca(2+)](i) (in nM units) in T cells stimulated with concanavalin A (ConA). Our results show that ConA-mediated T-cell [Ca(2+)](i) response is significantly suppressed in septic neonatal rats. Pretreatment of pups with COX-2, but not COX-1 inhibitor, prevented the decrease in the [Ca(2+)](i) response. These findings suggest that PGE(2) might induce the attenuation in T-cell Ca(2+) signaling during sepsis in neonatal rats. Copyright 2001 S. Karger AG, Basel

  14. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Fang; Chen, Rongjing; Liu, Baojun

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expressionmore » of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.« less

  15. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chao-Feng

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At themore » concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.« less

  16. Bisdemethoxycurcumin inhibits PDGF-induced vascular smooth muscle cell motility and proliferation

    PubMed Central

    Hua, Yinan; Dolence, Julia; Ramanan, Shalini; Ren, Jun; Nair, Sreejayan

    2013-01-01

    Scope A key event in the development of plaque in the arteries is the migration and proliferation of smooth muscle cells (SMCs) from the media to the intima of the blood vessel. This study was conducted to evaluate the effects of bisdemethoxycurcumin, a naturally occurring structural analog of curcumin, on PDGF-stimulated migration and proliferation of SMCs. Methods and results Demethoxycurcumin were synthesized by condensing vanillin and 4-hydroxybenzaldehyde. SMCs isolated from adult rat aorta were stimulated with PDGF in the presence or absence of curcumin or bisdemethoxycurcumin following which cell migration and proliferation were assessed by monolayer wound healing assay and [3H]-thymidine incorporation respectively. PDGF-induced phosphorylation of PDGF-receptor-β and its downstream effector Akt were assessed by Western blotting. Intracellular reactive oxygen species (ROS) was assessed using the fluorescent dye DCFDA. Bisdemethoxycurcumin elicited a concentration-dependent inhibition of PDGF-stimulated phosphorylation of PDGFR-β, Akt and Erk as well as the PDGF-stimulated SMC migration and proliferation. Bisdemethoxycurcumin was more potent than curcumin in inhibiting migration and proliferation and suppressing PDGF-signaling in SMCs. Both compounds were equipotent in inhibiting PDGF-stimulated intracellular ROS-generation. Conclusion Bisdemethoxycurcumin may be of potential use in the prevention or treatment of vascular disease. PMID:23554078

  17. Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells.

    PubMed

    Kunzmann, Volker; Kimmel, Brigitte; Herrmann, Thomas; Einsele, Hermann; Wilhelm, Martin

    2009-02-01

    Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.

  18. Effect of Nickel Chloride on Cell Proliferation

    PubMed Central

    D’Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico

    2012-01-01

    Objective: Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Materials and Methods: Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl2) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl2 on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey’s test. Results: NiCl2 induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl2 caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl2 concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl2 caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl2 exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Conclusion: Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death. PMID:23198004

  19. Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells

    PubMed Central

    Pant, Kishor; Yadav, Ajay K.; Gupta, Parul; Rathore, Abhishek Singh; Nayak, Baibaswata; Venugopal, Senthil K.

    2016-01-01

    Hepatitis B Virus (HBV) utilizes several mechanisms to survive in the host cells and one of the main pathways being autophagosome formation. Humic acid (HA), one of the major components of Mineral pitch, is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. We hypothesized that HA could induce cell death and inhibit HBV-induced autophagy in hepatic cells. Incubation of Hep G2.2.1.5 cells (HepG2 cells stably expressing HBV) with HA (100 μM) inhibited both cell proliferation and autophagosome formation significantly, while apoptosis induction was enhanced. Western blot results showed that HA incubation resulted in decreased levels of beclin-1, SIRT-1 and c-myc, while caspase-3 and β-catenin expression were up-regulated. Western blot results showed that HA significantly inhibited the expression of HBx (3-fold with 50 μM and 5-fold with 100 μM) compared to control cells. When HA was incubated with HBx-transfected Hep G2 cells, HBx-induced autophagosome formation and beclin-1 levels were decreased. These data showed that HA induced apoptosis and inhibited HBV-induced autophagosome formation and proliferation in hepatoma cells. PMID:27708347

  20. CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells.

    PubMed

    Zhang, Danfeng; Wang, Chunhui; Li, Zhenxing; Li, Yiming; Dai, Dawei; Han, Kaiwei; Lv, Liquan; Lu, Yicheng; Hou, Lijun; Wang, Junyu

    2018-01-01

    The cyclin family protein CCNG2 has an important inhibitory role in cancer initiation and progression, but the exact mechanism is still unknown. In this study, we examined the relationship between CCNG2 and the malignancy of astrocytomas and whether the AKT pathway, which is upregulated in astrocytomas, may inhibit CCNG2 expression. CCNG2 expression was found to be negatively associated with the pathological grade and proliferative activity of astrocytomas, as the highest expression was found in control brain tissue ( N  = 31), whereas the lowest expression was in high-grade glioma tissue ( N  = 31). Additionally, CCNG2 overexpression in glioma cell lines, T98G and U251 inhibited proliferation and arrested cells in the G0/G1 phase. Moreover, CCNG2 overexpression could increase glioma cells apoptosis. In contrast, AKT activity increased in glioma cells that had low CCNG2 expression. Expression of CCNG2 was higher in cells treated with the AKT kinase inhibitor MK-2206 indicating that the presence of phosphorylated AKT may inhibit the expression of CCNG2. Inhibition of AKT also led to decreased colony formation in T98G and U251 cells and knocked down of CCNG2 reversed the result. Finally, overexpression of CCNG2 in glioma cells reduced tumor volume in a murine model. To conclude, low expression of CCNG2 correlated with the severity astrocytoma and CCNG2 overexpression could induce apoptosis and inhibit proliferation. Inhibition of AKT activity increased the expression of CCNG2. The present study highlights the regulatory consequences of CCNG2 expression and AKT activity in astrocytoma tumorigenesis and the potential use of CCNG2 in anticancer treatment.

  1. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    PubMed

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell TM assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  2. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  3. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation.

    PubMed

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario; Castro, Carmen

    2015-07-29

    Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical agents to facilitate neuronal renewal. © The

  4. p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation

    PubMed Central

    Brosh, Ran; Shalgi, Reut; Liran, Atar; Landan, Gilad; Korotayev, Katya; Nguyen, Giang Huong; Enerly, Espen; Johnsen, Hilde; Buganim, Yosef; Solomon, Hilla; Goldstein, Ido; Madar, Shalom; Goldfinger, Naomi; Børresen-Dale, Anne-Lise; Ginsberg, Doron; Harris, Curtis C; Pilpel, Yitzhak; Oren, Moshe; Rotter, Varda

    2008-01-01

    Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs (miRNAs) in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcriptional regulators, E2F and p53, their targets and a family of 15 miRNAs. Indicative of their significance, expression of these miRNAs is downregulated in senescent cells and in breast cancers harboring wild-type p53. These miRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these miRNAs silence antiproliferative genes, which themselves are E2F1 targets. Thus, miRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative miRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Taken together, these findings position miRNAs as novel key players in the mammalian cellular proliferation network. PMID:19034270

  5. Transforming growth factor-alpha stimulates enterocyte proliferation and accelerates intestinal recovery following methotrexate-induced intestinal mucositis in a rat and a cell culture model.

    PubMed

    Sukhotnik, Igor; Shteinberg, Dan; Ben Lulu, Shani; Bashenko, Yulia; Mogilner, Jorge G; Ure, Benno M; Shaoul, Ron; Shamian, Benhoor; Coran, Arnold G

    2008-12-01

    Recent evidence suggests that transforming growth factor-alpha (TGF-alpha) enhances enterocyte proliferation and exerts a gut trophic effect. The purpose of the present study was to evaluate the effect of TGF-alpha on enterocyte proliferation and intestinal recovery following methotrexate (MTX)-induced intestinal mucositis in rats and in Caco-2 cells. Nonpretreated Caco-2 cells and those pretreated with MTX were incubated with increasing concentrations of TGF-alpha. Cell proliferation was determined by FACS cytometry. Adult rats were divided into three groups: control rats treated with vehicle, MTX rats treated with one dose (20 microg/kg) of MTX given intraperitoneally, and MTX-TGF-alpha rats treated with one dose of MTX followed by two doses of TGF-alpha (75 microg/kg a day). Three days after MTX injection, rats were sacrificed. Intestinal mucosal damage (Park's score), mucosal structural changes, and enterocyte proliferation were measured at sacrifice. Western blotting was used to determine the level of extracellular signal-related kinase (ERK) protein, a marker of cell proliferation. A nonparametric Kruskal-Wallis ANOVA test was used for statistical analysis with P value less than 0.05 considered statistically significant. The in vitro experiment demonstrated that treatment with TGF-alpha of Caco-2 cells resulted in a significant stimulation of cell proliferation in a dose-dependent manner. The in vivo experiment showed that treatment with TGF-alpha resulted in a significant increase in bowel and mucosal weight, DNA and protein content in jejunum and ileum, villus height in jejunum and ileum, crypt depth in ileum, and increased cell proliferation in jejunum and ileum compared to the MTX group. MTX-TGF-alpha rats also had a significantly lower intestinal injury score in ileum when compared to MTX animals. The increase in levels of cell proliferation in MTX-TGF-alpha rats corresponded with the increase in ERK protein levels in intestinal mucosa. Treatment with

  6. Inhibitory effect on the proliferation of human heptoma induced by cell-permeable manganese superoxide dismutase.

    PubMed

    Guo, Hua; Zhang, Na; Liu, Di; Wang, Ping; Ma, Xingyuan

    2016-10-01

    Mitochondrial antioxidant manganese superoxide dismutase (MnSOD) belongs to a group of genes whose expression is generally decreased significantly in patients with hepatoma. The proliferation of cancer cells with low expression of MnSOD exhibit high sensitivity to the elevated expression of MnSOD. However, due to the lack of ability to penetrate the cell membrane, the direct use and study of SOD for cancer treatment are largely hampered. In this work, cell penetrating peptide TAT was fused to the N-terminus of MnSOD to facilitate the penetration of MnSOD through cell membranes. Results showed that TAT-MnSOD wt treatment induced evident inhibitory effect on the proliferation of heptoma, with minimal effect on normal cells. It was further demonstrated that both the penetration of cells and enzymatic activity of MnSOD are essential to its inhibitory function, because only TAT-MnSOD wt, not inactive TAT-MnSOD mutant or MnSOD could successfully inhibit cell proliferation and reduce the intra-celluar reactive oxygen species (ROS). In addition, the lower oxidative stress delayed the cell cycle at G2/M and significantly slowed HepG2 cell growth in association with the dephosphorylation of survivin. Our results help in understanding the regulatory effects of MnSOD on cell viability and redox homestasis of heptoma and promise potential applications of TAT-MnSOD wt for clinical cancer therapy. Copyright © 2016. Published by Elsevier Masson SAS.

  7. Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent Induced Stem Cells Leads to their Death

    PubMed Central

    Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf

    2014-01-01

    Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases

  8. Veterinary drug, 17β-trenbolone promotes the proliferation of human prostate cancer cell line through the Akt/AR signaling pathway.

    PubMed

    Lee, Hee-Seok; Jung, Da-Woon; Han, Songyi; Kang, Hui-Seung; Suh, Jin-Hyang; Oh, Hyun-Suk; Hwang, Myung-Sil; Moon, Guiim; Park, Yooheon; Hong, Jin-Hwan; Koo, Yong Eui

    2018-05-01

    Trenbolone acetate (TBA) is a synthetic anabolic steroidal growth factor that is used for rapid muscle development in cattle. The absorbed TBA is hydrolyzed to the active form, 17β-trenbolone (17 TB; 17β-hydroxy-estra-4,9,11-trien-3-one) in meat and milk products, which can cause adverse health effects in humans. Similar to 5α-dihydrotestosterone (DHT), 17 TB was reported to exhibit endocrine disrupting effects on animals and humans due to its androgenic effect via binding to the androgen receptor. The purpose of this study is to investigate the molecular mechanism of cell proliferation in prostate cancer (PCa) cells treated with 17 TB. We found that 17 TB induces AR-dependent cell proliferation in the human prostate cancer cell line, 22Rv1 in a concentration dependent manner. Treatment with 17 TB increased the expression of cell cycle regulatory proteins, cyclin D2/CDK-4 and cyclin E/CDK-2, whereas the expression of p27 was down-regulated. Furthermore, phosphorylation of Rb and activation of E2F were also induced, which suggests the activation of cyclin D2/CDK-4 and cyclin E/CDK-2 in the cells. When 22Rv1 cells were exposed to 30 pM of 17 TB, which is the effective concentration (EC 50 ) value required to observe proliferative effects on 22Rv1 cells, the expression levels of the phosphorylated forms of Akt and GSK3β were increased. This study demonstrates that 17 TB induces AR-dependent proliferation through the modulation of cell cycle-related proteins in the Akt signaling pathway. The present study provides an effective methodology for identifying cell proliferation signaling of veterinary drugs that exert AR agonistic effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao; College of Life Science, Anhui Normal University, Wuhu 241000, Anhui; Li, Changyuan

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show thatmore » CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.« less

  10. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    PubMed Central

    Cao, Nan; Liu, Zumei; Chen, Zhongyan; Wang, Jia; Chen, Taotao; Zhao, Xiaoyang; Ma, Yu; Qin, Lianju; Kang, Jiuhong; Wei, Bin; Wang, Liu; Jin, Ying; Yang, Huang-Tian

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases, drug screening and potential autologous cardiac regeneration. However, their application is hampered by inefficient cardiac differentiation, high interline variability, and poor maturation of iPSC-derived cardiomyocytes (iPS-CMs). To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms, we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential. We then optimized the treatment conditions and demonstrated that differentiation day 2-6, a period for the specification of cardiac progenitor cells (CPCs), was a critical time for AA to take effect. This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers. Noteworthily, AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs. Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by through promoting collagen synthesis. In addition, AA-induced cardiomyocytes showed better sarcomeric organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations. These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply, universally, and efficiently. These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells. PMID:22143566

  11. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating themore » cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.« less

  12. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    PubMed

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  13. IL-4–secreting eosinophils promote endometrial stromal cell proliferation and prevent Chlamydia-induced upper genital tract damage

    PubMed Central

    Quispe Calla, Nirk E.; Dixon, Darlene; Foster, Robert A.; Gambotto, Andrea; Pavelko, Stephen D.; Hall-Stoodley, Luanne; Cherpes, Thomas L.

    2017-01-01

    Genital Chlamydia trachomatis infections in women typically are asymptomatic and do not cause permanent upper genital tract (UGT) damage. Consistent with this presentation, type 2 innate and TH2 adaptive immune responses associated with dampened inflammation and tissue repair are elicited in the UGT of Chlamydia-infected women. Primary C. trachomatis infection of mice also causes no genital pathology, but unlike women, does not generate Chlamydia-specific TH2 immunity. Herein, we explored the significance of type 2 innate immunity for restricting UGT tissue damage in Chlamydia-infected mice, and in initial studies intravaginally infected wild-type, IL-10−/−, IL-4−/−, and IL-4Rα−/− mice with low-dose C. trachomatis inoculums. Whereas Chlamydia was comparably cleared in all groups, IL-4−/− and IL-4Rα−/− mice displayed endometrial damage not seen in wild-type or IL-10−/− mice. Congruent with the aberrant tissue repair in mice with deficient IL-4 signaling, we found that IL-4Rα and STAT6 signaling mediated IL-4–induced endometrial stromal cell (ESC) proliferation ex vivo, and that genital administration of an IL-4–expressing adenoviral vector greatly increased in vivo ESC proliferation. Studies with IL-4-IRES-eGFP (4get) reporter mice showed eosinophils were the main IL-4–producing endometrial leukocyte (constitutively and during Chlamydia infection), whereas studies with eosinophil-deficient mice identified this innate immune cell as essential for endometrial repair during Chlamydia infection. Together, our studies reveal IL-4–producing eosinophils stimulate ESC proliferation and prevent Chlamydia-induced endometrial damage. Based on these results, it seems possible that the robust type 2 immunity elicited by Chlamydia infection of human genital tissue may analogously promote repair processes that reduce phenotypic disease expression. PMID:28765368

  14. Prostaglandin E2 Regulation of Chondrocyte Proliferation and Differentiation

    DTIC Science & Technology

    1994-05-01

    lipopolysaccharide- and TNF-induced cartilage breakdown in bovine nasal cartilage(121’. The use of medications that modulate PGE2 production may have an adverse...Levine, P. Goldhaber. 1972. Evidence that the bone resorption stimulating factor produced by mouse fibrosarcoma cells is prostaglandin E2. J. Exp. Med

  15. Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells.

    PubMed

    Parra, Valentina; Bravo-Sagua, Roberto; Norambuena-Soto, Ignacio; Hernández-Fuentes, Carolina P; Gómez-Contreras, Andrés G; Verdejo, Hugo E; Mellado, Rosemarie; Chiong, Mario; Lavandero, Sergio; Castro, Pablo F

    2017-11-01

    Chronic hypoxia exacerbates proliferation of pulmonary arterial smooth muscle cells (PASMC), thereby reducing the lumen of pulmonary arteries. This leads to poor blood oxygenation and cardiac work overload, which are the basis of diseases such as pulmonary artery hypertension (PAH). Recent studies revealed an emerging role of mitochondria in PAH pathogenesis, as key regulators of cell survival and metabolism. In this work, we assessed whether hypoxia-induced mitochondrial fragmentation contributes to the alterations of both PASMC death and proliferation. In previous work in cardiac myocytes, we showed that trimetazidine (TMZ), a partial inhibitor of lipid oxidation, stimulates mitochondrial fusion and preserves mitochondrial function. Thus, here we evaluated whether TMZ-induced mitochondrial fusion can prevent human PASMC proliferation in an in vitro hypoxic model. Using confocal fluorescence microscopy, we showed that prolonged hypoxia (48h) induces mitochondrial fragmentation along with higher levels of the mitochondrial fission protein DRP1. Concomitantly, both mitochondrial potential and respiratory rates decreased, indicative of mitochondrial dysfunction. In accordance with a metabolic shift towards non-mitochondrial ATP generation, mRNA levels of glycolytic markers HK2, PFKFB2 and GLUT1 increased during hypoxia. Incubation of PASMC with TMZ, prior to hypoxia, prevented all these changes and precluded the increase in PASMC proliferation. These findings were also observed using Mdivi-1 (a pharmacological DRP1 inhibitor) or a dominant negative DRP1 K38A as pre-treatments. Altogether, our data indicate that TMZ exerts a protective role against hypoxia-induced PASMC proliferation, by preserving mitochondrial function, thus highlighting DRP1-dependent morphology as a novel therapeutic approach for diseases such as PAH. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. EMODIN DOWNREGULATES CELL PROLIFERATION MARKERS DURING DMBA INDUCED ORAL CARCINOGENESIS IN GOLDEN SYRIAN HAMSTERS.

    PubMed

    Manimaran, Asokan; Buddhan, Rajamanickam; Manoharan, Shanmugam

    2017-01-01

    Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate the Emodin efficacy on abnormal cell proliferation during 7,12-dimethylbenz(a)anthracene (DMBA) induced oral carcinogenesis in golden Syrian hamsters. Topical application of DMBA, three times a week for 14 weeks, on the hamsters' buccal pouches developed well differentiated squamous cell carcinoma. Cyclin D1 and PCNA over-expression and up-regulation of CDK4, CDK6 and survivin were noticed in the buccal mucosa of hamsters treated with DMBA alone. Emodin administration (50mg/kg b.w) orally to hamsters treated with DMBA down-regulated the expression of cell proliferation markers in the buccal mucosa. The anti-cell proliferative role of Emodin is owing to its modulating efficacy on cell-cycle markers towards the tumor suppression during DMBA induced oral carcinogenesis.

  17. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways.

    PubMed

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Eicosapentaenoic acid (EPA), a well-known dietary n-3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca(2+)]c accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca(2+)]c generation, moreover, generation of ROS, overload of mitochondrial [Ca(2+)]c, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROS-Ca(2+)-JNK mitochondrial pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Inhibition of Vascular Smooth Muscle Cell Proliferation by Gentiana lutea Root Extracts

    PubMed Central

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis. PMID:23637826

  19. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    PubMed

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  20. The cell proliferation antigen Ki-67 organises heterochromatin

    PubMed Central

    Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel

    2016-01-01

    Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251

  1. A peptide derived from alpha-fetoprotein inhibits the proliferation induced by estradiol in mammary tumor cells in culture.

    PubMed

    Sierralta, Walter D; Epuñan, Maria J; Reyes, José M; Valladares, Luis E; Andersen, Thomas T; Bennett, James A; Jacobson, Herbert I; Pino, Ana M

    2008-01-01

    This study was aimed to obtain additional information on the activity of a cyclized 9-amino acid peptide (cP) containing the active site of alpha fetoprotein, which inhibits the estrogen-stimulated proliferation of tumor cells in culture and of xenografts in immunodeficient mice. Breast cancer cells cultured in the presence of 2 nM estradiol were exposed to cP for different periods and their proliferation, estradiol binding parameters, clustering tendency and expression of E-cadherin and p21Cip1 were analyzed by biochemical and cell biology methods. The proliferation of MCF7 cells was significantly decreased by the addition of 2 microg/ml cP to the medium. cP did not increase cell death rate nor alter the number of binding sites for estradiol nor the endogenous aromatase activity of MCF7 cells. cP also decreased the proliferation of estrogen-dependent ZR75-1 cells but had no effect on estrogen-independent MDA-MB-231 cells. An increased nuclear p21Cip1 expression detected after cP treatment suggests that cP slows MCF7 cell proliferation via this regulator. We propose that cP could represent a novel breast cancer therapeutic agent whose mechanism of action is different from that of tamoxifen or of inhibitors of aromatase.

  2. CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes.

    PubMed

    Kooy-Winkelaar, Yvonne M C; Bouwer, Dagmar; Janssen, George M C; Thompson, Allan; Brugman, Martijn H; Schmitz, Frederike; de Ru, Arnoud H; van Gils, Tom; Bouma, Gerd; van Rood, Jon J; van Veelen, Peter A; Mearin, M Luisa; Mulder, Chris J; Koning, Frits; van Bergen, Jeroen

    2017-02-07

    Refractory celiac disease type II (RCDII) is a severe complication of celiac disease (CD) characterized by the presence of an enlarged clonal population of innate intraepithelial lymphocytes (IELs) lacking classical B-, T-, and natural killer (NK)-cell lineage markers (Lin - IELs) in the duodenum. In ∼50% of patients with RCDII, these Lin - IELs develop into a lymphoma for which no effective treatment is available. Current evidence indicates that the survival and expansion of these malignant Lin - IELs is driven by epithelial cell-derived IL-15. Like CD, RCDII is strongly associated with HLA-DQ2, suggesting the involvement of HLA-DQ2-restricted gluten-specific CD4 + T cells. We now show that gluten-specific CD4 + T cells isolated from CD duodenal biopsy specimens produce cytokines able to trigger proliferation of malignant Lin - IEL lines as powerfully as IL-15. Furthermore, we identify TNF, IL-2, and IL-21 as CD4 + T-cell cytokines that synergistically mediate this effect. Like IL-15, these cytokines were found to increase the phosphorylation of STAT5 and Akt and transcription of antiapoptotic mediator bcl-x L Several small-molecule inhibitors targeting the JAK/STAT pathway blocked proliferation elicited by IL-2 and IL-15, but only an inhibitor targeting the PI3K/Akt/mTOR pathway blocked proliferation induced by IL-15 as well as the CD4 + T-cell cytokines. Confirming and extending these findings, TNF, IL-2, and IL-21 also synergistically triggered the proliferation of freshly isolated Lin - IELs and CD3 - CD56 + IELs (NK-IELs) from RCDII as well as non-RCDII duodenal biopsy specimens. These data provide evidence implicating CD4 + T-cell cytokines in the pathogenesis of RCDII. More broadly, they suggest that adaptive immune responses can contribute to innate IEL activation during mucosal inflammation.

  3. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    PubMed

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  4. Activation of peroxisome proliferator-activated receptor δ inhibits angiotensin II-induced activation of matrix metalloproteinase-2 in vascular smooth muscle cells.

    PubMed

    Ham, Sun Ah; Lee, Hanna; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Paek, Kyung Shin; Do, Jeong Tae; Park, Chankyu; Oh, Jae-Wook; Kim, Jin-Hoi; Han, Chang Woo; Seo, Han Geuk

    2014-01-01

    We investigated the role of peroxisome proliferator-activated receptor (PPAR) δ on angiotensin (Ang) II-induced activation of matrix metalloproteinase (MMP)-2 in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, attenuated Ang II-induced activation of MMP-2 in a concentration-dependent manner. GW501516 also inhibited the generation of reactive oxygen species in VSMCs treated with Ang II. A marked increase in the mRNA levels of tissue inhibitor of metalloproteinase (TIMP)-2 and -3, endogenous antagonists of MMPs, was also observed in GW501516-treated VSMCs. These effects were markedly reduced in the presence of siRNAs against PPARδ, indicating that the effects of GW501516 are PPARδ dependent. Among the protein kinases inhibited by GW501516, suppression of phosphatidylinositol 3-kinase/Akt signaling was shown to have the greatest effect on activation of MMP-2 in VSMCs treated with Ang II. Concomitantly, GW501516-mediated inhibition of MMP-2 activation in VSMCs treated with Ang II was associated with the suppression of cell migration to levels approaching those in cells not exposed to Ang II. Thus, activation of PPARδ confers resistance to Ang II-induced degradation of the extracellular matrix by upregulating expression of its endogenous inhibitor TIMP and thereby modulating cellular responses to Ang II in vascular cells. © 2014 S. Karger AG, Basel.

  5. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Sakshi; Department of Biochemistry, Banaras Hindu University; Tripathi, Anurag

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposuremore » also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and

  6. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.

    PubMed

    Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen

    2011-02-15

    CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.

  7. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts

    PubMed Central

    Chen, Joseph C.; Johnson, Brittni A.; Erikson, David W.; Piltonen, Terhi T.; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C.; Greene, Warner C.; Giudice, Linda C.; Roan, Nadia R.

    2014-01-01

    STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced

  8. Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27Kip1 Signaling Pathway

    PubMed Central

    Ke, Rui; Liu, Lu; Zhu, Yanting; Li, Shaojun; Xie, Xinming; Li, Fangwei; Song, Yang; Yang, Lan; Gao, Li; Li, Manxiang

    2016-01-01

    It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27Kip1. Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27Kip1 reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27Kip1 downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27Kip1 axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension. PMID:27258250

  9. Low concentration of formononetin promotes proliferation of estrogen receptor-positive cells through an ERα-miR-375-PTEN-ERK1/2-bcl-2 pathway.

    PubMed

    Guo, Yan-Hong; Tang, Feng-Yan; Wang, Yong; Huang, Wen-Jun; Tian, Jing; Lu, Hui-Ling; Xin, Min; Chen, Jian

    2017-11-21

    A low dose of formononetin accelerates the proliferation of nasopharyngeal carcinoma cells in vitro ; however, the underlying mechanism remains unknown. Here, we investigated the molecular mechanism of formononetin in CNE2 cell proliferation. CNE2 cells were treated with 0 to 1 μM formononetin. To inhibit mitogen activated protein kinase / extracellular regulate kinase (MAPK/ERK) kinase (MEK) and microRNA (miR)-375, cells were pretreated with either PD98059 or a miR-375 inhibitor, respectively, followed by co-treatment with formononetin (0.3 μM) plus an inhibitor. Female rats were ovariectomized (OVX), and some OVX rats received formononetin or estrogen (E 2 ) injections. Sham operated animals were used as controls. Compared to control, 0.3 μM formononetin accelerated proliferation and decreased late apoptosis of CNE2 cells. However, formononetin-induced pro-growth and anti-apoptosis activity was abolished by PD98059 and the miR-375 inhibitor. In addition, 0.1 and 0.3 μM formononetin significantly increased estrogen receptor-α (ERα) and bcl-2, but decreased protein-phosphatase and tensin homologue (PTEN) protein expression, all of which was reversed by the miR-375 inhibitor. Additionally, formononetin treatment resulted in a transient upregulation of phosphorylated (p)-ERK1/2. In vivo studies indicated that formononetin significantly increased endometrium thickness and down-regulated ERα expression in OVX rats. Taken together, our study demonstrates that a low concentration of formononetin can promote growth of CNE2 cells and uterine tissues, possibly through regulating the ERα-miR-375-PTEN-ERK1/2-bcl-2 signaling pathway.

  10. Low concentration of formononetin promotes proliferation of estrogen receptor-positive cells through an ERα-miR-375-PTEN-ERK1/2-bcl-2 pathway

    PubMed Central

    Guo, Yan-Hong; Tang, Feng-Yan; Wang, Yong; Huang, Wen-Jun; Tian, Jing; Lu, Hui-Ling; Xin, Min; Chen, Jian

    2017-01-01

    A low dose of formononetin accelerates the proliferation of nasopharyngeal carcinoma cells in vitro; however, the underlying mechanism remains unknown. Here, we investigated the molecular mechanism of formononetin in CNE2 cell proliferation. CNE2 cells were treated with 0 to 1 μM formononetin. To inhibit mitogen activated protein kinase / extracellular regulate kinase (MAPK/ERK) kinase (MEK) and microRNA (miR)-375, cells were pretreated with either PD98059 or a miR-375 inhibitor, respectively, followed by co-treatment with formononetin (0.3 μM) plus an inhibitor. Female rats were ovariectomized (OVX), and some OVX rats received formononetin or estrogen (E2) injections. Sham operated animals were used as controls. Compared to control, 0.3 μM formononetin accelerated proliferation and decreased late apoptosis of CNE2 cells. However, formononetin-induced pro-growth and anti-apoptosis activity was abolished by PD98059 and the miR-375 inhibitor. In addition, 0.1 and 0.3 μM formononetin significantly increased estrogen receptor-α (ERα) and bcl-2, but decreased protein-phosphatase and tensin homologue (PTEN) protein expression, all of which was reversed by the miR-375 inhibitor. Additionally, formononetin treatment resulted in a transient upregulation of phosphorylated (p)-ERK1/2. In vivo studies indicated that formononetin significantly increased endometrium thickness and down-regulated ERα expression in OVX rats. Taken together, our study demonstrates that a low concentration of formononetin can promote growth of CNE2 cells and uterine tissues, possibly through regulating the ERα-miR-375-PTEN-ERK1/2-bcl-2 signaling pathway. PMID:29245959

  11. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E{sub 2}-induced activation of canonical Wnt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    Highlights: •Three-dimensional culture generates “semi-vivo” sebaceous glands. •Xenograft model failed to mimic the biology of sebaceous glands in vivo. •Proinflammatory cytokine PGE{sub 2} enhances Wnt signal activity in the organoids. •PGE{sub 2} influences on the mitochondrial and lipid metabolism in the organoids. •Considering 3R agenda, “semi-vivo” sebaceous glands are useful for research. -- Abstract: Background: Prostaglandin E{sub 2} (PGE{sub 2}) is a proinflammatory mediator and activates the canonical Wnt–β-catenin signaling pathway in hematopoietic stem cells. The SZ95 cell line was established from human sebaceous gland cells and is studied as a model system for these cells. Given that 2D culturemore » of SZ95 cells does not recapitulate the organization of sebaceous glands in situ, we developed a 3D culture system for these cells and examined the effects of PGE{sub 2} on cell morphology and function. Results: SZ95 cells maintained in 3D culture formed organoids that mimicked the organization of sebaceous glands in situ, including the establishment of a basement membrane. Organoids exposed to PGE{sub 2} were larger and adopted a more complex organization compared with control organoids. PGE{sub 2} activated the canonical Wnt signaling pathway as well as increased cell viability and proliferation, mitochondrial metabolism, and lipid synthesis in the organoids. Conclusions: Culture of SZ95 cells in 3D culture system recapitulates the structure and susceptibility to PGE{sub 2} of sebaceous glands in situ and should prove useful for studies of the response of these glands to inflammation and other environmental stressors. Our results also implicate PGE{sub 2}-induced activation of canonical Wnt signaling pathway in regulation of the morphology,proliferation, and function of “semi-vivo” sebaceous glands.« less

  12. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenjuan; Zhao, Li; Zang, Wen

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer JMJD2B is required for cell proliferation and in vivo tumorigenesis. Black-Right-Pointing-Pointer JMJD2B depletion induces apoptosis and/or cell cycle arrest. Black-Right-Pointing-Pointer JMJD2B depletion activates DNA damage response and enhances p53 stabilization. Black-Right-Pointing-Pointer JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role ofmore » JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21{sup CIP1} proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.« less

  13. Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth.

    PubMed

    Catalano, Rob D; Wilson, Martin R; Boddy, Sheila C; McKinlay, Andrew T M; Sales, Kurt J; Jabbour, Henry N

    2011-05-12

    The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E(2). PTGS2 expression and PGE(2) biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE(2) regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1-4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE(2) and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE(2) and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells.

  14. Hypoxia and Prostaglandin E Receptor 4 Signalling Pathways Synergise to Promote Endometrial Adenocarcinoma Cell Proliferation and Tumour Growth

    PubMed Central

    Catalano, Rob D.; Wilson, Martin R.; Boddy, Sheila C.; McKinlay, Andrew T. M.; Sales, Kurt J.; Jabbour, Henry N.

    2011-01-01

    The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E2. PTGS2 expression and PGE2 biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE2 regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1–4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE2 and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE2 and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells. PMID:21589857

  15. Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model.

    PubMed

    Shuda, Masahiro; Guastafierro, Anna; Geng, Xuehui; Shuda, Yoko; Ostrowski, Stephen M; Lukianov, Stefan; Jenkins, Frank J; Honda, Kord; Maricich, Stephen M; Moore, Patrick S; Chang, Yuan

    2015-01-01

    Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.

  16. Recombinant Escherichia coli Trx-JZTX-III represses the proliferation of mouse hepatocellular carcinoma cells through induction of cell cycle arrest.

    PubMed

    Sun, Mei-Na; Zhao, Xue-Jiao; Zhao, Han-Dong; Zhang, Wei-Guang; Li, Feng-Lan; Chen, Ming-Zi; Li, Hui; Li, Guangchao

    2013-06-01

    The aim of the present study was to investigate the effects of recombinant Escherichia coli (E. coli) Trx-jingzhaotoxin (JZTX)-III on cell growth in the mouse hepatocellular carcinoma (HCC) cell line Hepa1-6. The JZTX-III gene sequence was synthesized and cloned into the pET-32a(+) vector to construct the recombinant fusion protein Trx-JZTX-III, which was subsequently purified. Hepa1-6 cells were treated with 0 to 1,000-µg/ml concentrations of Trx-JZTX-III; this was demonstrated to affect cell viability, as determined by the 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay. The expression of the proliferating cell nuclear antigen (PCNA) protein was investigated using western blot analysis. A colony formation assay was used to determine Hepa1-6 cell proliferation, and the migration ability of cells was determined using a wound‑healing assay. Additionally, flow cytometry was employed to observe changes in the cell cycle. The MTT assay and quantification of PCNA expression indicated that recombinant E. coli Trx-JZTX-III significantly repressed the proliferation of Hepa1-6 cells. Colony formation and the migration of malignant cells was inhibited following treatment with recombinant E. coli Trx-JZTX-III. Flow cytometry showed that recombinant E. coli Trx-JZTX-III induced G0/G1 cell cycle arrest. In conclusion, recombinant E. coli Trx-JZTX-III functions as a tumor suppressor drug in mouse HCC and its underlying mechanism may involve the induction of G0/G1 cell cycle arrest.

  17. Cyanidin-3-glucoside suppresses TNF-α-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth muscle cells: involvement of the STAT3 signaling.

    PubMed

    Luo, Xiaoqin; Fang, Shi; Xiao, Yunjun; Song, Fenglin; Zou, Tangbin; Wang, Min; Xia, Min; Ling, Wenhua

    2012-03-01

    Cyanidin-3-glucoside (C3G) is a member of the anthocyanin family which belongs to the flavonoid class and possesses antiatherogenic properties. Many studies have demonstrated the protective effects of C3G on vascular endothelial cells and monocytes, however, the precise effects on vascular smooth muscle cells (VSMCs) have been less thoroughly studied. Hence, we investigated the role of C3G in TNF-α-induced VSMCs proliferation and explored the possible mechanisms. TNF-α stimulated VSMCs proliferation, and pretreatment with C3G inhibited the proliferation in dose- and time-dependent manners. Then, we found that C3G attenuated TNF-α-induced ROS over generation by Dihydroethidium staining. The combination of 50 μM C3G and 100 μM apocynin significantly reduced ROS generation. Moreover, C3G pretreatment significantly suppressed the expression of Nox activator 1, a subunit of NADPH oxidase in mouse VSMCs. C3G also inhibited TNF-α-induced signal transducer and activator of transcription (STAT3) phosphorylation, and the inhibitory effect was more prominent in C3G and apocynin co-pretreated cells than that pretreated with C3G or apocynin alone. Administration of the ROS scavenger catalase (2,000 U/ml) remarkably inhibited TNF-α-induced cell proliferation and STAT3 activation. These data suggest that C3G exerts its antiproliferative effect on TNF-α-induced VSMCs proliferation through inhibiting STAT3 activation by attenuating NoxA1-derived ROS over production.

  18. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562more » cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.« less

  19. 17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression.

    PubMed

    Kanda, Naoko; Watanabe, Shinichi

    2004-08-01

    Estrogen is reported to prevent age-associated epidermal thinning in the skin. We examined if 17beta-estradiol (E2) may enhance the growth of human keratinocytes, focusing on its effects on the expression of cell cycle-regulatory proteins. E2 enhanced proliferation, bromodeoxyuridine incorporation of keratinocytes, and increased the proportion of cells in the S phase. The E2-induced stimulation of proliferation and bromodeoxyuridine incorporation was suppressed by antisense oligonucleotide against cyclin D2, which induces G1 to S phase progression. E2 increased protein and mRNA levels of cyclin D2, and resultantly enhanced assembly and kinase activities of cyclin D2-cyclin-dependent kinases 4 or 6 complexes. E2 enhanced cyclin D2 promoter activity, and the element homologous to cAMP response element (CRE) on the promoter was responsible for the effect. Cyclin D2 expression was enhanced by antiestrogens, ICI 182,780 and 4-hydroxytamoxifen, and membrane-impermeable bovine serum albumin-conjugated E2, indicating the effects via membrane E2-binding sites. E2 increased the enhancer activity of CRE-like element and the amount of phosphorylated cAMP response element binding protein (CREB) binding this element, and the increases were suppressed by H-89, an inhibitor of cAMP-dependent protein kinase A. H-89 also suppressed E2-induced cyclin D2 expression, proliferation, and bromodeoxyuridine incorporation in keratinocytes. Antisense oligonucleotide against G-protein-coupled receptor GPR30 suppressed the E2-induced increases of phosphorylated CREB, cyclin D2 level, proliferation, and bromodeoxyuridine incorporation in keratinocytes. These results suggest that E2 may stimulate the growth of keratinocytes by inducing cyclin D2 expression via CREB phosphorylation by protein kinase A, dependent on cAMP. These effects of E2 may be mediated via cell surface GPR30.

  20. Effects of Notch2 and Notch3 on Cell Proliferation and Apoptosis of Trophoblast Cell Lines.

    PubMed

    Zhao, Wei-Xiu; Zhuang, Xu; Huang, Tao-Tao; Feng, Ran; Lin, Jian-Hua

    2015-01-01

    To investigate the effect of Notch2 and Notch3 on cell proliferation and apoptosis of two trophoblast cell lines, BeWo and JAR. Notch2 and Notch3 expression in BeWo and JAR cells was upregulated or downregulated using lentivirus-mediated overexpression or RNA interference. The effect of Notch2 and Notch3 on cell proliferation was assessed by the CCK-8 assay. The effect of Notch2 and Notch3 on the apoptosis of BeWo and JAR cells was evaluated by flow cytometry using the Annexin V-PE Apoptosis kit. Lentivirus-based overexpression vectors were constructed by cloning the full-length coding sequences of human Notch2 and Notch3 C-terminally tagged with GFP or GFP alone (control) into a lentivirus-based expression vector. Lentivirus-based gene silencing vectors were prepared by cloning small interfering sequences targeting human Notch2 and Notch3 and scrambled control RNA sequence into a lentivirus-based gene knockdown vector. The effect of Notch2 and Notch3 on cell proliferation was assessed by the CCK-8 assay. And the effect of Notch2 and Notch3 on the apoptosis of BeWo and JAR cells was evaluated by flow cytometry using the Annexin V PE Apoptosis kit. We found that the downregulation of Notch2 and Notch3 gene expression in BeWo and JAR cells resulted in an increase in cell proliferation, while upregulation of Notch3 and Notch2 expression led to a decrease in cell proliferation. Moreover, the overexpression of Notch3 and Notch2 in BeWo and JAR cells reduced apoptosis in these trophoblast cell lines, whereas apoptosis was increased in the cells in which the expression of Notch3 and Notch2 was downregulated. Notch2 and Notch3 inhibited both cell proliferation and cell apoptosis in BeWo and JAR trophoblast cell lines.

  1. Enhancer of zeste homolog 2 expression is associated with tumor cell proliferation and metastasis in gastric cancer.

    PubMed

    Choi, Jung Hye; Song, Young Soo; Yoon, Jin Sun; Song, Kang Won; Lee, Young Yiul

    2010-03-01

    The enhancer of zeste homolog 2 (EZH2), a member of the polycomb group of proteins, plays an important role in cell proliferation and cell cycle regulation. EZH2 is overexpressed in aggressive forms of prostate, breast, bladder, and endometrial cancers. However, the role of EZH2 expression in gastric cancer has not been fully determined. This study was conducted to investigate the correlation between EZH2 and cell cycle-related molecules, and the clinical value of EZH2 expression in gastric cancer. We analyzed EZH2 expression using Western blotting in AGS, MKN-28, SNU-16, SNU-484, SNU-601, and SNU-638 gastric cancer cell lines. After transfection of EZH2 siRNA into MKN-28 cells, the change in cell cycle-related molecules was assessed by Western blot analysis. Expression of EZH2, Ki-67, and p53 was determined by immunohistochemical staining of tissue microarrays from specimens of 137 cases of resected gastric cancer. We found high expressions of EZH2 in all of the tested gastric cancer cell lines. RNA interference of EZH2 induced upregulation of p53 and HDAC1 and downregulation of cyclin D1 and cyclin E. High EZH2 expression was observed in 60.6% of gastric cancers and in 6.7% of non-neoplastic gastric tissues (p < 0.01); 40.1% were positive for p53 in gastric cancers. High EZH2 expression was correlated with Ki-67 and p53 expressions and was significantly associated with distant metastases and non-signet ring cells. Our results suggest that high EZH2 expression is associated with tumor cell proliferation and metastasis in gastric cancer.

  2. Estradiol induces endothelial cell migration and proliferation through estrogen receptor-enhanced RhoA/ROCK pathway.

    PubMed

    Oviedo, Pilar J; Sobrino, Agua; Laguna-Fernandez, Andrés; Novella, Susana; Tarín, Juan J; García-Pérez, Miguel-Angel; Sanchís, Juan; Cano, Antonio; Hermenegildo, Carlos

    2011-03-30

    Migration and proliferation of endothelial cells are involved in re-endothelialization and angiogenesis, two important cardiovascular processes that are increased in response to estrogens. RhoA, a small GTPase which controls multiple cellular processes, is involved in the control of cell migration and proliferation. Our aim was to study the role of RhoA on estradiol-induced migration and proliferation and its dependence on estrogen receptors activity. Human umbilical vein endothelial cells were stimulated with estradiol, in the presence or absence of ICI 182780 (estrogen receptors antagonist) and Y-27632 (Rho kinase inhibitor). Estradiol increased Rho GEF-1 gene expression and RhoA (gene and protein expression and activity) in an estrogen receptor-dependent manner. Cell migration, stress fiber formation and cell proliferation were increased in response to estradiol and were also dependent on the estrogen receptors and RhoA activation. Estradiol decreased p27 levels, and significantly raised the expression of cyclins and CDK. These effects were counteracted by the use of either ICI 182780 or Y-27632. In conclusion, estradiol enhances the RhoA/ROCK pathway and increases cell cycle-related protein expression by acting through estrogen receptors. This results in an enhanced migration and proliferation of endothelial cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mei, E-mail: limeihit@163.com; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing; Zhang, Dong-Qing

    2011-08-12

    Highlights: {yields} The NR2B component of the NMDARs is important for the NSPC proliferation. {yields} pCaMKIV and pCREB exist in NSPCs. {yields} The CaMKIV/CREB pathway mediates NSPC proliferation. -- Abstract: Accumulating evidence indicates the involvement of N-methyl-D-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Romore » 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.« less

  4. Influence of multilayer rhBMP-2 DNA coating on the proliferation and differentiation of MC3T3-E1 cells seeded on roughed titanium surface.

    PubMed

    Jiang, Qiao-Hong; Liu, Li; Shen, Jian-Wei; Peel, Sean; Yang, Guo-Li; Zhao, Shi-Fang; He, Fu-Ming

    2012-10-01

    For bone morphogenetic protein (BMP) gene therapy to be a viable approach for enhancing implant osseointegration clinically, requires the development of efficient nonviral delivery vectors that can coat the implant. This study evaluated a multilayer cationic liposome-DNA complex (LDc) coating as a delivery vehicle for recombinant human BMP-2 (rhBMP-2). Multilayered coatings, comprising hyaluronic acid (HA) and LDc, were fabricated onto titanium using a layer-by-layer (LBL) assembly technique. Preosteoblastic MC3T3-E1 cells were cultured on the roughened titanium surfaces coated with multilayers of HA/LDc, or on uncoated or HA/liposome only surfaces as controls. The amount of rhBMP-2 secreted by the MC3T3-E1 cells and the effect of the various surfaces on cell viability, proliferation, alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and calcium deposition were evaluated. Messenger RNA levels of OC, ALP, Runx2, and Osx were also investigated. The results demonstrated that rhBMP-2 protein secreted into culture medium at 3 days was significantly higher than control groups. MC3T3-E1 cells cultured on the HA/LDc coating displayed significantly higher ALP activity and OC secretion at 7 days and 14 days culture, respectively. MC3T3-E1 cells cultured on HA/LDc upregulated expression of the osteoblast differentiation markers, especially on days 12 for OC and on days 6 and 12 for ALP and Osx. In conclusion, MC3T3-E1 cell cultured on the multilayer HA/LDc coating surface can secret rhBMP-2 protein and the protein levels were effective in inducing early osteogenic differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  5. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  6. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells1

    PubMed Central

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M.; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-01-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. PMID:26476080

  7. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells.

    PubMed

    Brown, Roger F; Rahaman, Mohamed N; Dwilewicz, Agatha B; Huang, Wenhai; Day, Delbert E; Li, Yadong; Bal, B Sonny

    2009-02-01

    Glasses containing varying amounts of B(2)O(3) were prepared by partially or fully replacing the SiO(2) in silicate 45S5 bioactive glass with B(2)O(3). The effects of the B(2)O(3) content of the glass on its conversion to hydroxyapatite (HA) and on the proliferation of MC3T3-E1 cells were investigated in vitro. Conversion of the glasses to HA in dilute (20 mM) K(2)HPO(4) solution was monitored using weight loss and pH measurements. Proliferation of MC3T3-E1 cells was determined qualitatively by assay of cell density at the glass interface after incubation for 1 day and 3 days, and quantitatively by fluorescent measurements of total DNA in cultures incubated for 4 days. Higher B(2)O(3) content of the glass increased the conversion rate to HA, but also resulted in a greater inhibition of cell proliferation under static culture conditions. For a given mass of glass in the culture medium, the inhibition of cell proliferation was alleviated by using glasses with lower B(2)O(3) content, by incubating the cell cultures under dynamic rather than static conditions, or by partially converting the glass to HA prior to cell culture.

  8. Genistein suppresses leptin-induced proliferation and migration of vascular smooth muscle cells and neointima formation.

    PubMed

    Tsai, Yung-Chieh; Leu, Sy-Ying; Peng, Yi-Jen; Lee, Yen-Mei; Hsu, Chih-Hsiung; Chou, Shen-Chieh; Yen, Mao-Hsiung; Cheng, Pao-Yun

    2017-03-01

    Obesity is a strong risk factor for the development of cardiovascular diseases and is associated with a marked increase in circulating leptin concentration. Leptin is a peptide hormone mainly produced by adipose tissue and is regulated by energy level, hormones and various inflammatory mediators. Genistein is an isoflavone that exhibits diverse health-promoting effects. Here, we investigated whether genistein suppressed the atherogenic effect induced by leptin. The A10 cells were treated with leptin and/or genistein, and then the cell proliferation and migration were analysed. The reactive oxygen species (ROS) and proteins levels were also measured, such as p44/42MAPK, cell cycle-related protein (cyclin D1 and p21) and matrix metalloproteinase-2 (MMP-2). Immunohistochemistry and morphometric analysis were used for the neointima formation in a rat carotid artery injury model. Genistein (5 μM) significantly inhibited both the proliferation and migration of leptin (10 ng/ml)-stimulated A10 cells. In accordance with these finding, genistein decreased the leptin-stimulated ROS production and phosphorylation of the p44/42MAPK signal transduction pathway. Meanwhile, genistein reversed the leptin-induced expression of cyclin D1, and cyclin-dependent kinase inhibitor, p21. Genistein attenuated leptin-induced A10 cell migration by inhibiting MMP-2 activity. Furthermore, the leptin (0.25 mg/kg)-augmented neointima formation in a rat carotid artery injury model was attenuated in the genistein (5 mg/kg body weight)-treated group when compared with the balloon injury plus leptin group. Genistein was capable of suppressing the atherogenic effects of leptin in vitro and in vivo, and may be a promising candidate drug in the clinical setting. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    PubMed Central

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  10. Artemisinin reduces cell proliferation and induces apoptosis in neuroblastoma.

    PubMed

    Zhu, Shunqin; Liu, Wanhong; Ke, Xiaoxue; Li, Jifu; Hu, Renjian; Cui, Hongjuan; Song, Guanbin

    2014-09-01

    Artemisinin, a natural product from the Chinese medicinal plant, Artemisia annua L., is commonly used in the treatment of malaria, and has recently been reported to have potent anticancer activity in various types of human tumors. Yet, the effect of artemisinin on neuroblastoma is still unclear. In the present study, we aimed to investigate the effects of artemisinin on neuroblastoma cells. We observed that artemisinin significantly inhibited cell growth and proliferation, and caused cell cycle arrest in the G1 phase in neuroblastoma cell lines. Annexin V-FITC/PI staining assay revealed that artemisinin markedly induced apoptosis. Soft agar assays revealed that artemisinin suppressed the ability of clonogenic formation of neuroblastoma cells and a xenograft study in NOD/SCID mice showed that artemisinin inhibited tumor growth and development in vivo. Therefore, our results suggest that the Chinese medicine artemisinin could serve as a novel potential therapeutic agent in the treatment of neuroblastoma.

  11. Association of Wnt1-inducible signaling pathway protein-1 with the proliferation, migration and invasion in gastric cancer cells.

    PubMed

    Jia, Shuqin; Qu, Tingting; Feng, Mengmeng; Ji, Ke; Li, Ziyu; Jiang, Wenguo; Ji, Jiafu

    2017-06-01

    Wnt1-inducible signaling pathway protein-1 is a cysteine-rich protein that belongs to the CCN family, which has been implicated in mediating the occurrence and progression through distinct molecular mechanisms in several tumor types. However, the association of Wnt1-inducible signaling pathway protein-1 with gastric cancer and the related molecular mechanisms remain to be elucidated. Therefore, this study aimed to clarify the biological role of Wnt1-inducible signaling pathway protein-1 in the proliferation, migration, and invasion in gastric cancer cells and further investigated the associated molecular mechanism on these biological functions. We first detected the expression level of Wnt1-inducible signaling pathway protein-1 in gastric cancer, and the reverse transcription polymerase chain reaction have shown that Wnt1-inducible signaling pathway protein-1 expression levels were upregulated in gastric cancer tissues. The expression of Wnt1-inducible signaling pathway protein-1 in gastric cancer cell lines was also detected by quantitative real-time polymerase chain reaction and Western blotting. Furthermore, two gastric cancer cell lines with high expression of Wnt1-inducible signaling pathway protein-1 were selected to explore the biological function of Wnt1-inducible signaling pathway protein-1 in gastric cancer. Function assays indicated that knockdown of Wnt1-inducible signaling pathway protein-1 suppressed cell proliferation, migration, and invasion in BGC-823 and AGS gastric cancer cells. Further investigation of mechanisms suggested that cyclinD1 was identified as one of Wnt1-inducible signaling pathway protein-1 related genes to accelerate proliferation in gastric cancer cells. In addition, one pathway of Wnt1-inducible signaling pathway protein-1 induced migration and invasion was mainly through the enhancement of epithelial-to-mesenchymal transition progression. Taken together, our findings presented the first evidence that Wnt1-inducible signaling

  12. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation.

    PubMed

    Zhang, Yao; Jia, Yanfei; Li, Ping; Li, Huanjie; Xiao, Dongjie; Wang, Yunshan; Ma, Xiaoli

    2017-07-20

    Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  13. Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest.

    PubMed

    Yoo, Su-Hyang; Lim, Yong; Kim, Seung-Jung; Yoo, Kyu-Dong; Yoo, Hwan-Soo; Hong, Jin-Tae; Lee, Mi-Yea; Yun, Yeo-Pyo

    2013-01-01

    Vascular diseases such as atherosclerosis and restenosis artery angioplasty are associated with vascular smooth muscle cell (VSMC) proliferation and intimal thickening arterial walls. In the present study, we investigated the inhibitory effects of sulforaphane, an isothiocyanate produced in cruciferous vegetables, on VSMC proliferation and neointimal formation in a rat carotid artery injury model. Sulforaphane at the concentrations of 0.5, 1.0, and 2.0 μM significantly inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation in a concentration-dependent manner, determined by cell count. The IC50 value of sulforaphane-inhibited VSMC proliferation was 0.8 μM. Sulforaphane increased the cyclin-dependent kinase inhibitor p21 and p53 levels, while it decreased CDK2 and cyclin E expression. The effects of sulforaphane on vascular thickening were determined 14 days after the injury to the rat carotid artery. The angiographic mean luminary diameters of the group treated with 2 and 4 μM sulforaphane were 0.25±0.1 and 0.09±0.1 mm², respectively, while the value of the control groups was 0.40±0.1 mm², indicating that sulforaphane may inhibit neointimal formation. The expression of PCNA, maker for cell cycle arrest, was decreased, while that of p53 and p21 was increased, which showed the same pattern as one in in-vitro study. These results suggest that sulforaphane-inhibited VSMC proliferation may occur through the G1/S cell cycle arrest by up-regulation of p53 signaling pathway, and then lead to the decreased neointimal hyperplasia thickening. Thus, sulforaphane may be a promising candidate for the therapy of atherosclerosis and post-angiography restenosis. © 2013.

  14. Effects of hypoxia-inducible factor-1α silencing on the proliferation of CBRH-7919 hepatoma cells

    PubMed Central

    Xu, Lin-Feng; Ni, Jia-Yan; Sun, Hong-Liang; Chen, Yao-Ting; Wu, Yu-Dan

    2013-01-01

    AIM: To study the effects of hypoxia-inducible factor-1α (HIF-1α) silencing on the proliferation of hypoxic CBRH-7919 rat hepatoma cells. METHODS: The CBRH-7919 rat hepatoma cell line was used in this study and the hypoxic model was constructed using CoCl2. The HIF-1α-specific RNAi sequences were designed according to the gene coding sequence of rat HIF-1α obtained from GeneBank. The secondary structure of the HIF-1α gene sequence was analyzed using RNA draw software. The small interfering RNA (siRNA) transfection mixture was produced by mixing the siRNA and Lipofectamine2000TM, and transfected into the hypoxic hepatoma cells. Real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting assay were used to detect the expression levels of mRNA and protein. HIF-1α and vascular endothelial growth factor (VEGF) mRNA was determined using real time RT-PCR; the protein expression levels of AKT, p-AKT, p21 and cyclinD1 were determined using Western blotting. The proliferation of hepatoma cells was observed using the methyl thiazolyl tetrazolium (MTT) assay and the bromodeoxyuridine (BrdU) incorporation cell proliferation assay. RESULTS: Under induced hypoxia, the viability of the hepatoma cells reached a minimum at 800 μmol/L CoCl2; the viability of the cells was relatively high at CoCl2 concentrations between 100 μmol/L and 200 μmol/L. Under hypoxia, the mRNA and protein expression levels of HIF-1α and VEGF were significantly higher than that of hepatoma cells that were cultured in normaxia. HIF-1α-specific RNAi sequences were successfully transfected into hepatoma cells. The transfection of specific siRNAs significantly inhibited the mRNA and protein expression levels of HIF-1α and VEGF, along with the protein expression levels of p-AKT and cyclinD1; the protein expression of p21 was significantly increased, and there was no significant difference in the expression of AKT. The MTT assay showed that the amount of hepatoma cells in S

  15. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis Via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells.

    PubMed

    Xu, Weili; Mi, Yaqing; He, Pan; He, Shenghua; Niu, Lingling

    2017-08-04

    γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC 50 ) of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose) polymerase (PARP) cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  16. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration.

    PubMed

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male). Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice.

    PubMed

    Li, Lei; Bao, Xiaochen; Zhang, Qing-Yu; Negishi, Masahiko; Ding, Xinxin

    2017-08-01

    Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs -null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs -null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice. U.S. Government work not protected by U.S. copyright.

  18. Near-infrared laser increases MDPC-23 odontoblast-like cells proliferation by activating redox sensitive pathways.

    PubMed

    Rizzi, Manuela; Migliario, Mario; Rocchetti, Vincenzo; Tonello, Stelvio; Renò, Filippo

    2016-11-01

    Near infrared laser is known to induce biostimulatory effects, resulting in cell proliferation enhancement. Although such positive effect is widely exploited in various clinical applications, molecular mechanisms involved are still poorly understood. The aim of the study was to investigate the ability of laser stimulation to increase cell proliferation through an early activation of three redox sensitive pathways, namely Nrf-2, NF-κB and ERK in a rat odontoblast-like cell line (MDPC-23 cells). MDPC-23 cells were irradiated with different energy settings (0-50J, corresponding to 0-32.47J/cm 2 ) and cell proliferation was evaluated by cell counting. Nrf-2, NF-κB and ERK signaling pathways activation was investigated through Western blot analysis. Our results show that a single 25J laser stimulation is able to increase cell proliferation and that this effect could be increased by repeating the stimulation twice with a time lapse of 24h. Western blot experiments demonstrated that laser stimulation is able to induce an early activation response in intracellular signaling, with an overlapping time pattern between the three considered pathways. Results discussed in this paper reveal a complex mechanism underlying near-infrared induced increase in pre-odontoblasts proliferation, involving three survival pathways that can act both separately or through reciprocal crosstalk. In particular, data presented suggest an important role for ERK pathway that could act directly by stimulating cell proliferation but can also induce both Nrf-2 and NF-κB activation, acting as a critical cellular checkpoint in response to imbalanced redox state generated by a laser induced increase in ROS production. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma.

    PubMed

    Hu, Shuyang; Ouyang, Qing; Cheng, Qingbao; Wang, Jinghan; Feng, Feiling; Qiao, Liang; Gan, Wei; Shi, Yang; Wu, Demin; Jiang, Xiaoqing

    2018-04-01

    Cholangiocarcinoma (CCA) is an aggressive malignant tumor and the prognosis of patients with advanced stage disease remains poor. Therefore, the identification of novel treatment agents for CCA is required. In the present study, the biological effects of the diabetes therapeutic agent, phenformin, in CCA cell lines was investigated. Cell Counting Kit‑8 cell viability, cellular clone formation and subcutaneous tumor formation assays were performed, which revealed that phenformin inhibited CCA cell proliferation and growth both in vitro and in vivo. In addition, phenformin induced CCA cell apoptosis and autophagy. Phenformin partly activated the liver kinase B1 (LKB1)/5' AMP‑activated protein kinase signaling pathway to exert its biological effects on CCA cell lines, as demonstrated by knockdown of LKB1, which reversed these effects. In conclusion, the present study demonstrated the biological effects of phenformin in CCA and suggested that phenformin may be a potential novel agent for CCA treatment.

  20. Activation of G-protein coupled estrogen receptor inhibits the proliferation of cervical cancer cells via sustained activation of ERK1/2.

    PubMed

    Zhang, Qiong; Wu, Yuan-Zhe; Zhang, Yan-Mei; Ji, Xiao-Hong; Hao, Qun

    2015-04-01

    Cervical cancer is one of the most common gynaecological women cancer and suggested to be modulated by estrogenic signals. G protein-coupled receptor (GPER), a seven-transmembrane G protein-coupled receptor, has been reported to regulate the cell proliferation of various cancers. But there is no study investigating the effects of GPER on the progression of cervical cancer. In the present study, we revealed for the first time that GPER was also highly expressed in various human cervical cancer cells. Activation of GPER via its specific agonist G-1 induced G2/M cell cycle arrest and down regulation of cyclin B via a time dependent manner. Furthermore, G-1 treatment induced sustained activation of extracellular-signal-regulated kinases (ERK)1/2 via epidermal growth factor receptor (EGFR) signals. Both inhibitors of ERK1/2 and EGFR significantly abolished G-1-induced suppression of cell proliferation and down regulation of cyclin B. Generally, our study revealed that GPER is highly expressed in human cervical cancer cells and its activation inhibits cell proliferation via EGFR/ERK1/2 signals. It suggested that G-1 can be considered as a potential new pharmacological tool to reduce the growth of cervical cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Cholecystokinin-8-induced hypoplasia of the rat pancreas: influence of nitric oxide on cell proliferation and programmed cell death.

    PubMed

    Trulsson, Lena M; Gasslander, Thomas; Svanvik, Joar

    2004-10-01

    The background of cholecystokinin-8 (CCK-8)-induced hypoplasia in the pancreas is not known. In order to increase our understanding we studied the roles of nitric oxide and NF-kappaB in rats. CCK-8 was injected for 4 days, in a mode known to cause hypoplasia, and the nitric oxide formation was either decreased by means of N(omega)-nitro-L-arginine (L-NNA) or increased by S-nitroso-N-acetylpencillamine (SNAP). The activation of NF-kappaB was quantified by ELISA detection, apoptosis with caspase-3 and histone-associated DNA-fragmentation and mitotic activity in the acinar, centroacinar and ductal cells were visualized by the incorporation of [(3)H]-thymidine. Pancreatic histology and weight as well as protein- and DNA contents were also studied. Intermittent CCK injections reduced pancreatic weight, protein and DNA contents and increased apoptosis, acinar cell proliferation and nuclear factor kappaB (NF-kappaB) activation. It also caused vacuolisation of acinar cells. The inhibition of endogenous nitric oxide formation by L-NNA further increased apoptosis and NF-kappaB activation but blocked the increased proliferation and vacuolisation of acinar cells. The DNA content was not further reduced. SNAP given together with CCK-8 increased apoptosis and other pathways of cell death, raised proliferation of acinar cells and strongly reduced the DNA content in the pancreas. Histological examination showed no inflammation in any group. We conclude that during CCK-8-induced pancreatic hypoplasia, endogenously formed nitric oxide suppresses apoptosis but increases cell death along non-apoptotic pathways and stimulates regeneration of acinar cells. Exogenous nitric oxide enhances the acinar cell turnover by increasing both apoptotic and non-apoptotic cell death and cell renewal. In this situation NF-kappaB activation seems not to inhibit apoptosis nor promote cell proliferation.

  2. ARS-Interacting Multi-Functional Protein 1 Induces Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Accumulation of β-Catenin via Fibroblast Growth Factor Receptor 2-Mediated Activation of Akt

    PubMed Central

    Kim, Seo Yoon; Son, Woo Sung; Park, Min Chul; Kim, Chul Min; Cha, Byung Hyun; Yoon, Kang Jun; Lee, Soo-Hong

    2013-01-01

    ARS-Interacting Multi-functional Protein 1 (AIMP1) is a cytokine that is involved in the regulation of angiogenesis, immune activation, and fibroblast proliferation. In this study, fibroblast growth factor receptor 2 (FGFR2) was isolated as a binding partner of AIMP peptide (amino acids 6–46) in affinity purification using human bone marrow-derived mesenchymal stem cells (BMMSCs). AIMP1 peptide induced the proliferation of adult BMMSCs by activating Akt, inhibiting glycogen synthase kinase-3β, and thereby increasing the level of β-catenin. In addition, AIMP1 peptide induced the translocation of β-catenin to the nucleus and increased the transcription of c-myc and cyclin D1 by activating the β-catenin/T-cell factor (TCF) complex. By contrast, transfection of dominant negative TCF abolished the effect of AIMP1. The inhibition of Akt, using LY294002, abolished the accumulation and nuclear translocation of β-catenin induced by AIMP1, leading to a decrease in c-myc and cyclin D1 expression, which decreased the proliferation of BMMSCs. An intraperitoneal injection of AIMP1 peptide into C57/BL6 mice increased the colony formation of fibroblast-like cells. Fluorescence activated cell sorting analysis showed that the colony-forming cells were CD29+/CD44+/CD90+/CD105+/CD34−/CD45−, which is characteristic of MSCs. In addition, the fibroblast-like cells differentiated into adipocytes, chondrocytes, and osteocytes. Taken together, these data suggest that AIMP1 peptide promotes the proliferation of BMMSCs by activating the β-catenin/TCF complex via FGFR2-mediated activation of Akt, which leads to an increase in MSCs in peripheral blood. PMID:23672191

  3. ARS-interacting multi-functional protein 1 induces proliferation of human bone marrow-derived mesenchymal stem cells by accumulation of β-catenin via fibroblast growth factor receptor 2-mediated activation of Akt.

    PubMed

    Kim, Seo Yoon; Son, Woo Sung; Park, Min Chul; Kim, Chul Min; Cha, Byung Hyun; Yoon, Kang Jun; Lee, Soo-Hong; Park, Sang Gyu

    2013-10-01

    ARS-Interacting Multi-functional Protein 1 (AIMP1) is a cytokine that is involved in the regulation of angiogenesis, immune activation, and fibroblast proliferation. In this study, fibroblast growth factor receptor 2 (FGFR2) was isolated as a binding partner of AIMP peptide (amino acids 6-46) in affinity purification using human bone marrow-derived mesenchymal stem cells (BMMSCs). AIMP1 peptide induced the proliferation of adult BMMSCs by activating Akt, inhibiting glycogen synthase kinase-3β, and thereby increasing the level of β-catenin. In addition, AIMP1 peptide induced the translocation of β-catenin to the nucleus and increased the transcription of c-myc and cyclin D1 by activating the β-catenin/T-cell factor (TCF) complex. By contrast, transfection of dominant negative TCF abolished the effect of AIMP1. The inhibition of Akt, using LY294002, abolished the accumulation and nuclear translocation of β-catenin induced by AIMP1, leading to a decrease in c-myc and cyclin D1 expression, which decreased the proliferation of BMMSCs. An intraperitoneal injection of AIMP1 peptide into C57/BL6 mice increased the colony formation of fibroblast-like cells. Fluorescence activated cell sorting analysis showed that the colony-forming cells were CD29(+)/CD44(+)/CD90(+)/CD105(+)/CD34(-)/CD45(-), which is characteristic of MSCs. In addition, the fibroblast-like cells differentiated into adipocytes, chondrocytes, and osteocytes. Taken together, these data suggest that AIMP1 peptide promotes the proliferation of BMMSCs by activating the β-catenin/TCF complex via FGFR2-mediated activation of Akt, which leads to an increase in MSCs in peripheral blood.

  4. Quercetin promotes proliferation and differentiation of oligodendrocyte precursor cells after oxygen/glucose deprivation-induced injury.

    PubMed

    Wu, Xiuxiang; Qu, Xuebin; Zhang, Qiang; Dong, Fuxing; Yu, Hongli; Yan, Chen; Qi, Dashi; Wang, Meng; Liu, Xuan; Yao, Ruiqin

    2014-04-01

    The aim of this study was to investigate quercetin's (Qu) ability to promote proliferation and differentiation of oligodendrocyte precursor cells (OPCs) under oxygen/glucose deprivation (OGD)-induced injury in vitro. The results showed that after OGD, OPCs survival rate was significantly increased by Qu as measured by Cell Counting Kit-8. Furthermore, Qu treatment reduced apoptosis of OPCs surveyed by Hoechst 33258 nuclear staining. Qu at 9 and 27 μM promoted the proliferation of OPCs the most by Brdu and Olig2 immunocytochemical staining after OGD 3 days. Also, Qu treatment for 8 days after OGD, the differentiation of OPCs to oligodendrocyte was detected by immunofluorescence staining showing that O4, Olig2, and myelin basic protein (MBP) positive cells were significantly increased compared to control group. Additionally, the protein levels of Olig2 and MBP of OPCs were quantified using western blot and mRNA levels of Olig2 and Inhibitor of DNA binding 2 (Id2) were measured by RT-PCR. Western blot showed a significant increase in Olig2 and MBP expression levels compared with controls after OGD and Qu treatment with a linear does-response curve from 3 to 81 μM. After treatment with Qu compared to its control group, Olig2 mRNA level was significantly up-regulated, whereas Id2 mRNA level was down-regulated. In conclusion, Qu at 3-27 μM can promote the proliferation and differentiation of OPCs after OGD injury and may regulate the activity of Olig2 and Id2.

  5. Identification of Chemicals Inducing Cardiomyocyte Proliferation in Developmental Stage-Specific Manner with Pluripotent Stem Cells

    PubMed Central

    Uosaki, Hideki; Magadum, Ajit; Seo, Kinya; Fukushima, Hiroyuki; Takeuchi, Ayako; Nakagawa, Yasuaki; Moyes, Kara White; Narazaki, Genta; Kuwahara, Koichiro; Laflamme, Michael; Matsuoka, Satoshi; Nakatsuji, Norio; Nakao, Kazuwa; Kwon, Chulan; Kass, David A.; Engel, Felix B.; Yamashita, Jun K.

    2013-01-01

    Background The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provide therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells (PSCs). The combination of stem cell and chemical biology can provide novel approaches to investigate the molecular mechanisms and manipulation of cardiomyocyte proliferation. Methods and Results To identify chemicals that regulate cardiomyocyte proliferation, we performed a screening of a defined chemical library based on proliferation of mouse PSC-derived cardiomyocytes and identified 4 chemical compound groups - inhibitors of glycogen synthase kinase-3 (GSK3), p38 mitogen-activated protein kinase (MAPK) and Ca2+/calmodulin-dependent protein kinase II (CaMKII), and activators of extracellular signal-regulated kinase (ERK). Several appropriate combinations of chemicals synergistically enhanced proliferation of cardiomyocytes derived from both mouse and human PSCs, notably up to a 14-fold increase in mouse cardiomyocytes. We also examined the effects of identified chemicals on cardiomyocytes in various developmental stages and species. Whereas ERK activators and CaMKII inhibitors showed proliferative effects only on cardiomyocytes in early developmental stages, GSK3 and p38 MAPK inhibitors substantially and synergistically induced reentry and progression of cell cycle in not only neonatal but also adult cardiomyocytes. Conclusions Our approach successfully uncovered novel molecular targets and mechanisms controlling cardiomyocyte proliferation in distinct developmental stages and offered PSC-derived cardiomyocytes as a potent tool to explore chemical-based cardiac regenerative strategies. PMID:24141057

  6. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    PubMed

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  7. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesitymore » has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.« less

  8. Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane.

    PubMed Central

    Danesi, R.; Del Bianchi, S.; Soldani, P.; Campagni, A.; La Rocca, R. V.; Myers, C. E.; Paparelli, A.; Del Tacca, M.

    1993-01-01

    The effects of suramin, an inhibitor of growth factor mitogenic activity, were evaluated on basic fibroblast growth factor (bFGF)-induced proliferation of bovine aortic endothelial cells and on angiogenesis in the chorioallantoic membrane (CAM) of chick embryos. The role of bFGF gene expression in endothelial cell growth was also investigated by using an antisense oligodeoxynucleotide to bFGF. The 4-fold increase in [3H]-thymidine uptake in endothelial cells in vitro upon stimulation with 10 ng ml-1 of bFGF was inhibited by suramin 300 micrograms ml-1. bFGF antisense oligomer (10 microM) reduced [3H]-thymidine incorporation in exponentially growing cells by 76%; this effect was reversed by bFGF 10 ng ml-1. In the CAM of chick embryos suramin 50 micrograms was a more potent inhibitor of angiogenesis than the combination of heparin 60 micrograms/hydrocortisone 50 micrograms; the mean value of the area with reduced vascularity was significantly larger in suramin-treated CAMs (2.4 cm2) than in heparin/hydrocortisone (0.6 cm2), while the reduction of vascular density was similar (- 35 and - 29% compared to controls, respectively), In conclusion, the effects of treatments with bFGF and bFGF antisense oligomer demonstrate that bFGF plays a relevant role in endothelial cell proliferation and may be the target of suramin since the drug is able to suppress basal and bFGF-induced endothelial cell growth; in addition to this, suramin is a more potent angiogenesis inhibitor in the CAM than the combination of heparin/hydrocortisone. Images Figure 1 Figure 4 PMID:7692920

  9. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bei; Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110001; Fu, Jingqi

    2012-11-01

    Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs{sup 3+}) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA andmore » pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs{sup 3+} exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs{sup 3+} and monomethylarsonous acid (MMA{sup 3+})-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs{sup 3+}-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N‐acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs{sup 3+}. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure. -- Highlights: ► Lack of Nrf2 reduced expression of antioxidant genes induced by iAs{sup 3+} in β-cells. ► Deficiency of Nrf2 in β-cells

  10. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver

    PubMed Central

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2014-01-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car +/+ mice. After being fed the DDC diet, Car +/+, but not Car−/− mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car +/+, but not Car−/− mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car +/+ mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma. PMID:21826054

  11. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    PubMed

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  12. Disruption of adherens junction and alterations in YAP-related proliferation behavior as part of the underlying cell transformation process of alcohol-induced oral carcinogenesis.

    PubMed

    Husari, Ayman; Hülter-Hassler, Diana; Steinberg, Thorsten; Schulz, Simon Daniel; Tomakidi, Pascal

    2018-01-01

    Accumulating evidences indicate that alcohol might play a causative in oral cancer. Unfortunately, in vitro cell systems, uncovering the molecular background of the underlying cell transformation process, are rare. Therefore, this study was conducted, to identify molecular changes and characterize their putative cell behavioral consequences in epitheloid (EPI) and fibroblastoid (FIB) oral keratinocyte phenotypes, arising from chronical alcohol treatment. Concerning adherens junctions (AJs), both EPI and FIB showed membrane-bound β-catenin, but exhibited differences for E-cadherin and zyxin. While EPI revealed E-cadherin/β-catenin membrane co-localization, which in parts also applied for zyxin, FIB membranes were devoid of E-cadherin and exhibited marginal zyxin expression. Fetal calf serum (FCS) administration in starved cells promoted proliferation in both keratinocyte phenotypes, whereat EPI and FIB yielded a strikingly modified FCS sensitivity on the temporal scale. Impedance measurement-based cell index detection yielded proliferation stimulation occurring much earlier in FIB (<20h) compared to EPI (>45h). Nuclear preference of the proliferation-associated YAP co-transcription factor in FIB was FCS independent, while it required FCS in EPI. Taken together, the lack of membrane-inherent E-cadherin/β-catenin co-localization together with low zyxin - reveals perturbation of AJ integrity in FIB. Regarding cell behavior, perturbed AJs in FIB correlate with temporal proliferation sensitivity towards FCS. CYF of 5.6 strongly suggests involvement of chromatin-bound YAP in FIB's proliferation temperosensitivity. These molecular differences detected for EPI and FIB are part of the underlying cell transformation process of alcohol-induced oral carcinogenesis, and indicate FIB being in a more advanced transformation stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells.

    PubMed

    Kim, Hyung Gyun; Jin, Sun Woo; Kim, Yong An; Khanal, Tilak; Lee, Gi Ho; Kim, Se Jong; Rhee, Sang Dal; Chung, Young Chul; Hwang, Young Jung; Jeong, Tae Cheon; Jeong, Hye Gwang

    2017-08-01

    Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E 2 . Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Homeostasis of naive and memory CD4+ T cells: IL-2 and IL-7 differentially regulate the balance between proliferation and Fas-mediated apoptosis.

    PubMed

    Jaleco, Sara; Swainson, Louise; Dardalhon, Valérie; Burjanadze, Maryam; Kinet, Sandrina; Taylor, Naomi

    2003-07-01

    Cytokines play a crucial role in the maintenance of polyclonal naive and memory T cell populations. It has previously been shown that ex vivo, the IL-7 cytokine induces the proliferation of naive recent thymic emigrants (RTE) isolated from umbilical cord blood but not mature adult-derived naive and memory human CD4(+) T cells. We find that the combination of IL-2 and IL-7 strongly promotes the proliferation of RTE, whereas adult CD4(+) T cells remain relatively unresponsive. Immunological activity is controlled by a balance between proliferation and apoptotic cell death. However, the relative contributions of IL-2 and IL-7 in regulating these processes in the absence of MHC/peptide signals are not known. Following exposure to either IL-2 or IL-7 alone, RTE, as well as mature naive and memory CD4(+) T cells, are rendered only minimally sensitive to Fas-mediated cell death. However, in the presence of the two cytokines, Fas engagement results in a high level of caspase-dependent apoptosis in both RTE as well as naive adult CD4(+) T cells. In contrast, equivalently treated memory CD4(+) T cells are significantly less sensitive to Fas-induced cell death. The increased susceptibility of RTE and naive CD4(+) T cells to Fas-induced apoptosis correlates with a significantly higher IL-2/IL-7-induced Fas expression on these T cell subsets than on memory CD4(+) T cells. Thus, IL-2 and IL-7 regulate homeostasis by modulating the equilibrium between proliferation and apoptotic cell death in RTE and mature naive and memory T cell subsets.

  15. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation.

    PubMed

    Mo, Chenglin; Zhao, Ruonan; Vallejo, Julian; Igwe, Orisa; Bonewald, Lynda; Wetmore, Lori; Brotto, Marco

    2015-01-01

    We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.

  16. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation

    PubMed Central

    Mo, Chenglin; Zhao, Ruonan; Vallejo, Julian; Igwe, Orisa; Bonewald, Lynda; Wetmore, Lori; Brotto, Marco

    2015-01-01

    We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts. PMID:25785867

  17. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki

    2014-04-15

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7{sup +}hSMSC)-derived osteoblast-like (α7{sup +}hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations,more » however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7{sup +}hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7{sup +}hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7{sup +}hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form

  18. Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis.

    PubMed

    Kim, Green; Kim, Tae-Hyoun; Hwang, Eun-Ha; Chang, Kyu-Tae; Hong, Jung Joo; Park, Jong-Hwan

    2017-07-01

    Human gastric adenocarcinoma (AGS) is one of the most common types of malignant tumor and the third-leading cause of tumor-associated mortality worldwide. Withaferin A (WA), a steroidal lactone derived from Withania somnifera , exhibits antitumor activity in a variety of cancer models. However, to the best of our knowledge, the direct effect of WA on AGS cells has not previously been determined. The present study investigated the effects of WA on the proliferation and metastatic activity of AGS cells. WA exerted a dose-dependent cytotoxic effect on AGS cells. The effect was associated with cell cycle arrest at the G2/M phase and the expression of apoptotic proteins. Additionally, WA treatment resulted in a decrease in the migration and invasion ability of the AGS cells, as demonstrated using a wound healing assay and a Boyden chamber assay. These results indicate that WA directly inhibits the proliferation and metastatic activity of gastric cancer cells, and suggest that WA may be developed as a drug for the treatment of gastric cancer.

  19. Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis

    PubMed Central

    Kim, Green; Kim, Tae-Hyoun; Hwang, Eun-Ha; Chang, Kyu-Tae; Hong, Jung Joo; Park, Jong-Hwan

    2017-01-01

    Human gastric adenocarcinoma (AGS) is one of the most common types of malignant tumor and the third-leading cause of tumor-associated mortality worldwide. Withaferin A (WA), a steroidal lactone derived from Withania somnifera, exhibits antitumor activity in a variety of cancer models. However, to the best of our knowledge, the direct effect of WA on AGS cells has not previously been determined. The present study investigated the effects of WA on the proliferation and metastatic activity of AGS cells. WA exerted a dose-dependent cytotoxic effect on AGS cells. The effect was associated with cell cycle arrest at the G2/M phase and the expression of apoptotic proteins. Additionally, WA treatment resulted in a decrease in the migration and invasion ability of the AGS cells, as demonstrated using a wound healing assay and a Boyden chamber assay. These results indicate that WA directly inhibits the proliferation and metastatic activity of gastric cancer cells, and suggest that WA may be developed as a drug for the treatment of gastric cancer. PMID:28693185

  20. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation.

    PubMed

    Wu, Shan-Ying; Lan, Sheng-Hui; Cheng, Da-En; Chen, Wei-Kai; Shen, Cheng-Huang; Lee, Ying-Ray; Zuchini, Roberto; Liu, Hsiao-Sheng

    2011-12-01

    Autophagy plays diverse roles in Ras-related tumorigenesis. H-ras(val12) induces autophagy through multiple signaling pathways including Raf-1/ERK pathway, and various ERK downstream molecules of autophagy have been reported. In this study, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) is identified as a downstream transducer of the Ras/Raf/ERK signaling pathway to induce autophagy. BNIP3 was upregulated by H-ras(val12) at the transcriptional level to compete with Beclin 1 for binding with Bcl-2. H-ras(val12)-induced autophagy suppresses cell proliferation demonstrated both in vitro and in vivo by expression of ectopic BNIP3, Atg5, or interference RNA of BNIP3 (siBNIP3) and Atg5 (shAtg5) using mouse NIH3T3 and embryo fibroblast cells. H-ras(val12) induces different autophagic responses depending on the duration of Ras overexpression. After a short time (48 hours) of Ras overexpression, autophagy inhibits cell proliferation. In contrast, a longer time (2 weeks) of Ras overexpression, cell proliferation was enhanced by autophagy. Furthermore, overexpression of mutant Ras, BNIP3, and LC3-II was detected in bladder cancer T24 cells and the tumor parts of 75% of bladder cancer specimens indicating a positive correlation between autophagy and tumorigenesis. Taken together, our mouse model demonstrates a balance between BNIP3-mediated autophagy and H-ras(val12)-induced tumor formation and reveals that H-ras(val12) induces autophagy in a BNIP3-dependent manner, and the threshold of autophagy plays a decisive role in H-ras(val12)-induced tumorigenesis. Our findings combined with others' reports suggest a new therapeutic strategy against Ras-related tumorigenesis by negative or positive regulation of autophagic activity, which is determined by the level of autophagy and tumor progression stages.

  1. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    PubMed Central

    Ravasi, Saula; Citro, Simona; Viviani, Barbara; Capra, Valérie; Rovati, G Enrico

    2006-01-01

    Background Cysteine-containing leukotrienes (cysteinyl-LTs) are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC) proliferation. We used human ASMC (HASMC) to identify the signal transduction pathway(s) of the leukotriene D4 (LTD4)-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R) and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS) was estimated by measuring dichlorodihydrofluorescein (DCF) oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX) and phosphoinositide 3-kinase (PI3K) inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC) abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF-R through the

  2. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells.

    PubMed

    Wang, Ruoxing; Guo, Yan-Lin

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A newly synthesized Ligustrazine stilbene derivative inhibits PDGF-BB induced vascular smooth muscle cell phenotypic switch and proliferation via delaying cell cycle progression.

    PubMed

    Peng, Chunlian; Zhang, Siming; Liu, Haixin; Jiao, Yanxiao; Su, Guifa; Zhu, Yan

    2017-11-05

    Vascular Smooth muscle cells (VSMCs) possess remarkable phenotype plasticity that allows it to rapidly adapt to fluctuating environmental cues, including the period of development and progression of vascular diseases such as atherosclerosis and restenosis subsequent to vein grafting or coronary intervention. Although VSMC phenotypic switch is an attractive target, there is no effective drug so far. Using rat aortic VSMCs, we investigate the effects of Ligustrazine and its synthetic derivatives on platelet-derived growth factor-BB (PDGF-BB) induced proliferation and phenotypic switch by a cell image-based screening of 60 Ligustrazine stilbene derivatives. We showed that one of the Ligustrazine stilbene derivatives TMP-C 4a markedly inhibited PDGF-BB-induced VSMCs proliferation in a time and dose-dependent manner, which is more potent than Ligustrazine. Stimulation of contractile VSMCs with PDGF-BB significantly reduced the contractile marker protein α-smooth muscle actin expression and increased the synthetic marker proteins osteopontin expression. However, TMP-C 4a effectively reversed this phenotypic switch, which was accompanied by a decreased expression of Matrix metalloproteinase 2 and 9 (MMP2 and MMP9) and cell cycle related proteins, including cyclin D1 and CDK4. In conclusion, the present study showed that a new Ligustrazine stilbene derivative TMP-C 4a suppressed PDGF-induced VSMC proliferation and phenotypic switch, indicating that it has a potential to become a promising therapeutic agent for treating VSMC-related atherosclerosis and restenosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. CHES1/FOXN3 regulates cell proliferation by repressing PIM2 and protein biosynthesis

    PubMed Central

    Huot, Geneviève; Vernier, Mathieu; Bourdeau, Véronique; Doucet, Laurent; Saint-Germain, Emmanuelle; Gaumont-Leclerc, Marie-France; Moro, Alejandro; Ferbeyre, Gerardo

    2014-01-01

    The expression of the forkhead transcription factor checkpoint suppressor 1 (CHES1), also known as FOXN3, is reduced in many types of cancers. We show here that CHES1 decreases protein synthesis and cell proliferation in tumor cell lines but not in normal fibroblasts. Conversely, short hairpin RNA–mediated depletion of CHES1 increases tumor cell proliferation. Growth suppression depends on the CHES1 forkhead DNA-binding domain and correlates with the nuclear localization of CHES1. CHES1 represses the expression of multiple genes, including the kinases PIM2 and DYRK3, which regulate protein biosynthesis, and a number of genes in cilium biogenesis. CHES1 binds directly to the promoter of PIM2, and in cells expressing CHES1 the levels of PIM2 are reduced, as well as the phosphorylation of the PIM2 target 4EBP1. Overexpression of PIM2 or eIF4E partially reverses the antiproliferative effect of CHES1, indicating that PIM2 and protein biosynthesis are important targets of the antiproliferative effect of CHES1. In several human hematopoietic cancers, CHES1 and PIM2 expressions are inversely correlated, suggesting that repression of PIM2 by CHES1 is clinically relevant. PMID:24403608

  5. CHES1/FOXN3 regulates cell proliferation by repressing PIM2 and protein biosynthesis.

    PubMed

    Huot, Geneviève; Vernier, Mathieu; Bourdeau, Véronique; Doucet, Laurent; Saint-Germain, Emmanuelle; Gaumont-Leclerc, Marie-France; Moro, Alejandro; Ferbeyre, Gerardo

    2014-03-01

    The expression of the forkhead transcription factor checkpoint suppressor 1 (CHES1), also known as FOXN3, is reduced in many types of cancers. We show here that CHES1 decreases protein synthesis and cell proliferation in tumor cell lines but not in normal fibroblasts. Conversely, short hairpin RNA-mediated depletion of CHES1 increases tumor cell proliferation. Growth suppression depends on the CHES1 forkhead DNA-binding domain and correlates with the nuclear localization of CHES1. CHES1 represses the expression of multiple genes, including the kinases PIM2 and DYRK3, which regulate protein biosynthesis, and a number of genes in cilium biogenesis. CHES1 binds directly to the promoter of PIM2, and in cells expressing CHES1 the levels of PIM2 are reduced, as well as the phosphorylation of the PIM2 target 4EBP1. Overexpression of PIM2 or eIF4E partially reverses the antiproliferative effect of CHES1, indicating that PIM2 and protein biosynthesis are important targets of the antiproliferative effect of CHES1. In several human hematopoietic cancers, CHES1 and PIM2 expressions are inversely correlated, suggesting that repression of PIM2 by CHES1 is clinically relevant.

  6. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was amore » positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.« less

  7. 17β-Estradiol activates GPER- and ESR1-dependent pathways inducing apoptosis in GC-2 cells, a mouse spermatocyte-derived cell line.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Ruggiero, Carmen; Maggiolini, Marcello; Andò, Sebastiano; Pezzi, Vincenzo

    2012-05-15

    In mammals, spontaneous apoptosis is observed particularly in differentiating spermatogonia and in spermatocytes. 17β-Estradiol (E2) in primary rat pachytene spermatocytes (PS) binds estrogen receptor α (ESR1) and GPER to activate EGFR/ERK/c-Jun pathway leading to up regulation of proapoptotic factor bax. Aim of this study was to clarify the effector pathway(s) controlling spermatocytes apoptosis using as model GC-2 cells, an immortalized mouse pachytene spermatocyte-derived cell line, which reproduces primary cells responses to E2. In fact, in GC-2 cells we observed that ESR1 and GPER activation caused rapid ERK and c-Jun phosphorylation, bax up-regulation, events associated with apoptosis. We further investigated the apoptotic mechanism demonstrating that E2, as well as ESR1 and GPER specific agonists, induced sustained ERK, c-Jun and p38 phosphorylation, Cytochrome c release, caspase 3 and endogenous substrate Poly (ADP-ribose) polymerase (PARP) activation and increased expression of cell cycle inhibitor p21. When ESR1 or GPER expression was silenced, E2 was still able to decrease cell proliferation, only the concomitant silencing abolished E2 effect. These results indicate that GC-2 cells are a valid cell model to study E2-dependent apoptosis in spermatocytes and show that E2, activating both ESR1 and GPER, is able to induce an ERK1/2, c-Jun and p38-dependent mitochondrion apoptotic pathway in this cell type. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Inhibition of brain tumor cell proliferation by alternating electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  9. Limb-bud and Heart Overexpression Inhibits the Proliferation and Migration of PC3M Cells.

    PubMed

    Liu, Qicai; Li, Ermao; Huang, Long; Cheng, Minsheng; Li, Li

    2018-01-01

    Background: The limb-bud and heart gene ( LBH ) was discovered in the early 21st century and is specifically expressed in the mouse embryonic limb and heart development. Increasing evidences have indicated that LBH not only plays an important role in embryo development, it is also closely correlated with the occurance and progression of many tumors. However, its function in prostate cancer (PCa) is still not well understood. Here, we explored the effects of LBH on the proliferation and migration of the PCa cell line PC3M. Methods: LBH expression in tissues and cell lines of PCa was detected by immunohistochemistry and Western blotting. Lentivirus was used to transduct the LBH gene into the PC3M cells. Stable LBH-overexpressing PC3M-LBH cells and PC3M-NC control cells were obtained via puromycin screening. Cell proliferation was examined using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution and apoptosis rate were investigated using flow cytometry. Cell migration was studied using the Transwell assay. Results: LBH expression level was down-regulated in 3 different PCa cell lines, especially in PC3M cells, compared with the normal prostate epithelial cells(RWPE-1). Cell lines of LBH-upregulated PC3M-LBH and PC3M-NC control were successfully constructed. Significantly increased LBH expression level and decreased cyclin D1 and cyclin E2 expression level was found in PC3M-LBH cells as compared to the PC3M-NC cells. The overexpression of LBH significantly inhibited PC3M cell proliferation in vitro and tumor growth in nude mice. LBH overexpression in PC3M cell, also induced cell cycle G0/G1 phase arrest and decreased the migration of PC3M cells. Conclusions : Our results reveal that LBH expression is down-regulated in the tissue and cell lines of PCa. LBH overexpression inhibits PC3M cell proliferation and tumor growth by inducing cell cycle arrest through down-regulating cyclin D1and cyclin E2 expression. LBH might

  10. A synthetic peptide derived from alpha-fetoprotein inhibits the estradiol-induced proliferation of mammary tumor cells in culture through the modulation of p21.

    PubMed

    Sierralta, Walter D; Epuñan, María J; Reyes, José M; Valladares, Luis E; Pino, Ana M

    2008-01-01

    A stable cyclized 9-mer peptide (cP) containing the active site of alpha-alpha fetoprotein (alphaFP) has been shown to be effective for prevention of estrogen-stimulated tumor cell proliferation in culture or of xenographt growth in immunodeficient mice. cP does not block 17beta-estradiol (E2) binding to its receptors, but rather appears to interfere with intracellular processing of the signal that supports growth. To obtain insight on that mechanism we studied the effect of cP on the proliferation of MCF-7 cells in culture. Proliferation in the presence of 2 microM E2 is decreased up to 40% upon addition of 2 microg ml(-1) cP to the medium; the presence of cP did not increase cell death, cP reduced also the proliferation of estrogen-dependent ZR75-1 cells but had no effect on autonomous MDA-MB-231 cells, cP did not modify the number of binding sites for labeled E2 or affected cell death. We detected increased nuclear p21Cip1 immunoreactivity after cP treatment. Our results suggest that cP acts via p21Cip1 to slow the process of MCF-7 cells through the cycle.

  11. Atorvastatin Calcium Inhibits PDGF-ββ-Induced Proliferation and Migration of VSMCs Through the G0/G1 Cell Cycle Arrest and Suppression of Activated PDGFRβ-PI3K-Akt Signaling Cascade.

    PubMed

    Chen, Shuang; Dong, Siyuan; Li, Zhao; Guo, Xiaofan; Zhang, Naijin; Yu, Bo; Sun, Yingxian

    2017-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of vascular lesions, such as atherosclerosis and restenosis. PDGF-ββ, an isoform of PDGF (platelet-derived growth factor), has been demonstrated to induce proliferation and migration of VSMCs. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, has favorable protective effects on VSMCs. This study examined the effects of atorvastatin calcium on the proliferation and migration of PDGF-ββ-treated VSMCs, as well as its underlying mechanisms. MTT assays, Edu imaging, cell cycle analysis, wound healing assays, transwell migration assays, and western blot analysis were performed. Atorvastatin calcium significantly inhibited cell proliferation, DNA synthesis and cell migration of PDGF-ββ-treated VSMCs. We demonstrated that atorvastatin calcium induced cell cycle arrest in the G0/G1 phase in response to PDGF-ββ stimulation and decreased the expression of G0/G1-specific regulatory proteins, including proliferating cell nuclear antigen (PCNA), CDK2, cyclin D1, cyclin E and CDK4 in PDGF-ββ-treated VSMCs. Moreover, pretreatment with atorvastatin calcium inhibited the PDGF-ββ-treated phosphorylation of PDGFRβ and Akt, whereas atorvastatin calcium did not affect the phosphorylation of PLC-γ1 or (ERK) 1/2. Our data suggested that atorvastatin calcium inhibited abnormal proliferation and migration of VSMCs through G0/G1 cell cycle arrest and suppression of the PDGFRβ-Akt signaling cascade. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp; Goshima, Hazuki; Ozawa, Ayako

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stemmore » (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression

  13. High levels of BRC4 induced by a Tet-On 3G system suppress DNA repair and impair cell proliferation in vertebrate cells

    PubMed Central

    Abe, Takuya; Branzei, Dana

    2014-01-01

    Transient induction or suppression of target genes is useful to study the function of toxic or essential genes in cells. Here we apply a Tet-On 3G system to DT40 lymphoma B cell lines, validating it for three different genes. Using this tool, we then show that overexpression of the chicken BRC4 repeat of the tumor suppressor BRCA2 impairs cell proliferation and induces chromosomal breaks. Mechanistically, high levels of BRC4 suppress double strand break-induced homologous recombination, inhibit the formation of RAD51 recombination repair foci, reduce cellular resistance to DNA damaging agents and induce a G2 damage checkpoint-mediated cell-cycle arrest. The above phenotypes are mediated by BRC4 capability to bind and inhibit RAD51. The toxicity associated with BRC4 overexpression is exacerbated by chemotherapeutic agents and reversed by RAD51 overexpression, but it is neither aggravated nor suppressed by a deficit in the non-homologous end-joining pathway of double strand break repair. We further find that the endogenous BRCA2 mediates the cytotoxicity associated with BRC4 induction, thus underscoring the possibility that BRC4 or other domains of BRCA2 cooperate with ectopic BRC4 in regulating repair activities or mitotic cell division. In all, the results demonstrate the utility of the Tet-On 3G system in DT40 research and underpin a model in which BRC4 role on cell proliferation and chromosome repair arises primarily from its suppressive role on RAD51 functions. PMID:25218467

  14. High levels of BRC4 induced by a Tet-On 3G system suppress DNA repair and impair cell proliferation in vertebrate cells.

    PubMed

    Abe, Takuya; Branzei, Dana

    2014-10-01

    Transient induction or suppression of target genes is useful to study the function of toxic or essential genes in cells. Here we apply a Tet-On 3G system to DT40 lymphoma B cell lines, validating it for three different genes. Using this tool, we then show that overexpression of the chicken BRC4 repeat of the tumor suppressor BRCA2 impairs cell proliferation and induces chromosomal breaks. Mechanistically, high levels of BRC4 suppress double strand break-induced homologous recombination, inhibit the formation of RAD51 recombination repair foci, reduce cellular resistance to DNA damaging agents and induce a G2 damage checkpoint-mediated cell-cycle arrest. The above phenotypes are mediated by BRC4 capability to bind and inhibit RAD51. The toxicity associated with BRC4 overexpression is exacerbated by chemotherapeutic agents and reversed by RAD51 overexpression, but it is neither aggravated nor suppressed by a deficit in the non-homologous end-joining pathway of double strand break repair. We further find that the endogenous BRCA2 mediates the cytotoxicity associated with BRC4 induction, thus underscoring the possibility that BRC4 or other domains of BRCA2 cooperate with ectopic BRC4 in regulating repair activities or mitotic cell division. In all, the results demonstrate the utility of the Tet-On 3G system in DT40 research and underpin a model in which BRC4 role on cell proliferation and chromosome repair arises primarily from its suppressive role on RAD51 functions. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Emptying of Intracellular Calcium Pool and Oxidative Stress Imbalance Are Associated with the Glyphosate-Induced Proliferation in Human Skin Keratinocytes HaCaT Cells

    PubMed Central

    George, Jasmine; Shukla, Yogeshwer

    2013-01-01

    We demonstrated that glyphosate possesses tumor promoting potential in mouse skin carcinogenesis and SOD 1, calcyclin (S100A6), and calgranulin B (S100A9) have been associated with this potential, although the mechanism is unclear. We aimed to clarify whether imbalance in between [Ca2+]i levels and oxidative stress is associated with glyphosate-induced proliferation in human keratinocytes HaCaT cells. The [Ca2+]i levels, ROS generation, and expressions of G1/S cyclins, IP3R1, S100A6, S100A9, and SOD 1, and apoptosis-related proteins were investigated upon glyphosate exposure in HaCaT cells. Glyphosate (0.1 mM) significantly induced proliferation, decreases [Ca2+]i, and increases ROS generation in HaCaT cells, whereas antioxidant N-acetyl-L-cysteine (NAC) pretreatment reverts these effects which directly indicated that glyphosate induced cell proliferation by lowering [Ca2+]i levels via ROS generation. Glyphosate also enhanced the expression of G1/S cyclins associated with a sharp decrease in G0/G1 and a corresponding increase in S-phases. Additionally, glyphosate also triggers S100A6/S100A9 expression and decreases IP3R1 and SOD 1 expressions in HaCaT cells. Notably, Ca2+ suppression also prevented apoptotic related events including Bax/Bcl-2 ratio and caspases activation. This study highlights that glyphosate promotes proliferation in HaCaT cells probably by disrupting the balance in between [Ca2+]i levels and oxidative stress which in turn facilitated the downregulation of mitochondrial apoptotic signaling pathways. PMID:24073338

  16. Rac1 Guides Porf-2 to Wnt Pathway to Mediate Neural Stem Cell Proliferation

    PubMed Central

    Yang, Xi-Tao; Huang, Guo-Hui; Li, Hong-Jiang; Sun, Zhao-Liang; Xu, Nan-Jie; Feng, Dong-Fu

    2017-01-01

    The molecular and cellular mechanisms underlying the anti-proliferative effects of preoptic regulator factor 2 (Porf-2) on neural stem cells (NSCs) remain largely unknown. Here, we found that Porf-2 inhibits the activity of ras-related C3 botulinum toxin substrate 1 (Rac1) protein in hippocampus-derived rat NSCs. Reduced Rac1 activity impaired the nuclear translocation of β-catenin, ultimately causing a repression of NSCs proliferation. Porf-2 knockdown enhanced NSCs proliferation but not in the presence of small molecule inhibitors of Rac1 or Wnt. At the same time, the repression of NSCs proliferation caused by Porf-2 overexpression was counteracted by small molecule activators of Rac1 or Wnt. By using a rat optic nerve crush model, we observed that Porf-2 knockdown enhanced the recovery of visual function. In particular, optic nerve injury in rats led to increased Wnt family member 3a (Wnt3a) protein expression, which we found responsible for enhancing Porf-2 knockdown-induced NSCs proliferation. These findings suggest that Porf-2 exerts its inhibitory effect on NSCs proliferation via Rac1-Wnt/β-catenin pathway. Porf-2 may therefore represent and interesting target for optic nerve injury recovery and therapy. PMID:28626389

  17. Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells

    PubMed Central

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yan, Kun; Chen, Zhihao; Shang, Peng; Qian, Airong

    2015-01-01

    Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function. [BMB Reports 2015; 48(10): 583-588] PMID:26277981

  18. Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells.

    PubMed

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yan, Kun; Chen, Zhihao; Shang, Peng; Qian, Airong

    2015-10-01

    Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function.

  19. Ascorbigen induces dermal papilla cell proliferation in vitro, but fails to modulate chemotherapy-induced alopecia in vivo.

    PubMed

    Wang, Chih-Hsiu; Huang, Hsu-Shan; Dai, Niann-Tzyy; Sheu, Ming-Jen; Chang, Deh-Ming

    2013-12-01

    Ascorbigen (ABG) is the predominant indole-derived compound from Brassica vegetables. In this study, we attempted to evaluate the effects of ABG on hair growth. To this end, we examined the proliferation of isolated human dermal papilla (DP) cells and keratinocytes after incubation in various concentrations (0-1.25 mM) of ABG. Furthermore, hair shaft regrowth was monitored in a mouse model of chemotherapy-induced alopecia (CIA), and hematoxylin and eosin staining was performed for histological analyses. We found that 1.25 mM ABG induced a 1.2-fold increase in the growth of DP cells, but not keratinocytes. However, ABG did not exert significant protective effects against CIA in the mouse model. These findings suggest that ABG may not be able to counteract CIA and that further investigation of the therapeutic potential of ABG in disease models is required. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Suppression of IL-1beta-induced COX-2 expression by trichostatin A (TSA) in human endometrial stromal cells.

    PubMed

    Wu, Yan; Guo, Sun-Wei

    2007-11-01

    Over-production of cyclooxygenase-2 (COX-2) plays an important role in the positive feedback loop that leads to proliferation and inflammation in endometriosis. Following our observation that histone deacetylase inhibitors (HDACIs) trichostatin A (TSA) and valproic acid (VPA) can suppress proliferation of endometrial stromal cells, we sought to determine whether TSA suppresses IL-1beta-induced COX-2 expression in endometrial stromal cells. In vitro study using a recently established immortalized endometrial stromal cell line. The stromal cells were pretreated with TSA before stimulation with IL-1beta, and COX-2 gene and protein expression was measured by real-time quantitative RT-PCR and Western blot analysis, respectively. IL-1beta stimulated COX-2 expression in a concentration-dependent manner in endometrial stromal cells. The induced COX-2 gene and protein expression were suppressed by TSA pretreatment. TSA suppresses IL-1beta-induced COX-2 gene and protein expression in endometrial stromal cells. This finding, coupled with the findings that TSA and another HDACI, valproic acid, suppress proliferation and induce cell cycle arrest, suggests that HDACIs are a promising class of compound that has therapeutic potential for endometriosis.

  1. B-Cell Maturation Antigen, A Proliferation-Inducing Ligand, and B-Cell Activating Factor Are Candidate Mediators of Spinal Cord Injury-Induced Autoimmunity

    PubMed Central

    Saltzman, Jonah W.; Battaglino, Ricardo A.; Salles, Loise; Jha, Prateek; Sudhakar, Supreetha; Garshick, Eric; Stott, Helen L.; Zafonte, Ross

    2013-01-01

    Abstract Autoimmunity is thought to contribute to poor neurological outcomes after spinal cord injury (SCI). There are few mechanism-based therapies, however, designed to reduce tissue damage and neurotoxicity after SCI because the molecular and cellular bases for SCI-induced autoimmunity are not completely understood. Recent groundbreaking studies in rodents indicate that B cells are responsible for SCI-induced autoimmunity. This novel paradigm, if confirmed in humans, could aid in the design of neuroprotective immunotherapies. The aim of this study was to investigate the molecular signaling pathways and mechanisms by which autoimmunity is induced after SCI, with the goal of identifying potential targets in therapies designed to reduce tissue damage and inflammation in the chronic phase of SCI. To that end, we performed an exploratory microarray analysis of peripheral blood mononuclear cells to identify differentially expressed genes in chronic SCI. We identified a gene network associated with lymphoid tissue structure and development that was composed of 29 distinct molecules and five protein complexes, including two cytokines, a proliferation-inducing ligand (APRIL) and B-cell–activating factor (BAFF), and one receptor, B-cell maturation antigen (BMCA) involved in B cell development, proliferation, activation, and survival. Real-time polymerase chain reaction analysis from ribonucleic acid samples confirmed upregulation of these three genes in SCI. To our knowledge, this is the first report that peripheral blood mononuclear cells produce increased levels of BAFF and APRIL in chronic SCI. This finding provides evidence of systemic regulation of SCI-autoimmunity via APRIL and BAFF mediated activation of B cells through BMCA and points toward these molecules as potential targets of therapies designed to reduce neuroinflammation after SCI. PMID:23088438

  2. Independent roles of eIF5A and polyamines in cell proliferation

    PubMed Central

    2004-01-01

    To examine the roles of active hypusinated eIF5A (eukaryotic translation initiation factor 5A) and polyamines in cell proliferation, mouse mammary carcinoma FM3A cells were treated with an inhibitor of deoxyhypusine synthase, GC7 (N1-guanyl-1, 7-diaminoheptane), or with an inhibitor of ornithine decarboxylase, DFMO (α-difluoromethylornithine), or with DFMO plus an inhibitor of spermine synthase, APCHA [N1-(3-aminopropyl)-cyclohexylamine]. Treatment with GC7 decreased the level of active eIF5A on day 1 without affecting cellular polyamine content, and inhibition of cell growth occurred from day 2. This delay reflects the fact that eIF5A was present in excess and was very stable in these cells. Treatment with DFMO or with DFMO plus APCHA inhibited cell growth on day 1. DFMO considerably decreased the levels of putrescine and spermidine, and the formation of active eIF5A began to decrease when the level of spermidine fell below 8 nmol/mg of protein after 12 h of incubation with DFMO. The combination of DFMO and APCHA markedly decreased the levels of putrescine and spermine and significantly decreased the level of spermidine, but did not affect the level of active eIF5A until day 3 when spermidine level decreased to 7 nmol/mg of protein. The results show that a decrease in either active eIF5A or polyamines inhibits cell growth, indicating that eIF5A and polyamines are independently involved in cell growth. PMID:15377278

  3. Lipocalin-2 Promotes Endoplasmic Reticulum Stress and Proliferation by Augmenting Intracellular Iron in Human Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Wang, Guoliang; Liu, Shenghua; Wang, Li; Meng, Liukun; Cui, Chuanjue; Zhang, Hao; Hu, Shengshou; Ma, Ning; Wei, Yingjie

    2017-01-01

    Endoplasmic reticulum (ER) stress, a feature of many conditions associated with pulmonary hypertension (PH), is increasingly recognized as a common response to promote proliferation in the walls of pulmonary arteries. Increased expression of Lipocalin-2 in PH led us to test the hypothesis that Lipocalin-2, a protein known to sequester iron and regulate it intracellularly, might facilitate the ER stress and proliferation in pulmonary arterial smooth muscle cells (PASMCs). In this study, we observed greatly increased Lcn2 expression accompanied with increased ATF6 cleavage in a standard rat model of pulmonary hypertension induced by monocrotaline. In cultured human PASMCs, Lcn2 significantly promoted ER stress (determined by augmented cleavage and nuclear localization of ATF6, up-regulated transcription of GRP78 and NOGO, increased expression of SOD2, and mild augmented mitochondrial membrane potential) and proliferation (assessed by Ki67 staining and BrdU incorporation). Lcn2 promoted ER stress accompanied with augmented intracellular iron levels in human PASMCs. Treatment human PASMCs with FeSO4 induced the similar ER stress and proliferation response and iron chelator (deferoxamine) abrogated the ER stress and proliferation induced by Lcn2 in cultured human PASMCs. In conclusion, Lcn2 significantly promoted human PASMC ER stress and proliferation by augmenting intracellular iron. The up-regulation of Lcn2 probably involved in the pathogenesis and progression of PH. PMID:28255266

  4. Intestinal metaplasia with a high salt diet induces epithelial proliferation and alters cell composition in the gastric mucosa of mice.

    PubMed

    Xiao, Fang; Crissey, Mary Ann S; Lynch, John P; Kaestner, Klaus H; Silberg, Debra G; Suh, Eunran

    2005-06-01

    Intestinal metaplasia of the gastric mucosa is an important component in the pathway to adenocarcinoma. The mechanisms that induce the progression from intestinal metaplasia to cancer have not been elucidated. High dietary salt has been known as one of the risk factors for gastric cancer development in humans. Therefore, we investigated the role of high salt diet on gastric epithelial cell proliferation and differentiation, using our mouse model that ectopically expressed Cdx2 homeodomain transcription factor and induced an intestinal metaplastic phenotype in the gastric epithelia. Sixty Cdx2 transgenic and sixty age-matched wild-type littermates were studied. Fifty-percent Cdx2 transgenic and wild type mice were administered a high-salt diet and the other fifty-percent was fed a standard diet starting at 12 weeks after birth. At 10, 20 and 40 weeks after initiation of the diets, histopathological changes were determined by Hemotoxylin and Eosin, alcian blue, and periodic acid-Schiff (PAS) staining. Cell types and cell kinetics were assessed by immunohistochemistry. At 52 weeks, significant alterations in pathology were observed in the Cdx2 transgenic mice fed a high-salt diet, including elongation of gastric pits, reduction of the glandular zone in the gastric corpus, and deepening of glands in the antrum. In the Cdx2 transgenic mice fed a high salt diet, the parietal and chief cells were significantly decreased in the gastric corpus. A significant increase in cell proliferation and apoptosis in the corpus and antrum were observed in Cdx2 transgenic mice fed a high-salt diet as compared to wild-type littermates. Taken together, these data implicate that intestinal metaplasia in concert with a high-salt diet induces epithelial proliferation, apoptosis, and alters cellular types in the gastric mucosa of mice. Alteration in the composition of the gastric epithelium may play a role in influencing the microenvironment to engender susceptibility to carcinogens.

  5. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis.

    PubMed

    Fan, Yu; Wang, Ye; Wang, Ke

    2015-12-18

    Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell

  6. MicroRNA let-7c Inhibits Cell Proliferation and Induces Cell Cycle Arrest by Targeting CDC25A in Human Hepatocellular Carcinoma

    PubMed Central

    Zhu, Xiuming; Wu, Lingjiao; Yao, Jian; Jiang, Han; Wang, Qiangfeng; Yang, Zhijian; Wu, Fusheng

    2015-01-01

    Down-regulation of the microRNA let-7c plays an important role in the pathogenesis of human hepatocellular carcinoma (HCC). The aim of the present study was to determine whether the cell cycle regulator CDC25A is involved in the antitumor effect of let-7c in HCC. The expression levels of let-7c in HCC cell lines were examined by quantitative real-time PCR, and a let-7c agomir was transfected into HCC cells to overexpress let-7c. The effects of let-7c on HCC proliferation, apoptosis and cell cycle were analyzed. The in vivo tumor-inhibitory efficacy of let-7c was evaluated in a xenograft mouse model of HCC. Luciferase reporter assays and western blotting were conducted to identify the targets of let-7c and to determine the effects of let-7c on CDC25A, CyclinD1, CDK6, pRb and E2F2 expression. The results showed that the expression levels of let-7c were significantly decreased in HCC cell lines. Overexpression of let-7c repressed cell growth, induced cell apoptosis, led to G1 cell cycle arrest in vitro, and suppressed tumor growth in a HepG2 xenograft model in vivo. The luciferase reporter assay showed that CDC25A was a direct target of let-7c, and that let-7c inhibited the expression of CDC25A protein by directly targeting its 3ʹ UTR. Restoration of CDC25A induced a let-7c-mediated G1-to-S phase transition. Western blot analysis demonstrated that overexpression of let-7c decreased CyclinD1, CDK6, pRb and E2F2 protein levels. In conclusion, this study indicates that let-7c suppresses HCC progression, possibly by directly targeting the cell cycle regulator CDC25A and indirectly affecting its downstream target molecules. Let-7c may therefore be an effective therapeutic target for HCC. PMID:25909324

  7. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.

    PubMed

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2008-08-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.

  8. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation

    PubMed Central

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2009-01-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267

  9. [Proliferation and morphological differentiation of neurblastoma cells in cultured under the effect of avermectins].

    PubMed

    Miakisheva, S N; Kostenko, M A; Driniaev, V A; Mosin, V A

    2001-01-01

    The effect of natural avermectin complex (Aversectin C) and Abamectin on the processes of proliferation and morphological differentiation of the neural cells was studied using N1E-115 murine neuroblastoma cells (clone C-1300) as a model. Aversectin C in concentrations 10(-7)-10(-8) was shown to induce morphological differentiation of cultured nervous cells. Treatment with Abamectin resulted in the changes of proliferation pattern of the cells. Morphological differentiation of the cultured nervous cells treated with Aversectin C was associated with electrophysiological one.

  10. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duursen, Majorie B.M. van, E-mail: M.vanDuursen@uu.nl; Smeets, Evelien E.J.W.; Rijk, Jeroen C.W.

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinomamore » H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co

  11. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis.

    PubMed

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2-5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer.

  12. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    PubMed Central

    Fujii, Hodaka

    2007-01-01

    Binding of IL-2 to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2R-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. However, Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling. PMID:17266928

  13. Expression of a Novel RNA-Splicing Factor, RA301/Tra2β, in Vascular Lesions and Its Role in Smooth Muscle Cell Proliferation

    PubMed Central

    Tsukamoto, Yoshitane; Matsuo, Noriyuki; Ozawa, Kentaro; Hori, Osamu; Higashi, Toshio; Nishizaki, Junya; Tohnai, Norimitsu; Nagata, Izumi; Kawano, Kiyoshi; Yutani, Chikao; Hirota, Seiichi; Kitamura, Yukihiko; Stern, David M.; Ogawa, Satoshi

    2001-01-01

    RA301/Tra2β, a sequence-specific RNA-binding protein, was first cloned as a stress molecule in re-oxygenated astrocytes. In human vascular tissues, we have found enhanced RA301/Tra2β expression in coronary artery with intimal thickening, and atherosclerotic aorta. Balloon injury to the rat carotid artery induced RA301/Tra2β transcripts followed by expression of the antigen, which was detected in medial and neointimal vascular smooth muscle cells (VSMCs). In cultured VSMCs, hypoxia/re-oxygenation caused induction of RA301/Tra2β and was accompanied by cell proliferation, both of which were blocked by the addition of either diphenyl iodonium, a NADPH oxidase inhibitor, PD98059, a mitogen-activated protein kinase kinase inhibitor, or antisense oligonucleotide for RA301/Tra2β. Consistent with a link between RA301/Tra2β and cell proliferation, platelet-derived growth factor also induced expression of RA301/Tra2β in cultured VSMCs. These data suggest a possible role for RA301/Tra2β in the regulation of VSMC proliferation, especially in the setting of hypoxia/re-oxygenation-induced cell stress. PMID:11337366

  14. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    PubMed

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy.

  15. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ping, E-mail: fanpinggoodluck@163.com; He, Lan; Pu, Dan

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertolimore » cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  16. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    PubMed

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (<40%) expressed it on the cell surface. In this latter subset of cells, most (>75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  17. [Ursodeoxycholic acid induced apoptosis of human hepatoma cells HepG2 and SMMC-7721 bymitochondrial-mediated pathway].

    PubMed

    Wu, Duan; Zhou, Jianyin; Yin, Zhenyu; Liu, Pingguo; Zhao, Yilin; Liu, Jianming; Wang, Xiaomin

    2014-12-02

    To explore the effects and underlying mechanisms of ursodeoxycholic acid on human hepatoma cells. HepG2 and SMMC-7721 HCC cell lines were respectively treated with ursodeoxycholic acid. And cell proliferation, apoptosis and the expression of Bax/Bcl-2 gene were detected by methyl thiazolyl tetrazolium (MTT), inverted microscopy, fluorescent microscopy, flow cytometry and Western blot. Ursodeoxycholic acid significantly inhibited the proliferation of human hepatoma cells in a concentration- and time-dependent manner. The half maximal inhibitory concentrations (IC50) of HepG2 and SMMC-7721 were 397.3 and 387.7 µg/ml respectively after a 48-hour treatment of 400 µg /ml ursodeoxycholic acid. And it also induced the apoptosis of HepG2 and SMMC-7721 cells, up-regulated Bax gene and down-regulated Bcl-2 gene. Ursodeoxycholic acid inhibits the proliferation of hepatoma cells and induce apoptosis by mitochondrial-mediated pathway.

  18. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    PubMed

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  19. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancermore » cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through

  20. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene.

    PubMed

    Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2017-03-01

    2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC 50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017. © 2016 Wiley Periodicals, Inc.

  1. [Promoting effect of cyclin D1 overexpression on proliferation and epithelial mesenchymal transition of cervical squamous cell carcinoma SiHa cells].

    PubMed

    Wang, P; Liu, S; Cheng, B; Wu, X Z; Ding, S S; Xu, L; Liu, Y; Duan, L; Sun, S Z

    2017-03-08

    Objective: To study effects of cyclin D1 overexpression on the proliferation and differentiation of cervical squamous cell carcinoma SiHa cells and to investigate related signaling molecules. Methods: Primers were designed to amplify the full length of cyclin D1 gene and cyclin D1 gene was amplified by PCR for constructing pcDNA3.1 plasmid vector. The construct was then transfected into SiHa cells, and the cells with stable overexpression of cyclin D1 were established, cyclin D1 gene and protein expression were detected by RT-PCR and Western blot, respectively. Cell growth curve was documented by MTT assay. CK7, E-cadherin, vimentin, Snail gene and protein expression in transfected cells were detected by RT-PCR and Western blot. RT-PCR was used to detect the mRNA expression of proliferation and differentiation-related genes like CDK4, CDK2, p21, p27, cyclin E, Rb, E2F, E6/E7 and Ki-67. After synchronization of cells, RT-PCR was used to detect of cyclin D1 and p21 mRNA expression at different time points of the cell cycle. Results: The G-3 cells with cyclin D1 overexpression were successfully established. The growth curve and Ki-67 mRNA expression accelerated in G-3 cells.Vimentin and Snail expression significantly increased at both gene and protein levels, while E-cadherin, CK7 gene and protein expression significantly decreased, indicating epithelial mesenchymal transitionoccurred in G-3 cells.Meanwhile, mRNA expression of cyclin D1, CDK4, CDK2, p21, p27, cyclin E, E2F and Rb increased, while E6/E7 and p16 showed no significant change. The expression trends of p21 and cyclin D1 were almost identical with fluctuation at different time points in the cell cycle. Conclusions: Overexpression of cyclin D1 induced by gene transfection promotes proliferation and epithelial mesenchymal transition in SiHa cells.The process is accompanied by up-regulation of CDK4, CDK2, p21, p27 and cyclin E genes.p21 expression increases synchronously with cyclin D1, suggesting a regulatory

  2. miR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2.

    PubMed

    Xin, Jia-Xuan; Yue, Zhen; Zhang, Shuai; Jiang, Zhong-Hua; Wang, Ping-Yu; Li, You-Jie; Pang, Min; Xie, Shu-Yang

    2013-10-01

    MicroRNAs (miRNAs) have significant roles in cell processes, including proliferation, apoptosis and stress responses. To investigate the involvement of miR-99 in the inhibition of HeLa cell proliferation, an miR-99 gene expression vector (pU6.1/miR-99), which overexpressed miR-99 in HeLa cells after transient transfection, was constructed. The expression of miR-99 was detected by qPCR. Cell proliferation and apoptosis were analyzed by cell viability, proliferation and apoptosis assays, as well as by electron microscopy. The results showed that overexpression of miR-99 in HeLa cells increased the HeLa cell mortality rate. Moreover, miR-99 overexpression was able to markedly inhibit HeLa cell proliferation according to the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell apoptosis rate was significantly higher in pU6.1/miR-99-treated cells compared with that in the control cultures. Increases in intracellular electron density, as well as the proportion of nuclear plasma, blebbing phenomena and apoptotic bodies were observed in pU6.1/miR-99-treated cells compared with control cultures according to electron microscopy analysis. The Tribbles 2 (TRIB2) 3'-untranslated region was also observed to be targeted by miR-99 and the results further demonstrated that miR-99 was able to negatively regulate TRIB2 expression in HeLa cells The results indicate that miR-99 acts as a tumor suppressor gene in HeLa cells, establishing a theoretical basis for its application in cancer therapeutics.

  3. miR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2

    PubMed Central

    XIN, JIA-XUAN; YUE, ZHEN; ZHANG, SHUAI; JIANG, ZHONG-HUA; WANG, PING-YU; LI, YOU-JIE; PANG, MIN; XIE, SHU-YANG

    2013-01-01

    MicroRNAs (miRNAs) have significant roles in cell processes, including proliferation, apoptosis and stress responses. To investigate the involvement of miR-99 in the inhibition of HeLa cell proliferation, an miR-99 gene expression vector (pU6.1/miR-99), which overexpressed miR-99 in HeLa cells after transient transfection, was constructed. The expression of miR-99 was detected by qPCR. Cell proliferation and apoptosis were analyzed by cell viability, proliferation and apoptosis assays, as well as by electron microscopy. The results showed that overexpression of miR-99 in HeLa cells increased the HeLa cell mortality rate. Moreover, miR-99 overexpression was able to markedly inhibit HeLa cell proliferation according to the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell apoptosis rate was significantly higher in pU6.1/miR-99-treated cells compared with that in the control cultures. Increases in intracellular electron density, as well as the proportion of nuclear plasma, blebbing phenomena and apoptotic bodies were observed in pU6.1/miR-99-treated cells compared with control cultures according to electron microscopy analysis. The Tribbles 2 (TRIB2) 3′-untranslated region was also observed to be targeted by miR-99 and the results further demonstrated that miR-99 was able to negatively regulate TRIB2 expression in HeLa cells The results indicate that miR-99 acts as a tumor suppressor gene in HeLa cells, establishing a theoretical basis for its application in cancer therapeutics. PMID:24137458

  4. Wogonin induces apoptosis by suppressing E6 and E7 expressions and activating intrinsic signaling pathways in HPV-16 cervical cancer cells.

    PubMed

    Kim, Man Sub; Bak, Yesol; Park, Yun Sun; Lee, Dong Hun; Kim, Jung Hee; Kang, Jeong Woo; Song, Hyuk-Hwan; Oh, Sei-Ryang; Yoon, Do Young

    2013-08-01

    Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells.

  5. Advanced glycation end products promote ChREBP expression and cell proliferation in liver cancer cells by increasing reactive oxygen species.

    PubMed

    Chen, Hanbei; Li, Yakui; Zhu, Yemin; Wu, Lifang; Meng, Jian; Lin, Ning; Yang, Dianqiang; Li, Minle; Ding, WenJin; Tong, Xuemei; Su, Qing

    2017-08-01

    The aim of the study was to elucidate the mechanism by which advanced glycation end products (AGEs) promote cell proliferation in liver cancer cells.We treated liver cancer HepG2 cells with 200 mg/L AGEs or bovine serum albumin (BSA) and assayed for cell viability, cell cycle, and apoptosis. We performed real-time PCR and Western blot analysis for RNA and protein levels of carbohydrate responsive element-binding protein (ChREBP) in AGEs- or BSA-treated HepG2 cells. We analyzed the level of reactive oxygen species (ROS) in HepG2 cells treated with AGEs or BSA.We found that increased S-phase cell percentage and decreased apoptosis contributed to AGEs-induced liver cancer cell proliferation. Real-time PCR and Western blot analysis showed that AGEs stimulated RNA and protein levels of ChREBP, a transcription factor promoting glycolysis and maintaining cell proliferation in liver cancer cells. Intriguingly, the level of ROS was higher in AGEs-treated liver cancer cells. Treating liver cancer cells with antioxidant N-acetyl cystein (NAC) partly blocked AGEs-induced ChREBP expression and cell proliferation.Our results suggest that the AGEs-ROS-ChREBP pathway plays a critical role in promoting ChREBP expression and liver cancer cell proliferation.

  6. CDC2 Mediates Progestin Initiated Endometrial Stromal Cell Proliferation: A PR Signaling to Gene Expression Independently of Its Binding to Chromatin

    PubMed Central

    Vallejo, Griselda; Mestre-Citrinovitz, Ana C.; Ballaré, Cecilia; Beato, Miguel; Saragüeta, Patricia

    2014-01-01

    Although non-genomic steroid receptor pathways have been studied over the past decade, little is known about the direct gene expression changes that take place as a consequence of their activation. Progesterone controls proliferation of rat endometrial stromal cells during the peri-implantation phase of pregnancy. We showed that picomolar concentration of progestin R5020 mimics this control in UIII endometrial stromal cells via ERK1-2 and AKT activation mediated by interaction of Progesterone Receptor (PR) with Estrogen Receptor beta (ERb) and without transcriptional activity of endogenous PR and ER. Here we identify early downstream targets of cytoplasmic PR signaling and their possible role in endometrial stromal cell proliferation. Microarray analysis of global gene expression changes in UIII cells treated for 45 min with progestin identified 97 up- and 341 down-regulated genes. The most over-represented molecular functions were transcription factors and regulatory factors associated with cell proliferation and cell cycle, a large fraction of which were repressors down-regulated by hormone. Further analysis verified that progestins regulate Ccnd1, JunD, Usf1, Gfi1, Cyr61, and Cdkn1b through PR-mediated activation of ligand-free ER, ERK1-2 or AKT, in the absence of genomic PR binding. ChIP experiments show that progestin promoted the interaction of USF1 with the proximal promoter of the Cdc2 gene. Usf1 knockdown abolished Cdc2 progestin-dependent transcriptional regulation and cell proliferation, which also blocked Cdc2 knockdown. We conclude that progestin-induced proliferation of endometrial stromal cells is mediated by ERK1-2 and AKT dependent early regulation of USF1, which directly induces Cdc2. To our knowledge, this is the first description of early target genes of progestin-activated classical PR via crosstalk with protein kinases and independently of hormone receptor binding to the genomic targets. PMID:24859236

  7. Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer

    PubMed Central

    Fang, Yifeng; Yu, Hong; Liang, Xiao; Xu, Junfen; Cai, Xiujun

    2014-01-01

    The high morbidity and mortality of colorectal cancer pose a significant public health problem worldwide. Here we assessed the pro-cancer efficacy and mechanism of action of CCNB1 in different colorectal cancer cells. We provided evidence that CCNB1 mRNA and protein level were upregulated in a subset of human colorectal tumors, and positively correlated with Chk1 expression. Repression of Chk1 caused a significant decrease in cell proliferation and CCNB1 protein expression in colorectal cancer cells. Furthermore, downregulation of CCNB1 impaired colorectal cancer proliferation in vitro and tumor growth in vivo. Specifically, suppression of CCNB1 caused a strong G2/M phase arrest in both HCT116 and SW480 cells, interfering with the expression of cdc25c and CDK1. Additionally, CCNB1 inhibition induced apoptotic death in certain colorectal cancer cells. Together, these results suggest that CCNB1 is activated by Chk1, exerts its oncogenic role in colorectal cancer cells, and may play a key role in the development of a novel therapeutic approach against colorectal cancer. PMID:24971465

  8. Aldosterone Promotes Cardiac Endothelial Cell Proliferation In Vivo

    PubMed Central

    Gravez, Basile; Tarjus, Antoine; Pelloux, Véronique; Ouvrard‐Pascaud, Antoine; Delcayre, Claude; Samuel, Janelise; Clément, Karine; Farman, Nicolette; Jaisser, Fréderic; Messaoudi, Smail

    2015-01-01

    Background Experimentally, aldosterone in association with NaCl induces cardiac fibrosis, oxidative stress, and inflammation through mineralocorticoid receptor activation; however, the biological processes regulated by aldosterone alone in the heart remain to be identified. Methods and Results Mice were treated for 7 days with aldosterone, and then cardiac transcriptome was analyzed. Aldosterone regulated 60 transcripts (51 upregulated and 9 downregulated) in the heart (fold change ≥1.5, false discovery rate <0.01). To identify the biological processes modulated by aldosterone, a gene ontology analysis was performed. The majority of aldosterone‐regulated genes were involved in cell division. The cardiac Ki‐67 index (an index of proliferation) of aldosterone‐treated mice was higher than that of nontreated mice, confirming microarray predictions. Costaining of Ki‐67 with vinculin, CD68, α‐smooth muscle actin, CD31, or caveolin 1 revealed that the cycling cells were essentially endothelial cells. Aldosterone‐induced mineralocorticoid receptor–dependent proliferation was confirmed ex vivo in human endothelial cells. Moreover, pharmacological‐specific blockade of mineralocorticoid receptor by eplerenone inhibited endothelial cell proliferation in a preclinical model of heart failure (transverse aortic constriction). Conclusions Aldosterone modulates cardiac gene expression and induces the proliferation of cardiac endothelial cells in vivo. PMID:25564371

  9. The AhR is involved in the regulation of LoVo cell proliferation through cell cycle-associated proteins.

    PubMed

    Yin, Jiuheng; Sheng, Baifa; Han, Bin; Pu, Aimin; Yang, Kunqiu; Li, Ping; Wang, Qimeng; Xiao, Weidong; Yang, Hua

    2016-05-01

    Some ingredients in foods can activate the aryl hydrocarbon receptor (AhR) and arrest cell proliferation. In this study, we hypothesized that 6-formylindolo [3, 2-b] carbazole (FICZ) arrests the cell cycle in LoVo cells (a colon cancer line) through the AhR. The AhR agonist FICZ and the AhR antagonist CH223191 were used to treat LoVo cells. Real-time PCR and Western blot analyses were performed to detect the expression of the AhR, CYP1A1, CDK4, cyclinD1, cyclin E, CDK2, P27, and pRb. The distribution and activation of the AhR were detected with immunofluorescence. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometric analysis were performed to measure cell viability, cell cycle stage, and apoptosis. Our results show that FICZ inhibited LoVo cell proliferation by inducing G1 cell cycle arrest but had no effect on epithelial apoptosis. Further analysis found that FICZ downregulated cyclinD1 and upregulated p27 expression to arrest Rb phosphorylation. The downregulation of cyclinD1 and upregulation of p27 were abolished by co-treatment with CH223191. We conclude that the AhR, when activated by FICZ (an endogenous AhR ligand), can arrest the cell cycle and block LoVo cell proliferation. © 2016 International Federation for Cell Biology.

  10. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage

    PubMed Central

    Yang, Bei; Fu, Jingqi; Zheng, Hongzhi; Xue, Peng; Yarborough, Kathy; Woods, Courtney G; Hou, Yongyong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2012-01-01

    Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of Type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs3+) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs3+ exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs3+ and monomethylarsonous acid (MMA3+)-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs3+-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N-acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs3+. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure. PMID:23000044

  11. Gonadotropin-releasing hormone (GnRH) agonist triptorelin inhibits estradiol-induced serum response element (SRE) activation and c-fos expression in human endometrial, ovarian and breast cancer cells.

    PubMed

    Gründker, Carsten; Günthert, Andreas R; Hellriegel, Martin; Emons, Günter

    2004-11-01

    The majority of human endometrial (>80%), ovarian (>80%) and breast (>50%) cancers express GnRH receptors. Their spontaneous and epidermal growth-factor-induced proliferation is dose- and time-dependently reduced by treatment with GnRH and its agonists. In this study, we demonstrate that the GnRH agonist triptorelin inhibits estradiol (E2)-induced cancer cell proliferation. The proliferation of quiescent estrogen receptor alpha (ER alpha)-/ER beta-positive, but not of ER alpha-negative/ER beta-positive endometrial, ovarian and breast cancer cell lines, was significantly stimulated (P<0.001) (ANOVA) after treatment with E2 (10(-8) M). This effect was time- and dose-dependently antagonized by simultaneous treatment with triptorelin. The inhibitory effect was maximal at 10(-5) M concentration of triptorelin (P<0.001). In addition, we could show that, in ER alpha-/ER beta-positive cell lines, E2 induces activation of serum response element (SRE) and expression of the immediate early-response gene c-fos. These effects were blocked by triptorelin (P<0.001). E2-induced activation of estrogen-response element (ERE) was not affected by triptorelin. The transcriptional activation of SRE by E2 is due to ER alpha activation of the mitogen-activated protein kinase (MAPK) pathway. This pathway is impeded by GnRH, resulting in a reduction of E2-induced SRE activation and, in consequence, a reduction of E2-induced c-fos expression. This causes downregulation of E2-induced cancer cell proliferation.

  12. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruoxing; Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remainsmore » unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  13. An antigen receptor-driven, interleukin 2-independent pathway for proliferation of murine cytolytic T lymphocyte clones

    PubMed Central

    1986-01-01

    Proliferation of T lymphocytes can be induced by IL-2, either through an autocrine pathway in which the responding cell produces its own IL-2 or through an exocrine pathway in which IL-2 secreted by Th stimulates proliferation of IL-2-dependent CTL. However, proliferation of at least some CTL clones, such as CTL L3 and CTL dB45, also can be induced by stimulation of the antigen receptor in the absence of IL-2. Stimulation of these cloned CTL with T cell-depleted allogeneic spleen cells, allogeneic tumor cells, or immobilized mAb reactive with the T cell antigen receptor (TCR) induced thymidine incorporation, entry into cell cycle, and secretion of macrophage activating factor, but these stimuli did not induce the secretion of IL-2. Several observations indicated that such proliferation of cloned CTL induced by stimulation of the TCR was independent of IL-2; IL-2 could not be detected in supernatants from stimulated CTL cells. mAbs reactive with the murine IL-2-R efficiently blocked IL-2-mediated thymidine incorporation in cloned CTL and Th, but had no inhibitory effect on TCR-driven thymidine incorporation in the CTL clones. TCR-driven thymidine incorporation in cloned Th L2 cells was profoundly inhibited by these antibodies, indicating the operation of an IL-2-mediated autocrine pathway for proliferation in this cloned Th. When antibodies to the TCR were used to stimulate cloned CTL and Th, IFN-gamma mRNA was easily shown in the cloned CTL and Th. Although IL-2 mRNA could be detected in the cloned Th, it was never observed in the cloned CTL. These findings provide evidence for the existence of a TCR-mediated, IL-2-independent pathway for induction of cellular proliferation in cloned murine CTL. PMID:3486939

  14. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    PubMed

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.

  15. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation

    PubMed Central

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11–16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18–22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9–13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  16. Ligand activation of peroxisome proliferator-activated receptor-beta/delta inhibits cell proliferation in human HaCaT keratinocytes.

    PubMed

    Borland, Michael G; Foreman, Jennifer E; Girroir, Elizabeth E; Zolfaghari, Reza; Sharma, Arun K; Amin, Shantu; Gonzalez, Frank J; Ross, A Catharine; Peters, Jeffrey M

    2008-11-01

    Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-beta/delta induces terminal differentiation and attenuates cell growth, some studies suggest that PPARbeta/delta actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARbeta/delta and potentiates cell proliferation by activating PPARbeta/delta. The present study examined the effect of ligand activation of PPARbeta/delta on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARbeta/delta ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARbeta/delta ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARbeta/delta target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARbeta/delta-null primary mouse keratinocytes to determine the specific role of PPARbeta/delta in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARbeta/delta-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARbeta/delta inhibits keratinocyte proliferation through PPARbeta/delta-dependent mechanisms. In contrast, the observed inhibition of

  17. VNN3, a potential novel biomarker for benzene toxicity, is involved in 1, 4-benzoquinone induced cell proliferation.

    PubMed

    Sun, Pengling; Guo, Xiaoli; Chen, Yujiao; Zhang, Wei; Duan, Huawei; Gao, Ai

    2018-02-01

    Benzene is widely employed in the field of production, and its toxicity on biological systems has received increasing attention. Cell proliferation is a major life characteristic of living organisms. KLF15 and NOTCH1 are mature and classical genes in cell proliferation studies, particularly in the area of tumor investigation. The aim of this study was to investigate the effect and mechanism of VNN3 on cell proliferation induced by 1,4-benzoquinone (1,4-BQ), an important metabolite of benzene, and obtain a sensitive biomarker for the hazard screening and health care of benzene exposure. Normally growing AHH-1 cells were cultured in vitro and were incubated with different concentrations of 1,4-BQ (0, 10, 20, and 40 μM) for 24 h. A CCK-8 assay was used to assess the cell viability, whereas EdU was used to detect the cell proliferation of AHH-1 cells. The expression of VNN3, KLF15 and NOTCH1 was detected by real-time PCR. Moreover, a lentiviral model was constructed in AHH-1 cells to interfere with VNN3 expression. The results showed that 1,4-BQ clearly increased the expression of VNN3. Moreover, 1,4-BQ dose-dependently inhibited cell proliferation and caused increased KLF15 expression; in contrast, the NOTCH1 expression decreased in AHH-1 cells. Furthermore, following interference with the VNN3 expression, the cell proliferation inhibition and the expression of KLF15 and NOTCH1 were rescued. To further investigate the action of VNN3 in benzene hematotoxicity, we assessed it in benzene-exposed workers. The results showed that there was a remarkable correlation between the VNN3 expression and hemogram, which included RBC, NEUT and HGB. In addition, analysis of the KLF15 and NOTCH1 expression showed that the VNN3 expression was related to cell proliferation, which was consistent with the in vitro results. In conclusion, VNN3 influences cell proliferation induced by 1,4-BQ by regulating the expression of KLF15 and NOTCH1. VNN3 may represent a potential biomarker

  18. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development.

    PubMed

    Zhang, Jinglin; Upadhya, Dinesh; Lu, Lin; Reneker, Lixing W

    2015-01-01

    Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.

  19. miR-137 inhibits the proliferation of human non-small cell lung cancer cells by targeting SRC3

    PubMed Central

    Chen, Ruilin; Zhang, Yongqing; Zhang, Chengcheng; Wu, Hua; Yang, Shumei

    2017-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The results of the present study demonstrate that high expression of microRNA (miR)-137 and low expression of steroid receptor coactivator-3 (SRC3) had a significant negative correlation in 40 NSCLC tissue samples. In addition, cell colony formation and proliferation was significantly reduced in miR-137-transfected A549 and NCI-H838 cells compared with scramble-transfected NSCLC cell lines. miR-137 was identified to induce G1/S cell cycle arrest and dysregulate the mRNA expression of cell cycle-associated proteins (proliferating cell nuclear antigen, cyclin E, cyclin A1, cyclin A2 and p21) in NSCLC cells. Notably, miR-137 could significantly suppress SRC3 3′ untranslated region (UTR) luciferase-reporter activity, an effect that was not detectable when the putative 3′-UTR target-site was mutated, further clarifying the molecular mechanisms underlying the role of miR-137 in NSCLC. In conclusion, the results of the present study suggest that miR-137 suppresses NSCLC cell proliferation by partially targeting SRC3. PMID:28521488

  20. ROS-dependent Atg4 upregulation mediated autophagy plays an important role in Cd-induced proliferation and invasion in A549 cells.

    PubMed

    Lv, Wei; Sui, Linlin; Yan, Xiaona; Xie, Huaying; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Kong, Ying; Cao, Jun

    2018-01-05

    Cadmium (Cd) is a toxic heavy metal that is widely used in industry and agriculture. In this study the role of autophagy in Cd-induced proliferation, migration and invasion was investigated in A549 cells. Exposure to Cd (2 μM) significantly increased reactive oxygen species (ROS) production, induced autophagy and enhanced cell growth, migration and invasion in A549 cells. Western blot analysis showed that the expression of autophagy-related proteins, LC3-II, Beclin-1 and Atg4 and invasion-related protein MMP-9 were upregulated in Cd-treated cells. N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of A549 cells and the increasing protein level of LC3-II and Atg4. Blocking Atg4 expression by siRNA strongly reduced Beclin-1 and LC3-II protein expression and the number of autophagosome positive cells induced by Cd. Furthermore, Atg4 siRNA increased the number of cells at G0/G1 phase, reduced the number of S and G2/M phase cells, and inhibited Cd-induced cell growth significantly compared with that of Cd-treated Control siRNA cells. 3-MA pretreatment increased the percentage of G0/G1 phase cells, decreased S phase and G2/M phase percentage, and inhibited Cd-induced cell growth remarkably compared with that of only Cd-treated cells. Knocking down Atg4 reduced the number of cells that migrated and invaded through the Matrigel matrix significantly and led to a significant decrease of MMP-9 expression. In addition, in lung tissues of Cd-treated BALB/c mice, the increased expression of LC3-II, Beclin-1 and Atg4 were observed. Taken together, our results demonstrated that ROS-dependent Atg4-mediated autophagy plays an important role in Cd-induced cell growth, migration and invasion in A549 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Kaori; Taketomi, Takaharu, E-mail: taketomi@dent.kyushu-u.ac.jp; Yoshizaki, Keigo

    2011-01-28

    Research highlights: {yields} Sprouty2-deficient mice exhibit cleft palate as a result of failure of palatal shelf elevation. {yields} We examined palate cell proliferation in Sprouty2-deficient mice. {yields} Palate mesenchymal cell proliferation was increased in Sprouty2 KO mice. {yields} Sprouty2 plays roles in murine palatogenesis by regulating cell proliferation. -- Abstract: Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, wemore » report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.« less

  2. Binding of galectin-1 to breast cancer cells MCF7 induces apoptosis and inhibition of proliferation in vitro in a 2D- and 3D- cell culture model.

    PubMed

    Geiger, Pamina; Mayer, Barbara; Wiest, Irmi; Schulze, Sandra; Jeschke, Udo; Weissenbacher, Tobias

    2016-11-08

    Galectin-1 (gal-1) belongs to the family of β-galactoside-binding proteins which primarily recognizes the Galβ1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. The lectin recognizes correspondent glycoepitopes on human breast cancer cells. Galectin-1 is expressed both in normal and malignant tissues. Lymphatic organs naturally possessing high rates of apoptotic cells, express high levels of Galectin-1. Furthermore galectin-1 can initiate T cell apoptosis. Binding of galectin-1 to trophoblast tumor cells presenting the oncofetal Thomsen-Friedenreich (TF) carbohydrate antigen inhibits tumor cell proliferation. In this study we examined the impact galectin-1 has in vitro on cell proliferation, apoptotic potential and metabolic activity of MCF-7 and T-47D breast cancer cells in dependence to their expression of the Thomsen-Friedenreich (TF) tumor antigen. For proliferation and apoptosis assays cells were grown in presence of 10, 30 and 60 μg gal-1/ml medium. Cell proliferation was determined by a BrdU uptake ELISA. Detection of apoptotic cells was done by M30 cyto death staining, in situ nick translation and by a nucleosome ELISA method. Furthermore we studied the impact galectin-1 has on the metabolic activity of MCF-7 and T-47D cells in a homotypic three-dimensional spheroid cell culture model mimicking a micro tumour environment. Gal-1 inhibited proliferation of MCF-7 cells (strong expression of the TF epitope) but did not significantly change proliferation of T-47D cells (weak expression of the TF epitope). The incubation of MCF-7 cells with gal-1 raised number of apoptotic cells significantly. Treating the spheroids with 30 μg/ml galectin-1 in addition to standard chemotherapeutic regimes (FEC, TAC) resulted in further suppression of the metabolic activity in MCF-7 cells whereas T-47D cells were not affected. Our results demonstrate that galectin-1 can inhibit proliferation und metabolic cell activity and induce

  3. Sulforaphane inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of MMPs, COX-2, and PGE2.

    PubMed

    Choi, Yun Jung; Lee, Won-Seok; Lee, Eun-Gyeong; Sung, Myung-Soon; Yoo, Wan-Hee

    2014-10-01

    This study was performed to define the effects of sulforaphane on interleukin-1β (IL-1β)-induced proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), the expression of matrix metalloproteinases (MMPs) and cyclooxygenase (COX), and the production of prostaglandin E2 (PGE2) by RASFs. The proliferation of RASFs was evaluated with CCK-8 reagent in the presence of IL-1β with/without sulforaphane. The expression of MMPs, tissue inhibitor of metalloproteinase-1, COXs, intracellular mitogen-activated protein kinase signalings, including p-ERK, p-p38, p-JNK, and nuclear factor-kappaB (NF-kB), and the production of PGE2 were examined by Western blotting or semi-quantitative RT-PCR and ELISA. Sulforaphane inhibits unstimulated and IL-1β-induced proliferation of RASFs; the expression of MMP-1, MMP-3, and COX-2 mRNA and protein; and the PGE2 production induced by IL-1β. Sulforaphane also inhibits the phosphorylation of ERK-1/2, p-38, and JNK and activation of NF-kB by IL-1β. These results indicate that sulforaphane inhibits the proliferation of synovial fibroblasts, the expression of MMPs and COX-2, and the production of PGE2, which are involved in synovitis and destruction of RA, and suggest that sulforaphane might be a new therapeutic agent for RA.

  4. Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woo Ho; Lee, Sun Hee; Jung, Myung Hwan

    2009-08-01

    The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression ismore » significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.« less

  5. A damaged DNA binding protein 2 mutation disrupting interaction with proliferating-cell nuclear antigen affects DNA repair and confers proliferation advantage.

    PubMed

    Perucca, Paola; Mocchi, Roberto; Guardamagna, Isabella; Bassi, Elisabetta; Sommatis, Sabrina; Nardo, Tiziana; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella

    2018-06-01

    In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2 Wt and DDB2 PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2 PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Tamoxifen synergizes with 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1,2-diol} and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, novel azaresveratrol analogs, in inhibiting the proliferation of breast cancer cells

    PubMed Central

    Ronghe, Amruta; Chatterjee, Anwesha; Bhat, Nimee K.; Padhye, Subhash; Bhat, Hari K.

    2016-01-01

    We have recently shown that 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1,2-diol} (HPIMBD) and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), novel analogs of resveratrol (Res), selectively inhibited the proliferation of breast cancer cells. In the current study, we tested HPIMBD and TIMBD individually in combination with tamoxifen (Tam) for inhibition of growth of breast cancer cells. Tamoxifen was first tested on non-neoplastic breast epithelial cell lines and its dose that does not inhibit their growth was determined. A combination of this low dose of Tam with either of the Res analogs HPIMBD or TIMBD, resulted in synergistic inhibition of proliferation of breast cancer cells. Both estrogen receptor (ER)-positive and negative breast cancer cell lines responded to the combination. The combination resulted in a substantial decrease in IC50 values of Res analogs in all breast cancer cell lines tested. Mechanistic studies showed a synergistic increase in apoptosis and autophagy genes (beclin-1 and LC3BII/I) with the combination in ER-negative MDA-MB-231 cells. In ER-positive MCF-7 and T47D cells, the mechanism of synergy was found to be inhibition of expression of ERα and oncogene c-Myc. The combination treatment had a synergistic effect in inhibiting the colony forming and spheroid forming ability of cancer cells. Taken together, our findings indicate that a combination of Tam and Res analogs HPIMBD or TIMBD represents a novel approach to enhancing the use of Tam in therapy for breast cancers. Considering the urgent need for novel therapeutic strategies to treat ER-negative breast cancers and overcoming resistance in ER-positive cancers, this combinatorial approach is worthy of continued investigation. PMID:27351134

  7. Phloretin Inhibits Platelet-derived Growth Factor-BB-induced Rat Aortic Smooth Muscle Cell Proliferation, Migration, and Neointimal Formation After Carotid Injury.

    PubMed

    Wang, Dong; Wang, Qingjie; Yan, Gaoliang; Qiao, Yong; Tang, Chengchun

    2015-05-01

    Abnormal vascular smooth muscle cell proliferation and migration are key factors in many cardiovascular diseases. Here, we investigated the effects of phloretin on platelet-derived growth factor homodimer (PDGF-BB)-induced rat aortic smooth muscle cell (RASMC) proliferation, migration, and neointimal formation after carotid injury. Phloretin significantly inhibited the PDGF-BB-stimulated RASMC proliferation in a concentration-dependent manner (10-100 μM). Also, PDGF-BB-stimulated RASMC migration was inhibited by phloretin at 50 μM. Pretreating RASMC with phloretin dose-dependently inhibited PDGF-BB-induced Akt and p38 mitogen-activated protein kinases activation. Furthermore, phloretin increased p27 and decreased cyclin-dependent kinase 2, CDK4 expression, and p-Rb activation in PDGF-BB-stimulated RASMC in a concentration-dependent manner (10-50 μM). PDGF-BB-induced cell adhesion molecules and matrix metalloproteinase-9 expression were blocked by phloretin at 50 μM. Preincubation with phloretin dose-dependently reduced the intracellular reactive oxygen species production. In vivo study showed that phloretin (20 mg/kg) significantly reduced neointimal formation 14 days after carotid injury in rats. Thus, phloretin may have potential as a treatment against atherosclerosis and restenosis after vascular injury.

  8. Activation of PKC{beta}{sub II} and PKC{theta} is essential for LDL-induced cell proliferation of human aortic smooth muscle cells via Gi-mediated Erk1/2 activation and Egr-1 upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Kyung-Sun; Department of Pharmacy, Chungnam National University, Yuseong, Daejeon; Kim, Dong-Uk

    Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKC{beta}{sub II} and PKC{theta} from cytosol to plasma membrane, and inhibition of PKC{beta}{sub II} and PKC{theta} decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKC{beta}{sub II} and PKC{theta}, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, andmore » LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKC{beta}{sub II} and PKC{theta}. Inhibition of PKC{beta}{sub II} or PKC{theta}, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKC{theta} in VSMC proliferation is unique.« less

  9. Zinc oxide nanoparticles as selective killers of proliferating cells.

    PubMed

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant.

  10. E2 Proteins from High- and Low-Risk Human Papillomavirus Types Differ in Their Ability To Bind p53 and Induce Apoptotic Cell Death

    PubMed Central

    Parish, Joanna L.; Kowalczyk, Anna; Chen, Hsin-Tien; Roeder, Geraldine E.; Sessions, Richard; Buckle, Malcolm; Gaston, Kevin

    2006-01-01

    The E2 proteins from oncogenic (high-risk) human papillomaviruses (HPVs) can induce apoptotic cell death in both HPV-transformed and non-HPV-transformed cells. Here we show that the E2 proteins from HPV type 6 (HPV6) and HPV11, two nononcogenic (low-risk) HPV types, fail to induce apoptosis. Unlike the high-risk HPV16 E2 protein, these low-risk E2 proteins fail to bind p53 and fail to induce p53-dependent transcription activation. Interestingly, neither the ability of p53 to activate transcription nor the ability of p53 to bind DNA, are required for HPV16 E2-induced apoptosis in non-HPV-transformed cells. However, mutations that reduce the binding of the HPV16 E2 protein to p53 inhibit E2-induced apoptosis in non-HPV-transformed cells. In contrast, the interaction between HPV16 E2 and p53 is not required for this E2 protein to induce apoptosis in HPV-transformed cells. Thus, our data suggest that this high-risk HPV E2 protein induces apoptosis via two pathways. One pathway involves the binding of E2 to p53 and can operate in both HPV-transformed and non-HPV-transformed cells. The second pathway requires the binding of E2 to the viral genome and can only operate in HPV-transformed cells. PMID:16611918

  11. GPER mediates differential effects of estrogen on colon cancer cell proliferation and migration under normoxic and hypoxic conditions

    PubMed Central

    Bustos, Viviana; Nolan, Áine M.; Nijhuis, Anke; Harvey, Harry; Parker, Alexandra; Poulsom, Richard; McBryan, Jean; Thomas, Warren; Silver, Andrew; Harvey, Brian J.

    2017-01-01

    The estrogen receptor ERβ is the predominant ER subtype expressed in normal well-differentiated colonic epithelium. However, ERβ expression is lost under the hypoxic microenvironment as colorectal cancer (CRC) malignancy progresses. This raises questions about the role of signalling through other estrogen receptors such as ERα or G-protein coupled estrogen receptor (GPER, GPR30) by the estrogen 17β-estradiol (E2) under hypoxic conditions after ERβ is lost in CRC progression. We tested the hypothesis that E2 or hypoxia can act via GPER to contribute to the altered phenotype of CRC cells. GPER expression was found to be up-regulated by hypoxia and E2 in a panel of CRC cell lines. The E2-modulated gene, Ataxia telangiectasia mutated (ATM), was repressed in hypoxia via GPER signalling. E2 treatment enhanced hypoxia-induced expression of HIF1-α and VEGFA, but repressed HIF1-α and VEGFA expression under normoxic conditions. The expression and repression of VEGFA by E2 were mediated by a GPER-dependent mechanism. E2 treatment potentiated hypoxia-induced CRC cell migration and proliferation, whereas in normoxia, cell migration and proliferation were suppressed by E2 treatment. The effects of E2 on these cellular responses in normoxia and hypoxia were mediated by GPER. In a cohort of 566 CRC patient tumor samples, GPER expression significantly associated with poor survival in CRC Stages 3-4 females but not in the stage-matched male population. Our findings support a potentially pro-tumorigenic role for E2 in ERβ-negative CRC under hypoxic conditions transduced via GPER and suggest a novel route of therapeutic intervention through GPER antagonism. PMID:29137421

  12. GPER mediates differential effects of estrogen on colon cancer cell proliferation and migration under normoxic and hypoxic conditions.

    PubMed

    Bustos, Viviana; Nolan, Áine M; Nijhuis, Anke; Harvey, Harry; Parker, Alexandra; Poulsom, Richard; McBryan, Jean; Thomas, Warren; Silver, Andrew; Harvey, Brian J

    2017-10-13

    The estrogen receptor ERβ is the predominant ER subtype expressed in normal well-differentiated colonic epithelium. However, ERβ expression is lost under the hypoxic microenvironment as colorectal cancer (CRC) malignancy progresses. This raises questions about the role of signalling through other estrogen receptors such as ERα or G-protein coupled estrogen receptor (GPER, GPR30) by the estrogen 17β-estradiol (E2) under hypoxic conditions after ERβ is lost in CRC progression. We tested the hypothesis that E2 or hypoxia can act via GPER to contribute to the altered phenotype of CRC cells. GPER expression was found to be up-regulated by hypoxia and E2 in a panel of CRC cell lines. The E2-modulated gene, Ataxia telangiectasia mutated ( ATM ), was repressed in hypoxia via GPER signalling. E2 treatment enhanced hypoxia-induced expression of HIF1-α and VEGFA, but repressed HIF1-α and VEGFA expression under normoxic conditions. The expression and repression of VEGFA by E2 were mediated by a GPER-dependent mechanism. E2 treatment potentiated hypoxia-induced CRC cell migration and proliferation, whereas in normoxia, cell migration and proliferation were suppressed by E2 treatment. The effects of E2 on these cellular responses in normoxia and hypoxia were mediated by GPER. In a cohort of 566 CRC patient tumor samples, GPER expression significantly associated with poor survival in CRC Stages 3-4 females but not in the stage-matched male population. Our findings support a potentially pro-tumorigenic role for E2 in ERβ-negative CRC under hypoxic conditions transduced via GPER and suggest a novel route of therapeutic intervention through GPER antagonism.

  13. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping

    Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellularmore » carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.« less

  14. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel - induced cytotoxicity

    PubMed Central

    Qian, David Z.; Rademacher, Brooks L.S.; Pittsenbarger, Janet; Huang, Chung-Ying; Myrthue, Anne; Higano, Celestia S.; Garzotto, Mark; Nelson, Peter S.; Beer, Tomasz M.

    2010-01-01

    Background Metastatic prostate cancer is either inherently resistant to chemotherapy or rapidly acquires this phenotype after chemotherapy exposure. In this study, we identified a docetaxel-induced resistance mechanism centered on CCL2. Methods we compared the gene expression profiles in individual human prostate cancer specimens before and after exposure to chemotherapy collected from previously untreated patients who participated in a clinical trial of preoperative chemotherapy. Subsequently, we used the gain- and loss- of function approach in vitro to identify a potential mechanism underlying chemotherapy resistance. Results Among the molecular signatures associated with treatment, several genes that regulate the inflammatory response and chemokine activity were upregulated including a significant increase in transcripts encoding the CC chemokine CCL2. Docetaxel increased CCL2 expression in prostate cancer cell lines in vitro. CCL2 specific siRNA inhibited LNCaP and LAPC4 cell proliferation and enhanced the growth inhibitory effect of low-dose docetaxel. In contrast, overexpression of CCL2 or recombinant CCL2 protein stimulated prostate cancer cell proliferation and rescued cells from docetaxel-induced cytotoxicity. This protective effect of CCL2 was associated with activation of the ERK/MAP kinase and PI3K/AKT, inhibition of docetaxel-induced Bcl2 phosphorylation at serine 70, phosphorylation of Bad, and activation of caspase-3. The addition of a PI3K/AKT inhibitor Ly294002 reversed the CCL2 protection, and was additive to docetaxel induced toxicity. Conclusion These results support a mechanism of chemotherapy resistance mediated by cellular stress responses involving the induction of CCL2 expression, and suggest that inhibiting CCL2 activity could enhance therapeutic responses to taxane-based therapy. PMID:19866475

  15. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation

    PubMed Central

    Matsunuma, Ryoichi; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I.; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi

    2015-01-01

    Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4DDB2. Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation. PMID:26572825

  16. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hee-Jung; Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do; Chung, Tae-Wook

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressedmore » by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells

  17. Bisphenol A at a low concentration boosts mouse spermatogonial cell proliferation by inducing the G protein-coupled receptor 30 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang

    Bisphenol A (BPA) is one of the most prevalent chemicals in daily-use materials, therefore, human exposure to BPA is ubiquitous. We found that low concentrations of BPA stimulate the spermatogonial GC-1 cells proliferation by G protein-coupled receptor 30 (GPR30)-mediated epidermal growth factor receptor (EGFR)-extracellular regulated kinase (ERK)-c-Fos pathway. However, through the same pathway GPR30 expression has been shown to be induced by EGF, an EGFR ligand. Thus, we want to know if low concentrations of BPA are able to induce the GPR30 expression and the possible mechanism(s) in GC-1 cells. By transient transfection with expression plasmids, 10{sup −9} M BPAmore » significantly transactivates the Gpr30-5′-flanking region through activating the GPR30, cGMP-dependent protein kinase (PKG), estrogen receptor-α (ER-α), and EFGR-ERK pathways. Furthermore, an activator protein-1 (AP-1) site located within this region is found to be responsible for the transactivation of BPA. Expectedly, through the same pathways, BPA significantly induces the gene and protein expression of GPR30. c-Fos is further observed to be strongly recruited to the AP-1 site in a chromatin immunoprecipitation assay and its dysfunction on the AP-1 site markedly suppresses the expression of GPR30, p-ERK1/2, p-Ser118-ER-α and cell proliferation by BPA. Our results demonstrate that a low-concentration BPA induces GPR30 expression through the GPR30-EFGR-ERK-c-Fos, ER-α, and PKG pathways, presumably boosting the cells proliferation via a regulatory loop. The present study provides a novel insight into the potential role of GPR30 in the initiation and progression of male germ cell cancer induced by environmentally relevant BPA. - Highlights: ► Low concentrations of BPA activate the PKG and GPR30-EFGR-ERK-ER-α pathways. ► Low concentrations of BPA activate the AP-1 site of Gpr30-5′-flanking region. ► Low concentrations of BPA induce the expression of GPR30 gene and protein. ► Low

  18. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling.

    PubMed

    Yang, Chao; Li, Changyuan; Li, Minle; Tong, Xuemei; Hu, Xiaowen; Yang, Xuhan; Yan, Xiaomei; He, Lin; Wan, Chunling

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Omega-3 free fatty acids attenuate insulin-promoted breast cancer cell proliferation.

    PubMed

    Guo, Yang; Zhu, Sheng-Long; Wu, Yi-Kuan; He, Zhao; Chen, Yong-Quan

    2017-06-01

    High insulin levels in obese people are considered as a risk factor to induce breast carcinogenesis. And consumption of fish oils which mainly contain omega-3 fatty acids is associated with a reduced risk of breast cancer. However, whether omega-3 free fatty acids (FFAs) modulate insulin signaling pathway to prevent breast cancer is poorly understood. The current study tested the hypothesis that omega-3 FFAs attenuate insulin-induced breast cancer cell proliferation and regulate insulin signaling pathway. We show here that omega-3 FFAs attenuate MCF-7 cell proliferation and Akt and Erk1/2 phosphorylation levels stimulated by insulin. Knockdown Shp2 by siRNA resulted in significantly elevated omega-3 FFAs-activated Akt phosphorylation but failed to change insulin-stimulated Akt and Erk1/2 phosphorylation. And viable cell number was not affected by either downregulation of Shp2 expression or Erk1/2 inhibitor U0126 treatment. These observations indicated that omega-3 FFAs attenuate insulin-promoted breast cancer cell proliferation and insulin-activated Akt phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiuping, E-mail: xpzhou@xzmc.edu.cn; Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu; Key Laboratory of Brain Disease Biology, Affiliated Hospital of Xuzhou Medical College, Jiangsu

    Highlights: Black-Right-Pointing-Pointer The expression levels of Bex2 markedly increased in glioma tissues. Black-Right-Pointing-Pointer Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. Black-Right-Pointing-Pointer Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, whilemore » down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.« less

  1. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    PubMed Central

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  2. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells.

    PubMed

    Wang, Hai-Yan; Yu, Hai-Zhong; Huang, Sheng-Mou; Zheng, Yu-Lan

    2016-10-01

    The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels.

  3. SD-208, a Novel Protein Kinase D Inhibitor, Blocks Prostate Cancer Cell Proliferation and Tumor Growth In Vivo by Inducing G2/M Cell Cycle Arrest

    PubMed Central

    Tandon, Manuj; Salamoun, Joseph M.; Carder, Evan J.; Farber, Elisa; Xu, Shuping; Deng, Fan; Tang, Hua; Wipf, Peter; Wang, Q. Jane

    2015-01-01

    Protein kinase D (PKD) has been implicated in many aspects of tumorigenesis and progression, and is an emerging molecular target for the development of anticancer therapy. Despite recent advancement in the development of potent and selective PKD small molecule inhibitors, the availability of in vivo active PKD inhibitors remains sparse. In this study, we describe the discovery of a novel PKD small molecule inhibitor, SD-208, from a targeted kinase inhibitor library screen, and the synthesis of a series of analogs to probe the structure-activity relationship (SAR) vs. PKD1. SD-208 displayed a narrow SAR profile, was an ATP-competitive pan-PKD inhibitor with low nanomolar potency and was cell active. Targeted inhibition of PKD by SD-208 resulted in potent inhibition of cell proliferation, an effect that could be reversed by overexpressed PKD1 or PKD3. SD-208 also blocked prostate cancer cell survival and invasion, and arrested cells in the G2/M phase of the cell cycle. Mechanistically, SD-208-induced G2/M arrest was accompanied by an increase in levels of p21 in DU145 and PC3 cells as well as elevated phosphorylation of Cdc2 and Cdc25C in DU145 cells. Most importantly, SD-208 given orally for 24 days significantly abrogated the growth of PC3 subcutaneous tumor xenografts in nude mice, which was accompanied by reduced proliferation and increased apoptosis and decreased expression of PKD biomarkers including survivin and Bcl-xL. Our study has identified SD-208 as a novel efficacious PKD small molecule inhibitor, demonstrating the therapeutic potential of targeted inhibition of PKD for prostate cancer treatment. PMID:25747583

  4. 8-C-(E-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation.

    PubMed

    Zhao, Yueliang; Fan, Daming; Zheng, Zong-Ping; Li, Edmund T S; Chen, Feng; Cheng, Ka-Wing; Wang, Mingfu

    2017-02-01

    Quercetin, a flavonoid, widely distributed in edible fruits and vegetables, was reported to effectively inhibit 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) formation in a food model (roast beef patties) with itself being converted into a novel compound 8-C-(E-phenylethenyl)quercetin (8-CEPQ). Here we investigated whether 8-CEPQ could be formed in a real food system, and tested its anticancer activity in human colon cancer cell lines. LC-MS was applied for the determination of 8-CEPQ formation in onion/beef soup. Anticancer activity of 8-CEPQ was evaluated by using cell viability assay and flow cytometry. Results showed that 8-CEPQ suppressed proliferation and caused G 2 phase arrest in colon cancer cells. Based on immunofluorescent staining assay, western blot assay, and RNA knockdown data, we found that 8-CEPQ did not cause apoptotic cell death. Instead, it induced autophagic cell death. Moreover, treatment with 8-CEPQ induced phosphorylation of extracellular signal-regulated kinase (ERK). Inhibition of ERK phosphorylation by the mitogen-activated protein kinase kinase (MEK)/ERK inhibitor U0126 attenuated 8-CEPQ-induced autophagy and reversed 8-CEPQ-mediated cell growth inhibition. Our results demonstrate that 8-CEPQ, a novel quercetin derivative, could be formed in onion/beef soup. 8-CEPQ inhibited colon cancer cell growth by inducing autophagic cell death through ERK activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

    PubMed

    Endo, Yoko; Zhang, Mingjun; Yamaji, Sachie; Cang, Yong

    2012-01-01

    Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.

  6. Valproic acid exhibits different cell growth arrest effect in three HPV-positive/negative cervical cancer cells and possibly via inducing Notch1 cleavage and E6 downregulation.

    PubMed

    Feng, Shuyu; Yang, Yue; Lv, Jingyi; Sun, Lichun; Liu, Mingqiu

    2016-07-01

    We investigated the effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, and the mechanism of VPA-induced growth inhibition on three cervical cancer cell lines with different molecular and genetic background. We found that VPA induced proliferation suppression, cell apoptosis and cell cycle arrest in all tested cell lines, with an increase of Notch1 active form ICN1 as a tumor suppressor and its target gene HES1. Noteworthy, blocking of Notch signaling with DAPT resulted in growth inhibition in ICN1-overexpressing CaSki and HT-3 cells. Thus, endogenous Notch signaling may be necessary for survival of ICN1-overexpressing cervical cancer cell lines. Furthermore, G1 phase arrest was induced in HeLa and CaSki cells by VPA while G2 phase arrest was induced in HT-3 cells, suggesting different mechanism in this cycle arrest. We also found VPA suppressed oncogene E6 in a Notch-independent manner, and induced significant apoptosis in E6-overexpressing HPV positive CaSki cells. Cell morphological change was also observed in HeLa and HT-3 cell lines after VPA treatment with an upregulation of EMT transcription factor Snail1. Notch signaling inhibitor DAPT partly reversed VPA-induced Snail1 upregulation in HeLa cells. This discovery supports that VPA may induce EMT at least partly via Notch activation.

  7. Six2 Plays an Intrinsic Role in Regulating Proliferation of Mesenchymal Cells in the Developing Palate

    PubMed Central

    Okello, Dennis O.; Iyyanar, Paul P. R.; Kulyk, William M.; Smith, Tara M.; Lozanoff, Scott; Ji, Shaoping; Nazarali, Adil J.

    2017-01-01

    Cleft palate is a common congenital abnormality that results from defective secondary palate (SP) formation. The Sine oculis-related homeobox 2 (Six2) gene has been linked to abnormalities of craniofacial and kidney development. Our current study examined, for the first time, the specific role of Six2 in embryonic mouse SP development. Six2 mRNA and protein expression were identified in the palatal shelves from embryonic days (E)12.5 to E15.5, with peak levels during early stages of palatal shelf outgrowth. Immunohistochemical staining (IHC) showed that Six2 protein is abundant throughout the mesenchyme in the oral half of each palatal shelf, whereas there is a pronounced decline in Six2 expression by mesenchyme cells in the nasal half of the palatal shelf by stages E14.5–15.5. An opposite pattern was observed in the surface epithelium of the palatal shelf. Six2 expression was prominent at all stages in the epithelial cell layer located on the nasal side of each palatal shelf but absent from the epithelium located on the oral side of the palatal shelf. Six2 is a putative downstream target of transcription factor Hoxa2 and we previously demonstrated that Hoxa2 plays an intrinsic role in embryonic palate formation. We therefore investigated whether Six2 expression was altered in the developing SP of Hoxa2 null mice. Reverse transcriptase PCR and Western blot analyses revealed that Six2 mRNA and protein levels were upregulated in Hoxa2−/− palatal shelves at stages E12.5–14.5. Moreover, the domain of Six2 protein expression in the palatal mesenchyme of Hoxa2−/− embryos was expanded to include the entire nasal half of the palatal shelf in addition to the oral half. The palatal shelves of Hoxa2−/− embryos displayed a higher density of proliferating, Ki-67 positive palatal mesenchyme cells, as well as a higher density of Six2/Ki-67 double-positive cells. Furthermore, Hoxa2−/− palatal mesenchyme cells in culture displayed both increased proliferation

  8. The PPARα/p16INK4a Pathway inhibits Vascular Smooth Muscle Cell Proliferation by repressing Cell Cycle-dependent Telomerase Activation

    PubMed Central

    Gizard, Florence; Nomiyama, Takashi; Zhao, Yue; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Staels, Bart; Bruemmer, Dennis

    2009-01-01

    Peroxisome Proliferator-Activated Receptor (PPAR) α, the molecular target for fibrates used to treat dyslipidemia, exerts pleiotropic effects on vascular cells. In vascular smooth muscle cells (VSMCs), we have previously demonstrated that PPARα activation suppresses G1→S cell cycle progression by targeting the cyclin-dependent kinase inhibitor p16INK4a (p16). In the present study, we demonstrate that this inhibition of VSMC proliferation by PPARα is mediated through a p16-dependent suppression of telomerase activity, which has been implicated in key cellular functions including proliferation. PPARα activation inhibited mitogen-induced telomerase activity by repressing the catalytic subunit telomerase reverse transcriptase (TERT) through negative cross-talk with an E2F-1-dependent trans-activation of the TERT promoter. This trans-repression involved the recruitment of the retinoblastoma (RB) family proteins p107 and p130 to the TERT promoter resulting in impaired E2F-1 binding, an effect which was dependent on p16. The inhibition of cell proliferation by PPARα activation was lost in VSMC following TERT overexpression or knock-down, pointing to a key role of telomerase as a target for the antiproliferative effects of PPARα. Finally, we demonstrate that PPARα agonists suppress telomerase activation during the proliferative response following vascular injury indicating that these findings are applicable in vivo. In concert, these results demonstrate that the anti-proliferative effects of PPARα in VSMCs depend on the suppression of telomerase activity by targeting the p16/RB/E2F transcriptional cascade. PMID:18818403

  9. Induction of Malignant Plasma Cell Proliferation by Eosinophils

    PubMed Central

    Wong, Tina W.; Kita, Hirohito; Hanson, Curtis A.; Walters, Denise K.; Arendt, Bonnie K.; Jelinek, Diane F.

    2013-01-01

    The biology of the malignant plasma cells (PCs) in multiple myeloma (MM) is highly influenced by the bone marrow (BM) microenvironment in which they reside. More specifically, BM stromal cells (SCs) are known to interact with MM cells to promote MM cell survival and proliferation. By contrast, it is unclear if innate immune cells within this same space also actively participate in the pathology of MM. Our study shows for the first time that eosinophils (Eos) can contribute to the biology of MM by enhancing the proliferation of some malignant PCs. We first demonstrate that PCs and Eos can be found in close proximity in the BM. In culture, Eos were found to augment MM cell proliferation that is predominantly mediated through a soluble factor(s). Fractionation of cell-free supernatants and neutralization studies demonstrated that this activity is independent of Eos-derived microparticles and a proliferation-inducing ligand (APRIL), respectively. Using a multicellular in vitro system designed to resemble the native MM niche, SCs and Eos were shown to have non-redundant roles in their support of MM cell growth. Whereas SCs induce MM cell proliferation predominantly through the secretion of IL-6, Eos stimulate growth of these malignant cells via an IL-6-independent mechanism. Taken together, our study demonstrates for the first time a role for Eos in the pathology of MM and suggests that therapeutic strategies targeting these cells may be beneficial. PMID:23894671

  10. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    PubMed

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Effects of {gamma}-secretase inhibition on the proliferation and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Wei; Xiong, Zhonghua; Cai, Xiaoxiao

    2010-02-12

    As a {gamma}-secretase inhibitor, DAPT has been widely used to evaluate the biological behaviors and Notch signaling pathway in various cells. This study was aimed to examine the effects of DAPT on the growth and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells (ASCs). The cells were treated with or without DAPT and induced to osteoblastic lineage in the presence of vitamin D{sub 3}. Alizarin red staining and real-time PCR results indicated that the addition of DAPT to vitamin D{sub 3} treatments enhanced osteogenesis in ASCs. According to the fold increase and colony-forming unit assay results, the cellsmore » cultured in DAPT exhibited lower proliferation rate than those cultured in control medium. Hey1, expressed in the nucleus of ASCs to act as a transcriptional repressor, was downregulated when Notch signaling was inhibited by DAPT. Whereas the expression of Runx2 increased in the nucleus of osteogenic induced ASCs after DAPT treatment. This study demonstrated that DAPT reduced the proliferation and enhanced the osteogenesis in ASCs via regulation of Notch and Runx2 expression.« less

  12. Periodic Mechanical Stress INDUCES Chondrocyte Proliferation and Matrix Synthesis via CaMKII-Mediated Pyk2 Signaling.

    PubMed

    Liang, Wenwei; Li, Zeng; Wang, Zhen; Zhou, Jinchun; Song, Huanghe; Xu, Shun; Cui, Weiding; Wang, Qing; Chen, Zhefeng; Liu, Feng; Fan, Weimin

    2017-01-01

    Periodic mechanical stress can promote chondrocyte proliferation and matrix synthesis to improve the quality of tissue-engineered cartilage. Although the integrin β1-ERK1/2 signal cascade has been implicated in periodic mechanical stress-induced mitogenic effects in chondrocytes, the precise mechanisms have not been fully established. The current study was designed to probe the roles of CaMKII and Pyk2 signaling in periodic mechanical stress-mediated chondrocyte proliferation and matrix synthesis. Chondrocytes were subjected to periodic mechanical stress, proliferation was assessed by direct cell counting and CCK-8 assay; gene expressions were analyzed using quantitative real-time PCR, protein abundance by Western blotting. Mechanical stress, markedly enhanced the phosphorylation levels of Pyk2 at Tyr402 and CaMKII at Thr286. Both suppression of Pyk2 with Pyk2 inhibitor PF431396 or Pyk2 shRNA and suppression of CaMKII with CaMKII inhibitor KN-93 or CaMKII shRNA blocked periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. Additionally, either pretreatment with KN-93 or shRNA targeted to CaMKII prevented the activation of ERK1/2 and Pyk2 under conditions of periodic mechanical stress. Interestingly, in relation to periodic mechanical stress, in the context of Pyk2 inhibition with PF431396 or its targeted shRNA, only the phosphorylation levels of ERK1/2 were abrogated, while CaMKII signal activation was not affected. Moreover, the phosphorylation levels of CaMKII- Thr286 and Pyk2- Tyr402 were abolished after pretreatment with blocking antibody against integrinβ1 exposed to periodic mechanical stress. Our results collectively indicate that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis through the integrinβ1-CaMKII-Pyk2-ERK1/2 signaling cascade. © 2017 The Author(s). Published by S. Karger AG, Basel.

  13. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function.

    PubMed

    Wang, Yuan-Hsi; Twu, Yuh-Ching; Wang, Chung-Kwe; Lin, Fu-Zhen; Lee, Chun-Ya; Liao, Yi-Jen

    2018-06-05

    Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.

  14. Anti-proliferation of triple-negative breast cancer cells with physagulide P: ROS/JNK signaling pathway induces apoptosis and autophagic cell death

    PubMed Central

    Gao, Cai-Yun; Ma, Ting; Zhang, Hao; Zhou, Miao-Miao; Yang, Yan-Wei; Yang, Lei; Kong, Ling-Yi

    2017-01-01

    Physagulide P (PP), a new natural compound, was isolated from Physalis angulate L. in our laboratory. In this study, we demonstrated that PP potently suppressed cell proliferation by inducing G2/M phase arrest in MDA-MB-231 and MDA-MB-468 cells. Moreover, PP provoked apoptosis by decreasing the mitochondrial membrane potential and elevating the Bax/Bcl-2 protein expression ratio. The caspase inhibitor Z-VAD-FMK partly restore cell viability, suggesting that apoptosis plays as an important role in the anti-proliferative effect of PP. PP-treated cells also underwent autophagy, as evidenced by the formation of autophagosomes and the accumulation of LC3BII. Furthermore, the knockdown of LC3B reduced PP-induced cytotoxicity, indicating that autophagy played an anticancer effect. PP also induced the generation of reactive oxygen species (ROS) and resulted in c-Jun N-terminal kinases (JNK) activation. Accordingly, JNK siRNA significantly attenuated PP-triggered apoptosis and autophagy, and ROS scavengers almost completely reverse this apoptosis and autophagy. The ROS scavenger also blocked PP-induced G2/M phase arrest and the phosphorylation of JNK. Our results revealed that PP induced G2/M phase arrest, apoptosis and autophagy via the ROS/JNK signaling pathway in MDA-MB-231 and MDA-MB-468 cells. Therefore, PP is a promising candidate for the development of antitumor drugs for the treatment of triple-negative breast cancer. PMID:28969050

  15. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells

    PubMed Central

    Maxwell, Pamela J.; Neisen, Jessica; Messenger, Johanna; Waugh, David J.J.

    2014-01-01

    Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the

  16. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin.

    PubMed

    Gilson, Hélène; Schakman, Olivier; Kalista, Stéphanie; Lause, Pascale; Tsuchida, Kunihiro; Thissen, Jean-Paul

    2009-07-01

    Follistatin (FS) inhibits several members of the TGF-beta superfamily, including myostatin (Mstn), a negative regulator of muscle growth. Mstn inhibition by FS represents a potential therapeutic approach of muscle atrophy. The aim of our study was to investigate the mechanisms of the FS-induced muscle hypertrophy. To test the role of satellite cells in the FS effect, we used irradiation to destroy their proliferative capacity. FS overexpression increased the muscle weight by about 37% in control animals, but the increase reached only 20% in irradiated muscle, supporting the role of cell proliferation in the FS-induced hypertrophy. Surprisingly, the muscle hypertrophy caused by FS reached the same magnitude in Mstn-KO as in WT mice, suggesting that Mstn might not be the only ligand of FS involved in the regulation of muscle mass. To assess the role of activin (Act), another FS ligand, in the FS-induced hypertrophy, we electroporated FSI-I, a FS mutant that does not bind Act with high affinity. Whereas FS electroporation increased muscle weight by 32%, the muscle weight gain induced by FSI-I reached only 14%. Furthermore, in Mstn-KO mice, FSI-I overexpression failed to induce hypertrophy, in contrast to FS. Therefore, these results suggest that Act inhibition may contribute to FS-induced hypertrophy. Finally, the role of Act as a regulator of muscle mass was supported by the observation that ActA overexpression induced muscle weight loss (-15%). In conclusion, our results show that satellite cell proliferation and both Mstn and Act inhibition are involved in the FS-induced muscle hypertrophy.

  17. Role of T cells in the B-cell response: glutaraldehyde-fixed T-helper hybridoma cells synergize with the lymphokine IL-4 to induce B-cell activation and proliferation.

    PubMed

    Kubota, E; McKenzie, D T; Dutton, R W; Swain, S L

    1991-01-01

    Antigen-unselected helper T-cell hybridomas (Th) which activate normal resting B cells to RNA synthesis and proliferation in the presence of concanavalin A (Con A) have been developed. The response is completely Th cell dependent, and not restricted by the haplotype of the B-cell major histocompatibility complex (MHC). Culture supernatants from the Con A-stimulated Th hybridomas contain interleukin-4 (IL-4) and IL-2, but undetectable level of IL-5. The supernatant alone, however, does not induce B-cell activation or proliferation. Although the Con A-mediated Th cell-dependent B-cell response occurs in an MHC-unrestricted manner, the response of resting B cells can be blocked by monoclonal Ia antibody specific for the surface class II molecules of the responding B cell. The response is also blocked by monoclonal antibody to L3T4. Significant activation and proliferation of resting B cells can also be triggered by glutaraldehyde-fixed Th hybridomas and Con A when exogenous IL-4 is added. The stimulation with fixed Th hybridomas plus IL-4 can be inhibited by monoclonal anti-L3T4 or anti-Ia. These results suggest that maximal B-cell activation requires a direct helper T cell-B cell interaction which depends on availability of Ia on the B cell and L3T4 on the T cell, even when Con A overcomes the requirement for MHC-restricted T-cell recognition. We suggest that this signal, in conjunction with T-cell produced lymphokine IL-4, is responsible for the activation and subsequent proliferation of the B cells which occurs following interaction with T cells.

  18. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells.

    PubMed

    Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás

    2015-01-01

    E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.

  19. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells

    PubMed Central

    Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás

    2015-01-01

    E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. PMID:25892555

  20. Ligand Activation of Peroxisome Proliferator-Activated Receptor-β/δ Inhibits Cell Proliferation in Human HaCaT KeratinocytesS

    PubMed Central

    Borland, Michael G.; Foreman, Jennifer E.; Girroir, Elizabeth E.; Zolfaghari, Reza; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Ross, A. Catharine; Peters, Jeffrey M.

    2009-01-01

    Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-β/δ induces terminal differentiation and attenuates cell growth, some studies suggest that PPARβ/δ actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARβ/δ and potentiates cell proliferation by activating PPARβ/δ. The present study examined the effect of ligand activation of PPARβ/δ on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARβ/δ ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARβ/δ ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARβ/δ target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARβ/δ-null primary mouse keratinocytes to determine the specific role of PPARβ/δ in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARβ/δ-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARβ/δ inhibits keratinocyte proliferation through PPARβ/δ-dependent mechanisms. In contrast, the observed inhibition of cell proliferation in mouse and human keratinocytes by RA is