Sample records for e2f target genes

  1. E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer.

    PubMed

    Lopes-Ramos, Camila M; Barros, Bruna P; Koyama, Fernanda C; Carpinetti, Paola A; Pezuk, Julia; Doimo, Nayara T S; Habr-Gama, Angelita; Perez, Rodrigo O; Parmigiani, Raphael B

    2017-01-01

    Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.

  2. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes.

    PubMed

    Chang, Wing Y; Andrews, Joseph; Carter, David E; Dagnino, Lina

    2006-08-01

    E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.

  3. E2F8 as a Novel Therapeutic Target for Lung Cancer

    PubMed Central

    Park, Sin-Aye; Platt, James; Lee, Jong Woo; López-Giráldez, Francesc; Herbst, Roy S.

    2015-01-01

    Background: The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown. Methods: E2F8 expression was assessed by immunoblotting or immunofluorescence staining in human lung cancer (LC) cells and tissues from LC patients (n = 45). Cell proliferation, colony formation, and invasion analysis were performed to evaluate the role of E2F8 in LC. Microarray analysis was used to determine the target genes of E2F8. The regulation of E2F8 on the expression of ubiquitin-like PHD and RING domain-containing 1 (UHRF1), one of E2F8 target genes, was determined using chromatin immunoprecipitation and promoter activity assays. Human LC xenograft models were used to determine the effects of inhibiting E2F8 by siRNAs (n = 7 per group) or antisense morpholino (n = 8 per group) on tumor growth. Survival was analyzed using the Kaplan-Meier method and group differences by the Student’s t test. All statistical tests were two-sided. Results: LC tumors overexpressed E2F8 compared with normal lung tissues. Depletion of E2F8 inhibited cell proliferation and tumor growth. E2F8 knockdown statistically significantly reduced the expression of UHRF1 (~60%-70%, P < .001), and the direct binding of E2F8 on the promoter of UHRF1 was identified. Kaplan-Meier analysis with a public database showed prognostic significance of aberrant E2F8 expression in LC (HR = 1.91 95% CI = 1.21 to 3.01 in chemo-naïve patients, P = .0047). Conclusions: We demonstrated that E2F8 is overexpressed in LC and is required for the growth of LC cells. These findings implicate E2F8 as a novel therapeutic target for LC treatment. PMID:26089541

  4. E2F8 as a Novel Therapeutic Target for Lung Cancer.

    PubMed

    Park, Sin-Aye; Platt, James; Lee, Jong Woo; López-Giráldez, Francesc; Herbst, Roy S; Koo, Ja Seok

    2015-09-01

    The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown. E2F8 expression was assessed by immunoblotting or immunofluorescence staining in human lung cancer (LC) cells and tissues from LC patients (n = 45). Cell proliferation, colony formation, and invasion analysis were performed to evaluate the role of E2F8 in LC. Microarray analysis was used to determine the target genes of E2F8. The regulation of E2F8 on the expression of ubiquitin-like PHD and RING domain-containing 1 (UHRF1), one of E2F8 target genes, was determined using chromatin immunoprecipitation and promoter activity assays. Human LC xenograft models were used to determine the effects of inhibiting E2F8 by siRNAs (n = 7 per group) or antisense morpholino (n = 8 per group) on tumor growth. Survival was analyzed using the Kaplan-Meier method and group differences by the Student's t test. All statistical tests were two-sided. LC tumors overexpressed E2F8 compared with normal lung tissues. Depletion of E2F8 inhibited cell proliferation and tumor growth. E2F8 knockdown statistically significantly reduced the expression of UHRF1 (~60%-70%, P < .001), and the direct binding of E2F8 on the promoter of UHRF1 was identified. Kaplan-Meier analysis with a public database showed prognostic significance of aberrant E2F8 expression in LC (HR = 1.91 95% CI = 1.21 to 3.01 in chemo-naïve patients, P = .0047). We demonstrated that E2F8 is overexpressed in LC and is required for the growth of LC cells. These findings implicate E2F8 as a novel therapeutic target for LC treatment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    PubMed

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  6. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.

    PubMed

    Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis

    2017-02-01

    Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC. © 2016 American Heart Association, Inc.

  7. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution.

    PubMed

    Iglesias-Ara, A; Zenarruzabeitia, O; Buelta, L; Merino, J; Zubiaga, A M

    2015-10-01

    Tissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis. We show that pancreas atrophy in E2F1/E2F2 double-knockout (DKO) mice is associated with mitochondrial apoptosis and activation of the p53 pathway in young animals, before the development of diabetes. A deregulated expression of E2F target genes was detected in pancreatic cells of young DKO animals, along with unscheduled DNA replication and activation of a DNA damage response. Importantly, suppression of DNA replication in vivo with aphidicolin led to a significant inhibition of the p53 pathway in DKO pancreas, implying a causal link between DNA replication stress and p53 activation in this model. We further show that activation of the p53 pathway has a key role in the aberrant phenotype of DKO mice, since targeted inactivation of p53 gene abrogated cellular apoptosis and prevented organ involution and insulin-dependent diabetes in mice lacking E2F1/E2F2. Unexpectedly, p53 inactivation unmasked oncogenic features of E2F1/E2F2-depleted cells, as evidenced by an accelerated tumor development in triple-knockout mice compared with p53(-/-) mice. Collectively, our data reveal a role for E2F1 and E2F2 as suppressors of replicative stress in differentiating cells, and uncover the existence of a robust E2F-p53 regulatory axis to enable tissue homeostasis and prevent tumorigenesis. These findings have implications in the design of approaches targeting E2F for cancer therapy.

  8. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution

    PubMed Central

    Iglesias-Ara, A; Zenarruzabeitia, O; Buelta, L; Merino, J; Zubiaga, A M

    2015-01-01

    Tissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis. We show that pancreas atrophy in E2F1/E2F2 double-knockout (DKO) mice is associated with mitochondrial apoptosis and activation of the p53 pathway in young animals, before the development of diabetes. A deregulated expression of E2F target genes was detected in pancreatic cells of young DKO animals, along with unscheduled DNA replication and activation of a DNA damage response. Importantly, suppression of DNA replication in vivo with aphidicolin led to a significant inhibition of the p53 pathway in DKO pancreas, implying a causal link between DNA replication stress and p53 activation in this model. We further show that activation of the p53 pathway has a key role in the aberrant phenotype of DKO mice, since targeted inactivation of p53 gene abrogated cellular apoptosis and prevented organ involution and insulin-dependent diabetes in mice lacking E2F1/E2F2. Unexpectedly, p53 inactivation unmasked oncogenic features of E2F1/E2F2-depleted cells, as evidenced by an accelerated tumor development in triple-knockout mice compared with p53−/− mice. Collectively, our data reveal a role for E2F1 and E2F2 as suppressors of replicative stress in differentiating cells, and uncover the existence of a robust E2F-p53 regulatory axis to enable tissue homeostasis and prevent tumorigenesis. These findings have implications in the design of approaches targeting E2F for cancer therapy. PMID:25656653

  9. HER2 signaling drives DNA anabolism and proliferation through SRC-3 phosphorylation and E2F1-regulated genes

    PubMed Central

    Nikolai, Bryan C.; Lanz, Rainer B.; York, Brian; Dasgupta, Subhamoy; Mitsiades, Nicholas; Creighton, Chad J.; Tsimelzon, Anna; Hilsenbeck, Susan G.; Lonard, David M.; Smith, Carolyn L.; O’Malley, Bert W.

    2016-01-01

    Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2+ tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. While the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor Palbociclib, defines overlap and divergence of adjuvant pharmacological targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacological combinations in pre-clinical models of adjuvant treatment and therapeutic resistance. PMID:26833126

  10. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.

    PubMed

    Iglesias, Ainhoa; Murga, Matilde; Laresgoiti, Usua; Skoudy, Anouchka; Bernales, Irantzu; Fullaondo, Asier; Moreno, Bernardino; Lloreta, José; Field, Seth J; Real, Francisco X; Zubiaga, Ana M

    2004-05-01

    E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.

  11. E2F8 is essential for polyploidization in mammalian cells.

    PubMed

    Pandit, Shusil K; Westendorp, Bart; Nantasanti, Sathidpak; van Liere, Elsbeth; Tooten, Peter C J; Cornelissen, Peter W A; Toussaint, Mathilda J M; Lamers, Wouter H; de Bruin, Alain

    2012-11-01

    Polyploidization is observed in all mammalian species and is a characteristic feature of hepatocytes, but its molecular mechanism and biological significance are unknown. Hepatocyte polyploidization in rodents occurs through incomplete cytokinesis, starts after weaning and increases with age. Here, we show in mice that atypical E2F8 is induced after weaning and required for hepatocyte binucleation and polyploidization. A deficiency in E2f8 led to an increase in the expression level of E2F target genes promoting cytokinesis and thereby preventing polyploidization. In contrast, loss of E2f1 enhanced polyploidization and suppressed the polyploidization defect of hepatocytes deficient for atypical E2Fs. In addition, E2F8 and E2F1 were found on the same subset of target promoters. Contrary to the long-standing hypothesis that polyploidization indicates terminal differentiation and senescence, we show that prevention of polyploidization through inactivation of atypical E2Fs has, surprisingly, no impact on liver differentiation, zonation, metabolism and regeneration. Together, these results identify E2F8 as a repressor and E2F1 as an activator of a transcriptional network controlling polyploidization in mammalian cells.

  12. The Aryl Hydrocarbon Receptor Binds to E2F1 and Inhibits E2F1-induced Apoptosis

    PubMed Central

    Marlowe, Jennifer L.; Fan, Yunxia; Chang, Xiaoqing; Peng, Li; Knudsen, Erik S.; Xia, Ying

    2008-01-01

    Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr−/− fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, γH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G0/G1 cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression. PMID:18524851

  13. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1

    PubMed Central

    Haim, Yulia; Blüher, Matthias; Slutsky, Noa; Goldstein, Nir; Klöting, Nora; Harman-Boehm, Ilana; Kirshtein, Boris; Ginsberg, Doron; Gericke, Martin; Guiu Jurado, Esther; Kovsan, Julia; Tarnovscki, Tanya; Kachko, Leonid; Bashan, Nava; Gepner, Yiftach; Shai, Iris; Rudich, Assaf

    2015-01-01

    Autophagy genes' expression is upregulated in visceral fat in human obesity, associating with obesity-related cardio-metabolic risk. E2F1 (E2F transcription factor 1) was shown in cancer cells to transcriptionally regulate autophagy. We hypothesize that E2F1 regulates adipocyte autophagy in obesity, associating with endocrine/metabolic dysfunction, thereby, representing non-cell-cycle function of this transcription factor. E2F1 protein (N=69) and mRNA (N=437) were elevated in visceral fat of obese humans, correlating with increased expression of ATG5 (autophagy-related 5), MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β), but not with proliferation/cell-cycle markers. Elevated E2F1 mainly characterized the adipocyte fraction, whereas MKI67 (marker of proliferation Ki-67) was elevated in the stromal-vascular fraction of adipose tissue. In human visceral fat explants, chromatin-immunoprecipitation revealed body mass index (BMI)-correlated increase in E2F1 binding to the promoter of MAP1LC3B, but not to the classical cell cycle E2F1 target, CCND1 (cyclin D1). Clinically, omental fat E2F1 expression correlated with insulin resistance, circulating free-fatty-acids (FFA), and with decreased circulating ADIPOQ/adiponectin, associations attenuated by adjustment for autophagy genes. Overexpression of E2F1 in HEK293 cells enhanced promoter activity of several autophagy genes and autophagic flux, and sensitized to further activation of autophagy by TNF. Conversely, mouse embryonic fibroblast (MEF)-derived adipocytes from e2f1 knockout mice (e2f1−/−) exhibited lower autophagy gene expression and flux, were more insulin sensitive, and secreted more ADIPOQ. Furthermore, e2f1−/− MEF-derived adipocytes, and autophagy-deficient (by Atg7 siRNA) adipocytes were resistant to cytokines-induced decrease in ADIPOQ secretion. Jointly, upregulated E2F1 sensitizes adipose tissue autophagy to inflammatory stimuli, linking visceral obesity to adipose and systemic

  14. GTSE1: a novel TEAD4-E2F1 target gene involved in cell protrusions formation in triple-negative breast cancer cell models

    PubMed Central

    Stelitano, Debora; Leticia, Yamila Peche; Dalla, Emiliano; Monte, Martin; Piazza, Silvano; Schneider, Claudio

    2017-01-01

    GTSE1 over-expression has been reported as a potential marker for metastasis in various types of malignancies, including breast cancer. Despite this, the transcriptional regulation of this protein and the causes of its misregulation in tumors remain largely unknown. The aims of this work were to elucidate how GTSE1 is regulated at the transcriptional level and to clarify the mechanism underlying GTSE1-dependent cell functions in triple-negative breast cancer (TNBC). Here, we identified GTSE1 as a novel target gene of the TEAD4 transcription factor, highlighting a role for the YAP and TAZ coactivators in the transcriptional regulation of GTSE1. Moreover, we found that TEAD4 controls the formation of cell protrusions required for cell migration through GTSE1, unveiling a relevant effector role for this protein in the TEAD-dependent cellular functions and confirming TEAD4 role in promoting invasion and metastasis in breast cancer. Finally, we highlighted a role for the pRb-E2F1 pathway in the control of GTSE1 transcription and observed that treatment with drugs targeting the pRb-E2F1 or YAP/TAZ-TEAD pathways dramatically downregulated the expression levels of GTSE1 and of other genes involved in the formation of metastasis, suggesting their potential use in the treatment of TNBC. PMID:28978043

  15. E2f1–3 Are Critical for Myeloid Development*

    PubMed Central

    Trikha, Prashant; Sharma, Nidhi; Opavsky, Rene; Reyes, Andres; Pena, Clarissa; Ostrowski, Michael C.; Roussel, Martine F.; Leone, Gustavo

    2011-01-01

    Hematopoietic development involves the coordinated activity of differentiation and cell cycle regulators. In current models of mammalian cell cycle control, E2f activators (E2f1, E2f2, and E2f3) are portrayed as the ultimate transcriptional effectors that commit cells to enter and progress through S phase. Using conditional gene knock-out strategies, we show that E2f1–3 are not required for the proliferation of early myeloid progenitors. Rather, these E2fs are critical for cell survival and proliferation at two distinct steps of myeloid development. First, E2f1–3 are required as transcriptional repressors for the survival of CD11b+ myeloid progenitors, and then they are required as activators for the proliferation of CD11b+ macrophages. In bone marrow macrophages, we show that E2f1–3 respond to CSF1-Myc mitogenic signals and serve to activate E2f target genes and promote their proliferation. Together, these findings expose dual functions for E2f1–3 at distinct stages of myeloid development in vivo, first as repressors in cell survival and then as activators in cell proliferation. In summary, this work places E2f1–3 in a specific signaling cascade that is critical for myeloid development in vivo. PMID:21115501

  16. E2F1 transcription is induced by genotoxic stress through ATM/ATR activation.

    PubMed

    Carcagno, Abel L; Ogara, María F; Sonzogni, Silvina V; Marazita, Mariela C; Sirkin, Pablo F; Ceruti, Julieta M; Cánepa, Eduardo T

    2009-05-01

    E2F1, a member of the E2F family of transcription factors, plays a critical role in controlling both cell cycle progression and apoptotic cell death in response to DNA damage and oncogene activation. Following genotoxic stresses, E2F1 protein is stabilized by phosphorylation and acetylation driven to its accumulation. The aim of the present work was to examine whether the increase in E2F1 protein levels observed after DNA damage is only a reflection of an increase in E2F1 protein stability or is also the consequence of enhanced transcription of the E2F1 gene. The data presented here demonstrates that UV light and other genotoxics induce the transcription of E2F1 gene in an ATM/ATR dependent manner, which results in increasing E2F1 mRNA and protein levels. After genotoxic stress, transcription of cyclin E, an E2F1 target gene, was significantly induced. This induction was the result of two well-differentiated effects, one of them dependent on de novo protein synthesis and the other on the protein stabilization. Our results strongly support a transcriptional effect of DNA damaging agents on E2F1 expression. The results presented herein uncover a new mechanism involving E2F1 in response to genotoxic stress.

  17. Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes.

    PubMed

    Zaragoza, Katrin; Bégay, Valérie; Schuetz, Anja; Heinemann, Udo; Leutz, Achim

    2010-05-01

    The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.

  18. Geraniol suppresses prostate cancer growth through down-regulation of E2F8.

    PubMed

    Lee, Sanghoon; Park, Yu Rang; Kim, Su-Hwa; Park, Eun-Jung; Kang, Min Ji; So, Insuk; Chun, Jung Nyeo; Jeon, Ju-Hong

    2016-10-01

    Geraniol, an acyclic dietary monoterpene, has been found to suppress cancer survival and growth. However, the molecular mechanism underlying the antitumor action of geraniol has not been investigated at the genome-wide level. In this study, we analyzed the microarray data obtained from geraniol-treated prostate cancer cells. Geraniol potently altered a gene expression profile and primarily down-regulated cell cycle-related gene signatures, compared to linalool, another structurally similar monoterpene that induces no apparent phenotypic changes. Master regulator analysis using the prostate cancer-specific regulatory interactome identified that the transcription factor E2F8 as a specific target molecule regulates geraniol-specific cell cycle signatures. Subsequent experiments confirmed that geraniol down-regulated E2F8 expression and the knockdown of E2F8 was sufficient to suppress cell growth by inducing G 2 /M arrest. Epidemiological analysis showed that E2F8 is up-regulated in metastatic prostate cancer and associated with poor prognosis. These results indicate that E2F8 is a crucial transcription regulator controlling cell cycle and survival in prostate cancer cells. Therefore, our study provides insight into the role of E2F8 in prostate cancer biology and therapeutics. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  19. E2F1-mediated human POMC expression in ectopic Cushing's syndrome.

    PubMed

    Araki, Takako; Liu, Ning-Ai; Tone, Yukiko; Cuevas-Ramos, Daniel; Heltsley, Roy; Tone, Masahide; Melmed, Shlomo

    2016-11-01

    Cushing's syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing's syndrome). Hypercortisolemic features of ectopic Cushing's syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing's syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC We identify an E2F1 cluster binding to the proximal hPOMC promoter region (-42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing's cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing's syndrome. © 2016 Society for Endocrinology.

  20. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F.

    PubMed Central

    Bandara, L R; Buck, V M; Zamanian, M; Johnston, L H; La Thangue, N B

    1993-01-01

    It is widely believed that the cellular transcription factor DRTF1/E2F integrates cell cycle events with the transcription apparatus because during cell cycle progression in mammalian cells it interacts with molecules that are important regulators of cellular proliferation, such as the retinoblastoma tumour suppressor gene product (pRb), p107, cyclins and cyclin-dependent kinases. Thus, pRb, which negatively regulates early cell cycle progression and is frequently mutated in tumour cells, and the Rb-related protein p107, bind to and repress the transcriptional activity of DRTF1/E2F. Viral oncoproteins, such as adenovirus E1a and SV40 large T antigen, overcome such repression by sequestering pRb and p107 and in so doing are likely to activate genes regulated by DRTF1/E2F, such as cdc2, c-myc and DHFR. Two sequence-specific DNA binding proteins, E2F-1 and DP-1, which bind to the E2F site, contain a small region of similarity. The functional relationship between them has, however, been unclear. We report here that DP-1 and E2F-1 exist in a DNA binding complex in vivo and that they bind efficiently and preferentially as a heterodimer to the E2F site. Moreover, studies in yeast and Drosophila cells indicate that DP-1 and E2F-1 interact synergistically in E2F site-dependent transcriptional activation. Images PMID:8223441

  1. YB-1, the E2F Pathway, and Regulation of Tumor Cell Growth

    PubMed Central

    Samuel, Weini; Cao, Helen; Patel, Rachna; Mehta, Reena; Stern, J. Lewis; Reid, Glen; Woolley, Adele G.; Miller, Lance D.; Black, Michael A; Shelling, Andrew N.; Print, Cristin G.; Braithwaite, Antony W.

    2012-01-01

    Background Y-box binding factor 1 (YB-1) has been associated with prognosis in many tumor types. Reduced YB-1 expression inhibits tumor cell growth, but the mechanism is unclear. Methods YB-1 mRNA levels were compared with tumor grade and histology using microarray data from 771 breast cancer patients and with disease-free survival and distant metastasis–free survival using data from 375 of those patients who did not receive adjuvant therapy. Microarrays were further searched for genes that had correlated expression with YB-1 mRNA. Small interfering RNA (siRNA) was used to study the effects of reduced YB-1 expression on growth of three tumor cell lines (MCF-7 breast, HCT116 colon, and A549 lung cancer cells), on tumorigenesis by A549 cells in nude mice, and on global transcription in the three cancer cell lines. Reporter gene assays were used to determine whether YB-1 siRNAs affected the expression of E2F1, and chromatin immunoprecipitation was used to determine whether YB-1 bound to various E2F promoters as well as E2F1-regulated promoters. All P values were from two-sided tests. Results YB-1 levels were elevated in more aggressive tumors and were strongly associated with poor disease-free survival and distant metastasis–free survival. YB-1 expression was often associated with the expression of genes with E2F sites in their promoters. Cells expressing YB-1 siRNA grew substantially more slowly than control cells and formed tumors less readily in nude mice. Transcripts that were altered in cancer cell lines with YB-1 siRNA included 32 genes that are components of prognostic gene expression signatures. YB-1 regulated expression of an E2F1 promoter–reporter construct in A549 cells (eg, relative E2F1 promoter activity with control siRNA = 4.04; with YB-1 siRNA = 1.40, difference= −2.64, 95% confidence interval = −3.57 to −1.71, P < .001) and bound to the promoters of several well-defined E2F1 target genes. Conclusion YB-1 expression is associated with the

  2. A novel mechanism of E2F1 regulation via nucleocytoplasmic shuttling: determinants of nuclear import and export.

    PubMed

    Ivanova, Iordanka A; Vespa, Alisa; Dagnino, Lina

    2007-09-01

    E2F1 is a transcription factor central for cell survival, proliferation, and repair following genomic insult. Depending on the cell type and conditions, E2F1 can induce apoptosis in transformed cells, behaving as a tumour suppressor, or impart growth advantages favouring tumour formation. The pleiotropic functions of E2F1 are a likely consequence of its ability to transcriptionally control a wide variety of target genes, and require tight regulation of its activity at multiple levels. Although sequestration of proteins to particular cellular compartments is a well-established regulatory mechanism, virtually nothing is known about its contribution to modulation of E2F1 target gene expression. We have examined the subcellular trafficking of E2F1 and, contrary to the widely held notion that this factor is constitutively nuclear, we now demonstrate that it is subjected to continuous nucleocytoplasmic shuttling. We have also defined two nuclear localization domains and a nuclear export region, which mediates CRM1-dependent transit out of the nucleus. The predominant subcellular location of E2F1 is likely determined by the balance between the activity of nuclear import and export domains, and can be modulated by differentiation stimuli in epidermal cells. Thus, we have identified a hitherto unrecognized mechanism to control E2F1 function through modulation of its subcellular localization.

  3. HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4+ T cells

    PubMed Central

    Kawatsuki, A; Yasunaga, J-i; Mitobe, Y; Green, PL; Matsuoka, M

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4+ T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3+ T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4+ T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4+ T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4+ T cells infected with HTLV-1. PMID:26804169

  4. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells

    PubMed Central

    Tian, Hang; Hou, Lei; Xiong, Yu-Mei; Huang, Jun-Xiang; Zhang, Wen-Hua; Pan, Yong-Ying; Song, Xing-Rong

    2016-01-01

    Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples. Then, we found that introduction of miR-132 significantly suppressed the proliferation, colony formation, migration and invasion of ovarian cancer cells. Mechanism investigation revealed that miR-132 inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3’UTR. Moreover, the expression level of E2F5 was significantly increased in ovarian cancer tissues than in the adjacent normal tissues, and its expression was inversely correlated with miR-132 expression in clinical ovarian cancer tissues. Additionally, silencing E2F5 was able to inhibit the proliferation, colony formation, migration and invasion of ovarian cancer cells, parallel to the effect of miR-132 overexpression on the ovarian cancer cells. Meanwhile, overexpression of E2F5 reversed the inhibition effect mediated by miR-132 overexpression. These results indicate that miR-132 suppresses the cell proliferation, invasion, migration in ovarian cancer cells by targeting E2F5. PMID:27186275

  5. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells.

    PubMed

    Tian, Hang; Hou, Lei; Xiong, Yu-Mei; Huang, Jun-Xiang; Zhang, Wen-Hua; Pan, Yong-Ying; Song, Xing-Rong

    2016-01-01

    Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples. Then, we found that introduction of miR-132 significantly suppressed the proliferation, colony formation, migration and invasion of ovarian cancer cells. Mechanism investigation revealed that miR-132 inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3'UTR. Moreover, the expression level of E2F5 was significantly increased in ovarian cancer tissues than in the adjacent normal tissues, and its expression was inversely correlated with miR-132 expression in clinical ovarian cancer tissues. Additionally, silencing E2F5 was able to inhibit the proliferation, colony formation, migration and invasion of ovarian cancer cells, parallel to the effect of miR-132 overexpression on the ovarian cancer cells. Meanwhile, overexpression of E2F5 reversed the inhibition effect mediated by miR-132 overexpression. These results indicate that miR-132 suppresses the cell proliferation, invasion, migration in ovarian cancer cells by targeting E2F5.

  6. E2F transcription factors and digestive system malignancies: how much do we know?

    PubMed

    Evangelou, Konstantinos; Havaki, Sophia; Kotsinas, Athanassios

    2014-08-07

    The E2F proteins comprise a family of 8 members that function as transcription factors. They are key targets of the retinoblastoma protein (RB) and were initially divided into groups of activators and repressors. Accumulating data suggest that there is no specific role for each individual E2F member. Instead, each E2F can exert a variety of cellular effects, some of which represent opposing ones. For instance, specific E2Fs can activate transcription and repression, promote or hamper cell proliferation, augment or inhibit apoptosis, all being dependent on the cellular context. This complexity reflects the importance that these transcription factors have on a cell's fate. Thus, delineating the specific role for each E2F member in specific malignancies, although not easy, is a challenging and continuously pursued task, especially in view of potential E2F targeted therapies. Therefore, several reviews are continuously trying to evaluate available data on E2F status in various malignancies. Such reviews have attempted to reach a consensus, often in the simplistic form of oncogenes or tumor suppressor genes for the E2Fs. However they frequently miss spatial and temporal alterations of these factors during tumor development, which should also be considered in conjunction with the status of the regulatory networks that these factors participate in. In the current ''Letter to the Editor'', we comment on the flaws, misinterpretations and omissions in one such review article published recently in the World Journal of Gastroenterology regarding the role of E2Fs in digestive system malignancies.

  7. lncRNA-HIT promotes cell proliferation of non-small cell lung cancer by association with E2F1.

    PubMed

    Yu, L; Fang, F; Lu, S; Li, X; Yang, Y; Wang, Z

    2017-05-01

    Lung cancer is the leading cause of cancer-related death around the world. Long noncoding RNA (lncRNA) has pivotal roles in cancer occurrence and development. However, only a few lncRNAs have been functionally characterized. In the present study, we investigated the effects of lncRNA-HIT (HOXA transcript induced by TGFβ) expression on non-small cell lung cancer (NSCLC) cell phenotype with the gain-of-function and loss-of-function assays. We found that ectopic expression or knockdown of lncRNA-HIT markedly increased or decreased NSCLC cell proliferation, respectively. Moreover, we also showed that lncRNA-HIT interacted with E2F1 to regulate its target genes, such as Survivin, FOXM1, SKP2, NELL2 and DOK1. Collectively, our findings indicated that lncRNA-HIT affected the proliferation of NSCLC cells at least in part via regulating the occupancy of E2F1 in the promoter regions of its target genes. The lncRNA-HIT-E2F1 complex may be a potential target for NSCLC treatment.

  8. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; College of Basic Medicine, Tianjin Medical University, 300070 Tianjin; Li, Jinru

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by whichmore » Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.« less

  9. Novel functions for the transcription factor E2F4 in development and disease

    PubMed Central

    Sage, Julien

    2016-01-01

    ABSTRACT The E2F family of transcription factors is a key determinant of cell proliferation in response to extra- and intra-cellular signals. Within this family, E2F4 is a transcriptional repressor whose activity is critical to engage and maintain cell cycle arrest in G0/G1 in conjunction with members of the retinoblastoma (RB) family. However, recent observations challenge this paradigm and indicate that E2F4 has a multitude of functions in cells besides this cell cycle regulatory role, including in embryonic and adult stem cells, during regenerative processes, and in cancer. Some of these new functions are independent of the RB family and involve direct activation of target genes. Here we review the canonical functions of E2F4 and discuss recent evidence expanding the role of this transcription factor, with a focus on cell fate decisions in tissue homeostasis and regeneration. PMID:27753528

  10. E2F mediates induction of the Sp1-controlled promoter of the human DNA polymerase ɛ B-subunit gene POLE2

    PubMed Central

    Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.

    2001-01-01

    The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027

  11. E2F transcription factors and digestive system malignancies: how much do we know?

    PubMed

    Xanthoulis, Athanasios; Tiniakos, Dina G

    2013-06-07

    E2F family of transcription factors regulates various cellular functions related to cell cycle and apoptosis. Its individual members have traditionally been classified into activators and repressors, based on in vitro studies. However their contribution in human cancer is more complicated and difficult to predict. We review current knowledge on the expression of E2Fs in digestive system malignancies and its clinical implications for patient prognosis and treatment. E2F1, the most extensively studied member and the only one with prognostic value, exhibits a tumor-suppressing activity in esophageal, gastric and colorectal adenocarcinoma, and in hepatocellular carcinoma (HCC), whereas in pancreatic ductal adenocarcinoma and esophageal squamous cell carcinoma may function as a tumor-promoter. In the latter malignancies, E2F1 immunohistochemical expression has been correlated with higher tumor grade and worse patient survival, whereas in esophageal, gastric and colorectal adenocarcinomas is a marker of increased patient survival. E2F2 has only been studied in colorectal cancer, where its role is not considered significant. E2F4's role in colorectal, gastric and hepatic carcinogenesis is tumor-promoting. E2F8 is strongly upregulated in human HCC, thus possibly contributing to hepatocarcinogenesis. Adenoviral transfer of E2F as gene therapy to sensitize pancreatic cancer cells for chemotherapeutic agents has been used in experimental studies. Other therapeutic strategies are yet to be developed, but it appears that targeted approaches using E2F-agonists or antagonists should take into account the tissue-dependent function of each E2F member. Further understanding of E2Fs' contribution in cellular functions in vivo would help clarify their role in carcinogenesis.

  12. THE ROLE OF THE RETINOBLASTOMA/E2F1 TUMOR SUPPRESSOR PATHWAY IN THE LESION RECOGNITION STEP OF NUCLEOTIDE EXCISION REPAIR

    PubMed Central

    Lin, Patrick S.; McPherson, Lisa A.; Chen, Aubrey Y.; Sage, Julien; Ford, James M.

    2009-01-01

    The retinoblastoma Rb/E2F tumor suppressor pathway plays a major role in the regulation of mammalian cell cycle progression. The pRb protein, along with closely related proteins p107 and p130, exerts its anti-proliferative effects by binding to the E2F family of transcription factors known to regulate essential genes throughout the cell cycle. We sought to investigate the role of the Rb/E2F1 pathway in the lesion recognition step of nucleotide excision repair (NER) in mouse embryonic fibroblasts (MEFs). Rb−/−;p107−/−;p130−/− MEFs repaired both cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PPs) at higher efficiency than did wildtype cells following UV-C irradiation. The expression of damaged DNA binding gene DDB2 involved in the DNA lesion recognition step was elevated in the Rb family-deficient MEFs. To determine if the enhanced DNA repair in the absence of the Rb gene family is due to the derepression of E2F1, we assayed the ability of E2F1-deficient cells to repair damaged DNA and demonstrated that E2F1−/− MEFs are impaired for the removal of both CPDs and 6-4PPs. Furthermore, wildtype cells induced a higher expression of DDB2 and xeroderma pigmentosum gene XPC transcript levels than did E2F1−/− cells following UV-C irradiation. Using an E2F SiteScan algorithm, we uncovered a putative E2F-responsive element in the XPC promoter upstream of the transcription start site. We showed with chromatin immunoprecipitation assays the binding of E2F1 to the XPC promoter in a UV-dependent manner, suggesting that E2F1 is a transcriptional regulator of XPC. Our study identifies a novel E2F1 gene target and further supports the growing body of evidence that the Rb/E2F1 tumor suppressor pathway is involved in the regulation of the DNA lesion recognition step of nucleotide excision repair. PMID:19376752

  13. p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation

    PubMed Central

    Brosh, Ran; Shalgi, Reut; Liran, Atar; Landan, Gilad; Korotayev, Katya; Nguyen, Giang Huong; Enerly, Espen; Johnsen, Hilde; Buganim, Yosef; Solomon, Hilla; Goldstein, Ido; Madar, Shalom; Goldfinger, Naomi; Børresen-Dale, Anne-Lise; Ginsberg, Doron; Harris, Curtis C; Pilpel, Yitzhak; Oren, Moshe; Rotter, Varda

    2008-01-01

    Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs (miRNAs) in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcriptional regulators, E2F and p53, their targets and a family of 15 miRNAs. Indicative of their significance, expression of these miRNAs is downregulated in senescent cells and in breast cancers harboring wild-type p53. These miRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these miRNAs silence antiproliferative genes, which themselves are E2F1 targets. Thus, miRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative miRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Taken together, these findings position miRNAs as novel key players in the mammalian cellular proliferation network. PMID:19034270

  14. Downregulation of Homologous Recombination DNA Repair Genes by HDAC Inhibition in Prostate Cancer Is Mediated through the E2F1 Transcription Factor

    PubMed Central

    Kachhap, Sushant K.; Rosmus, Nadine; Collis, Spencer J.; Kortenhorst, Madeleine S. Q.; Wissing, Michel D.; Hedayati, Mohammad; Shabbeer, Shabana; Mendonca, Janet; Deangelis, Justin; Marchionni, Luigi; Lin, Jianqing; Höti, Naseruddin; Nortier, Johan W. R.; DeWeese, Theodore L.; Hammers, Hans; Carducci, Michael A.

    2010-01-01

    Background Histone deacetylase inhibitors (HDACis) re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process. Methodology/Principal Findings Applying Analysis of Functional Annotation (AFA) on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR) DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs. Conclusions/Significance Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC inhibition could

  15. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma*

    PubMed Central

    Scott, Milcah C.; Sarver, Aaron L.; Tomiyasu, Hirotaka; Cornax, Ingrid; Van Etten, Jamie; Varshney, Jyotika; O'Sullivan, M. Gerard; Subramanian, Subbaya; Modiano, Jaime F.

    2015-01-01

    We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma. PMID:26378234

  16. KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis.

    PubMed

    Wang, Ling-Yu; Hung, Chiu-Lien; Chen, Yun-Ru; Yang, Joy C; Wang, Junjian; Campbell, Mel; Izumiya, Yoshihiro; Chen, Hong-Wu; Wang, Wen-Ching; Ann, David K; Kung, Hsing-Jien

    2016-09-13

    The histone lysine demethylase KDM4A/JMJD2A has been implicated in prostate carcinogenesis through its role in transcriptional regulation. Here, we describe KDM4A as a E2F1 coactivator and demonstrate a functional role for the E2F1-KDM4A complex in the control of tumor metabolism. KDM4A associates with E2F1 on target gene promoters and enhances E2F1 chromatin binding and transcriptional activity, thereby modulating the transcriptional profile essential for cancer cell proliferation and survival. The pyruvate dehydrogenase kinases (PDKs) PDK1 and PDK3 are direct targets of KDM4A and E2F1 and modulate the switch between glycolytic metabolism and mitochondrial oxidation. Downregulation of KDM4A leads to elevated activity of pyruvate dehydrogenase and mitochondrial oxidation, resulting in excessive accumulation of reactive oxygen species. The altered metabolic phenotypes can be partially rescued by ectopic expression of PDK1 and PDK3, indicating a KDM4A-dependent tumor metabolic regulation via PDK. Our results suggest that KDM4A is a key regulator of tumor metabolism and a potential therapeutic target for prostate cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development.

    PubMed

    Schmouth, Jean-François; Arenillas, David; Corso-Díaz, Ximena; Xie, Yuan-Yun; Bohacec, Slavita; Banks, Kathleen G; Bonaguro, Russell J; Wong, Siaw H; Jones, Steven J M; Marra, Marco A; Simpson, Elizabeth M; Wasserman, Wyeth W

    2015-07-24

    Nr2e1 (nuclear receptor subfamily 2, group e, member 1) encodes a transcription factor important in neocortex development. Previous work has shown that nuclear receptors can have hundreds of target genes, and bind more than 300 co-interacting proteins. However, recognition of the critical role of Nr2e1 in neural stem cells and neocortex development is relatively recent, thus the molecular mechanisms involved for this nuclear receptor are only beginning to be understood. Serial analysis of gene expression (SAGE), has given researchers both qualitative and quantitative information pertaining to biological processes. Thus, in this work, six LongSAGE mouse libraries were generated from laser microdissected tissue samples of dorsal VZ/SVZ (ventricular zone and subventricular zone) from the telencephalon of wild-type (Wt) and Nr2e1-null embryos at the critical development ages E13.5, E15.5, and E17.5. We then used a novel approach, implementing multiple computational methods followed by biological validation to further our understanding of Nr2e1 in neocortex development. In this work, we have generated a list of 1279 genes that are differentially expressed in response to altered Nr2e1 expression during in vivo neocortex development. We have refined this list to 64 candidate direct-targets of NR2E1. Our data suggested distinct roles for Nr2e1 during different neocortex developmental stages. Most importantly, our results suggest a possible novel pathway by which Nr2e1 regulates neurogenesis, which includes Lhx2 as one of the candidate direct-target genes, and SOX9 as a co-interactor. In conclusion, we have provided new candidate interacting partners and numerous well-developed testable hypotheses for understanding the pathways by which Nr2e1 functions to regulate neocortex development.

  18. ROS Production Is Essential for the Apoptotic Function of E2F1 in Pheochromocytoma and Neuroblastoma Cell Lines

    PubMed Central

    Espada, Lilia; Meo-Evoli, Nathalie; Sancho, Patricia; Real, Sebastian; Fabregat, Isabel; Ambrosio, Santiago; Tauler, Albert

    2012-01-01

    In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator

  19. Genomic structure, expression pattern, and functional characterization of transcription factor E2F-2 from black tiger shrimp (Penaeus monodon)

    PubMed Central

    Zhao, Chao; Qiu, Lihua

    2017-01-01

    Transcription factor E2F-2 is a regulator of cell cycle. Researchers identified E2F-2 genes from yeasts to humans, but few reports investigated E2F-2 gene from black tiger shrimp. In the present study, we cloned E2F-2 gene from black tiger shrimp (Penaeus monodon). Full-length PmE2F-2 complementary DNA sequence measures 3,189 bp with an open reading frame of 1,371 bp. Complete PmE2F-2 genomic sequence (17,305 bp) of P. monodon contains nine exons, which are separated by eight introns. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that PmE2F-2 is highly expressed in hepatopancreas and ovaries of P. monodon. Highest PmE2F-2 expression levels were observed in stage III ovarian development of P. monodon. PmE2F-2 expression levels were significantly augmented in ovaries of P. monodon after 5-hydroxytryptamine injection and eyestalk ablation. RNA interference experiments were conducted to examine PmE2F-2, PmCDK2, and PmCyclin E expression profiles. PmE2F-2 was successfully knocked down in ovaries and hepatopancreas via double-stranded RNA (dsRNA)–E2F-2 injection. In the same organs, PmE2F-2 expression localization and level were investigated through in situ hybridization, which revealed consistent results with those of qRT-PCR. After dsRNA—E2F-2 injection, gonadosomatic index of shrimp was significantly lower than those following dsRNA—GFP and phosphate-buffered solution injections. Therefore, PmE2F-2 may be involved in ovarian maturation in P. monodon. PMID:28558060

  20. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism.

    PubMed

    Blanchet, Emilie; Annicotte, Jean-Sébastien; Pradelli, Ludivine A; Hugon, Gérald; Matecki, Stéfan; Mornet, Dominique; Rivier, François; Fajas, Lluis

    2012-09-01

    E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1-/- mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1-/-;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.

  1. E2F1 and NF-κB: Key Mediators of Inflammation-associated Cancers and Potential Therapeutic Targets.

    PubMed

    Huang, Yulin; Chen, Rui; Zhou, Jianwei

    2016-01-01

    Inflammation is the fundamental protective response; however disordered immuno-response can cause chronic human disease, including cancer. Inflammatory cells and mediators are essential to the tumor microenvironment and dissection of this complex molecular and cellular milieu may elucidate a connection between cancer and inflammation and help to identify potential novel therapeutic targets. Thus, focusing on transcription factor NF-κB and E2F1 in inflammation-associated cancer is urgent. NF-κB activation is prevalent in carcinomas, mainly driven by inflammatory cytokines in the tumor microenvironment. E2F1 is also involved in regulating immune responses. Understanding the crosstalk between the two pathways may contribute to the development of novel anti-cancer drugs.

  2. E2F4 is required for early eye patterning.

    PubMed

    Ruzhynsky, Vladimir A; Furimsky, Marosh; Park, David S; Wallace, Valerie A; Slack, Ruth S

    2009-01-01

    Increasingly, studies reveal novel functions for cell cycle proteins during development. Here, we investigated the role of E2F4 in eye development. E2F4-deficient mouse embryos exhibit severe early eye patterning defects, which are evident from embryonic day 11.5 and characterized by aberrant shape of the optic cup, coloboma as well as abnormal eye pigmentation. Loss of E2F4 is associated with proximal-distal patterning defects in the optic vesicle. These defects are characterized by the expansion of optic stalk marker gene expression to the optic cup and reduced expression of ventral optic cup markers. These defects are associated with a split of Shh expression domain at the ventral midline of the forebrain and expansion of the Shh activity into the ventral optic cup. Despite these patterning defects, early neuronal differentiation and Shh expression in the retina are not affected by E2F4 deletion. Overall, the results of our studies show a novel role of E2F4 in the early eye development. 2009 S. Karger AG, Basel.

  3. MiR-34a Inhibits Viability and Invasion of Human Papillomavirus-Positive Cervical Cancer Cells by Targeting E2F3 and Regulating Survivin.

    PubMed

    Geng, Dianzhong; Song, Xiaohua; Ning, Fangling; Song, Qianhua; Yin, Honghua

    2015-05-01

    Previous studies confirmed that high-risk human papillomavirus (HR-HPV) infection is a risk factor of cervical cancer, and the infection was associated with significantly reduced miR-34a expression during carcinogenesis. However, the downstream targets of miR-34a and their roles are still not well understood. This study explored the regulative role of miR-34a on E2F3 and survivin expression and the viability and invasion of HPV-positive cervical cancer cells. MiR-34a and survivin expression in 56 cases of HR-HPV-positive patients, 28 cases of HR-HPV-negative patients, and 28 normal cases without HR-HPV infections were measured. Human papillomavirus-18-positive HeLa cervical cancer cells and HPV-16-positive SiHa cells were used to explore the effect of miR-34a on cell viability and invasion. The molecular target of miR-34a was also explored in cervical cancer cells. The results showed that miR-34a overexpression could inhibit HPV-positive cancer cell viability, whereas its downregulation promoted cell viability. E2F3 is a direct target of miR-34a in HPV-positive cervical cancer cells. By targeting E2F3, miR-34a could regulate the expression of survivin. Thus, through regulating E2F3 and survivin, miR-34a could reduce the viability and invasion of HPV-positive cervical cancer cells. This study confirmed a novel miR-34a-E2F3-survivin axis in the tumor suppressor role of miR-34a in cervical cancer.

  4. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells.

    PubMed

    Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás

    2015-01-01

    E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.

  5. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells

    PubMed Central

    Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás

    2015-01-01

    E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. PMID:25892555

  6. Cyclin E-Mediated Human Proopiomelanocortin Regulation as a Therapeutic Target for Cushing Disease.

    PubMed

    Liu, Ning-Ai; Araki, Takako; Cuevas-Ramos, Daniel; Hong, Jiang; Ben-Shlomo, Anat; Tone, Yukiko; Tone, Masahide; Melmed, Shlomo

    2015-07-01

    Cushing disease, due to pituitary corticotroph tumor ACTH hypersecretion, drives excess adrenal cortisol production with adverse morbidity and mortality. Loss of glucocorticoid negative feedback on the hypothalamic-pituitary-adrenal axis leads to autonomous transcription of the corticotroph precursor hormone proopiomelanocortin (POMC), consequent ACTH overproduction, and adrenal hypercortisolism. We previously reported that R-roscovitine (CYC202, seliciclib), a 2,6,9-trisubstituted purine analog, suppresses cyclin-dependent-kinase 2/cyclin E and inhibits ACTH in mice and zebrafish. We hypothesized that intrapituitary cyclin E signaling regulates corticotroph tumor POMC transcription independently of cell cycle progression. The aim was to investigate whether R-roscovitine inhibits human ACTH in corticotroph tumors by targeting the cyclin-dependent kinase 2/cyclin E signaling pathway. Primary cell cultures of surgically resected human corticotroph tumors were treated with or without R-roscovitine, ACTH measured by RIA and quantitative PCR, and/or Western blot analysis performed to investigate ACTH and lineage-specific transcription factors. Cyclin E and E2F transcription factor 1 (E2F1) small interfering RNA (siRNA) transfection was performed in murine corticotroph tumor AtT20 cells to elucidate mechanisms for drug action. POMC gene promoter activity in response to R-roscovitine treatment was analyzed using luciferase reporter and chromatin immunoprecipitation assays. R-roscovitine inhibits human corticotroph tumor POMC and Tpit/Tbx19 transcription with decreased ACTH expression. Cyclin E and E2F1 exhibit reciprocal positive regulation in corticotroph tumors. R-roscovitine disrupts E2F1 binding to the POMC gene promoter and suppresses Tpit/Tbx19 and other lineage-specific POMC transcription cofactors via E2F1-dependent and -independent pathways. R-roscovitine inhibits human pituitary corticotroph tumor ACTH by targeting the cyclin E/E2F1 pathway. Pituitary cyclin E/E

  7. E2F3a gene expression has prognostic significance in childhood acute lymphoblastic leukemia.

    PubMed

    Wang, Kai-Ling; Mei, Yan-Yan; Cui, Lei; Zhao, Xiao-Xi; Li, Wei-Jing; Gao, Chao; Liu, Shu-Guang; Jiao, Ying; Liu, Fei-Fei; Wu, Min-Yuan; Ding, Wei; Li, Zhi-Gang

    2014-10-01

    To study E2F3a expression and its clinical significance in children with acute lymphoblastic leukemia (ALL). We quantified E2F3a expression at diagnosis in 148 children with ALL by real-time PCR. In the test cohort (n = 48), receiver operating characteristic (ROC) curve was used to find the best cut-off point to divide the patients into E2F3a low- and high-expression groups. The prognostic significance of E2F3a expression was investigated in the test cohort and confirmed in the validation cohort (n = 100). The correlations of E2F3a expression with the clinical features and treatment outcome of these patients were analyzed. ROC curve analysis indicated that the best cut-off point of E2F3a expression was 0.3780. In the test cohort, leukemia-free survival (LFS) and event-free survival (EFS) of the low-expression group were lower than those of the high-expression group (log rank: P = 0.026 for both). This finding was verified in the validation cohort. LFS, EFS, and overall survival were also lower in the low-expression group than in the high-expression group (log rank, P = 0.015, 0.008, and 0.002 respectively). E2F3a low expression was correlated with the existence of BCR-ABL fusion. An algorithm composed of E2F3a expression and minimal residual disease (MRD) could predict relapse or induction failure more precisely than current risk stratification. These results were still significant in the ALL patients without BCR-ABL fusion. Low expression of E2F3a was associated with inferior prognosis in childhood ALL. An algorithm composed of E2F3a expression and MRD could predict relapse or induction failure more precisely than that of the current risk stratification. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors

    PubMed Central

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-01-01

    Purpose The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer (PCa) tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in PCa cells. The junction of theTMPRSS2 and ERG derived portions of the fusion mRNA constitutes a cancer specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low toxicity treatment for PCa. Experimental Design We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (Type III or Type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of PCa cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. Results The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Conclusions Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with PCa. PMID:23052253

  9. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors.

    PubMed

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-12-15

    The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in prostate cancer cells. The junction of theTMPRSS2- and ERG-derived portions of the fusion mRNA constitutes a cancer-specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low-toxicity treatment for prostate cancer. We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (type III or type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of prostate cancer cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with prostate cancer. ©2012 AACR.

  10. Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers

    PubMed Central

    Field, Amanda; Xiang, Jie; Anderson, W. Ray; Graham, Patricia; Pick, Leslie

    2016-01-01

    The orphan nuclear receptor Ftz-F1 is expressed in all somatic nuclei in Drosophila embryos, but mutations result in a pair-rule phenotype. This was explained by the interaction of Ftz-F1 with the homeodomain protein Ftz that is expressed in stripes in the primordia of segments missing in either ftz-f1 or ftz mutants. Ftz-F1 and Ftz were shown to physically interact and coordinately activate the expression of ftz itself and engrailed by synergistic binding to composite Ftz-F1/Ftz binding sites. However, attempts to identify additional target genes on the basis of Ftz-F1/ Ftz binding alone has met with only limited success. To discern rules for Ftz-F1 target site selection in vivo and to identify additional target genes, a microarray analysis was performed comparing wildtype and ftz-f1 mutant embryos. Ftz-F1-responsive genes most highly regulated included engrailed and nine additional genes expressed in patterns dependent on both ftz and ftz-f1. Candidate enhancers for these genes were identified by combining BDTNP Ftz ChIP-chip data with a computational search for Ftz-F1 binding sites. Of eight enhancer reporter genes tested in transgenic embryos, six generated expression patterns similar to the corresponding endogenous gene and expression was lost in ftz mutants. These studies identified a new set of Ftz-F1 targets, all of which are co-regulated by Ftz. Comparative analysis of enhancers containing Ftz/Ftz-F1 binding sites that were or were not bona fide targets in vivo suggested that GAF negatively regulates enhancers that contain Ftz/Ftz-F1 binding sites but are not actually utilized. These targets include other regulatory factors as well as genes involved directly in morphogenesis, providing insight into how pair-rule genes establish the body pattern. PMID:27723822

  11. Insulin Inhibits Nrf2 Gene Expression via Heterogeneous Nuclear Ribonucleoprotein F/K in Diabetic Mice

    PubMed Central

    Ghosh, Anindya; Abdo, Shaaban; Zhao, Shuiling; Wu, Chin-Han; Shi, Yixuan; Lo, Chao-Sheng; Chenier, Isabelle; Alquier, Thierry; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao-Ling

    2017-01-01

    Oxidative stress induces endogenous antioxidants via nuclear factor erythroid 2–related factor 2 (Nrf2), potentially preventing tissue injury. We investigated whether insulin affects renal Nrf2 expression in type 1 diabetes (T1D) and studied its underlying mechanism. Insulin normalized hyperglycemia, hypertension, oxidative stress, and renal injury; inhibited renal Nrf2 and angiotensinogen (Agt) gene expression; and upregulated heterogeneous nuclear ribonucleoprotein F and K (hnRNP F and hnRNP K) expression in Akita mice with T1D. In immortalized rat renal proximal tubular cells, insulin suppressed Nrf2 and Agt but stimulated hnRNP F and hnRNP K gene transcription in high glucose via p44/42 mitogen-activated protein kinase signaling. Transfection with small interfering RNAs of p44/42 MAPK, hnRNP F, or hnRNP K blocked insulin inhibition of Nrf2 gene transcription. Insulin curbed Nrf2 promoter activity via a specific DNA-responsive element that binds hnRNP F/K, and hnRNP F/K overexpression curtailed Nrf2 promoter activity. In hyperinsulinemic-euglycemic mice, renal Nrf2 and Agt expression was downregulated, whereas hnRNP F/K expression was upregulated. Thus, the beneficial actions of insulin in diabetic nephropathy appear to be mediated, in part, by suppressing renal Nrf2 and Agt gene transcription and preventing Nrf2 stimulation of Agt expression via hnRNP F/K. These findings identify hnRNP F/K and Nrf2 as potential therapeutic targets in diabetes. PMID:28324005

  12. [Isolation of Escherichia coli O128:HNM harboring stx2f gene from diarrhea patients].

    PubMed

    Isobe, Junko; Kimata, Keiko; Shimojima, Masahiro; Hosorogi, Shiho; Tanaka, Daisuke; Gyobu, Yotaku

    2004-12-01

    Shiga-like-toxin-producing Esherichia coli O128:HNM were isolated from feces of a one-year-old boy with diarrhea and abdominal pain on July, 2002, and a 11-month-old girl with diarrhea and fever on June, 1997. None of other enteropathogenic bacteria including Salmonella were isolated. E. coli O128:HNM isolates from both patients carry stx2f and eaeA gene, but not stx1, stx2, aggR, bfpA, esth, estp, invE, astA, ureC and hlyA gene. As far as we know, this may be the first report indicating that E. coli O128:HNM carrying stx2f gene were isolated from patients in Japan.

  13. E2F function in muscle growth is necessary and sufficient for viability in Drosophila

    PubMed Central

    Zappia, Maria Paula; Frolov, Maxim V.

    2016-01-01

    The E2F transcription factor is a key cell cycle regulator. However, the inactivation of the entire E2F family in Drosophila is permissive throughout most of animal development until pupation when lethality occurs. Here we show that E2F function in the adult skeletal muscle is essential for animal viability since providing E2F function in muscles rescues the lethality of the whole-body E2F-deficient animals. Muscle-specific loss of E2F results in a significant reduction in muscle mass and thinner myofibrils. We demonstrate that E2F is dispensable for proliferation of muscle progenitor cells, but is required during late myogenesis to directly control the expression of a set of muscle-specific genes. Interestingly, E2f1 provides a major contribution to the regulation of myogenic function, while E2f2 appears to be less important. These findings identify a key function of E2F in skeletal muscle required for animal viability, and illustrate how the cell cycle regulator is repurposed in post-mitotic cells. PMID:26823289

  14. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription.

    PubMed

    Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan

    2011-07-01

    STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with co-factors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also

  15. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription

    PubMed Central

    Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J.; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan

    2011-01-01

    STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with cofactors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises

  16. Measurement of the electron structure function F2e at LEP energies

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Gonçalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Slominski, W.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Szwed, J.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomé, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2014-10-01

    The hadronic part of the electron structure function F2e has been measured for the first time, using e+e- data collected by the DELPHI experiment at LEP, at centre-of-mass energies of √{ s} = 91.2- 209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F2e data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F2γ analyses and help in refining existing parameterisations.

  17. AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2

    PubMed Central

    Wang, Wei; Schwemmers, Sven; Hexner, Elizabeth O.

    2010-01-01

    The transcription factor NF-E2 is overexpressed in the majority of patients with polycythemia vera (PV). Concomitantly, 95% of these patients carry the JAK2V617F mutation. Although NF-E2 levels correlate with JAK2V671F allele burden in some PV cohorts, the molecular mechanism causing aberrant NF-E2 expression has not been described. Here we show that NF-E2 expression is also increased in patients with essential thrombocythemia and primary myelofibrosis independent of the presence of the JAK2V617F mutation. Characterization of the NF-E2 promoter revealed multiple functional binding sites for AML1/RUNX-1. Chromatin immunoprecipitation demonstrated AML1 binding to the NF-E2 promoter in vivo. Moreover, AML1 binding to the NF-E2 promoter was significantly increased in granulocytes from PV patients compared with healthy controls. AML1 mRNA expression was elevated in patients with PV, essential thrombocythemia, and primary myelofibrosis both in the presence and absence of JAK2V617F. In addition, AML1 and NF-E2 expression were highly correlated. RNAi-mediated suppression of either AML1 or of its binding partner CBF-β significantly decreased NF-E2 expression. Moreover, expression of the leukemic fusion protein AML/ETO drastically decreased NF-E2 protein levels. Our data identify NF-E2 as a novel AML1 target gene and delineate a role for aberrant AML1 expression in mediating elevated NF-E2 expression in MPN patients. PMID:20339092

  18. Painful Charcot-Marie-Tooth neuropathy type 2E/1F due to a novel NEFL mutation.

    PubMed

    Doppler, Kathrin; Kunstmann, Erdmute; Krüger, Stefan; Sommer, Claudia

    2017-05-01

    Charcot-Marie-Tooth neuropathy (CMT) 2E/1F is caused by mutations in the neurofilament light-chain polypeptide (NEFL) gene. Giant axons are a histological hallmark frequently seen in nerves of patients with CMT2E. We describe the case of a 43-year-old patient with a painful, predominantly sensory neuropathy. The patient's sural nerve biopsy showed multiple giant axons. Genetic sequencing of the NEFL gene revealed that the patient was heterozygous for an altered sequence of the gene, c.816C>G, p.Asn272Lys, which has not yet been described in CMT2E/1F. In contrast to other cases of CMT2E/1F, where motor symptoms are predominant, pain was the most disabling symptom in this patient. Muscle Nerve 55: 752-755, 2017. © 2016 Wiley Periodicals, Inc.

  19. E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway

    PubMed Central

    Zhang, Rong; Lu, Huan; Lyu, Yuan-yuan; Yang, Xiao-mei; Zhu, Lin-yan; Yang, Guang-dong; Jiang, Peng-cheng; Re, Yuan; Song, Wei-wei; Wang, Jin-hao; Zhang, Can-can; Gu, Fei; Luo, Tian-jiao; Wu, Zhi-yong; Xu, Cong-jian

    2017-01-01

    Cervical cancer is an infectious cancer and the most common gynecologic cancer worldwide. E6/E7, the early genes of the high-risk mucosal human papillomavirus type, play key roles in the carcinogenic process of cervical cancer. However, little was known about its roles in modulating tumor microenvironment, particular extracellular matrix (ECM). In this study, we found that E6/E7 could regulate multiple ECM proteins, especially collagen triple helix repeat containing 1 (CTHRC1). CTHRC1 is highly expressed in cervical cancer tissue and serum and closely correlated with clinicopathological parameters. CTHRC1 promotes cervical cancer cell migration and invasion in vitro and metastasis in vivo. E6/E7 regulates the expression of CTHRC1 in cervical cancer by E6/E7-p53-POU2F1 (POU class 2 homeobox 1) axis. Futhermore, CTHRC1 activates Wnt/PCP signaling pathway. Take together, E6/E7-p53-POU2F1-CTHRC1 axis promotes cervical cancer cell invasion and metastasis and may act as a potential therapeutic target for interventions against cervical cancer invasion and metastasis. PMID:28303973

  20. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    PubMed

    Carcagno, Abel L; Marazita, Mariela C; Ogara, María F; Ceruti, Julieta M; Sonzogni, Silvina V; Scassa, María E; Giono, Luciana E; Cánepa, Eduardo T

    2011-01-01

    A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity.

  1. E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation

    PubMed Central

    Carcagno, Abel L.; Marazita, Mariela C.; Ogara, María F.; Ceruti, Julieta M.; Sonzogni, Silvina V.; Scassa, María E.; Giono, Luciana E.; Cánepa, Eduardo T.

    2011-01-01

    Background A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. Methodology/Principal Findings In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. Conclusions/Significance The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an

  2. E2F1 transcription factor and its impact on growth factor and cytokine signaling.

    PubMed

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes

    2016-10-01

    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation.

    PubMed

    Cui, J G; Zhao, Y; Sethi, P; Li, Y Y; Mahta, A; Culicchia, F; Lukiw, W J

    2010-07-01

    High density micro-RNA (miRNA) arrays, fluorescent-reporter miRNA assay and Northern miRNA dot-blot analysis show that a brain-enriched miRNA-128 is significantly down-regulated in glioblastoma multiforme (GBM) and in GBM cell lines when compared to age-matched controls. The down-regulation of miRNA-128 was found to inversely correlate with WHO tumor grade. Three bioinformatics-verified miRNA-128 targets, angiopoietin-related growth factor protein 5 (ARP5; ANGPTL6), a transcription suppressor that promotes stem cell renewal and inhibits the expression of known tumor suppressor genes involved in senescence and differentiation, Bmi-1, and a transcription factor critical for the control of cell-cycle progression, E2F-3a, were found to be up-regulated. Addition of exogenous miRNA-128 to CRL-1690 and CRL-2610 GBM cell lines (a) restored 'homeostatic' ARP5 (ANGPTL6), Bmi-1 and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and CRL-2610 cell lines. Our data suggests that down-regulation of miRNA-128 may contribute to glioma and GBM, in part, by coordinately up-regulating ARP5 (ANGPTL6), Bmi-1 and E2F-3a, resulting in the proliferation of undifferentiated GBM cells.

  4. Inhibition of E2F1 activity and cell cycle progression by arsenic via retinoblastoma protein.

    PubMed

    Sheldon, Lynn A

    2017-01-01

    The regulation of cell cycle progression by steroid hormones and growth factors is important for maintaining normal cellular processes including development and cell proliferation. Deregulated progression through the G1/S and G2/M cell cycle transitions can lead to uncontrolled cell proliferation and cancer. The transcription factor E2F1, a key cell cycle regulator, targets genes encoding proteins that regulate cell cycle progression through the G1/S transition as well as proteins important in DNA repair and apoptosis. E2F1 expression and activity is inhibited by inorganic arsenic (iAs) that has a dual role as a cancer therapeutic and as a toxin that leads to diseases including cancer. An understanding of what underlies this dichotomy will contribute to understanding how to use iAs as a more effective therapeutic and also how to treat cancers that iAs promotes. Here, we show that quiescent breast adenocarcinoma MCF-7 cells treated with 17-β estradiol (E2) progress through the cell cycle, but few cells treated with E2 + iAs progress from G1 into S-phase due to a block in cell cycle progression. Our data support a model in which iAs inhibits the dissociation of E2F1 from the tumor suppressor, retinoblastoma protein (pRB) due to changes in pRB phosphorylation which leads to decreased E2F1 transcriptional activity. These findings present an explanation for how iAs can disrupt cell cycle progression through E2F1-pRB and has implications for how iAs acts as a cancer therapeutic as well as how it may promote tumorigenesis through decreased DNA repair.

  5. First somatic mutation of E2F1 in a critical DNA binding residue discovered in well-differentiated papillary mesothelioma of the peritoneum

    PubMed Central

    2011-01-01

    Background Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP. Results WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector. Conclusions The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1. PMID:21955916

  6. Copy number variations of E2F1: a new genetic risk factor for testicular cancer.

    PubMed

    Rocca, Maria Santa; Di Nisio, Andrea; Marchiori, Arianna; Ghezzi, Marco; Opocher, Giuseppe; Foresta, Carlo; Ferlin, Alberto

    2017-03-01

    Testicular germ cell tumor (TGCT) is one of the most heritable forms of cancer. In last years, many evidence suggested that constitutional genetic factors, mainly single nucleotide polymorphisms, can increase its risk. However, the possible contribution of copy number variations (CNVs) in TGCT susceptibility has not been substantially addressed. Indeed, an increasing number of studies have focused on the effect of CNVs on gene expression and on the role of these structural genetic variations as risk factors for different forms of cancer. E2F1 is a transcription factor that plays an important role in regulating cell growth, differentiation, apoptosis and response to DNA damage. Therefore, deficiency or overexpression of this protein might significantly influence fundamental biological processes involved in cancer development and progression, including TGCT. We analyzed E2F1 CNVs in 261 cases with TGCT and 165 controls. We found no CNVs in controls, but 17/261 (6.5%) cases showed duplications in E2F1 Blot analysis demonstrated higher E2F1 expression in testicular samples of TGCT cases with three copies of the gene. Furthermore, we observed higher phosphorylation of Akt and mTOR in samples with E2F1 duplication. Interestingly, normal, non-tumoral testicular tissue in patient with E2F1 duplication showed lower expression of E2F1 and lower AKT/mTOR phosphorylation with respect to adjacent tumor tissue. Furthermore, increased expression of E2F1 obtained in vitro in NTERA-2 testicular cell line induced increased AKT/mTOR phosphorylation. This study suggests for the first time an involvement of E2F1 CNVs in TGCT susceptibility and supports previous preliminary data on the importance of AKT/mTOR signaling pathway in this cancer. © 2017 Society for Endocrinology.

  7. Adenovirus-mediated E2-EPF UCP gene transfer prevents autoamputation in a mouse model of hindlimb ischemia.

    PubMed

    Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo

    2012-04-01

    E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis.

  8. E2F mediates enhanced alternative polyadenylation in proliferation.

    PubMed

    Elkon, Ran; Drost, Jarno; van Haaften, Gijs; Jenal, Mathias; Schrier, Mariette; Oude Vrielink, Joachim A F; Agami, Reuven

    2012-07-02

    The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation.

  9. E2F mediates enhanced alternative polyadenylation in proliferation

    PubMed Central

    2012-01-01

    Background The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Results Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Conclusions Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation. PMID:22747694

  10. Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish.

    PubMed

    Ota, Satoshi; Taimatsu, Kiyohito; Yanagi, Kanoko; Namiki, Tomohiro; Ohga, Rie; Higashijima, Shin-Ichi; Kawahara, Atsuo

    2016-10-11

    The CRISPR/Cas9 complex, which is composed of a guide RNA (gRNA) and the Cas9 nuclease, is useful for carrying out genome modifications in various organisms. Recently, the CRISPR/Cas9-mediated locus-specific integration of a reporter, which contains the Mbait sequence targeted using Mbait-gRNA, the hsp70 promoter and the eGFP gene, has allowed the visualization of the target gene expression. However, it has not been ascertained whether the reporter integrations at both targeted alleles cause loss-of-function phenotypes in zebrafish. In this study, we have inserted the Mbait-hs-eGFP reporter into the pax2a gene because the disruption of pax2a causes the loss of the midbrain-hindbrain boundary (MHB) in zebrafish. In the heterozygous Tg[pax2a-hs:eGFP] embryos, MHB formed normally and the eGFP expression recapitulated the endogenous pax2a expression, including the MHB. We observed the loss of the MHB in homozygous Tg[pax2a-hs:eGFP] embryos. Furthermore, we succeeded in integrating the Mbait-hs-eGFP reporter into an uncharacterized gene epdr1. The eGFP expression in heterozygous Tg[epdr1-hs:eGFP] embryos overlapped the epdr1 expression, whereas the distribution of eGFP-positive cells was disorganized in the MHB of homozygous Tg[epdr1-hs:eGFP] embryos. We propose that the locus-specific integration of the Mbait-hs-eGFP reporter is a powerful method to investigate both gene expression profiles and loss-of-function phenotypes.

  11. Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish

    PubMed Central

    Ota, Satoshi; Taimatsu, Kiyohito; Yanagi, Kanoko; Namiki, Tomohiro; Ohga, Rie; Higashijima, Shin-ichi; Kawahara, Atsuo

    2016-01-01

    The CRISPR/Cas9 complex, which is composed of a guide RNA (gRNA) and the Cas9 nuclease, is useful for carrying out genome modifications in various organisms. Recently, the CRISPR/Cas9-mediated locus-specific integration of a reporter, which contains the Mbait sequence targeted using Mbait-gRNA, the hsp70 promoter and the eGFP gene, has allowed the visualization of the target gene expression. However, it has not been ascertained whether the reporter integrations at both targeted alleles cause loss-of-function phenotypes in zebrafish. In this study, we have inserted the Mbait-hs-eGFP reporter into the pax2a gene because the disruption of pax2a causes the loss of the midbrain-hindbrain boundary (MHB) in zebrafish. In the heterozygous Tg[pax2a-hs:eGFP] embryos, MHB formed normally and the eGFP expression recapitulated the endogenous pax2a expression, including the MHB. We observed the loss of the MHB in homozygous Tg[pax2a-hs:eGFP] embryos. Furthermore, we succeeded in integrating the Mbait-hs-eGFP reporter into an uncharacterized gene epdr1. The eGFP expression in heterozygous Tg[epdr1-hs:eGFP] embryos overlapped the epdr1 expression, whereas the distribution of eGFP-positive cells was disorganized in the MHB of homozygous Tg[epdr1-hs:eGFP] embryos. We propose that the locus-specific integration of the Mbait-hs-eGFP reporter is a powerful method to investigate both gene expression profiles and loss-of-function phenotypes. PMID:27725766

  12. Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II.

    PubMed Central

    Pakrasi, H B; Williams, J G; Arntzen, C J

    1988-01-01

    The genes encoding the two subunits (alpha and beta) of the cytochrome b559 (cyt b559) protein, psbE and psbF, were cloned from the unicellular, transformable cyanobacterium, Synechocystis 6803. Cyt b559, an intrinsic membrane protein, is a component of photosystem II, a membrane-protein complex that catalyzes photosynthetic oxygen evolution. However, the role of cyt b559 in photosynthetic electron transport is yet to be determined. A high degree of homology was found between the cyanobacterial and green plant chloroplastidic psbE and psbE genes and in the amino acid sequences of their corresponding protein products. Cartridge mutagenesis techniques were used to generate a deletion mutant of Synechocystis 6803 in which the psbE and psbF genes were replaced by a kanamycin-resistance gene cartridge. Physiological analyses indicated that the PSII complexes of the mutant were inactivated. We conclude that cyt b559 is an essential component of PSII. Images PMID:3130246

  13. Peroxisome Proliferator-Activated Receptor β/δ Cross Talks with E2F and Attenuates Mitosis in HRAS-Expressing Cells

    PubMed Central

    Zhu, Bokai; Khozoie, Combiz; Bility, Moses T.; Ferry, Christina H.; Blazanin, Nicholas; Glick, Adam B.; Gonzalez, Frank J.

    2012-01-01

    The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G2/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis. PMID:22473992

  14. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes.

    PubMed

    Zellmer, Sebastian; Schmidt-Heck, Wolfgang; Godoy, Patricio; Weng, Honglei; Meyer, Christoph; Lehmann, Thomas; Sparna, Titus; Schormann, Wiebke; Hammad, Seddik; Kreutz, Clemens; Timmer, Jens; von Weizsäcker, Fritz; Thürmann, Petra A; Merfort, Irmgard; Guthke, Reinhard; Dooley, Steven; Hengstler, Jan G; Gebhardt, Rolf

    2010-12-01

    The cellular basis of liver regeneration has been intensely investigated for many years. However, the mechanisms initiating hepatocyte "plasticity" and priming for proliferation are not yet fully clear. We investigated alterations in gene expression patterns during the first 72 hours of C57BL/6N mouse hepatocyte culture on collagen monolayers (CM), which display a high basal frequency of proliferation in the absence of cytokines. Although many metabolic genes were down-regulated, genes related to mitogen-activated protein kinase (MAPK) signaling and cell cycle were up-regulated. The latter genes showed an overrepresentation of transcription factor binding sites (TFBS) for ETF (TEA domain family member 2), E2F1 (E2F transcription factor 1), and SP-1 (Sp1 transcription factor) (P < 0.001), all depending on MAPK signaling. Time-dependent increase of ERK1/2 phosphorylation occurred during the first 48 hours (and beyond) in the absence of cytokines, accompanied by an enhanced bromodeoxyuridine labeling index of 20%. The MEK inhibitor PD98059 blunted these effects indicating MAPK signaling as major trigger for this cytokine-independent proliferative response. In line with these in vitro findings, liver tissue of mice challenged with CCl(4) displayed hepatocytes with intense p-ERK1/2 staining and nuclear SP-1 and E2F1 expression. Furthermore, differentially expressed genes in mice after partial hepatectomy contained overrepresented TFBS for ETF, E2F1, and SP-1 and displayed increased expression of E2F1. Cultivation of murine hepatocytes on CM primes cells for proliferation through cytokine-independent activation of MAPK signaling. The transcription factors ETF, E2F1, and SP-1 seem to play a pronounced role in mediating proliferation-dependent differential gene expression. Similar events, but on a shorter time-scale, occur very early after liver damage in vivo. Copyright © 2010 American Association for the Study of Liver Diseases.

  15. The E2F3—Oncomir 1 axis is activated in Wilms Tumor

    PubMed Central

    Kort, Eric J.; Farber, Leslie; Tretiakova, Maria; Petillo, David; Furge, Kyle A.; Yang, Ximing J.; Cornelius, Albert; Teh, Bin T.

    2008-01-01

    Oncomir-1 is an oncogenic cluster of microRNAs located on chromosome 13. Previous in vitro studies demonstrated that it is transcriptionally regulated by the transcription factor E2F3. In this report we combine expression profiling of both messenger RNA (mRNA) and micro RNAs (miRNA) in Wilms tumor (WT) samples to provide the first evidence that the E2F3—Oncomir 1 axis, previously identified in cell culture, is deregulated in primary human tumors. Analysis of RNA expression signatures demonstrated that an E2F3 gene signature was activated in all Wilms tumor samples analyzed, in contrast to other kidney tumors. This finding was validated by immunohistochemistry (IHC) on the protein level. Expression of E2F3 was lowest in early stage tumors, and highest in metastatic tissue. Expression profiling of miRNAs in WT showed that expression of each measured member of the Oncomir-1 family was highest in WT relative to other kidney tumor subtypes. Quantitative polymerase chain reaction (PCR) confirmed that these microRNAs were overexpressed in Wilms tumor relative to normal kidney tissue. These results suggest that the E2F3—Oncomir-1 axis is activated in Wilms tumor. Our study also demonstrates the utility of integrated genomics combining gene signature analysis with miRNA expression profiling to identify protein-miRNA interactions that are perturbed in disease states. PMID:18519660

  16. A lentiviral vector with expression controlled by E2F-1: A potential tool for the study and treatment of proliferative diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Bryan E.; Patricio, Juliana Rotelli; Program in Biotechnology, University of Sao Paulo

    2006-10-06

    We have constructed a lentiviral vector with expression limited to cells presenting active E2F-1 protein, a potential advantage for gene therapy of proliferative diseases. For the FE2FLW vector, the promoter region of the human E2F-1 gene was utilized to drive expression of luciferase cDNA, included as a reporter of viral expression. Primary, immortalized, and transformed cells were transduced with the FE2FLW vector and cell cycle alterations were induced with serum starvation/replacement, contact inhibition or drug treatment, revealing cell cycle-dependent changes in reporter activity. Forced E2F-1 expression, but not E2F-2 or E2F-3, increased reporter activity, indicating a major role for thismore » factor in controlling expression from the FE2FLW virus. We show the utility of this vector as a reporter of E2F-1 and proliferation-dependent cellular alterations upon cytotoxic/cytostatic treatment, such as the introduction of tumor suppressor genes. We propose that the FE2FLW vector may be a starting point for the development of gene therapy strategies for proliferative diseases, such as cancer or restinosis.« less

  17. STAT3 or USF2 Contributes to HIF Target Gene Specificity

    PubMed Central

    Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun

    2013-01-01

    The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099

  18. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer.

    PubMed

    Christensen, Lise Lotte; Tobiasen, Heidi; Holm, Anja; Schepeler, Troels; Ostenfeld, Marie S; Thorsen, Kasper; Rasmussen, Mads H; Birkenkamp-Demtroeder, Karin; Sieber, Oliver M; Gibbs, Peter; Lubinski, Jan; Lamy, Philippe; Laurberg, Søren; Oster, Bodil; Hansen, Kristian Q; Hagemann-Madsen, Rikke; Byskov, Kristina; Ørntoft, Torben F; Andersen, Claus L

    2013-07-01

    Colorectal cancer (CRC) is one of the leading causes of cancer deaths in Western countries. A significant number of CRC patients undergoing curatively intended surgery subsequently develop recurrence and die from the disease. MicroRNAs (miRNAs) are aberrantly expressed in cancers and appear to have both diagnostic and prognostic significance. In this study, we identified novel miRNAs associated with recurrence of CRC, and their possible mechanism of action. TaqMan(®) Human MicroRNA Array Set v2.0 was used to profile the expression of 667 miRNAs in 14 normal colon mucosas and 46 microsatellite stable CRC tumors. Four miRNAs (miR-362-3p, miR-570, miR-148 a* and miR-944) were expressed at a higher level in tumors from patients with no recurrence (p<0.015), compared with tumors from patients with recurrence. A significant association with increased disease free survival was confirmed for miR-362-3p in a second independent cohort of 43 CRC patients, using single TaqMan(®) microRNA assays. In vitro functional analysis showed that over-expression of miR-362-3p in colon cancer cell lines reduced cell viability, and proliferation mainly due to cell cycle arrest. E2F1, USF2 and PTPN1 were identified as potential miR-362-3p targets by mRNA profiling of HCT116 cells over-expressing miR-362-3p. Subsequently, these genes were confirmed as direct targets by Luciferase reporter assays and their knockdown in vitro phenocopied the effects of miR-362-3p over-expression. We conclude that miR-362-3p may be a novel prognostic marker in CRC, and hypothesize that the positive effects of augmented miR-362-3p expression may in part be mediated through the targets E2F1, USF2 and PTPN1. Copyright © 2012 UICC.

  19. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting

    PubMed Central

    Lindeman, Geoffrey J.; Dagnino, Lina; Gaubatz, Stefan; Xu, Yuhui; Bronson, Roderick T.; Warren, Henry B.; Livingston, David M.

    1998-01-01

    Homozygous E2F-5 knockout embryos and mice have been generated. Although embryonic development appeared normal, newborn mice developed nonobstructive hydrocephalus, suggesting excessive cerebrospinal fluid (CSF) production. Although the CSF-producing choroid plexus displayed normal cellular organization, it contained abundant electron-lucent epithelial cells, consistent with excessive CSF secretory activity. Moreover, E2F-5 CNS expression in normal animals was largely confined to the choroid plexus. Cell cycle kinetics were not perturbed in homozygous knockout embryo fibroblasts. Thus, E2F-5 is not essential for cell proliferation. Rather, it affects the secretory behavior of a differentiated neural tissue. PMID:9553039

  20. Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma

    PubMed Central

    2013-01-01

    Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize

  1. E2F4 Promotes Neuronal Regeneration and Functional Recovery after Spinal Cord Injury in Zebrafish

    PubMed Central

    Sasagawa, Shota; Nishimura, Yuhei; Hayakawa, Yuka; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Okabe, Shiko; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Mammals exhibit poor recovery after spinal cord injury (SCI), whereas non-mammalian vertebrates exhibit significant spontaneous recovery after SCI. The mechanisms underlying this difference have not been fully elucidated; therefore, the purpose of this study was to investigate these mechanisms. Using comparative transcriptome analysis, we demonstrated that genes related to cell cycle were significantly enriched in the genes specifically dysregulated in zebrafish SCI. Most of the cell cycle-related genes dysregulated in zebrafish SCI were down-regulated, possibly through activation of e2f4. Using a larval zebrafish model of SCI, we demonstrated that the recovery of locomotive function and neuronal regeneration after SCI were significantly inhibited in zebrafish treated with an E2F4 inhibitor. These results suggest that activation of e2f4 after SCI may be responsible, at least in part, for the significant recovery in zebrafish. This provides novel insight into the lack of recovery after SCI in mammals and informs potential therapeutic strategies. PMID:27242526

  2. Transcriptional control of stem cell fate by E2Fs and pocket proteins

    PubMed Central

    Julian, Lisa M.; Blais, Alexandre

    2015-01-01

    E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs. PMID:25972892

  3. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila

    PubMed Central

    Zhang, Jing; Tian, Miao; Miao, Wei

    2017-01-01

    ABSTRACT Members of the E2F family of transcription factors have been reported to regulate the expression of genes involved in cell cycle control, DNA replication, and DNA repair in multicellular eukaryotes. Here, E2FL1, a meiosis-specific E2F transcription factor gene, was identified in the model ciliate Tetrahymena thermophila. Loss of this gene resulted in meiotic arrest prior to anaphase I. The cytological experiments revealed that the meiotic homologous pairing was not affected in the absence of E2FL1, but the paired homologous chromosomes did not separate and assumed a peculiar tandem arrangement. This is the first time that an E2F family member has been shown to regulate meiotic events. Moreover, BrdU incorporation showed that DSB processing during meiosis was abnormal upon the deletion of E2FL1. Transcriptome sequencing analysis revealed that E2FL1 knockout decreased the expression of genes involved in DNA replication and DNA repair in T. thermophila, suggesting that the function of E2F is highly conserved in eukaryotes. In addition, E2FL1 deletion inhibited the expression of related homologous chromosome segregation genes in T. thermophila. The result may explain the meiotic arrest phenotype at anaphase I. Finally, by searching for E2F DNA-binding motifs in the entire T. thermophila genome, we identified 714 genes containing at least one E2F DNA-binding motif; of these, 235 downregulated represent putative E2FL1 target genes. PMID:27892792

  4. HBV core promoter mutations promote cellular proliferation through E2F1-mediated upregulation of S-phase kinase-associated protein 2 transcription.

    PubMed

    Huang, Yuehua; Tai, Andrew W; Tong, Shuping; Lok, Anna S F

    2013-06-01

    Hepatitis B virus (HBV) core promoter (CP) mutations have been associated with an increased risk of hepatocellular carcinoma (HCC) in clinical studies. We previously reported that a combination of CP mutations seen in HCC patients, expressed in HBx gene, increased SKP2 (S-phase kinase-associated protein 2) expression, thereby promoting cellular proliferation. Here, we investigate the possible mechanisms by which CP mutations upregulate SKP2. We used immunoblotting and ATPlite assay to validate the effect of CP mutations in full-length HBV genome on cell cycle regulator levels and cell proliferation. Activation of SKP2 mRNA was assessed by quantitative real-time PCR in primary human hepatocytes (PHH) and HCC cell lines. Effect of CP mutations on SKP2 promoter activity was determined by luciferase assay. Target regulation of E2F1 on SKP2 was analyzed by siRNAs. CP mutations in full-length HBV genome upregulated SKP2 expression, thereby downregulating cell cycle inhibitors and accelerating cellular proliferation. CP mutations enhanced SKP2 promoter activity but had no effect on SKP2 protein stability. Mapping of the SKP2 promoter identified a region necessary for activation by CP mutations that contains an E2F1 response element. Knocking down E2F1 reduced the effects of CP mutations on SKP2 and cellular proliferation. The effect of CP mutations on E2F1 might be mediated through hyperphosphorylation of RB. HBV CP mutations enhance SKP2 transcription by activating the E2F1 transcription factor and in turn downregulate cell cycle inhibitors, thus providing a potential mechanism for an association between CP mutations and HCC. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins.

    PubMed

    Yin, Mianmian; Wang, Xiaorong; Yao, Guidong; Lü, Mingrong; Liang, Meng; Sun, Yingpu; Sun, Fei

    2014-06-27

    Our previous studies have shown that microRNA-320 (miR-320) is one of the most down-regulated microRNAs (miRNA) in mouse ovarian granulosa cells (GCs) after TGF-β1 treatment. However, the underlying mechanisms of miR-320 involved in GC function during follicular development remain unknown. In this study, we found that pregnant mare serum gonadotropin treatment resulted in the suppression of miR-320 expression in a time-dependent manner. miR-320 was mainly expressed in GCs and oocytes of mouse ovarian follicles in follicular development. Overexpression of miR-320 inhibited estradiol synthesis and proliferation of GCs through targeting E2F1 and SF-1. E2F1/SF-1 mediated miR-320-induced suppression of GC proliferation and of GC steroidogenesis. FSH down-regulated the expression of miR-320 and regulated the function of miR-320 in mouse GCs. miR-383 promoted the expression of miR-320 and enhanced miR-320-mediated suppression of GC proliferation. Injection of miR-320 into the ovaries of mice partially promoted the production of testosterone and progesterone but inhibited estradiol release in vivo. Moreover, the expression of miR-320 and miR-383 was up-regulated in the follicular fluid of polycystic ovarian syndrome patients, although the expression of E2F1 and SF-1 was down-regulated in GCs. These data demonstrated that miR-320 regulates the proliferation and steroid production by targeting E2F1 and SF-1 in the follicular development. Understanding the regulation of miRNA biogenesis and function in the follicular development will potentiate the usefulness of miRNA in the treatment of reproduction and some steroid-related disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. MGA, L3MBTL2 and E2F6 determine genomic binding of the non-canonical Polycomb repressive complex PRC1.6

    PubMed Central

    Stielow, Bastian; Finkernagel, Florian; Stiewe, Thorsten

    2018-01-01

    Diverse Polycomb repressive complexes 1 (PRC1) play essential roles in gene regulation, differentiation and development. Six major groups of PRC1 complexes that differ in their subunit composition have been identified in mammals. How the different PRC1 complexes are recruited to specific genomic sites is poorly understood. The Polycomb Ring finger protein PCGF6, the transcription factors MGA and E2F6, and the histone-binding protein L3MBTL2 are specific components of the non-canonical PRC1.6 complex. In this study, we have investigated their role in genomic targeting of PRC1.6. ChIP-seq analysis revealed colocalization of MGA, L3MBTL2, E2F6 and PCGF6 genome-wide. Ablation of MGA in a human cell line by CRISPR/Cas resulted in complete loss of PRC1.6 binding. Rescue experiments revealed that MGA recruits PRC1.6 to specific loci both by DNA binding-dependent and by DNA binding-independent mechanisms. Depletion of L3MBTL2 and E2F6 but not of PCGF6 resulted in differential, locus-specific loss of PRC1.6 binding illustrating that different subunits mediate PRC1.6 loading to distinct sets of promoters. Mga, L3mbtl2 and Pcgf6 colocalize also in mouse embryonic stem cells, where PRC1.6 has been linked to repression of germ cell-related genes. Our findings unveil strikingly different genomic recruitment mechanisms of the non-canonical PRC1.6 complex, which specify its cell type- and context-specific regulatory functions. PMID:29381691

  7. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacentmore » to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.« less

  8. Adenovirus-mediated E2-EPF UCP Gene Transfer Prevents Autoamputation in a Mouse Model of Hindlimb Ischemia

    PubMed Central

    Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo

    2012-01-01

    E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis. PMID:22294149

  9. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli.

    PubMed

    Yamanaka, K; Ogura, T; Niki, H; Hiraga, S

    1996-02-25

    We have previously reported that the MukB protein is essential for chromosome partitioning in Escherichia coli and that mukB mutants produce anucleate cells and are temperature-sensitive for colony formation. The mukB gene maps at 21 min on the E. coli chromosome and smtA-mukF-mukE-mukB genes might comprise an operon, which is transcribed in a clockwise direction. Here, we report that mukF and mukE null mutants are both temperature-sensitive for colony formation and produce anucleate cells even at the permissive temperature. These phenotypes are the same as those observed in the mukB null mutant. The primary sequence of MukF includes a leucine zipper structure and an acidic domain. Mutational analysis revealed that both are required for MukF function. When the MukF protein was overproduced in the wild-type strain, anucleate cells were produced. In contrast, overproduction of either MukE or MukB did not cause the defect. In null mutants for the mukF, mukE, and mukB genes, the synchronous initiation of chromosome replication was not affected. The mini-F plasmid was as stably maintained in these mutants as in the wild-type strain. These results indicate that the MukF, MukE, and MukB proteins are involved in the chromosome partitioning steps, but are not required for mini-F plasmid partitioning.

  11. Phage-mediated Delivery of Targeted sRNA Constructs to Knock Down Gene Expression in E. coli.

    PubMed

    Bernheim, Aude G; Libis, Vincent K; Lindner, Ariel B; Wintermute, Edwin H

    2016-03-20

    RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.

  12. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line.

    PubMed

    Pojskic, Lejla; Haveric, Sanin; Lojo-Kadric, Naida; Hadzic, Maida; Haveric, Anja; Galic, Zoran; Galic, Borivoj; Vullo, Daniela; Supuran, Claudiu T; Milos, Mladen

    2016-12-01

    Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.

  13. Identification of potential target genes and related regulatory transcription factors in spontaneous hairline fracture induced by hypervitaminosis A.

    PubMed

    Peng, Chuangang; Yang, Qi; Wei, Bo; Liu, Yong; Li, Yuxiang; Gu, Dawei; Yin, Guochao; Wang, Bo; Xu, Dehui; Zhang, Xuebing; Kong, Daliang

    2017-07-01

    The aim was to research the molecular changes of bone cells induced by excessive dose of vitamin A, and analyze molecular mechanism underlying spontaneous fracture. The gene expression profile of GSE29859, including 4 cortical bone marrow samples with excessive doses of Vitamin A and 4 control cortical bone marrow samples, was obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DGEs) between cortical bone marrow samples and control samples were screened out and pathway enrichment analysis was undertaken. Based on the MSigDB database, the potential regulatory transcription factors (TFs) were identified. A total of 373 DEGs including 342 up- and 31 down-regulated genes were identified. These DEGs were significantly enriched in pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism. Finally, the most significant regulatory TFs were obtained, including E2F Transcription Factor 1 (E2F1), GA Binding Protein Transcription Factor (GABP), Nuclear Factor, Erythroid 2-Like 2 (NRF2) and ELK1, Member of ETS Oncogene Family (ELK1). Key TFs including E2F1, GABP, NRF2 and ELK1 and their targets genes such as Ube2d3, Uba1, Phb2 and Tomm22 may play potential key roles in spontaneous fracture induced by hypervitaminosis A. The pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism may be key mechanisms involved in spontaneous fracture induced by hypervitaminosis A. Our findings will provide new insights for the target selection in clinical application to prevent spontaneous fracture induced by hypervitaminosis A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. E4F1 deficiency results in oxidative stress–mediated cell death of leukemic cells

    PubMed Central

    Hatchi, Elodie; Rodier, Genevieve; Lacroix, Matthieu; Caramel, Julie; Kirsh, Olivier; Jacquet, Chantal; Schrepfer, Emilie; Lagarrigue, Sylviane; Linares, Laetitia Karine; Lledo, Gwendaline; Tondeur, Sylvie; Dubus, Pierre

    2011-01-01

    The multifunctional E4F1 protein was originally discovered as a target of the E1A viral oncoprotein. Growing evidence indicates that E4F1 is involved in key signaling pathways commonly deregulated during cell transformation. In this study, we investigate the influence of E4F1 on tumorigenesis. Wild-type mice injected with fetal liver cells from mice lacking CDKN2A, the gene encoding Ink4a/Arf, developed histiocytic sarcomas (HSs), a tumor originating from the monocytic/macrophagic lineage. Cre-mediated deletion of E4F1 resulted in the death of HS cells and tumor regression in vivo and extended the lifespan of recipient animals. In murine and human HS cell lines, E4F1 inactivation resulted in mitochondrial defects and increased production of reactive oxygen species (ROS) that triggered massive cell death. Notably, these defects of E4F1 depletion were observed in HS cells but not healthy primary macrophages. Short hairpin RNA–mediated depletion of E4F1 induced mitochondrial defects and ROS-mediated death in several human myeloid leukemia cell lines. E4F1 protein is overexpressed in a large subset of human acute myeloid leukemia samples. Together, these data reveal a role for E4F1 in the survival of myeloid leukemic cells and support the notion that targeting E4F1 activities might have therapeutic interest. PMID:21708927

  15. The Drosophila FTZ-F1 Nuclear Receptor Mediates Juvenile Hormone Activation of E75A Gene Expression through an Intracellular Pathway*

    PubMed Central

    Dubrovsky, Edward B.; Dubrovskaya, Veronica A.; Bernardo, Travis; Otte, Valerie; DiFilippo, Robert; Bryan, Heather

    2011-01-01

    Juvenile hormone (JH) regulates a wide variety of biological activities in holometabolous insects, ranging from vitellogenesis and caste determination in adults to the timing of metamorphosis in larvae. The mechanism of JH signaling in such a diverse array of processes remains either unknown or contentious. We previously found that the nuclear receptor gene E75A is activated in S2 cells as a primary response to JH. Here, by expressing an intracellular form of JH esterase, we demonstrate that JH must enter the cell in order to activate E75A. To find intracellular receptors involved in the JH response, we performed an RNAi screen against nuclear receptor genes expressed in this cell line and identified the orphan receptor FTZ-F1. Removal of FTZ-F1 prevents JH activation of E75A, whereas overexpression enhances activation, implicating FTZ-F1 as a critical component of the JH response. FTZ-F1 is bound in vivo to multiple enhancers upstream of E75A, suggesting that it participates in direct JH-mediated gene activation. To better define the role of FTZ-F1 in JH signaling, we investigated interactions with candidate JH receptors and found that the bHLH-PAS proteins MET and GCE both interact with FTZ-F1 and can activate transcription through the FTZ-F1 response element. Removal of endogenous GCE, but not MET, prevents JH activation of E75A. We propose that FTZ-F1 functions as a competence factor by loading JH signaling components to the promoter, thus facilitating the direct regulation of E75A gene expression by JH. PMID:21832074

  16. Overexpression of E2F3 promotes proliferation of functional human β cells without induction of apoptosis

    PubMed Central

    Rady, Brian; Chen, Yanmei; Vaca, Pilar; Wang, Qian; Wang, Yong; Salmon, Patrick; Oberholzer, José

    2013-01-01

    The mechanisms that control proliferation, or lack thereof, in adult human β cells are poorly understood. Controlled induction of proliferation could dramatically expand the clinical application of islet cell transplantation and represents an important component of regenerative approaches to a functional cure of diabetes. Adult human β cells are particularly resistant to common proliferative targets and often dedifferentiate during proliferation. Here we show that expression of the transcription factor E2F3 has a role in regulating β-cell quiescence and proliferation. We found human islets have virtually no expression of the pro-proliferative G1/S transcription factors E2F1–3, but an abundance of inhibitory E2Fs 4–6. In proliferative human insulinomas, inhibitory E2Fs were absent, while E2F3 is expressed. Using this pattern as a “roadmap” for proliferation, we demonstrated that ectopic expression of nuclear E2F3 induced significant expansion of insulin-positive cells in both rat and human islets. These cells did not undergo apoptosis and retained their glucose-responsive insulin secretion, showing the ability to reverse diabetes in mice. Our results suggest that E2F4–6 may help maintain quiescence in human β cells and identify E2F3 as a novel target to induce proliferation of functional β cells. Refinement of this approach may increase the islets available for cell-based therapies and research and could provide important cues for understanding in vivo proliferation of β cells. PMID:23907129

  17. SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5.

    PubMed

    Cai, Chang; Huo, Qiang; Wang, Xiaolong; Chen, Bing; Yang, Qifeng

    2017-04-01

    Long noncoding RNAs (lncRNAs) have been proved to play important roles in cellular processes of cancer, including the development, proliferation, and migration of cancer cells. In the present study, we demonstrated small nucleolar RNA host gene 16 (SNHG16) as an oncogene on cell migration in breast cancer. Expression levels of SNHG16 were found to be frequently higher in breast cancer tissues than in the paired noncancerous tissues. Gain- and loss-of-function studies proved that SNHG16 significantly promoted breast cancer cell migration. We predicted SNHG16 as a competitive endogenous RNA (ceRNA) of E2F transcription factor 5 protein (E2F5) via competition for the shared miR-98 through bioinformatics analysis, and proved this regulation using relative quantitative real-time PCR (qRT-PCR), western blot, RNA immunoprecipitation (RIP) assay and luciferase reporter assay. In addition, we identified a positive correlation between SNHG16 and E2F5 in breast cancer tissues. Furthermore, we demonstrated that forced expression of miR-98 could partially abrogate SNHG16-mediated increase of breast cancer cells migration, suggesting that SNHG16 promoted cell migration in a miR-98 dependent manner. Taken together, our findings indicated that SNHG16 induces breast cancer cell migration by competitively binding miR-98 with E2F5, and SNHG16 can serve as a potential therapeutic target for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. MicroRNA-424/E2F6 feedback loop modulates cell invasion, migration and EMT in endometrial carcinoma

    PubMed Central

    Lu, Zheng; Nian, Zhou; Jingjing, Zhang; Tao, Luo; Quan, Li

    2017-01-01

    Our previous study explored the roles of microRNA-424 (miR-424) in the development of endometrial carcinoma (EC) and analyzed the miR-424/E2F7 axis in EC cell growth. In this study, we investigated the status of miR-424 in human endometrial cancer tissues, which were collected from a cohort of Zunyi patients. We found that the expression level of miR-424 was associated with clinical tumor stage, cell differentiation, lymph node metastasis and cell migration ability. Cell function experiments demonstrated that miR-424 overexpression suppressed the invasion and migration abilities of endometrial carcinoma cells in vitro. Bioinformatic predictions and dual-luciferase reporter assays suggested E2F6 as a possible target of miR-424. RT-PCR and western blot assays demonstrated that miR-424 transfection reduced the expression level of E2F6, while inhibiting miR-424 with ASO-miR-424 (antisense oligonucleotides of miR-424) increased the expression level of E2F6. Cell function experiments indicated that E2F6 transfection rescued the EC cell phenotype induced by miR-424. In addition, we also found that E2F6 negatively regulated miR-424 expression in EC cells. In summary, our results demonstrated that the miR-424/E2F6 feedback loop modulates cell invasion, migration and EMT in EC and that the miR-424/E2Fs regulation network may serve as a new and potentially important therapeutic target in EC. PMID:29371986

  19. AMP-activated protein kinase α2 and E2F1 transcription factor mediate doxorubicin-induced cytotoxicity by forming a positive signal loop in mouse embryonic fibroblasts and non-carcinoma cells.

    PubMed

    Yang, Wookyeom; Park, In-Ja; Yun, Hee; Im, Dong-Uk; Ock, Sangmi; Kim, Jaetaek; Seo, Seon-Mi; Shin, Ha-Yeon; Viollet, Benoit; Kang, Insug; Choe, Wonchae; Kim, Sung-Soo; Ha, Joohun

    2014-02-21

    Doxorubicin is one of the most widely used anti-cancer drugs, but its clinical application is compromised by severe adverse effects in different organs including cardiotoxicity. In the present study we explored mechanisms of doxorubicin-induced cytotoxicity by revealing a novel role for the AMP-activated protein kinase α2 (AMPKα2) in mouse embryonic fibroblasts (MEFs). Doxorubicin robustly induced the expression of AMPKα2 in MEFs but slightly reduced AMPKα1 expression. Our data support the previous notion that AMPKα1 harbors survival properties under doxorubicin treatment. In contrast, analyses of Ampkα2(-/-) MEFs, gene knockdown of AMPKα2 by shRNA, and inhibition of AMPKα2 activity with an AMPK inhibitor indicated that AMPKα2 functions as a pro-apoptotic molecule under doxorubicin treatment. Doxorubicin induced AMPKα2 at the transcription level via E2F1, a transcription factor that regulates apoptosis in response to DNA damage. E2F1 directly transactivated the Ampkα2 gene promoter. In turn, AMPKα2 significantly contributed to stabilization and activation of E2F1 by doxorubicin, forming a positive signal amplification loop. AMPKα2 directly interacted with and phosphorylated E2F1. This signal loop was also detected in H9c2, C2C12, and ECV (human epithelial cells) cells as well as mouse liver under doxorubicin treatment. Resveratrol, which has been suggested to attenuate doxorubicin-induced cytotoxicity, significantly blocked induction of AMPKα2 and E2F1 by doxorubicin, leading to protection of these cells. This signal loop appears to be non-carcinoma-specific because AMPKα2 was not induced by doxorubicin in five different tested cancer cell lines. These results suggest that AMPKα2 may serve as a novel target for alleviating the cytotoxicity of doxorubicin.

  20. Tandem E2F Binding Sites in the Promoter of the p107 Cell Cycle Regulator Control p107 Expression and Its Cellular Functions

    PubMed Central

    Burkhart, Deborah L.; Wirt, Stacey E.; Zmoos, Anne-Flore; Kareta, Michael S.; Sage, Julien

    2010-01-01

    The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells. PMID:20585628

  1. Analysis of E2F factors during epidermal differentiation.

    PubMed

    Chang, Wing Y; Dagnino, Lina

    2005-01-01

    The multigene E2F family of transcription factors is central in the control of cell cycle progression. The expression and activity of E2F proteins is tightly regulated transcriptionally and posttranslationally as a function of the proliferation and differentiation status of the cell. In this chapter, we review protocols designed to determine E2F mRNA abundance in tissues by in situ hybridization techniques. The ability to culture primary epidermal keratinocytes and maintain them as either undifferentiated or terminally differentiated cells allows the biochemical and molecular characterization of changes in E2F expression and activity. Thus, we also discuss in detail methods to analyze E2F protein abundance by immunoblot and their ability to bind DNA in cultured cells using electrophoretic mobility shift assays.

  2. Drug2Gene: an exhaustive resource to explore effectively the drug-target relation network.

    PubMed

    Roider, Helge G; Pavlova, Nadia; Kirov, Ivaylo; Slavov, Stoyan; Slavov, Todor; Uzunov, Zlatyo; Weiss, Bertram

    2014-03-11

    Information about drug-target relations is at the heart of drug discovery. There are now dozens of databases providing drug-target interaction data with varying scope, and focus. Therefore, and due to the large chemical space, the overlap of the different data sets is surprisingly small. As searching through these sources manually is cumbersome, time-consuming and error-prone, integrating all the data is highly desirable. Despite a few attempts, integration has been hampered by the diversity of descriptions of compounds, and by the fact that the reported activity values, coming from different data sets, are not always directly comparable due to usage of different metrics or data formats. We have built Drug2Gene, a knowledge base, which combines the compound/drug-gene/protein information from 19 publicly available databases. A key feature is our rigorous unification and standardization process which makes the data truly comparable on a large scale, allowing for the first time effective data mining in such a large knowledge corpus. As of version 3.2, Drug2Gene contains 4,372,290 unified relations between compounds and their targets most of which include reported bioactivity data. We extend this set with putative (i.e. homology-inferred) relations where sufficient sequence homology between proteins suggests they may bind to similar compounds. Drug2Gene provides powerful search functionalities, very flexible export procedures, and a user-friendly web interface. Drug2Gene v3.2 has become a mature and comprehensive knowledge base providing unified, standardized drug-target related information gathered from publicly available data sources. It can be used to integrate proprietary data sets with publicly available data sets. Its main goal is to be a 'one-stop shop' to identify tool compounds targeting a given gene product or for finding all known targets of a drug. Drug2Gene with its integrated data set of public compound-target relations is freely accessible without

  3. TFDP3 was expressed in coordination with E2F1 to inhibit E2F1-mediated apoptosis in prostate cancer.

    PubMed

    Ma, Yueyun; Xin, Yijuan; Li, Rui; Wang, Zhe; Yue, Qiaohong; Xiao, Fengjing; Hao, Xiaoke

    2014-03-10

    TFDP3 has been previously identified as an inhibitor of E2F molecules. It has been shown to suppress E2F1-induced apoptosis dependent P53 and to play a potential role in carcinogenesis. However, whether it indeed helps cancer cells tolerate apoptosis stress in cancer tissues remains unknown. TFDP3 expression was assessed by RT-PCR, in situ hybridization and immunohistochemistry in normal human tissues, cancer tissues and prostate cancer tissues. The association between TFDP3 and E2F1 in prostate cancer development was analyzed in various stages. Apoptosis was evaluated with annexin-V and propidium iodide staining and flow-cytometry. The results show that, in 96 samples of normal human tissues, TFDP3 could be detected in the cerebrum, esophagus, stomach, small intestine, bronchus, breast, ovary, uterus, and skin, but seldom in the lung, muscles, prostate, and liver. In addition, TFDP3 was highly expressed in numerous cancer tissues, such as brain-keratinous, lung squamous cell carcinoma, testicular seminoma, cervical carcinoma, skin squamous cell carcinoma, gastric adenocarcinoma, liver cancer, and prostate cancer. Moreover, TFDP3 was positive in 23 (62.2%) of 37 prostate cancer samples regardless of stage. Furthermore, immunohistochemistry results show that TFDP3 was always expressed in coordination with E2F1 at equivalent expression levels in prostate cancer tissues, and was highly expressed particularly in samples of high stage. When E2F1 was extrogenously expressed in LNCap cells, TFDP3 could be induced, and the apoptosis induced by E2F1 was significantly decreased. It was demonstrated that TFDP3 was a broadly expressed protein corresponding to E2F1 in human tissues, and suggested that TFDP3 is involved in prostate cancer cell survival by suppressing apoptosis induced by E2F1. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Alpha-crystallins are involved in specific interactions with the murine gamma D/E/F-crystallin-encoding gene.

    PubMed

    Pietrowski, D; Durante, M J; Liebstein, A; Schmitt-John, T; Werner, T; Graw, J

    1994-07-08

    The promoter of the murine gamma E-crystallin (gamma E-Cry) encoding gene (gamma E-cry) was analyzed for specific interactions with lenticular proteins in a gel-retardation assay. A 21-bp fragment immediately downstream of the transcription initiation site (DOTIS) is demonstrated to be responsible for specific interactions with lens extracts. The DOTIS-binding protein(s) accept only the sense DNA strand as target; anti-sense or double-stranded DNA do not interact with these proteins. The DOTIS sequence element is highly conserved among the murine gamma D-, gamma E- and gamma F-cry and is present at comparable positions in the orthologous rat genes. Only a weak or even no protein-binding activity is observed if a few particular bases are changed, as in the rat gamma A-, gamma C- and gamma E-cry elements. DOTIS-binding proteins were found in commercially available bovine alpha-Cry preparations. The essential participation of alpha-Cry in the DNA-binding protein complex was confirmed using alpha-Cry-specific monoclonal antibody. The results reported here point to a novel function of alpha-Cry besides the structural properties in the lens.

  5. Potential proteins targeted by let-7f-5p in HeLa cells.

    PubMed

    Wang, Yu; Chen, Xiujuan; Zhang, Yi; Song, Jiandong

    2017-07-24

    MicroRNAs are a class of small, endogenous, non-coding RNAs mediating posttranscriptional gene silencing. The current authors hypothesized that let-7f-5p is likely involved in cell invasion and proliferation by regulating the expression of target genes. The current study combined let-7f-5p with iTRAQ to assess its effect on gene expression in HeLa cells. Results indicated that 164 proteins were expressed at different levels in HeLa cells overexpressing let-7f-5p and negative controls and that 172 proteins were expressed at different levels in let-7f-5p-silenced HeLa cells and negative controls. Results indicated that let-7f-5p may suppress insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in HeLa cells.

  6. Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2.

    PubMed

    Bishop, A; Satyamurthy, N; Bida, G; Hendry, G; Phelps, M; Barrio, J R

    1996-04-01

    The production of 18F electrophilic reagents via the 18O(p,n)18F reaction has been investigated in small-volume target bodies made of aluminum, copper, gold-plated copper and nickel, having straight or conical bore shapes. Three irradiation protocols-single-step, two-step and modified two-step-were used for the recovery of the 18F activity. The single-step irradiation protocol was tested in all the target bodies. Based on the single-step performance, aluminum targets were utilized extensively in the investigation of the two-step and modified two-step irradiation protocols. With an 11-MeV cyclotron and using the two-step irradiation protocol, > 1Ci [18F]F2 was recovered reproducibly from an aluminum target body. Probable radical mechanisms for the formation of OF2 and FONO2 (fluorine nitrate) in the single-step and modified two-step targets are proposed based on the amount of ozone generated and the nitrogen impurity present in the target gases, respectively.

  7. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells

    PubMed Central

    Koushyar, S; Economides, G; Zaat, S; Jiang, W; Bevan, C L; Dart, D A

    2017-01-01

    Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR. Additionally, their cellular locations and chromatin interactions are in dynamic opposition. We investigated the mechanisms of cell cycle inhibition by PHB and how this is modulated by AR in prostate cancer. Using a prostate cancer cell line overexpressing PHB, we analysed the gene expression changes associated with PHB-mediated cell cycle arrest. Over 1000 gene expression changes were found to be significant and gene ontology analysis confirmed PHB-mediated repression of genes essential for DNA replication and synthesis, for example, MCMs and TK1, via an E2F1 regulated pathway—agreeing with its G1/S cell cycle arrest activity. PHB is known to inhibit E2F1-mediated transcription, and the PHB:E2F1 interaction was seen in LNCaP nuclear extracts, which was then reduced by androgen treatment. Upon two-dimensional western blot analysis, the PHB protein itself showed androgen-mediated charge differentiation (only in AR-positive cells), indicating a potential dephosphorylation event. Kinexus phosphoprotein array analysis indicated that Src kinase was the main interacting intracellular signalling hub in androgen-treated LNCaP cells, and that Src inhibition could reduce this AR-mediated charge differentiation. PHB charge change may be associated with rapid dissociation from chromatin and E2F1, allowing the cell cycle to proceed. The AR and androgens may deactivate the repressive functions of PHB upon E2F1 leading to cell cycle progression, and indicates a role for AR in DNA replication licensing. PMID:28504694

  8. [miR-503-5p inhibits the proliferation of T24 and EJ bladder cancer cells by interfering with the Rb/E2F signaling pathway].

    PubMed

    Li, Xiaohui; Han, Xingtao; Yang, Jinhui; Sun, Jiantao; Wei, Pengtao

    2017-10-01

    Objective To observe the effect of microRNA-503-5p (miR-503-5p) on the growth of T24 and EJ bladder cancer cells, and explore the possible molecular mechanism. Methods The miR-504-5p mimics or miR-NC was transfected into T24 and EJ cells. The target gene of miR-503-5p was predicted by bioinformatics. The expressions of E2F transcription factor 3 (E2F3) mRNA and Rb/E2F signaling pathway mRNA were detected by the real-time quantitative PCR (qPCR). The expressions of Rb/E2F signal pathway proteins E2F3, cyclin E, CDK2, Rb and p-Rb were detected by Western blotting. The cell cycle of bladder cancer cell lines was determined by flow cytometry. MTT assay and plate cloning assay were performed to observe the proliferation ability of bladder cancer cells. Results After miR-503-5p mimics transfection, the expression of miR-503-5p in bladder cancer cells significantly increased. The increased expression of miR-503-5p significantly reduced the expressions of E2F3 mRNA and Rb/E2F signaling pathway mRNA in bladder cancer cells. What's more, the expressions of Rb/E2F signal pathway proteins were down-regulated. The bladder cancer cells were arrested in G0/G1 phase, and their growth was significantly inhibited by miR-503-5p. Conclusion The miR-503-5p over-expression can inhibit the growth of bladder cancer cell lines T24 and EJ by down-regulating the expression of the Rb/E2F signaling pathway.

  9. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  10. INHIBITION OF ERN1 SIGNALING ENZYME AFFECTS HYPOXIC REGULATION OF THE EXPRESSION OF E2F8, EPAS1, HOXC6, ATF3, TBX3 AND FOXF1 GENES IN U87 GLIOMA CELLS.

    PubMed

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Kovalevska, O V; Karbovskyi, L L; Bikfalvi, A

    2015-01-01

    Hypoxia as well as the endoplasmic reticulum stress are important factors of malignant tumor growth and control of the expression of genes, which regulate numerous metabolic processes and cell proliferation. Furthermore, blockade of ERN1 (endoplasmic reticulum to nucleus 1) suppresses cell proliferation and tumor growth. We studied the effect of hypoxia on the expression of genes encoding the transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F), and HOXC6 (homeobox C6) in U87 glioma cells with and without ERN1 signaling enzyme function. We have established that hypoxia enhances the expression of HOXC6, E2F8, ATF3, and EPAS1 genes but does not change TBX3 and FOXF1 gene expression in glioma cells with ERNI function. At the same time, the expression level of all studied genes is strongly decreased, except for TBX3 gene, in glioma cells without ERN1 function. Moreover, the inhibition of ERN1 signaling enzyme function significantly modifies the effect of hypoxia on the expression of these transcription factor genes. removes or introduces this regulation as well as changes a direction or magnitude of hypoxic regulation. Present study demonstrates that fine-tuning of the expression of proliferation related genes depends upon hypoxia and ERN1-mediated endoplasmic reticulum stress signaling and correlates with slower proliferation rate of glioma cells without ERN1 function.

  11. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development.

    PubMed

    Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum

    2015-01-15

    Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents. ©2014 American Association for Cancer Research.

  12. Identification of novel posttranscriptional targets of the BCR/ABL oncoprotein by ribonomics: requirement of E2F3 for BCR/ABL leukemogenesis

    PubMed Central

    Eiring, Anna M.; Neviani, Paolo; Santhanam, Ramasamy; Oaks, Joshua J.; Chang, Ji Suk; Notari, Mario; Willis, William; Gambacorti-Passerini, Carlo; Volinia, Stefano; Marcucci, Guido; Caligiuri, Michael A.; Leone, Gustavo W.

    2008-01-01

    Several RNA binding proteins (RBPs) have been implicated in the progression of chronic myelogenous leukemia (CML) from the indolent chronic phase to the aggressively fatal blast crisis. In the latter phase, expression and function of specific RBPs are aberrantly regulated at transcriptional or posttranslational levels by the constitutive kinase activity of the BCR/ABL oncoprotein. As a result, altered expression/function of RBPs leads to increased resistance to apoptotic stimuli, enhanced survival, growth advantage, and differentiation arrest of CD34+ progenitors from patients in CML blast crisis. Here, we identify the mRNAs bound to the hnRNP-A1, hnRNP-E2, hnRNP-K, and La/SSB RBPs in BCR/ABLtransformed myeloid cells. Interestingly, we found that the mRNA encoding the transcription factor E2F3 associates to hnRNP-A1 through a conserved binding site located in the E2F3 3′ untranslated region (UTR). E2F3 levels were up-regulated in CML-BCCD34+ in a BCR/ABL kinase– and hnRNP-A1 shuttling–dependent manner. Moreover, by using shRNA-mediated E2F3 knock-down and BCR/ABL-transduced lineage-negative bone marrow cells from E2F3+/+ and E2F3−/− mice, we show that E2F3 expression is important for BCR/ABL clonogenic activity and in vivo leukemogenic potential. Thus, the complexity of the mRNA/RBP network, together with the discovery of E2F3 as an hnRNP-A1–regulated factor, outlines the relevant role played by RBPs in posttranscriptional regulation of CML development and progression. PMID:17925491

  13. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity

    PubMed Central

    2011-01-01

    Background The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. Methods Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL). For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. Results We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. Conclusions Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new transcription factors

  14. Fine mapping and candidate gene analysis of the dominant glandless gene Gl^e2 in cotton (Gossypium spp.)

    USDA-ARS?s Scientific Manuscript database

    Cottonseed product is an excellent source of oil and protein. However, this nutrition source is greatly limited in utilization by the toxic gossypol in pigment glands. It is reported that the Gl2e gene could effectively control the formation of the pigment glands. Here, three F2 populations were c...

  15. The human RHOX gene cluster: target genes and functional analysis of gene variants in infertile men.

    PubMed

    Borgmann, Jennifer; Tüttelmann, Frank; Dworniczak, Bernd; Röpke, Albrecht; Song, Hye-Won; Kliesch, Sabine; Wilkinson, Miles F; Laurentino, Sandra; Gromoll, Jörg

    2016-11-15

    The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.

  16. Atypical E2f functions are critical for pancreas polyploidization

    PubMed Central

    Moreno, Eva; Toussaint, Mathilda J. M.; Tooten, Peter C. J.; van Essen, Saskia C.; van Liere, Elsbeth A.; Youssef, Sameh A.; Bongiovanni, Laura; de Bruin, Alain

    2018-01-01

    The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of polyploidization in the pancreas are still unknown. We discovered that atypical E2f activity is essential for polyploidization in the pancreas, using an inducible Cre/LoxP approach in new-born mice to delete ubiquitously the atypical E2f transcription factors, E2f7 and E2f8. In contrast to its critical role in embryonic survival, conditional deletion of both of both atypical E2fs in newborn mice had no impact on postnatal survival and mice lived until old age. However, deficiency of E2f7 or E2f8 alone was sufficient to suppress polyploidization in the pancreas and associated with only a minor decrease in blood serum levels of glucose, insulin, amylase and lipase under 4 hours starvation condition compared to wildtype littermates. In mice with fewer pancreatic polyploid cells that were fed ad libitum, no major impact on hormones or enzymes levels was observed. In summary, we identified atypical E2fs to be essential for polyploidization in the pancreas and discovered that postnatal induced loss of both atypical E2fs in many organs is compatible with life until old age. PMID:29329320

  17. Atypical E2f functions are critical for pancreas polyploidization.

    PubMed

    Matondo, Ramadhan B; Moreno, Eva; Toussaint, Mathilda J M; Tooten, Peter C J; van Essen, Saskia C; van Liere, Elsbeth A; Youssef, Sameh A; Bongiovanni, Laura; de Bruin, Alain

    2018-01-01

    The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of polyploidization in the pancreas are still unknown. We discovered that atypical E2f activity is essential for polyploidization in the pancreas, using an inducible Cre/LoxP approach in new-born mice to delete ubiquitously the atypical E2f transcription factors, E2f7 and E2f8. In contrast to its critical role in embryonic survival, conditional deletion of both of both atypical E2fs in newborn mice had no impact on postnatal survival and mice lived until old age. However, deficiency of E2f7 or E2f8 alone was sufficient to suppress polyploidization in the pancreas and associated with only a minor decrease in blood serum levels of glucose, insulin, amylase and lipase under 4 hours starvation condition compared to wildtype littermates. In mice with fewer pancreatic polyploid cells that were fed ad libitum, no major impact on hormones or enzymes levels was observed. In summary, we identified atypical E2fs to be essential for polyploidization in the pancreas and discovered that postnatal induced loss of both atypical E2fs in many organs is compatible with life until old age.

  18. Genus Beta Human Papillomavirus E6 Proteins Vary in Their Effects on the Transactivation of p53 Target Genes

    PubMed Central

    White, Elizabeth A.; Walther, Johanna; Javanbakht, Hassan

    2014-01-01

    ABSTRACT The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. IMPORTANCE This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help

  19. Evolving phage vectors for cell targeted gene delivery.

    PubMed

    Larocca, David; Burg, Michael A; Jensen-Pergakes, Kristen; Ravey, Edward Prenn; Gonzalez, Ana Maria; Baird, Andrew

    2002-03-01

    We adapted filamentous phage vectors for targeted gene delivery to mammalian cells by inserting a mammalian reporter gene expression cassette (GFP) into the vector backbone and fusing the pIII coat protein to a cell targeting ligand (i.e. FGF2, EGF). Like transfection with animal viral vectors, targeted phage gene delivery is concentration, time, and ligand dependent. Importantly, targeted phage particles are specific for the appropriate target cell surface receptor. Phage have distinct advantages over existing gene therapy vectors because they are simple, economical to produce at high titer, have no intrinsic tropism for mammalian cells, and are relatively simple to genetically modify and evolve. Initially transduction by targeted phage particles was low resulting in foreign gene expression in 1-2% of transfected cells. We increased transduction efficiency by modifying both the transfection protocol and vector design. For example, we stabilized the display of the targeting ligand to create multivalent phagemid-based vectors with transduction efficiencies of up to 45% in certain cell lines when combined with genotoxic treatment. Taken together, these studies establish that the efficiency of phage-mediated gene transfer can be significantly improved through genetic modification. We are currently evolving phage vectors with enhanced cell targeting, increased stability, reduced immunogenicity and other properties suitable for gene therapy.

  20. A New Set of ESTs from Chickpea (Cicer arietinum L.) Embryo Reveals Two Novel F-Box Genes, CarF-box_PP2 and CarF-box_LysM, with Potential Roles in Seed Development

    PubMed Central

    Gupta, Shefali; Garg, Vanika; Bhatia, Sabhyata

    2015-01-01

    Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development. PMID:25803812

  1. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes.

    PubMed

    Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2015-10-01

    We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.

  2. Modulation of E2F activity in primary mouse B cells following stimulation via surface IgM and CD40 receptors.

    PubMed

    Lam, E W; Glassford, J; van der Sman, J; Banerji, L; Pizzey, A R; Shaun, N; Thomas, B; Klaus, G G

    1999-10-01

    Since signals via CD40 and the B cell receptor are known to synergize to induce B cell activation, we have analyzed the pocket protein/E2F complexes in mouse B lymphocytes following stimulation by anti-IgM, anti-CD40, alone or together. We find that E2F4 and DP1 form the predominant E2F heterodimers in the G0 and G1 phases of the cell cycle, complexed with hypophosphorylated p130. During late G1 and S phase this complex is replaced by at least three different E2F complexes, one of which is an E2F complex containing p107 or pRB as well as two "free" E2F complexes consisting of E2F4/DP1 and E2F1-3/DP1. These effects were mirrored by the levels and phosphorylation status of the three pocket proteins. We also observed an increase in electrophoretic mobility of DP1 and E2F4 as B cells progressed from G0 into early G1, resulting from their dephosphorylation. This is known to correlate with a decrease in DNA binding capacity of these proteins and could also be important for derepression of genes negatively regulated through E2F sites in their promoters. These results therefore indicate that the pRB/E2F pathway integrates proliferative signals emanating from the sIgM and CD40 receptors.

  3. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    PubMed

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  4. Human Papillomavirus Type 18 E6 and E7 Genes Integrate into Human Hepatoma Derived Cell Line Hep G2

    PubMed Central

    Ma, Tianzhong; Su, Zhongjing; Chen, Ling; Liu, Shuyan; Zhu, Ningxia; Wen, Lifeng; Yuan, Yan; Lv, Leili; Chen, Xiancai; Huang, Jianmin; Chen, Haibin

    2012-01-01

    Background and Objectives Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. Methods We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Results Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Conclusion Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study. PMID:22655088

  5. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    PubMed

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  6. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    PubMed Central

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  7. E2F1/TS Immunophenotype and Survival of Patients with Colorectal Cancer Treated with 5FU-Based Adjuvant Therapy.

    PubMed

    Sulzyc-Bielicka, Violetta; Domagala, Pawel; Bielicki, Dariusz; Safranow, Krzysztof; Rogowski, Wojciech; Domagala, Wenancjusz

    2016-07-01

    The predictive value of thymidylate synthase (TS) expression alone for 5FU-based treatment of colorectal cancer (CRC) has not been clinically confirmed. Little is known on the association of expression of E2F1, which controls the transcription of genes encoding proteins engaged in DNA synthesis including TS, and survival of patients with CRC. The purpose of this study is to assess the correlation between expression of both E2F1 and TS in CRCs and survival of patients administered adjuvant 5FU-based chemotherapy, in order to find a better predictor of treatment outcome than expression of TS or E2F1 alone. Nuclear TS and E2F1 were detected by immunohistochemistry in tissue microarrays from 190 CRCs (Astler-Coller stage B2 or C). Multivariate analysis identified significant association of the combined E2F1+TS+ immunophenotype with worse OS (HR = 3,78, P = 0,009) and DFS (HR = 2,30, P = 0,03) of patients with colon cancer. There were significant differences between E2F1+TS+ and E2F1-TS- Kaplan-Meier survival curves in relation to DFS (P = 0.008) and OS (P = 0.01). About 37 and 31 % difference in 3-year DFS and OS respectively were seen between patients with E2F1+TS+ vs. E2F1-TS- colon cancer immunophenotype. The E2F1+TS+ immunophenotype may be a marker of poor prognosis (the worst DFS and OS) of patients with colon cancer treated with 5FU-based adjuvant therapy. A subgroup of patients with this immunophenotype may require different and perhaps more aggressive treatment than 5FU-based chemotherapy. Thus, the combined E2F1/TS immunophenotype could be a potential indicator of colon cancer sensitivity to 5FU.

  8. Silencing of E2F3 suppresses tumor growth of Her2+ breast cancer cells by restricting mitosis.

    PubMed

    Lee, Miyoung; Oprea-Ilies, Gabriela; Saavedra, Harold I

    2015-11-10

    The E2F transcriptional activators E2F1, E2F2 and E2F3a regulate many important cellular processes, including DNA replication, apoptosis and centrosome duplication. Previously, we demonstrated that silencing E2F1 or E2F3 suppresses centrosome amplification (CA) and chromosome instability (CIN) in Her2+ breast cancer cells without markedly altering proliferation. However, it is unknown whether and how silencing a single E2F activator, E2F3, affects malignancy of human breast cancer cells. Thus, we injected HCC1954 Her2+ breast cancer cells silenced for E2F3 into mammary fat pads of immunodeficient mice and demonstrated that loss of E2F3 retards tumor growth. Surprisingly, silencing of E2F3 led to significant reductions in mitotic indices relative to vector controls, while the percentage of cells undergoing S phase were not affected. Nek2 is a mitotic kinase commonly upregulated in breast cancers and a critical regulator of Cdk4- or E2F-mediated CA. In this report, we found that Nek2 overexpression rescued back the CA caused by silencing of shE2F3. However, the effects of Nek2 overexpression in affecting tumor growth rates of shE2F3 and shE2F3; GFP cells were inconclusive. Taken together, our results indicate that E2F3 silencing decreases mammary tumor growth by reducing percentage of cells undergoing mitosis.

  9. Bioactive constituents from Chinese natural medicines. XXII. Absolute structures of new megastigmane glycosides, sedumosides E1, E2, E3, F1, F2, and G, from Sedum sarmentosum (Crassulaceae).

    PubMed

    Morikawa, Toshio; Zhang, Yi; Nakamura, Seikou; Matsuda, Hisashi; Muraoka, Osamu; Yoshikawa, Masayuki

    2007-03-01

    Six new megastigmane glycosides, sedumosides E1, E2, E3, F1, F2, and G, were isolated from the whole plant of Sedum sarmentosum (Crassulaceae). The structures of new constituents including the absolute configuration were elucidated on the basis of chemical and physicochemical evidence.

  10. The NAMPT/E2F2/SIRT1 axis promotes proliferation and inhibits p53-dependent apoptosis in human melanoma cells.

    PubMed

    Zhao, Hailong; Tang, Weiwei; Chen, Xiaowen; Wang, Siyu; Wang, Xianyan; Xu, Haiyan; Li, Lijuan

    2017-11-04

    Melanoma is the most common primary malignant neoplasm in adults, causing more deaths than any other skin cancer, necessitating the development of new target-based approaches. Current evidence suggests SIRT1, the mammalian nicotinamide adenine dinucleotide (NAD + )-dependent protein deacetylase, and nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting NAD + biosynthetic enzyme, together comprise a novel systemic regulatory network to play a pivotal role in cell proliferation and apoptosis. Nevertheless, how the regulation of this cofactor interfaces with signal transduction network remains poorly understood in melanoma. Here, we report NAMPT is highly expressed in melanomaassociated with poor overall survival in patients. Pharmacological and genetic inhibition of NAMPT decreased NAD + levels and melanoma cell proliferation capacity, and NAMPT knockdown induced apoptosis through the activity of the tumor suppressor p53. Next, we demonstrate NAMPT regulates the transcription factor E2F family member 2 (E2F2) in the apoptosis process. Downstream, E2F2 control the mRNA and protein levels of SIRT1. Finally, we find NAMPT mediates the apoptosis resistance of melanoma cells through NAMPT-E2F2-SIRT1 axis, more than NAD + -driven transcriptional program. Accordingly, our results demonstrated that NAMPT is a prognostic marker in melanoma, and the identificationofNAMPT-E2F2-SIRT1 pathway establishes another link between NAMPT and apoptosis events in melanoma, with therapeutic implications for this deadly cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. E2F Activators Signal and Maintain Centrosome Amplification in Breast Cancer Cells

    PubMed Central

    Lee, Mi-Young; Moreno, Carlos S.

    2014-01-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2+ cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2+ cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2+ breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2. PMID:24797070

  12. E2F activators signal and maintain centrosome amplification in breast cancer cells.

    PubMed

    Lee, Mi-Young; Moreno, Carlos S; Saavedra, Harold I

    2014-07-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2(+) cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2(+) cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2(+) breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2.

  13. Sulforaphane induces Nrf2 target genes and attenuates inflammatory gene expression in microglia from brain of young adult and aged mice.

    PubMed

    Townsend, Brigitte E; Johnson, Rodney W

    2016-01-01

    Increased neuroinflammation and oxidative stress resulting from heightened microglial activation are associated with age-related cognitive impairment. The objectives of this study were to examine the effects of the bioactive sulforaphane (SFN) on the nuclear factor E2-related factor 2 (Nrf2) pathway in BV2 microglia and primary microglia, and to evaluate proinflammatory cytokine expression in lipopolysaccharide (LPS)-stimulated primary microglia from adult and aged mice. BV2 microglia and primary microglia isolated from young adult and aged mice were treated with SFN and LPS. Changes in Nrf2 activity, expression of Nrf2 target genes, and levels of proinflammatory markers were assessed by quantitative PCR and immunoassay. SFN increased Nrf2 DNA-binding activity and upregulated Nrf2 target genes in BV2 microglia, while reducing LPS-induced interleukin (IL-)1β, IL-6, and inducible nitric oxide synthase (iNOS). In primary microglia from adult and aged mice, SFN increased expression of Nrf2 target genes and attenuated IL-1β, IL-6, and iNOS induced by LPS. These data indicate that SFN is a potential beneficial supplement that may be useful for reducing microglial mediated neuroinflammation and oxidative stress associated with aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Interrupted E2F1-miR-34c-SCF negative feedback loop by hyper-methylation promotes colorectal cancer cell proliferation

    PubMed Central

    Yang, Shu; Wu, Bo; Sun, Haimei; Ji, Fengqing; Sun, Tingyi; Zhao, Yan; Zhou, Deshan

    2015-01-01

    Tumour suppressor miR-34c deficiency resulted from hyper-methylation in its promoter is believed to be one of the main causes of colorectal cancer (CRC). Till date, miR-34c has been validated as a direct target of p53; but previous evidence suggested other transcription factor(s) must be involved in miR-34c transcription. In the present study, we in the first place identified a core promoter region (−1118 to −883 bp) of pre-miR-34c which was embedded within a hyper-methylated CpG island. Secondly, E2F1 promoted miR-34c transcription by physical interaction with the miR-34c promoter at site −897 to −889 bp. The transcriptional activating effect of E2F1 on miR-34c was in a p53 independent manner but profoundly promoted in the presence of p53 with exposure to 5-aza-2′-deoxycytidine (DAC). Thirdly, stem cell factor (SCF), a miR-34c target, was specifically reduced upon an introduction of E2F1 which lead to suppression of CRC cell proliferation. The E2F1-suppressed cell proliferation was partially abrogated by additional miR-34c inhibitor, indicating that the anti-proliferation effect of E2F1 was probably through activating miR-34c-SCF axis. Finally, SCF/KIT signalling increased E2F1 production by reducing its proteosomal degradation dependent on PI3K/Akt-GSK3β pathway. In conclusion, our results suggested the existence of E2F1-miR-34c-SCF negative feedback loop which was interrupted by the hyper-methylation of miR-34c promoter in CRC cells and increased cell proliferation. PMID:26704889

  15. NmF2 and hmF2 measurements at 95° E and 127° E around the EIA northern crest during 2010-2014

    NASA Astrophysics Data System (ADS)

    Kalita, Bitap Raj; Bhuyan, Pradip Kumar; Yoshikawa, Akimasa

    2015-11-01

    The characteristics of the F2 layer parameters NmF2 and hmF2 over Dibrugarh (27.5° N, 95° E, 17° N geomagnetic, 43° dip) measured by a Canadian Advanced Digital Ionosonde (CADI) for the period of August 2010 to July 2014 are reported for the first time from this low mid-latitude station lying within the daytime peak of the longitudinal wave number 4 structure of equatorial anomaly (EIA) around the northern edge of anomaly crest. Equinoctial asymmetry is clearly observed at all solar activity levels whereas the midday winter anomaly is observed only during high solar activity years and disappears during the temporary dip in solar activity in 2013 but forenoon winter anomaly can be observed even at moderate solar activity. The NmF2/hmF2 variations over Dibrugarh are compared with that of Okinawa (26.5° N, 127° E, 17° N geomagnetic), and the eastward propagation speed of the wave number 4 longitudinal structure from 95° E to 127° E is estimated. The speed is found to be close to the theoretical speed of the wave number 4 (WN4) structure. The correlation of daily NmF2 over Dibrugarh and Okinawa with solar activity exhibits diurnal and seasonal variations. The highest correlation in daytime is observed during the forenoon hours in equinox. The correlation of daily NmF2 (linear or non-linear) with solar activity exhibits diurnal variation. A tendency for amplification with solar activity is observed in the forenoon and late evening period of March equinox and the postsunset period of December solstice. NmF2 saturation effect is observed only in the midday period of equinox. Non-linear variation of neutral composition at higher altitudes and variation of recombination rates with solar activity via temperature dependence may be related to the non-linear trend. The noon time maximum NmF2 over Dibrugarh exhibits better correlation with equatorial electrojet (EEJ) than with solar activity and, therefore, new low-latitude NmF2 index is proposed taking both solar

  16. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1

    PubMed Central

    Tefferi, Ayalew

    2009-01-01

    Abstract Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g.ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera (JAK2V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F and MPL515 mutations), primary myelofibrosis (JAK2V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets. PMID:19175693

  17. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells.

    PubMed

    Yan, Z; DeGregori, J; Shohet, R; Leone, G; Stillman, B; Nevins, J R; Williams, R S

    1998-03-31

    Cdc6 has a critical regulatory role in the initiation of DNA replication in yeasts, but its function in mammalian cells has not been characterized. We show here that Cdc6 is expressed selectively in proliferating but not quiescent mammalian cells, both in culture and within tissues of intact animals. During the transition from a growth-arrested to a proliferative state, transcription of mammalian Cdc6 is regulated by E2F proteins, as revealed by a functional analysis of the human Cdc6 promoter and by the ability of exogenously expressed E2F proteins to stimulate the endogenous Cdc6 gene. Immunodepletion of Cdc6 by microinjection of anti-Cdc6 antibody blocks initiation of DNA replication in a human tumor cell line. We conclude that expression of human Cdc6 is regulated in response to mitogenic signals though transcriptional control mechanisms involving E2F proteins, and that Cdc6 is required for initiation of DNA replication in mammalian cells.

  18. Measurement of the Structure Function Ratio $$F^{\\eta}_2$$ /$$ F^p_2$$ in Muon - Nucleon Scattering at Low $x$ and $$Q^{2}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis

    1994-12-01

    The ratio of the neutron to proton structure functions,more » $$F^{\\eta}_2$$ / $$F^p_2$$, from scattering of 470 GeV muons on liquid hydrogen and deuterium targets, is measured at very small-x and $Q^2$ , using the Fermilab E665 spectrometer. The results presented cover the region 0.000004 < x < 0.3 and $Q^2$ > 0.001 $GeV^2$ , three orders of magnitude lower in z than previous fixed-target experiments, and with higher average Q2 in the overlap region....« less

  19. Deregulated E2F5/p38/SMAD3 Circuitry Reinforces the Pro-Tumorigenic Switch of TGFβ Signaling in Prostate Cancer.

    PubMed

    Majumder, Subhadipa; Bhowal, Ankur; Basu, Sanmitra; Mukherjee, Pritha; Chatterji, Urmi; Sengupta, Sanghamitra

    2016-11-01

    Transforming growth factor-β signaling exerts divergent effects on normal and cancer cells, although mechanism underlying this differential behavior remains unclear. In this study, expression of 94 genes pertaining to the TGF-β signaling pathway was compared between tumor and benign tissue samples from the human prostate gland to identify major discriminators driving prostate carcinogenesis. E2F5 was identified as one of the most deregulated genes in prostate cancer tissues, predominantly in samples with Gleason-score 6. Expression of other deregulated components of TGF-β signaling was examined by qRT-PCR, Western blot, and immune-staining. Function of E2F5 and p38 in prostate cancer was investigated using siRNA-treatment of PC3 cell-line followed by analyses of associated components and cell cycle. Observations revealed that E2F5 overexpression was accompanied by significantly higher phosphorylation of SMAD3 at Ser-208 in the linker region (pSMAD3L) and p38 in tumor tissue. A striking difference in SMAD3 phosphorylation, marked by preponderance of pSMAD3L and pSMAD3C (Ser-423 and 425) in tumor and benign tissues, respectively was noted. Co-localization of E2F5 with pSMAD3L in the nuclei of tumor and PC3 cells indicated a functional interface between the proteins. Downregulation of E2F5 and p38 in PC3 cells resulted in marked reduction of phosphorylation of SMAD3 and perturbation of cell cycle with an arrest of cells in G1 . Our findings unearthed that E2F5/p38 axis played a cardinal role in uncontrolled cellular proliferation in prostate cancer through pSMAD3L activation. It also underscores a strong potential for E2F5 to be incorporated as a tool in early detection of prostate cancer. J. Cell. Physiol. 231: 2482-2492, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells

    PubMed Central

    Bressan, Raul Bardini; Dewari, Pooran Singh; Kalantzaki, Maria; Gangoso, Ester; Matjusaitis, Mantas; Garcia-Diaz, Claudia; Blin, Carla; Grant, Vivien; Bulstrode, Harry; Gogolok, Sabine; Skarnes, William C.

    2017-01-01

    Mammalian neural stem cell (NSC) lines provide a tractable model for discovery across stem cell and developmental biology, regenerative medicine and neuroscience. They can be derived from foetal or adult germinal tissues and continuously propagated in vitro as adherent monolayers. NSCs are clonally expandable, genetically stable, and easily transfectable – experimental attributes compatible with targeted genetic manipulations. However, gene targeting, which is crucial for functional studies of embryonic stem cells, has not been exploited to date in NSC lines. Here, we deploy CRISPR/Cas9 technology to demonstrate a variety of sophisticated genetic modifications via gene targeting in both mouse and human NSC lines, including: (1) efficient targeted transgene insertion at safe harbour loci (Rosa26 and AAVS1); (2) biallelic knockout of neurodevelopmental transcription factor genes; (3) simple knock-in of epitope tags and fluorescent reporters (e.g. Sox2-V5 and Sox2-mCherry); and (4) engineering of glioma mutations (TP53 deletion; H3F3A point mutations). These resources and optimised methods enable facile and scalable genome editing in mammalian NSCs, providing significant new opportunities for functional genetic analysis. PMID:28096221

  1. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1

    PubMed Central

    Zheng, Shunsheng; Moehlenbrink, Jutta; Lu, Yi-Chien; Zalmas, Lykourgos-Panagiotis; Sagum, Cari A.; Carr, Simon; McGouran, Joanna F.; Alexander, Leila; Fedorov, Oleg; Munro, Shonagh; Kessler, Benedikt; Bedford, Mark T.; Yu, Qiang; La Thangue, Nicholas B.

    2014-01-01

    Summary The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase (PRMT) 1 and symmetric dimethylating PRMT5, and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favours proliferation by antagonising methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN down-regulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity. PMID:24076217

  2. Competing E2 and SN2 Mechanisms for the F- + CH3CH2I Reaction.

    PubMed

    Yang, Li; Zhang, Jiaxu; Xie, Jing; Ma, Xinyou; Zhang, Linyao; Zhao, Chenyang; Hase, William L

    2017-02-09

    Anti-E2, syn-E2, inv-, and ret-S N 2 reaction channels for the gas-phase reaction of F - + CH 3 CH 2 I were characterized with a variety of electronic structure calculations. Geometrical analysis confirmed synchronous E2-type transition states for the elimination of the current reaction, instead of nonconcerted processes through E1cb-like and E1-like mechanisms. Importantly, the controversy concerning the reactant complex for anti-E2 and inv-S N 2 paths has been clarified in the present work. A positive barrier of +19.2 kcal/mol for ret-S N 2 shows the least feasibility to occur at room temperature. Negative activation energies (-16.9, -16.0, and -4.9 kcal/mol, respectively) for inv-S N 2, anti-E2, and syn-E2 indicate that inv-S N 2 and anti-E2 mechanisms significantly prevail over the eclipsed elimination. Varying the leaving group for a series of reactions F - + CH 3 CH 2 Y (Y = F, Cl, Br, and I) leads to monotonically decreasing barriers, which relates to the gradually looser TS structures following the order F > Cl > Br > I. The reactivity of each channel nearly holds unchanged except for the perturbation between anti-E2 and inv-S N 2. RRKM calculation reveals that the reaction of the fluorine ion with ethyl iodide occurs predominately via anti-E2 elimination, and the inv-S N 2 pathway is suppressed, although it is energetically favored. This phenomenon indicates that, in evaluating the competition between E2 and S N 2 processes, the kinetic or dynamical factors may play a significant role. By comparison with benchmark CCSD(T) energies, MP2, CAM-B3LYP, and M06 methods are recommended to perform dynamics simulations of the title reaction.

  3. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2.

    PubMed

    Li, Hongxia; Yu, Juhua; Li, Jianlin; Tang, Yongkai; Yu, Fan; Zhou, Jie; Yu, Wenjuan

    2016-04-01

    Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-argininemore » supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from

  5. [Induced abortion using prostaglandin E2 and F2alpha gel].

    PubMed

    Lippert, T H; Modly, T

    1974-01-01

    In this study of 20 patients in the 13th-17th week of pregnancy abortion was induced with intrauterine, extraamniotic application of prostaglandins (PG) E2 or F2 in gel form. The gel composition was as follows: 4% tylose MH 300, 2% glycerine, 1% chlorhexidine digluconate, 83% sterile distilled water and 10% PG stock solution. Both PGE2 and PGF2 gels were used. Final concentration was 2.5 mg E2 or 2.5 mg F2 per g of gel. Gel was applied via transcervical, extraamniotic polyethylene catheter every 2-3 hours. Results: PGE2-gel was used in 14 cases. After 3-4 applications both fetus and placenta were expelled. Average dose used was 4.6 mg E2/patient. First contractions started in 30 minutes; induction to expulsion time was 11 hours 35 minutes. F2-gel given to 6 patients resulted in expulsion of the fetus in all cases but placenta needed removal by curettage in 4 patients. Average dose per patient was 17.7 mg of F2; first contractions in 30 minutes, average expulsion time 17 hours 38 minutes. With both PGs there were painful contractions which were controlled with a combination of pentazocine and Valium. PGE2 caused vomiting in 5 patients. No increased bleeding or postabortion infection occurred. Follow-up curettage was done in all patients to ensure removal of all tissues. Overall evaluation of the PG-gels was considered good. PG stability in gel form is good; during 8 months of preservation in sterile aluminum tubes at -25 degrees Celsius no decline in clinical effectiveness was noted. The gel application is less expensive than the slow-injection pump method.

  6. An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F Activity as Distinct Features of Tamoxifen Resistant Breast Tumors

    PubMed Central

    Huang, Lei; Zhao, Shuangping; Frasor, Jonna M.; Dai, Yang

    2011-01-01

    Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast tumors were identified from three different publically available microarray datasets. These differentially expressed (DE) genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors. The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers. PMID:21789246

  7. Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns

    PubMed Central

    Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng

    2014-01-01

    F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786

  8. Disruption of Mouse Cytochrome P450 4f14 (Cyp4f14 Gene) Causes Severe Perturbations in Vitamin E Metabolism*

    PubMed Central

    Bardowell, Sabrina A.; Duan, Faping; Manor, Danny; Swanson, Joy E.; Parker, Robert S.

    2012-01-01

    Vitamin E is a family of naturally occurring and structurally related lipophilic antioxidants, one of which, α-tocopherol (α-TOH), selectively accumulates in vertebrate tissues. The ω-hydroxylase cytochrome P450–4F2 (CYP4F2) is the only human enzyme shown to metabolize vitamin E. Using cDNA cloning, cell culture expression, and activity assays, we identified Cyp4f14 as a functional murine ortholog of CYP4F2. We then investigated the effect of Cyp4f14 deletion on vitamin E metabolism and status in vivo. Cyp4f14-null mice exhibited substrate-specific reductions in liver microsomal vitamin E-ω-hydroxylase activity ranging from 93% (γ-TOH) to 48% (γ-tocotrienol). In vivo data obtained from metabolic cage studies showed whole-body reductions in metabolism of γ-TOH of 90% and of 68% for δ- and α-TOH. This metabolic deficit in Cyp4f14−/− mice was partially offset by increased fecal excretion of nonmetabolized tocopherols and of novel ω-1- and ω-2-hydroxytocopherols. 12′-OH-γ-TOH represented 41% of whole-body production of γ-TOH metabolites in Cyp4f14−/− mice fed a soybean oil diet. Despite these counterbalancing mechanisms, Cyp4f14-null mice fed this diet for 6 weeks hyper-accumulated γ-TOH (2-fold increase over wild-type littermates) in all tissues and appeared normal. We conclude that CYP4F14 is the major but not the only vitamin E-ω-hydroxylase in mice. Its disruption significantly impairs whole-body vitamin E metabolism and alters the widely conserved phenotype of preferential tissue deposition of α-TOH. This model animal and its derivatives will be valuable in determining the biological actions of specific tocopherols and tocotrienols in vivo. PMID:22665481

  9. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.

  10. [A mini-review of targeting gene-virotherapy of cancer].

    PubMed

    Liu, Xin-Yuan; Gu, Jin-Fa

    2006-10-01

    New progress has been made on the project "targeting gene-virotherapy of cancer" proposed by us, which is "targeting dual gene-virotherapy of cancer". By the use of two genes, all the xenograft tumors in nude mice could be completely eliminated. The researches have been published in international journals, such as Hepatology and Cancer Research (a highlight paper). In this study, a further superior strategy--"double targeting virus-dual gene therapy" was introduced. This strategy was specialized by the use of tumor specific promoter to control the tumor specific suppressor gene, such as alpha-fetoprotein (AFP), which controls hepatoma specific suppressor gene LFIRE or HCCS1. In addition, a second tumor specific promoter, such as hTERT or survivin was used to control E1A or E1B in the construct, as hTERT-E1A-AFP-E1B-HCCS1 or LFIRE, a double tumor specific promoter controlling hepatoma specific LFIRE or HCCS1 gene. By the combined use of this construct with a very strong antitumor construct, such as hTERT-E1A-AFP-E1B-IL-24, a strategy with both excellent tumor killing effect and excellent safety with very little damage to normal cells was obtained. Therefore, double targeting virus-dual gene therapy might be one of the most potential strategies for cancer treatment. Furthermore, a new type of interferon was also introduced, which might be an ideal antitumor drug.

  11. JAK2V617F influences epigenomic changes in myeloproliferative neoplasms.

    PubMed

    Chen, Chih-Cheng; Chiu, Chia-Chen; Lee, Kuan-Der; Hsu, Chia-Chen; Chen, Hong-Chi; Huang, Tim H-M; Hsiao, Shu-Huei; Leu, Yu-Wei

    2017-12-16

    Negative valine (V) to phenylalanine (F) switch at the Janus kinase (JAK2) 617 codon (V617F) is the dominant driver mutation in patients with myeloproliferative neoplasms (MPNs). JAK2V617F was proved to be sufficient for cell transformation; however, independent mutations might influence the following epigenomic modifications. To assess the JAK2V617F-induced downstream epigenomic changes without interferences, we profiled the epigenomic changes in ectopically expressed JAK2V617F in Ba/F3 cells. Antibodies against phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and enhancer of zeste homolog 2 (EZH2) were used for chromatin-immunoprecipitation sequencing (ChIP-seq) to detect the downstream epigenomic targets in the JAK2-STAT3 signaling pathway. To confirm the JAK2V617F-induced epigenetic changes in vivo, DNA methylation changes in the target loci in patients with MPNs were detected through methylation-specific polymerase chain reaction and were clustered against the changes within controls. We found that ectopically expressed JAK2V617F in Ba/F3 cells reduced the binding specificity; it was associated with cis-regulatory elements and recognized DNA motifs in both pSTAT3-downstream and EZH2-associated targets. Overlapping target loci between the control and JAK2V617F were <3% and 0.4%, respectively, as identified through pSTAT3 and EZH2 ChIP-seq. Furthermore, the methylation changes in the direct target loci (FOXH1, HOXC9, and SRF) were clustered independently from the control locus (L1TD1) and other mutation genes (HMGA2 and Lin28A) in the analyzed MPN samples. Therefore, JAK2V617F influences target binding in both pSTAT3 and EZH2. Without mutations in epigenetic regulators, JAK2V617F can induce downstream epigenomic modifications. Thus, epigenetic changes in JAK2 downstream targets might be trackable in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    PubMed

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  13. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats.

    PubMed

    Ramprasath, Tharmarajan; Kumar, Palani Hamenth; Puhari, Shanavas Syed Mohamed; Murugan, Ponniah Senthil; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-11-23

    Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg(-1) body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-κB. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic and control rats. Under these findings, we suggest that targeting of eNOS and Nrf2 signaling by L-arginine supplementation could be used as a potential treatment method to alleviate the late diabetic complications. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes

    PubMed Central

    Singh, Randeep K.; Dagnino, Lina

    2017-01-01

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation. PMID:27903963

  15. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    PubMed

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  16. Novel de novo pathogenic variant in the NR2F2 gene in a boy with congenital heart defect and dysmorphic features.

    PubMed

    Upadia, Jariya; Gonzales, Patrick R; Robin, Nathaniel H

    2018-04-16

    The NR2F2 gene plays an important role in angiogenesis and heart development. Moreover, this gene is involved in organogenesis in many other organs in mouse models. Variants in this gene have been reported in a number of patients with nonsyndromic atrioventricular septal defect, and in one patient with congenital heart defect and dysmorphic features. Here we report an 11-month-old Caucasian male with global developmental delay, dysmorphic features, coarctation of the aorta, and ventricular septal defect. He was later found to have a pathogenic mutation in the NR2F2 gene by whole exome sequencing. This is the second instance in which an NR2F2 mutation has been identified in a child with a congenital heart defect and other anomalies. This case suggests that some variants in NR2F2 may cause syndromic forms of congenital heart defect. © 2018 Wiley Periodicals, Inc.

  17. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E. coli (STEC) infections in the Netherlands, January 2008 to December 2011.

    PubMed

    Friesema, I; van der Zwaluw, K; Schuurman, T; Kooistra-Smid, M; Franz, E; van Duynhoven, Y; van Pelt, W

    2014-05-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx2f is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC surveillance in the Netherlands, 198 STEC O157 cases and 351 STEC non-O157 cases, including 87 stx2f STEC isolates, were reported between 2008 and 2011. Most stx2f strains belonged to the serogroups O63:H6 (n=47, 54%), O113:H6 (n=12, 14%) and O125:H6 (n=12, 14%). Of the 87 stx2f isolates, 84 (97%) harboured the E. coli attaching and effacing (eae) gene, but not the enterohaemorrhagic E. coli haemolysin (hly) gene. stx2f STEC infections show milder symptoms and a less severe clinical course than STEC O157 infections. Almost all infections with stx2f (n=83, 95%) occurred between June and December, compared to 170/198 (86%) of STEC O157 and 173/264 (66%) of other STEC non-O157. stx2f STEC infections in the Netherlands are more common than anticipated, and form a distinct group within STEC with regard to virulence genes and the relatively mild disease.

  18. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    PubMed

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  19. POU2F2-oriented network promotes human gastric cancer metastasis

    PubMed Central

    Wang, Si-Meng; Tie, Jun; Wang, Wen-Lan; Hu, Si-Jun; Yin, Ji-Peng; Yi, Xiao-Fang; Tian, Zu-Hong; Zhang, Xiang-Yuan; Li, Meng-Bin; Li, Zeng-Shan; Nie, Yong-Zhan; Wu, Kai-Chun; Fan, Dai-Ming

    2016-01-01

    Background and aims Aberrant upregulation of POU2F2 expression has been discovered in metastatic gastric cancer (GC). However, the mechanisms underlying the aberrant upregulation and the potential functions of POU2F2 remain uncertain. Design The role and mechanism of POU2F2 in GC metastasis were investigated in gastric epithelial cells, GC cell lines and an experimental metastasis animal model by gain of function and loss of function. Upstream and downstream targets of POU2F2 were selected by bioinformatics and identified by luciferase reporter assay, electrophoretic mobility shift assay and chromatin immunoprecipitation PCR. The influence of miR-218 on its putative target genes (POU2F2, ROBO1 and IKK-β) and GC metastasis was further explored via in vitro and in vivo approaches. Results Increased POU2F2 expression was detected in metastatic GC cell lines and patient samples. POU2F2 was induced by the activation of nuclear factor (NF)-κB and, in turn, regulated ROBO1 transcription, thus functionally contributing to GC metastasis. Finally, miR-218 was found to suppress GC metastasis by simultaneously mediating multiple molecules in the POU2F2-oriented network. Conclusions This study demonstrated that NF-κB and the SLIT2/ROBO1 interaction network with POU2F2 as the central part may exert critical effects on tumour metastasis. Blocking the activation of the POU2F2-oriented metastasis network using miR-218 precursors exemplified a promising approach that sheds light on new strategies for GC treatment. PMID:26019213

  20. [Gene deletion and functional analysis of the heptyl glycosyltransferase (waaF) gene in Vibrio parahemolyticus O-antigen cluster].

    PubMed

    Zhao, Feng; Meng, Songsong; Zhou, Deqing

    2016-02-04

    To construct heptyl glycosyltransferase gene II (waaF) gene deletion mutant of Vibrio parahaemolyticus, and explore the function of the waaF gene in Vibrio parahaemolyticus. The waaF gene deletion mutant was constructed by chitin-based transformation technology using clinical isolates, and then the growth rate, morphology and serotypes were identified. The different sources (O3, O5 and O10) waaF gene complementations were constructed through E. coli S17λpir strains conjugative transferring with Vibrio parahaemolyticus, and the function of the waaF gene was further verified by serotypes. The waaF gene deletion mutant strain was successfully constructed and it grew normally. The growth rate and morphology of mutant were similar with the wild type strains (WT), but the mutant could not occurred agglutination reaction with O antisera. The O3 and O5 sources waaF gene complementations occurred agglutination reaction with O antisera, but the O10 sources waaF gene complementations was not. The waaF gene was related with O-antigen synthesis and it was the key gene of O-antigen synthesis pathway in Vibrio parahaemolyticus. The function of different sources waaF gene were not the same.

  1. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells.

    PubMed

    Cavallaro, Gennara; Farra, Rossella; Craparo, Emanuela Fabiola; Sardo, Carla; Porsio, Barbara; Giammona, Gaetano; Perrone, Francesca; Grassi, Mario; Pozzato, Gabriele; Grassi, Gabriele; Dapas, Barbara

    2017-06-20

    The limited efficacy of available treatments for hepatocellular carcinoma (HCC) requires the development of novel therapeutic approaches. We synthesized a novel cationic polymer based on α,β-poly-(N-2-hydroxyethyl)-d,L-aspartamide (PHEA) for drug delivery to HCC cells. The copolymer was synthesized by subsequent derivatization of PHEA with diethylene triamine (DETA) and with a polyethylene glycol (PEG) derivative bearing galactose (GAL) molecules, obtaining the cationic derivative PHEA-DETA-PEG-GAL. PHEA-DETA-PEG-GAL has suitable chemical-physical characteristics for a potential systemic use and can effectively deliver a siRNA (siE2F1) targeted against the transcription factor E2F1, a gene product involved in HCC. The presence of GAL residues in the polyplexes allows the targeting of HCC cells that express the asialo-glycoprotein receptor (ASGP-R). In these cells, but not in ASGP-R non-expressing cells, PHEA-DETA-PEG-GAL/siE2F1 polyplexes induce the reduction of the mRNA and protein levels of E2F1 and of E2F1-regulated genes, all involved in the promotion of the G1/S phase transition. This results in a decrease of cell proliferation with a G1/G0 phase cells accumulation. Notably, removal of GAL residue almost completely abrogates the targeting capacity of the developed polyplexes. In conclusion, the generated polyplexes demonstrate the potential to effectively contributing to the development of novel anti-HCC therapeutic approaches via a siRNA-targeted delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Identification of HMX1 target genes: A predictive promoter model approach

    PubMed Central

    Boulling, Arnaud; Wicht, Linda

    2013-01-01

    Purpose A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway’s function, we sought to identify the target genes. Methods We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. Results The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. Conclusions Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM

  3. ERBB2 Deficiency Alters an E2F-1-Dependent Adaptive Stress Response and Leads to Cardiac Dysfunction

    PubMed Central

    Perry, Marie-Claude; Dufour, Catherine R.; Eichner, Lillian J.; Tsang, David W. K.; Deblois, Geneviève; Muller, William J.

    2014-01-01

    The tyrosine kinase receptor ERBB2 is required for normal development of the heart and is a potent oncogene in breast epithelium. Trastuzumab, a monoclonal antibody targeting ERBB2, improves the survival of breast cancer patients, but cardiac dysfunction is a major side effect of the drug. The molecular mechanisms underlying how ERBB2 regulates cardiac function and why trastuzumab is cardiotoxic remain poorly understood. We show here that ERBB2 hypomorphic mice develop cardiac dysfunction that mimics the side effects observed in patients treated with trastuzumab. We demonstrate that this phenotype is related to the critical role played by ERBB2 in cardiac homeostasis and physiological hypertrophy. Importantly, genetic and therapeutic reduction of ERBB2 activity in mice, as well as ablation of ERBB2 signaling by trastuzumab or siRNAs in human cardiomyocytes, led to the identification of an impaired E2F-1-dependent genetic program critical for the cardiac adaptive stress response. These findings demonstrate the existence of a previously unknown mechanistic link between ERBB2 and E2F-1 transcriptional activity in heart physiology and trastuzumab-induced cardiac dysfunction. PMID:25246633

  4. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus)

    PubMed Central

    Aluru, Neelakanteswar; Karchner, Sibel I.; Franks, Diana G.; Nacci, Diane; Champlin, Denise; Hahn, Mark E.

    2014-01-01

    Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluations of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuble non-traditional model for this study, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for

  5. Sibling rivalry in the E2F family.

    PubMed

    Trimarchi, Jeffrey M; Lees, Jacqueline A

    2002-01-01

    The E2F transcription factor family determines whether or not a cell will divide by controlling the expression of key cell-cycle regulators. The individual E2Fs can be divided into distinct subgroups that act in direct opposition to one another to promote either cellular proliferation or cell-cycle exit and terminal differentiation. What is the underlying molecular basis of this 'push-me-pull-you' regulation, and what are its biological consequences?

  6. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zejun; Gong, Chaoju; Liu, Hong

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression ofmore » E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration

  7. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicidemore » gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF

  8. The banana E2 gene family: Genomic identification, characterization, expression profiling analysis.

    PubMed

    Dong, Chen; Hu, Huigang; Jue, Dengwei; Zhao, Qiufang; Chen, Hongliang; Xie, Jianghui; Jia, Liqiang

    2016-04-01

    The E2 is at the center of a cascade of Ub1 transfers, and it links activation of the Ub1 by E1 to its eventual E3-catalyzed attachment to substrate. Although the genome-wide analysis of this family has been performed in some species, little is known about analysis of E2 genes in banana. In this study, 74 E2 genes of banana were identified and phylogenetically clustered into thirteen subgroups. The predicted banana E2 genes were distributed across all 11 chromosomes at different densities. Additionally, the E2 domain, gene structure and motif compositions were analyzed. The expression of all of the banana E2 genes was analyzed in the root, stem, leaf, flower organs, five stages of fruit development and under abiotic stresses. All of the banana E2 genes, with the exception of few genes in each group, were expressed in at least one of the organs and fruit developments, which indicated that the E2 genes might involve in various aspects of the physiological and developmental processes of the banana. Quantitative RT-PCR (qRT-PCR) analysis identified that 45 E2s under drought and 33 E2s under salt were induced. To the best of our knowledge, this report describes the first genome-wide analysis of the banana E2 gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Improved methods of AAV-mediated gene targeting for human cell lines using ribosome-skipping 2A peptide

    PubMed Central

    Karnan, Sivasundaram; Ota, Akinobu; Konishi, Yuko; Wahiduzzaman, Md; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2016-01-01

    The adeno-associated virus (AAV)-based targeting vector has been one of the tools commonly used for genome modification in human cell lines. It allows for relatively efficient gene targeting associated with 1–4-log higher ratios of homologous-to-random integration of targeting vectors (H/R ratios) than plasmid-based targeting vectors, without actively introducing DNA double-strand breaks. In this study, we sought to improve the efficiency of AAV-mediated gene targeting by introducing a 2A-based promoter-trap system into targeting constructs. We generated three distinct AAV-based targeting vectors carrying 2A for promoter trapping, each targeting a GFP-based reporter module incorporated into the genome, PIGA exon 6 or PIGA intron 5. The absolute gene targeting efficiencies and H/R ratios attained using these vectors were assessed in multiple human cell lines and compared with those attained using targeting vectors carrying internal ribosome entry site (IRES) for promoter trapping. We found that the use of 2A for promoter trapping increased absolute gene targeting efficiencies by 3.4–28-fold and H/R ratios by 2–5-fold compared to values obtained with IRES. In CRISPR-Cas9-assisted gene targeting using plasmid-based targeting vectors, the use of 2A did not enhance the H/R ratios but did upregulate the absolute gene targeting efficiencies compared to the use of IRES. PMID:26657635

  10. Targeting gene therapy to cancer: a review.

    PubMed

    Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J

    1997-01-01

    discussed is the regulation of therapeutic gene products by tumor-specific gene splicing. Gene expression could also be targeted at conditions specific to the tumor microenvironment, such as glucose deprivation and hypoxia. We have concentrated on hypoxia-targeted gene expression and this report will discuss our progress in detail. Chronic hypoxia occurs in tissue that is more than 100-200 microns away from a functional blood supply. In solid tumors hypoxia is widespread both because cancer cells are more prolific than the invading endothelial cells that make up the blood vessels and because the newly formed blood supply is disorganized. Measurements of oxygen partial pressure in patients' tumors showed a high percentage of severe hypoxia readings (less than 2.5 mmHg), readings not seen in normal tissue. This is a major problem in the treatment of cancer, because hypoxic cells are resistant to radiotherapy and often to chemotherapy. However, severe hypoxia is also a physiological condition specific to tumors, which makes it a potentially exploitable target. We have utilized hypoxia response elements (HRE) derived from the oxygen-regulated phosphoglycerate kinase gene to control gene expression in human tumor cells in vitro and in experimental tumors. The list of genes that have been considered for use in the treatment of cancer is extensive. It includes cytokines and costimulatory cell surface molecules intended to induce an effective systemic immune response against tumor antigens that would not otherwise develop. Other inventive strategies include the use of internally expressed antibodies to target oncogenic proteins (intrabodies) and the use of antisense technology (antisense oligonucleotides, antigenes, and ribozymes). This report will concentrate more on novel genes encoding prodrug activating enzymes, so-called suicide genes (Herpes simplex virus thymidine kinase, Escherichia coli nitroreductase, E. (ABSTRACT TRUNCATED)

  11. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasim, Vivi, E-mail: vivikasim78@gmail.com; Huang, Can; Zhang, Jing

    2014-07-04

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. Wemore » further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.« less

  12. Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach.

    PubMed

    Zhou, Bangjun; Zeng, Lirong

    2017-01-01

    Virus-induced gene silencing (VIGS) has been used in many plant species as an attractive post transcriptional gene silencing (PTGS) method for studying gene function either individually or at large-scale in a high-throughput manner. However, the specificity and efficiency for knocking down members of a highly homologous gene family have remained to date a significant challenge in VIGS due to silencing of off-targets. Here we present an improved method for the selection and evaluation of gene fragments used for VIGS to specifically and efficiently knock down members of a highly homologous gene family. Using this method, we knocked down twelve and four members, respectively of group III of the gene family encoding ubiquitin-conjugating enzymes (E2) in Nicotiana benthamiana . Assays using these VIGS-treated plants revealed that the group III E2s are essential for plant development, plant immunity-associated reactive oxygen species (ROS) production, expression of the gene NbRbohB that is required for ROS production, and suppression of immunity-associated programmed cell death (PCD) by AvrPtoB, an effector protein of the bacterial pathogen Pseudomons syringae . Moreover, functional redundancy for plant development and ROS production was found to exist among members of group III E2s. We have found that employment of a gene fragment as short as approximately 70 base pairs (bp) that contains at least three mismatched nucleotides to other genes within any 21-bp sequences prevents silencing of off-target(s) in VIGS. This improved approach in the selection and evaluation of gene fragments allows for specific and efficient knocking down of highly homologous members of a gene family. Using this approach, we implicated N. benthamiana group III E2s in plant development, immunity-associated ROS production, and suppression of multiple immunity-associated PCD by AvrPtoB. We also unraveled functional redundancy among group III members in their requirement for plant development and

  13. Krüppel-like factor 1 mutations and expression of hemoglobins F and A2 in homozygous hemoglobin E syndrome.

    PubMed

    Tepakhan, Wanicha; Yamsri, Supawadee; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan; Fucharoen, Supan

    2015-07-01

    The basis for variability of hemoglobin (Hb) F in homozygous Hb E disease is not well understood. We have examined multiple mutations of the Krüppel-like factor 1 (KLF1) gene; an erythroid specific transcription factor and determined their associations with Hbs F and A2 expression in homozygous Hb E. Four KLF1 mutations including G176AfsX179, T334R, R238H, and -154 (C-T) were screened using specific PCR assays on 461 subjects with homozygous Hb E and 100 normal controls. None of these four mutations were observed in 100 normal controls. Among 461 subjects with homozygous Hb E, 306 had high (≥5 %) and 155 had low (<5 %) Hb F. DNA analysis identified the KLF1 mutations in 35 cases of the former group with high Hb F, including the G176AfsX179 mutation (17/306 = 5.6 %), T334R mutation (9/306 = 2.9 %), -154 (C-T) mutation (7/306 = 2.3 %), and R328H mutation (2/306 = 0.7 %). Only two subjects in the latter group with low Hb F carried the G176AfsX179 and -154 (C-T) mutations. Significant higher Hb A2 level was observed in those of homozygous Hb E with the G176AfsX179 mutation as compared to those without KLF1 mutations. These results indicate that KLF1 is among the genetic factors associated with increased Hbs F and A2, and in combination with other factors could explain the variabilities of these Hb expression in Hb E syndrome.

  14. DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.

    PubMed

    Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi

    2017-08-26

    DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Simple F Test Reveals Gene-Gene Interactions in Case-Control Studies

    PubMed Central

    Chen, Guanjie; Yuan, Ao; Zhou, Jie; Bentley, Amy R.; Adeyemo, Adebowale; Rotimi, Charles N.

    2012-01-01

    Missing heritability is still a challenge for Genome Wide Association Studies (GWAS). Gene-gene interactions may partially explain this residual genetic influence and contribute broadly to complex disease. To analyze the gene-gene interactions in case-control studies of complex disease, we propose a simple, non-parametric method that utilizes the F-statistic. This approach consists of three steps. First, we examine the joint distribution of a pair of SNPs in cases and controls separately. Second, an F-test is used to evaluate the ratio of dependence in cases to that of controls. Finally, results are adjusted for multiple tests. This method was used to evaluate gene-gene interactions that are associated with risk of Type 2 Diabetes among African Americans in the Howard University Family Study. We identified 18 gene-gene interactions (P < 0.0001). Compared with the commonly-used logistical regression method, we demonstrate that the F-ratio test is an efficient approach to measuring gene-gene interactions, especially for studies with limited sample size. PMID:22837643

  16. Highly stable aptamers selected from a 2'-fully modified fGmH RNA library for targeting biomaterials.

    PubMed

    Friedman, Adam D; Kim, Dongwook; Liu, Rihe

    2015-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.

  17. The eIF4F and eIFiso4F Complexes of Plants: An Evolutionary Perspective

    PubMed Central

    Patrick, Ryan M.; Browning, Karen S.

    2012-01-01

    Translation initiation in eukaryotes requires a number of initiation factors to recruit the assembled ribosome to mRNA. The eIF4F complex plays a key role in initiation and is a common target point for regulation of protein synthesis. Most work on the translation machinery of plants to date has focused on flowering plants, which have both the eIF4F complex (eIF4E and eIF4G) as well as the plant-specific eIFiso4F complex (eIFiso4E and eIFiso4G). The increasing availability of plant genome sequence data has made it possible to trace the evolutionary history of these two complexes in plants, leading to several interesting discoveries. eIFiso4G is conserved throughout plants, while eIFiso4E only appears with the evolution of flowering plants. The eIF4G N-terminus, which has been difficult to annotate, appears to be well conserved throughout the plant lineage and contains two motifs of unknown function. Comparison of eIFiso4G and eIF4G sequence data suggests conserved features unique to eIFiso4G and eIF4G proteins. These findings have answered some questions about the evolutionary history of the two eIF4F complexes of plants, while raising new ones. PMID:22611336

  18. Nicotine, IFN-γ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades.

    PubMed

    Kunigal, Sateesh; Ponnusamy, Moorthy P; Momi, Navneet; Batra, Surinder K; Chellappan, Srikumar P

    2012-04-26

    The membrane-bound mucins are thought to play an important biological role in cell-cell and cell-matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways

  19. Nicotine, IFN-γ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades

    PubMed Central

    2012-01-01

    Background The membrane-bound mucins are thought to play an important biological role in cell–cell and cell–matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Results Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Conclusions Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that

  20. Comparison of foE and M(3000)F2 variability at Ibadan, Singapore and Slough

    NASA Astrophysics Data System (ADS)

    Somoye, E. O.; Onori, E. O.; Akala, A. O.

    2013-01-01

    The variability, VR, of critical frequency of E-layer, foE, and ionospheric propagation factor, M(3000)F2 at Ibadan (7.4°N, 3.9°E, 6°S dip) is investigated for local time, seasonal and solar cycle variations. Latitudinal influence of these characteristics is sought by comparison with foE VR and M(3000)F2 VR of Slough ( 51.5°N, 359.4°E, 66.5°N dip) in the European sector, and Singapore (1.3°N,103.8°E, 17.6°S dip) in the Asian sector. While the pattern of foE VR is similar to those of other F2 characteristics with characteristic peaks around dawn and dusk, M(3000)F2 VR shows no clear diurnal trend.A lower bound of foE VR is usually 3% while the maximum VR ranges between 8% and13% at post-sunrise and pre-sunset hours at all the epochs, M(3000)F2 VR is however lower during MSA (about 9%) than during LSA and HSA when it is 4% to about 12-14%. Generally, daytime M(3000)F2 VR is greater than that of foE VR by between 5% and 10%. Furthermore, no latitudinal difference is observed in both characteristics during both HSA and MSA. While nighttime M(3000)F2 VR is about half that of nighttime foF2 VR (the critical frequency of F2-layer ) VR, daytime VR of both characteristics are about equal during the three epochs at Ibadan. For Slough, nighttime M(3000)F2 VR and nighttime foF2 VR as well as the daytime VR of both characteristics are about equal. This difference is most likely due to latitudinal effect.

  1. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention.

    PubMed

    Srivastava, Niloo; Manvati, Siddharth; Srivastava, Archita; Pal, Ranjana; Kalaiarasan, Ponnusamy; Chattopadhyay, Shilpi; Gochhait, Sailesh; Dua, Raina; Bamezai, Rameshwar N K

    2011-04-04

    New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests

  2. 52. 2E corridor, from intersection of 2F corridor, second floor, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. 2E corridor, from intersection of 2F corridor, second floor, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  3. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  4. Identification of Type A, B, E, and F Botulinum Neurotoxin Genes and of Botulinum Neurotoxigenic Clostridia by Denaturing High-Performance Liquid Chromatography

    PubMed Central

    Franciosa, Giovanna; Pourshaban, Manoocheher; De Luca, Alessandro; Buccino, Anna; Dallapiccola, Bruno; Aureli, Paolo

    2004-01-01

    Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism. PMID:15240298

  5. Sites of disruption within E1 and E2 genes of HPV16 and association with cervical dysplasia.

    PubMed

    Tsakogiannis, D; Gortsilas, P; Kyriakopoulou, Z; Ruether, I G A; Dimitriou, T G; Orfanoudakis, G; Markoulatos, P

    2015-11-01

    Integration of HPV16 DNA into the host chromosome usually disrupts the E1 and/or E2 genes. The present study investigated the disruption of E1, E2 genes in a total of eighty four HPV16-positive precancerous and cervical cancer specimens derived from Greek women (seventeen paraffin-embedded cervical biopsies and sixty seven Thin Prep samples). Complete E2 and E1 genes were amplified using three and nine overlapping primer sets respectively, in order to define the sites of disruption. Extensive mapping analysis revealed that disruption/deletion events within E2 gene occurred in high grade and cervical cancer samples (x(2) test, P < 0.01), while no evidence of E2 gene disruption was documented among low grade cervical intraepithelial neoplasias. In addition, disruptions within the E1 gene occur both in high and low grade cervical intraepithelial neoplasia. This leads to the assumption that in low grade cervical intraepithelial neoplasias only E1 gene disruption was involved (Fisher's exact test, P < 0.05), while in high grade malignancies and cervical cancer cases deletions in both E1 and E2 genes occurred. Furthermore, the most prevalent site of disruption of E1 gene was located between nucleotides 1059 and 1323, while the most prevalent deleted region of the E2 gene was located between nucleotides 3172 and 3649 (E2 hinge region). Therefore, it is proposed that each population has its own profile of frequencies and sites of disruptions and extensive mapping analysis of E1 and E2 genes is mandatory in order to determine suitable markers for HPV16 DNA integration analysis in distinct populations. © 2015 Wiley Periodicals, Inc.

  6. CRISPR-mediated HDAC2 disruption identifies two distinct classes of target genes in human cells.

    PubMed

    Somanath, Priyanka; Herndon Klein, Rachel; Knoepfler, Paul S

    2017-01-01

    The transcriptional functions of the class I histone deacetylases (HDACs) HDAC1 and HDAC2 are mainly viewed as both repressive and redundant based on murine knockout studies, but they may have additional independent roles and their physiological functions in human cells are not as clearly defined. To address the individual epigenomic functions of HDAC2, here we utilized CRISPR-Cas9 to disrupt HDAC2 in human cells. We find that while HDAC2 null cells exhibited signs of cross-regulation between HDAC1 and HDAC2, specific epigenomic phenotypes were still apparent using RNA-seq and ChIP assays. We identified specific targets of HDAC2 repression, and defined a novel class of genes that are actively expressed in a partially HDAC2-dependent manner. While HDAC2 was required for the recruitment of HDAC1 to repressed HDAC2-gene targets, HDAC2 was dispensable for HDAC1 binding to HDAC2-activated targets, supporting the notion of distinct classes of targets. Both active and repressed classes of gene targets demonstrated enhanced histone acetylation and methylation in HDAC2-null cells. Binding of the HDAC1/2-associated SIN3A corepressor was altered at most HDAC2-targets, but without a clear pattern. Overall, our study defines two classes of HDAC2 targets in human cells, with a dependence of HDAC1 on HDAC2 at one class of targets, and distinguishes unique functions for HDAC2.

  7. Pressure-induced magnetic collapse and metallization of TlF e1.6S e2

    NASA Astrophysics Data System (ADS)

    Naumov, P. G.; Filsinger, K.; Shylin, S. I.; Barkalov, O. I.; Ksenofontov, V.; Qi, Y.; Palasyuk, T.; Schnelle, W.; Medvedev, S. A.; Greenblatt, M.; Felser, C.

    2017-08-01

    The crystal structure, magnetic ordering, and electrical resistivity of TlF e1.6S e2 were studied at high pressures. Below ˜7 GPa , TlF e1.6S e2 is an antiferromagnetically ordered semiconductor with a ThC r2S i2 -type structure. The insulator-to-metal transformation observed at a pressure of ˜7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ˜7.5 -11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.

  8. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  9. Comparative modeling and docking studies of p16ink4/cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1.

    PubMed

    Naqsh e Zahra, Syeda; Khattak, Naureen Aslam; Mir, Asif

    2013-01-01

    Lung cancer is the major cause of mortality worldwide. Major signalling pathways that could play significant role in lung cancer therapy include (1) Growth promoting pathways (Epidermal Growth Factor Receptor/Ras/ PhosphatidylInositol 3-Kinase) (2) Growth inhibitory pathways (p53/Rb/P14ARF, STK11) (3) Apoptotic pathways (Bcl-2/Bax/Fas/FasL). Insilico strategy was implemented to solve the mystery behind selected lung cancer pathway by applying comparative modeling and molecular docking studies. YASARA [v 12.4.1] was utilized to predict structural models of P16-INK4 and RB1 genes using template 4ELJ-A and 1MX6-B respectively. WHAT CHECK evaluation tool demonstrated overall quality of predicted P16-INK4 and RB1 with Z-score of -0.132 and -0.007 respectively which showed a strong indication of reliable structure prediction. Protein-protein interactions were explored by utilizing STRING server, illustrated that CDK4 and E2F1 showed strong interaction with P16-INK4 and RB1 based on confidence score of 0.999 and 0.999 respectively. In order to facilitate a comprehensive understanding of the complex interactions between candidate genes with their functional interactors, GRAMM-X server was used. Protein-protein docking investigation of P16-INK4 revealed four ionic bonds illustrating Arg47, Arg80,Cys72 and Met1 residues as actively participating in interactions with CDK4 while docking results of RB1 showed four hydrogen bonds involving Glu864, Ser567, Asp36 and Arg861 residues which interact strongly with its respective functional interactor E2F1. This research may provide a basis for understanding biological insights of P16-INK4 and RB1 proteins which will be helpful in future to design a suitable drug to inhibit the disease pathogenesis as we have determined the interacting amino acids which can be targeted in order to design a ligand in-vitro to propose a drug for clinical trials. Protein -protein docking of candidate genes and their important interacting residues likely

  10. Stochastic E2F activation and reconciliation of phenomenological cell-cycle models.

    PubMed

    Lee, Tae J; Yao, Guang; Bennett, Dorothy C; Nevins, Joseph R; You, Lingchong

    2010-09-21

    The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.

  11. NRIP enhances HPV gene expression via interaction with either GR or E2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Szu-Wei; Lu, Pei-Yu; Guo, Jih-Huong

    We previously identified a gene, nuclear receptor-interaction protein (NRIP), which functions as a transcription cofactor in glucocorticoid receptor (GR) and human papillomavirus E2 (HPV E2)-driven gene expression. Here, we comprehensively evaluated the role of NRIP in HPV-16 gene expression. NRIP acts as a transcription cofactor to enhance GR-regulated HPV-16 gene expression in the presence of hormone. NRIP also can form complex with E2 that caused NRIP-induced HPV gene expression via E2-binding sites in a hormone-independent manner. Furthermore, NRIP can associate with GR and E2 to form tri-protein complex to activate HPV gene expression via GRE, not the E2-binding site, inmore » a hormone-dependent manner. These results indicate that NRIP and GR are viral E2-binding proteins and that NRIP regulates HPV gene expression via GRE and/or E2 binding site in the HPV promoter in a hormone-dependent or independent manner, respectively.« less

  12. Nrf2 target genes are induced under marginal selenium-deficiency

    PubMed Central

    Müller, Mike; Banning, Antje; Brigelius-Flohé, Regina

    2010-01-01

    A suboptimal selenium supply appears to prevail in Europe. The current study, therefore, was focused on the changes in gene expression under a suboptimal selenium intake. Previous microarray analyses in the colon of mice fed either a selenium-adequate or a moderately deficient diet revealed a change in genes of several pathways. Severe selenium-deficiency has been found previously to influence Nrf2-regulated genes of the adaptive response. Since the previous pathway analyses were done with a program not searching for Nrf2 target genes, respective genes were manually selected and confirmed by qPCR. qPCR revealed an induction of phase II (Nqo1, Gsts, Sult1b1 and Ugt1a6) and antioxidant enzymes (Hmox1, Mt2, Prdx1, Srxn1, Sod1 and Gclc) under the selenium-poor diet, which is considered to compensate for the loss of selenoproteins. The strongest effects were observed in the duodenum where preferentially genes for antioxidant enzymes were up-regulated. These also include the mRNA of the selenoproteins TrxR1 and GPx2 that would enable their immediate translation upon selenium refeeding. The down-regulation of Gsk3β in moderate selenium-deficiency observed in the previous paper provides a possible explanation for the activation of the Nrf2 pathway, because inhibition of GSK3β results in the nuclear accumulation of Nrf2. PMID:21189866

  13. Efficient and Heritable Gene Targeting in Tilapia by CRISPR/Cas9

    PubMed Central

    Li, Minghui; Yang, Huihui; Zhao, Jiue; Fang, Lingling; Shi, Hongjuan; Li, Mengru; Sun, Yunlv; Zhang, Xianbo; Jiang, Dongneng; Zhou, Linyan; Wang, Deshou

    2014-01-01

    Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species. PMID:24709635

  14. Inactivation of vimF, a Putative Glycosyltransferase Gene Downstream of vimE, Alters Glycosylation and Activation of the Gingipains in Porphyromonas gingivalis W83

    PubMed Central

    Vanterpool, Elaine; Roy, Francis; Fletcher, Hansel M.

    2005-01-01

    Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A 1.2-kb open reading frame, a putative glycosyltransferase, downstream of vimE, was cloned, insertionally inactivated using the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, this mutant, designated P. gingivalis FLL95, was nonpigmented and nonhemolytic when plated on Brucella blood agar. Arginine- and lysine-specific gingipain activities were reduced by approximately 97% and 96%, respectively, relative to that of the parent strain. These activities were unaffected by the growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of the rgpA, rgpB, and kgp gingipain genes was unaffected in P. gingivalis FLL95 in comparison to the wild-type strain. In nonactive gingipain extracellular protein fractions, multiple high-molecular-weight proteins immunoreacted with gingipain-specific antibodies. The specific gingipain-associated sugar moiety recognized by monoclonal antibody 1B5 was absent in FLL95. Taken together, these results suggest that the vimE downstream gene, designated vimF (virulence modulating gene F), which is a putative glycosyltransferase group 1, is involved in the regulation of the major virulence factors of P. gingivalis. PMID:15972484

  15. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  16. Gene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis.

    PubMed

    Ku, Cristy A; Chiodo, Vince A; Boye, Sanford L; Goldberg, Andrew F X; Li, Tiansen; Hauswirth, William W; Ramamurthy, Visvanathan

    2011-12-01

    Defects in the photoreceptor-specific gene aryl hydrocarbon receptor interacting protein-like 1 (Aipl1) are associated with Leber congenital amaurosis (LCA), a childhood blinding disease with early-onset retinal degeneration and vision loss. Furthermore, Aipl1 defects are characterized at the most severe end of the LCA spectrum. The rapid photoreceptor degeneration and vision loss observed in the LCA patient population are mimicked in a mouse model lacking AIPL1. Using this model, we evaluated if gene replacement therapy using recent advancements in adeno-associated viral vectors (AAV) provides advantages in preventing rapid retinal degeneration. Specifically, we demonstrated that the novel self-complementary Y733F capsid mutant AAV2/8 (sc-Y733F-AAV) provided greater preservation of photoreceptors and functional vision in Aipl1 null mice compared with single-stranded AAV2/8. The benefits of sc-Y733F-AAV were evident following viral administration during the active phase of retinal degeneration, where only sc-Y733F-AAV treatment achieved functional vision rescue. This result was likely due to higher and earlier onset of Aipl1 expression. Based on our studies, we conclude that the sc-Y733F-AAV2/8 viral vector, to date, achieves the best rescue for rapid retinal degeneration in Aipl1 null mice. Our results provide important considerations for viral vectors to be used in future gene therapy clinical trials targeting a wider severity spectrum of inherited retinal dystrophies.

  17. Cloning and heterologous expression of plnE, -F, -J and -K genes derived from soil metagenome and purification of active plantaricin peptides.

    PubMed

    Pal, Gargi; Srivastava, Sheela

    2014-02-01

    Plantaricin gene-specific primers were used to obtain plnE, -F, -J and -K structural gene amplicons from soil metagenome. These amplicons were cloned and expressed in pET32a (+) vector in Escherichia coli BL21 (DE3). PlnE, -F, -J and -K peptides were expressed as His-tagged-fusion proteins and were separated by Ni(2+) -chelating affinity chromatography. The peptides were released from the fusion by enterokinase cleavage and separated from the carrier thioredoxin. The cleaved peptides were further analysed for antimicrobial activity and found to be active against Listeria innocua NRRL B33314, Micrococcus luteus MTCC 106 and lactic acid bacteria, such as Enterococcus casseliflavus NRRL B3502, Lactococcus lactis lactis NRRL 1821, Lactobacillus curvatus NRRL B4562 and Lactobacillus plantarum NRRL B4496. E. coli has been successfully exploited as a host for heterologous expression with a significant yield of fused and cleaved peptides in the range of 8-12 and 1-1.5 mg/l of the culture, respectively. Heterologous expression, therefore, can be used to overcome the constraints of low yield often reported from a native strain.

  18. Triptolide abrogates growth of colon cancer and induces cell cycle arrest by inhibiting transcriptional activation of E2F.

    PubMed

    Oliveira, Amanda; Beyer, Georg; Chugh, Rohit; Skube, Steven J; Majumder, Kaustav; Banerjee, Sulagna; Sangwan, Veena; Li, Lihua; Dawra, Rajinder; Subramanian, Subbaya; Saluja, Ashok; Dudeja, Vikas

    2015-06-01

    Despite significant progress in diagnostics and therapeutics, over 50 thousand patients die from colorectal cancer annually. Hence, there is urgent need for new lines of treatment. Triptolide, a natural compound isolated from the Chinese herb Tripterygium wilfordii, is effective against multiple cancers. We have synthesized a water soluble analog of triptolide, named Minnelide, which is currently in phase I trial against pancreatic cancer. The aims of the current study were to evaluate whether triptolide/Minnelide is effective against colorectal cancer and to elucidate the mechanism by which triptolide induces cell death in colorectal cancer. Efficacy of Minnelide was evaluated in subcutaneous xenograft and liver metastasis model of colorectal cancer. For mechanistic studies, colon cancer cell lines HCT116 and HT29 were treated with triptolide and the effect on viability, caspase activation, annexin positivity, lactate dehydrogenase release, and cell cycle progression was evaluated. Effect of triptolide on E2F transcriptional activity, mRNA levels of E2F-dependent genes, E2F1- retinoblastoma protein (Rb) binding, and proteins levels of regulator of G1-S transition was also measured. DNA binding of E2F1 was evaluated by chromatin immunoprecipitation assay. Triptolide decreased colon cancer cell viability in a dose- and time-dependent fashion. Minnelide markedly inhibited the growth of colon cancer in the xenograft and liver metastasis model of colon cancer and more than doubles the median survival of animals with liver metastases from colon cancer. Mechanistically, we demonstrate that at low concentrations triptolide induces apoptotic cell death but at higher concentrations it induces cell cycle arrest. Our data suggest that triptolide is able to induce G1 cell cycle arrest by inhibiting transcriptional activation of E2F1. Our data also show that triptolide downregulates E2F activity by potentially modulating events downstream of DNA binding. Therefore, we conclude

  19. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia

    PubMed Central

    Kojima, Kenji K.

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an “archaeal” RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes. PMID:26556480

  20. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila.

    PubMed Central

    Weill, Mylène; Fort, Philippe; Berthomieu, Arnaud; Dubois, Marie Pierre; Pasteur, Nicole; Raymond, Michel

    2002-01-01

    Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace-1) being a new locus and the other (ace-2) being homologous to the gene previously described in Drosophila. The gene ace-1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace-1 and ace-2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace-1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace-2 in at least the Drosophilidae and Muscidae and ace-1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed. PMID:12396499

  1. Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L.

    PubMed

    Garzón-Ospina, Diego; Forero-Rodríguez, Johanna; Patarroyo, Manuel A

    2014-12-13

    The msp-7 gene has become differentially expanded in the Plasmodium genus; Plasmodium vivax has the highest copy number of this gene, several of which encode antigenic proteins in merozoites. DNA sequences from thirty-six Colombian clinical isolates from P. vivax (pv) msp-7E, -7F and -7L genes were analysed for characterizing and studying the genetic diversity of these pvmsp-7 members which are expressed during the intra-erythrocyte stage; natural selection signals producing the variation pattern so observed were evaluated. The pvmsp-7E gene was highly polymorphic compared to pvmsp-7F and pvmsp-7L which were seen to have limited genetic diversity; pvmsp-7E polymorphism was seen to have been maintained by different types of positive selection. Even though these copies seemed to be species-specific duplications, a search in the Plasmodium cynomolgi genome (P. vivax sister taxon) showed that both species shared the whole msp-7 repertoire. This led to exploring the long-term effect of natural selection by comparing the orthologous sequences which led to finding signatures for lineage-specific positive selection. The results confirmed that the P. vivax msp-7 family has a heterogeneous genetic diversity pattern; some members are highly conserved whilst others are highly diverse. The results suggested that the 3'-end of these genes encode MSP-7 proteins' functional region whilst the central region of pvmsp-7E has evolved rapidly. The lineage-specific positive selection signals found suggested that mutations occurring in msp-7s genes during host switch may have succeeded in adapting the ancestral P. vivax parasite population to humans.

  2. E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox.

    PubMed

    Volz, Asisa; Jany, Sylvia; Freudenstein, Astrid; Lantermann, Markus; Ludwig, Holger; Sutter, Gerd

    2018-01-04

    The highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L . Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV) challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.

  3. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation

    PubMed Central

    Ankers, John M; Awais, Raheela; Jones, Nicholas A; Boyd, James; Ryan, Sheila; Adamson, Antony D; Harper, Claire V; Bridge, Lloyd; Spiller, David G; Jackson, Dean A; Paszek, Pawel; Sée, Violaine; White, Michael RH

    2016-01-01

    Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.10473.001 PMID:27185527

  4. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    PubMed Central

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  5. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    PubMed

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  6. About miRNAs, miRNA seeds, target genes and target pathways.

    PubMed

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  7. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): NmF2 and hmF2 specification

    NASA Astrophysics Data System (ADS)

    Themens, David; Thayyil Jayachandran, P.

    2017-04-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes (Themens et al. 2014, Themens et al. 2016). These inaccuracies are believed to stem from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. For this purpose, we here introduce the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM), which incorporates all of the above datasets, as well as the older observation records, into a new climatological representation of the high latitude ionosphere. In this presentation, we introduce the NmF2 and hmF2 portions of the model, focusing on both climatological and storm-time representations, and present a validation of the new model with respect to ionosonde observations from four high latitude stations. A comparison with respect to IRI performance is also presented, where we see improvements by up to 70% in the representation of peak electron density through using the new E-CHAIM model. In terms of RMS errors, the E-CHAIM model is shown to represent a near-universal improvement over the IRI, sometimes by more than 1 MHz in foF2. For peak height, the E-CHAIM model demonstrates overall RMS errors of 13km at each test site compared to values of 18-35km for the IRI, depending on location. Themens, D.R., P. T. Jayachandran, et al. (2014). J. Geophys. Res. Space

  8. Genome-wide analysis of YY2 versus YY1 target genes

    PubMed Central

    Chen, Li; Shioda, Toshi; Coser, Kathryn R.; Lynch, Mary C.; Yang, Chuanwei; Schmidt, Emmett V.

    2010-01-01

    Yin Yang 1 (YY1) is a critical transcription factor controlling cell proliferation, development and DNA damage responses. Retrotranspositions have independently generated additional YY family members in multiple species. Although Drosophila YY1 [pleiohomeotic (Pho)] and its homolog [pleiohomeotic-like (Phol)] redundantly control homeotic gene expression, the regulatory contributions of YY1-homologs have not yet been examined in other species. Indeed, targets for the mammalian YY1 homolog YY2 are completely unknown. Using gene set enrichment analysis, we found that lentiviral constructs containing short hairpin loop inhibitory RNAs for human YY1 (shYY1) and its homolog YY2 (shYY2) caused significant changes in both shared and distinguishable gene sets in human cells. Ribosomal protein genes were the most significant gene set upregulated by both shYY1 and shYY2, although combined shYY1/2 knock downs were not additive. In contrast, shYY2 reversed the anti-proliferative effects of shYY1, and shYY2 particularly altered UV damage response, platelet-specific and mitochondrial function genes. We found that decreases in YY1 or YY2 caused inverse changes in UV sensitivity, and that their combined loss reversed their respective individual effects. Our studies show that human YY2 is not redundant to YY1, and YY2 is a significant regulator of genes previously identified as uniquely responding to YY1. PMID:20215434

  9. Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells.

    PubMed

    Le Goffic, Ronan; Bouguyon, Edwige; Chevalier, Christophe; Vidic, Jasmina; Da Costa, Bruno; Leymarie, Olivier; Bourdieu, Christiane; Decamps, Laure; Dhorne-Pollet, Sophie; Delmas, Bernard

    2010-10-15

    The PB1-F2 protein of the influenza A virus (IAV) contributes to viral pathogenesis by a mechanism that is not well understood. PB1-F2 was shown to modulate apoptosis and to be targeted by the CD8(+) T cell response. In this study, we examined the downstream effects of PB1-F2 protein during IAV infection by measuring expression of the cellular genes in response to infection with wild-type WSN/33 and PB1-F2 knockout viruses in human lung epithelial cells. Wild-type virus infection resulted in a significant induction of genes involved in innate immunity. Knocking out the PB1-F2 gene strongly decreased the magnitude of expression of cellular genes implicated in antiviral response and MHC class I Ag presentation, suggesting that PB1-F2 exacerbates innate immune response. Biological network analysis revealed the IFN pathway as a link between PB1-F2 and deregulated genes. Using quantitative RT-PCR and IFN-β gene reporter assay, we determined that PB1-F2 mediates an upregulation of IFN-β expression that is dependent on NF-κB but not on AP-1 and IFN regulatory factor-3 transcription factors. Recombinant viruses knocked out for the PB1-F2 and/or the nonstructural viral protein 1 (the viral antagonist of the IFN response) genes provide further evidence that PB1-F2 increases IFN-β expression and that nonstructural viral protein 1 strongly antagonizes the effect of PB1-F2 on the innate response. Finally, we compared the effect of PB1-F2 variants taken from several IAV strains on IFN-β expression and found that PB1-F2-mediated IFN-β induction is significantly influenced by its amino acid sequence, demonstrating its importance in the host cell response triggered by IAV infection.

  10. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly

    PubMed Central

    Gandin, Valentina; Masvidal, Laia; Cargnello, Marie; Gyenis, Laszlo; McLaughlan, Shannon; Cai, Yutian; Tenkerian, Clara; Morita, Masahiro; Balanathan, Preetika; Jean-Jean, Olivier; Stambolic, Vuk; Trost, Matthias; Furic, Luc; Larose, Louise; Koromilas, Antonis E.; Asano, Katsura; Litchfield, David; Larsson, Ola; Topisirovic, Ivan

    2016-01-01

    Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2β phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2β mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2β and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation. PMID:27040916

  11. Highly Stable Aptamers Selected from a 2′-Fully Modified fGmH RNA Library for Targeting Biomaterials

    PubMed Central

    Friedman, Adam D.; Kim, Dongwook; Liu, Rihe

    2014-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2′ modification. This study aims to develop a novel class of highly stable, 2′-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2′-F-dG, 2′-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2′-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and further deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials. PMID:25443790

  12. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets

    PubMed Central

    Xue, Gang-Ping; Drenth, Janneke; McIntyre, C. Lynne

    2015-01-01

    Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance. PMID:25428996

  13. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets.

    PubMed

    Xue, Gang-Ping; Drenth, Janneke; McIntyre, C Lynne

    2015-02-01

    Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Cytoplasmic E2f4 forms organizing centres for initiation of centriole amplification during multiciliogenesis

    PubMed Central

    Mori, Munemasa; Hazan, Renin; Danielian, Paul S.; Mahoney, John E.; Li, Huijun; Lu, Jining; Miller, Emily S.; Zhu, Xueliang; Lees, Jacqueline A.; Cardoso, Wellington V.

    2017-01-01

    Abnormal development of multiciliated cells is a hallmark of a variety of human conditions associated with chronic airway diseases, hydrocephalus and infertility. Multiciliogenesis requires both activation of a specialized transcriptional program and assembly of cytoplasmic structures for large-scale centriole amplification that generates basal bodies. It remains unclear, however, what mechanism initiates formation of these multiprotein complexes in epithelial progenitors. Here we show that this is triggered by nucleocytoplasmic translocation of the transcription factor E2f4. After inducing a transcriptional program of centriole biogenesis, E2f4 forms apical cytoplasmic organizing centres for assembly and nucleation of deuterosomes. Using genetically altered mice and E2F4 mutant proteins we demonstrate that centriole amplification is crucially dependent on these organizing centres and that, without cytoplasmic E2f4, deuterosomes are not assembled, halting multiciliogenesis. Thus, E2f4 integrates nuclear and previously unsuspected cytoplasmic events of centriole amplification, providing new perspectives for the understanding of normal ciliogenesis, ciliopathies and cancer. PMID:28675157

  15. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum.

    PubMed

    Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan

    2005-06-01

    Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.

  16. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development.

    PubMed

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; Barozzi, Iros; Osterwalder, Marco; Akiyama, Jennifer A; Lincoln, Joy; Lopez-Rios, Javier; Visel, Axel; Zuniga, Aimée; Zeller, Rolf

    2017-05-23

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development

    DOE PAGES

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; ...

    2017-05-23

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost frommore » Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development.« less

  18. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost frommore » Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development.« less

  19. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy

    PubMed Central

    2011-01-01

    Background DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. Results We have observed that (1) the Tol2 transposase (but not piggyBac) is highly sensitive to molecular engineering; (2) the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3) a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4) piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5) only sites with a particular sequence context can be targeted by either piggyBac or Tol2. Conclusions The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting. PMID:21447194

  20. Whole-Genome Characterization and Strain Comparison of VT2f-Producing Escherichia coli Causing Hemolytic Uremic Syndrome

    PubMed Central

    Michelacci, Valeria; Bondì, Roslen; Gigliucci, Federica; Franz, Eelco; Badouei, Mahdi Askari; Schlager, Sabine; Minelli, Fabio; Tozzoli, Rosangela; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Verotoxigenic Escherichia coli infections in humans cause disease ranging from uncomplicated intestinal illnesses to bloody diarrhea and systemic sequelae, such as hemolytic uremic syndrome (HUS). Previous research indicated that pigeons may be a reservoir for a population of verotoxigenic E. coli producing the VT2f variant. We used whole-genome sequencing to characterize a set of VT2f-producing E. coli strains from human patients with diarrhea or HUS and from healthy pigeons. We describe a phage conveying the vtx2f genes and provide evidence that the strains causing milder diarrheal disease may be transmitted to humans from pigeons. The strains causing HUS could derive from VT2f phage acquisition by E. coli strains with a virulence genes asset resembling that of typical HUS-associated verotoxigenic E. coli. PMID:27584691

  1. EphB4-targeted imaging with antibody h131, h131-F(ab′)2 and h131-Fab

    PubMed Central

    Li, Dan; Liu, Shuanglong; Liu, Ren; Zhou, Yue; Park, Ryan; Naga, Kranthi; Krasnoperov, Valery; Gill, Parkash S.; Li, Zibo; Shan, Hong; Conti, Peter S.

    2013-01-01

    Accumulating evidence suggests that overexpression of the tyrosine kinase receptor EphB4, a mediator of vascular development, is a novel target for tumor diagnosis, prognosis and therapy. Noninvasive imaging of EphB4 expression could therefore be valuable for evaluating disease course and therapeutic efficacy at the earliest stages of anti-EphB4 treatment. In this study, we systematically investigated the use of anti-EphB4 antibody h131 (150 kD) and its fragments (h131-F(ab′)2, 110 kD; h131-Fab, 50 kD) for near-infrared fluorescence (NIRF) imaging of EphB4 expression in vivo. h131-F(ab′)2 and h131-Fab were produced through pepsin and papain digestion of h131 respectively, whose purity was confirmed by FPLC and SDS-PAGE. After conjugation with Cy5.5, in vivo characteristics of h131, h131-F(ab′)2 and h131-Fab were evaluated in EphB4-positive HT29 tumor model. Although h131-Cy5.5 demonstrated highest tumor uptake among these probes, its optimal tumor uptake level was obtained at 2 d post injection (p.i.). For h131-Fab-Cy5.5, maximum tumor uptake was achieved at 4 h p.i.. However, no significant difference was observed between h131-Fab-Cy5.5 and hIgG-Fab-Cy5.5, indicating the tumor accumulation was mainly caused by passive targeting. In contrast, h131-F(ab′)2-Cy5.5 demonstrated prominent tumor uptake at 6 h p.i. The target specificity was confirmed by hIgG-F(ab′)2-Cy5.5 control and immunofluorescent staining. Collectively, h131-F(ab′)2 exhibited prominent and specific tumor uptake at early time points, which suggests it is a promising agent for EphB4-targeted imaging. PMID:24147882

  2. Expression and Functional Pathway Analysis of Nuclear Receptor NR2F2 in Ovarian Cancer

    PubMed Central

    Hawkins, Shannon M.; Loomans, Holli A.; Wan, Ying-Wooi; Ghosh-Choudhury, Triparna; Coffey, Donna; Xiao, Weimin; Liu, Zhandong; Sangi-Haghpeykar, Haleh

    2013-01-01

    Context: Recent evidence implicates the orphan nuclear receptor, nuclear receptor subfamily 2, group F, member 2 (NR2F2; chicken ovalbumin upstream promoter-transcription factor II) as both a master regulator of angiogenesis and an oncogene in prostate and other human cancers. Objective: The objective of the study was to determine whether NR2F2 plays a role in ovarian cancer and dissect its potential mechanisms of action. Design, Setting, and Patients: We examined NR2F2 expression in healthy ovary and ovarian cancers using quantitative PCR and immunohistochemistry. NR2F2 expression was targeted in established ovarian cancer cell lines to assess the impact of dysregulated NR2F2 expression in the epithelial compartment of ovarian cancers. Results: Our results indicate that NR2F2 is robustly expressed in the stroma of healthy ovary with little or no expression in epithelia lining the ovarian surface, clefts, or crypts. This pattern of NR2F2 expression was markedly disrupted in ovarian cancers, in which decreased levels of stromal expression and ectopic epithelial expression were frequently observed. Ovarian cancers with the most disrupted patterns of NR2F2 were associated with significantly shorter disease-free interval by Kaplan-Meier analysis. Targeting NR2F2 expression in established ovarian cancer cell lines enhanced apoptosis and increased proliferation. In addition, we found that NR2F2 regulates the expression of NEK2, RAI14, and multiple other genes involved in the cell cycle, suggesting potential pathways by which dysregulated expression of NR2F2 impacts ovarian cancer. Conclusions: These results uncover novel roles for NR2F2 in ovarian cancer and point to a unique scenario in which a single nuclear receptor plays potentially distinct roles in the stromal and epithelial compartments of the same tissue. PMID:23690307

  3. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  4. E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair.

    PubMed

    Singh, Randeep K; Dagnino, Lina

    2016-05-03

    Nucleotide excision repair (NER) is a major mechanism for removal of DNA lesions induced by exposure to UV radiation in the epidermis. Recognition of damaged DNA sites is the initial step in their repair, and requires multiprotein complexes that contain XPC and hHR23 proteins, or their orthologues. A variety of transcription factors are also involved in NER, including E2F1. In epidermal keratinocytes, UV exposure induces E2F1 phosphorylation, which allows it to recruit various NER factors to sites of DNA damage. However, the relationship between E2F1 and hHR23 proteins vis-à-vis NER has remained unexplored. We now show that E2F1 and hHR23 proteins can interact, and this interaction stabilizes E2F1, inhibiting its proteasomal degradation. Reciprocally, E2F1 regulates hHR23A subcellular localization, recruiting it to sites of DNA photodamage. As a result, E2F1 and hHR23A enhance DNA repair following exposure to UV radiation, contributing to genomic stability in the epidermis.

  5. E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair

    PubMed Central

    Singh, Randeep K.; Dagnino, Lina

    2016-01-01

    Nucleotide excision repair (NER) is a major mechanism for removal of DNA lesions induced by exposure to UV radiation in the epidermis. Recognition of damaged DNA sites is the initial step in their repair, and requires multiprotein complexes that contain XPC and hHR23 proteins, or their orthologues. A variety of transcription factors are also involved in NER, including E2F1. In epidermal keratinocytes, UV exposure induces E2F1 phosphorylation, which allows it to recruit various NER factors to sites of DNA damage. However, the relationship between E2F1 and hHR23 proteins vis-à-vis NER has remained unexplored. We now show that E2F1 and hHR23 proteins can interact, and this interaction stabilizes E2F1, inhibiting its proteasomal degradation. Reciprocally, E2F1 regulates hHR23A subcellular localization, recruiting it to sites of DNA photodamage. As a result, E2F1 and hHR23A enhance DNA repair following exposure to UV radiation, contributing to genomic stability in the epidermis. PMID:27028861

  6. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization.

    PubMed

    Qi, Qian-Rong; Zhao, Xu-Yu; Zuo, Ru-Juan; Wang, Tong-Song; Gu, Xiao-Wei; Liu, Ji-Long; Yang, Zeng-Ming

    2015-01-01

    Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polyploidization of decidual cells. E2F8-mediated polyploidization is a response to stresses which are accompanied by decidualization. Interestingly, polyploidization is not detected during human decidualization with the down-regulation of E2F8, indicating differential expression of E2F8 may lead to the difference of decidual cell polyploidization between mice and humans.

  7. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization

    PubMed Central

    Qi, Qian-Rong; Zhao, Xu-Yu; Zuo, Ru-Juan; Wang, Tong-Song; Gu, Xiao-Wei; Liu, Ji-Long; Yang, Zeng-Ming

    2015-01-01

    Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polyploidization of decidual cells. E2F8-mediated polyploidization is a response to stresses which are accompanied by decidualization. Interestingly, polyploidization is not detected during human decidualization with the down-regulation of E2F8, indicating differential expression of E2F8 may lead to the difference of decidual cell polyploidization between mice and humans. PMID:25892397

  8. Cytogenetic mapping of the Muller F element genes in Drosophila willistoni group.

    PubMed

    Pita, Sebastián; Panzera, Yanina; Lúcia da Silva Valente, Vera; de Melo, Zilpa das Graças Silva; Garcia, Carolina; Garcia, Ana Cristina Lauer; Montes, Martín Alejandro; Rohde, Claudia

    2014-10-01

    Comparative genomics in Drosophila began in 1940, when Muller stated that the ancestral haploid karyotype of this genus is constituted by five acrocentric chromosomes and one dot chromosome, named A to F elements. In some species of the willistoni group such as Drosophila willistoni and D. insularis, the F element, instead of a dot chromosome, has been incorporated into the E element, forming chromosome III (E + F fusion). The aim of this study was to investigate the scope of the E + F fusion in the willistoni group, evaluating six other species. Fluorescent in situ hybridization was used to locate two genes of the F element previously studied-cubitus interruptus (ci) and eyeless (ey)-in species of the willistoni and bocainensis subgroups. Moreover, polytene chromosome photomaps corresponding to the F element (basal portion of chromosome III) were constructed for each species studied. In D. willistoni, D. paulistorum and D. equinoxialis, the ci gene was located in subSectction 78B and the ey gene in 78C. In D. tropicalis, ci was located in subSection 76B and ey in 76C. In species of the bocainensis subgroup, ci and ey were localized, respectively, at subsections 76B and 76C in D. nebulosa and D. capricorni, and 76A and 76C in D. fumipennis. Despite the differences in the subsection numbers, all species showed the same position for ci and ey. The results confirm the synteny of E + F fusion in willistoni and bocainensis subgroups, and allow estimating the occurrence of this event at 15 Mya, at least.

  9. Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis.

    PubMed

    Liu, Yanhua; Lu, Cuntao; Zhou, Yizhou; Zhang, Zhihong; Sun, Li

    2018-07-20

    As the development of sequencing technology, more and more circular RNAs (circRNAs) are identified in human cancer tissues. Increasing evidences imply circRNAs are important regulators in tumor progression. Nevertheless, how circRNAs participate in breast cancer development and progression is not well understood. In the present study, we identified a novel circRNA hsa_circ_0008039 with upregulated expression level in breast cancer tissues. By functional experiments, we found that hsa_circ_0008039 depletion significantly suppressed the proliferation, arrested cell-cycle progression and reduced migration in breast cancer. Mechanistic investigations suggested that hsa_circ_0008039 served as a competing endogenous RNA (ceRNA) of miR-432-5p. Subsequently, E2F3 was identified as the functional target of miR-432-5p and overexpression of hsa_circ_0008039 elevated E2F3 expression in breast cancer. On the whole, our study indicated that hsa_circ_0008039 exerted oncogenic roles in breast cancer and suggested the hsa_circ_0008039/miR-432-5p/E2F3 axis might be a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes.

    PubMed Central

    Han, Qian; Fang, Jianmin; Ding, Haizhen; Johnson, Jody K; Christensen, Bruce M; Li, Jianyong

    2002-01-01

    This study describes the identification of Drosophila yellow-f and yellow-f2 as dopachrome-conversion enzymes responsible for catalysing the conversion of dopachrome into 5,6-dihydroxyindole in the melanization pathway. Drosophila yellow -y gene and yellow -b, -c, -f and -f2 genes were expressed in an insect cell/baculovirus expression system and their corresponding recombinant proteins were screened for dopachrome-conversion enzyme activity. Among the yellow and yellow -related genes, the yellow -f and yellow -f2 genes were identified as the genes coding for Drosophila dopachrome-conversion enzyme based on the high activity of their recombinant proteins in catalysing the production of 5,6-dihydroxyindole from dopachrome. Both yellow-f and yellow-f2 are capable of mediating a decarboxylative structural rearrangement of dopachrome, as well as an isomerization/tautomerization of dopamine chrome and dopa methyl ester chrome. Northern hybridization revealed the transcription of yellow -f in larvae and pupae, but a high abundance of mRNA was observed in later larval and early pupal stages. In contrast, yellow-f2 transcripts were present at all stages, but high abundance of its mRNA was observed in later-stage pupae and adults. These data indicate that yellow-f and yellow-f2 complement each other during Drosophila development and that the yellow-f is involved in larval and pupal melanization, and yellow-f2 plays a major role in melanization reactions in Drosophila during later pupal and adult development. Results from this study provide the groundwork towards a better understanding of the physiological roles of the Drosophila yellow gene family. PMID:12164780

  11. Venezuelines A-G, new phenoxazine-based alkaloids and aminophenols from Streptomyces venezuelae and the regulation of gene target Nur77.

    PubMed

    Ren, Jinwei; Liu, Dong; Tian, Li; Wei, Yangye; Proksch, Peter; Zeng, Jinzhang; Lin, Wenhan

    2013-01-01

    Five new phenoxazine-based alkaloids venezuelines A-E (1-5) and two new aminophenols venezuelines F-G (6-7), as well as three known analogues exfoliazone, chandrananimycin D and carboxyexfoliazone were isolated from the fermentation broth of the marine-derived bacterium Streptomyces venezuelae. The structures of new compounds were determined on the basis of extensive spectroscopic analysis. The cytotoxic activity of these compounds against a panel of tumor cell lines were tested, while the regulation of gene target Nur77 of 2 and exfoliazone (8) were evaluated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Targeting of MPEG-protected polyamino acid carrier to human E-selectin in vitro.

    PubMed

    Kang, H W; Weissleder, R; Bogdanov, A

    2002-01-01

    Targeted diagnostic agents are expected to have a significant impact in molecular imaging of cell-surface associated markers of proliferation, inflammation and angiogenesis. In this communication, we describe a new class of targeted polyamino acid-based protected graft copolymers (PGC) of poly-(L-lysine) and methyl poly-(ethylene glycol) (PGC) covalently conjugated with a monoclonal antibody fragment, F(ab')(2). We utilized targeted PGC conjugates as carriers of near-infrared indocyanine fluorophores (Cy5.5) for optical imaging of endothelial cell populations expressing IL-1 beta inducible proinflammatory marker E-selectin. We compared two conjugation chemistries, involving either introduction of sulfhydryl group to F(ab')(2), or via direct attachment of the antibody fragment directly to the chemically activated PGC. Both PGC-based targeted agents demonstrated high binding specificity (20-30 fold over non-specific uptake) and were utilized for imaging E-selectin expression on human endothelial cells activated with IL-1 beta.

  13. Optimizing cardiovascular gene therapy: increased vascular gene transfer with modified adenoviral vectors.

    PubMed

    Kibbe, M R; Murdock, A; Wickham, T; Lizonova, A; Kovesdi, I; Nie, S; Shears, L; Billiar, T R; Tzeng, E

    2000-02-01

    Adenovirus is widely used as a vector for gene transfer to the vasculature. However, the efficiency of these vectors can be limited by ineffective viral-target cell interactions. Viral attachment, which largely determines adenoviral tropism, is mediated through binding of the adenoviral fiber coat protein to the Coxsackievirus and adenovirus receptor, while internalization follows binding of the adenoviral RGD motif to alpha(v)-integrin receptors. Modifications of the fiber coat protein sequence have been successful for targeting the adenovirus to more prevalent receptors in the vasculature, including heparan sulfate-containing receptors and alpha(v)-integrin receptors. Modified adenoviral vectors targeted to receptors more prevalent in the vasculature result in an increased transfer efficiency of the virus in vitro and in vivo even in the presence of clinically relevant doses of heparin. We tested 2 modified E1- and E3-deleted Ad5 type adenoviral vectors containing the beta-galactosidase gene. AdZ.F(pK7) contains multiple positively charged lysines in the fiber coat protein that target the adenovirus to heparan sulfate receptors, while AdZ.F(RGD) contains an RGD integrin-binding sequence in the fiber coat protein that allows binding to alpha(v)-integrin receptors. The gene transfer efficiency of these modified viruses was compared in rat aortic smooth muscle cells in vitro and in an in vivo porcine model of balloon-induced arterial injury. Because of the use of heparin during most vascular surgical procedures and the concern that heparin might interfere with the binding of AdZ.F(pK7) to heparan sulfate receptors, the effect of heparin on the in vitro and in vivo transfer efficiency of these 2 modified adenoviruses was evaluated. In vitro infection of rat aortic smooth muscle cells with AdZ.F(pK7) and AdZ.F(RGD) resulted in significantly higher levels of beta-galactosidase expression compared with the unmodified adenovirus (mean +/- SEM, 1766.3 +/- 89.1 and 44

  14. Differential expression and molecular characterisation of Lmo7, Myo1e, Sash1, and Mcoln2 genes in Btk-defective B-cells.

    PubMed

    Lindvall, Jessica M; Blomberg, K Emelie M; Wennborg, Anders; Smith, C I Edvard

    2005-05-01

    Bruton's tyrosine kinase is crucial for B-lymphocyte development. By the use of gene expression profiling, we have identified four expressed sequence tags among 38 potential Btk target genes, which have now been characterised. Bioinformatics tools including data mining of additional unpublished gene expression profiles, sequence verification of PCR products and qualitative RT-PCR were used. Stimulations targeting the B-cell receptor and the protein kinase C were used to activate whole B-cell splenocytes. Target genes were characterised as Lim domain only 7 (Lmo7); Myosin1e (Myo1e); SAM and SH3 domain containing 1 (Sash1); and Mucolipin2 (Mcoln2). Expression was found in cell lines of different origin and developmental stages as well as in whole B-cell splenocytes and Transitional type 1 (T1) splenic B-cells from wild type and Btk-defective mice, respectively. By the use of semi-quantitative RT-PCR we found Sash1 not to be expressed in the investigated haematopoietic cell lines, while transcripts were found in whole splenic B-cells from both wild type and Btk-defective mice, whereas Lmo7, Myo1e, and Mcoln2 were expressed in both B-cell lines and primary B-lymphocytes. Except for Lmo7, the transcript level was similarly affected by stimulation in control and Btk-defective cells.

  15. Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*

    PubMed Central

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-01-01

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215

  16. miRTar2GO: a novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA-target interaction data.

    PubMed

    Ahadi, Alireza; Sablok, Gaurav; Hutvagner, Gyorgy

    2017-04-07

    MicroRNAs (miRNAs) are ∼19-22 nucleotides (nt) long regulatory RNAs that regulate gene expression by recognizing and binding to complementary sequences on mRNAs. The key step in revealing the function of a miRNA, is the identification of miRNA target genes. Recent biochemical advances including PAR-CLIP and HITS-CLIP allow for improved miRNA target predictions and are widely used to validate miRNA targets. Here, we present miRTar2GO, which is a model, trained on the common rules of miRNA-target interactions, Argonaute (Ago) CLIP-Seq data and experimentally validated miRNA target interactions. miRTar2GO is designed to predict miRNA target sites using more relaxed miRNA-target binding characteristics. More importantly, miRTar2GO allows for the prediction of cell-type specific miRNA targets. We have evaluated miRTar2GO against other widely used miRNA target prediction algorithms and demonstrated that miRTar2GO produced significantly higher F1 and G scores. Target predictions, binding specifications, results of the pathway analysis and gene ontology enrichment of miRNA targets are freely available at http://www.mirtar2go.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Modifier locus mapping of a transgenic F2 mouse population identifies CCDC115 as a novel aggressive prostate cancer modifier gene in humans.

    PubMed

    Winter, Jean M; Curry, Natasha L; Gildea, Derek M; Williams, Kendra A; Lee, Minnkyong; Hu, Ying; Crawford, Nigel P S

    2018-06-11

    It is well known that development of prostate cancer (PC) can be attributed to somatic mutations of the genome, acquired within proto-oncogenes or tumor-suppressor genes. What is less well understood is how germline variation contributes to disease aggressiveness in PC patients. To map germline modifiers of aggressive neuroendocrine PC, we generated a genetically diverse F2 intercross population using the transgenic TRAMP mouse model and the wild-derived WSB/EiJ (WSB) strain. The relevance of germline modifiers of aggressive PC identified in these mice was extensively correlated in human PC datasets and functionally validated in cell lines. Aggressive PC traits were quantified in a population of 30 week old (TRAMP x WSB) F2 mice (n = 307). Correlation of germline genotype with aggressive disease phenotype revealed seven modifier loci that were significantly associated with aggressive disease. RNA-seq were analyzed using cis-eQTL and trait correlation analyses to identify candidate genes within each of these loci. Analysis of 92 (TRAMP x WSB) F2 prostates revealed 25 candidate genes that harbored both a significant cis-eQTL and mRNA expression correlations with an aggressive PC trait. We further delineated these candidate genes based on their clinical relevance, by interrogating human PC GWAS and PC tumor gene expression datasets. We identified four genes (CCDC115, DNAJC10, RNF149, and STYXL1), which encompassed all of the following characteristics: 1) one or more germline variants associated with aggressive PC traits; 2) differential mRNA levels associated with aggressive PC traits; and 3) differential mRNA expression between normal and tumor tissue. Functional validation studies of these four genes using the human LNCaP prostate adenocarcinoma cell line revealed ectopic overexpression of CCDC115 can significantly impede cell growth in vitro and tumor growth in vivo. Furthermore, CCDC115 human prostate tumor expression was associated with better survival

  18. First observation of RDEC for gas (N2) targets with F9+

    NASA Astrophysics Data System (ADS)

    Kumara, P. N. S.; La Mantia, D. S.; Simon, A.; Kayani, A.; Tanis, J. A.

    2017-10-01

    Radiative double electron capture (RDEC) is a fundamental atomic process predicted to occur in ion-atom collisions. Several attempts were made to show experimental evidence for RDEC after it was introduced theoretically in 1987. The first successful measurements were done for O8+ ions colliding with a thin carbon foil in 2010, followed by measurements for F9+ projectiles incident on carbon. The works reported here are the first observations giving preliminary results for RDEC in collisions of F9+ projectiles with gas (N2) targets. X-rays were observed in the region of interest and an estimation of RDEC cross section was calculated. These cross sections are compared with recent theoretical calculations.

  19. Gene transfer mediated by alpha2-macroglobulin.

    PubMed Central

    Schneider, H; Huse, K; Birkenmeier, G; Otto, A; Scholz, G H

    1996-01-01

    alpha2-Macroglobulin covalently linked to poly(L)-lysine can be used as a vehicle for receptor-mediated gene transfer. This modified alpha2-macroglobulin maintains its ability to bind to the alpha2-macroglobulin receptor, and was shown to introduce a luciferase reporter gene plasmid into HepG2 human hepatoma cells in vitro. The alpha2-macroglobulin receptor is a very large and multifunctional cell surface receptor, whose rapid and efficient internalization rate makes it attractive for gene therapy, e.g. for hepatic gene targeting via injection into the portal vein. PMID:8871570

  20. Cell cycle regulator E2F4 is essential for the development of the ventral telencephalon.

    PubMed

    Ruzhynsky, Vladimir A; McClellan, Kelly A; Vanderluit, Jacqueline L; Jeong, Yongsu; Furimsky, Marosh; Park, David S; Epstein, Douglas J; Wallace, Valerie A; Slack, Ruth S

    2007-05-30

    Early forebrain development is characterized by extensive proliferation of neural precursors coupled with complex structural transformations; however, little is known regarding the mechanisms by which these processes are integrated. Here, we show that deficiency of the cell cycle regulatory protein, E2F4, results in the loss of ventral telencephalic structures and impaired self-renewal of neural precursor cells. The mechanism underlying aberrant ventral patterning lies in a dramatic loss of Sonic hedgehog (Shh) expression specifically in this region. The E2F4-deficient phenotype can be recapitulated by interbreeding mice heterozygous for E2F4 with those lacking one allele of Shh, suggesting a genetic interaction between these pathways. Treatment of E2F4-deficient cells with a Hh agonist rescues stem cell self-renewal and cells expressing the homeodomain proteins that specify the ventral telencephalic structures. Finally, we show that E2F4 deficiency results in impaired activity of Shh forebrain-specific enhancers. In conclusion, these studies establish a novel requirement for the cell cycle regulatory protein, E2F4, in the development of the ventral telencephalon.

  1. Long non-coding RNA H19 promotes glucose metabolism and cell growth in malignant melanoma via miR-106a-5p/E2F3 axis.

    PubMed

    Luan, Wenkang; Zhou, Zhou; Ni, Xin; Xia, Yun; Wang, Jinlong; Yan, Yulan; Xu, Bin

    2018-03-01

    lncRNA H19 has been considered as an oncogenic lncRNA in many human tumours. In the present study, we identify the role and molecular mechanism of lncRNA H19 in melanoma. QRT-PCR was used to detect the expression of lncRNA H19 and E2F3 was detected in melanoma tissues. Cell counting kit-8 (CCK8), representative metabolites analysis was used to explore the biological function of lncRNA H19, miR-106a-5p and E2F3 in melanoma cells. Bioinformatics, luciferase reporter assays, MS2-RIP and RNA pull-down assay was used to demonstrate the molecular mechanism of lncRNA H19 in melanoma. We further test the function of lncRNA H19 in vivo though Xenograft tumour assay. We found that lncRNA H19 was increased in melanoma tissue, and lncRNA H19 was correlated with poor prognosis of melanoma patients. miR-106a-5p acts as a tumour suppressor in melanoma by targeting E2F3. E2F3 affects the melanoma cell glucose metabolism and growth. We also demonstrated that lncRNA H19 may function as the sponge of miR-106a-5p to up-regulate E2F3 expression, and consequently promote the glucose metabolism and growth of melanoma. This result elucidates a new mechanism for lncRNA H19 in melanoma development and provides a survival indicator and potential therapeutic target for melanoma patients.

  2. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1

    PubMed Central

    Bai, Chen; Tesker, Masha; Engelberg, David

    2015-01-01

    Transcription factors are commonly activated by signal transduction cascades and induce expression of many genes. They therefore play critical roles in determining the cell's fate. The yeast Hog1 MAP kinase pathway is believed to control the transcription of hundreds of genes via several transcription factors. To identify the bona fide target genes of Hog1, we inducibly expressed the spontaneously active variant Hog1D170A+F318L in cells lacking the Hog1 activator Pbs2. This system allowed monitoring the effects of Hog1 by itself. Expression of Hog1D170A+F318L in pbs2∆ cells imposed induction of just 105 and suppression of only 26 transcripts by at least twofold. We looked for the Hog1-responsive element within the promoter of the most highly induced gene, STL1 (88-fold). A novel Hog1 responsive element (HoRE) was identified and shown to be the direct target of the transcription factor Hot1. Unexpectedly, we could not find this HoRE in any other yeast promoter. In addition, the only gene whose expression was abolished in hot1∆ cells was STL1. Thus Hot1 is essential for transcription of just one gene, STL1. Hot1 may represent a class of transcription factors that are essential for transcription of a very few genes or even just one. PMID:25904326

  3. BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana.

    PubMed

    Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel

    2017-01-01

    HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.

  4. Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF.

    PubMed Central

    Hoe, N P; Minion, F C; Goguen, J D

    1992-01-01

    In Escherichia coli, a yopE::lacZ fusion was found to be regulated by temperature in the presence of the cloned BamHI G fragment of Yersinia pestis plasmid pCD1, which contains the lcrF locus. Increasing the copy number of lcrF relative to that of the yopE reporter had a negligible effect on the induction ratio (26 versus 37 degrees C) but caused large reductions in the absolute levels of yopE transcription. We localized the lcrF gene by monitoring the induction phenotype of BamHI G deletion derivatives. Sequencing revealed an open reading frame capable of encoding a protein of 30.8 kDa. A protein product of this size was detected in a T7 expression system, and LcrF-dependent yopE-specific DNA binding activity was observed. As expected, LcrF exhibited 98% homology to VirF of Yersinia enterocolitica and significant homology to the carboxy termini of other members of the AraC family of transcriptional regulatory proteins. These proteins could be divided into two classes according to function: those regulating operons involved in catabolism of carbon and energy sources and those involved in regulating virulence genes. lcrF::lacZ transcriptional fusions were constructed and analyzed in Y. pestis and E. coli. The activity of the fusions was not affected by the native pCD1 virulence plasmid, an intact lcrF gene, or temperature. Thus, induction of lcrF transcription is not essential for temperature-dependent activation of yopE transcription. A portion of LcrF was found associated with the membrane fraction in E. coli; however, pulse-chase experiments indicated that this result is an artifact of fractionation. Images PMID:1624422

  5. HER2 activating mutations are targets for colorectal cancer treatment

    PubMed Central

    Kavuri, Shyam M.; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M.; Migliardi, Giorgia; Searleman, Adam C.; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A.; Bertotti, Andrea; Bose, Ron

    2015-01-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of colorectal cancer patients. Introduction of the HER2 mutations, S310F, L755S, V777L, V842I, and L866M, into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutations are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors, neratinib and afatinib. HER2 gene sequencing of 48 cetuximab resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) WT colorectal cancer patient-derived xenografts (PDX’s) identified 4 PDX’s with HER2 mutations. HER2 targeted therapies were tested on two PDX’s. Treatment with a single HER2 targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2 targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2 mutated PDX’s. PMID:26243863

  6. Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6.

    PubMed

    Draper, Lindsey M; Kwong, Mei Li M; Gros, Alena; Stevanović, Sanja; Tran, Eric; Kerkar, Sid; Raffeld, Mark; Rosenberg, Steven A; Hinrichs, Christian S

    2015-10-01

    The E6 and E7 oncoproteins of HPV-associated epithelial cancers are in principle ideal immunotherapeutic targets, but evidence that T cells specific for these antigens can recognize and kill HPV(+) tumor cells is limited. We sought to determine whether TCR gene engineered T cells directed against an HPV oncoprotein can successfully target HPV(+) tumor cells. T-cell responses against the HPV-16 oncoproteins were investigated in a patient with an ongoing 22-month disease-free interval after her second resection of distant metastatic anal cancer. T cells genetically engineered to express an oncoprotein-specific TCR from this patient's tumor-infiltrating T cells were tested for specific reactivity against HPV(+) epithelial tumor cells. We identified, from an excised metastatic anal cancer tumor, T cells that recognized an HLA-A*02:01-restricted epitope of HPV-16 E6. The frequency of the dominant T-cell clonotype from these cells was approximately 400-fold greater in the patient's tumor than in her peripheral blood. T cells genetically engineered to express the TCR from this clonotype displayed high avidity for an HLA-A*02:01-restricted epitope of HPV-16, and they showed specific recognition and killing of HPV-16(+) cervical, and head and neck cancer cell lines. These findings demonstrate that HPV-16(+) tumors can be targeted by E6-specific TCR gene engineered T cells, and they provide the foundation for a novel cellular therapy directed against HPV-16(+) malignancies, including cervical, oropharyngeal, anal, vulvar, vaginal, and penile cancers. ©2015 American Association for Cancer Research.

  7. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector.

    PubMed

    Huang, Hongliang; Yu, Hai; Tang, Guping; Wang, Qingqing; Li, Jun

    2010-03-01

    Gene delivery is one of the critical steps for gene therapy. Non-viral vectors have many advantages but suffered from low gene transfection efficiency. Here, in order to develop new polymeric gene vectors with low cytotoxicity and high gene transfection efficiency, we synthesized a cationic polymer composed of low molecular weight polyethylenimine (PEI) of molecular weight of 600 Da cross-linked by 2-hydroxypropyl-gamma-cyclodextrin (HP gamma-CD) and then coupled to MC-10 oligopeptide containing a sequence of Met-Ala-Arg-Ala-Lys-Glu. The oligopeptide can target to HER2, the human epidermal growth factor receptor 2, which is often over expressed in many breast and ovary cancers. The new gene vector was expected to be able to target delivery of genes to HER2 positive cancer cells for gene therapy. The new gene vector was composed of chemically bonded HP gamma-CD, PEI (600 Da), and MC-10 peptide at a molar ratio of 1:3.3:1.2. The gene vector could condense plasmid DNA at an N/P ratio of 6 or above. The particle size of HP gamma-CD-PEI-P/DNA complexes at N/P ratios 40 was around 170-200 nm, with zeta potential of about 20 mV. The gene vector showed very low cytotoxicity, strong targeting specificity to HER2 receptor, and high efficiency of delivering DNA to target cells in vitro and in vivo with the reporter genes. The delivery of therapeutic IFN-alpha gene mediated by the new gene vector and the therapeutic efficiency were also studied in mice animal model. The animal study results showed that the new gene vector HP gamma-CD-PEI-P significantly enhanced the anti-tumor effect on tumor-bearing nude mice as compared to PEI (25 kDa), HP gamma-CD-PEI, and other controls, indicating that this new polymeric gene vector is a potential candidate for cancer gene therapy. (c) 2009 Elsevier Ltd. All rights reserved.

  8. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer

    PubMed Central

    Lawrenson, Kate; Iversen, Edwin S.; Tyrer, Jonathan; Weber, Rachel Palmieri; Concannon, Patrick; Hazelett, Dennis J.; Li, Qiyuan; Marks, Jeffrey R.; Berchuck, Andrew; Lee, Janet M.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Plisiecka-Halasa, Joanna; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Jakubowska, Anna; Paul, James; Jensen, Allan; Karlan, Beth Y.; Kjaer, Susanne Kruger; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Cannioto, Rikki; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; Nevanlinna, Heli; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Noor Azmi, Mat Adenan; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Budzilowska, Agnieszka; Sellers, Thomas A.; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Timorek, Agnieszka; Tworoger, Shelley S.; Nieuwenhuysen, Els Van; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Coetzee, Gerhard A.; Freedman, Matthew L.; Monteiro, Alvaro N.A.; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul D.; Gayther, Simon A.; Schildkraut, Joellen M.

    2015-01-01

    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10–7). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r 2 with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11–1.24, P = 1.1×10−7). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10−8). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r 2 = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10-8). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene. PMID:26424751

  9. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer.

    PubMed

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan; Weber, Rachel Palmieri; Concannon, Patrick; Hazelett, Dennis J; Li, Qiyuan; Marks, Jeffrey R; Berchuck, Andrew; Lee, Janet M; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bandera, Elisa V; Bean, Yukie; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Plisiecka-Halasa, Joanna; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Eccles, Diana; Easton, Douglas T; Edwards, Robert P; Eilber, Ursula; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Jakubowska, Anna; Paul, James; Jensen, Allan; Karlan, Beth Y; Kjaer, Susanne Kruger; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph L; Kiemeney, Lambertus A; Krakstad, Camilla; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Cannioto, Rikki; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Nevanlinna, Heli; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Noor Azmi, Mat Adenan; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Budzilowska, Agnieszka; Sellers, Thomas A; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston, Lara; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Coetzee, Gerhard A; Freedman, Matthew L; Monteiro, Alvaro N A; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul D; Gayther, Simon A; Schildkraut, Joellen M

    2015-11-01

    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. E2 and SN2 Reactions of X(-) + CH3CH2X (X = F, Cl); an ab Initio and DFT Benchmark Study.

    PubMed

    Bento, A Patrícia; Solà, Miquel; Bickelhaupt, F Matthias

    2008-06-01

    We have computed consistent benchmark potential energy surfaces (PESs) for the anti-E2, syn-E2, and SN2 pathways of X(-) + CH3CH2X with X = F and Cl. This benchmark has been used to evaluate the performance of 31 popular density functionals, covering local-density approximation, generalized gradient approximation (GGA), meta-GGA, and hybrid density-functional theory (DFT). The ab initio benchmark has been obtained by exploring the PESs using a hierarchical series of ab initio methods [up to CCSD(T)] in combination with a hierarchical series of Gaussian-type basis sets (up to aug-cc-pVQZ). Our best CCSD(T) estimates show that the overall barriers for the various pathways increase in the order anti-E2 (X = F) < SN2 (X = F) < SN2 (X = Cl) ∼ syn-E2 (X = F) < anti-E2 (X = Cl) < syn-E2 (X = Cl). Thus, anti-E2 dominates for F(-) + CH3CH2F, and SN2 dominates for Cl(-) + CH3CH2Cl, while syn-E2 is in all cases the least favorable pathway. Best overall agreement with our ab initio benchmark is obtained by representatives from each of the three categories of functionals, GGA, meta-GGA, and hybrid DFT, with mean absolute errors in, for example, central barriers of 4.3 (OPBE), 2.2 (M06-L), and 2.0 kcal/mol (M06), respectively. Importantly, the hybrid functional BHandH and the meta-GGA M06-L yield incorrect trends and qualitative features of the PESs (in particular, an erroneous preference for SN2 over the anti-E2 in the case of F(-) + CH3CH2F) even though they are among the best functionals as measured by their small mean absolute errors of 3.3 and 2.2 kcal/mol in reaction barriers. OLYP and B3LYP have somewhat higher mean absolute errors in central barriers (5.6 and 4.8 kcal/mol, respectively), but the error distribution is somewhat more uniform, and as a consequence, the correct trends are reproduced.

  11. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors

    PubMed Central

    Kim, So Yoon; Rane, Sushil G.

    2011-01-01

    Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060

  12. Potential Novel Antibiotics from HTS Targeting the Virulence-regulating Transcription Factor, VirF, from Shigella flexneri

    PubMed Central

    Emanuele, Anthony A.; Adams, Nancy E.; Chen, Yi-Chen; Maurelli, Anthony T.; Garcia, George A.

    2014-01-01

    VirF is an AraC-type transcriptional regulator responsible for activating the transcription of virulence genes required for the intracellular invasion and cell-to-cell spread of Shigella flexneri. Gene disruption studies have validated VirF as a potential target for an anti-virulence therapy to treat shigellosis by determining that VirF is necessary for virulence, but not required for bacterial viability. Using a bacteria-based, β-galactosidase reporter assay we completed a high-throughput screening (HTS) campaign monitoring VirF activity in the presence of over 140,000 small molecules. From our screening campaign we identified five lead compounds to pursue in tissue-culture-based invasion and cell-to-cell spread assays and toxicity screens. Our observations of activity in these models for infection have validated our approach of targeting virulence regulation and have allowed us to identify a promising chemical scaffold from our HTS for hit-to-lead development. Interestingly, differential effects on invasion versus cell-to-cell spread suggest that the compounds’ efficacies may depend, in part, on the specific promoter that VirF is recognizing. PMID:24549153

  13. New TFII-I family target genes involved in embryonic development.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2009-09-04

    Two members of the TFII-I family transcription factor genes, GTF2I and GTF2IRD1, are the prime candidates responsible for the craniofacial and cognitive abnormalities of Williams syndrome patients. We have previously generated mouse lines with targeted disruption of Gtf2i and Gtf2ird1. Microarray analysis revealed significant changes in the expression profile of mutant embryos. Here we described three unknown genes that were dramatically down-regulated in mutants. The 2410018M08Rik/Scand3 gene encodes a protein of unknown function with CHCH and hATC domains. Scand3 is down-regulated during mouse embryonic stem cell (ES) differentiation. 4933436H12Rik is a testis-specific gene, which encodes a protein with no known domains. It is expressed in mouse ES cells. 1110008P08Rik/Kbtbd7 encodes an adapter protein with BTB/POZ, BACK, and Kelch motifs, previously shown to recruit substrates to the enzymatic complexes of the histone modifying or E3 ubiquitin ligase activities. Based on its expression pattern Kbtbd7 may have a specific role in brain development and function. All three genes possess well-conserved TFII-I-binding consensus sites within proximal promoters. Therefore our analysis suggests that these genes can be direct targets of TFII-I proteins and their impaired expression, as a result of the GTF2I and GTF2IRD1 haploinsufficiency, could contribute to the etiology of Williams syndrome.

  14. Normal gene expression in male F344 rat nasal transitional and respiratory epithelium.

    PubMed

    Hester, Susan D; Benavides, Gina B; Sartor, Maureen; Yoon, Lawrence; Wolf, Douglas C; Morgan, Kevin T

    2002-02-20

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Cells lining the rat nasal passages were collected and gene expression analysis was performed using Clontech cDNA Rat Atlas 1.2 arrays (1185 genes). The percentages of genes within specific average expression ranges were 4.2% at 45,000-1000, 14.8% at 1000-200, 25.0% at 200-68, and 56.0% below 68. Nine out of a subset of ten genes were confirmed for relative signal intensity using quantitative real-time RT-PCR. The most highly expressed genes included those involved in phase I (e.g. cytochrome P450s) and phase II (e.g. glutathione S-transferases) xenobiotic metabolism, bioenergetics (e.g. cytochrome oxidase), osmotic balance (e.g. Na(+)/K(+) ATPase) and epithelial ionic homeostasis (e.g. ion channels). Such baseline data will contribute to further understanding the normal physiology of these cells and facilitate the interpretation of responses by the nasal epithelial cells to xenobiotic treatment or disease.

  15. Identification of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and Language, in Developing Human Brain

    PubMed Central

    Spiteri, Elizabeth ; Konopka, Genevieve ; Coppola, Giovanni ; Bomar, Jamee ; Oldham, Michael ; Ou, Jing ; Vernes, Sonja C. ; Fisher, Simon E. ; Ren, Bing ; Geschwind, Daniel H. 

    2007-01-01

    Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes. PMID:17999357

  16. Transcriptome profiling of equine vitamin E deficient neuroaxonal dystrophy identifies upregulation of liver X receptor target genes

    PubMed Central

    Finno, Carrie J.; Bordbari, Matthew H.; Valberg, Stephanie J.; Lee, David; Herron, Josi; Hines, Kelly; Monsour, Tamer; Scott, Erica; Bannasch, Danika L.; Mickelson, James; Xu, Libin

    2016-01-01

    Specific spontaneous heritable neurodegenerative diseases have been associated with lower serum and cerebrospinal fluid α-tocopherol (α-TOH) concentrations. Equine neuroaxonal dystrophy (eNAD) has similar histologic lesions to human ataxia with vitamin E deficiency caused by mutations in the α-TOH transfer protein gene (TTPA). Mutations in TTPA are not present with eNAD and the molecular basis remains unknown. Given the neuropathologic phenotypic similarity of the conditions, we assessed the molecular basis of eNAD by global transcriptome sequencing of the cervical spinal cord. Differential gene expression analysis identified 157 significantly (FDR<0.05) dysregulated transcripts within the spinal cord of eNAD-affected horses. Statistical enrichment analysis identified significant downregulation of the ionotropic and metabotropic group III glutamate receptor, synaptic vesicle trafficking and cholesterol biosynthesis pathways. Gene co-expression analysis identified one module of upregulated genes significantly associated with the eNAD phenotype that included the liver X receptor (LXR) targets CYP7A1, APOE, PLTP and ABCA1. Validation of CYP7A1 and APOE dysregulation was performed in an independent biologic group and CYP7A1 was found to be additionally upregulated in the medulla oblongata of eNAD horses. Evidence of LXR activation supports a role for modulation of oxysterol-dependent LXR transcription factor activity by tocopherols. We hypothesize that the protective role of α-TOH in eNAD may reside in its ability to prevent oxysterol accumulation and subsequent activation of the LXR in order to decrease lipid peroxidation associated neurodegeneration. PMID:27751910

  17. Regulation of ecmF gene expression and genetic hierarchy among STATa, CudA, and MybC on several prestalk A-specific gene expressions in Dictyostelium.

    PubMed

    Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi

    2016-05-01

    STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.

  18. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes.

    PubMed Central

    Schmidt, R J; Ketudat, M; Aukerman, M J; Hoschek, G

    1992-01-01

    opaque-2 (o2) is a regulatory locus in maize that plays an essential role in controlling the expression of genes encoding the 22-kD zein proteins. Through DNase I footprinting and DNA binding analyses, we have identified the binding site for the O2 protein (O2) in the promoter of 22-kD zein genes. The sequence in the 22-kD zein gene promoter that is recognized by O2 is similar to the target site recognized by other "basic/leucine zipper" (bZIP) proteins in that it contains an ACGT core that is necessary for DNA binding. The site is located in the -300 region relative to the translation start and lies about 20 bp downstream of the highly conserved zein gene sequence motif known as the "prolamin box." Employing gel mobility shift assays, we used O2 antibodies and nuclear extracts from an o2 null mutant to demonstrate that the O2 protein in maize endosperm nuclei recognizes the target site in the zein gene promoter. Mobility shift assays using nuclear proteins from an o2 null mutant indicated that other endosperm proteins in addition to O2 can bind the O2 target site and that O2 may be associated with one of these proteins. We also demonstrated that in yeast cells the O2 protein can activate expression of a lacZ gene containing a multimer of the O2 target sequence as part of its promoter, thus confirming its role as a transcriptional activator. A computer-assisted search indicated that the O2 target site is not present in the promoters of zein genes other than those of the 22-kD class. These data suggest a likely explanation at the molecular level for the differential effect of o2 mutations on expression of certain members of the zein gene family. PMID:1392590

  19. Speaking-rate-induced variability in F2 trajectories.

    PubMed

    Tjaden, K; Weismer, G

    1998-10-01

    This study examined speaking-rate-induced spectral and temporal variability of F2 formant trajectories for target words produced in a carrier phrase at speaking rates ranging from fast to slow. F2 onset frequency measured at the first glottal pulse following the stop consonant release in target words was used to quantify the extent to which adjacent consonantal and vocalic gestures overlapped; F2 target frequency was operationally defined as the first occurrence of a frequency minimum or maximum following F2 onset frequency. Regression analyses indicated 70% of functions relating F2 onset and vowel duration were statistically significant. The strength of the effect was variable, however, and the direction of significant functions often differed from that predicted by a simple model of overlapping, sliding gestures. Results of a partial correlation analysis examining interrelationships among F2 onset, F2 target frequency, and vowel duration across the speaking rate range indicated that covariation of F2 target with vowel duration may obscure the relationship between F2 onset and vowel duration across rate. The results further suggested that a sliding based model of acoustic variability associated with speaking rate change only partially accounts for the present data, and that such a view accounts for some speakers' data better than others.

  20. Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro

    1990-11-01

    The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.

  1. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  2. Small molecule therapeutics targeting F-box proteins in cancer.

    PubMed

    Liu, Yuan; Mallampalli, Rama K

    2016-02-01

    The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: Structural, biochemical and gene expression analysis

    PubMed Central

    Chim, Nicholas; Riley, Robert; The, Juliana; Im, Soyeon; Segelke, Brent; Lekin, Tim; Yu, Minmin; Hung, Li Wei; Terwilliger, Tom; Whitelegge, Julian P.; Goulding, Celia W.

    2010-01-01

    Disulfide bond forming (Dsb) proteins ensure correct folding and disulfide bond formation of secreted proteins. Previously, we showed that Mycobacterium tuberculosis DsbE (Mtb DsbE, Rv2878c) aids in vitro oxidative folding of proteins. Here we present structural, biochemical and gene expression analyses of another putative Mtb secreted disulfide bond isomerase protein homologous to Mtb DsbE, Mtb DsbF (Rv1677). The X-ray crystal structure of Mtb DsbF reveals a conserved thioredoxin fold although the active-site cysteines may be modeled in both oxidized and reduced forms, in contrast to the solely reduced form in Mtb DsbE. Furthermore, the shorter loop region in Mtb DsbF results in a more solvent-exposed active site. Biochemical analyses show that, similar to Mtb DsbE, Mtb DsbF can oxidatively refold reduced, unfolded hirudin and has a comparable pKa for the active-site solvent-exposed cysteine. However, contrary to Mtb DsbE, the Mtb DsbF redox potential is more oxidizing and its reduced state is more stable. From computational genomics analysis of the M. tuberculosis genome, we identified a potential Mtb DsbF interaction partner, Rv1676, a predicted peroxiredoxin. Complex formation is supported by protein co-expression studies and inferred by gene expression profiles, whereby Mtb DsbF and Rv1676 are upregulated under similar environments. Additionally, comparison of Mtb DsbF and Mtb DsbE gene expression data indicate anticorrelated gene expression patterns, suggesting that these two proteins and their functionally linked partners constitute analogous pathways that may function under different conditions. PMID:20060836

  4. Transcription factor FBI-1 acts as a dual regulator in adipogenesis by coordinated regulation of cyclin-A and E2F-4.

    PubMed

    Laudes, Matthias; Bilkovski, Roman; Oberhauser, Frank; Droste, Andrea; Gomolka, Matthias; Leeser, Uschi; Udelhoven, Michael; Krone, Wilhelm

    2008-05-01

    Generation of new adipocytes plays a major role in the development of obesity. We previously have shown that transcriptional repressor factor that binds to IST (FBI)-1 exerts a dual effect in the process of adipogenesis by inhibiting proliferation and promoting differentiation of preadipocytes. The aim of the present study was to identify FBI-1 regulated molecular effectors that could account for these effects. Overexpressing FBI-1 in preadipocytes resulted in reduced expression of the cell cycle regulator cyclin A, which may explain FBI-1 induced inhibition of proliferation. Interestingly, FBI-1 repressed cyclin A promoter activity through an indirect mechanisms that did not involve direct binding of FBI-1 to the promoter sequence, but rather FBI-1 inhibition of transcriptional activator Sp1 binding to a regulatory element at -452 to -443. We also show that FBI-1 promotes terminal preadipocyte differentiation through a mechanism involving decreased levels of expression of the PPARgamma inhibitor E2F-4. FBI-1 significantly reduced E2F-4 promoter activity. Contrary to cyclin A, we found FBI-1-induced repression of E2F-4 is mediated by a direct mechanism via a FBI-1 regulatory element at -11 to -5. As function of transcriptional repressors normally depends on the presence of regulatory co-factors we also performed expression profiling of potential FBI-1 co-repressors throughout adipogenesis. In these experiments Sin3A and histon deacetylase (HDAC)-1 showed a similar expression pattern compared to FBI-1. Strikingly, co-immunoprecipitation studies revealed that FBI-1 binds Sin3A and HDAC-1 to form a repressor complex. Furthermore, by mutational analysis the amino terminal Poxvirus (POZ) domain of FBI-1 was found to be important for Sin3A and HDAC-1 binding. Taken together, FBI-1 is the first transcriptional repressor shown to act as a dual regulator in adipogenesis exerting repressor activities on target genes by both, direct and indirect mechanisms.

  5. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets.

    PubMed

    Wu, Zhengchang; Qin, Weiyun; Wu, Seng; Zhu, Guoqiang; Bao, Wenbin; Wu, Shenglong

    2016-11-03

    Escherichia coli F18 is mainly responsible for post-weaning diarrhea (PWD) in piglets. The molecular regulation of E. coli F18 resistance in Chinese domestic weaned piglets is still obscure. We used Meishan piglets as model animals to test their susceptibility to E. coli F18. Small RNA duodenal libraries were constructed for E. coli F18-sensitive and -resistant weaned piglets challenged with E. coli F18 and sequenced using Illumina Solexa high-throughput sequencing technology. Sequencing results showed that 3,475,231 and 37,198,259 clean reads were obtained, with 311 known miRNAs differently expressed in resistant and sensitive groups, respectively. Twenty-four miRNAs, including 15 up-regulated and 9 down-regulated, demonstrated more than a 2-fold differential expression between the F18-resistant and -sensitive piglets. Stem-loop RT-qPCR showed that miR-136, miR-196b, miR-499-5p and miR-218-3p significantly expressed in intestinal tissue (p < 0.05). KEGG pathway analysis for target genes revealed that differently expressed miRNAs were involved in infectious diseases, signal transduction and immune system pathways. Interestingly, the expression of miR-218-3p in intestinal tissue had a very significant negative correlation with target DLG5 (P < 0.01). Based on the expression correlation between miRNA and target genes analysis, we speculate that miR-218-3p targeting to DLG5, appears to be very promising candidate for miRNAs involved in response to E. coli F18 infection. The present study provides improved database information on pig miRNAs, better understanding of the genetic basis of E. coli F18 resistance in local Chinese pig breeds and lays a new foundation for identifying novel markers of E. coli F18 resistance. This article was reviewed by Neil R Smalheiser and Weixiong Zhang.

  6. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    NASA Astrophysics Data System (ADS)

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06556e

  7. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ida, Hiroyuki; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585; Yoshida, Hideki

    2007-12-10

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (- 40 to - 47), DRE2 (- 48 to - 55), and DRE3 (- 267 to - 274) in its promoter region, these all being important for the eIF4A genemore » promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis.« less

  8. 19 F(α,n) thick target yield from 3.5 to 10.0 MeV

    DOE PAGES

    Norman, E.B.; Chupp, T.E.; Lesko, K.T.; ...

    2015-09-01

    Using a target of PbF2, the thick-target yield from the 19F(α,n) reaction was measured from Eα=3.5–10 MeV. From these results, we infer the thick-target neutron yields from targets of F2 and UF6 over this same alpha-particle energy range.

  9. Molecular basis for defect in Alix-binding by alternatively spliced isoform of ALG-2 (ALG-2DeltaGF122) and structural roles of F122 in target recognition.

    PubMed

    Inuzuka, Tatsutoshi; Suzuki, Hironori; Kawasaki, Masato; Shibata, Hideki; Wakatsuki, Soichi; Maki, Masatoshi

    2010-08-06

    ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2+-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2DeltaGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated. We solved the X-ray crystal structure of the PEF domain of ALG-2DeltaGF122 in the Ca2+-bound form and compared it with that of ALG-2. Deletion of the two residues shortened alpha-helix 5 (alpha5) and changed the configuration of the R125 side chain so that it partially blocked Pocket 1. A wall created by the main chain of 121-GFG-123 and facing the two pockets was destroyed. Surprisingly, however, substitution of F122 with Ala or Gly, but not with Trp, increased the Alix-binding capacity in binding assays. The F122 substitutions exhibited different effects on binding of ALG-2 to other known interacting proteins, including TSG101 (Tumor susceptibility gene 101) and annexin A11. The X-ray crystal structure of the F122A mutant revealed that removal of the bulky F122 side chain not only created an additional open space in Pocket 2 but also abolished inter-helix interactions with W95 and V98 (present in alpha4) and that alpha5 inclined away from alpha4 to expand Pocket 2, suggesting acquirement of more appropriate positioning of the interacting residues to accept Alix. We found that the inability of the two-residue shorter ALG-2 isoform to bind Alix is not due to the absence of bulky side chain of F122 but due to deformation of a main-chain wall facing

  10. Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina.

    PubMed

    McNeill, Brian; Perez-Iratxeta, Carol; Mazerolle, Chantal; Furimsky, Marosh; Mishina, Yuji; Andrade-Navarro, Miguel A; Wallace, Valerie A

    2012-03-01

    The hedgehog (Hh) signaling pathway is involved in numerous developmental and adult processes with many links to cancer. In vertebrates, the activity of the Hh pathway is mediated primarily through three Gli transcription factors (Gli1, 2 and 3) that can serve as transcriptional activators or repressors. The identification of Gli target genes is essential for the understanding of the Hh-mediated processes. We used a comparative genomics approach using the mouse and human genomes to identify 390 genes that contained conserved Gli binding sites. RT-qPCR validation of 46 target genes in E14.5 and P0.5 retinal explants revealed that Hh pathway activation resulted in the modulation of 30 of these targets, 25 of which demonstrated a temporal regulation. Further validation revealed that the expression of Bok, FoxA1, Sox8 and Wnt7a was dependent upon Sonic Hh (Shh) signaling in the retina and their regulation is under positive and negative controls by Gli2 and Gli3, respectively. We also show using chromatin immunoprecipitation that Gli2 binds to the Sox8 promoter, suggesting that Sox8 is an Hh-dependent direct target of Gli2. Finally, we demonstrate that the Hh pathway also modulates the expression of Sox9 and Sox10, which together with Sox8 make up the SoxE group. Previously, it has been shown that Hh and SoxE group genes promote Müller glial cell development in the retina. Our data are consistent with the possibility for a role of SoxE group genes downstream of Hh signaling on Müller cell development. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  11. Host control of plasmid replication: requirement for the sigma factor sigma 32 in transcription of mini-F replication initiator gene.

    PubMed Central

    Wada, C; Imai, M; Yura, T

    1987-01-01

    Replication of F factor or mini-F plasmid is strongly inhibited in the rpoH (htpR) mutants of Escherichia coli deficient in the sigma factor (sigma 32) known to be required for heat shock gene expression. Transcription of the mini-F repE gene encoding a replication initiator protein (E protein) was examined by operon fusion and by direct determination of repE mRNA. The synthesis rate and the level of repE mRNA were found to increase transiently upon temperature upshift (30 degrees C to 42 degrees C) in wild-type cells but to decrease rapidly in the rpoH mutants. Thus sigma 32 appeared to be directly involved in transcription of repE whose product, E protein, in turn activates DNA replication from the mini-F ori2 region. This scheme of host-controlled plasmid replication is further supported by the analysis of transcription in vitro: RNA synthesis can be initiated from the repE promoter by a minor form of RNA polymerase containing sigma 32 but not by the major polymerase containing the normal sigma factor sigma 70. The sigma 32-mediated transcription from the repE promoter is strongly inhibited by the E protein. We conclude that transcription of the mini-F repE gene is mediated by the host transcription factor sigma 32 and is negatively controlled by its own product. Images PMID:2447584

  12. A Pepper MSRB2 Gene Confers Drought Tolerance in Rice through the Protection of Chloroplast-Targeted Genes

    PubMed Central

    Chae, Songhwa; Lee, Tae-Ho; Hwang, Duk-Ju; Oh, Sung-Dug; Park, Jong-Sug; Song, Dae-Geun; Pan, Cheol-Ho; Choi, Doil; Kim, Yul-Ho; Nahm, Baek Hie; Kim, Yeon-Ki

    2014-01-01

    Background The perturbation of the steady state of reactive oxygen species (ROS) due to biotic and abiotic stresses in a plant could lead to protein denaturation through the modification of amino acid residues, including the oxidation of methionine residues. Methionine sulfoxide reductases (MSRs) catalyze the reduction of methionine sulfoxide back to the methionine residue. To assess the role of this enzyme, we generated transgenic rice using a pepper CaMSRB2 gene under the control of the rice Rab21 (responsive to ABA protein 21) promoter with/without a selection marker, the bar gene. Results A drought resistance test on transgenic plants showed that CaMSRB2 confers drought tolerance to rice, as evidenced by less oxidative stress symptoms and a strengthened PSII quantum yield under stress conditions, and increased survival rate and chlorophyll index after the re-watering. The results from immunoblotting using a methionine sulfoxide antibody and nano-LC-MS/MS spectrometry suggest that porphobilinogen deaminase (PBGD), which is involved in chlorophyll synthesis, is a putative target of CaMSRB2. The oxidized methionine content of PBGD expressed in E. coli increased in the presence of H2O2, and the Met-95 and Met-227 residues of PBGD were reduced by CaMSRB2 in the presence of dithiothreitol (DTT). An expression profiling analysis of the overexpression lines also suggested that photosystems are less severely affected by drought stress. Conclusions Our results indicate that CaMSRB2 might play an important functional role in chloroplasts for conferring drought stress tolerance in rice. PMID:24614245

  13. Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting.

    PubMed

    Langston, Lance D; Symington, Lorraine S

    2005-06-15

    Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.

  14. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles.

    PubMed

    Wang, Jishi; Ma, Dan; Li, Yan; Yang, Yuan; Hu, Xiaoyan; Zhang, Wei; Fang, Qin

    2014-03-01

    The aim of this study was to explore the effects of bone marrow-derived mesenchymal stem cells (BMSCs) as intermediate carriers on targeting of P450 gene recombinant adenovirus to malignant melanoma in vitro and in vivo. BMSCs were transduced with pAd5-CMV-CYP2E1 recombinant adenovirus. BMSC migration was detected by Transwell plates in vitro and by superparamagnetic iron oxide particles in vivo. Growth-inhibitory effect and apoptosis were determined by MTT and immunity fluorescence staining. Anticancer effects were examined by a human melanoma nude mouse model in vivo. BMSCs moved toward A375 cells in Transwell plates. Numerous superparamagnetic MSCs labeled with iron oxide were identified in the peripheral areas of the tumor, but were detected in primary organs by Prussian blue staining. BMSC-CYP2E1 cells mediated a bystander killing effect on CYP2E1-negative A375 cells during coculture (IC50 values for A375 cells cocultured with BMSC-EGFP and BMSC-CYP2E1 were 4.08 and 2.68 mmol/l, respectively). Intravenously injecting CYP2E1 recombinant adenovirus-loaded BMSCs in mice with established human melanoma managed to target the tumor site, and BMSCs with forced expression of CYP2E1 inhibited the growth of malignant cells in vivo by activating 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide. BMSCs may serve as a platform of P450 gene-directed enzyme prodrug therapy for the delivery of chemotherapeutic prodrugs to tumors.

  15. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  16. HPV16 E2 gene disruption and polymorphisms of E2 and LCR: some significant associations with cervical cancer in Indian women.

    PubMed

    Bhattacharjee, Bornali; Sengupta, Sharmila

    2006-02-01

    We evaluated the status of the HPV16 E2 gene (disrupted or intact), nucleotide sequence alterations within intact E2 genes and LCR of HPV16 isolates in a group of CaCx cases (invasive squamous cell carcinomas, n = 81) and population controls (normal cervical scrapes, n = 27) from Indian women. E2 disruption was detected by amplifying the entire E2 gene with single set of primers, while overlapping primers were used to determine if any particular region got selectively disrupted. Nucleotide variations in E2 and LCR were analyzed by PCR amplification followed by bi-directional sequencing. The associations between the viral factors and CaCx were analyzed using Fisher's Exact or Chi-squared test and interpreted as OR (95% CI) and P values. E2 disruption was significantly higher among the cases [3.38 (1.07-10.72); P = 0.02], which was maximum in the region between nucleotides 3650 and 3872 (DNA-binding region). The European (E) variant was found to be the prevalent subgroup (87.76% among cases and 96.30% among the controls), and the remaining samples were Asian-American variants. Among the E subgroup, variation at position 7450 (T > C) within the E2-binding site-IV was found to be significantly higher among the E2 undisrupted cases (21/37; 56.76%), compared to controls (5/18; 27.78%) [3.41 (1.01-11.55); P = 0.03]. Besides HPV16 E2 disruption, LCR 7450T > C variation within undisrupted E2 of E subgroup appears to be a major factor contributing to the risk of CaCx development in Indian women. Furthermore, polymorphisms in the E2 gene of HPV16 may not be significant for disease risk.

  17. Imaging Ca2+ nanosparks in heart with a new targeted biosensor.

    PubMed

    Shang, Wei; Lu, Fujian; Sun, Tao; Xu, Jiejia; Li, Lin-Lin; Wang, Yanru; Wang, Gang; Chen, Liangyi; Wang, Xianhua; Cannell, Mark B; Wang, Shi-Qiang; Cheng, Heping

    2014-01-31

    In cardiac dyads, junctional Ca2+ directly controls the gating of the ryanodine receptors (RyRs), and is itself dominated by RyR-mediated Ca2+ release from the sarcoplasmic reticulum. Existing probes do not report such local Ca2+ signals because of probe diffusion, so a junction-targeted Ca2+ sensor should reveal new information on cardiac excitation-contraction coupling and its modification in disease states. To investigate Ca2+ signaling in the nanoscopic space of cardiac dyads by targeting a new sensitive Ca2+ biosensor (GCaMP6f) to the junctional space. By fusing GCaMP6f to the N terminus of triadin 1 or junctin, GCaMP6f-triadin 1/junctin was targeted to dyadic junctions, where it colocalized with t-tubules and RyRs after adenovirus-mediated gene transfer. This membrane protein-tagged biosensor displayed ≈4× faster kinetics than native GCaMP6f. Confocal imaging revealed junctional Ca2+ transients (Ca2+ nanosparks) that were ≈50× smaller in volume than conventional Ca2+ sparks (measured with diffusible indicators). The presence of the biosensor did not disrupt normal Ca2+ signaling. Because no indicator diffusion occurred, the amplitude and timing of release measurements were improved, despite the small recording volume. We could also visualize coactivation of subclusters of RyRs within a single junctional region, as well as quarky Ca2+ release events. This new, targeted biosensor allows selective visualization and measurement of nanodomain Ca2+ dynamics in intact cells and can be used to give mechanistic insights into dyad RyR operation in health and in disease states such as when RyRs become orphaned.

  18. Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR).

    PubMed

    Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe

    2008-01-01

    Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.

  19. Parameters to Maximize 2f2-f1 Distortion Product Otoacoustic Emission Levels

    ERIC Educational Resources Information Center

    Horn, Jennifer H.; Pratt, Shiela R.; Durrant, John D.

    2008-01-01

    Purpose: Past research has established parameters for the 2f1-f2 distortion product otoacoustic emissions (DPOAEs) that enhance response levels (e.g., L1 - L2 = 10 dB; f2/f1 = 1.22; L1, L2 = 65, 55 dB SPL). These same parameters do not optimize 2f2-f1 DPOAEs. Therefore, this study was conducted to evaluate more completely those parameters that…

  20. A gene expression profile indicative of early stage HER2 targeted therapy response.

    PubMed

    O'Neill, Fiona; Madden, Stephen F; Clynes, Martin; Crown, John; Doolan, Padraig; Aherne, Sinéad T; O'Connor, Robert

    2013-07-01

    Efficacious application of HER2-targetting agents requires the identification of novel predictive biomarkers. Lapatinib, afatinib and neratinib are tyrosine kinase inhibitors (TKIs) of HER2 and EGFR growth factor receptors. A panel of breast cancer cell lines was treated with these agents, trastuzumab, gefitinib and cytotoxic therapies and the expression pattern of a specific panel of genes using RT-PCR was investigated as a potential marker of early drug response to HER2-targeting therapies. Treatment of HER2 TKI-sensitive SKBR3 and BT474 cell lines with lapatinib, afatinib and neratinib induced an increase in the expression of RB1CC1, ERBB3, FOXO3a and NR3C1. The response directly correlated with the degree of sensitivity. This expression pattern switched from up-regulated to down-regulated in the HER2 expressing, HER2-TKI insensitive cell line MDAMB453. Expression of the CCND1 gene demonstrated an inversely proportional response to drug exposure. A similar expression pattern was observed following the treatment with both neratinib and afatinib. These patterns were retained following exposure to traztuzumab and lapatinib plus capecitabine. In contrast, gefitinib, dasatinib and epirubicin treatment resulted in a completely different expression pattern change. In these HER2-expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment generated a characteristic and specific gene expression response, proportionate to the sensitivity of the cell lines to the HER2 inhibitor.Characterisation of the induced changes in expression levels of these genes may therefore give a valuable, very early predictor of the likely extent and specificity of tumour HER2 inhibitor response in patients, potentially guiding more specific use of these agents.

  1. In vitro evaluation of phosphorothioate oligonucleotides targeted to the E2 mRNA of papillomavirus: potential treatment for genital warts.

    PubMed Central

    Cowsert, L M; Fox, M C; Zon, G; Mirabelli, C K

    1993-01-01

    Papillomaviruses induce benign proliferative lesions, such as genital warts, in humans. The E2 gene product is thought to play a major role in the regulation of viral transcription and DNA replication and may represent a rational target for an antisense oligonucleotide drug action. Phosphorothioate oligonucleotides complementary to E2 mRNAs were synthesized and tested in a series of in vitro bovine papillomavirus (BPV) and human papillomavirus (HPV) models for the ability to inhibit E2 transactivation and virus-induced focus formation. The most active BPV-specific compounds were complementary to the mRNA cap region (ISIS 1751), the translation initiation region for the full-length E2 transactivator (ISIS 1753), and the translation initiation region for the E2 transrepressor mRNA (ISIS 1755). ISIS 1751 and ISIS 1753 were found to reduce E2-dependent transactivation and viral focus formation in a sequence-specific and concentration-dependent manner. ISIS 1755 increased E2 transactivation in a dose-dependent manner but had no effect on focus formation. Oligonucleotides with a chain length of 20 residues had optimal activity in the E2 transactivation assay. On the basis of the above observations, ISIS 2105, a 20-residue phosphorothioate oligonucleotide targeted to the translation initiation of both HPV type 6 (HPV-6) and HPV-11 E2 mRNA, was designed and shown to inhibit E2-dependent transactivation by HPV-11 E2 expressed from a surrogate promoter. These observations support the rationale of E2 as a target for antiviral therapy against papillomavirus infections and specifically identify ISIS 2105 as a candidate antisense oligonucleotide for the treatment of genital warts induced by HPV-6 and HPV-11. Images PMID:8383937

  2. Simple Monitoring of Gene Targeting Efficiency in Human Somatic Cell Lines Using the PIGA Gene

    PubMed Central

    Karnan, Sivasundaram; Konishi, Yuko; Ota, Akinobu; Takahashi, Miyuki; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-01-01

    Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines. PMID:23056640

  3. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    PubMed

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Capsaicin Displays Anti-Proliferative Activity against Human Small Cell Lung Cancer in Cell Culture and Nude Mice Models via the E2F Pathway

    PubMed Central

    Hardman, W. Elaine; Luo, Haitao; Chen, Yi C.; Carpenter, A. Betts; Lau, Jamie K.; Dasgupta, Piyali

    2010-01-01

    Background Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo. Methodology/Principal Findings BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation. Conclusions/Significance Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs. PMID:20421925

  5. E2F transcription factor 2 variants as predictive biomarkers for recurrence risk in patients with squamous cell carcinoma of the oropharynx.

    PubMed

    Li, Yuncheng; Sturgis, Erich M; Zhu, Lijun; Cao, Xiaoli; Wei, Qingyi; Zhang, Hua; Li, Guojun

    2017-04-01

    Because E2F transcription factor 2 (E2F2) promoter polymorphisms have been implicated in carcinogenesis and prognosis, we investigated associations between genetic variants in five E2F2 promoter polymorphisms and recurrence risk of squamous cell carcinoma of the oropharynx (SCCOP) in 1 008 patients. A log-rank test and multivariable Cox models were used to assess the associations. Compared with patients with variant genotypes of E2F2-rs2742976 and E2F2-rs3218123, patients with common homozygous genotypes had better disease-free survival (both log-rank, P < 0.001) and lower SCCOP recurrence risk (HR, 0.4, 95% CI, 0.3-0.6 and HR, 0.3, 95% CI, 0.2-0.5, respectively) after multivariable adjustment. Furthermore, among patients with HPV16-positive tumors, those with common homozygous genotypes of E2F2-rs2742976 and E2F2-rs3218123 had better disease-free survival rates (both log-rank, P < 0.001) and lower recurrence risk (HR, 0.1, 95% CI, 0.1-0.4 and HR, 0.1, 95% CI, 0.0-0.2, respectively) than patients with variant genotypes. However, no significant differences were found for the other three polymorphisms. After combining the risk genotypes of the five polymorphisms and using the high-risk group (2-5 risk genotypes) as the reference group, we found that the low-risk groups (0 or 1 risk genotype) had significantly lower recurrence risk among all patients (HR, 0.4, 95% CI, 0.3-0.6) and among HPV16-positive patients (HR, 0.2, 95% CI, 0.1-0.5). Our findings suggest that E2F2 polymorphisms may individually or jointly modify SCCOP recurrence risk, particularly for SCCOP patients with HPV16-positive tumors. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Perspective on the reactions between F- and CH3CH2F: the free energy landscape of the E2 and SN2 reaction channels.

    PubMed

    Ensing, Bernd; Klein, Michael L

    2005-05-10

    Recently, we computed the 3D free energy surface of the base-induced elimination reaction between F(-) and CH(3)CH(2)F by using a powerful technique within Car-Parrinello molecular dynamics simulation. Here, the set of three order parameters is expanded to six, which allows the study of the competing elimination and substitution reactions simultaneously. The power of the method is exemplified by the exploration of the six-dimensional free energy landscape, sampling, and mapping out the eight stable states as well as the connecting bottlenecks. The free energy profile and barrier along the E2 and S(N)2 reaction channels are refined by using umbrella sampling. The two mechanisms do not share a common "E2C-like" transition state. Comparison with the zero temperature profiles shows a particularly significant entropy contribution to the S(N)2 channel.

  7. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of A lxF e2B2 (x =1.0 ,1.1 ,1.2 ) alloys

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Jensen, B. A.; Barua, R.; Lejeune, B.; Howard, A.; McCallum, R. W.; Kramer, M. J.; Lewis, L. H.

    2018-03-01

    AlF e2B2 is a ferromagnet with the Curie temperature around 300 K and has the potential to be an outstanding rare-earth free candidate for magnetocaloric applications. However, samples prepared from the melt contain additional phases which affect the functional response of the AlF e2B2 phase. We report on the effects of Al content in samples with the initial (nominal) composition of A lxF e2B2 , where x =1.0 , 1.1, and 1.2 prepared by arc-melting followed by suction casting and annealing. The as-cast A lxF e2B2 alloys contain AlF e2B2 as well as additional phases, including the primary solidifying FeB and A l13F e4 compounds, which are ferromagnetic and paramagnetic, respectively, at 300 K. The presence of these phases makes it difficult to extract the intrinsic magnetic properties of AlF e2B2 phase. Annealing of A lxF e2B2 alloys at 1040 °C for 3 days allows for reaction of the FeB with A l13F e4 to form the AlF e2B2 phase, significantly reduces the amount of additional phases, and results in nearly pure AlF e2B2 phase as confirmed with XRD, magnetization, scanning electron microscopy, and electronic transport. The values of the magnetization, effective magnetic moment per Fe atom, specific heat capacity, electrical resistivity, and Seebeck coefficient for the AlF e2B2 compound have been established.

  8. Adenovirus Small E1A Employs the Lysine Acetylases p300/CBP and Tumor Suppressor Rb to Repress Select Host Genes and Promote Productive Virus Infection

    PubMed Central

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A.; Nava, Miguel; Su, Trent; Yousef, Ahmed F.; Zemke, Nathan R.; Pellegrini, Matteo; Kurdistani, Siavash K.; Berk, Arnold J.

    2015-01-01

    SUMMARY Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGFβ-, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. PMID:25525796

  9. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection.

    PubMed

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A; Nava, Miguel; Su, Trent; Yousef, Ahmed F; Zemke, Nathan R; Pellegrini, Matteo; Kurdistani, Siavash K; Berk, Arnold J

    2014-11-12

    Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGF-β, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Isolation and Characteristics of Shiga Toxin 2f-Producing Escherichia coli among Pigeons in Kyushu, Japan

    PubMed Central

    Murakami, Koichi; Etoh, Yoshiki; Ichihara, Sachiko; Maeda, Eriko; Takenaka, Shigeyuki; Horikawa, Kazumi; Narimatsu, Hiroshi; Kawano, Kimiko; Kawamura, Yoshiaki; Ito, Kenitiro

    2014-01-01

    An increasing number of Shiga toxin 2f-producing Escherichia coli (STEC2f) infections in humans are being reported in Europe, and pigeons have been suggested as a reservoir for the pathogen. In Japan, there is very little information regarding carriage of STEC2f by pigeons, prompting the need for further investigation. We collected 549 samples of pigeon droppings from 14 locations in Kyushu, Japan, to isolate STEC2f and to investigate characteristics of the isolates. Shiga toxin stx 2f gene fragments were detected by PCR in 16 (2.9%) of the 549 dropping samples across four of the 14 locations. We obtained 23 STEC2f-isolates from seven of the original samples and from three pigeon dropping samples collected in an additional sampling experiment (from a total of seven locations across both sampling periods). Genotypic and phenotypic characteristics were then examined for selected isolates from each of 10 samples with pulsed-field gel electrophoresis profiles. Eight of the stx 2f gene fragments sequenced in this study were homologous to others that were identified in Europe. Some isolates also contained virulence-related genes, including lpfA O26, irp 2, and fyuA, and all of the 10 selected isolates maintained the eae, astA, and cdt genes. Moreover, five of the 10 selected isolates contained sfpA, a gene that is restricted to Shiga toxin-producing E. coli O165:H2 and sorbitol-fermenting Shiga toxin-producing E. coli O157:NM. We document serotypes O152:HNM, O128:HNM, and O145:H34 as STEC2f, which agrees with previous studies on pigeons and humans. Interestingly, O119:H21 was newly described as STEC2f. O145:H34, with sequence type 722, was described in a German study in humans and was also isolated in the current study. These results revealed that Japanese zoonotic STEC2f strains harboring several virulence-related factors may be of the same clonal complexes as some European strains. These findings provide useful information for public health-related disease management

  11. Celastrol suppresses tumor cell growth through targeting an AR-ERG-NF-κB pathway in TMPRSS2/ERG fusion gene expressing prostate cancer.

    PubMed

    Shao, Longjiang; Zhou, Zhansong; Cai, Yi; Castro, Patricia; Dakhov, Olga; Shi, Ping; Bai, Yaoxia; Ji, Huixiang; Shen, Wenhao; Wang, Jianghua

    2013-01-01

    The TMPRSS2/ERG (T/E) fusion gene is present in the majority of all prostate cancers (PCa). We have shown previously that NF-kB signaling is highly activated in these T/E fusion expressing cells via phosphorylation of NF-kB p65 Ser536 (p536). We therefore hypothesize that targeting NF-kB signaling may be an efficacious approach for the subgroup of PCas that carry T/E fusions. Celastrol is a well known NF-kB inhibitor, and thus may inhibit T/E fusion expressing PCa cell growth. We therefore evaluated Celastrol's effects in vitro and in vivo in VCaP cells, which express the T/E fusion gene. VCaP cells were treated with different concentrations of Celastrol and growth inhibition and target expression were evaluated. To test its ability to inhibit growth in vivo, 0.5 mg/kg Celastrol was used to treat mice bearing subcutaneous VCaP xenograft tumors. Our results show Celastrol can significantly inhibit the growth of T/E fusion expressing PCa cells both in vitro and in vivo through targeting three critical signaling pathways: AR, ERG and NF-kB in these cells. When mice received 0.5 mg/kg Celastrol for 4 times/week, significant growth inhibition was seen with no obvious toxicity or significant weight loss. Therefore, Celastrol is a promising candidate drug for T/E fusion expressing PCa. Our findings provide a novel strategy for the targeted therapy which may benefit the more than half of PCa patients who have T/E fusion expressing PCas.

  12. HER2 activating mutations are targets for colorectal cancer treatment.

    PubMed

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  13. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    PubMed

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  14. TCDD dysregulation of 13 AHR-target genes in rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, John D., E-mail: john.watson@oicr.on.ca; Prokopec, Stephenie D., E-mail: stephenie.prokopec@oicr.on.ca; Smith, Ashley B., E-mail: ashleyblaines@gmail.com

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluatedmore » doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic m

  15. A gene expression profile indicative of early stage HER2 targeted therapy response

    PubMed Central

    2013-01-01

    Background Efficacious application of HER2-targetting agents requires the identification of novel predictive biomarkers. Lapatinib, afatinib and neratinib are tyrosine kinase inhibitors (TKIs) of HER2 and EGFR growth factor receptors. A panel of breast cancer cell lines was treated with these agents, trastuzumab, gefitinib and cytotoxic therapies and the expression pattern of a specific panel of genes using RT-PCR was investigated as a potential marker of early drug response to HER2-targeting therapies. Results Treatment of HER2 TKI-sensitive SKBR3 and BT474 cell lines with lapatinib, afatinib and neratinib induced an increase in the expression of RB1CC1, ERBB3, FOXO3a and NR3C1. The response directly correlated with the degree of sensitivity. This expression pattern switched from up-regulated to down-regulated in the HER2 expressing, HER2-TKI insensitive cell line MDAMB453. Expression of the CCND1 gene demonstrated an inversely proportional response to drug exposure. A similar expression pattern was observed following the treatment with both neratinib and afatinib. These patterns were retained following exposure to traztuzumab and lapatinib plus capecitabine. In contrast, gefitinib, dasatinib and epirubicin treatment resulted in a completely different expression pattern change. Conclusions In these HER2-expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment generated a characteristic and specific gene expression response, proportionate to the sensitivity of the cell lines to the HER2 inhibitor. Characterisation of the induced changes in expression levels of these genes may therefore give a valuable, very early predictor of the likely extent and specificity of tumour HER2 inhibitor response in patients, potentially guiding more specific use of these agents. PMID:23816254

  16. Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae

    PubMed Central

    Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P.

    2016-01-01

    Summary Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. PMID:26609905

  17. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    NASA Astrophysics Data System (ADS)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  18. A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites.

    PubMed Central

    Sellers, W R; Rodgers, J W; Kaelin, W G

    1995-01-01

    An intact T/E1A-binding domain (the pocket) is necessary, but not sufficient, for the retinoblastoma protein (RB) to bind to DNA-protein complexes containing E2F and for RB to induce a G1/S block. Indirect evidence suggests that the binding of RB to E2F may, in addition to inhibiting E2F transactivation function, generate a complex capable of functioning as a transrepressor. Here we show that a chimera in which the E2F1 transactivation domain was replaced with the RB pocket could, in a DNA-binding and pocket-dependent manner, mimic the ability of RB to repress transcription and induce a cell cycle arrest. In contrast, a transdominant negative E2F1 mutant that is capable of blocking E2F-dependent transactivation did not. Fusion of the RB pocket to a heterologous DNA-binding domain unrelated to E2F likewise generated a transrepressor protein when scored against a suitable reporter. These results suggest that growth suppression by RB is due, at least in part, to transrepression mediated by the pocket domain bound to certain promoters via E2F. Images Fig. 4 Fig. 5 PMID:8524800

  19. The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation.

    PubMed

    Zhou, Fangfang; Zhang, Long; Wang, Aijun; Song, Bo; Gong, Kai; Zhang, Lihai; Hu, Min; Zhang, Xiufang; Zhao, Nanming; Gong, Yandao

    2008-05-23

    It is widely acknowledged that E2F1 and GSK3beta are both involved in the process of cell differentiation. However, the relationship between E2F1 and GSK3beta in cell differentiation has yet to be discovered. Here, we provide evidence that in the differentiation of PC12 cells induced by nerve growth factor (NGF), GSK3beta was increased at both the mRNA and protein levels, whereas E2F1 at these two levels was decreased. Both wild-type GSK3beta and its kinase-defective mutant GSK3beta KM can inhibit E2F1 by promoting its ubiquitination through physical interaction. In addition, the colocalization of GSK3beta and E2F1 and their subcellular distribution, regulated by NGF, were observed in the process of PC12 differentiation. At the tissue level, GSK3beta colocalized and interacted with E2F1 in mouse hippocampus. Furthermore, GSK3beta facilitated neurite outgrowth by rescuing the promoter activities of Cdk inhibitors p21 and p15 from the inhibition caused by E2F1. To summarize, our findings suggest that GSK3beta can promote the ubiquitination of E2F1 via physical interaction and thus inhibit its transcription activity in a kinase activity independent manner, which plays an important role in the NGF-induced PC12 differentiation.

  20. Characterization of In40 of Enterobacter aerogenes BM2688, a Class 1 Integron with Two New Gene Cassettes, cmlA2 and qacF

    PubMed Central

    Ploy, Marie-Cécile; Courvalin, Patrice; Lambert, Thierry

    1998-01-01

    Enterobacter aerogenes BM2688, which is resistant to multiple antibiotics, and its aminoglycoside-susceptible derivative BM2688-1 were isolated from the same clinical sample. Strain BM2688 harbored plasmid pIP833, which carries a class 1 integron, In40, containing (in addition to qacEΔ1 and sul1, which are characteristic of class 1 integrons) four gene cassettes: aac(6′)-Ib, qacF, cmlA2, and oxa-9. The cmlA2 gene had 83.7% identity with the previously described nonenzymatic chloramphenicol resistance cmlA1 gene. The qacF gene conferred resistance to quaternary ammonium compounds and displayed a high degree of similarity with qacE (67.8% identity) which, however, has been found as part of a cassette with a very different 59-base element. The oxa-9 gene was not expressed due to a lack of promoter sequences. Study of the antibiotic-susceptible derivative BM2688-1 indicated that a 3,148-bp deletion between the 3′ end of the aac(6′)-Ib gene and the 3′ conserved segment of In40 was responsible for the loss of resistance. The occurrence of this DNA rearrangement, which did not involve homologous sequences, suggests that the In40 integrase could promote recombination at secondary sites. PMID:9756755

  1. Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.

    PubMed

    Tamplin, Owen J; Cox, Brian J; Rossant, Janet

    2011-12-15

    The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Multifunctional Nucleus-targeting Nanoparticles with Ultra-high Gene Transfection Efficiency for In Vivo Gene Therapy

    PubMed Central

    Li, Ling; Li, Xia; Wu, Yuzhe; Song, Linjiang; Yang, Xi; He, Tao; Wang, Ning; Yang, Suleixin; Zeng, Yan; Wu, Qinjie; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2017-01-01

    Cancer stem cell-like cells (CSCL) are responsible for tumor recurrence associated with conventional therapy (e.g. surgery, radiation, and chemotherapy). Here, we developed a novel multifunctional nucleus-targeting nanoparticle-based gene delivery system which is capable of targeting and eradicating CSCL. These nanoparticles can facilitate efficient endosomal escape and spontaneously penetrate into nucleus without additional nuclear localization signal. They also induced extremely high gene transfection efficiency (>95%) even in culture medium containing 30% serum, which significantly surpassed that of some commercial transfection reagents, such as Lipofectamine 2000 and Lipofectamine 3000 etc. Especially, when loaded with the TRAIL gene, this system mediated remarkable depletion of CSCL. Upon systemic administration, the nanoparticles accumulated in tumor sites while sparing the non-cancer tissues and significantly inhibited the growth of tumors with no evident systemic toxicity. Taken together, our results suggest that these novel multifunctional, nucleus-targeting nanoparticles are a very promising in vivo gene delivery system capable of targeting CSCL and represent a new treatment candidate for improving the survival of cancer patients. PMID:28529641

  3. Flight test integration and evaluation of the LANTIRN system on the F-15E

    NASA Astrophysics Data System (ADS)

    Presuhn, Gary G.; Zeis, Joseph E.

    1991-08-01

    In today's high threat arena of air combat, the need to fly low, penetrate enemy defenses, strike effectively, and safely return to base is more valid than ever. The F-15E is designed to accomplish just that type of mission scenario, regardless of weather and time of day. In order to accomplish this demanding profile, any such aircraft requires terrain-following equipment and precision target designation. The LANTIRN system on the F-15E is designed to fulfill that role. This paper examines the two major aspects of the LANTIRN system found on the F-15E: the Navigation Pod and the Targeting Pod, and investigates flight test issues during F-15E integration testing. The Navigation Pod consists of two major subsystems, the Fixed Imaging Navigation Sensor (FINS) and the terrain following radar (TFR). Discussion of the FINS centers around the integration issues of the system and its utility in the night low level environment, as determined through flight test. In providing a 'window on the world,' this aspect of the LANTIRN system provides unique capabilities in navigation as well as weapons delivery. The TFR, the other major subsystem, is a continuation of the F-111 and RF-4 terrain following systems. While an effective system, integration of the TFR into the F-15E has been a challenge to the flight test community, with many lessons to be learned. The Targeting Pod is the second component of the LANTIRN system. Its purpose is to acquire and designate a target through use of its selectable dual field of view infrared sensor and laser ranger/designator. The laser also provides terminal guidance capability for precision guided weapons. Integration of the Targeting Pod into the avionics suite of the F-15E has provided classic examples of systems flight testing, evaluating both the technical and performance aspects of the pod, as well as the key human factors interface. The overall intent of this paper is to describe avionics testing, as applied to low level navigation and

  4. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae.

    PubMed

    Taylor, Andrew; Vágány, Viktória; Jackson, Alison C; Harrison, Richard J; Rainoni, Alessandro; Clarkson, John P

    2016-09-01

    Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. © 2015 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  5. Comparison of ionospheric F2 peak parameters foF2 and hmF2 with IRI2001 at Hainan

    NASA Astrophysics Data System (ADS)

    Wang, X.; Shi, J. K.; Wang, G. J.; Gong, Y.

    2009-06-01

    Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near

  6. Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes.

    PubMed

    Yoon, I-S; Park, S; Kim, R-H; Ko, H L; Nam, J-H

    2017-10-01

    Obesity impairs glycemic control and causes insulin resistance and type 2 diabetes. Adenovirus 36 (Ad36) infection can increase the uptake of excess glucose from blood into adipocytes by increasing GLUT4 translocation through the Ras-Akt signaling pathway, which bypasses PI3K-Akt-mediated insulin receptor signaling. E4orf1, a viral gene expressed early during Ad36 infection, is responsible for this insulin-sparing effect and may be an alternative target for improving insulin resistance. To deliver the gene to adipocytes only, we connected the adipocyte-targeting sequence (ATS) to the 5' end of E4orf1 (ATS-E4orf1). In vitro transfection of ATS-E4orf1 into preadipocytes activated factors for GLUT4 translocation and adipogenesis to the same extent as did Hemagglutinin (HA)-E4orf1 transfection as positive reference. Moreover, the Transwell migration assay also showed that ATS-E4orf1 secreted by liver cells activated Akt in preadipocytes. We used a hydrodynamic gene delivery technique to deliver ATS-E4orf1 into high-fat diet-fed and streptozotocin-injected mice (disease models of type 2 and type 1 diabetes, respectively). ATS-E4orf1 improved the ability to eliminate excess glucose from the blood and ameliorated liver function in both disease models. These findings suggest that ATS-E4orf1 has insulin-sparing and fungible effects in type 2 and 1 diabetes independent of the presence of insulin.

  7. The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments

    PubMed Central

    Lau, Evan; Fisher, Meredith C.; Steudler, Paul A.; Cavanaugh, Colleen M.

    2013-01-01

    The mxaF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria. PMID:23451130

  8. Single Cell Analysis to locate the Restriction Point with respect to E2F Expression

    NASA Astrophysics Data System (ADS)

    Pimienta, R.; Johnson, A.

    2011-12-01

    The restriction point is a G1-phase checkpoint that regulates passage through the cell cycle and is misregulated in all known types of cancer. The Rb-E2F switch is thought to be one of the most relevant molecular mechanisms which regulate the restriction point in mammalian cells. However, recent experiments have brought the timing of the restriction point into question. In previous studies, cells were analyzed as populations and this prevented an accurate determination of the restriction point. By creating and analyzing an E2F-GFP reporter in single cells, we can pinpoint the timing of E2F activation and determine whether it coincides with the restriction point. Using calcium phosphate and Fugene,we transfected human embryonic kidney (293T) cells with a CMV-GFP plasmid and an E2F-GFP reporter. Based on our results, it appears that calcium phosphate is more effective than Fugene at transfecting mammalian cells. The calcium phosphate transfection had 9.59% more fluorescent cells than Fugene. However, this result only occurred with the CMV-GFP plasmid and not the E2F-GFP reporter, which was not properly expressed in human embryonic kidney (293T) cells. We will continue troubleshooting to fix this reporter as we proceed with our research. Once the reporter is properly cloned, we will transfect it into retinal pigmented epithelial (RPE1-hTERT) cells using the calcium phosphate method. RPE1-hTERT cells are an immortalized with telomerase and are more close to normal cells than tumor-derived cell lines. Through this research we will better comprehend commitment to the mammalian cell cycle.

  9. The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula.

    PubMed

    Song, Jian Bo; Wang, Yan Xiang; Li, Hai Bo; Li, Bo Wen; Zhou, Zhao Sheng; Gao, Shuai; Yang, Zhi Min

    2015-07-01

    F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.

  10. AP1 binding site is another target of FGF2 regulation of bone sialoprotein gene transcription.

    PubMed

    Takai, Hideki; Araki, Shouta; Mezawa, Masaru; Kim, Dong-Soon; Li, Xinyue; Yang, Li; Li, Zhengyang; Wang, Zhitao; Nakayama, Youhei; Ogata, Yorimasa

    2008-02-29

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. We previously reported that fibroblast growth factor 2 (FGF2) regulates BSP gene transcription via FGF2 response element (FRE) in the proximal promoter of rat BSP gene. We here report that activator protein 1 (AP1) binding site overlapping with glucocorticoid response element (GRE) AP1/GRE in the rat BSP gene promoter is another target of FGF2. Using the osteoblastic cell line ROS17/2.8, we determined that BSP mRNA levels increased by 10 ng/ml FGF2 at 6 and 12 h. Runx2 protein levels increased by FGF2 (10 ng/ml) at 3 h. Treatment of ROS17/2.8 cells with FGF2 (10 ng/ml, 12 h) increased luciferase activities of constructs including -116 to +60 and -938 to +60 of the rat BSP gene promoter. Effects of FGF2 abrogated in constructs included 2 bp mutations in the FRE and AP1/GRE elements. Luciferase activities induced by FGF2 were blocked by tyrosine kinase inhibitor herbimycin A, src-tyrosine kinase inhibitor PP1 and MAP kinase kinase inhibitor U0126. Gel shift analyses showed that FGF2 increased binding of FRE and AP1/GRE elements. Notably, the AP1/GRE-protein complexes were supershifted by Smad1 and c-Fos antibodies, c-Jun and Dlx5 antibodies disrupted the complexes formation, on the other hand AP1/GRE-protein complexes did not change by Runx2 antibody. These studies demonstrate that FGF2 stimulates BSP gene transcription by targeting the FRE and AP1/GRE elements in the rat BSP gene promoter.

  11. CDKL5 is a brain MeCP2 target gene regulated by DNA methylation.

    PubMed

    Carouge, Delphine; Host, Lionel; Aunis, Dominique; Zwiller, Jean; Anglard, Patrick

    2010-06-01

    Rett syndrome and its "early-onset seizure" variant are severe neurodevelopmental disorders associated with mutations within the MECP2 and the CDKL5 genes. Antidepressants and drugs of abuse induce the expression of the epigenetic factor MeCP2, thereby influencing chromatin remodeling. We show that increased MeCP2 levels resulted in the repression of Cdkl5 in rat brain structures in response to cocaine, as well as in cells exposed to serotonin, or overexpressing MeCP2. In contrast, Cdkl5 was induced by siRNA-mediated knockdown of Mecp2 and by DNA-methyltransferase inhibitors, demonstrating its regulation by MeCP2 and by DNA methylation. Cdkl5 gene methylation and its methylation-dependent binding to MeCP2 were increased in the striatum of cocaine-treated rats. Our data demonstrate that Cdkl5 is a MeCP2-repressed target gene providing a link between genes the mutation of which generates overlapping symptoms. They highlight DNA methylation changes as a potential mechanism participating in the long-term plasticity triggered by pharmacological agents.

  12. Essential but partially redundant roles for POU4F1/Brn-3a and POU4F2/Brn-3b transcription factors in the developing heart

    PubMed Central

    Maskell, Lauren J; Qamar, Kashif; Babakr, Aram A; Hawkins, Thomas A; Heads, Richard J; Budhram-Mahadeo, Vishwanie S

    2017-01-01

    Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a−/− : Brn-3b−/−) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts. PMID:28594399

  13. JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells

    PubMed Central

    Wolf, Alexandra; Eulenfeld, René; Gäbler, Karoline; Rolvering, Catherine; Haan, Serge; Behrmann, Iris; Denecke, Bernd; Haan, Claude; Schaper, Fred

    2013-01-01

    The identification of a constitutively active JAK2 mutant, namely JAK2-V617F, was a milestone in the understanding of Philadelphia chromosome-negative myeloproliferative neoplasms. The JAK2-V617F mutation confers cytokine hypersensitivity, constitutive activation of the JAK-STAT pathway, and cytokine-independent growth. In this study we investigated the mechanism of JAK2-V617F-dependent signaling with a special focus on the activation of the MAPK pathway. We observed JAK2-V617F-dependent deregulated activation of the multi-site docking protein Gab1 as indicated by constitutive, PI3K-dependent membrane localization and tyrosine phosphorylation of Gab1. Furthermore, we demonstrate that PI3K signaling regulates MAPK activation in JAK2-V617F-positve cells. This cross-regulation of the MAPK pathway by PI3K affects JAK2-V617F-specific target gene induction, erythroid colony formation, and regulates proliferation of JAK2-V617F-positive patient cells in a synergistically manner. PMID:24069558

  14. Pharmacogenetic Variation in Over 100 Genes in Patients Receiving Acenocumarol

    PubMed Central

    Gonzalez-Covarrubias, Vanessa; Urena-Carrion, Javier; Villegas-Torres, Beatriz; Cossío-Aranda, J. Eduardo; Trevethan-Cravioto, Sergio; Izaguirre-Avila, Raul; Fiscal-López, O. Javier; Soberon, Xavier

    2017-01-01

    Coumarins are widely prescribed worldwide, and in Mexico acenocumarol is the preferred form. It is well known that despite its efficacy, coumarins show a high variability for dose requirements. We investigated the pharmacogenetic variation of 110 genes in patients receiving acenocumarol using a targeted NGS approach. We report relevant population differentiation for variants on CYP2C8, CYP2C19, CYP4F11, CYP4F2, PROS, and GGCX, VKORC1, CYP2C18, NQO1. A higher proportion of novel-to-known variants for 10 genes was identified on 41 core pharmacogenomics genes related to the PK (29), PD (3), of coumarins, and coagulation proteins (9) including, CYP1A1, CYP3A4, CYP3A5, and F8, and a low proportion of novel-to-known variants on CYP2E1, VKORC1, and SULT1A1/2. Using a Bayesian approach, we identified variants influencing acenocumarol dosing on, VKORC1 (2), SULT1A1 (1), and CYP2D8P (1) explaining 40–55% of dose variability. A collection of pharmacogenetic variation on 110 genes related to the PK/PD of coumarins is also presented. Our results offer an initial insight into the use of a targeted NGS approach in the pharmacogenomics of coumarins in Mexican Mestizos. PMID:29218011

  15. Differentiation-associated microRNAs antagonize the Rb–E2F pathway to restrict proliferation

    PubMed Central

    Marzi, Matteo J.; Puggioni, Eleonora M. R.; Dall'Olio, Valentina; Bucci, Gabriele; Bernard, Loris; Bianchi, Fabrizio; Crescenzi, Marco

    2012-01-01

    The cancer-associated loss of microRNA (miRNA) expression leads to a proliferative advantage and aggressive behavior through largely unknown mechanisms. Here, we exploit a model system that recapitulates physiological terminal differentiation and its reversal upon oncogene expression to analyze coordinated mRNA/miRNA responses. The cell cycle reentry of myotubes, forced by the E1A oncogene, was associated with a pattern of mRNA/miRNA modulation that was largely reciprocal to that induced during the differentiation of myoblasts into myotubes. The E1A-induced mRNA response was preponderantly Retinoblastoma protein (Rb)-dependent. Conversely, the miRNA response was mostly Rb-independent and exerted through tissue-specific factors and Myc. A subset of these miRNAs (miR-1, miR-34, miR-22, miR-365, miR-29, miR-145, and Let-7) was shown to coordinately target Rb-dependent cell cycle and DNA replication mRNAs. Thus, a dual level of regulation—transcriptional regulation via Rb–E2F and posttranscriptional regulation via miRNAs—confers robustness to cell cycle control and provides a molecular basis to understand the role of miRNA subversion in cancer. PMID:23027903

  16. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases.

    PubMed

    Zhou, Weihua; Wei, Wenyi; Sun, Yi

    2013-05-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.

  17. ns2np4 (n = 4, 5) lone pair triplets whirling in M*F2E3 (M* = Kr, Xe): Stereochemistry and ab initio analyses

    NASA Astrophysics Data System (ADS)

    Galy, Jean; Matar, Samir F.

    2017-02-01

    The stereochemistry of ns2np4 (n = 4, 5) lone pair LP characterizing noble gas Kr and Xe (labeled M*) in M*F2 difluorides is examined within coherent crystal chemistry and ab initio visualizations. M*2+ in such oxidation state brings three lone pairs (E) and difluorides are formulated M*F2E3. The analyses use electron localization function (ELF) obtained within density functional theory calculations showing the development of the LP triplets whirling {E3} quantified in the relevant chemical systems. Detailed ELF data analyses allowed showing that in α KrF2E3 and isostructural XeF2E3 difluorides the three E electronic clouds merge or hybridize into a torus and adopt a perfect gyration circle with an elliptical section, while in β KrF2 the network architecture deforms the whole torus into an ellipsoid shape. Original precise metrics are provided for the torus in the different compounds under study. In KrF2 the geometric changes upon β → α phase transition is schematized and mechanisms for the transformation with temperature or pressure are proposed. The results are further highlighted by electronic band structure calculations which show similar features of equal band gaps of 3 eV in both α and β KrF2 and a reorganization of frontier orbitals due to the different orientations of the F-Kr-F linear molecule in the two tetragonal structures.

  18. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.

    PubMed

    Kakeda, Katsuyuki

    2009-09-01

    Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.

  19. Forkhead Transcription Factor Fd3F Cooperates with Rfx to Regulate a Gene Expression Program for Mechanosensory Cilia Specialization

    PubMed Central

    Newton, Fay G.; zur Lage, Petra I.; Karak, Somdatta; Moore, Daniel J.; Göpfert, Martin C.; Jarman, Andrew P.

    2012-01-01

    Summary Cilia have evolved hugely diverse structures and functions to participate in a wide variety of developmental and physiological processes. Ciliary specialization requires differences in gene expression, but few transcription factors are known to regulate this, and their molecular function is unclear. Here, we show that the Drosophila Forkhead box (Fox) gene, fd3F, is required for specialization of the mechanosensory cilium of chordotonal (Ch) neurons. fd3F regulates genes for Ch-specific axonemal dyneins and TRPV ion channels, which are required for sensory transduction, and retrograde transport genes, which are required to differentiate their distinct motile and sensory ciliary zones. fd3F is reminiscent of vertebrate Foxj1, a motile cilia regulator, but fd3F regulates motility genes as part of a broader sensory regulation program. Fd3F cooperates with the pan-ciliary transcription factor, Rfx, to regulate its targets directly. This illuminates pathways involved in ciliary specialization and the molecular mechanism of transcription factors that regulate them. PMID:22698283

  20. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma

    PubMed Central

    Vardabasso, Chiara; Gaspar-Maia, Alexandre; Hasson, Dan; Pünzeler, Sebastian; Valle-Garcia, David; Straub, Tobias; Keilhauer, Eva C.; Strub, Thomas; Dong, Joanna; Panda, Taniya; Chung, Chi-Yeh; Yao, Jonathan L.; Singh, Rajendra; Segura, Miguel F.; Fontanals-Cirera, Barbara; Verma, Amit; Mann, Matthias; Hernando, Eva; Hake, Sandra B.; Bernstein, Emily

    2015-01-01

    SUMMARY Histone variants are emerging as key regulatory molecules in cancer. Here we report a novel role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z interacting protein, whose levels are also elevated in melanoma. We further demonstrate that H2A.Z.2 regulated genes are bound by BRD2 and E2F1 in a H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies. PMID:26051178

  1. Induction of DREB2A pathway with repression of E2F, jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation-specific freeze-resistant wheat crown.

    PubMed

    Karki, Amrit; Horvath, David P; Sutton, Fedora

    2013-03-01

    Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold-acclimation-specific processes and pathways, we utilized cold acclimation transcriptomic data from two lines varying in freeze survival but not vernalization. These lines, designated freeze-resistant (FR) and freeze-susceptible (FS), were the source of crown tissue RNA. Well-annotated differentially expressed genes (p ≤ 0.005 and fold change ≥ 2 in response to 4 weeks cold acclimation) were used for gene ontology and pathway analysis. "Abiotic stimuli" was identified as the most enriched and unique for FR. Unique to FS was "cytoplasmic components." Pathway analysis revealed the "triacylglycerol degradation" pathway as significantly downregulated and common to both FR and FS. The most enriched of FR pathways was "neighbors of DREB2A," with the highest positive median fold change. The "13-LOX and 13-HPL" and the "E2F" pathways were enriched in FR only with a negative median fold change. The "jasmonic acid biosynthesis" pathway and four "photosynthetic-associated" pathways were enriched in both FR and FS but with a more negative median fold change in FR than in FS. A pathway unique to FS was "binding partners of LHCA1," which was enriched only in FS with a significant negative median fold change. We propose that the DREB2A, E2F, jasmonic acid biosynthesis, and photosynthetic pathways are critical for discrimination between cold-acclimated lines varying in freeze survival.

  2. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    PubMed

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  3. Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets.

    PubMed

    Narayanan, Bhagavathi A

    2006-12-01

    and cyclin A1. Genomic expression profile with vitamin D indicated differential expression of gene targets such as c-JUN, JUNB, JUND, FREAC-1/FoxF1, ZNF-44/KOX7, plectin, filamin, and keratin-13, involved in antiproliferative, differentiation pathways. The agent UBEIL has a remarkable effect on cyclin D1. Curcumin mediated NrF2 pathway significantly altered p21(Waf1/Cip1) levels. Aromatase inhibitors affected the expression of cyclin D1. Interestingly, few dietary compounds listed in this review also have effect on APC, cdk inhibitors p21(Waf1/Cip1) and p27. Tea polyphenol EGCG has a significant effect on TGF-beta expression, while several other earlier studies have shown its effect on cell cycle regulatory proteins. This review article reveals potential chemoprevention drug targets, which are mainly centered on cell cycle regulatory pathway genes in cancer.

  4. Attacking a Nexus of the Oncogenic Circuitry by Reversing Aberrant eIF4F-Mediated Translation

    PubMed Central

    Bitterman, Peter B.; Polunovsky, Vitaly A.

    2012-01-01

    Notwithstanding their genetic complexity, different cancers share a core group of perturbed pathways converging upon a few regulatory nodes that link the intracellular signaling network with the basic metabolic machinery. The clear implication of this view for cancer therapy is that instead of targeting individual genetic alterations one-by-one, the next generation of cancer therapeutics will target critical hubs in the cancer network. One such hub is the translation initiation complex eIF4F, which integrates several cancer-related pathways into a self-amplifying signaling system. When hyperactivated by apical oncogenic signals, the eIF4F-driven translational apparatus selectively switches the translational repertoire of a cell towards malignancy. This central integrative role of pathologically activated eIF4F has motivated the development of small molecule inhibitors to correct its function. A genome-wide, systems-level means to objectively evaluate the pharmacological response to therapeutics targeting eIF4F remains an unmet challenge. PMID:22572598

  5. Domain structure and reorientation in CoF e2O4

    NASA Astrophysics Data System (ADS)

    Abes, M.; Koops, C. T.; Hrkac, S. B.; McCord, J.; Urs, N. O.; Wolff, N.; Kienle, L.; Ren, W. J.; Bouchenoire, L.; Murphy, B. M.; Magnussen, O. M.

    2016-05-01

    The microscopic processes underlying magnetostriction in ferrites were studied for the case of CoF e2O4 single crystals by high-resolution in situ x-ray diffraction and complementary magnetic microscopy techniques. The data support the reports of Yang and Ren [Phys. Rev. B 77, 014407 (2008), 10.1103/PhysRevB.77.014407] that magnetostriction in these materials originates from the switching of crystallographic domains, similar to ferroelastic or ferroelectric domain switching, and reveals the presence of two coexisting tetragonal spinel structures, corresponding to domains of high and of low strain. The latter alternate in the crystal, separated by 90° domain boundaries, and can be explained by the effect of internal stress emerging during the transition into the ferrimagnetic phase. During magnetization of the sample two structural transitions are observed: a conversion of the transversal into axial domains at 1.95 kOe and a growth of the high-strain domains at the cost of the low-strain axial domains at 2.8 kOe. These microscopic changes are in good agreement with the macroscopic magnetization and magnetostriction behavior of CoF e2O4 .

  6. Molecular cloning of the mouse gene coding for {alpha}{sub 2}-macroglobulin and targeting of the gene in embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umans, L.; Serneels, L.; Hilliker, C.

    1994-08-01

    The authors have cloned the mouse gene coding for {alpha}{sub 2}-macroglobulin in overlapping {lambda} clones and have analyzed its structure. The gene contains 36 exons, coding for the 4.8-kb cDNA that we cloned previously. Including putative control elements in the 5{prime} flanking region, the gene covers about 45 kb. A region of 3.8 kb, stretching from 835 bases upstream of the cDNA start site to exon 4, including all intervening sequences, was sequenced completely. The analysis demonstrated that the putative promoter region of the mouse A2M gene differed considerably from the known promoter sequences of the human A2M gene andmore » of the rat acute-phas A2M gene. Comparison of the exon-intron structure of all known genes of the A2M family confirmed that the rat acute phase A2M gene is more closely related to the human gene than to the mouse A2M gene. To generate mice with the A2M gene inactivated, an insertion type of construct containing 7.5 kb of genomic DNA of the mouse strain 129/J, encompassing exons 16 to 19, was synthesized. A hygromycin marker gene was embedded in intron 17. After electroporation, 198 hygromycin-resistant ES cell lines were isolated and analyzed by Southern blotting. Five ES cell lines were obtained with one allele of the mouse A2M gene targeted by this insertion construct, demonstrating that the position and the characteristics of the vector served the intended goal.« less

  7. Quantifying the activity of adenoviral E1A CR2 deletion mutants using renilla luciferase bioluminescence and 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography imaging.

    PubMed

    Leyton, Julius; Lockley, Michelle; Aerts, Joeri L; Baird, Sarah K; Aboagye, Eric O; Lemoine, Nicholas R; McNeish, Iain A

    2006-09-15

    The adenoviral E1A CR2 mutant dl922-947 has potent activity in ovarian cancer. We have used Renilla luciferase bioluminescence imaging to monitor viral E1A expression and replication and [18F]fluorothymidine positron emission tomography ([18F]FLT-PET) to quantify the activity of dl922-947 in vivo. We created dlCR2 Ren, with the same E1A CR2 deletion as dl922-947 and the luciferase gene from Renilla reniformis downstream of E1. Light emitted from s.c. and i.p. IGROV1 ovarian carcinoma xenografts was measured following treatment with dlCR2 Ren. Mice bearing s.c. IGROV1 xenografts were injected with 2.96 to 3.7 MBq of [18F]FLT 48 and 168 hours following i.t. injection of dl922-947 or control virus Ad LM-X. The presence of Renilla luciferase in dlCR2 Ren did not reduce in vitro nor in vivo potency compared with dl922-947. Light emission correlated closely with E1A expression in vitro and peaked 48 hours after dlCR2 Ren injection in both s.c. and i.p. IGROV1 xenografts. It diminished by 168 hours in s.c. tumors but persisted for at least 2 weeks in i.p. models. Normalized tumor [18F]FLT uptake at 60 minutes (NUV60), fractional retention, and area under radioactivity curve all decreased marginally 48 hours after dl922-947 treatment and significantly at 168 hours compared with controls. There was a close linear correlation between NUV60 and both tumor proliferation (Ki67 labeling index) and thymidine kinase 1 expression. Renilla luciferase bioluminescence and [18F]FLT-PET imaging are capable of quantifying the activity and effectiveness of E1A CR2-deleted adenoviral mutants in ovarian cancer.

  8. THE E2/FRB PATHWAY REGULATION OF DNA REPLICATION AND PROTEIN BIOSYNTHESIS

    EPA Science Inventory

    The E2F/Rb pathway plays a pivotal role in the control of cell cycle progression and regulates the expression of genes required for Gl/S transition. Our study examines the genomic response in Drosophila embryos after overexpression and mutation of E2F/Rb pathway molecules. Hierar...

  9. Photoemission study of CaF2- and SrF2-GaAs(110) interfaces formed at room temperature

    NASA Astrophysics Data System (ADS)

    Mao, D.; Young, K.; Kahn, A.; Zanoni, R.; McKinley, J.; Margaritondo, G.

    1989-06-01

    Interfaces formed by evaporating CaF2 or SrF2 on room-temperature GaAs(110) are studied with synchrotron-radiation photoemission spectroscopy. The fluoride films grow uniformly on the GaAs surface. The deposition of CaF2 and SrF2 induces a large initial band bending on p-type GaAs (~0.9 eV) and a small initial band bending on n-type GaAs (~0.25 eV). The valence band is dominated by the F 2p peak which shifts toward high binding energies by ~1.5 eV after the deposition of >=16 Å fluoride. This shift reflects an increase in the valence-band offset between the two materials as the film forms. The final band offsets are estimated at 7.7 and 8.0 eV for CaF2 and SrF2, respectively, and are in qualitative agreement with those expected from the fluoride-Si data. Core-level measurements indicate that no reaction or decomposition of the MF2 molecule takes place at the interface. The F 2s core-level line shape and the increase in the binding-energy separation of F 2s and Ca 3p with increasing coverage suggest the presence of an interface F component. Contrary to the CaF2/Si case, no measurable Ca-substrate bonding effect is observed. The dissociative effect of uv irradiation on the CaF2 film is also investigated.

  10. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

    PubMed

    Clop, Alex; Marcq, Fabienne; Takeda, Haruko; Pirottin, Dimitri; Tordoir, Xavier; Bibé, Bernard; Bouix, Jacques; Caiment, Florian; Elsen, Jean-Michel; Eychenne, Francis; Larzul, Catherine; Laville, Elisabeth; Meish, Françoise; Milenkovic, Dragan; Tobin, James; Charlier, Carole; Georges, Michel

    2006-07-01

    Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.

  11. Targeted gene insertion for molecular medicine.

    PubMed

    Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán

    2008-11-01

    Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.

  12. The effect of FeF2 on the magneto-optic response in FeF2/Fe/FeF2 sandwiches

    NASA Astrophysics Data System (ADS)

    Pištora, J.; Lesňák, M.; Lišková, E.; Višňovský, Š.; Harward, I.; Maslankiewicz, P.; Balin, K.; Celinski, Z.; Mistrík, J.; Yamaguchi, T.; Lopusnik, R.; Vlček, J.

    2010-04-01

    The room temperature optical constants n and k of MBE grown FeF2 films are reported. Because of poor chemical stability, FeF2 had to be coated with a protective Au layer. Reflection spectral ellipsometry in the photon energy range between 1.3 and 5.2 eV was performed on structures with a typical profile Au(0.5 nm)/FeF2(120 nm)/Au(30 nm)/Ag(20 nm)/Fe(0.6 nm) grown on GaAs(0 0 1) substrate. The spectra of n and k in FeF2 were subsequently employed in the design of FeF2/Fe/FeF2 sandwiches considered as magneto-optic (MO) sensors for weak microwave currents. Their MO response was evaluated using reflection MO (Kerr) spectroscopy at polar magnetization. The present results may be of interest in MO studies of magnetic nanostructures with Fe/FeF2/Fe, including MO magnetometry and MO magnetic domain imaging.

  13. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells.

    PubMed

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-03-16

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 ( FGF1 and FGF12 ), bone morphogenetic factor-1 ( BMP1 ), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 ( SMARCA4 ), Matrix extracellular phosphoglycoprotein ( MEPE ), Integrin, β4 ( ITGBP4 ), Matrix Metalloproteinase -1, -28 ( MMP1 and MMP28 ), and signal transducer and activator of transcription-4 ( STAT4 ) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1 , MMP28 and kallikrein related peptidase-7 ( KLK7 ), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology.

  14. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells

    PubMed Central

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-01-01

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 (FGF1 and FGF12), bone morphogenetic factor-1 (BMP1), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 (SMARCA4), Matrix extracellular phosphoglycoprotein (MEPE), Integrin, β4 (ITGBP4), Matrix Metalloproteinase -1, -28 (MMP1 and MMP28), and signal transducer and activator of transcription-4 (STAT4) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1, MMP28 and kallikrein related peptidase-7 (KLK7), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology. PMID:28300755

  15. Heterogeneous Nuclear Ribonucleoprotein F Suppresses Angiotensinogen Gene Expression and Attenuates Hypertension and Kidney Injury in Diabetic Mice

    PubMed Central

    Lo, Chao-Sheng; Chang, Shiao-Ying; Chenier, Isabelle; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao Ling; Chan, John S.D.

    2012-01-01

    We investigated the impact of heterogeneous nuclear ribonucleoprotein F (hnRNP F) overexpression on angiotensinogen (Agt) gene expression, hypertension, and renal proximal tubular cell (RPTC) injury in high-glucose milieu both in vivo and in vitro. Diabetic Akita transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs were created, and the effects on systemic hypertension, Agt gene expression, renal hypertrophy, and interstitial fibrosis were studied. We also examined immortalized rat RPTCs stably transfected with control plasmid or plasmid containing hnRNP F cDNA in vitro. The results showed that hnRNP F overexpression attenuated systemic hypertension, suppressed Agt and transforming growth factor-β1 (TGF-β1) gene expression, and reduced urinary Agt and angiotensin II levels, renal hypertrophy, and glomerulotubular fibrosis in Akita hnRNP F-Tg mice. In vitro, hnRNP F overexpression prevented the high-glucose stimulation of Agt and TGF-β1 mRNA expression and cellular hypertrophy in RPTCs. These data suggest that hnRNP F plays a modulatory role and can ameliorate hypertension, renal hypertrophy, and interstitial fibrosis in diabetes. The underlying mechanism is mediated, at least in part, via the suppression of intrarenal Agt gene expression in vivo. hnRNP F may be a potential target in the treatment of hypertension and kidney injury in diabetes. PMID:22664958

  16. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage

    PubMed Central

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein–protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage. PMID:24675884

  17. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage.

    PubMed

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein-protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage.

  18. Molecular Characterization of Plant Ubiquitin-Conjugating Enzymes Belonging to the UbcP4/E2-C/UBCx/UbcH10 Gene Family1

    PubMed Central

    Criqui, Marie Claire; de Almeida Engler, Janice; Camasses, Alain; Capron, Arnaud; Parmentier, Yves; Inzé, Dirk; Genschik, Pascal

    2002-01-01

    The anaphase promoting complex or cyclosome is the ubiquitin-ligase that targets destruction box-containing proteins for proteolysis during the cell cycle. Anaphase promoting complex or cyclosome and its activator (the fizzy and fizzy-related) proteins work together with ubiquitin-conjugating enzymes (UBCs) (E2s). One class of E2s (called E2-C) seems specifically involved in cyclin B1 degradation. Although it has recently been shown that mammalian E2-C is regulated at the protein level during the cell cycle, not much is known concerning the expression of these genes. Arabidopsis encodes two genes belonging to the E2-C gene family (called UBC19 and UBC20). We found that UBC19 is able to complement fission yeast (Schizosaccharomyces pombe) UbcP4-140 mutant, indicating that the plant protein can functionally replace its yeast ortholog for protein degradation during mitosis. In situ hybridization experiments were performed to study the expression of the E2-C genes in various tissues of plants. Their transcripts were always, but not exclusively, found in tissues active for cell division. Thus, the UBC19/20 E2s may have a key function during cell cycle, but may also be involved in ubiquitylation reactions occurring during differentiation and/or in differentiated cells. Finally, we showed that a translational fusion protein between UBC19 and green fluorescent protein localized both in the cytosol and the nucleus in stable transformed tobacco (Nicotiana tabacum cv Bright Yellow 2) cells. PMID:12427990

  19. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation.

    PubMed

    Ivanova, Iordanka A; D'Souza, Sudhir J A; Dagnino, Lina

    2005-01-01

    The epidermis is the outermost layer in the skin, and it is the first line of defence against the environment. The epidermis also provides a barrier against loss of fluids and electrolytes, which is crucial for life. Essential in the maintenance of this tissue is its ability to continually self-renew and regenerate after injury. These two characteristics are critically dependent on the ability of the principal epidermal cell type, the keratinocyte, to proliferate and to respond to differentiation cues. Indeed, the epidermis is a multilayered tissue composed of keratinocyte stem cells and their differentiated progeny. Central for the control of cell proliferation is the E2F transcription factor regulatory network. This signaling network also includes cyclins, cdk, cdk inhibitors and the retinoblastoma (pRb) family of proteins. The biological importance of the E2F/pRb pathway is emphasized by the fact that a majority of human tumours exhibit alterations that disrupt the ability of pRb proteins to inhibit E2F, leading to permanent activation of the latter. Further, E2F is essential for normal epidermal regeneration after injury. Other member of the E2F signaling pathway are also involved in epidermal development and pathophysiology. Thus, whereas the pRb family of proteins is essential for epidermal morphogenesis, abnormal regulation of cyclins and E2F proteins results in tumorgenesis in this tissue. In this review, we discuss the role of each member of this important growth regulatory network in epidermal formation, homeostasis and carcinogenesis.

  20. Signalling In The Epidermis: The E2f Cell Cycle Regulatory Pathway In Epidermal Morphogenesis, Regeneration And Transformation

    PubMed Central

    2005-01-01

    The epidermis is the outermost layer in the skin, and it is the first line of defence against the environment. The epidermis also provides a barrier against loss of fluids and electrolytes, which is crucial for life. Essential in the maintenance of this tissue is its ability to continually self-renew and regenerate after injury. These two characteristics are critically dependent on the ability of the principal epidermal cell type, the keratinocyte, to proliferate and to respond to differentiation cues. Indeed, the epidermis is a multilayered tissue composed of keratinocyte stem cells and their differentiated progeny. Central for the control of cell proliferation is the E2F transcription factor regulatory network. This signaling network also includes cyclins, cdk, cdk inhibitors and the retinoblastoma (pRb) family of proteins. The biological importance of the E2F/pRb pathway is emphasized by the fact that a majority of human tumours exhibit alterations that disrupt the ability of pRb proteins to inhibit E2F, leading to permanent activation of the latter. Further, E2F is essential for normal epidermal regeneration after injury. Other member of the E2F signaling pathway are also involved in epidermal development and pathophysiology. Thus, whereas the pRb family of proteins is essential for epidermal morphogenesis, abnormal regulation of cyclins and E2F proteins results in tumorgenesis in this tissue. In this review, we discuss the role of each member of this important growth regulatory network in epidermal formation, homeostasis and carcinogenesis. PMID:15951853

  1. Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP-E2F1-DNA damage response pathway axis.

    PubMed

    Oku, Yusuke; Nishiya, Naoyuki; Tazawa, Takaaki; Kobayashi, Takaya; Umezawa, Nanami; Sugawara, Yasuyo; Uehara, Yoshimasa

    2018-06-01

    The main reasons for failure of cancer chemotherapy are intrinsic and acquired drug resistance. The Hippo pathway effector Yes-associated protein (YAP) is associated with resistance to both cytotoxic and molecular targeted drugs. Several lines of evidence indicate that YAP activates transcriptional programmes to promote cell cycle progression and DNA damage responses. Therefore, we hypothesised that YAP is involved in the sensitivity of cancer cells to small-molecule agents targeting cell cycle-related proteins. Here, we report that the inactivation of YAP sensitises the OVCAR-8 ovarian cancer cell line to AZD1775, a small-molecule WEE1 kinase inhibitor. The accumulation of DNA damage and mitotic failures induced by AZD1775-based therapy were further enhanced by YAP depletion. YAP depletion reduced the expression of the Fanconi anaemia (FA) pathway components required for DNA repair and their transcriptional regulator E2F1. These results suggest that YAP activates the DNA damage response pathway, exemplified by the FA pathway and E2F1. Furthermore, we aimed to apply this finding to combination chemotherapy against ovarian cancers. The regimen containing dasatinib, which inhibits the nuclear localisation of YAP, improved the response to AZD1775-based therapy in the OVCAR-8 ovarian cancer cell line. We propose that dasatinib acts as a chemosensitiser for a subset of molecular targeted drugs, including AZD1775, by targeting YAP.

  2. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    PubMed

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  3. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  4. Targeted partial surface modification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs

    NASA Astrophysics Data System (ADS)

    Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun

    2017-10-01

    Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.

  5. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation.

    PubMed

    Carcagno, Abel L; Giono, Luciana E; Marazita, Mariela C; Castillo, Daniela S; Pregi, Nicolás; Cánepa, Eduardo T

    2012-07-01

    Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.

  6. Electronic sputtering of LiF, CaF2, LaF3 and UF4 with 197 MeV Au ions. Is the stoichiometry of atom emission preserved?

    NASA Astrophysics Data System (ADS)

    Toulemonde, M.; Assmann, W.; Muller, D.; Trautmann, C.

    2017-09-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. Four different fluoride targets, LiF, CaF2, LaF3 and UF4 were irradiated in the electronic energy loss regime using 197 MeV Au ions. The angular distribution of particles sputtered from the surface of freshly cleaved LiF and CaF2 single crystals is composed of a broad cosine distribution superimposed by a jet-like peak that appears perpendicular to the surface independent of the angle of beam incidence. For LiF, the particle emission in the entire angular distribution (jet plus broad cosine component) is stoichiometric, whereas for CaF2 the ratio of the sputtered F to Ca particles is at large angles by a factor of two smaller than the stoichiometry of the crystal. For single crystalline LaF3 no jet component is observed and the angular distribution is non-stoichiometric with the number of sputtered F particles being slightly larger than the number of sputtered La particles. In the case of UF4, the target was polycrystalline and had a much rougher surface compared to cleaved crystals. This destroys the appearance of a possible jet component leading to a broad angular distribution. The ratio of sputtered U atoms compared to F atoms is in the order of 1-2, i.e. the number of collected particles on the catcher is also non-stoichiometric. Such unlike behavior of particles sputtered from different fluoride crystals creates new questions.

  7. Use of the multipurpose transposon Tn KPK2 for the mutational analysis of chromosomal regions upstream and downstream of the sipF gene in Bradyrhizobium japonicum.

    PubMed

    Müller, P

    2004-04-01

    The DNA regions upstream and downstream of the Bradyrhizobium japonicum gene sipF were cloned by in vivo techniques and subsequently sequenced. In order to study the function of the predicted genes, a new transposon for in vitro mutagenesis, Tn KPK2, was constructed. This mutagenesis system has a number of advantages over other transposons. Tn KPK2 itself has no transposase gene, making transposition events stable. Extremely short inverted repeats minimize the length of the transposable element and facilitate the determination of the nucleotide sequence of the flanking regions. Since the transposable element carries a promoterless ' phoA reporter gene, the appearance of functional PhoA fusion proteins indicates that Tn KPK2 has inserted in a gene encoding a periplasmic or secreted protein. Although such events are extremely rare, because the transposon has to insert in-frame, in the correct orientation, and at an appropriate location in the target molecule, a direct screening procedure on agar indicator plates permits the identification of candidate clones from large numbers of colonies. In this study, Tn KPK2 was used for the construction of various symbiotic mutants of B. japonicum. One of the mutant strains, A2-10, which is defective in a gene encoding a protein that comigrates with bacterioferritin ( bcpB), was found to induce the formation of small and ineffective nodules.

  8. Transformation of arachidonate into 6-oxoprostaglandin F1 alpha, thromboxane B2 and prostaglandin E2 by sheep lung microsomal fraction.

    PubMed Central

    Tai, H H; Yuan, B; Wu, A T

    1978-01-01

    In the presence of haemoglobin and isoproterenol, the microsomal fraction of sheep lung catalysed the conversion of arachidonate predominantly into thromboxane B2 and to a lesser extent into 6-oxoprostaglandin F1alpha. Very little prostaglandin E2 and prostaglandin F2alpha were formed. If reduced glutathione was added in combination with haemoglobin and isoproterenol, the synthesis of prostaglandin E2 was favoured over that of thromboxane B2 and 6-oxoprostaglandin F1alpha. The identities of these products were confirmed by t.l.c. and by combined g.l.c.-mass spectrometry. These results indicate that microsomal fraction of sheep lung possesses active prostaglandin synthase, prostacyclin synthase and thromboxane synthase activities. PMID:637853

  9. Effects of BPA and E2 on expression profiles of genes related to hypothalamic-pituitary-gonadal axis of half-smooth tongue sole Cynoglossus semilaevis

    NASA Astrophysics Data System (ADS)

    Li, Fengling; Li, Zhaoxin; Wang, Qingyin; Zhai, Yuxiu

    2013-05-01

    Endocrine disrupting chemicals (EDCs) are increasingly viewed as persistent pollutants, similar to natural hormones in function. This paper describes the expression profiles of 7 genes ( DMRT, VTG GnRHR FSHR CYP17A CYP19A, and CYP19B) involved in sex steroid synthesis and action as well as sexual development in adult male and female Cynoglossus semilaevis, after exposure to different concentrations of Bisphenol A (BPA) and 17β-estradiol (E2). Both BPA (1, 10, 50, 125, and 250 mg/kg) and E2 (0.5, 5, and 10 mg/kg) induced changes in target gene expression, although the estrogenic effects of E2 as a model estrogen were stronger. Among the 7 genes, VTG CYP17A and CYP19 responded strongly to BPA or E2 exposure and can thus serve as reference biomarkers for estrogenic EDCs exposure in marine teleosts. These data will provide a window to establish a hypothalamic-pituitary-gonadal model in C. semilaevis to better understand the effect pathways of EDCs.

  10. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the up-regulation of metaplasia markers in the stomach

    PubMed Central

    Sousa, Josane F.; Nam, Ki Taek; Petersen, Christine P.; Lee, Hyuk-Joon; Yang, Han-Kwang; Kim, Woo Ho; Goldenring, James R.

    2016-01-01

    Objective Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. Design We performed miRNA profiling using a qRT-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. Results We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were down-regulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by down-regulation of NR2F2. Conclusion The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia. PMID:25800782

  11. Synthesis of galactosyl compounds for targeted gene delivery.

    PubMed

    Ren, T; Zhang, G; Liu, D

    2001-11-01

    Cell-specific DNA delivery offers a great potential for targeted gene therapy. Toward this end, we have synthesized a series of compounds carrying galactose residues as a targeting ligand for asialoglycoprotein receptors of hepatocytes and primary amine groups as a functional domain for DNA binding. Biological activity of these galactosyl compounds in DNA delivery was evaluated in HepG2 and BL-6 cells and compared with respect to the number of galactose residues as well as primary amine groups in each molecule. Transfection experiments using a firefly luciferase gene as a reporter revealed that compounds with multivalent binding properties were more active in DNA delivery. An optimal transfection activity in HepG2 cells requires seven primary amine groups and a minimum of two galactose residues in each molecule. The transfection activity of compounds carrying multi-galactose residues can be inhibited by asialofetuin, a natural substrate for asialoglycoprotein receptors of hepatocytes, suggesting that gene transfer by these galactosyl compounds is asialoglycoprotein receptor-mediated. These results provide direct evidence in support of our new strategy for the use of small and synthetic compounds for cell specific and targeted gene delivery.

  12. Progress in gene targeting and gene therapy for retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectorsmore » for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.« less

  13. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer

    PubMed Central

    Zhou, Xiaorong; Comerford, Sarah A.; York, Brian; O’Donnell, Kathryn A.

    2017-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver. PMID:28273073

  14. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jung-Yoon; Kim, Tae Hoon; Lee, Jae Hee

    2015-07-10

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6{sup f/f} and PGR{sup cre/+}Mig-6{sup f/f} (Mig-6{sup d/d}) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6{sup d/d} uterus treated with vehicle as compared with Mig-6{sup f/f} mice. The pathway analysis showed thatmore » Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6{sup d/d} mice showed a significant increase in the number of proliferative cells compared to Mig-6{sup f/f} mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGR{sup cre/+}Cited2{sup f/f}; Cited2{sup d/d}). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene.« less

  15. New gene targets for glucagon-like peptide-1 during embryonic development and in undifferentiated pluripotent cells.

    PubMed

    Sanz, Carmen; Blázquez, Enrique

    2011-09-01

    In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.

  16. Mitochondrial targeting sequence variants of the CHCHD2 gene are a risk for Lewy body disorders

    PubMed Central

    Ogaki, Kotaro; Koga, Shunsuke; Heckman, Michael G.; Fiesel, Fabienne C.; Ando, Maya; Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Moussaud-Lamodière, Elisabeth L.; Soto-Ortolaza, Alexandra I.; Walton, Ronald L.; Strongosky, Audrey J.; Uitti, Ryan J.; McCarthy, Allan; Lynch, Timothy; Siuda, Joanna; Opala, Grzegorz; Rudzinska, Monika; Krygowska-Wajs, Anna; Barcikowska, Maria; Czyzewski, Krzysztof; Puschmann, Andreas; Nishioka, Kenya; Funayama, Manabu; Hattori, Nobutaka; Parisi, Joseph E.; Petersen, Ronald C.; Graff-Radford, Neill R.; Boeve, Bradley F.; Springer, Wolfdieter; Wszolek, Zbigniew K.; Dickson, Dennis W.

    2015-01-01

    Objective: To assess the role of CHCHD2 variants in patients with Parkinson disease (PD) and Lewy body disease (LBD) in Caucasian populations. Methods: All exons of the CHCHD2 gene were sequenced in a US Caucasian patient-control series (878 PD, 610 LBD, and 717 controls). Subsequently, exons 1 and 2 were sequenced in an Irish series (355 PD and 365 controls) and a Polish series (394 PD and 350 controls). Immunohistochemistry and immunofluorescence studies were performed on pathologic LBD cases with rare CHCHD2 variants. Results: We identified 9 rare exonic variants of unknown significance. These variants were more frequent in the combined group of PD and LBD patients compared to controls (0.6% vs 0.1%, p = 0.013). In addition, the presence of any rare variant was more common in patients with LBD (2.5% vs 1.0%, p = 0.050) compared to controls. Eight of these 9 variants were located within the gene's mitochondrial targeting sequence. Conclusions: Although the role of variants of the CHCHD2 gene in PD and LBD remains to be further elucidated, the rare variants in the mitochondrial targeting sequence may be a risk factor for Lewy body disorders, which may link CHCHD2 to other genetic forms of parkinsonism with mitochondrial dysfunction. PMID:26561290

  17. Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1

    PubMed Central

    Meyer, Kerstin B.; O’Reilly, Martin; Michailidou, Kyriaki; Carlebur, Saskia; Edwards, Stacey L.; French, Juliet D.; Prathalingham, Radhika; Dennis, Joe; Bolla, Manjeet K.; Wang, Qin; de Santiago, Ines; Hopper, John L.; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Van ’t Veer, Laura J.; Hogervorst, Frans B.; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A.; Lux, Michael P.; Ekici, Arif B.; Beckmann, Matthias W.; Peto, Julian; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Zamora, M. Pilar; Arias, Jose I.; Benitez, Javier; Neuhausen, Susan; Anton-Culver, Hoda; Ziogas, Argyrios; Dur, Christina C.; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Schmutzler, Rita K.; Engel, Christoph; Ditsch, Nina; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Dörk, Thilo; Helbig, Sonja; Bogdanova, Natalia V.; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Chenevix-Trench, Georgia; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Lambrechts, Diether; Thienpont, Bernard; Christiaens, Marie-Rose; Smeets, Ann; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Bernard, Loris; Couch, Fergus J.; Olson, Janet E.; Wang, Xianshu; Purrington, Kristen; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Teo, Soo-Hwang; Yip, Cheng-Har; Phuah, Sze-Yee; Kristensen, Vessela; Grenaker Alnæs, Grethe; Børresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline M.; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Darabi, Hartef; Eriksson, Kimael; Hooning, Maartje J.; Martens, John W.M.; van den Ouweland, Ans M.W.; van Deurzen, Carolien H.M.; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Reed, Malcolm W.R.; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Pharoah, Paul D.P.; Ghoussaini, Maya; Harrington, Patricia; Tyrer, Jonathan; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Noh, Dong-Young; Hartman, Mikael; Hui, Miao; Lim, Wei-Yen; Buhari, Shaik A.; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Vachon, Celine; Slager, Susan; Fostira, Florentia; Pilarski, Robert; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Ponder, Bruce A.J.; Dunning, Alison M.; Easton, Douglas F.

    2013-01-01

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ERα to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease. PMID:24290378

  18. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    PubMed

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  20. Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J × Kunming F2 Mice Population Using Genome-Wide Association Study.

    PubMed

    Miao, Yuanxin; Soudy, Fathia; Xu, Zhong; Liao, Mingxing; Zhao, Shuhong; Li, Xinyun

    2017-01-01

    Feed efficiency (FE) is a very important trait in livestock industry. Identification of the candidate genes could be of benefit for the improvement of FE trait. Mouse is used as the model for many studies in mammals. In this study, the candidate genes related to FE and coat color were identified using C57BL/6J (C57) × Kunming (KM) F2 mouse population. GWAS results showed that 61 and 2 SNPs were genome-wise suggestive significantly associated with feed conversion ratio (FCR) and feed intake (FI) traits, respectively. Moreover, the Erbin, Msrb2, Ptf1a, and Fgf10 were considered as the candidate genes of FE. The Lpl was considered as the candidate gene of FI. Further, the coat color trait was studied. KM mice are white and C57 ones are black. The GWAS results showed that the most significant SNP was located at chromosome 7, and the closely linked gene was Tyr. Therefore, our study offered useful target genes related to FE in mice; these genes may play similar roles in FE of livestock. Also, we identified the major gene of coat color in mice, which would be useful for better understanding of natural mutation of the coat color in mice.

  1. Structural modeling identifies Plasmodium vivax 4-diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) as a plausible new antimalarial drug target.

    PubMed

    Kadian, Kavita; Vijay, Sonam; Gupta, Yash; Rawal, Ritu; Singh, Jagbir; Anvikar, Anup; Pande, Veena; Sharma, Arun

    2018-08-01

    Malaria parasites utilize Methylerythritol phosphate (MEP) pathway for synthesis of isoprenoid precursors which are essential for maturation and survival of parasites during erythrocytic and gametocytic stages. The absence of MEP pathway in the human host establishes MEP pathway enzymes as a repertoire of essential drug targets. The fourth enzyme, 4-diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) has been proved essential in pathogenic bacteria, however; it has not yet been studied in any Plasmodium species. This study was undertaken to investigate genetic polymorphism and concomitant structural implications of the Plasmodium vivax IspE (PvIspE) by employing sequencing, modeling and bioinformatics approach. We report that PvIspE gene displayed six non-synonymous mutations which were restricted to non-conserved regions within the gene from seven topographically distinct malaria-endemic regions of India. Phylogenetic studies reflected that PvIspE occupies unique status within Plasmodia genus and reflects that Plasmodium vivax IspE gene has a distant and non-conserved relation with human ortholog Mevalonate Kinase (MAVK). Structural modeling analysis revealed that all PvIspE Indian isolates have critically conserved canonical galacto-homoserine-mevalonate-phosphomevalonate kinase (GHMP) domain within the active site lying in a deep cleft sandwiched between ATP and CDPME-binding domains. The active core region was highly conserved among all clinical isolates, may be due to >60% β-pleated rigid architecture. The mapped structural analysis revealed the critically conserved active site of PvIspE, both sequence, and spacially among all Indian isolates; showing no significant changes in the active site. Our study strengthens the candidature of Plasmodium vivax IspE enzyme as a future target for novel antimalarials. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen.

    PubMed

    Kong, Leopold; Lee, David E; Kadam, Rameshwar U; Liu, Tong; Giang, Erick; Nieusma, Travis; Garces, Fernando; Tzarum, Netanel; Woods, Virgil L; Ward, Andrew B; Li, Sheng; Wilson, Ian A; Law, Mansun

    2016-10-24

    Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world's population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen-deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.

  3. Role of Exonic Variation in Chemokine Receptor Genes on AIDS: CCRL2 F167Y Association with Pneumocystis Pneumonia

    PubMed Central

    An, Ping; Li, Rongling; Wang, Ji Ming; Yoshimura, Teizo; Takahashi, Munehisa; Samudralal, Ram; O'Brien, Stephen J.; Phair, John; Goedert, James J.; Kirk, Gregory D.; Troyer, Jennifer L.; Sezgin, Efe; Buchbinder, Susan P.; Donfield, Sharyne; Nelson, George W.; Winkler, Cheryl A.

    2011-01-01

    Chromosome 3p21–22 harbors two clusters of chemokine receptor genes, several of which serve as major or minor coreceptors of HIV-1. Although the genetic association of CCR5 and CCR2 variants with HIV-1 pathogenesis is well known, the role of variation in other nearby chemokine receptor genes remain unresolved. We genotyped exonic single nucleotide polymorphisms (SNPs) in chemokine receptor genes: CCR3, CCRL2, and CXCR6 (at 3p21) and CCR8 and CX3CR1 (at 3p22), the majority of which were non-synonymous. The individual SNPs were tested for their effects on disease progression and outcomes in five treatment-naïve HIV-1/AIDS natural history cohorts. In addition to the known CCR5 and CCR2 associations, significant associations were identified for CCR3, CCR8, and CCRL2 on progression to AIDS. A multivariate survival analysis pointed to a previously undetected association of a non-conservative amino acid change F167Y in CCRL2 with AIDS progression: 167F is associated with accelerated progression to AIDS (RH = 1.90, P = 0.002, corrected). Further analysis indicated that CCRL2-167F was specifically associated with more rapid development of pneumocystis pneumonia (PCP) (RH = 2.84, 95% CI 1.28–6.31) among four major AIDS–defining conditions. Considering the newly defined role of CCRL2 in lung dendritic cell trafficking, this atypical chemokine receptor may affect PCP through immune regulation and inducing inflammation. PMID:22046140

  4. Increased urinary prostaglandin E2 metabolite: A potential therapeutic target of Gitelman syndrome.

    PubMed

    Peng, Xiaoyan; Jiang, Lanping; Chen, Chen; Qin, Yan; Yuan, Tao; Wang, Ou; Xing, Xiaoping; Li, Xuemei; Nie, Min; Chen, Limeng

    2017-01-01

    Gitelman syndrome (GS), an inherited autosomal recessive salt-losing renal tubulopathy caused by mutations in SLC12A3 gene, has been associated with normal prostaglandin E2 (PGE2) levels since 1995 by a study involving 11 clinically diagnosed patients. However, it is difficult to explain why cyclooxygenase-2 (COX2) inhibitors, which pharmacologically reduce PGE2 synthesis, are helpful to patients with GS, and few studies performed in the last 20 years have measured PGE2 levels. The relationships between the clinical manifestations and PGE2 levels were never thoroughly analyzed. This study involved 39 GS patients diagnosed by SLC12A3 gene sequencing. Plasma and 24-h urine samples as well as the clinical data were collected at admission. PGE2 and PGEM levels were detected in plasma and urine samples by enzyme immunoassays. The in vivo function of the sodium-chloride co-transporter (NCC) in GS patients was evaluated using a modified thiazide test. The association among PGE2 levels, clinical manifestations and the function of NCC in GS patients were analyzed. Significantly higher levels of urinary and plasma PGEM were observed in GS patients than in the healthy volunteers. Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction estimated by the increase of Cl- clearance. A higher PGEM level was found in male GS patients, who showed earlier onset age and more severe hypokalemia, hypochloremia and metabolic alkalosis than female GS patients. No relationship between renin angiotensin aldosterone system activation and PGEM level was observed. Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction in GS patients. COX2 inhibition might be a potential therapeutic target in GS patients with elevated PGEM levels.

  5. Genome-wide survey and expression analysis of F-box genes in chickpea.

    PubMed

    Gupta, Shefali; Garg, Vanika; Kant, Chandra; Bhatia, Sabhyata

    2015-02-13

    The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.

  6. Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors.

    PubMed

    Strauss, Ludwig G; Koczan, Dirk; Klippel, Sven; Pan, Leyun; Cheng, Caixia; Willis, Stefan; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2008-08-01

    18F-FDG kinetics are primarily dependent on the expression of genes associated with glucose transporters and hexokinases but may be modulated by other genes. The dependency of 18F-FDG kinetics on angiogenesis-related gene expression was evaluated in this study. Patients with primary colorectal tumors (n = 25) were examined with PET and 18F-FDG within 2 days before surgery. Tissue specimens were obtained from the tumor and the normal colon during surgery, and gene expression was assessed using gene arrays. Overall, 23 angiogenesis-related genes were identified with a tumor-to-normal ratio exceeding 1.50. Analysis revealed a significant correlation between k1 and vascular endothelial growth factor (VEGF-A, r = 0.51) and between fractal dimension and angiopoietin-2 (r = 0.48). k3 was negatively correlated with VEGF-B (r = -0.46), and a positive correlation was noted for angiopoietin-like 4 gene (r = 0.42). A multiple linear regression analysis was used for the PET parameters to predict the gene expression, and a correlation coefficient of r = 0.75 was obtained for VEGF-A and of r = 0.76 for the angiopoietin-2 expression. Thus, on the basis of these multiple correlation coefficients, angiogenesis-related gene expression contributes to about 50% of the variance of the 18F-FDG kinetic data. The global 18F-FDG uptake, as measured by the standardized uptake value and influx, was not significantly correlated with angiogenesis-associated genes. 18F-FDG kinetics are modulated by angiogenesis-related genes. The transport rate for 18F-FDG (k1) is higher in tumors with a higher expression of VEGF-A and angiopoietin-2. The regression functions for the PET parameters provide the possibility to predict the gene expression of VEGF-A and angiopoietin-2.

  7. Somatic mutations of GUCY2F, EPHA3, and NTRK3 in human cancers.

    PubMed

    Wood, Laura D; Calhoun, Eric S; Silliman, Natalie; Ptak, Janine; Szabo, Steve; Powell, Steve M; Riggins, Gregory J; Wang, Tian-Li; Yan, Hai; Gazdar, Adi; Kern, Scott E; Pennacchio, Len; Kinzler, Kenneth W; Vogelstein, Bert; Velculescu, Victor E

    2006-10-01

    Tyrosine kinases are major regulators of signal transduction cascades involved in cellular proliferation and have important roles in tumorigenesis. We have recently analyzed the tyrosine kinase gene family for alterations in human colorectal cancers and identified somatic mutations in seven members of this gene family. In this study we have used high-throughput sequencing approaches to further evaluate this subset of genes for genetic alterations in other human tumors. We identified somatic mutations in GUCY2F, EPHA3, and NTRK3 in breast, lung, and pancreatic cancers. Our results implicate these tyrosine kinase genes in the pathogenesis of other tumor types and suggest that they may be useful targets for diagnostic and therapeutic intervention in selected patients.

  8. Aerosol from Tobacco Heating System 2.2 has reduced impact on mouse heart gene expression compared with cigarette smoke.

    PubMed

    Szostak, Justyna; Boué, Stéphanie; Talikka, Marja; Guedj, Emmanuel; Martin, Florian; Phillips, Blaine; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-03-01

    Experimental studies clearly demonstrate a causal effect of cigarette smoking on cardiovascular disease. To reduce the individual risk and population harm caused by smoking, alternative products to cigarettes are being developed. We recently reported on an apolipoprotein E-deficient (Apoe -/- ) mouse inhalation study that compared the effects of exposure to aerosol from a candidate modified risk tobacco product, Tobacco Heating System 2.2 (THS2.2), and smoke from the reference cigarette (3R4F) on pulmonary and vascular biology. Here, we applied a transcriptomics approach to evaluate the impact of the exposure to 3R4F smoke and THS2.2 aerosol on heart tissues from the same cohort of mice. The systems response profiles demonstrated that 3R4F smoke exposure led to time-dependent transcriptomics changes (False Discovery Rate (FDR) < 0.05; 44 differentially expressed genes at 3-months; 491 at 8-months). Analysis of differentially expressed genes in the heart tissue indicated that 3R4F exposure induced the downregulation of genes involved in cytoskeleton organization and the contractile function of the heart, notably genes that encode beta actin (Actb), actinin alpha 4 (Actn4), and filamin C (Flnc). This was accompanied by the downregulation of genes related to the inflammatory response. None of these effects were observed in the group exposed to THS2.2 aerosol. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. PeTMbase: A Database of Plant Endogenous Target Mimics (eTMs).

    PubMed

    Karakülah, Gökhan; Yücebilgili Kurtoğlu, Kuaybe; Unver, Turgay

    2016-01-01

    MicroRNAs (miRNA) are small endogenous RNA molecules, which regulate target gene expression at post-transcriptional level. Besides, miRNA activity can be controlled by a newly discovered regulatory mechanism called endogenous target mimicry (eTM). In target mimicry, eTMs bind to the corresponding miRNAs to block the binding of specific transcript leading to increase mRNA expression. Thus, miRNA-eTM-target-mRNA regulation modules involving a wide range of biological processes; an increasing need for a comprehensive eTM database arose. Except miRSponge with limited number of Arabidopsis eTM data no available database and/or repository was developed and released for plant eTMs yet. Here, we present an online plant eTM database, called PeTMbase (http://petmbase.org), with a highly efficient search tool. To establish the repository a number of identified eTMs was obtained utilizing from high-throughput RNA-sequencing data of 11 plant species. Each transcriptome libraries is first mapped to corresponding plant genome, then long non-coding RNA (lncRNA) transcripts are characterized. Furthermore, additional lncRNAs retrieved from GREENC and PNRD were incorporated into the lncRNA catalog. Then, utilizing the lncRNA and miRNA sources a total of 2,728 eTMs were successfully predicted. Our regularly updated database, PeTMbase, provides high quality information regarding miRNA:eTM modules and will aid functional genomics studies particularly, on miRNA regulatory networks.

  10. Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1): challenging target for antitubercular drug discovery.

    PubMed

    Gawad, Jineetkumar; Bonde, Chandrakant

    2018-06-23

    Tuberculosis has proved harmful to the entire history of mankind from past several decades. Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1) is a recent target which was identified in 2009 but unfortunately it is neither explored nor crossed phase II. In past several decades few targets were identified for effective antitubercular drug discovery. Resistance is the major problem for effective antitubercular drug discovery. Arabinose is constituent of mycobacterium cell wall. Biosynthesis of arabinose is FAD dependant two step epimerisation reaction which is catalysed by DprE1 and DprE2 flavoprotein enzymes. The current review is mainly emphases on DprE1 as a perspective challenge for further research.

  11. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy.

    PubMed Central

    Gorziglia, M I; Kadan, M J; Yei, S; Lim, J; Lee, G M; Luthra, R; Trapnell, B C

    1996-01-01

    A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy. PMID:8648763

  12. Hypoxia regulates alternative splicing of HIF and non-HIF target genes.

    PubMed

    Sena, Johnny A; Wang, Liyi; Heasley, Lynn E; Hu, Cheng-Jun

    2014-09-01

    Hypoxia is a common characteristic of many solid tumors. The hypoxic microenvironment stabilizes hypoxia-inducible transcription factor 1α (HIF1α) and 2α (HIF2α/EPAS1) to activate gene transcription, which promotes tumor cell survival. The majority of human genes are alternatively spliced, producing RNA isoforms that code for functionally distinct proteins. Thus, an effective hypoxia response requires increased HIF target gene expression as well as proper RNA splicing of these HIF-dependent transcripts. However, it is unclear if and how hypoxia regulates RNA splicing of HIF targets. This study determined the effects of hypoxia on alternative splicing (AS) of HIF and non-HIF target genes in hepatocellular carcinoma cells and characterized the role of HIF in regulating AS of HIF-induced genes. The results indicate that hypoxia generally promotes exon inclusion for hypoxia-induced, but reduces exon inclusion for hypoxia-reduced genes. Mechanistically, HIF activity, but not hypoxia per se is found to be necessary and sufficient to increase exon inclusion of several HIF targets, including pyruvate dehydrogenase kinase 1 (PDK1). PDK1 splicing reporters confirm that transcriptional activation by HIF is sufficient to increase exon inclusion of PDK1 splicing reporter. In contrast, transcriptional activation of a PDK1 minigene by other transcription factors in the absence of endogenous HIF target gene activation fails to alter PDK1 RNA splicing. This study demonstrates a novel function of HIF in regulating RNA splicing of HIF target genes. ©2014 American Association for Cancer Research.

  13. The novel functional nucleic acid iRed effectively regulates target genes following cytoplasmic delivery by faint electric treatment

    NASA Astrophysics Data System (ADS)

    Hasan, Mahadi; Tarashima, Noriko; Fujikawa, Koki; Ohgita, Takashi; Hama, Susumu; Tanaka, Tamotsu; Saito, Hiroyuki; Minakawa, Noriaki; Kogure, Kentaro

    2016-01-01

    An intelligent shRNA expression device (iRed) contains the minimum essential components needed for shRNA production in cells, and could be a novel tool to regulate target genes. However, general delivery carriers consisting of cationic polymers/lipids could impede function of a newly generated shRNA via electrostatic interaction in the cytoplasm. Recently, we found that faint electric treatment (fET) of cells enhanced delivery of siRNA and functional nucleic acids into the cytoplasm in the absence of delivery carriers. Here, we examined fET of cells stably expressing luciferase in the presence of iRed encoding anti-luciferase shRNA. Transfection of lipofectamine 2000 (LFN)/iRed lipoplexes showed an RNAi effect, but fET-mediated iRed transfection did not, likely because of the endosomal localization of iRed after delivery. However, fET in the presence of lysosomotropic agent chloroquine significantly improved the RNAi effect of iRed/fET to levels that were higher than those for the LFN/iRed lipoplexes. Furthermore, the amount of lipid droplets in adipocytes significantly decreased following fET with iRed against resistin in the presence of chloroquine. Thus, iRed could be a useful tool to regulate target genes following fET-mediated cytoplasmic delivery with endosomal escape devices.

  14. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.

    PubMed

    Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia

    2016-09-12

    Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.

  15. Neurobiology of autism gene products: towards pathogenesis and drug targets.

    PubMed

    Kleijer, Kristel T E; Schmeisser, Michael J; Krueger, Dilja D; Boeckers, Tobias M; Scheiffele, Peter; Bourgeron, Thomas; Brose, Nils; Burbach, J Peter H

    2014-03-01

    The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.

  16. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes

    PubMed Central

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-01

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 (CYP) enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e. styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. Dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes, relative to that in the wild-type mouse lung microsomes. However, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knock–out and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed similar susceptibility to lung toxicity of styrene as the wild-type animals. However, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene. PMID:24320693

  17. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    PubMed

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  18. No association between apolipoprotein E or N-acetyltransferase 2 gene polymorphisms and age-related hearing loss.

    PubMed

    Dawes, Piers; Platt, Hazel; Horan, Michael; Ollier, William; Munro, Kevin; Pendleton, Neil; Payton, Antony

    2015-01-01

    Age-related hearing loss has a genetic component, but there have been limited genetic studies in this field. Both N-acetyltransferase 2 and apolipoprotein E genes have previously been associated. However, these studies have either used small sample sizes, examined a limited number of polymorphisms, or have produced conflicting results. Here we use a haplotype tagging approach to determine association with age-related hearing loss and investigate epistasis between these two genes. Candidate gene association study of a continuous phenotype. We investigated haplotype tagging single nucleotide polymorphisms in the N-acetyltransferase 2 gene and the presence/absence of the apolipoprotein E ε4 allele for association with age-related hearing loss in a cohort of 265 Caucasian elderly volunteers from Greater Manchester, United Kingdom. Hearing phenotypes were generated using principal component analysis of the hearing threshold levels for the better ear (severity, slope, and concavity). Genotype data for the N-acetyltransferase 2 gene was obtained from existing genome-wide association study data from the Illumina 610-Quadv1 chip. Apolipoprotein E genotyping was performed using Sequenom technology. Linear regression analysis was performed using Plink and Stata software. No significant associations (P value, > 0.05) were observed between the N-acetyltransferase 2 or apolipoprotein E gene polymorphisms and any hearing factor. No significant association was observed for epistasis analysis of apolipoprotein E ε4 and the N-acetyltransferase 2 single nucleotide polymorphism rs1799930 (NAT2*6A). We found no evidence to support that either N-acetyltransferase 2 or apolipoprotein E gene polymorphisms are associated with age-related hearing loss in a cohort of 265 elderly volunteers. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  19. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53

    PubMed Central

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  20. Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway

    PubMed Central

    Duffy, Diane M.

    2015-01-01

    BACKGROUND Prostaglandin E2 (PGE2) is an essential intrafollicular regulator of ovulation. In contrast with the one-gene, one-protein concept for synthesis of peptide signaling molecules, production and metabolism of bioactive PGE2 requires controlled expression of many proteins, correct subcellular localization of enzymes, coordinated PGE2 synthesis and metabolism, and prostaglandin transport in and out of cells to facilitate PGE2 action and degradation. Elevated intrafollicular PGE2 is required for successful ovulation, so disruption of PGE2 synthesis, metabolism or transport may yield effective contraceptive strategies. METHODS This review summarizes case reports and studies on ovulation inhibition in women and macaques treated with cyclooxygenase inhibitors published from 1987 to 2014. These findings are discussed in the context of studies describing levels of mRNA, protein, and activity of prostaglandin synthesis and metabolic enzymes as well as prostaglandin transporters in ovarian cells. RESULTS The ovulatory surge of LH regulates the expression of each component of the PGE2 synthesis-metabolism-transport pathway within the ovulatory follicle. Data from primary ovarian cells and cancer cell lines suggest that enzymes and transporters can cooperate to optimize bioactive PGE2 levels. Elevated intrafollicular PGE2 mediates key ovulatory events including cumulus expansion, follicle rupture and oocyte release. Inhibitors of the prostaglandin-endoperoxide synthase 2 (PTGS2) enzyme (also known as cyclooxygenase-2 or COX2) reduce ovulation rates in women. Studies in macaques show that PTGS2 inhibitors can reduce the rates of cumulus expansion, oocyte release, follicle rupture, oocyte nuclear maturation and fertilization. A PTGS2 inhibitor reduced pregnancy rates in breeding macaques when administered to simulate emergency contraception. However, PTGS2 inhibition did not prevent pregnancy in monkeys when administered to simulate monthly contraceptive use. CONCLUSION

  1. A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa

    PubMed Central

    Pawluk, April; Bondy-Denomy, Joseph; Cheung, Vivian H. W.; Maxwell, Karen L.; Davidson, Alan R.

    2014-01-01

    ABSTRACT CRISPR-Cas systems are one of the most widespread phage resistance mechanisms in prokaryotes. Our lab recently identified the first examples of phage-borne anti-CRISPR genes that encode protein inhibitors of the type I-F CRISPR-Cas system of Pseudomonas aeruginosa. A key question arising from this work was whether there are other types of anti-CRISPR genes. In the current work, we address this question by demonstrating that some of the same phages carrying type I-F anti-CRISPR genes also possess genes that mediate inhibition of the type I-E CRISPR-Cas system of P. aeruginosa. We have discovered four distinct families of these type I-E anti-CRISPR genes. These genes do not inhibit the type I-F CRISPR-Cas system of P. aeruginosa or the type I-E system of Escherichia coli. Type I-E and I-F anti-CRISPR genes are located at the same position in the genomes of a large group of related P. aeruginosa phages, yet they are found in a variety of combinations and arrangements. We have also identified functional anti-CRISPR genes within nonprophage Pseudomonas genomic regions that are likely mobile genetic elements. This work emphasizes the potential importance of anti-CRISPR genes in phage evolution and lateral gene transfer and supports the hypothesis that more undiscovered families of anti-CRISPR genes exist. Finally, we provide the first demonstration that the type I-E CRISPR-Cas system of P. aeruginosa is naturally active without genetic manipulation, which contrasts with E. coli and other previously characterized I-E systems. PMID:24736222

  2. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  3. Comparison of Ion Chemistries in Octafluoro-2-butene (2-C4F8) and in Octfluorocyclobutane (c-C4F8)

    NASA Astrophysics Data System (ADS)

    Jiao, Charles; Dejoseph, Charles; Garscadden, Alan

    2007-10-01

    2-C4F8 is one of the promising candidates to replace c-C4F8 that has been widely used for dielectric etching but is not environmentally friendly. In this study we have investigated electron impact ionization and ion-molecule reactions of 2-C4F8 using Fourier transform mass spectrometry (FTMS), and compared the results with those of c-C4F8 we have studied previously. Electron impact ionization of 2-C4F8 produces 15 ionic species including C4F7,8^+, C3F3,5,6^+, C2F4^+ and CF1-3^+ as the major ions. The total ionization cross section of 2-C4F8 reaches a maximum of 1.8x10-15 cm^2 at 90 eV. The ionization is dominated by the channel forming the parent ion C4F8^+ from 12 to 18 eV, and by the channel forming C3F5^+ from 18 to 70 eV. After 70 eV, CF3^+ becomes the dominant product ion. Among the major ions generated from the electron impact ionization of 2-C4F8, only CF^+, CF2^+ and CF3^+ are found to react with 2-C4F8, via F^- abstraction or charge transfer mechanism. The charge transfer reaction of Ar^++2-C4F8 produces primarily C4F7^+.

  4. Both flagella and F4 fimbriae from F4ac+ enterotoxigenic Escherichia coli contribute to attachment to IPEC-J2 cells in vitro.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Zhu, Xiaofang; Guo, Zhiyan; Li, Yinchau; Hardwidge, Philip R; Zhu, Guoqiang

    2013-05-13

    The role of flagella in the pathogenesis of F4ac+ Enterotoxigenic Escherichia coli (ETEC) mediated neonatal and post-weaning diarrhea (PWD) is not currently understood. We targeted the reference C83902 ETEC strain (O8:H19:F4ac+ LT+ STa+ STb+), to construct isogenic mutants in the fliC (encoding the major flagellin protein), motA (encoding the flagella motor), and faeG (encoding the major subunit of F4 fimbriae) genes. Both the ΔfliC and ΔfaeG mutants had a reduced ability to adhere to porcine intestinal epithelial IPEC-J2 cells. F4 fimbriae expression was significantly down-regulated after deleting fliC, which revealed that co-regulation exists between flagella and F4 fimbriae. However, there was no difference in adhesion between the ΔmotA mutant and its parent strain. These data demonstrate that both flagella and F4 fimbriae are required for efficient F4ac+ ETEC adhesion in vitro.

  5. The Nike KrF laser facility: Performance and initial target experiments

    NASA Astrophysics Data System (ADS)

    Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N.; Pronko, M. S.; Pawley, C. J.; Schmitt, A. J.; Sethian, J. D.; Serlin, V.; Stamper, J. A.; Sullivan, C. A.; Dahlburg, J. P.; Gardner, J. H.; Chan, Y.; Deniz, A. V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.

    1996-05-01

    Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser-target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.

  6. Presence of Type I-F CRISPR/Cas systems is associated with antimicrobial susceptibility in Escherichia coli.

    PubMed

    Aydin, Seyid; Personne, Yoann; Newire, Enas; Laverick, Rebecca; Russell, Oliver; Roberts, Adam P; Enne, Virve I

    2017-08-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated cas genes are sequence-specific DNA nuclease systems found in bacteria and archaea. CRISPR/Cas systems use RNA transcripts of previously acquired DNA (spacers) to target invading genetic elements with the same sequence, including plasmids. In this research we studied the relationship between CRISPR/Cas systems and multidrug resistance in Escherichia coli . The presence of Type I-E and Type I-F CRISPR systems was investigated among 82 antimicrobial-susceptible and 96 MDR clinical E. coli isolates by PCR and DNA sequencing. Phylogrouping and MLST were performed to determine relatedness of isolates. RT-PCR was performed to ascertain the expression of associated cas genes. Type I-F CRISPR was associated with the B2 phylogroup and was significantly overrepresented in the susceptible group (22.0%) compared with the MDR group (2.1%). The majority of CRISPR I-F-containing isolates had spacer sequences that matched IncF and IncI plasmids. RT-PCR demonstrated that Type I-F cas genes were expressed and therefore potentially functional. The CRISPR I-F system is more likely to be found in antimicrobial-susceptible E. coli . Given that the Type I-F system is expressed in WT isolates, we suggest that this difference could be due to the CRISPR system potentially interfering with the acquisition of antimicrobial resistance plasmids, maintaining susceptibility in these isolates. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Gene targeting in mosquito cells: a demonstration of 'knockout' technology in extrachromosomal gene arrays

    PubMed Central

    Eggleston, Paul; Zhao, Yuguang

    2001-01-01

    Background Gene targeting would offer a number of advantages over current transposon-based strategies for insect transformation. These include freedom from both position effects associated with quasi-random integration and concerns over transgene instability mediated by endogenous transposases, independence from phylogenetic restrictions on transposon mobility and the ability to generate gene knockouts. Results We describe here our initial investigations of gene targeting in the mosquito. The target site was a hygromycin resistance gene, stably maintained as part of an extrachromosomal array. Using a promoter-trap strategy to enrich for targeted events, a neomycin resistance gene was integrated into the target site. This resulted in knockout of hygromycin resistance concurrent with the expression of high levels of neomycin resistance from the resident promoter. PCR amplification of the targeted site generated a product that was specific to the targeted cell line and consistent with precise integration of the neomycin resistance gene into the 5' end of the hygromycin resistance gene. Sequencing of the PCR product and Southern analysis of cellular DNA subsequently confirmed this molecular structure. Conclusions These experiments provide the first demonstration of gene targeting in mosquito tissue and show that mosquito cells possess the necessary machinery to bring about precise integration of exogenous sequences through homologous recombination. Further development of these procedures and their extension to chromosomally located targets hold much promise for the exploitation of gene targeting in a wide range of medically and economically important insect species. PMID:11513755

  8. Prostaglandin E and F2 alpha receptors in human myometrium during the menstrual cycle and in pregnancy and labor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannopoulos, G.; Jackson, K.; Kredentser, J.

    The binding of prostaglandins E1 and F2 alpha has been studied in the human myometrium and cervix during the menstrual cycle and in the myometrium of pregnant patients at term before and during labor. Tritium-labeled prostaglandin E1 and F2 alpha binding was saturable and reversible. Scatchard analysis of tritium-labeled prostaglandin E1 binding was linear, which suggests a single class of high-affinity binding sites with an estimated apparent equilibrium dissociation constant of 2.5 to 5.4 nmol/L and inhibitor affinities of 0.9, 273, 273, and 217 nmol/L for prostaglandins E2, A1, B1, and F2 alpha, respectively. Scatchard analysis of tritium-labeled prostaglandin F2more » alpha, binding was also linear, but the affinity of these binding sites was much lower, with an average dissociation constant of 50 nmol/L and inhibitor affinities of 1.6, 2.2, and 11.2 nmol/L for prostaglandins E1, E2, and A1, respectively. In nonpregnant patients, the concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were similar in the myometrium during the proliferative and secretory phases of the menstrual cycle, but the concentration of these sites was much lower in the cervix. The concentration of the tritium-labeled prostaglandin E1 binding sites was significantly lower in the myometrium of pregnant patients at term than in the myometrium of nonpregnant patients. The concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were not significantly different in the upper and lower myometrium of pregnant patients at term or in the myometrium of such patients before and during labor. The concentrations of the tritium-labeled prostaglandin F2 alpha binding sites during the menstrual cycle and in pregnancy at term were similar to those of tritium-labeled prostaglandin E1 binding sites.« less

  9. Substituent effects in a series of 1,7-C[subscript 60](R[subscript F])[subscript 2] compounds (R[subscript F] = CF[subscript 3], C[subscript 2]F[subscript 5], n-C[subscrip 3]F[subscript 7], i-C[subscript 3]F[subscript 7], n-C[subscript 4]F[subscript 9], s-C[subscript 4]F[subscript 9], n-C[subscript 8]F[subscript 17]): electron affinities, reduction potentials and E(LUMO) values are not always correlated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuvychko, Igor V.; Whitaker, James B.; Larson, Bryon W.

    2013-04-08

    A series of seven structurally-similar compounds with different pairs of R{sub F} groups were prepared, characterized spectroscopically, and studied by electrochemical methods (cyclic and square-wave voltammetry), low-temperature anion photoelectron spectroscopy, and DFT calculations (five of the compounds are reported here for the first time). This is the first time that a set of seven R{sub F} groups have been compared with respect to their relative effects on E{sub 1/2}(0/-), electron affinity (EA), and the DFT-calculated LUMO energy. The compounds, 1,7-C{sub 60}(R{sub F}){sub 2} (R{sub F} = CF{sub 3}, C{sub 2}F{sub 5}, i-C{sub 3}F{sub 7}, n-C{sub 3}F{sub 7}, s-C{sub 4}F{sub 9},more » n-C{sub 4}F{sub 9} and n-C{sub 8}F{sub 21}), were found to have statistically different electron affinities (EA), at the {+-}10 meV level of uncertainty, but virtually identical first reduction potentials, at the {+-}10 mV level of uncertainty. The lack of a correlation between EA and E{sub 1/2}(0/-), and between E(LUMO) and E{sub 1/2}(0/-), for such similar compounds is unprecedented and suggests that explanations for differences in figures of merit for materials and/or devices that are based on equating easily measurable E{sub 1/2}(0/-) values with EAs or E(LUMO) values should be viewed with caution. The solubilities of the seven compounds in toluene varied by nearly a factor of six, but in an unpredictable way, with the C{sub 2}F{sub 5} and s-C{sub 4}F{sub 9} compounds being the most soluble and the i-C{sub 3}F{sub 7} compound being the least soluble. The effects of the different R{sub F} groups on EAs, E(LUMO) values, and solubilities should help fluorine chemists choose the right R{sub F} group to design new materials with improved morphological, electronic, optical, and/or magnetic properties.« less

  10. A targeted resequencing gene panel for focal epilepsy.

    PubMed

    Hildebrand, Michael S; Myers, Candace T; Carvill, Gemma L; Regan, Brigid M; Damiano, John A; Mullen, Saul A; Newton, Mark R; Nair, Umesh; Gazina, Elena V; Milligan, Carol J; Reid, Christopher A; Petrou, Steven; Scheffer, Ingrid E; Berkovic, Samuel F; Mefford, Heather C

    2016-04-26

    We report development of a targeted resequencing gene panel for focal epilepsy, the most prevalent phenotypic group of the epilepsies. The targeted resequencing gene panel was designed using molecular inversion probe (MIP) capture technology and sequenced using massively parallel Illumina sequencing. We demonstrated proof of principle that mutations can be detected in 4 previously genotyped focal epilepsy cases. We searched for both germline and somatic mutations in 251 patients with unsolved sporadic or familial focal epilepsy and identified 11 novel or very rare missense variants in 5 different genes: CHRNA4, GRIN2B, KCNT1, PCDH19, and SCN1A. Of these, 2 were predicted to be pathogenic or likely pathogenic, explaining ∼0.8% of the cohort, and 8 were of uncertain significance based on available data. We have developed and validated a targeted resequencing panel for focal epilepsies, the most important clinical class of epilepsies, accounting for about 60% of all cases. Our application of MIP technology is an innovative approach that will be advantageous in the clinical setting because it is highly sensitive, efficient, and cost-effective for screening large patient cohorts. Our findings indicate that mutations in known genes likely explain only a small proportion of focal epilepsy cases. This is not surprising given the established clinical and genetic heterogeneity of these disorders and underscores the importance of further gene discovery studies in this complex syndrome. © 2016 American Academy of Neurology.

  11. The Ad5 [E1-, E2b-]-based vector: a new and versatile gene delivery platform

    NASA Astrophysics Data System (ADS)

    Jones, Frank R.; Gabitzsch, Elizabeth S.; Balint, Joseph P.

    2015-05-01

    Based upon advances in gene sequencing and construction, it is now possible to identify specific genes or sequences thereof for gene delivery applications. Recombinant adenovirus serotype-5 (Ad5) viral vectors have been utilized in the settings of gene therapy, vaccination, and immunotherapy but have encountered clinical challenges because they are recognized as foreign entities to the host. This recognition leads to an immunologic clearance of the vector that contains the inserted gene of interest and prevents effective immunization(s). We have reported on a new Ad5-based viral vector technology that can be utilized as an immunization modality to induce immune responses even in the presence of Ad5 vector immunity. We have reported successful immunization and immunotherapy results to infectious diseases and cancers. This improved recombinant viral platform (Ad5 [E1-, E2b-]) can now be utilized in the development of multiple vaccines and immunotherapies.

  12. MicroRNA-188 suppresses G1/S transition by targeting multiple cyclin/CDK complexes.

    PubMed

    Wu, Jiangbin; Lv, Qing; He, Jie; Zhang, Haoxiang; Mei, Xueshuang; Cui, Kai; Huang, Nunu; Xie, Weidong; Xu, Naihan; Zhang, Yaou

    2014-10-11

    Accelerated cell cycle progression is the common feature of most cancers. MiRNAs can act as oncogenes or tumor suppressors by directly modulating cell cycle machinery. It has been shown that miR-188 is upregulated in UVB-irradiated mouse skin and human nasopharyngeal carcinoma CNE cells under hypoxic stress. However, little is known about the function of miR-188 in cell proliferation and growth control. Overexpression of miR-188 inhibits cell proliferation, tumor colony formation and G1/S cell cycle transition in human nasopharyngeal carcinoma CNE cells. Using bioinformatics approach, we identify a series of genes regulating G1/S transition as putative miR-188 targets. MiR-188 inhibits both mRNA and protein expression of CCND1, CCND3, CCNE1, CCNA2, CDK4 and CDK2, suppresses Rb phosphorylation and downregulates E2F transcriptional activity. The expression level of miR-188 also inversely correlates with the expression of miR-188 targets in human nasopharyngeal carcinoma (NPC) tissues. Moreover, studies in xenograft mouse model reveal that miR-188 is capable of inhibiting tumor initiation and progression by suppressing target genes expression and Rb phosphorylation. This study demonstrates that miR-188 exerts anticancer effects, via downregulation of multiple G1/S related cyclin/CDKs and Rb/E2F signaling pathway.

  13. Characterization of two genes encoding the Mycobacterium tuberculosis ribonucleotide reductase small subunit.

    PubMed Central

    Yang, F; Curran, S C; Li, L S; Avarbock, D; Graf, J D; Chua, M M; Lu, G; Salem, J; Rubin, H

    1997-01-01

    Two nrdF genes, nrdF1 and nrdF2, encoding the small subunit (R2) of ribonucleotide reductase (RR) from Mycobacterium tuberculosis have 71% identity at the amino acid level and are both highly homologous with Salmonella typhimurium R2F. The calculated molecular masses of R2-1 and R2-2 are 36,588 (322 amino acids [aa]) and 36,957 (324 aa) Da, respectively. Western blot analysis of crude M. tuberculosis extracts indicates that both R2s are expressed in vivo. Recombinant R2-2 is enzymatically active when assayed with pure recombinant M. tuberculosis R1 subunit. Both ATP and dATP are activators for CDP reduction up to 2 and 1 mM, respectively. The gene encoding M. tuberculosis R2-1, nrdF1, is not linked to nrdF2, nor is either gene linked to the gene encoding the large subunit, M. tuberculosis nrdE. The gene encoding MTP64 was found downstream from nrdF1, and the gene encoding alcohol dehydrogenase was found downstream from nrdF2. A nrdA(Ts) strain of E. coli (E101) could be complemented by simultaneous transformation with M. tuberculosis nrdE and nrdF2. An M. tuberculosis nrdF2 variant in which the codon for the catalytically necessary tyrosine was replaced by the phenylalanine codon did not complement E101 when cotransformed with M. tuberculosis nrdE. Similarly, M. tuberculosis nrdF1 and nrdE did not complement E101. Activity of recombinant M. tuberculosis RR was inhibited by incubating the enzyme with a peptide corresponding to the 7 C-terminal amino acid residues of the R2-2 subunit. M. tuberculosis is a species in which a nrdEF system appears to encode the biologically active species of RR and also the only bacterial species identified so far in which class I RR subunits are not arranged on an operon. PMID:9335290

  14. Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers.

    PubMed

    Chen, Huaihai; Yu, Fangbo; Shi, Wei

    2016-12-01

    Fungal denitrification has been increasingly investigated, but its community ecology is poorly understood due to the lack of culture-independent tools. In this work, four pairs of nirK-targeting primers were designed and evaluated for primer specificity and efficiency using thirty N 2 O-producing fungal cultures and an agricultural soil. All primers amplified nirK from fungi and soil, but their efficiency and specificity were different. A primer set, FnirK_F3/R2 amplified ∼80 % of tested fungi, including Aspergillus, Fusarium, Penicillium, and Trichoderma, as compared to ∼40-70 % for other three primers. The nirK fragments of fungal and soil DNA amplified by FnirK_F3/R2 were phylogenetically related to denitrifying fungi in the orders Eurotiales, Hypocreales, and Sordariales; and clone sequences were also distributed in the clusters of Chaetomium, Metarhizium, and Myceliophthora that were uncultured from soil in our previous work. This proved the wide-range capability of primers for amplifying diverse denitrifying fungi from environment. However, our primers and recently-developed other primers amplified bacterial nirK from soil and this co-amplification of fungal and bacterial nirK was theoretically discussed. The FnirK_F3/R2 was further compared with published primers; results from clone libraries demonstrated that FnirK_F3/R2 was more specifically targeted on fungi and had broader taxonomical coverage than some others. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Analyzing the most frequent disease loci in targeted patient categories optimizes disease gene identification and test accuracy worldwide.

    PubMed

    Lebo, Roger V; Tonk, Vijay S

    2015-01-21

    Our genomewide studies support targeted testing the most frequent genetic diseases by patient category: (1) pregnant patients, (2) at-risk conceptuses, (3) affected children, and (4) abnormal adults. This approach not only identifies most reported disease causing sequences accurately, but also minimizes incorrectly identified additional disease causing loci. Diseases were grouped in descending order of occurrence from four data sets: (1) GeneTests 534 listed population prevalences, (2) 4129 high risk prenatal karyotypes, (3) 1265 affected patient microarrays, and (4) reanalysis of 25,452 asymptomatic patient results screened prenatally for 108 genetic diseases. These most frequent diseases are categorized by transmission: (A) autosomal recessive, (B) X-linked, (C) autosomal dominant, (D) microscopic chromosome rearrangements, (E) submicroscopic copy number changes, and (F) frequent ethnic diseases. Among affected and carrier patients worldwide, most reported mutant genes would be identified correctly according to one of four patient categories from at-risk couples with <64 tested genes to affected adults with 314 tested loci. Three clinically reported patient series confirmed this approach. First, only 54 targeted chromosomal sites would have detected all 938 microscopically visible unbalanced karyotypes among 4129 karyotyped POC, CVS, and amniocentesis samples. Second, 37 of 48 reported aneuploid regions were found among our 1265 clinical microarrays confirming the locations of 8 schizophrenia loci and 20 aneuploidies altering intellectual ability, while also identifying 9 of the most frequent deletion syndromes. Third, testing 15 frequent genes would have identified 124 couples with a 1 in 4 risk of a fetus with a recessive disease compared to the 127 couples identified by testing all 108 genes, while testing all mutations in 15 genes could have identified more couples. Testing the most frequent disease causing abnormalities in 1 of 8 reported disease loci [~1 of

  16. Physical status of the E2 human papilloma virus 16 viral gene in cervical preneoplastic and neoplastic lesions.

    PubMed

    Tonon, S A; Picconi, M A; Bos, P D; Zinovich, J B; Galuppo, J; Alonio, L V; Teyssie, A R

    2001-05-01

    Integration of human papilloma virus (HPV) 16 DNA is considered an important genetic change in cervical lesion progression towards ICC. The viral E2 gene is often disrupted by this process, releasing suppression of viral E6/E7 oncogenes, a key factor for oncogenic progression. To evaluate the physical status of HPV 16 E2 gene in cervical preneoplastic and neoplastic lesions and its relation with lesion severity. A sensitive PCR approach for the detection of an intact E2 HPV 16 gene in infected epithelial cells from the cervix with low grade squamous intraepithelial lesion (LGSIL), high grade squamous intraepithelial lesion (HGSIL) and invasive cervical carcinoma (ICC) diagnosis was applied. The correlation between gene disruption and lesion stage was examined. Sixty-two LGSIL, 39 HGSIL and 24 ICC samples were analyzed. Fifty-seven LGSIL [92%], 13 HGSIL [33%] and 4 ICC [17%] showed results compatible with an intact E2 gene, while 5 LGSIL [8%], 26 HGSIL [67%] and 20 ICC [83%] samples gave no signal. HPV 16 E2 gene disruption showed a positive correlation with cervical lesion progression, particularly from LGSIL to HGSIL. Although additional genetic events are very likely to be needed for HGSIL to ICC progression, the E2 gene disruption is a putative early marker to consider in the prognostic analysis of HPV 16 chronically infected women.

  17. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    DOE PAGES

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; ...

    2014-10-16

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. Here, we explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulatedmore » by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. In conclusion, taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs.« less

  18. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    PubMed Central

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  19. The Mechanism of Gene Targeting in Human Somatic Cells

    PubMed Central

    Kan, Yinan; Ruis, Brian; Lin, Sherry; Hendrickson, Eric A.

    2014-01-01

    Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells. PMID:24699519

  20. Inclusion of electron correlation for the target wave function in low-energy e sup minus +N sub 2 scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, H.; Pal, S.; Riss, U.V.

    1992-07-01

    The interaction of a scattering electron with a correlated but frozen'' target may be called the correlated static-exchange interaction. There are two prior investigations (J.R. Rumble, W.J. Stevens, and D. Truhlar, J. Phys. B 17, 3151 (1984); C Weatherford, F.B. Brown, and A. Temkin, Phys. Rev. A 35, 4561 (1987)) on scattering off the correlated static-exchange potential. Both of these investigations concentrated on {ital e}{sup {minus}}+N{sub 2} scattering, and both have found that the correlated static-exchange potential is less attractive than the static-exchange potential. We will show, however, that the correlated static-exchange potential is more attractive than the static-exchange one---atmore » least for {ital e}{sup {minus}}+N{sub 2} scattering in {sup 2}{Pi}{sub {ital g}} symmetry. The two prior investigations were misled by an improper degree of correlation and by an improper treatment of the exchange.« less

  1. EVI2B is a C/EBPα target gene required for granulocytic differentiation and functionality of hematopoietic progenitors.

    PubMed

    Zjablovskaja, Polina; Kardosova, Miroslava; Danek, Petr; Angelisova, Pavla; Benoukraf, Touati; Wurm, Alexander A; Kalina, Tomas; Sian, Stephanie; Balastik, Martin; Delwel, Ruud; Brdicka, Tomas; Tenen, Daniel G; Behre, Gerhard; Fiore, Fréderic; Malissen, Bernard; Horejsi, Vaclav; Alberich-Jorda, Meritxell

    2017-04-01

    Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.

  2. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1.

    PubMed

    Meyer, Kerstin B; O'Reilly, Martin; Michailidou, Kyriaki; Carlebur, Saskia; Edwards, Stacey L; French, Juliet D; Prathalingham, Radhika; Dennis, Joe; Bolla, Manjeet K; Wang, Qin; de Santiago, Ines; Hopper, John L; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Van 't Veer, Laura J; Hogervorst, Frans B; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A; Lux, Michael P; Ekici, Arif B; Beckmann, Matthias W; Peto, Julian; Dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Zamora, M Pilar; Arias, Jose I; Benitez, Javier; Neuhausen, Susan; Anton-Culver, Hoda; Ziogas, Argyrios; Dur, Christina C; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Schmutzler, Rita K; Engel, Christoph; Ditsch, Nina; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Dörk, Thilo; Helbig, Sonja; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Chenevix-Trench, Georgia; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Lambrechts, Diether; Thienpont, Bernard; Christiaens, Marie-Rose; Smeets, Ann; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Bernard, Loris; Couch, Fergus J; Olson, Janet E; Wang, Xianshu; Purrington, Kristen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Teo, Soo-Hwang; Yip, Cheng-Har; Phuah, Sze-Yee; Kristensen, Vessela; Grenaker Alnæs, Grethe; Børresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline M; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hartef; Eriksson, Kimael; Hooning, Maartje J; Martens, John W M; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Reed, Malcolm W R; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Pharoah, Paul D P; Ghoussaini, Maya; Harrington, Patricia; Tyrer, Jonathan; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Noh, Dong-Young; Hartman, Mikael; Hui, Miao; Lim, Wei-Yen; Buhari, Shaik A; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Vachon, Celine; Slager, Susan; Fostira, Florentia; Pilarski, Robert; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Ponder, Bruce A J; Dunning, Alison M; Easton, Douglas F

    2013-12-05

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ERα to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Novel radiosynthesis of PET HSV-tk gene reporter probes [18F]FHPG and [18F]FHBG employing dual Sep-Pak SPE techniques.

    PubMed

    Wang, Ji-Quan; Zheng, Qi-Huang; Fei, Xiangshu; Mock, Bruce H; Hutchins, Gary D

    2003-11-17

    Positron emission tomography (PET) herpes simplex virus thymidine kinase (HSV-tk) gene reporter probes 9-[(3-[(18)F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG) and 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG) were prepared by nucleophilic substitution of the appropriate tosylated precursors with [(18)F]KF/Kryptofix 2.2.2 followed by a quick deprotection reaction and purification with a simplified dual Silica Sep-Pak solid-phase extraction (SPE) method in 15-30% radiochemical yield.

  4. Cloning and bioinformatic analysis of lovastatin biosynthesis regulatory gene lovE.

    PubMed

    Huang, Xin; Li, Hao-ming

    2009-08-05

    Lovastatin is an effective drug for treatment of hyperlipidemia. This study aimed to clone lovastatin biosynthesis regulatory gene lovE and analyze the structure and function of its encoding protein. According to the lovastatin synthase gene sequence from genebank, primers were designed to amplify and clone the lovastatin biosynthesis regulatory gene lovE from Aspergillus terrus genomic DNA. Bioinformatic analysis of lovE and its encoding animo acid sequence was performed through internet resources and software like DNAMAN. Target fragment lovE, almost 1500 bp in length, was amplified from Aspergillus terrus genomic DNA and the secondary and three-dimensional structures of LovE protein were predicted. In the lovastatin biosynthesis process lovE is a regulatory gene and LovE protein is a GAL4-like transcriptional factor.

  5. Integrative Analysis Reveals an Outcome-associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B-cell Lymphoma

    PubMed Central

    Monti, Stefano; Chapuy, Bjoern; Takeyama, Kunihiko; Rodig, Scott J; Hao, Yangsheng; Yeda, Kelly T.; Inguilizian, Haig; Mermel, Craig; Curie, Treeve; Dogan, Ahmed; Kutok, Jeffery L; Beroukim, Rameen; Neuberg, Donna; Habermann, Thomas; Getz, Gad; Kung, Andrew L; Golub, Todd R; Shipp, Margaret A

    2013-01-01

    Summary Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease with a high proliferation rate. By integrating copy number data with transcriptional profiles and performing pathway analysis in primary DLBCLs, we identified a comprehensive set of copy number alterations (CNAs) that decreased p53 activity and perturbed cell cycle regulation. Primary tumors either had multiple complementary alterations of p53 and cell cycle components or largely lacked these lesions. DLBCLs with p53 and cell cycle pathway CNAs had decreased abundance of p53 target transcripts and increased expression of E2F target genes and the Ki67 proliferation marker. CNAs of the CDKN2A-TP53-RB-E2F axis provide a structural basis for increased proliferation in DLBCL, predict outcome with current therapy and suggest targeted treatment approaches. PMID:22975378

  6. Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4DCAF5 ubiquitin ligase.

    PubMed

    Leng, Feng; Yu, Jiekai; Zhang, Chunxiao; Alejo, Salvador; Hoang, Nam; Sun, Hong; Lu, Fei; Zhang, Hui

    2018-04-24

    Many non-histone proteins are lysine methylated and a novel function of this modification is to trigger the proteolysis of methylated proteins. Here, we report that the methylated lysine 142 of DNMT1, a major DNA methyltransferase that preserves epigenetic inheritance of DNA methylation patterns during DNA replication, is demethylated by LSD1. A novel methyl-binding protein, L3MBTL3, binds the K142-methylated DNMT1 and recruits a novel CRL4 DCAF5 ubiquitin ligase to degrade DNMT1. Both LSD1 and PHF20L1 act primarily in S phase to prevent DNMT1 degradation by L3MBTL3-CRL4 DCAF5 . Mouse L3MBTL3/MBT-1 deletion causes accumulation of DNMT1 protein, increased genomic DNA methylation, and late embryonic lethality. DNMT1 contains a consensus methylation motif shared by many non-histone proteins including E2F1, a key transcription factor for S phase. We show that the methylation-dependent E2F1 degradation is also controlled by L3MBTL3-CRL4 DCAF5 . Our studies elucidate for the first time a novel mechanism by which the stability of many methylated non-histone proteins are regulated.

  7. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells.

    PubMed

    Tolmachov, Oleg E

    2015-01-01

    Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo

  8. ARHGAP18 is a novel gene under positive natural selection that influences HbF levels in β-thalassaemia.

    PubMed

    He, Yunyan; Luo, Jianming; Chen, Yang; Zhou, Xiaoheng; Yu, Shanjuan; Jin, Ling; Xiao, Xuan; Jia, Siyuan; Liu, Qiang

    2018-02-01

    Foetal haemoglobin (HbF) plays a dominant role in ameliorating the morbidity and mortality of β-thalassaemia. A better understanding of the loci and genes involved in HbF expression would be beneficial for the treatment of β-thalassaemia major. However, the genes associated with HbF expression remain largely unknown. In this study, we first explored large-scale data sets and examined the human genome for evidence of positive natural selection to screen out single nucleotide polymorphisms (SNPs). A genetic analysis of HbF levels was conducted in a Chinese cohort of patients with β-thalassaemia to confirm the bioinformatics results. A total of 1141 subjects with β-thalassaemia were recruited. The results showed that the SNP rs11759328 in the ARHGAP18 gene was significantly associated with HbF levels (Ρ = 5.1 × 10 -4 ). ARHGAP18 belongs to the RhoGAP family and controls angiogenesis, cellular morphology and motility. Second, after determining that ARHGAP18 was highly expressed in the human K562 cell line, we used lentiviral-mediated small interfering RNA to knock down ARHGAP18 expression and subsequently assessed cell proliferation and apoptosis using cell proliferation assays and flow cytometry, respectively. ARHGAP18 downregulation in K562 cells significantly increased HBG1/2 expression and apoptosis, but proliferation was not significantly affected in vitro. Our data suggest that ARHGAP18, which was located by the SNP rs11759328 via positive selection, plays a potential role in regulating HbF expression in β-thalassaemia and may be a promising therapeutic target. Knockout studies of ARHGAP18 warrant further investigation into its aetiology in HbF.

  9. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Raymond; Celius, Trine; Forgacs, Agnes L.

    2011-11-15

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed anmore » over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched

  10. Identification of putative methanol dehydrogenase (moxF) structural genes in methylotrophs and cloning of moxF genes from methylococcus capsulatus bath and Methylomonas albus BG8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, R.L.; Haygood, M.G.; Lidstrom, M.E.

    An open-reading-frame fragment of a Methylobacterium sp. strain AM1 gene (moxF) encoding a portion of the methanol dehydrogenase structural protein has been used as a hybridization probe to detect similar sequences in a variety of methylotrophic bacteria. This hybridization was used to isolate clones containing putative moxF genes from two obligate methanotrophic bacteria, Methylococcus capsulatus Bath and Methylomonas albus BG8. The identity of these genes was confirmed in two ways. A T7 expression vector was used to produce methanol dehydrogenase protein in Escherichia coli from the cloned genes,a and in each case the protein was identified by immunoblotting with antiserummore » against the Methylomonas albus methanol dehydrogenase. In addition, a moxF mutant of Methylobacterium strain AM1 was complemented to a methanol-positive phenotype that partially restored methanol dehydrogenase activity, using broad-host-range plasmids containing the moxF genes from each methanotroph. The partial complementation of a moxF mutant in a facultative serine pathway methanol utilizer by moxF genes from type I and type X obligate methane utilizers suggests broad functional conservation of the methanol oxidation system among gram-negative methylotrophs.« less

  11. HIV-derived vectors for gene therapy targeting dendritic cells.

    PubMed

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  12. Variation in 12 porcine genes involved in the carbohydrate moiety assembly of glycosphingolipids does not account for differential binding of F4 Escherichia coli and their fimbriae.

    PubMed

    Goetstouwers, Tiphanie; Van Poucke, Mario; Coddens, Annelies; Nguyen, Van Ut; Melkebeek, Vesna; Deforce, Dieter; Cox, Eric; Peelman, Luc J

    2014-10-03

    Glycosphingolipids (GSLs) are important membrane components composed of a carbohydrate structure attached to a hydrophobic ceramide. They can serve as specific membrane receptors for microbes and microbial products, such as F4 Escherichia coli (F4 ETEC) and isolated F4 fimbriae. The aim of this study was to investigate the hypothesis that variation in genes involved in the assembly of the F4 binding carbohydrate moiety of GSLs (i.e. ARSA, B4GALT6, GAL3ST1, GALC, GBA, GLA, GLB1, GLB1L, NEU1, NEU2, UGCG, UGT8) could account for differential binding of F4 ETEC and their fimbriae. RT-PCR could not reveal any differential expression of the 12 genes in the jejunum of F4 receptor-positive (F4R(+)) and F4 receptor-negative (F4R(-)) pigs. Sequencing the complete open reading frame of the 11 expressed genes (NEU2 was not expressed) identified 72 mutations. Although some of them might have a structural effect, none of them could be associated with a F4R phenotype. We conclude that no regulatory or structural variation in any of the investigated genes is responsible for the genetic susceptibility of pigs towards F4 ETEC.

  13. A cascading activity-based probe sequentially targets E1–E2E3 ubiquitin enzymes

    PubMed Central

    Mulder, Monique P.C.; Witting, Katharina; Berlin, Ilana; Pruneda, Jonathan N.; Wu, Kuen-Phon; Chang, Jer-Gung; Merkx, Remco; Bialas, Johanna; Groettrup, Marcus; Vertegaal, Alfred C.O.; Schulman, Brenda A.; Komander, David; Neefjes, Jacques; Oualid, Farid El; Ovaa, Huib

    2016-01-01

    Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers, orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a staggering breadth of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Akin to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe ‘hops’ and ‘traps’ catalytically active ubiquitin-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activities in living cells, presents novel and versatile tools to interrogate the Ub/Ubl cascades. PMID:27182664

  14. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes.

    PubMed

    Kruse, Rikke; Vienberg, Sara G; Vind, Birgitte F; Andersen, Birgitte; Højlund, Kurt

    2017-10-01

    Pharmacological doses of FGF21 improve glucose tolerance, lipid metabolism and energy expenditure in rodents. Induced expression and secretion of FGF21 from muscle may increase browning of white adipose tissue (WAT) in a myokine-like manner. Recent studies have reported that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. The effects of insulin during euglycaemic-hyperinsulinaemic clamps and 10 week endurance training on serum FGF21 were examined in individuals with type 2 diabetes and in glucose tolerant overweight/obese and lean individuals. Gene expression of FGF21, its receptors and target genes in muscle and WAT biopsies was evaluated by quantitative real-time PCR (qPCR). Insulin increased serum and muscle FGF21 independent of overweight/obesity or type 2 diabetes, and there were no effects associated with exercise training. The insulin-induced increases in serum FGF21 and muscle FGF21 expression correlated tightly (p < 0.001). In WAT, overweight/obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure adequate expression of most FGF21 target genes in WAT.

  15. Factors affecting expression of the recF gene of Escherichia coli K-12.

    PubMed

    Sandler, S J; Clark, A J

    1990-01-31

    This report describes four factors which affect expression of the recF gene from strong upstream lambda promoters under temperature-sensitive cIAt2-encoded repressor control. The first factor was the long mRNA leader sequence consisting of the Escherichia coli dnaN gene and 95% of the dnaA gene and lambda bet, N (double amber) and 40% of the exo gene. When most of this DNA was deleted, RecF became detectable in maxicells. The second factor was the vector, pBEU28, a runaway replication plasmid. When we substituted pUC118 for pBEU28, RecF became detectable in whole cells by the Coomassie blue staining technique. The third factor was the efficiency of initiation of translation. We used site-directed mutagenesis to change the mRNA leader, ribosome-binding site and the 3 bp before and after the translational start codon. Monitoring the effect of these mutational changes by translational fusion to lacZ, we discovered that the efficiency of initiation of translation was increased 30-fold. Only an estimated two- or threefold increase in accumulated levels of RecF occurred, however. This led us to discover the fourth factor, namely sequences in the recF gene itself. These sequences reduce expression of the recF-lacZ fusion genes 100-fold. The sequences responsible for this decrease in expression occur in four regions in the N-terminal half of recF. Expression is reduced by some sequences at the transcriptional level and by others at the translational level.

  16. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages

    PubMed Central

    Woolard, Matthew D.; Barrigan, Lydia M.; Fuller, James R.; Buntzman, Adam S.; Bryan, Joshua; Manoil, Colin; Kawula, Thomas H.; Frelinger, Jeffrey A.

    2013-01-01

    Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to synthesize prostaglandin E2 (PGE2). Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the cellular pathways (neither host nor bacterial) that result in up-regulation of the PGE2 biosynthetic pathway in F. tularensis infected macrophages. We took a genetic approach to begin to understand the molecular mechanisms of bacterial induction of PGE2 synthesis from infected macrophages. To identify F. tularensis genes necessary for the induction of PGE2 in primary macrophages, we infected cells with individual mutants from the closely related strain F. tularensis subspecies novicida U112 (U112) two allele mutant library. Twenty genes were identified that when disrupted resulted in U112 mutant strains unable to induce the synthesis of PGE2 by infected macrophages. Fourteen of the genes identified are located within the Francisella pathogenicity island (FPI). Genes in the FPI are required for F. tularensis to escape from the phagosome and replicate in the cytosol, which might account for the failure of U112 with transposon insertions within the FPI to induce PGE2. This implies that U112 mutant strains that do not grow intracellularly would also not induce PGE2. We found that U112 clpB::Tn grows within macrophages yet fails to induce PGE2, while U112 pdpA::Tn does not grow yet does induce PGE2. We also found that U112 iglC::Tn neither grows nor induces PGE2. These findings indicate that there is dissociation between intracellular growth and the ability of F. tularensis to induce PGE2 synthesis. These mutants provide a critical entrée into the pathways used in the host for PGE2

  17. Vaccinia virus proteins A36 and F12/E2 show strong preferences for different kinesin light chain isoforms.

    PubMed

    Gao, William N D; Carpentier, David C J; Ewles, Helen A; Lee, Stacey-Ann; Smith, Geoffrey L

    2017-08-01

    Vaccinia virus (VACV) utilizes microtubule-mediated trafficking at several stages of its life cycle, of which virus egress is the most intensely studied. During egress VACV proteins A36, F12 and E2 are involved in kinesin-1 interactions; however, the roles of these proteins remain poorly understood. A36 forms a direct link between virions and kinesin-1, yet in its absence VACV egress still occurs on microtubules. During a co-immunoprecipitation screen to seek an alternative link between virions and kinesin, A36 was found to bind isoform KLC1 rather than KLC2. The F12/E2 complex associates preferentially with the C-terminal tail of KLC2, to a region that overlaps the binding site of cellular 14-3-3 proteins. F12/E2 displaces 14-3-3 from KLC and, unlike 14-3-3, does not require phosphorylation of KLC for its binding. The region determining the KLC1 specificity of A36 was mapped to the KLC N-terminal heptad repeat region that is responsible for its association with kinesin heavy chain. Despite these differing binding properties F12/E2 can co-operatively enhance A36 association with KLC, particularly when using a KLC1-KLC2 chimaera that resembles several KLC1 spliceforms and can bind A36 and F12/E2 efficiently. This is the first example of a pathogen encoding multiple proteins that co-operatively associate with kinesin-1. © 2017 The Authors. Traffic published by John Wiley & Sons Ltd.

  18. Targeted gene delivery in the cricket brain, using in vivo electroporation.

    PubMed

    Matsumoto, Chihiro Sato; Shidara, Hisashi; Matsuda, Koji; Nakamura, Taro; Mito, Taro; Matsumoto, Yukihisa; Oka, Kotaro; Ogawa, Hiroto

    2013-12-01

    The cricket (Gryllus bimaculatus) is a hemimetabolous insect that is emerging as a model organism for the study of neural and molecular mechanisms of behavioral traits. However, research strategies have been limited by a lack of genetic manipulation techniques that target the nervous system of the cricket. The development of a new method for efficient gene delivery into cricket brains, using in vivo electroporation, is described here. Plasmid DNA, which contained an enhanced green fluorescent protein (eGFP) gene, under the control of a G. bimaculatus actin (Gb'-act) promoter, was injected into adult cricket brains. Injection was followed by electroporation at a sufficient voltage. Expression of eGFP was observed within the brain tissue. Localized gene expression, targeted to specific regions of the brain, was also achieved using a combination of local DNA injection and fine arrangement of the electroporation electrodes. Further studies using this technique will lead to a better understanding of the neural and molecular mechanisms that underlie cricket behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Dietary TiO2 particles modulate expression of hormone-related genes in Bombyx mori.

    PubMed

    Shi, Guofang; Zhan, Pengfei; Jin, Weiming; Fei, JianMing; Zhao, Lihua

    2017-08-01

    Silkworm (Bombyx mori) is an economically beneficial insect. Its growth and development are regulated by endogenous hormones. In the present study, we found that feeding titanium dioxide nanoparticles (TiO 2 NP) caused a significant increase of body size. TiO 2 NP stimulated the transcription of several genes, including the insulin-related hormone bombyxin, PI3K/Akt/TOR (where PI3K is phosphatidylinositol 3-kinase and TOR is target of rapamycin), and the adenosine 5'-monophosphateactivated protein kinase (AMPK)/target of rapamycin (TOR) pathways. Differentially expressed gene (DEG) analysis documented 26 developmental hormone signaling related genes that were differentially expressed following dietary TiO 2 NP treatment. qPCR analysis confirmed the upregulation of insulin/ecdysteroid signaling genes, such as bombyxin B-1, bombyxin B-4, bombyxin B-7, MAPK, P70S6K, PI3k, eIF4E, E75, ecdysteroid receptor (EcR), and insulin-related peptide binding protein precursor 2 (IBP2). We infer from the upregulated expression of bombyxins and the signaling network that they act in bombyxin-stimulated ecdysteroidogenesis. © 2017 Wiley Periodicals, Inc.

  20. Mitochondrial ribosomal protein S18-2 is highly expressed in endometrial cancers along with free E2F1

    PubMed Central

    Iurchenko, Natalia; Kovalevska, Larysa; Stip, Maria C; Budnikova, Daria; Andersson, Sonia; Polischuk, Ludmila; Buchynska, Lubov; Kashuba, Elena

    2016-01-01

    Endometrial cancer (EC) is one of the most frequent causes of cancer death among women in developed countries. Histopathological diagnosis and imaging techniques for EC are limited, thus new prognostic markers are needed to offer patients the best treatment and follow-up. In the present paper we showed that the level of mitochondrial ribosomal protein MRPS18-2 (S18-2) increased in EC compared with the normal endometrium and hyperplasia, based on a study of 42 patient biopsies. Importantly, high expression of free E2F1 in EC correlates well with high S18-2 expression. The EC cell line HEC-1-A, which overexpresses S18-2 constitutively, showed an increased proliferation capacity in vitro and in vivo (in SCID mice). Moreover, pan-keratin, beta-catenin and E-cadherin signals are diminished in these cells, compared to the parental HEC-1-A line, in contrast to vimentin signal that is increased. This may be associated with epithelial-mesenchymal cell transition (EMT). We conclude that high expression of S18-2 and free E2F1, and low pan-keratin, beta-catenin, and E-cadherin signals might be a good set of prognostic markers for EC. PMID:26959119

  1. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans.

    PubMed

    Biggar, Kyle K; Storey, Kenneth B

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans . Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G 1 arrest for the duration of stress survival.

  2. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans

    PubMed Central

    Biggar, Kyle K.

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans. Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G1 arrest for the duration of stress survival. PMID:29770276

  3. Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease.

    PubMed

    Diao, Hongyu; Li, Xinxing; Hu, Sheng; Liu, Yunhui

    2012-01-01

    Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF, E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result.

  4. Gene Expression Profiling Combined with Bioinformatics Analysis Identify Biomarkers for Parkinson Disease

    PubMed Central

    Diao, Hongyu; Li, Xinxing; Hu, Sheng; Liu, Yunhui

    2012-01-01

    Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF, E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result. PMID:23284986

  5. The Caenorhabditis elegans vulva: A post-embryonic gene regulatory network controlling organogenesis

    PubMed Central

    Ririe, Ted O.; Fernandes, Jolene S.; Sternberg, Paul W.

    2008-01-01

    The Caenorhabditis elegans vulva is an elegant model for dissecting a gene regulatory network (GRN) that directs postembryonic organogenesis. The mature vulva comprises seven cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), each with its own unique pattern of spatial and temporal gene expression. The mechanisms that specify these cell types in a precise spatial pattern are not well understood. Using reverse genetic screens, we identified novel components of the vulval GRN, including nhr-113 in vulA. Several transcription factors (lin-11, lin-29, cog-1, egl-38, and nhr-67) interact with each other and act in concert to regulate target gene expression in the diverse vulval cell types. For example, egl-38 (Pax2/5/8) stabilizes the vulF fate by positively regulating vulF characteristics and by inhibiting characteristics associated with the neighboring vulE cells. nhr-67 and egl-38 regulate cog-1, helping restrict its expression to vulE. Computational approaches have been successfully used to identify functional cis-regulatory motifs in the zmp-1 (zinc metalloproteinase) promoter. These results provide an overview of the regulatory network architecture for each vulval cell type. PMID:19104047

  6. Origin of field-induced discontinuous phase transitions in N d2F e17

    NASA Astrophysics Data System (ADS)

    Diop, L. V. B.; Kuz'min, M. D.; Skokov, K. P.; Skourski, Y.; Gutfleisch, O.

    2018-02-01

    Magnetic properties of a trigonal ferromagnet N d2F e17 have been studied on single crystals in steady (14 T) and pulsed (32 T) magnetic fields. The easy-magnetization direction lies close to the [120] axis, deviating from the basal plane by 2 .9∘ (at T =5 K ). Of particular interest is the low-temperature magnetization process along the high-symmetry axis [001], which is the hard direction. This process is discontinuous and involves two first-order phase transitions (FOMPs). One of them (at 20 T) is a symmetry FOMP similar to that observed in S m2F e17 . The second transition (at 10.4 T) is unusual: as the magnetization turns abruptly toward the applied field, it also changes its azimuthal orientation (the angle φ ) by 60∘. Both transitions can be reasonably accounted for by the presence of a significant sixth-order trigonal anisotropy term.

  7. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüning, Ansgar, E-mail: ansgar.bruening@med.uni-muenchen.de; Matsingou, Christina; Brem, German Johannes

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir.more » Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.« less

  8. F-111E IPCS in flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This NASA Dryden Flight Research Center photograph taken in 1975 shows the General Dynamic IPCS/F-111E Aardvark with a camouflage paint pattern. This prototype F-111E was used during the flight testing of the Integrated Propulsion Control System (IPCS). The wings of the IPCS/F-111E are swept back to near 60 degrees for supersonic flight. During the same period as F-111 TACT program, an F-111E Aardvark (#67-0115) was flown at the NASA Flight Research Center to investigate an electronic versus a conventional hydro-mechanical controlled engine. The program called integrated propulsion control system (IPCS) was a joint effort by NASA's Lewis Research Center and Flight Research Center, the Air Force's Flight Propulsion Laboratory and the Boeing, Honeywell and Pratt & Whitney companies. The left engine of the F-111E was selected for modification to an all electronic system. A Pratt & Whitney TF30-P-9 engine was modified and extensively laboratory, and ground-tested before installation into the F-111E. There were 14 IPCS flights made from 1975 through 1976. The flight demonstration program proved an engine could be controlled electronically, leading to a more efficient Digital Electronic Engine Control System flown in the F-15.

  9. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens. © 2015 Society for Conservation Biology.

  10. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses.

    PubMed

    Yang, Zhimin; Chen, Yu; Hu, Baoyun; Tan, Zhiqun; Huang, Bingru

    2015-01-01

    Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.

  11. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia.

    PubMed

    Ji, Liying; Qian, Mengyao; Wu, Nana; Wu, Jianmin

    2017-03-01

    The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×10 9 /l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR.

  12. miR-92a family and their target genes in tumorigenesis and metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Molin, E-mail: molin_li@hotmail.com; Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044; Guan, Xingfang

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed inmore » many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.« less

  13. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  14. Bacteriophage-derived vectors for targeted cancer gene therapy.

    PubMed

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-19

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration.

  15. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    PubMed

    Hanning, Jennifer E; Groves, Ian J; Pett, Mark R; Coleman, Nicholas

    2013-05-21

    Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.

  16. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR

    PubMed Central

    2013-01-01

    Background Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. Findings We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. Conclusions These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects. PMID:23693071

  17. F1 -ATP synthase α-subunit: a potential target for RNAi-mediated pest management of Locusta migratoria manilensis.

    PubMed

    Hu, Jun; Xia, Yuxian

    2016-07-01

    The migratory locust is one of the most destructive agricultural pests worldwide. ATP synthase (F0 F1 -ATPase) uses proton or sodium motive force to produce 90% of the cellular ATP, and the α-subunit of F1 -ATP synthase (ATP5A) is vital for F1 -ATP synthase. Here, we tested whether ATP5A could be a potential target for RNAi-mediated pest management of L. migratoria. Lm-ATP5A was cloned and characterised. Lm-ATP5A is expressed in all tissues. Injection of 100 ng of the double-stranded RNA of ATP5A (dsATP5A) knocked down the transcription of the target gene and caused mortality in 1.5-5 days. The Lm-ATP5A protein level, the oligomycin-sensitive ATP synthetic and hydrolytic activities and the ATP content were correspondingly reduced following dsATP5A injection. These findings demonstrated the essential roles of Lm-ATP5A in L. migratoria and identified it as a potential target for insect pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. EGFR-targeted nonviral NIS gene transfer for bioimaging and therapy of disseminated colon cancer metastases

    PubMed Central

    Urnauer, Sarah; Müller, Andrea M.; Schug, Christina; Schmohl, Kathrin A.; Tutter, Mariella; Schwenk, Nathalie; Rödl, Wolfgang; Morys, Stephan; Ingrisch, Michael; Bertram, Jens; Bartenstein, Peter; Clevert, Dirk-André; Wagner, Ernst; Spitzweg, Christine

    2017-01-01

    Liver metastases present a serious problem in the therapy of advanced colorectal cancer (CRC), as more than 20% of patients have distant metastases at the time of diagnosis with less than 5% being cured. Consequently, new therapeutic approaches are of major need together with high-resolution imaging methods that allow highly specific detection of small metastases. The unique combination of reporter and therapy gene function of the sodium iodide symporter (NIS) may represent a promising theranostic strategy for CRC liver metastases allowing non-invasive imaging of functional NIS expression and therapeutic application of 131I. For targeted NIS gene transfer polymers containing linear polyethylenimine (LPEI), polyethylene glycol (PEG) and the epidermal growth factor receptor (EGFR)-specific ligand GE11 were complexed with human NIS DNA (LPEI-PEG-GE11/NIS). Tumor specificity and transduction efficiency were examined in high EGFR-expressing LS174T metastases by non-invasive imaging using 18F-tetrafluoroborate (18F-TFB) as novel NIS PET tracer. Mice that were injected with LPEI-PEG-GE11/NIS 48 h before 18F-TFB application showed high tumoral levels (4.8±0.6% of injected dose) of NIS-mediated radionuclide uptake in comparison to low levels detected in mice that received untargeted control polyplexes. Three cycles of intravenous injection of EGFR-targeted NIS polyplexes followed by therapeutic application of 55.5 MBq 131I resulted in marked delay in metastases spread, which was associated with improved animal survival. In conclusion, these preclinical data confirm the enormous potential of EGFR-targeted synthetic polymers for systemic NIS gene delivery in an advanced multifocal CRC liver metastases model and open the exciting prospect of NIS-mediated radionuclide therapy in metastatic disease. PMID:29190908

  19. Prostaglandin E(2) synthase inhibition as a therapeutic target.

    PubMed

    Iyer, Jitesh P; Srivastava, Punit K; Dev, Rishabh; Dastidar, Sunanda G; Ray, Abhijit

    2009-07-01

    Most NSAIDs function by inhibiting biosynthesis of PGE(2) by inhibition of COX-1 and/or COX-2. Since COX-1 has a protective function in the gastro-intestinal tract (GIT), non-selective inhibition of both cycloxy genases leads to moderate to severe gastro-intestinal intolerance. Attempts to identify selective inhibitors of COX-2, led to the identification of celecoxib and rofecoxib. However, long-term use of these drugs has serious adverse effects of sudden myocardial infarction and thrombosis. Drug-mediated imbalance in the levels of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) with a bias towards TXA(2) may be the primary reason for these events. This resulted in the drugs being withdrawn from the market, leaving a need for an effective and safe anti-inflammatory drug. Recently, the focus of research has shifted to enzymes downstream of COX in the prosta glandin biosynthetic pathway such as prostaglandin E(2) synthases. Microsomal prostaglandin E(2) synthase-1 (mPGES-1) specifically isomerizes PGH(2) to PGE(2), under inflammatory conditions. In this review, we examine the biology of mPGES-1 and its role in disease. Progress in designing molecules that can selectively inhibit mPGES-1 is reviewed. mPGES-1 has the potential to be a target for anti-inflammatory therapy, devoid of adverse GIT and cardiac effects and warrants further investigation.

  20. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.

    PubMed

    Sawado, T; Igarashi, K; Groudine, M

    2001-08-28

    The mouse beta-globin gene locus control region (LCR), located upstream of the beta-globin gene cluster, is essential for the activated transcription of genes in the cluster. The LCR contains multiple binding sites for transactivators, including Maf-recognition elements (MAREs). However, little is known about the specific proteins that bind to these sites or the time at which they bind during erythroid differentiation. We have performed chromatin immunoprecipitation experiments to determine the recruitment of the erythroid-specific transactivator p45 NF-E2/MafK (p18 NF-E2) heterodimer and small Maf proteins to various regions in the globin gene locus before and after the induction of murine erythroleukemia (MEL) cell differentiation. We report that, before induction, the LCR is occupied by small Maf proteins, and, on erythroid maturation, the NF-E2 complex is recruited to the LCR and the active globin promoters, even though the promoters do not contain MAREs. This differentiation-coupled recruitment of NF-E2 complex correlates with a greater than 100-fold increase in beta-major globin transcription, but is not associated with a significant change in locus-wide histone H3 acetylation. These findings suggest that the beta-globin gene locus exists in a constitutively open chromatin conformation before terminal differentiation, and we speculate that recruitment of NF-E2 complex to the LCR and active promoters may be a rate-limiting step in the activation of beta-globin gene expression.

  1. HABP2 p.G534E variant in patients with family history of thyroid and breast cancer

    PubMed Central

    Pinheiro, Maisa; Drigo, Sandra Aparecida; Tonhosolo, Renata; Andrade, Sonia C.S.; Marchi, Fabio Albuquerque; Jurisica, Igor; Kowalski, Luiz Paulo; Achatz, Maria Isabel; Rogatto, Silvia Regina

    2017-01-01

    Familial Papillary Thyroid Carcinoma (PTC) has been described as a hereditary predisposition cancer syndrome associated with mutations in candidate genes including HABP2. Two of 20 probands from families with history of PTC and breast carcinoma (BC) were evaluated by whole exome sequencing (WES) revealing HABP2 p.G534E. Sanger sequencing was used to confirm the involvement of this variant in three families (F1: 7 relatives; F2: 3 and F3: 3). The proband and his sister (with no malignant tumor so far) from F1 were homozygous for the variant whereas one relative with PTC from F2 was negative for the variant. Although the proband of the F3 with PTC was HABP2 wild type, three relatives presented the variant. Five of 170 healthy Brazilian individuals with no family history of BC or PTC and three of 50 sporadic PTC presented the p.G534E. These findings suggested no association of this variant with our familial PTC cases. Genes potentially associated with deregulation of the extracellular matrix organization pathway (CTSB, TNXB, COL4A3, COL16A1, COL24A1, COL5A2, NID1, LOXL2, MMP11, TRIM24 and MUSK) and DNA repair function (NBN and MSH2) were detected by WES, suggesting that other cancer-associated genes have pathogenic effects in the risk of familial PTC development. PMID:28402931

  2. Real-time imaging of Huntingtin aggregates diverting target search and gene transcription

    PubMed Central

    Li, Li; Liu, Hui; Dong, Peng; Li, Dong; Legant, Wesley R; Grimm, Jonathan B; Lavis, Luke D; Betzig, Eric; Tjian, Robert; Liu, Zhe

    2016-01-01

    The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells – 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells. DOI: http://dx.doi.org/10.7554/eLife.17056.001 PMID:27484239

  3. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    PubMed

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  4. Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family Members Critical for Normal Development.

    PubMed

    Litholdo, Celso G; Parker, Benjamin L; Eamens, Andrew L; Larsen, Martin R; Cordwell, Stuart J; Waterhouse, Peter M

    2016-06-01

    Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family Members Critical for Normal Development*

    PubMed Central

    Litholdo, Celso G.; Parker, Benjamin L.; Eamens, Andrew L.; Larsen, Martin R.; Cordwell, Stuart J.; Waterhouse, Peter M.

    2016-01-01

    Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development. PMID:27067051

  6. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Kazuo; Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggestmore » its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were

  7. Image-aided Suicide Gene Therapy Utilizing Multifunctional hTERT-targeting Adenovirus for Clinical Translation in Hepatocellular Carcinoma.

    PubMed

    Kim, Yun-Hee; Kim, Kyung Tae; Lee, Sang-Jin; Hong, Seung-Hee; Moon, Ju Young; Yoon, Eun Kyung; Kim, Sukyoung; Kim, Eun Ok; Kang, Se Hun; Kim, Seok Ki; Choi, Sun Il; Goh, Sung Ho; Kim, Daehong; Lee, Seong-Wook; Ju, Mi Ha; Jeong, Jin Sook; Kim, In-Hoo

    2016-01-01

    Trans-splicing ribozyme enables to sense and reprogram target RNA into therapeutic transgene and thereby becomes a good sensing device for detection of cancer cells, judging from transgene expression. Previously we proposed PEPCK-Rz-HSVtk (PRT), hTERT targeting trans-splicing ribozyme (Rz) driven by liver-specific promoter phosphoenolpyruvate carboxykinase (PEPCK) with downstream suicide gene, herpes simplex virus thymidine kinase (HSVtk) for hepatocellular carcinoma (HCC) gene therapy. Here, we describe success of a re-engineered adenoviral vector harboring PRT in obtaining greater antitumor activity with less off-target effect for clinical application as a theranostics. We introduced liver-selective apolipoprotein E (ApoE) enhancer to the distal region of PRT unit to augment activity and liver selectivity of PEPCK promoter, and achieved better transduction into liver cancer cells by replacement of serotype 35 fiber knob on additional E4orf1-4 deletion of E1&E3-deleted serotype 5 back bone. We demonstrated that our refined adenovirus harboring PEPCK/ApoE-Rz-HSVtk (Ad-PRT-E) achieved great anti-tumor efficacy and improved ability to specifically target HCC without damaging normal hepatocytes. We also showed noninvasive imaging modalities were successfully employed to monitor both how well a therapeutic gene (HSVtk) was expressed inside tumor and how effectively a gene therapy took an action in terms of tumor growth. Collectively, this study suggests that the advanced therapeutic adenoviruses Ad-PRT-E and its image-aided evaluation system may lead to the powerful strategy for successful clinical translation and the development of clinical protocols for HCC therapy.

  8. Targeted exome sequencing reveals novel USH2A mutations in Chinese patients with simplex Usher syndrome.

    PubMed

    Shu, Hai-Rong; Bi, Huai; Pan, Yang-Chun; Xu, Hang-Yu; Song, Jian-Xin; Hu, Jie

    2015-09-16

    Usher syndrome (USH) is an autosomal recessive disorder characterized by hearing impairment and vision dysfunction due to retinitis pigmentosa. Phenotypic and genetic heterogeneities of this disease make it impractical to obtain a genetic diagnosis by conventional Sanger sequencing. In this study, we applied a next-generation sequencing approach to detect genetic abnormalities in patients with USH. Two unrelated Chinese families were recruited, consisting of two USH afflicted patients and four unaffected relatives. We selected 199 genes related to inherited retinal diseases as targets for deep exome sequencing. Through systematic data analysis using an established bioinformatics pipeline, all variants that passed filter criteria were validated by Sanger sequencing and co-segregation analysis. A homozygous frameshift mutation (c.4382delA, p.T1462Lfs*2) was revealed in exon20 of gene USH2A in the F1 family. Two compound heterozygous mutations, IVS47 + 1G > A and c.13156A > T (p.I4386F), located in intron 48 and exon 63 respectively, of USH2A, were identified as causative mutations for the F2 family. Of note, the missense mutation c.13156A > T has not been reported so far. In conclusion, targeted exome sequencing precisely and rapidly identified the genetic defects in two Chinese USH families and this technique can be applied as a routine examination for these disorders with significant clinical and genetic heterogeneity.

  9. Tumor-targeted IL-2 amplifies T cell-mediated immune response induced by gene therapy with single-chain IL-12

    PubMed Central

    Lode, Holger N.; Xiang, Rong; Duncan, Steven R.; Theofilopoulos, Argyrios N.; Gillies, Stephen D.; Reisfeld, Ralph A.

    1999-01-01

    Induction, maintenance, and amplification of tumor-protective immunity after cytokine gene therapy is essential for the clinical success of immunotherapeutic approaches. We investigated whether this could be achieved by single-chain IL-12 (scIL-12) gene therapy followed by tumor-targeted IL-2 using a fusion protein containing a tumor-specific recombinant anti-ganglioside GD2 antibody and IL-2 (ch14.18-IL-2) in a poorly immunogenic murine neuroblastoma model. Herein, we demonstrate the absence of liver and bone marrow metastases after a lethal challenge with NXS2 wild-type cells only in mice (five of six animals) vaccinated with scIL-12-producing NXS2 cells and given a booster injection of low-dose ch14.18-IL-2 fusion protein. This tumor-protective immunity was effective 3 months after initial vaccination, in contrast to control animals treated with a nonspecific fusion protein or an equivalent mixture of antibody and IL-2. Only vaccinated mice receiving the tumor-specific ch14.18-IL-2 fusion protein revealed a reactivation of CD8+ T cells and subsequent MHC class I-restricted tumor target cell lysis in vitro. The sequential increase in the usage of TCR chains Vβ11 and -13 in mouse CD8+ T cells after vaccination and amplification with ch14.18-IL-2 suggests that the initial polyclonal CD8+ T cell response is effectively boosted by targeted IL-2. In conclusion, we demonstrate that a successful boost of a partially protective memory T cell immune response that is induced by scIL-12 gene therapy could be generated by tumor-specific targeting of IL-2 with a ch14.18-IL-2 fusion protein. This approach could increase success rates of clinical cancer vaccine trials. PMID:10411920

  10. Spread-F occurrences and relationships with foF2 and h'F at low- and mid-latitudes in China

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Guo, Lixin; Zhao, Zhenwei; Ding, Zonghua; Lin, Leke

    2018-04-01

    Ionospheric irregularities are an important phenomenon in scientific studies and applications of radio-wave propagation. Spread-F echoes in ionograms are a type of high-frequency band irregularities that include frequency spread-F (FSF), range spread-F (RSF), and mixed spread-F (MSF) events. In this study, we obtained spread-F data from four ionosondes at low- and mid-latitudes near the 120°E chain in China during the 23rd solar cycle. We used these data to investigate spread-F occurrence percentages and variations with local time, season, latitude, and solar activity. The four ionosondes were located at Haikou (HK) (20°N, 110.34°E), Guangzhou (GZ) (23.14°N, 113.36°E), Beijing (BJ) (40.11°N, 116.28°E), and Changchun (CC) (43.84°N, 125.28°E). We also present possible correlations between spread-Fs and other ionospheric parameters, such as the critical frequency of the F2-layer (foF2) and the virtual height of the bottom-side F-layer (h'F). In particular, we investigated the possible threshold of the foF2 affecting the FSF and the relationship between the h'F and the RSF. The main conclusions are as follows: (a) the FSF occurrence percentages were anti-correlated with solar activity at all four sites; meanwhile, RSF occurrence rates increased with the increase in solar activity at HK, but not at the other three sites; (b) FSF occurrence rates were larger at the mid-latitudes than expected, while FSFs occurred more often after midnight; (c) the highest FSF occurrence rates mostly appeared during the summer months, while RSFs occurred mostly in the equinoctial months of 2000-2002 at HK and GZ; (d) a lower foF2 was suitable for FSF events; nevertheless, h'F and RSF occurrences satisfied the parabolic relationship; (e) the foF2 thresholds for FSFs were 15, 14, 7.6, and 7.8 MHz at HK, GZ, BJ, and CC, respectively. The h'Fs occurring between 240 and 290 km were more favorable for RSF occurrences. These results are important for understanding ionospheric

  11. The combined effects of temperature and CO2 lead to altered gene expression in Acropora aspera

    NASA Astrophysics Data System (ADS)

    Ogawa, D.; Bobeszko, T.; Ainsworth, T.; Leggat, W.

    2013-12-01

    This study explored the interactive effects of near-term CO2 increases (40-90 ppm above current ambient) during a simulated bleaching event (34 °C for 5 d) of Acropora aspera by linking physiology to expression patterns of genes involved in carbon metabolism. Symbiodinium photosynthetic efficiency ( F v / F m ) was significantly depressed by the bleaching event, while elevated pressure of CO2 (pCO2) slightly mitigated the effects of increased temperature on F v / F m during the final 4 d of the recovery period, however, did not affect the loss of symbionts. Elevated pCO2 alone had no effect on F v / F m or symbiont density. Expression of targeted Symbiodinium genes involved in carbon metabolism and heat stress response was not significantly altered by either increased temperature and/or CO2. Of the selected host genes, two carbonic anhydrase isoforms (coCA2 and coCA3) exhibited the largest changes, most notably in crossed bleaching and elevated pCO2 treatments. CA2 was significantly down-regulated on day 14 in all treatments, with the greatest decrease in the crossed treatment (relative expression compared to control = 0.16; p < 0.05); CA3 showed a similar trend, with expression levels 0.20-fold of controls on day 14 ( p < 0.05) in the elevated temperature/pCO2 treatment. The synergistic effects of ocean acidification and bleaching were evident during this study and demonstrate that increased pCO2 in surface waters will impact corals much sooner than many studies utilising end-of-century pCO2 concentrations would indicate.

  12. Non-synonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to zucchini yellow mosaic virus.

    PubMed

    Ling, Kai-Shu; Harris, Karen R; Meyer, Jenelle D F; Levi, Amnon; Guner, Nihat; Wehner, Todd C; Bendahmane, Abdelhafid; Havey, Michael J

    2009-12-01

    Zucchini yellow mosaic virus (ZYMV) is one of the most economically important potyviruses infecting cucurbit crops worldwide. Using a candidate gene approach, we cloned and sequenced eIF4E and eIF(iso)4E gene segments in watermelon. Analysis of the nucleotide sequences between the ZYMV-resistant watermelon plant introduction PI 595203 (Citrullus lanatus var. lanatus) and the ZYMV-susceptible watermelon cultivar 'New Hampshire Midget' ('NHM') showed the presence of single nucleotide polymorphisms (SNPs). Initial analysis of the identified SNPs in association studies indicated that SNPs in the eIF4E, but not eIF(iso)4E, were closely associated to the phenotype of ZYMV-resistance in 70 F(2) and 114 BC(1R) progenies. Subsequently, we focused our efforts in obtaining the entire genomic sequence of watermelon eIF4E. Three SNPs were identified between PI 595203 and NHM. One of the SNPs (A241C) was in exon 1 and the other two SNPs (C309A and T554G) were in the first intron of the gene. SNP241 which resulted in an amino acid substitution (proline to threonine) was shown to be located in the critical cap recognition and binding area, similar to that of several plant species resistance to potyviruses. Analysis of a cleaved amplified polymorphism sequence (CAPS) marker derived from this SNP in F(2) and BC(1R) populations demonstrated a cosegregation between the CAPS-2 marker and their ZYMV resistance or susceptibility phenotype. When we investigated whether such SNP mutation in the eIF4E was also conserved in several other PIs of C. lanatus var. citroides, we identified a different SNP (A171G) resulting in another amino acid substitution (D71G) from four ZYMV-resistant C. lanatus var. citroides (PI 244018, PI 482261, PI 482299, and PI 482322). Additional CAPS markers were also identified. Availability of all these CAPS markers will enable marker-aided breeding of watermelon for ZYMV resistance.

  13. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.

    PubMed

    Pasquier, Florence; Cabagnols, Xenia; Secardin, Lise; Plo, Isabelle; Vainchenker, William

    2014-09-01

    The discovery of the JAK2V617F mutation followed by the discovery of other genetic abnormalities allowed important progress in the understanding of the pathogenesis and management of myeloproliferative neoplasms (MPN)s. Classical Breakpoint cluster region-Abelson (BCR-ABL)-negative neoplasms include 3 main disorders: essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). Genomic studies have shown that these disorders are more heterogeneous than previously thought with 3 main entities corresponding to different gene mutations: the JAK2 disorder, essentially due to JAK2V617F mutation, which includes nearly all PVs and a majority of ETs and PMFs with a continuum between these diseases and the myeloproliferative leukemia (MPL) and calreticulin (CALR) disorders, which include a fraction of ET and PMF. All of these mutations lead to a JAK2 constitutive activation. Murine models either with JAK2V617F or MPLW515L, but also with JAK2 or MPL germ line mutations found in hereditary thrombocytosis, have demonstrated that they are drivers of myeloproliferation. However, the myeloproliferative driver mutation is still unknown in approximately 15% of ET and PMF, but appears to also target the JAK/Signal Transducer and Activator of Transcription (STAT) pathway. However, other mutations in genes involved in epigenetics or splicing also can be present and can predate or follow mutations in signaling. They are involved either in clonal dominance or in phenotypic changes, more particularly in PMF. They can be associated with leukemic progression and might have an important prognostic value such as additional sex comb-like 1 mutations. Despite this heterogeneity, it is tempting to target JAK2 and its signaling for therapy. However in PMF, Adenosine Tri-Phosphate (ATP)-competitive JAK2 inhibitors have shown their interest, but also their important limitations. Thus, other approaches are required, which are discussed in this review. Copyright © 2014

  14. UBE2QL1 is Disrupted by a Constitutional Translocation Associated with Renal Tumor Predisposition and is a Novel Candidate Renal Tumor Suppressor Gene

    PubMed Central

    Wake, Naomi C; Ricketts, Christopher J; Morris, Mark R; Prigmore, Elena; Gribble, Susan M; Skytte, Anne-Bine; Brown, Michael; Clarke, Noel; Banks, Rosamonde E; Hodgson, Shirley; Turnell, Andrew S; Maher, Eamonn R; Woodward, Emma R

    2013-01-01

    Investigation of rare familial forms of renal cell carcinoma (RCC) has led to the identification of genes such as VHL and MET that are also implicated in the pathogenesis of sporadic RCC. In order to identify a novel candidate renal tumor suppressor gene, we characterized the breakpoints of a constitutional balanced translocation, t(5;19)(p15.3;q12), associated with familial RCC and found that a previously uncharacterized gene UBE2QL1 was disrupted by the chromosome 5 breakpoint. UBE2QL1 mRNA expression was downregulated in 78.6% of sporadic RCC and, although no intragenic mutations were detected, gene deletions and promoter region hypermethylation were detected in 17.3% and 20.3%, respectively, of sporadic RCC. Reexpression of UBE2QL1 in a deficient RCC cell line suppressed anchorage-independent growth. UBE2QL1 shows homology to the E2 class of ubiquitin conjugating enzymes and we found that (1) UBE2QL1 possesses an active-site cysteine (C88) that is monoubiquitinated in vivo, and (2) UBE2QL1 interacts with FBXW7 (an F box protein providing substrate recognition to the SCF E3 ubiquitin ligase) and facilitates the degradation of the known FBXW7 targets, CCNE1 and mTOR. These findings suggest UBE2QL1 as a novel candidate renal tumor suppressor gene. PMID:24000165

  15. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.

    PubMed

    Byrne, Susan M; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M

    2015-02-18

    Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient 'knock-in' targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. A cultivation-independent PCR-RFLP assay targeting oprF gene for detection and identification of Pseudomonas spp. in samples from fibrocystic pediatric patients.

    PubMed

    Lagares, Antonio; Agaras, Betina; Bettiol, Marisa P; Gatti, Blanca M; Valverde, Claudio

    2015-07-01

    Species-specific genetic markers are crucial to develop faithful and sensitive molecular methods for the detection and identification of Pseudomonas aeruginosa (Pa). We have previously set up a PCR-RFLP protocol targeting oprF, the gene encoding the genus-specific outer membrane porin F, whose strong conservation and marked sequence diversity allowed detection and differentiation of environmental isolates (Agaras et al., 2012). Here, we evaluated the ability of the PCR-RFLP assay to genotype clinical isolates previously identified as Pa by conventional microbiological methods within a collection of 62 presumptive Pa isolates from different pediatric clinical samples and different sections of the Hospital de Niños "Sor María Ludovica" from La Plata, Argentina. All isolates, but one, gave an oprF amplicon consistent with that from reference Pa strains. The sequence of the smaller-sized amplicon revealed that the isolate was in fact a mendocina Pseudomonas strain. The oprF RFLP pattern generated with TaqI or HaeIII nucleases matched those of reference Pa strains for 59 isolates (96%). The other two Pa isolates (4%) revealed a different RFLP pattern based on HaeIII digestion, although oprF sequencing confirmed that Pa identification was correct. We next tested the effectiveness of the PCR-RFLP to detect pseudomonads on clinical samples of pediatric fibrocystic patients directly without sample cultivation. The expected amplicon and its cognate RFLP profile were obtained for all samples in which Pa was previously detected by cultivation-dependent methods. Altogether, these results provide the basis for the application of the oprF PCR-RFLP protocol to directly detect and identify Pa and other non-Pa pseudomonads in fibrocystic clinical samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Generation of novel resistance genes using mutation and targeted gene editing.

    PubMed

    Gal-On, Amit; Fuchs, Marc; Gray, Stewart

    2017-10-01

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a 'dream technology' to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by disrupting host susceptibility genes, or by increasing the expression of viral resistance genes. However, precise targets must be identified and their roles understood to minimize potential negative effects on the plant. Nonetheless, the opportunities for genome editing are expanding, as are the technologies to generate effective and broad-spectrum resistance against plant viruses. Here we provide insights into recent progress related to gene targets and gene editing technologies. Published by Elsevier B.V.

  18. Isolation and expression analysis of FTZ-F1 encoding gene of black rock fish ( Sebastes schlegelii)

    NASA Astrophysics Data System (ADS)

    Shafi, Muhammad; Wang, Yanan; Zhou, Xiaosu; Ma, Liman; Muhammad, Faiz; Qi, Jie; Zhang, Quanqi

    2013-03-01

    Sex related FTZ-F1 is a transcriptional factor regulating the expression of fushi tarazu (a member of the orphan nuclear receptors) gene. In this study, FTZ-F1 gene ( FTZ-F1) was isolated from the testis of black rockfish ( Sebastes schlegeli) by homology cloning. The full-length cDNA of S. schlegeli FTZ-F1 ( ssFTZ-F1) contained a 232bp 5' UTR, a 1449bp ORF encoding FTZ-F1 (482 amino acid residules in length) with an estimated molecular weight of 5.4kD and a 105bp 3' UTR. Sequence, tissue distribution and phylogenic analysis showed that ssFTZ-F1 belonged to FTZ group, holding highly conserved regions including I, II and III FTZ-F1 boxes and an AF-2 hexamer. Relatively high expression was observed at different larva stages. In juveniles (105 days old), the transcript of ssFTZ-F1 can be detected in all tissues and the abuncance of the gene transcript in testis, ovary, spleen and brain was higher than that in other tissues. In mature fish, the abundance of gene transcript was higher in testis, ovary, spleen and brain than that in liver (trace amount), and the gene was not transcribed in other tissues. The highest abundance of gene transcript was always observed in gonads of both juvenile and mature fish. In addition, the abundance of gene transcript in male tissues were higher than that in female tissue counterparts ( P<0.05).

  19. Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa.

    PubMed

    Elamin, Ayssar A; Steinicke, Susanne; Oehlmann, Wulf; Braun, Yvonne; Wanas, Hanaa; Shuralev, Eduard A; Huck, Carmen; Maringer, Marko; Rohde, Manfred; Singh, Mahavir

    2017-01-01

    For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.

  20. Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2 β: identification of miR-153 target genes with functions related to IA-2β in pancreas and brain.

    PubMed

    Mandemakers, W; Abuhatzira, L; Xu, H; Caromile, L A; Hébert, S S; Snellinx, A; Morais, V A; Matta, S; Cai, T; Notkins, A L; De Strooper, B

    2013-07-01

    We analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function. A bioinformatics approach was used to identify miR-153's genomic organisation. To analyse the co-regulation of miR-153 and IA-2β, quantitative PCR analysis of miR-153 and Ia-2β (also known as Ptprn2) was performed after a glucose stimulation assay in MIN6B cells and isolated murine pancreatic islets, and also in wild-type Ia-2 (also known as Ptprn), Ia-2β single knockout and Ia-2/Ia-2β double knockout mouse brain and pancreatic islets. Bioinformatics identification of miR-153 target genes and validation via luciferase reporter assays, western blotting and quantitative PCR were also carried out. Two copies of miR-153, miR-153-1 and miR-153-2, are localised in intron 19 of Ia-2 and Ia-2β, respectively. In rodents, only miR-153-2 is conserved. We demonstrated that expression of miR-153-2 and Ia-2β in rodents is partially co-regulated as demonstrated by a strong reduction of miR-153 expression levels in Ia-2β knockout and Ia-2/Ia-2β double knockout mice. miR-153 levels were unaffected in Ia-2 knockout mice. In addition, glucose stimulation, which increases Ia-2 and Ia-2β expression, also significantly increased expression of miR-153. Several predicted targets of miR-153 were reduced after glucose stimulation in vitro, correlating with the increase in miR-153 levels. This study suggests the involvement of miR-153, IA-2β and miR-153 target genes in a regulatory network, which is potentially relevant to insulin and neurotransmitter release.

  1. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    DOE PAGES

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; ...

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bontmore » gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ 70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.« less

  2. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab')2 and Fab fragments in nude mice with PSMA-expressing xenografts.

    PubMed

    Lütje, Susanne; van Rij, Catharina M; Franssen, Gerben M; Fracasso, Giulio; Helfrich, Wijnand; Eek, Annemarie; Oyen, Wim J; Colombatti, Marco; Boerman, Otto C

    2015-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab')2 and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing subcutaneous prostate cancer xenografts. The optimal time point for imaging was determined in biodistribution and microSPECT imaging studies with (111)In-D2B IgG, (111)In-capromab pendetide, (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments in mice with PSMA-expressing LNCaP and PSMA-negative PC3 tumors at several time points after injection. All (111)In-labeled antibody formats specifically accumulated in the LNCaP tumors, with highest uptake of (111)In-D2B IgG and (111)In-capromab pendetide at 168 h p.i. (94.8 ± 19.2% injected dose per gram (ID/g) and 16.7 ± 2.2% ID/g, respectively), whereas uptake of (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments peaked at 24 h p.i. (12.1 ± 3.0% ID/g and 15.1 ± 2.9% ID/g, respectively). Maximum LNCaP tumor-to-blood ratios were 13.0 ± 2.3 (168 h p.i.), 6.2 ± 0.7 (24 h p.i.), 23.0 ± 4.0 (24 h p.i.) and 4.5 ± 0.6 (168 h p.i.) for (111)In-D2B IgG, (111)In-F(ab')2, (111)In-Fab and (111)In-capromab pendetide, respectively. LNCaP tumors were clearly visualized with microSPECT with all antibody formats. This study demonstrates the feasibility of D2B IgG, F(ab')2 and Fab fragments for targeting PSMA-expressing prostate cancer xenografts. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Development of a Targeted anti-HER2 scFv Chimeric Peptide for Gene Delivery into HER2-Positive Breast Cancer Cells.

    PubMed

    Cheraghi, Roya; Nazari, Mahboobeh; Alipour, Mohsen; Majidi, Asia; Hosseinkhani, Saman

    2016-12-30

    Chimeric polymers are known as suitable carriers for gene delivery. Certain properties are critical for a polymer to be used as a gene delivery vector. A new polymer was designed for the targeted delivery of genes into breast cancer cell lines, based on MPG peptide. It is composed of different functional domains, including HIV gp41, nuclear localization sequence of SV40 T-antigen, two C-terminus repeats of histone H1, and the scFv of anti-HER2 antibody. The results demonstrated that the vector can effectively condense plasmid DNA into nanoparticles with an average size of 250nm. Moreover, fusion of the scFv portion to the carrier brought about the specific recognition of HER2. Overall, the transfection efficiency of the vector demonstrated that it could deliver the desired gene into BT-474 HER2-positive breast cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.

    PubMed

    Moreno, Ana M; Fu, Xin; Zhu, Jie; Katrekar, Dhruva; Shih, Yu-Ru V; Marlett, John; Cabotaje, Jessica; Tat, Jasmine; Naughton, John; Lisowski, Leszek; Varghese, Shyni; Zhang, Kang; Mali, Prashant

    2018-04-25

    Development of efficacious in vivo delivery platforms for CRISPR-Cas9-based epigenome engineering will be critical to enable the ability to target human diseases without permanent modification of the genome. Toward this, we utilized split-Cas9 systems to develop a modular adeno-associated viral (AAV) vector platform for CRISPR-Cas9 delivery to enable the full spectrum of targeted in situ gene regulation functionalities, demonstrating robust transcriptional repression (up to 80%) and activation (up to 6-fold) of target genes in cell culture and mice. We also applied our platform for targeted in vivo gene-repression-mediated gene therapy for retinitis pigmentosa. Specifically, we engineered targeted repression of Nrl, a master regulator of rod photoreceptor determination, and demonstrated Nrl knockdown mediates in situ reprogramming of rod cells into cone-like cells that are resistant to retinitis pigmentosa-specific mutations, with concomitant prevention of secondary cone loss. Furthermore, we benchmarked our results from Nrl knockdown with those from in vivo Nrl knockout via gene editing. Taken together, our AAV-CRISPR-Cas9 platform for in vivo epigenome engineering enables a robust approach to target disease in a genomically scarless and potentially reversible manner. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  5. Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors.

    PubMed

    Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.

  6. Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors

    PubMed Central

    Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. PMID:22615585

  7. The role of LANP and ataxin 1 in E4F-mediated transcriptional repression

    PubMed Central

    Cvetanovic, Marija; Rooney, Robert J; Garcia, Jesus J; Toporovskaya, Nataliya; Zoghbi, Huda Y; Opal, Puneet

    2007-01-01

    The leucine-rich acidic nuclear protein (LANP) belongs to the INHAT family of corepressors that inhibits histone acetyltransferases. The mechanism by which LANP restricts its repression to specific genes is unknown. Here, we report that LANP forms a complex with transcriptional repressor E4F and modulates its activity. As LANP interacts with ataxin 1—a protein mutated in the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1)—we tested whether ataxin 1 can alter the E4F–LANP interaction. We show that ataxin 1 relieves the transcriptional repression induced by the LANP–E4F complex by competing with E4F for LANP. These results provide the first functional link, to our knowledge, between LANP and ataxin 1, and indicate a potential mechanism for the transcriptional aberrations observed in SCA1. PMID:17557114

  8. Recombination reactions of 5-eV O(3P) atoms on a MgF2 surface

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Murad, E.

    1990-01-01

    A source of hyperthermal, ground-state, impurity-free, atomic oxygen of an energy variable in the range 2-100 eV has been developed. Experimental results are presented of emission spectra in the wavelength range 250-850 nm produced by collisions of 5-eV O(3P) atoms with adsorbed NO and CO molecules on a MgF2 surface.

  9. Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts.

    PubMed

    Markopoulos, Georgios S; Roupakia, Eugenia; Tokamani, Maria; Vartholomatos, George; Tzavaras, Theodore; Hatziapostolou, Maria; Fackelmayer, Frank O; Sandaltzopoulos, Raphael; Polytarchou, Christos; Kolettas, Evangelos

    2017-10-01

    Senescence recapitulates the ageing process at the cell level. A senescent cell stops dividing and exits the cell cycle. MicroRNAs (miRNAs) acting as master regulators of transcription, have been implicated in senescence. In the current study we investigated and compared the expression of miRNAs in young versus senescent human fibroblasts (HDFs), and analysed the role of mRNAs expressed in replicative senescent HFL-1 HDFs. Cell cycle analysis confirmed that HDFs accumulated in G 1 /S cell cycle phase. Nanostring analysis of isolated miRNAs from young and senescent HFL-1 showed that a distinct set of 15 miRNAs were significantly up-regulated in senescent cells including hsa-let-7d-5p, hsa-let-7e-5p, hsa-miR-23a-3p, hsa-miR-34a-5p, hsa-miR-122-5p, hsa-miR-125a-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-503-5p, hsa-miR-574-3p, hsa-miR-574-5p and hsa-miR-4454. Importantly, pathway analysis of miRNA target genes down-regulated during replicative senescence in a public RNA-seq data set revealed a significant high number of genes regulating cell cycle progression, both G 1 /S and G 2 /M cell cycle phase transitions and telomere maintenance. The reduced expression of selected miRNA targets, upon replicative and oxidative-stress induced senescence, such as the cell cycle effectors E2F1, CcnE, Cdc6, CcnB1 and Cdc25C was verified at the protein and/or RNA levels. Induction of G1/S cell cycle phase arrest and down-regulation of cell cycle effectors correlated with the up-regulation of miR-221 upon both replicative and oxidative stress-induced senescence. Transient expression of miR-221/222 in HDFs promoted the accumulation of HDFs in G1/S cell cycle phase. We propose that miRNAs up-regulated during replicative senescence may act in concert to induce cell cycle phase arrest and telomere erosion, establishing a senescent phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dual HER2 targeting impedes growth of HER2 gene-amplified uterine serous carcinoma xenografts.

    PubMed

    Groeneweg, Jolijn W; Hernandez, Silvia F; Byron, Virginia F; DiGloria, Celeste M; Lopez, Hector; Scialabba, Vanessa; Kim, Minji; Zhang, Ling; Borger, Darrell R; Tambouret, Rosemary; Foster, Rosemary; Rueda, Bo R; Growdon, Whitfield B

    2014-12-15

    Uterine serous carcinoma (USC) is an aggressive subtype of endometrial cancer that commonly harbors HER2 gene amplification. We investigated the effectiveness of HER2 inhibition using lapatinib and trastuzumab in vitro and in xenografts derived from USC cell lines and USC patient-derived xenografts. Immunohistochemistry and FISH were performed to assess HER2 expression in 42 primary USC specimens. ARK1, ARK2, and SPEC2 cell lines were treated with trastuzumab or lapatinib. Cohorts of mice harboring xenografts derived from ARK2 and SPEC2 cell lines and EnCa1 and EnCa2 primary human USC samples were treated with either vehicle, trastuzumab, lapatinib, or the combination of trastuzumab and lapatinib. Acute and chronic posttreatment tumor samples were assessed for downstream signaling alterations and examined for apoptosis and proliferation. HER2 gene amplification (24%) correlated significantly with HER2 protein overexpression (55%). All models were impervious to single-agent trastuzumab treatment. Lapatinib decreased in vitro proliferation of all cell lines and in vivo growth of HER2-amplified xenografts (ARK2, EnCa1). In addition, dual therapy with trastuzumab and lapatinib resulted in significant antitumor activity only in ARK2 and EnCa1 tumors. Dual HER2 therapy induced on target alteration of downstream MAPK and PI3K pathway mediators only in HER2-amplified models, and was associated with increased apoptosis and decreased proliferation. Although trastuzumab alone did not impact USC growth, dual anti-HER2 therapy with lapatinib led to improved inhibition of tumor growth in HER2-amplified USC and may be a promising avenue for future investigation. ©2014 American Association for Cancer Research.

  11. Problem-Solving Test: Targeted Gene Disruption

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  12. Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma.

    PubMed

    Gu, De-Leung; Chen, Yen-Hsieh; Shih, Jou-Ho; Lin, Chi-Hung; Jou, Yuh-Shan; Chen, Chian-Feng

    2013-12-21

    High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.

  13. A novel mechanism for Bcr-Abl action: Bcr-Abl-mediated induction of the eIF4F translation initiation complex and mRNA translation.

    PubMed

    Prabhu, S; Saadat, D; Zhang, M; Halbur, L; Fruehauf, J P; Ong, S T

    2007-02-22

    The oncogenic kinase Bcr-Abl is thought to cause chronic myelogenous leukemia (CML) by altering the transcription of specific genes with growth- and survival-promoting functions. Recently, Bcr-Abl has also been shown to activate an important regulator of protein synthesis, the mammalian target of rapamycin (mTOR), which suggests that dysregulated translation may also contribute to CML pathogenesis. In this study, we found that both Bcr-Abl and the rapamycin-sensitive mTORC1 complex contribute to the phosphorylation (inactivation) of 4E-BP1, an inhibitor of the eIF4E translation initiation factor. Experiments with rapamycin and the Bcr-Abl inhibitor, imatinib mesylate, in Bcr-Abl-expressing cell lines and primary CML cells indicated that Bcr-Abl and mTORC1 induced formation of the translation initiation complex, eIF4F. This was characterized by reduced 4E-BP1 binding and increased eIF4G binding to eIF4E, two events that lead to the assembly of eIF4F. One target transcript is cyclin D3, which is regulated in Bcr-Abl-expressing cells by both Bcr-Abl and mTORC1 in a translational manner. In addition, the combination of imatinib and rapamycin was found to act synergistically against committed CML progenitors from chronic and blast phase patients. These experiments establish a novel mechanism of action for Bcr-Abl, and they provide insights into the modes of action of imatinib mesylate and rapamycin in treatment of CML. They also suggest that aberrant cap-dependent mRNA translation may be a therapeutic target in Bcr-Abl-driven malignancies.

  14. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia

    PubMed Central

    Ji, Liying; Qian, Mengyao; Wu, Nana; Wu, Jianmin

    2017-01-01

    The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×109/l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR. PMID:28450924

  15. Specific c-Jun target genes in malignant melanoma.

    PubMed

    Schummer, Patrick; Kuphal, Silke; Vardimon, Lily; Bosserhoff, Anja K; Kappelmann, Melanie

    2016-05-03

    A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.

  16. Identification of verotoxin type 2 variant B subunit genes in Escherichia coli by the polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed Central

    Tyler, S D; Johnson, W M; Lior, H; Wang, G; Rozee, K R

    1991-01-01

    A set of synthetic oligonucleotide primers was designed for use in a polymerase chain reaction protocol to specifically detect the B subunit genes in vtx2ha and vtx2hb, which code for the production of the VT2 (Shiga-like toxin II) variant cytotoxins VT2v-a and VT2v-b, respectively. An additional set of primers amplified a fragment common to the B subunits of the VT2 and the VT2 variant genes. Subsequent restriction endonuclease digestion of this amplicon permitted prediction of specific VT2 and variant genotypes on the basis of predetermined restriction fragment length polymorphisms. Genotypes of 21 VT2-producing strains of Escherichia coli were determined using this polymerase chain reaction-restriction fragment length polymorphism procedure. Four strains contained B subunit target sequences only for VT2 genes, 9 strains contained sequences only for VT2v-a genes, and 3 strains contained sequences only for VT2v-b. For genes in combination, one strain contained B subunit genes for both VT2 and VT2v-a and two strains contained B subunit genes for VT2 and VT2v-b. Two strains of E. coli O91:H21 contained both VT2v-a and VT2v-b B subunit genes. The VT2 reference strain of E. coli, E32511, was found to contain the targeted sequences from both VT2 and VT2v-a genes, whereas the recombinant E. coli, pEB1, possessed only that of the VT2 gene. The specific activities of extracellular VT2 determined in HeLa cells ranged from 0.3 to 41.7 TCD50 per microgram of protein in strains carrying the VT2 gene target and from 0 to 50.0 TCD50 per microgram of protein in strains carrying only the VT2 variant target (TCD50 is the tissue culture dose by which 50% of the cells were affected), suggesting that phenotypic expression does not correlate with genotype. Images PMID:1679436

  17. Vero/BC-F: an efficient packaging cell line stably expressing F protein to generate single round-infectious human parainfluenza virus type 2 vector.

    PubMed

    Ohtsuka, J; Fukumura, M; Tsurudome, M; Hara, K; Nishio, M; Kawano, M; Nosaka, T

    2014-08-01

    A stable packaging cell line (Vero/BC-F) constitutively expressing fusion (F) protein of the human parainfluenza virus type 2 (hPIV2) was established for production of the F-defective and single round-infectious hPIV2 vector in a strategy for recombinant vaccine development. The F gene expression has not evoked cytostatic or cytotoxic effects on the Vero/BC-F cells and the F protein was physiologically active to induce syncytial formation with giant polykaryocytes when transfected with a plasmid expressing hPIV2 hemagglutinin-neuraminidase (HN). Transduction of the F-defective replicon RNA into the Vero/BC-F cells led to the release of the infectious particles that packaged the replicon RNA (named as hPIV2ΔF) without detectable mutations, limiting the infectivity to a single round. The maximal titer of the hPIV2ΔF was 6.0 × 10(8) median tissue culture infections dose per ml. The influenza A virus M2 gene was inserted into hPIV2ΔF, and the M2 protein was found to be highly expressed in a human lung cancer cell line after transduction. Furthermore, in vivo airway infection experiments revealed that the hPIV2ΔF was capable of delivering transgenes to hamster tracheal cells. Thus, non-transmissible or single round-infectious hPIV2 vector will be potentially applicable to human gene therapy or recombinant vaccine development.

  18. Abnormally high expression of POLD1, MCM2, and PLK4 promotes relapse of acute lymphoblastic leukemia.

    PubMed

    Li, Sheng; Wang, Chengzhong; Wang, Weikai; Liu, Weidong; Zhang, Guiqin

    2018-05-01

    This study aimed to explore the underlying mechanism of relapsed acute lymphoblastic leukemia (ALL).Datasets of GSE28460 and GSE18497 were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between diagnostic and relapsed ALL samples were identified using Limma package in R, and a Venn diagram was drawn. Next, functional enrichment analyses of co-regulated DEGs were performed. Based on the String database, protein-protein interaction network and module analyses were also conducted. Moreover, transcription factors and miRNAs targeting co-regulated DEGs were predicted using the WebGestalt online tool.A total of 71 co-regulated DEGs were identified, including 56 co-upregulated genes and 15 co-downregulated genes. Functional enrichment analyses showed that upregulated DEGs were significantly enriched in the cell cycle, and DNA replication, and repair related pathways. POLD1, MCM2, and PLK4 were hub proteins in both protein-protein interaction network and module, and might be potential targets of E2F. Additionally, POLD1 and MCM2 were found to be regulated by miR-520H via E2F1.High expression of POLD1, MCM2, and PLK4 might play positive roles in the recurrence of ALL, and could serve as potential therapeutic targets for the treatment of relapsed ALL.

  19. Gene Delivery to Adipose Tissue Using Transcriptionally Targeted rAAV8 Vectors

    PubMed Central

    Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian

    2014-01-01

    In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A – a lipid-droplet-associated protein – resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo. PMID:25551639

  20. Hypothesis: Do miRNAs Targeting the Leucine-Rich Repeat Kinase 2 Gene (LRRK2) Influence Parkinson's Disease Susceptibility?

    PubMed

    Yılmaz, Şenay Görücü; Geyik, Sırma; Neyal, Ayşe Münife; Soko, Nyarai D; Bozkurt, Hakan; Dandara, Collet

    2016-04-01

    Parkinson's disease (PD) is a frequently occurring neurodegenerative motor disorder adversely impacting global health. There is a paucity of biomarkers and diagnostics that can forecast susceptibility to PD. A new research frontier for PD pathophysiology is the study of variations in microRNA (miRNA) expression whereby miRNAs serve as "upstream regulators" of gene expression in relation to functioning of the dopamine neuronal pathways. Leucine-Rich Repeat Kinase 2 (LRRK2) is a frequently studied gene in PD. Little is known about the ways in which expression of miRNAs targeting LRKK2 impact PD susceptibility. In a sample of 204 unrelated subjects (102 persons with PD and 102 healthy controls), we report here candidate miRNA expression in whole blood samples as measured by real-time PCR (hsa-miR-4671-3p, hsa-miR-335-3p, hsa-miR-561-3p, hsa-miR-579-3p, and hsa-miR-3143) that target LRRK2. Using step-wise logistic regression, and controlling for covariates such as age, gender, PD disease severity, concomitant medications, and co-morbidity, we found that the combination of has-miR-335-3p, has-miR-561-3p, and has-miR-579-3p account for 50% of the variation in regards to PD susceptibility (p<0.0001). Notably, the hsa-miR-561-3p expression was the most robust predictor of PD in both univariate and multivariate analyses (p<0.001). Moreover, the biological direction (polarity) of the association was plausible in that the candidate miRNAs displayed a diminished expression in patients. This is consistent with the hypothesis that decreased levels of miRNAs targeting LRRK2 might result in a gain of function for LRRK2, and by extension, loss of neuronal viability. To the best of our knowledge, this is the first clinical association study of the above candidate miRNAs' expression in PD using peripheral samples. These observations may guide future clinical diagnostics research on PD.

  1. A receptor-targeted nanocomplex vector system optimized for respiratory gene transfer.

    PubMed

    Tagalakis, Aristides D; McAnulty, Robin J; Devaney, James; Bottoms, Stephen E; Wong, John B; Elbs, Martin; Writer, Michele J; Hailes, Helen C; Tabor, Alethea B; O'Callaghan, Christopher; Jaffe, Adam; Hart, Stephen L

    2008-05-01

    Synthetic vectors for cystic fibrosis (CF) gene therapy are required that efficiently and safely transfect airway epithelial cells, rather than alveolar epithelial cells or macrophages, and that are nonimmunogenic, thus allowing for repeated delivery. We have compared several vector systems against these criteria including GL67, polyethylenimine (PEI) 22 and 25 kd and two new, synthetic vector formulations, comprising a cationic, receptor-targeting peptide K(16)GACSERSMNFCG (E), and the cationic liposomes (L) DHDTMA/DOPE or DOSEP3/DOPE. The lipid and peptide formulations self assemble into receptor-targeted nanocomplexes (RTNs) LED-1 and LED-2, respectively, on mixing with plasmid (D). LED-1 transfected airway epithelium efficiently, while LED-2 and GL67 preferentially transfected alveolar cells. PEI transfected airway epithelial cells with high efficiency, but was more toxic to the mice than the other formulations. On repeat dosing, LED-1 was equally as effective as the single dose, while GL67 was 30% less effective and PEI 22 kd displayed a 90% reduction of efficiency on repeated delivery. LED-1 thus was the only formulation that fulfilled the criteria for a CF gene therapy vector while GL67 and LED-2 may be appropriate for other respiratory diseases. Opportunities for PEI depend on a solution to its toxicity problems. LED-1 formulations were stable to nebulization, the most appropriate delivery method for CF.

  2. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.

    PubMed

    Qiu, Guo-Hua; Tan, Luke K S; Loh, Kwok Seng; Lim, Chai Yen; Srivastava, Gopesh; Tsai, Sen-Tien; Tsao, Sai Wah; Tao, Qian

    2004-06-10

    Loss of heterozygosity at 3p21 is common in various cancers including nasopharyngeal carcinoma (NPC). BLU is one of the candidate tumor suppressor genes (TSGs) in this region. Ectopic expression of BLU results in the inhibition of colony formation of cancer cells, suggesting that BLU is a tumor suppressor. We have identified a functional BLU promoter and found that it can be activated by environmental stresses such as heat shock, and is regulated by E2F. The promoter and first exon are located within a CpG island. BLU is highly expressed in testis and normal upper respiratory tract tissues including nasopharynx. However, in all seven NPC cell lines examined, BLU expression was downregulated and inversely correlated with promoter hypermethylation. Biallelic epigenetic inactivation of BLU was also observed in three cell lines. Hypermethylation was further detected in 19/29 (66%) of primary NPC tumors, but not in normal nasopharyngeal tissues. Treatment of NPC cell lines with 5-aza-2'-deoxycytidine activated BLU expression along with promoter demethylation. Although hypermethylation of RASSF1A, another TSG located immediately downstream of BLU, was detected in 20/27 (74%) of NPC tumors, no correlation between the hypermethylation of these two TSGs was observed (P=0.6334). In addition to methylation, homozygous deletion of BLU was found in 7/29 (24%) of tumors. Therefore, BLU is a stress-responsive gene, being disrupted in 83% (24/29) of NPC tumors by either epigenetic or genetic mechanisms. Our data are consistent with the interpretation that BLU is a TSG for NPC.

  3. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    PubMed Central

    Kobayashi, Kenta; Inoue, Ken-ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto

    2017-01-01

    Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease. PMID:28824385

  4. Cited2 Gene Controls Pluripotency and Cardiomyocyte Differentiation of Murine Embryonic Stem Cells through Oct4 Gene*

    PubMed Central

    Li, Qiang; Ramírez-Bergeron, Diana L.; Dunwoodie, Sally L.; Yang, Yu-Chung

    2012-01-01

    Cited2 (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail 2) is a transcriptional modulator critical for the development of multiple organs. Although many Cited2-mediated phenotypes and molecular events have been well characterized using in vivo genetic murine models, Cited2-directed cell fate decision in embryonic stem cells (ESCs) remains elusive. In this study, we examined the role of Cited2 in the maintenance of stemness and pluripotency of murine ESCs by a gene-targeting approach. Cited2 knock-out (Cited2Δ/−, KO) ESCs display defective differentiation. Loss of Cited2 in differentiating ESCs results in delayed silencing of the genes involved in the maintenance of pluripotency and self-renewal of stem cells (Oct4, Klf4, Sox2, and c-Myc) and the disturbance in cardiomyocyte, hematopoietic, and neuronal differentiation. In addition, Cited2 KO ESCs experience a delayed induction of cardiomyocyte differentiation-associated proteins, NFAT3 (along with the reduced expression of NFAT3 target genes, Nkx2.5 and β-MHC), N-cadherin, and smooth muscle actin. CITED2 is recruited to the Oct4 promoter to regulate its expression during early ESC differentiation. This is the first demonstration that Cited2 controls ESC pluripotency and differentiation via direct regulation of Oct4 gene expression. PMID:22761414

  5. (E)-β-farnesene gene reduces Lipaphis erysimi colonization in transgenic Brassica juncea lines

    PubMed Central

    Verma, Shiv Shankar; Sinha, Rakesh Kumar; Jajoo, Anajna

    2015-01-01

    Aphids are the major concern that significantly reduces the yield of crops. (E)-β-farnesene (Eβf) is the principal component of the alarm pheromone of many aphids. The results of current research support the direct defense response of (E)-β-farnesene (Eβf) against aphid Lipaphis erysimi (L.) Kaltenbach in Brassica juncea. Eβf gene was isolated from Mentha arvensis and transformed into B. juncea, showed direct repellent against aphid colonization. The seasonal mean population (SMP) recorded under field condition showed significantly higher aphid colonization in wild type in comparison to most of the transgenic lines, and shows positive correlation with the repellency of transgenic plant expressing (E)-β-farnesene. The current research investigation provides direct evidence for aphid control in B. juncea using Eβf, a non-toxic mode of action. PMID:26251882

  6. The Osmium(VIII) Oxofluoro Cations OsO(2)F(3)(+) and F(cis-OsO(2)F(3))(2)(+): Syntheses, Characterization by (19)F NMR Spectroscopy and Raman Spectroscopy, X-ray Crystal Structure of F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-), and Density Functional Theory Calculations of OsO(2)F(3)(+), ReO(2)F(3), and F(cis-OsO(2)F(3))(2)(+).

    PubMed

    Casteel, William J.; Dixon, David A.; Mercier, Hélène P. A.; Schrobilgen, Gary J.

    1996-07-17

    Osmium dioxide tetrafluoride, cis-OsO(2)F(4), reacts with the strong fluoride ion acceptors AsF(5) and SbF(5) in anhydrous HF and SbF(5) solutions to form orange salts. Raman spectra are consistent with the formation of the fluorine-bridged diosmium cation F(cis-OsO(2)F(3))(2)(+), as the AsF(6)(-) and Sb(2)F(11)(-) salts, respectively. The (19)F NMR spectra of the salts in HF solution are exchange-averaged singlets occurring at higher frequency than those of the fluorine environments of cis-OsO(2)F(4). The F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-) salt crystallizes in the orthorhombic space group Imma. At -107 degrees C, a = 12.838(3) Å, b = 10.667(2) Å, c = 11.323(2) Å, V = 1550.7(8) Å(3), and Z = 4. Refinement converged with R = 0.0469 [R(w) = 0.0500]. The crystal structure consists of discrete fluorine-bridged F(cis-OsO(2)F(3))(2)(+) and Sb(2)F(11)(-) ions in which the fluorine bridge of the F(cis-OsO(2)F(3))(2)(+) cation is trans to an oxygen atom (Os-O 1.676 Å) of each OsO(2)F(3) group. The angle at the bridge is 155.2(8) degrees with a bridging Os---F(b) distance of 2.086(3) Å. Two terminal fluorine atoms (Os-F 1.821 Å) are cis to the two oxygen atoms (Os-O 1.750 Å), and two terminal fluorine atoms of the OsO(2)F(3) group are trans to one another (1.813 Å). The OsO(2)F(3)(+) cation was characterized by (19)F NMR and by Raman spectroscopy in neat SbF(5) solution but was not isolable in the solid state. The NMR and Raman spectroscopic findings are consistent with a trigonal bipyramidal cation in which the oxygen atoms and a fluorine atom occupy the equatorial plane and two fluorine atoms are in axial positions. Density functional theory calculations show that the crystallographic structure of F(cis-OsO(2)F(3))(2)(+) is the energy-minimized structure and the energy-minimized structures of the OsO(2)F(3)(+) cation and ReO(2)F(3) are trigonal bipyramidal having C(2)(v)() point symmetry. Attempts to prepare the OsOF(5)(+) cation by oxidative fluorination of cis

  7. The Role of Ubiquitin E3 Ligase SCF-SKP2 in Prostate Cancer Development

    DTIC Science & Technology

    2007-02-01

    2004; 303:1371-4. 26. Nag A, Bondar T, Shiv S, Raychaudhuri P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A...ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6:9-20. 2. Nag A, Bondar T, Shiv S, Raychaudhuri P. The xeroderma pigmentosum group E gene product DDB2 is... xeroderma pigmentosum group E patient and the subsequent inability to bind DDB1 (ref. 16). This motif is present in most of the WDR proteins we found (see

  8. A second gene for type I signal peptidase in Bradyrhizobium japonicum, sipF, is located near genes involved in RNA processing and cell division.

    PubMed

    Bairl, A; Müller, P

    1998-11-01

    The TnphoA-induced Bradyrhizobium japonicum mutant 184 shows slow growth and aberrant colonization of soybean nodules. Using a DNA fragment adjacent to the transposon insertion site as a probe, a 3.4-kb BglII fragment of B. japonicum 110spc4 DNA was identified and cloned. Sequence analysis indicated that two truncated ORFs and three complete ORFs were encoded on this fragment. A database search revealed homologies to several other prokaryotic proteins: PdxJ (an enzyme involved in vitamin B6 biosynthesis), AcpS (acyl carrier protein synthase), Lep or Sip (prokaryotic type I signal peptidase), RNase III (an endoribonuclease which processes double-stranded rRNA precursors and mRNA) and Era (a GTP-binding protein required for cell division). The mutation in strain 184 was found to lie within the signal peptidase gene, which was designated sipF. Therefore, sipF is located in a region that encodes gene products involved in posttranscriptional and posttranslational processing processes. By complementation of the lep(ts) E. coli mutant strain IT41 it was demonstrated that sipF indeed encodes a functional signal peptidase, and genetic complementation of B. japonicum mutant 184 by a 2.8-kb SalI fragment indicated that sipF is expressed from a promoter located directly upstream of sipF. Using a non-polar kanamycin resistance cassette, a specific sipF mutant was constructed which exhibited defects in symbiosis similar to those of the original mutant 184.

  9. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression

    PubMed Central

    Abruzzi, Katharine Compton; Rodriguez, Joseph; Menet, Jerome S.; Desrochers, Jennifer; Zadina, Abigail; Luo, Weifei; Tkachev, Sasha; Rosbash, Michael

    2011-01-01

    CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP–chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4–6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation. PMID:22085964

  10. MafK/NF-E2 p18 is required for beta-globin genes activation by mediating the proximity of LCR and active beta-globin genes in MEL cell line.

    PubMed

    Du, Mei-Jun; Lv, Xiang; Hao, De-Long; Zhao, Guo-Wei; Wu, Xue-Song; Wu, Feng; Liu, De-Pei; Liang, Chih-Chuan

    2008-01-01

    Evidences indicate that locus control region (LCR) of beta-globin spatially closes to the downstream active gene promoter to mediate the transcriptional activation by looping. DNA binding proteins may play an important role in the looping formation. NF-E2 is one of the key transcription factors in beta-globin gene transcriptional activation. To shed light on whether NF-E2 is involved in this process, DS19MafKsiRNA cell pools were established by specifically knocked down the expression of MafK/NF-E2 p18, one subunit of NF-E2 heterodimer. In the above cell pools, it was observed that the occupancy efficiency of NF-E2 on beta-globin gene locus and the expression level of beta-globin genes were decreased. H3 acetylation, H3-K4 methylation and the deposition of RNA polymerase II, but not the recruitment of GATA-1, were also found reduced at the beta-globin gene cluster. Chromosome Conformation Capture (3C) assay showed that the cross-linking frequency between the main NF-E2 binding site HS2 and downstream structural genes was reduced compared to the normal cell. This result demonstrated that MafK/NF-E2 p18 recruitment was involved in the physical proximity of LCR and active beta-globin genes upon beta-globin gene transcriptional activation.

  11. Conditional silencing of the Escherichia coli pykF gene results from artificial convergent transcription protected from Rho-dependent termination.

    PubMed

    Krylov, Alexander A; Airich, Larisa G; Kiseleva, Evgeniya M; Minaeva, Natalia I; Biryukova, Irina V; Mashko, Sergey V

    2010-01-01

    PykF is one of two pyruvate kinases in Escherichia coli K-12. lambdaP(L) was convergently integrated into the chromosome of the MG1655 strain, downstream of pykF, face-to-face with its native promoter. In the presence of lambdacIts857, efficient pykF ts-silencing was achieved when the 5'-terminus of the P(L)-originated antisense RNA (asRNA), consisting of the rrnG-AT sequence, converted elongation complexes of RNA polymerase to a form resistant to Rho-dependent transcription termination. pykF silencing was detected by the following features: (a) impaired growth of the strain when pykA was also disrupted and when using ribose as a non-phosphotransferase system-transporting carbon source; (b) a pattern of reduced synthesis of the full-sized pykF mRNA, mediated by reverse transcription PCR, and (c) a significant decrease in PykF activity. The advantages of anti-terminated convergent transcription were clearly manifested in the strains where the rho_a-terminator was inserted specifically to interrupt asRNA synthesis. Most likely, the target gene was silenced by transcriptional interference due to collisions between converging RNA polymerases, although, strictly, the role of cis-asRNA effects could not be excluded. While details of the mechanisms have yet to be determined, anti-terminated convergent transcription is a promising new technique for silencing other target genes. Copyright 2010 S. Karger AG, Basel.

  12. Novel compounds TAD-1822-7-F2 and F5 inhibited HeLa cells growth through the JAK/Stat signaling pathway.

    PubMed

    Yang, Tianfeng; Shi, Xianpeng; Kang, Yuan; Zhu, Man; Fan, Mengying; Zhang, Dongdong; Zhang, Yanmin

    2018-07-01

    Cervical carcinoma remains the second most common malignancy with a high mortality rate among women worldwide. TAD-1822-7-F2 (F2) and TAD-1822-7-F5 (F5) are novel compounds synthesized on the chemical structure of taspine derivatives, and show an effective suppression for HeLa cells. Our study aims to confirm the potential targets of F2 and F5, and investigate the underlying mechanism of the inhibitory effect on HeLa cells. In this study, Real Time Cell Analysis and crystal violet staining assay were conducted to investigate the effect of F2 and F5 on HeLa cells proliferation. And the analytical methods of surface plasmon resonance and quartz crystal microbalance were established and employed to study the interaction between F2 and F5 and potential target protein JAK2, suggesting that both compounds have strong interaction with the JAK2 protein. Western blot analysis, immunofluorescence staining study and PCR was conducted to investigate the molecules of JAK/Stat signaling pathway. Interestingly, F2 and F5 showed diverse regulation for signaling molecules because of their different chemical structure. F2 increased the expression of JAK2 and downregulated the level of P-JAK1 and P-JAK2, and decreased P-Stat3 (Ser727). While F5 could increase the expression of JAK2 and naturally decrease the phosphorylation of JAK1 and Tyk2, and decreased the expression of P-Stat6. Moreover, F2 and F5 showed the same downregulation on the P-Stat3 (Tyr705). Therefore, F2 and F5 could target the JAK2 protein and prevent the phosphorylation of JAKs to suppress the phosphorylation of the downstream effector Stats, which suggested that F2 and F5 have great potential to be the inhibitors of the JAK/Stat signaling pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Targeting tachykinin receptors in neuroblastoma.

    PubMed

    Henssen, Anton G; Odersky, Andrea; Szymansky, Annabell; Seiler, Marleen; Althoff, Kristina; Beckers, Anneleen; Speleman, Frank; Schäfers, Simon; De Preter, Katleen; Astrahanseff, Kathy; Struck, Joachim; Schramm, Alexander; Eggert, Angelika; Bergmann, Andreas; Schulte, Johannes H

    2017-01-03

    Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.

  14. Nucleoprotein of influenza A virus negatively impacts antiapoptotic protein API5 to enhance E2F1-dependent apoptosis and virus replication.

    PubMed

    Mayank, A K; Sharma, S; Nailwal, H; Lal, S K

    2015-12-17

    Apoptosis of host cells profoundly influences virus propagation and dissemination, events that are integral to influenza A virus (IAV) pathogenesis. The trigger for activation of apoptosis is regulated by an intricate interplay between cellular and viral proteins, with a strong bearing on IAV replication. Though the knowledge of viral proteins and mechanisms employed by IAV to induce apoptosis has advanced considerably of late, we know relatively little about the repertoire of host factors targeted by viral proteins. Thus, identification of cellular proteins that are hijacked by the virus will help us not only to understand the molecular underpinnings of IAV-induced apoptosis, but also to design future antiviral therapies. Here we show that the nucleoprotein (NP) of IAV directly interacts with and suppresses the expression of API5, a host antiapoptotic protein that antagonizes E2F1-dependent apoptosis. siRNA-mediated depletion of API5, in NP-overexpressed as well as IAV-infected cells, leads to upregulation of apoptotic protease activating factor 1 (APAF1), a downstream modulator of E2F1-mediated apoptosis, and cleavage of caspases 9 and 3, although a reciprocal pattern of these events was observed on ectopic overexpression of API5. In concordance with these observations, annexin V and 7AAD staining assays exhibit downregulation of early and late apoptosis in IAV-infected or NP-transfected cells on overexpression of API5. Most significantly, while overexpression of API5 decreases viral titers, cellular NP protein as well as mRNA levels in IAV-infected A549 cells, silencing of API5 expression causes a steep rise in the same parameters. From the data reported in this manuscript, we propose a proapoptotic role for NP in IAV pathogenesis, whereby it suppresses expression of antiapoptotic factor API5, thus potentiating the E2F1-dependent apoptotic pathway and ensuring viral replication.

  15. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection.

    PubMed

    Kim, Heon Seok; Lee, Kyungjin; Bae, Sangsu; Park, Jeongbin; Lee, Chong-Kyo; Kim, Meehyein; Kim, Eunji; Kim, Minju; Kim, Seokjoong; Kim, Chonsaeng; Kim, Jin-Soo

    2017-06-23

    Several groups have used genome-wide libraries of lentiviruses encoding small guide RNAs (sgRNAs) for genetic screens. In most cases, sgRNA expression cassettes are integrated into cells by using lentiviruses, and target genes are statistically estimated by the readout of sgRNA sequences after targeted sequencing. We present a new virus-free method for human gene knockout screens using a genome-wide library of CRISPR/Cas9 sgRNAs based on plasmids and target gene identification via whole-genome sequencing (WGS) confirmation of authentic mutations rather than statistical estimation through targeted amplicon sequencing. We used 30,840 pairs of individually synthesized oligonucleotides to construct the genome-scale sgRNA library, collectively targeting 10,280 human genes ( i.e. three sgRNAs per gene). These plasmid libraries were co-transfected with a Cas9-expression plasmid into human cells, which were then treated with cytotoxic drugs or viruses. Only cells lacking key factors essential for cytotoxic drug metabolism or viral infection were able to survive. Genomic DNA isolated from cells that survived these challenges was subjected to WGS to directly identify CRISPR/Cas9-mediated causal mutations essential for cell survival. With this approach, we were able to identify known and novel genes essential for viral infection in human cells. We propose that genome-wide sgRNA screens based on plasmids coupled with WGS are powerful tools for forward genetics studies and drug target discovery. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration-Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Ogasawara, Kazuyoshi

    2012-02-01

    We performed first-principles configuration-interaction calculations of multiplet energies for Mn4+ in K2SiF6, K2GeF6, and K2TiF6 crystals. The results indicate that corrections based on a single-electron calculation are effective for the prediction of 4A2 → 4T2 and 4A2 → 4T1a transition energies, while such corrections are not necessary for the prediction of the 4A22E transition energy. The cluster size dependence of the multiplet energies is small. However, the 4A22E transition energy is slightly improved by using larger clusters including K ions. The theoretical multiplet energies are improved further by considering the lattice relaxation effect. As a result, the characteristic multiplet energy shifts depending on the host crystal are well reproduced without using any empirical parameters. Although K2GeF6 and K2TiF6 have lower symmetry than K2SiF6, the results indicate that the variation of the multiplet energy is mainly determined by the Mn-F bond length.

  17. Integrated computational biology analysis to evaluate target genes for chronic myelogenous leukemia.

    PubMed

    Zheng, Yu; Wang, Yu-Ping; Cao, Hongbao; Chen, Qiusheng; Zhang, Xi

    2018-06-05

    Although hundreds of genes have been linked to chronic myelogenous leukemia (CML), many of the results lack reproducibility. In the present study, data across multiple modalities were integrated to evaluate 579 CML candidate genes, including literature‑based CML‑gene relation data, Gene Expression Omnibus RNA expression data and pathway‑based gene‑gene interaction data. The expression data included samples from 76 patients with CML and 73 healthy controls. For each target gene, four metrics were proposed and tested with case/control classification. The effectiveness of the four metrics presented was demonstrated by the high classification accuracy (94.63%; P<2x10‑4). Cross metric analysis suggested nine top candidate genes for CML: Epidermal growth factor receptor, tumor protein p53, catenin β 1, janus kinase 2, tumor necrosis factor, abelson murine leukemia viral oncogene homolog 1, vascular endothelial growth factor A, B‑cell lymphoma 2 and proto‑oncogene tyrosine‑protein kinase. In addition, 145 CML candidate pathways enriched with 485 out of 579 genes were identified (P<8.2x10‑11; q=0.005). In conclusion, weighted genetic networks generated using computational biology may be complementary to biological experiments for the evaluation of known or novel CML target genes.

  18. Prevalence of adhesin and toxin genes in E. coli strains isolated from diarrheic and non-diarrheic pigs from smallholder herds in northern and eastern Uganda.

    PubMed

    Ikwap, Kokas; Larsson, Jenny; Jacobson, Magdalena; Owiny, David Okello; Nasinyama, George William; Nabukenya, Immaculate; Mattsson, Sigbrit; Aspan, Anna; Erume, Joseph

    2016-08-05

    Enterotoxigenic E. coli (ETEC) significantly contribute to diarrhea in piglets and weaners. The smallholder pig producers in Uganda identified diarrhea as one of the major problems especially in piglets. The aim of this study was to; i) characterize the virulence factors of E. coli strains isolated from diarrheic and non-diarrheic suckling piglets and weaners from smallholder herds in northern and eastern Uganda and ii) identify and describe the post-mortem picture of ETEC infection in severely diarrheic piglets. Rectal swab samples were collected from 83 piglets and weaners in 20 herds and isolated E. coli were characterized by PCR, serotyping and hemolysis. The E. coli strains carried genes for the heat stable toxins STa, STb and EAST1 and adhesins F4 and AIDA-I. The genes for the heat labile toxin LT and adhesins F5, F6, F18 and F41 were not detected in any of the E. coli isolates. Where the serogroup could be identified, E. coli isolates from the same diarrheic pig belonged to the same serogroup. The prevalence of EAST1, STb, Stx2e, STa, AIDA-I, and F4 in the E. coli isolates from suckling piglets and weaners (diarrheic and non-diarrheic combined) was 29, 26.5, 2.4, 1.2, 16, and 8.4 %, respectively. However the prevalence of F4 and AIDA-I in E. coli from diarrheic suckling piglets alone was 22.2 and 20 %, respectively. There was no significant difference in the prevalence of the individual virulence factors in E. coli from the diarrheic and non-diarrheic pigs (p > 0.05). The main ETEC strains isolated from diarrheic and non-diarrheic pigs included F4/STb/EAST1 (7.2 %), F4/STb (1.2 %), AIDA/STb/EAST1 (8 %) and AIDA/STb (8 %). At post-mortem, two diarrheic suckling piglets carrying ETEC showed intact intestinal villi, enterocytes and brush border but with a layer of cells attached to the brush border, suggestive of ETEC infections. This study has shown that the F4 fimbriae is the most predominant in E. coli from diarrheic piglets in the study area and

  19. Presence of a novel exon 2E encoding a putative transmembrane protein in human IL-33 gene.

    PubMed

    Tominaga, Shin-ichi; Hayakawa, Morisada; Tsuda, Hidetoshi; Ohta, Satoshi; Yanagisawa, Ken

    2013-01-18

    Interleukin-33 (IL-33) is a dual-function molecule that regulates gene expression in nuclei and, as a cytokine, conveys proinflammatory signals from outside of cells via its specific receptor ST2L. There are still a lot of questions about localization and processing of IL-33 gene products. In the course of re-evaluating human IL-33 gene, we found distinct promoter usage depending on the cell type, similar to the case in the ST2 gene. Furthermore, we found a novel exon 2E in the conventional intron 2 whose open reading frame corresponded to a transmembrane protein of 131 amino acids. Dependence of exon 2E expression on differentiation of HUVEC cells is of great interest in relation to human IL-33 function. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria.

    PubMed

    Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana

    2017-03-06

    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.