Sample records for e3 ligase activity

  1. Calcium Activates Nedd4 E3 Ubiquitin Ligases by Releasing the C2 Domain-mediated Auto-inhibition*

    PubMed Central

    Wang, Jian; Peng, Qisheng; Lin, Qiong; Childress, Chandra; Carey, David; Yang, Wannian

    2010-01-01

    Nedd4 E3 ligases are members of the HECT E3 ubiquitin ligase family and regulate ubiquitination-mediated protein degradation. In this report, we demonstrate that calcium releases the C2 domain-mediated auto-inhibition in both Nedd4-1 and Nedd4-2. Calcium disrupts binding of the C2 domain to the HECT domain. Consistent with this, calcium activates the E3 ubiquitin ligase activity of Nedd4. Elevation of intracellular calcium by ionomycin treatment, or activation of acetylcholine receptor or epidermal growth factor receptor by carbachol or epidermal growth factor stimulation induced activation of endogenous Nedd4 in vivo evaluated by assays of either Nedd4 E3 ligase activity or ubiquitination of Nedd4 substrate ENaC-β. The activation effect of calcium on Nedd4 E3 ligase activity was dramatically enhanced by a membrane-rich fraction, suggesting that calcium-mediated membrane translocation through the C2 domain might be an activation mechanism of Nedd4 in vivo. Our studies have revealed an activation mechanism of Nedd4 E3 ubiquitin ligases and established a connection of intracellular calcium signaling to regulation of protein ubiquitination. PMID:20172859

  2. Probes of Ubiquitin E3 ligases distinguish different stages of Parkin activation

    PubMed Central

    Pao, Kuan-Chuan; Stanley, Mathew; Han, Cong; Lai, Yu-Chiang; Murphy, Paul; Balk, Kristin; Wood, Nicola T.; Corti, Olga; Corvol, Jean-Christophe; Muqit, Miratul M.K.; Virdee, Satpal

    2016-01-01

    E3 ligases represent an important class of enzymes, yet there are currently no chemical probes to profile their activity. We develop a new class of activity-based probe by reengineering of a ubiquitin-charged E2 conjugating enzyme and demonstrate their utility by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase Parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in Parkin activation. We also profile Parkin patient disease-associated mutations and strikingly demonstrate that they largely mediate their effect by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous Parkin activity revealing that endogenous Parkin is activated in neuronal cell lines (≥75 %) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-Parkin signalling as demonstrated by compatibility with Parkinson’s disease patient-derived samples. PMID:26928937

  3. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase

    DOE PAGES

    Cappadocia, Laurent; Pichler, Andrea; Lima, Christopher D.

    2015-11-02

    E3 protein ligases enhance transfer of ubiquitin-like (Ubl) proteins from E2 conjugating enzymes to substrates by stabilizing the thioester-charged E2~Ubl in a closed configuration optimally aligned for nucleophilic attack. In this paper, we report biochemical and structural data that define the N-terminal domain of the Homo sapiens ZNF451 as the catalytic module for SUMO E3 ligase activity. The ZNF451 catalytic module contains tandem SUMO-interaction motifs (SIMs) bridged by a Pro-Leu-Arg-Pro (PLRP) motif. The first SIM and PLRP motif engage thioester-charged E2~SUMO while the next SIM binds a second molecule of SUMO bound to the back side of E2. We showmore » that ZNF451 is SUMO2 specific and that SUMO modification of ZNF451 may contribute to activity by providing a second molecule of SUMO that interacts with E2. Finally, our results are consistent with ZNF451 functioning as a bona fide SUMO E3 ligase.« less

  4. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappadocia, Laurent; Pichler, Andrea; Lima, Christopher D.

    E3 protein ligases enhance transfer of ubiquitin-like (Ubl) proteins from E2 conjugating enzymes to substrates by stabilizing the thioester-charged E2~Ubl in a closed configuration optimally aligned for nucleophilic attack. In this paper, we report biochemical and structural data that define the N-terminal domain of the Homo sapiens ZNF451 as the catalytic module for SUMO E3 ligase activity. The ZNF451 catalytic module contains tandem SUMO-interaction motifs (SIMs) bridged by a Pro-Leu-Arg-Pro (PLRP) motif. The first SIM and PLRP motif engage thioester-charged E2~SUMO while the next SIM binds a second molecule of SUMO bound to the back side of E2. We showmore » that ZNF451 is SUMO2 specific and that SUMO modification of ZNF451 may contribute to activity by providing a second molecule of SUMO that interacts with E2. Finally, our results are consistent with ZNF451 functioning as a bona fide SUMO E3 ligase.« less

  5. Allosteric auto-inhibition and activation of the Nedd4 family E3 ligase Itch.

    PubMed

    Zhu, Kang; Shan, Zelin; Chen, Xing; Cai, Yuqun; Cui, Lei; Yao, Weiyi; Wang, Zhen; Shi, Pan; Tian, Changlin; Lou, Jizhong; Xie, Yunli; Wen, Wenyu

    2017-09-01

    The Nedd4 family E3 ligases are key regulators of cell growth and proliferation and are often misregulated in human cancers and other diseases. The ligase activities of Nedd4 E3s are tightly controlled via auto-inhibition. However, the molecular mechanism underlying Nedd4 E3 auto-inhibition and activation is poorly understood. Here, we show that the WW domains proceeding the catalytic HECT domain play an inhibitory role by binding directly to HECT in the Nedd4 E3 family member Itch. Our structural and biochemical analyses of Itch reveal that the WW2 domain and a following linker allosterically lock HECT in an inactive state inhibiting E2-E3 transthiolation. Binding of the Ndfip1 adaptor or JNK1-mediated phosphorylation relieves the auto-inhibition of Itch in a WW2-dependent manner. Aberrant activation of Itch leads to migration defects of cortical neurons during development. Our study provides a new mechanism governing the regulation of Itch. © 2017 The Authors.

  6. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation

    PubMed Central

    Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.

    2015-01-01

    Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  7. The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity.

    PubMed

    Dul, Barbara E; Walworth, Nancy C

    2007-06-22

    The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.

  8. Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages

    PubMed Central

    Suzuki, Shiho; Mimuro, Hitomi; Kim, Minsoo; Ogawa, Michinaga; Ashida, Hiroshi; Toyotome, Takahito; Franchi, Luigi; Suzuki, Masato; Sanada, Takahito; Suzuki, Toshihiko; Tsutsui, Hiroko; Núñez, Gabriel; Sasakawa, Chihiro

    2014-01-01

    When nucleotide-binding oligomerization domain–like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including cell death, by delivering type III secreted effectors, the rod component flagellin, and toxins. Recent studies indicated that Shigella deploy multiple mechanisms to stimulate NLR inflammasomes through type III secretion during infection. Here, we show that Shigella induces rapid macrophage cell death by delivering the invasion plasmid antigen H7.8 (IpaH7.8) enzyme 3 (E3) ubiquitin ligase effector via the type III secretion system, thereby activating the NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing 4 (NLRC4) inflammasomes and caspase-1 and leading to macrophage cell death in an IpaH7.8 E3 ligase-dependent manner. Mice infected with Shigella possessing IpaH7.8, but not with Shigella possessing an IpaH7.8 E3 ligase-null mutant, exhibited enhanced bacterial multiplication. We defined glomulin/flagellar-associated protein 68 (GLMN) as an IpaH7.8 target involved in IpaH7.8 E3 ligase-dependent inflammasome activation. This protein originally was identified through its association with glomuvenous malformations and more recently was described as a member of a Cullin ring ligase inhibitor. Modifying GLMN levels through overexpression or knockdown led to reduced or augmented inflammasome activation, respectively. Macrophages stimulated with lipopolysaccharide/ATP induced GLMN puncta that localized with the active form of caspase-1. Macrophages from GLMN+/− mice were more responsive to inflammasome activation than those from GLMN+/+ mice. Together, these results highlight a unique bacterial adaptation that hijacks inflammasome activation via

  9. High-Throughput Screening of HECT E3 Ubiquitin Ligases Using UbFluor.

    PubMed

    Foote, Peter K; Krist, David T; Statsyuk, Alexander V

    2017-09-14

    HECT E3 ubiquitin ligases are responsible for many human disease phenotypes and are promising drug targets; however, screening assays for HECT E3 inhibitors are inherently complex, requiring upstream E1 and E2 enzymes as well as ubiquitin, ATP, and detection reagents. Intermediate ubiquitin thioesters and a complex mixture of polyubiquitin products provide further opportunities for off-target inhibition and increase the complexity of the assay. UbFluor is a novel ubiquitin thioester that bypasses the E1 and E2 enzymes and undergoes direct transthiolation with HECT E3 ligases. The release of fluorophore upon transthiolation allows fluorescence polarization detection of HECT E3 activity. In the presence of inhibitors, HECT E3 activity is ablated, and thus no reaction and no change in FP are observed. This assay has been adapted for high-throughput screening of small molecules against HECT E3 ligases, and its utility has been proven in the discovery of HECT E3 ligase inhibitors. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity.

    PubMed

    Koliopoulos, Marios G; Esposito, Diego; Christodoulou, Evangelos; Taylor, Ian A; Rittinger, Katrin

    2016-06-01

    TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N-terminal portion which comprises a canonical RING domain, one or two B-box domains and a coiled-coil region that mediates ligase dimerization. Self-association via the coiled-coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin-loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full-length protein. Our data reveal an unexpected diversity in the self-association mechanism of TRIMs that might be crucial for their biological function. © 2016 Francis Crick Institute. Published under the terms of the CC BY 4.0 license.

  11. Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads.

    PubMed

    Jain, Jagrati; Jain, Surendra K; Walker, Larry A; Tekwani, Babu L

    2017-06-02

    Protein ubiquitylation is an important post-translational regulation, which has been shown to be necessary for life cycle progression and survival of Plasmodium falciparum. Ubiquitin is a highly conserved 76 amino acid polypeptide, which attaches covalently to target proteins through combined action of three classes of enzymes namely, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin-protein ligase (E3). Ubiquitin E1 and E2 are highly conserved within eukaryotes. However, the P. falciparum E3 ligase is substantially variable and divergent compared to the homologs from other eukaryotes, which make the E3 ligase a parasite-specific target. A set of selected E3 ubiquitin ligase inhibitors was tested in vitro against a chloroquine-sensitive P. falciparum D6 strain (PfD6) and a chloroquine-resistant P. falciparum W2 strain (PfW2). The inhibitors were also tested against Vero and transformed THP1 cells for cytotoxicity. The lead antimalarial E3 ubiquitin ligase inhibitors were further evaluated for the stage-specific antimalarial action and effects on cellular development of P. falciparum in vitro. Statistics analysis was done by two-way ANOVA followed by Tukey and Sidak multiple comparison test using GraphPad Prism 6. E3 ligase inhibitors namely, JNJ 26854165, HLI 373 and Nutlin 3 showed prominent antimalarial activity against PfD6 and PfW2. These inhibitors were considerably less cytotoxic to mammalian Vero cells. JNJ 26854165, HLI 373 and Nutlin 3 blocked the development of P. falciparum parasite at the trophozoite and schizont stages, resulting in accumulation of distorted trophozoites and immature schizonts. Interruption of trophozoites and schizont maturation by the antimalarial E3 ligase inhibitors suggest the role of ubiquitin/proteasome functions in the intraerythrocytic development of malaria parasite. The ubiquitin/proteasome functions may be critical for schizont maturation. Further investigations on the lead E3 ligase

  12. Latency-Associated Nuclear Antigen E3 Ubiquitin Ligase Activity Impacts Gammaherpesvirus-Driven Germinal Center B Cell Proliferation.

    PubMed

    Cerqueira, Sofia A; Tan, Min; Li, Shijun; Juillard, Franceline; McVey, Colin E; Kaye, Kenneth M; Simas, J Pedro

    2016-09-01

    Viruses have evolved mechanisms to hijack components of cellular E3 ubiquitin ligases, thus modulating the ubiquitination pathway. However, the biological relevance of such mechanisms for viral pathogenesis in vivo remains largely unknown. Here, we utilized murid herpesvirus 4 (MuHV-4) infection of mice as a model system to address the role of MuHV-4 latency-associated nuclear antigen (mLANA) E3 ligase activity in gammaherpesvirus latent infection. We show that specific mutations in the mLANA SOCS box (V199A, V199A/L202A, or P203A/P206A) disrupted mLANA's ability to recruit Elongin C and Cullin 5, thereby impairing the formation of the Elongin BC/Cullin 5/SOCS (EC5S(mLANA)) complex and mLANA's E3 ligase activity on host NF-κB and Myc. Although these mutations resulted in considerably reduced mLANA binding to viral terminal repeat DNA as assessed by electrophoretic mobility shift assay (EMSA), the mutations did not disrupt mLANA's ability to mediate episome persistence. In vivo, MuHV-4 recombinant viruses bearing these mLANA SOCS box mutations exhibited a deficit in latency amplification in germinal center (GC) B cells. These findings demonstrate that the E3 ligase activity of mLANA contributes to gammaherpesvirus-driven GC B cell proliferation. Hence, pharmacological inhibition of viral E3 ligase activity through targeting SOCS box motifs is a putative strategy to control gammaherpesvirus-driven lymphoproliferation and associated disease. The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause lifelong persistent infection and play causative roles in several human malignancies. Colonization of B cells is crucial for virus persistence, and access to the B cell compartment is gained by virus-driven proliferation in germinal center (GC) B cells. Infection of B cells is predominantly latent, with the viral genome persisting as a multicopy episome and expressing only a small subset of viral genes. Here, we focused on

  13. Activity‐Based Probes for HECT E3 Ubiquitin Ligases

    PubMed Central

    Byrne, Robert; Mund, Thomas

    2017-01-01

    Abstract Activity‐based probes (ABPs) have been used to dissect the biochemical/structural properties and cellular functions of deubiquitinases. However, their utility in studying cysteine‐based E3 ubiquitin ligases has been limited. In this study, we evaluate the use of ubiquitin‐ABPs (Ub‐VME and Ub‐PA) and a novel set of E2–Ub‐ABPs on a panel of HECT E3 ubiquitin ligases. Our in vitro data show that ubiquitin‐ABPs can label HECT domains. We also provide the first evidence that, in addition to the RBR E3 ubiquitin ligase Parkin, E2–Ub‐ABPs can also label the catalytic HECT domains of NEDD4, UBE3C, and HECTD1. Importantly, the endogenous proteasomal E3 ligase UBE3C was also successfully labelled by Ub‐PA and His‐UBE2D2–Ub‐ABP in lysate of cells grown under basal conditions. Our findings provide novel insights into the use of ABPs for the study of HECT E3 ubiquitin ligases. PMID:28425671

  14. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase: DAWIDZIAK et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawidziak, Daria M.; Sanchez, Jacint G.; Wagner, Jonathan M.

    Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.

  15. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin

    PubMed Central

    Im, Eunju; Yoo, Lang; Hyun, Minju; Shin, Woo Hyun

    2016-01-01

    Parkinson's disease (PD) is characterized by selective loss of dopaminergic neurons in the pars compacta of the substantia nigra and accumulation of ubiquitinated proteins in aggregates called Lewy bodies. Several mutated genes have been found in familial PD patients, including SNCA (α-synuclein), PARK2 (parkin), PINK1, PARK7 (DJ-1), LRRK2 and ATP13A2. Many pathogenic mutations of PARK2, which encodes the ubiquitin E3 ligase parkin, result in loss of function, leading to accumulation of parkin substrates and consequently contributing to dopaminergic cell death. ISG15 is a member of the ubiquitin-like modifier family and is induced by stimulation with type I interferons. Similar to ubiquitin and ubiquitination, covalent conjugation of ISG15 to target proteins (ISGylation) regulates their biochemical properties. In this study, we identified parkin as a novel target of ISGylation specifically mediated by the ISG15-E3 ligase HERC5. In addition, we identified two ISGylation sites, Lys-349 and Lys-369, in the in-between-ring domain of parkin. ISGylation of these sites promotes parkin's ubiquitin E3 ligase activity by suppressing the intramolecular interaction that maintains its autoinhibited conformation and increases its cytoprotective effect. In conclusion, covalent ISG15 conjugation is a novel mode of modulating parkin activity, and alteration in this pathway may be associated with PD pathogenesis. PMID:27534820

  16. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin.

    PubMed

    Im, Eunju; Yoo, Lang; Hyun, Minju; Shin, Woo Hyun; Chung, Kwang Chul

    2016-08-01

    Parkinson's disease (PD) is characterized by selective loss of dopaminergic neurons in the pars compacta of the substantia nigra and accumulation of ubiquitinated proteins in aggregates called Lewy bodies. Several mutated genes have been found in familial PD patients, including SNCA (α-synuclein), PARK2 (parkin), PINK1, PARK7 (DJ-1), LRRK2 and ATP13A2 Many pathogenic mutations of PARK2, which encodes the ubiquitin E3 ligase parkin, result in loss of function, leading to accumulation of parkin substrates and consequently contributing to dopaminergic cell death. ISG15 is a member of the ubiquitin-like modifier family and is induced by stimulation with type I interferons. Similar to ubiquitin and ubiquitination, covalent conjugation of ISG15 to target proteins (ISGylation) regulates their biochemical properties. In this study, we identified parkin as a novel target of ISGylation specifically mediated by the ISG15-E3 ligase HERC5. In addition, we identified two ISGylation sites, Lys-349 and Lys-369, in the in-between-ring domain of parkin. ISGylation of these sites promotes parkin's ubiquitin E3 ligase activity by suppressing the intramolecular interaction that maintains its autoinhibited conformation and increases its cytoprotective effect. In conclusion, covalent ISG15 conjugation is a novel mode of modulating parkin activity, and alteration in this pathway may be associated with PD pathogenesis. © 2016 The Authors.

  17. Reconstitution of the Recombinant RanBP2 SUMO E3 Ligase Complex.

    PubMed

    Ritterhoff, Tobias; Das, Hrishikesh; Hao, Yuqing; Sakin, Volkan; Flotho, Annette; Werner, Andreas; Melchior, Frauke

    2016-01-01

    One of the few proteins that have SUMO E3 ligase activity is the 358 kDa nucleoporin RanBP2 (Nup358). While small fragments of RanBP2 can stimulate SUMOylation in vitro, the physiologically relevant E3 ligase is a stable multi-subunit complex comprised of RanBP2, SUMOylated RanGAP1, and Ubc9. Here, we provide a detailed protocol to in vitro reconstitute the RanBP2 SUMO E3 ligase complex. With the exception of RanBP2, reconstitution involves untagged full-length proteins. We describe the bacterial expression and purification of all complex components, namely an 86 kDa His-tagged RanBP2 fragment, the SUMO E2-conjugating enzyme Ubc9, RanGAP1, and SUMO1, and we provide a protocol for quantitative SUMOylation of RanGAP1. Finally, we present details for the assembly and final purification of the catalytically active RanBP2/RanGAP1*SUMO1/Ubc9 complex.

  18. E3 ubiquitin ligases: key regulators of hormone signaling in plants.

    PubMed

    Kelley, Dior

    2018-03-07

    Ubiquitin-mediated control of protein stability is central to most aspects of plant hormone signaling. Attachment of ubiquitin to target proteins occurs via an enzymatic cascade with the final step being catalyzed by a family of enzymes known as E3 ubiquitin ligases, which have been classified based on their protein domains and structures. While E3 ubiquitin ligases are conserved among eukaryotes, in plants they are well-known to fulfill unique roles as central regulators of phytohormone signaling, including hormone perception and regulation of hormone biosynthesis. This review will highlight up-to-date findings that have refined well-known E3 ligase-substrate interactions and defined novel E3 ligase substrates that mediate numerous hormone signaling pathways. Additionally, examples of how particular E3 ligases may mediate hormone crosstalk will be discussed as an emerging theme. Looking forward, promising experimental approaches and methods that will provide deeper mechanistic insight into the roles of E3 ubiquitin ligases in plants will be considered. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.

    PubMed

    Dove, Katja K; Stieglitz, Benjamin; Duncan, Emily D; Rittinger, Katrin; Klevit, Rachel E

    2016-08-01

    RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs. © 2016 The Authors.

  20. Enzyme reversal to explore the function of yeast E3 ubiquitin-ligases.

    PubMed

    MacDonald, Chris; Winistorfer, Stanley; Pope, Robert M; Wright, Michael E; Piper, Robert C

    2017-07-01

    The covalent attachment of ubiquitin onto proteins can elicit a variety of downstream consequences. Attachment is mediated by a large array of E3 ubiquitin ligases, each thought be subject to regulatory control and to have a specific repertoire of substrates. Assessing the biological roles of ligases, and in particular, identifying their biologically relevant substrates has been a persistent yet challenging question. In this study, we describe tools that may help achieve both of these goals. We describe a strategy whereby the activity of a ubiquitin ligase has been enzymatically reversed, accomplished by fusing it to a catalytic domain of an exogenous deubiquitinating enzyme. We present a library of 72 "anti-ligases" that appear to work in a dominant-negative fashion to stabilize their cognate substrates against ubiquitin-dependent proteasomal and lysosomal degradation. We then used the ligase-deubiquitinating enzyme (DUb) library to screen for E3 ligases involved in post-Golgi/endosomal trafficking. We identify ligases previously implicated in these pathways (Rsp5 and Tul1), in addition to ligases previously localized to endosomes (Pib1 and Vps8). We also document an optimized workflow for isolating and analyzing the "ubiquitome" of yeast, which can be used with mass spectrometry to identify substrates perturbed by expression of particular ligase-DUb fusions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The E3 ligase c-Cbl regulates dendritic cell activation

    PubMed Central

    Chiou, Shin-Heng; Shahi, Payam; Wagner, Ryan T; Hu, Hongbo; Lapteva, Natalia; Seethammagari, Mamatha; Sun, Shao-Cong; Levitt, Jonathan M; Spencer, David M

    2011-01-01

    The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl––known for its roles in regulating lymphocyte signalling––as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50. PMID:21799517

  2. TRIM E3 ligases in HIV infection: can these intrinsic immunity factors be harnessed for novel vaccines or therapies?

    PubMed

    Ndung'u, Thumbi

    2011-01-01

    Tripartite motif-containing (TRIM) E3 ligases are a recently identified family of proteins with potent antiviral activity in mammalian cells. The prototype TRIM E3 ligase, TRIM5α was initially identified as a species-specific antiviral restriction factor but subsequent studies suggest some antiviral activity by several TRIM E3 ligases in human cells. However, the mechanisms of antiviral activity by these proteins and their transcriptional, translational and post-translational regulation are poorly understood. Furthermore, the contribution of TRIM E3 ligases to relative resistance or viral control in vivo is largely unknown. Emerging data from our laboratory and other groups suggests that these proteins may have antiviral activity in vivo and contribute to HIV pathogenesis. Considering the significant difficulties so far encountered in developing an effective HIV vaccine and with the use of antiretroviral therapies, it will be important to further investigate the potential of TRIM E3 ligases as novel prophylactics or therapies.

  3. The E3 Ligase CHIP: Insights into Its Structure and Regulation

    PubMed Central

    Paul, Indranil; Ghosh, Mrinal K.

    2014-01-01

    The carboxy-terminus of Hsc70 interacting protein (CHIP) is a cochaperone E3 ligase containing three tandem repeats of tetratricopeptide (TPR) motifs and a C-terminal U-box domain separated by a charged coiled-coil region. CHIP is known to function as a central quality control E3 ligase and regulates several proteins involved in a myriad of physiological and pathological processes. Recent studies have highlighted varied regulatory mechanisms operating on the activity of CHIP which is crucial for cellular homeostasis. In this review article, we give a concise account of our current knowledge on the biochemistry and regulation of CHIP. PMID:24868554

  4. Functional identification of MdSIZ1 as a SUMO E3 ligase in apple.

    PubMed

    Zhang, Rui-Fen; Guo, Ying; Li, Yuan-Yuan; Zhou, Li-Jie; Hao, Yu-Jin; You, Chun-Xiang

    2016-07-01

    SUMOylation, the conjugation of target proteins with SUMO (small ubiquitin-related modifier), is a type of post-translational modification in eukaryotes and involves the sequential action of activation (E1), conjugation (E2) and ligation (E3) enzymes. In Arabidopsis, the AtSIZ1 protein is a SUMO E3 ligase that promotes the conjugation of SUMO proteins to target substrates. Here, we isolated and identified a SUMO E3 ligase, MdSIZ1, in apple, which was similar to AtSIZ1. SUMOylation analysis showed that MdSIZ1 had SUMO E3 ligase activity in vitro and in vivo. SUMO conjugation was increased by high temperatures, low temperatures, and abscisic acid (ABA). The ectopic expression of MdSIZ1 in Arabidopsis siz1-2 mutant plants partially complemented the morphological mutant phenotype and enhanced the levels of SUMO conjugation. Taken together, these results suggest that MdSIZ1-mediated SUMO conjugation of target proteins is an important process that regulates the adaptation of apple plants to various environmental stresses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Overview of the membrane-associated RING-CH (MARCH) E3 ligase family.

    PubMed

    Bauer, Johannes; Bakke, Oddmund; Morth, J Preben

    2017-09-25

    E3 ligases are critical checkpoints for protein ubiquitination, a signal that often results in protein sorting and degradation but has also been linked to regulation of transcription and DNA repair. In line with their key role in cellular trafficking and cell-cycle control, malfunction of E3 ligases is often linked to human disease. Thus, they have emerged as prime drug targets. However, the molecular basis of action of membrane-bound E3 ligases is still unknown. Here, we review the current knowledge on the membrane-embedded MARCH E3 ligases (MARCH-1-6,7,8,11) with a focus on how the transmembrane regions can contribute via GxxxG-motifs to the selection and recognition of other membrane proteins as substrates for ubiquitination. Further understanding of the molecular parameters that govern target protein recognition of MARCH E3 ligases will contribute to development of strategies for therapeutic regulation of MARCH-induced ubiquitination. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Role of SKP1-CUL1-F-Box-Protein (SCF) E3 Ubiquitin Ligases in Skin Cancer

    PubMed Central

    Xie, Chuan-Ming; Wei, Wenyi; Sun, Yi

    2013-01-01

    Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin—proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis. PMID:23522382

  7. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases.

    PubMed

    Boomsma, Wouter; Nielsen, Sofie V; Lindorff-Larsen, Kresten; Hartmann-Petersen, Rasmus; Ellgaard, Lars

    2016-01-01

    The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is

  8. Increased A20-E3 ubiquitin ligase interactions in bid-deficient glia attenuate TLR3- and TLR4-induced inflammation.

    PubMed

    Kinsella, Sinéad; Fichtner, Michael; Watters, Orla; König, Hans-Georg; Prehn, Jochen H M

    2018-05-02

    Chronic pro-inflammatory signaling propagates damage to neural tissue and affects the rate of disease progression. Increased activation of Toll-like receptors (TLRs), master regulators of the innate immune response, is implicated in the etiology of several neuropathologies including amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. Previously, we identified that the Bcl-2 family protein BH3-interacting domain death agonist (Bid) potentiates the TLR4-NF-κB pro-inflammatory response in glia, and specifically characterized an interaction between Bid and TNF receptor associated factor 6 (TRAF6) in microglia in response to TLR4 activation. We assessed the activation of mitogen-activated protein kinase (MAPK) and interferon regulatory factor 3 (IRF3) inflammatory pathways in response to TLR3 and TLR4 agonists in wild-type (wt) and bid-deficient microglia and macrophages, using Western blot and qPCR, focusing on the response of the E3 ubiquitin ligases Pellino 1 (Peli1) and TRAF3 in the absence of microglial and astrocytic Bid. Additionally, by Western blot, we investigated the Bid-dependent turnover of Peli1 and TRAF3 in wt and bid -/- microglia using the proteasome inhibitor Bortezomib. Interactions between the de-ubiquitinating Smad6-A20 and the E3 ubiquitin ligases, TRAF3 and TRAF6, were determined by FLAG pull-down in TRAF6-FLAG or Smad6-FLAG overexpressing wt and bid-deficient mixed glia. We elucidated a positive role of Bid in both TIR-domain-containing adapter-inducing interferon-β (TRIF)- and myeloid differentiation primary response 88 (MyD88)-dependent pathways downstream of TLR4, concurrently implicating TLR3-induced inflammation. We identified that Peli1 mRNA levels were significantly reduced in PolyI:C- and lipopolysaccharide (LPS)-stimulated bid-deficient microglia, suggesting disturbed IRF3 activation. Differential regulation of TRAF3 and Peli1, both essential E3 ubiquitin ligases facilitating TRIF-dependent signaling, was

  9. A Cullin1-Based SCF E3 Ubiquitin Ligase Targets the InR/PI3K/TOR Pathway to Regulate Neuronal Pruning

    PubMed Central

    Wong, Jack Jing Lin; Wang, Cheng; Zhang, Heng; Kirilly, Daniel; Wu, Chunlai; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei

    2013-01-01

    Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning. PMID:24068890

  10. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  11. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases

    PubMed Central

    Lin, Yi-Han; Evans, Timothy R.; Doms, Alexandra G.; Beauchene, Nicole A.; Hierro, Aitor

    2018-01-01

    The eukaryotic ubiquitylation machinery catalyzes the covalent attachment of the small protein modifier ubiquitin to cellular target proteins in order to alter their fate. Microbial pathogens exploit this post-translational modification process by encoding molecular mimics of E3 ubiquitin ligases, eukaryotic enzymes that catalyze the final step in the ubiquitylation cascade. Here, we show that the Legionella pneumophila effector protein RavN belongs to a growing class of bacterial proteins that mimic host cell E3 ligases to exploit the ubiquitylation pathway. The E3 ligase activity of RavN was located within its N-terminal region and was dependent upon interaction with a defined subset of E2 ubiquitin-conjugating enzymes. The crystal structure of the N-terminal region of RavN revealed a U-box-like motif that was only remotely similar to other U-box domains, indicating that RavN is an E3 ligase relic that has undergone significant evolutionary alteration. Substitution of residues within the predicted E2 binding interface rendered RavN inactive, indicating that, despite significant structural changes, the mode of E2 recognition has remained conserved. Using hidden Markov model-based secondary structure analyses, we identified and experimentally validated four additional L. pneumophila effectors that were not previously recognized to possess E3 ligase activity, including Lpg2452/SdcB, a new paralog of SidC. Our study provides strong evidence that L. pneumophila is dedicating a considerable fraction of its effector arsenal to the manipulation of the host ubiquitylation pathway. PMID:29415051

  12. Smad Ubiquitylation Regulatory Factor 1/2 (Smurf1/2) Promotes p53 Degradation by Stabilizing the E3 Ligase MDM2*

    PubMed Central

    Nie, Jing; Xie, Ping; Liu, Lin; Xing, Guichun; Chang, Zhijie; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2010-01-01

    The tumor suppressor p53 protein is tightly regulated by a ubiquitin-proteasomal degradation mechanism. Several E3 ubiquitin ligases, including MDM2 (mouse double minute 2), have been reported to play an essential role in the regulation of p53 stability. However, it remains unclear how the activity of these E3 ligases is regulated. Here, we show that the HECT-type E3 ligase Smurf1/2 (Smad ubiquitylation regulatory factor 1/2) promotes p53 degradation by enhancing the activity of the E3 ligase MDM2. We provide evidence that the role of Smurf1/2 on the p53 stability is not dependent on the E3 activity of Smurf1/2 but rather is dependent on the activity of MDM2. We find that Smurf1/2 stabilizes MDM2 by enhancing the heterodimerization of MDM2 with MDMX, during which Smurf1/2 interacts with MDM2 and MDMX. We finally provide evidence that Smurf1/2 regulates apoptosis through p53. To our knowledge, this is the first report to demonstrate that Smurf1/2 functions as a factor to stabilize MDM2 protein rather than as a direct E3 ligase in regulation of p53 degradation. PMID:20484049

  13. Structure of an E3:E2~Ub Complex Reveals an Allosteric Mechanism Shared among RING/U-box Ligases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruneda, Jonathan N.; Littlefield, Peter J.; Soss, Sarah E.

    2012-09-28

    Despite the widespread importance of RING/U-box E3 ubiquitin ligases in ubiquitin (Ub) signaling, the mechanismby which this class of enzymes facilitates Ub transfer remains enigmatic. Here, we present a structural model for a RING/U-box E3:E2~Ub complex poised for Ub transfer. The model and additional analyses reveal that E3 binding biases dynamic E2~Ub ensembles toward closed conformations with enhanced reactivity for substrate lysines. We identify a key hydrogen bond between a highly conserved E3 side chain and an E2 backbone carbonyl, observed in all structures of active RING/ U-Box E3/E2 pairs, as the linchpin for allosteric activation of E2~Ub. The conformationalmore » biasing mechanism is generalizable across diverse E2s and RING/U-box E3s, but is not shared by HECT-type E3s. The results provide a structural model for a RING/ U-box E3:E2~Ub ligase complex and identify the long sought-after source of allostery for RING/UBox activation of E2~Ub conjugates.« less

  14. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    PubMed

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-04-01

    BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APC FZR1 , APC FZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APC FZR1 , leading to elevation of a cohort of oncogenic APC FZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APC FZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis. Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APC FZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR. See related commentary by Zhang and Bollag, p. 356 This article is highlighted in the In This Issue feature, p. 339 . ©2017 American Association for Cancer Research.

  15. UbMES and UbFluor: Novel probes for ring-between-ring (RBR) E3 ubiquitin ligase PARKIN.

    PubMed

    Park, Sungjin; Foote, Peter K; Krist, David T; Rice, Sarah E; Statsyuk, Alexander V

    2017-10-06

    Ring-between-ring (RBR) E3 ligases have been implicated in autoimmune disorders and neurodegenerative diseases. The functions of many RBR E3s are poorly defined, and their regulation is complex, involving post-translational modifications and allosteric regulation with other protein partners. The functional complexity of RBRs, coupled with the complexity of the native ubiquitination reaction that requires ATP and E1 and E2 enzymes, makes it difficult to study these ligases for basic research and therapeutic purposes. To address this challenge, we developed novel chemical probes, ubiquitin C-terminal fluorescein thioesters UbMES and UbFluor, to qualitatively and quantitatively assess the activity of the RBR E3 ligase PARKIN in a simple experimental setup and in real time using fluorescence polarization. First, we confirmed that PARKIN does not require an E2 enzyme for substrate ubiquitination, lysine selection, and polyubiquitin chain formation. Second, we confirmed that UbFluor quantitatively detects naturally occurring activation states of PARKIN caused by Ser 65 phosphorylation (pPARKIN) and phosphorylated ubiquitin (pUb). Third, we showed that both pUb and the ubiquitin-accepting substrate contribute to maximal pPARKIN ubiquitin conjugation turnover. pUb enhances the transthiolation step, whereas the substrate clears the pPARKIN∼Ub thioester intermediate. Finally, we established that UbFluor can quantify activation or inhibition of PARKIN by structural mutations. These results demonstrate the feasibility of using UbFluor for quantitative studies of the biochemistry of RBR E3s and for high-throughput screening of small-molecule activators or inhibitors of PARKIN and other RBR E3 ligases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing.

    PubMed

    Ivanov, Alexey V; Peng, Hongzhuang; Yurchenko, Vyacheslav; Yap, Kyoko L; Negorev, Dmitri G; Schultz, David C; Psulkowski, Elyse; Fredericks, William J; White, David E; Maul, Gerd G; Sadofsky, Moshe J; Zhou, Ming-Ming; Rauscher, Frank J

    2007-12-14

    Tandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain. The RING finger-like structure of the PHD domain is required for both Ubc9 binding and sumoylation and directs modification to specific lysine residues in the bromodomain. Sumoylation is required for KAP1-mediated gene silencing and functions by directly recruiting the SETDB1 histone methyltransferase and the CHD3/Mi2 component of the NuRD complex via SUMO-interacting motifs. Sumoylated KAP1 stimulates the histone methyltransferase activity of SETDB1. These data provide a mechanistic explanation for the cooperation of PHD and bromodomains in gene regulation and describe a function of the PHD domain as an intramolecular E3 SUMO ligase.

  17. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.

    PubMed

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo

    2013-06-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.

  18. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy.

    PubMed

    Sun, Aiqin; Wei, Jing; Childress, Chandra; Shaw, John H; Peng, Ke; Shao, Genbao; Yang, Wannian; Lin, Qiong

    2017-03-04

    The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.

  19. The adenovirus E4-ORF3 protein functions as a SUMO E3 ligase for TIF-1γ sumoylation and poly-SUMO chain elongation.

    PubMed

    Sohn, Sook-Young; Hearing, Patrick

    2016-06-14

    The adenovirus (Ad) early region 4 (E4)-ORF3 protein regulates diverse cellular processes to optimize the host environment for the establishment of Ad replication. E4-ORF3 self-assembles into multimers to form a nuclear scaffold in infected cells and creates distinct binding interfaces for different cellular target proteins. Previous studies have shown that the Ad5 E4-ORF3 protein induces sumoylation of multiple cellular proteins and subsequent proteasomal degradation of some of them, but the detailed mechanism of E4-ORF3 function remained unknown. Here, we investigate the role of E4-ORF3 in the sumoylation process by using transcription intermediary factor (TIF)-1γ as a substrate. Remarkably, we discovered that purified E4-ORF3 protein stimulates TIF-1γ sumoylation in vitro, demonstrating that E4-ORF3 acts as a small ubiquitin-like modifier (SUMO) E3 ligase. Furthermore, E4-ORF3 significantly increases poly-SUMO3 chain formation in vitro in the absence of substrate, showing that E4-ORF3 has SUMO E4 elongase activity. An E4-ORF3 mutant, which is defective in protein multimerization, exhibited severely decreased activity, demonstrating that E4-ORF3 self-assembly is required for these activities. Using a SUMO3 mutant, K11R, we found that E4-ORF3 facilitates the initial acceptor SUMO3 conjugation to TIF-1γ as well as poly-SUMO chain elongation. The E4-ORF3 protein displays no SUMO-targeted ubiquitin ligase activity in our assay system. These studies reveal the mechanism by which E4-ORF3 targets specific cellular proteins for sumoylation and proteasomal degradation and provide significant insight into how a small viral protein can play a role as a SUMO E3 ligase and E4-like SUMO elongase to impact a variety of cellular responses.

  20. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy

    PubMed Central

    Sun, Aiqin; Wei, Jing; Childress, Chandra; Shaw, John H.; Peng, Ke; Shao, Genbao; Yang, Wannian; Lin, Qiong

    2017-01-01

    ABSTRACT The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy. PMID:28085563

  1. Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants[W

    PubMed Central

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo

    2013-01-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371

  2. Aurora Kinase A Promotes AR Degradation via the E3 Ligase CHIP.

    PubMed

    Sarkar, Sukumar; Brautigan, David L; Larner, James M

    2017-08-01

    Reducing the levels of the androgen receptor (AR) is one of the most viable approaches to combat castration-resistant prostate cancer. Previously, we observed that proteasomal-dependent degradation of AR in response to 2-methoxyestradiol (2-ME) depends primarily on the E3 ligase C-terminus of HSP70-interacting protein (STUB1/CHIP). Here, 2-ME stimulation activates CHIP by phosphorylation via Aurora kinase A (AURKA). Aurora A kinase inhibitors and RNAi knockdown of Aurora A transcript selectively blocked CHIP phosphorylation and AR degradation. Aurora A kinase is activated by 2-ME in the S-phase as well as during mitosis, and phosphorylates CHIP at S273. Prostate cancer cells expressing an S273A mutant of CHIP have attenuated AR degradation upon 2-ME treatment compared with cells expressing wild-type CHIP, supporting the idea that CHIP phosphorylation by Aurora A activates its E3 ligase activity for the AR. These results reveal a novel 2-ME→Aurora A→CHIP→AR pathway that promotes AR degradation via the proteasome that may offer novel therapeutic opportunities for prostate cancer. Mol Cancer Res; 15(8); 1063-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Functional characterization of EI24-induced autophagy in the degradation of RING-domain E3 ligases

    PubMed Central

    Devkota, Sushil; Jeong, Hyobin; Kim, Yunmi; Ali, Muhammad; Roh, Jae-il; Hwang, Daehee; Lee, Han-Woong

    2016-01-01

    ABSTRACT Historically, the ubiquitin-proteasome system (UPS) and autophagy pathways were believed to be independent; however, recent data indicate that these pathways engage in crosstalk. To date, the players mediating this crosstalk have been elusive. Here, we show experimentally that EI24 (EI24, autophagy associated transmembrane protein), a key component of basal macroautophagy/autophagy, degrades 14 physiologically important E3 ligases with a RING (really interesting new gene) domain, whereas 5 other ligases were not degraded. Based on the degradation results, we built a statistical model that predicts the RING E3 ligases targeted by EI24 using partial least squares discriminant analysis. Of 381 RING E3 ligases examined computationally, our model predicted 161 EI24 targets. Those targets are primarily involved in transcription, proteolysis, cellular bioenergetics, and apoptosis and regulated by TP53 and MTOR signaling. Collectively, our work demonstrates that EI24 is an essential player in UPS-autophagy crosstalk via degradation of RING E3 ligases. These results indicate a paradigm shift regarding the fate of E3 ligases. PMID:27541728

  4. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  5. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity.

    PubMed

    Kumar, Atul; Chaugule, Viduth K; Condos, Tara E C; Barber, Kathryn R; Johnson, Clare; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Knebel, Axel; Shaw, Gary S; Walden, Helen

    2017-05-01

    RING-between-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR ligase is Parkin, mutations in which lead to early-onset hereditary Parkinsonism. Parkin and other RBR ligases share a catalytic RBR module but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during Parkin activation. However, current data on active RBR ligases reflect the absence of regulatory domains. Therefore, it remains unclear how individual RBR ligases are activated, and whether they share a common mechanism. We now report the crystal structure of a human Parkin-phosphoubiquitin complex, which shows that phosphoubiquitin binding induces movement in the 'in-between RING' (IBR) domain to reveal a cryptic ubiquitin-binding site. Mutation of this site negatively affects Parkin's activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, which suggests a role for interdomain association in the RBR ligase mechanism.

  6. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium.

    PubMed

    Liu, Feng; Wang, Xiao; Su, Mengying; Yu, Mengyuan; Zhang, Shengchun; Lai, Jianbin; Yang, Chengwei; Wang, Yaqin

    2015-09-17

    SUMOylation is an important post-translational modification of eukaryotic proteins that involves the reversible conjugation of a small ubiquitin-related modifier (SUMO) polypeptide to its specific protein substrates, thereby regulating numerous complex cellular processes. The PIAS (protein inhibitor of activated signal transducers and activators of transcription [STAT]) and SIZ (scaffold attachment factor A/B/acinus/PIAS [SAP] and MIZ) proteins are SUMO E3 ligases that modulate SUMO conjugation. The characteristic features and SUMOylation mechanisms of SIZ1 protein in monocotyledon are poorly understood. Here, we examined the functions of a homolog of Arabidopsis SIZ1, a functional SIZ/PIAS-type SUMO E3 ligase from Dendrobium. In Dendrobium, the predicted DnSIZ1 protein has domains that are highly conserved among SIZ/PIAS-type proteins. DnSIZ1 is widely expressed in Dendrobium organs and has a up-regulated trend by treatment with cold, high temperature and wounding. The DnSIZ1 protein localizes to the nucleus and shows SUMO E3 ligase activity when expressed in an Escherichia coli reconstitution system. Moreover, ectopic expression of DnSIZ1 in the Arabidopsis siz1-2 mutant partially complements several phenotypes and results in enhanced levels of SUMO conjugates in plants exposed to heat shock conditions. We observed that DnSIZ1 acts as a negative regulator of flowering transition which may be via a vernalization-induced pathway. In addition, ABA-hypersensitivity of siz1-2 seed germination can be partially suppressed by DnSIZ1. Our results suggest that DnSIZ1 is a functional homolog of the Arabidopsis SIZ1 with SUMO E3 ligase activity and may play an important role in the regulation of Dendrobium stress responses, flowering and development.

  7. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity

    PubMed Central

    Kazlauskaite, Agne; Kelly, Van; Johnson, Clare; Baillie, Carla; Hastie, C. James; Peggie, Mark; Macartney, Thomas; Woodroof, Helen I.; Alessi, Dario R.; Pedrioli, Patrick G. A.; Muqit, Miratul M. K.

    2014-01-01

    Mutations in PINK1 and Parkin are associated with early-onset Parkinson's disease. We recently discovered that PINK1 phosphorylates Parkin at serine65 (Ser65) within its Ubl domain, leading to its activation in a substrate-free activity assay. We now demonstrate the critical requirement of Ser65 phosphorylation for substrate ubiquitylation through elaboration of a novel in vitro E3 ligase activity assay using full-length untagged Parkin and its putative substrate, the mitochondrial GTPase Miro1. We observe that Parkin efficiently ubiquitylates Miro1 at highly conserved lysine residues, 153, 230, 235, 330 and 572, upon phosphorylation by PINK1. We have further established an E2-ubiquitin discharge assay to assess Parkin activity and observe robust discharge of ubiquitin-loaded UbcH7 E2 ligase upon phosphorylation of Parkin at Ser65 by wild-type, but not kinase-inactive PINK1 or a Parkin Ser65Ala mutant, suggesting a possible mechanism of how Ser65 phosphorylation may activate Parkin E3 ligase activity. For the first time, to the best of our knowledge, we report the effect of Parkin disease-associated mutations in substrate-based assays using full-length untagged recombinant Parkin. Our mutation analysis indicates an essential role for the catalytic cysteine Cys431 and reveals fundamental new knowledge on how mutations may confer pathogenicity via disruption of Miro1 ubiquitylation, free ubiquitin chain formation or by impacting Parkin's ability to discharge ubiquitin from a loaded E2. This study provides further evidence that phosphorylation of Parkin at Ser65 is critical for its activation. It also provides evidence that Miro1 is a direct Parkin substrate. The assays and reagents developed in this study will be important to uncover new insights into Parkin biology as well as aid in the development of screens to identify small molecule Parkin activators for the treatment of Parkinson's disease. PMID:24647965

  8. AQP2 Abundance is Regulated by the E3-Ligase CHIP Via HSP70.

    PubMed

    Centrone, Mariangela; Ranieri, Marianna; Di Mise, Annarita; Berlingerio, Sante Princiero; Russo, Annamaria; Deen, Peter M T; Staub, Olivier; Valenti, Giovanna; Tamma, Grazia

    2017-01-01

    AQP2 expression is mainly controlled by vasopressin-dependent changes in protein abundance which is in turn regulated by AQP2 ubiquitylation and degradation, however the proteins involved in these processes are largely unknown. Here, we investigated the potential role of the CHIP E3 ligase in AQP2 regulation. MCD4 cells and kidney slices were used to study the involvement of the E3 ligase CHIP on AQP2 protein abundance by cell homogenization and immunoprecipitation followed by immunoblotting. We found that AQP2 complexes with CHIP in renal tissue. Expression of CHIP increased proteasomal degradation of AQP2 and HSP70 abundance, a molecular signature of HSP90 inhibition. Increased HSP70 level, secondary to CHIP expression, promoted ERK signaling resulting in increased AQP2 phosphorylation at S261. Phosphorylation of AQP2 at S256 and T269 were instead downregulated. Next, we investigated HSP70 interaction with AQP2, which is important for endocytosis. Compared with AQP2-wt, HSP70 binding decreased in AQP2-S256D and AQP2-S256D-S261D, while increased in AQP2-S256D-S261A. Surprisingly, expression of CHIP-delUbox, displaying a loss of E3 ligase activity, still induced AQP2 degradation, indicating that CHIP does not ubiquitylate and degrade AQP2 itself. Conversely, the AQP2 half-life was increased upon the expression of CHIP-delTPR a domain which binds Hsc70/HSP70 and HSP90. HSP70 has been reported to bind other E3 ligases such as MDM2. Notably, we found that co-expression of CHIP and MDM2 increased AQP2 degradation, whereas co-expression of CHIP with MDM2-delRING, an inactive form of MDM2, impaired AQP2 degradation. Our findings indicate CHIP as a master regulator of AQP2 degradation via HSP70 that has dual functions: (1) as chaperone for AQP2 and (2) as an anchoring protein for MDM2 E3 ligase, which is likely to be involved in AQP2 degradation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin/proteasome pathway is the principal system for degradation of proteins in eukaryotes. Ubiquitin is a highly conserved polypeptide that covalently attaches to target proteins through the combined action ofubiquitin-activating enzyme (E1), conjugating enzyme (E2) and a protein ligase (E...

  10. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.

    PubMed

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.

  11. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue

    PubMed Central

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    2016-01-01

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation. PMID:27685940

  12. PHD Domain-Mediated E3 Ligase Activity Directs Intramolecular Sumoylation of an Adjacent Bromodomain which is Required for Gene Silencing

    PubMed Central

    Ivanov, Alexey V.; Peng, Hongzhuang; Yurchenko, Vyacheslav; Yap, Kyoko L.; Negorev, Dmitri G.; Schultz, David C.; Psulkowski, Elyse; Fredericks, William J.; White, David E.; Maul, Gerd G.; Sadofsky, Moshe J.; Zhou, Ming-Ming; Rauscher, Frank J.

    2015-01-01

    SUMMARY Tandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain. The RING finger-like structure of the PHD domain is required for both Ubc9 binding and sumoylation and directs modification to specific lysine residues in the bromodomain. Sumoylation is required for KAP1-mediated gene silencing and functions by directly recruiting the SETDB1 histone methyltransferase and the CHD3/Mi2 component of the NuRD complex via SUMO interacting motifs. Sumoylated KAP1 stimulates the histone methyltransferase activity of SETDB1. These data provide a mechanistic explanation for the cooperation of PHD and bromodomains in gene regulation and describe a new function of the PHD domain as an intramolecular E3 SUMO ligase. PMID:18082607

  13. Identification of Arabidopsis MYB56 as a novel substrate for CRL3(BPM) E3 ligases.

    PubMed

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2015-02-01

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work, MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies have indicated that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling flowering time in plants. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  14. New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases

    PubMed Central

    Canning, Peter; Bullock, Alex N.

    2014-01-01

    E3 ubiquitin ligases that direct substrate proteins to the ubiquitin–proteasome system are promising, though largely unexplored drug targets both because of their function and their remarkable specificity. CRLs [Cullin–RING (really interesting new gene) ligases] are the largest group of E3 ligases and function as modular multisubunit complexes constructed around a Cullin-family scaffold protein. The Cul3-based CRLs uniquely assemble with BTB (broad complex/tramtrack/bric-à-brac) proteins that also homodimerize and perform the role of both the Cullin adapter and the substrate-recognition component of the E3. The most prominent member is the BTB–BACK (BTB and C-terminal Kelch)–Kelch protein KEAP1 (Kelch-like ECH-associated protein 1), a master regulator of the oxidative stress response and a potential drug target for common conditions such as diabetes, Alzheimer's disease and Parkinson's disease. Structural characterization of BTB–Cul3 complexes has revealed a number of critical assembly mechanisms, including the binding of an N-terminal Cullin extension to a bihelical ‘3-box’ at the C-terminus of the BTB domain. Improved understanding of the structure of these complexes should contribute significantly to the effort to develop novel therapeutics targeted to CRL3-regulated pathways. PMID:24450635

  15. Protein–Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP)*

    PubMed Central

    Narayan, Vikram; Landré, Vivien; Ning, Jia; Hernychova, Lenka; Muller, Petr; Verma, Chandra; Walkinshaw, Malcolm D.; Blackburn, Elizabeth A.; Ball, Kathryn L.

    2015-01-01

    CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control. PMID:26330542

  16. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    PubMed Central

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  17. E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury.

    PubMed

    Xue, Pengfei; Liu, Xiaojuan; Shen, Yiming; Ju, Yuanyuan; Lu, Xiongsong; Zhang, Jinlong; Xu, Guanhua; Sun, Yuyu; Chen, Jiajia; Gu, Haiyan; Cui, Zhiming; Bao, Guofeng

    2018-06-22

    E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1β and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.

  18. Implication of SUMO E3 ligases in nucleotide excision repair.

    PubMed

    Tsuge, Maasa; Kaneoka, Hidenori; Masuda, Yusuke; Ito, Hiroki; Miyake, Katsuhide; Iijima, Shinji

    2015-08-01

    Post-translational modifications alter protein function to mediate complex hierarchical regulatory processes that are crucial to eukaryotic cellular function. The small ubiquitin-like modifier (SUMO) is an important post-translational modification that affects transcriptional regulation, nuclear localization, and the maintenance of genome stability. Nucleotide excision repair (NER) is a very versatile DNA repair system that is essential for protection against ultraviolet (UV) irradiation. The deficiencies in NER function remarkably increase the risk of skin cancer. Recent studies have shown that several NER factors are SUMOylated, which influences repair efficiency. However, how SUMOylation modulates NER has not yet been elucidated. In the present study, we performed RNAi knockdown of SUMO E3 ligases and found that, in addition to PIASy, the polycomb protein Pc2 affected the repair of cyclobutane pyrimidine dimers. PIAS1 affected both the removal of 6-4 pyrimidine pyrimidone photoproducts and cyclobutane pyrimidine dimers, whereas other SUMO E3 ligases did not affect the removal of either UV lesion.

  19. Identification of Arabidopsis MYB56 as a novel substrate for CRL3BPM E3 ligases.

    PubMed

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2014-10-24

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies pointed out that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling the flowering time point in plants. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  20. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I.

    PubMed

    van den Boomen, Dick J H; Timms, Richard T; Grice, Guinevere L; Stagg, Helen R; Skødt, Karsten; Dougan, Gordon; Nathan, James A; Lehner, Paul J

    2014-08-05

    The US11 gene product of human cytomegalovirus promotes viral immune evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US11 initiates dislocation of newly translocated MHC I from the ER to the cytosol for proteasome-mediated degradation. Despite the critical role for ubiquitin in this degradation pathway, the responsible E3 ligase is unknown. In a forward genetic screen for host ERAD components hijacked by US11 in near-haploid KBM7 cells, we identified TMEM129, an uncharacterized polytopic membrane protein. TMEM129 is essential and rate-limiting for US11-mediated MHC-I degradation and acts as a novel ER resident E3 ubiquitin ligase. TMEM129 contains an unusual cysteine-only RING with intrinsic E3 ligase activity and is recruited to US11 via Derlin-1. Together with its E2 conjugase Ube2J2, TMEM129 is responsible for the ubiquitination, dislocation, and subsequent degradation of US11-associated MHC-I. US11 engages two degradation pathways: a Derlin-1/TMEM129-dependent pathway required for MHC-I degradation and a SEL1L/HRD1-dependent pathway required for "free" US11 degradation. Our data show that TMEM129 is a novel ERAD E3 ligase and the central component of a novel mammalian ERAD complex.

  1. A screen for E3 ubiquitination ligases that genetically interact with the adaptor protein Cindr during Drosophila eye patterning

    PubMed Central

    Ketosugbo, Kwami F.; Bushnell, Henry L.

    2017-01-01

    Ubiquitination is a crucial post-translational modification that can target proteins for degradation. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquitination, hence providing specificity to the process of protein degradation. Here, we describe a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype generated by expression of cindrRNAi transgenes during Drosophila eye development. In total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell survival. Three E3 ligases identified in our screen had previously been linked to regulating JNK signaling. PMID:29117266

  2. Testing the Effects of SIAH Ubiquitin E3 Ligases on Lysine Acetyl Transferases.

    PubMed

    Hagenbucher, Jan; Stekman, Hilda; Rodriguez-Gil, Alfonso; Kracht, Michael; Schmitz, M Lienhard

    2017-01-01

    The family of seven-in-absentia (SIAH) ubiquitin E3 ligases functions in the control of numerous key signaling pathways. These enzymes belong to the RING (really interesting new gene) group of E3 ligases and mediate the attachment of ubiquitin chains to substrates, which then leads to their proteasomal degradation. Here, we describe a protocol that allows measuring SIAH-mediated ubiquitination and degradation of its client proteins as exemplified by acetyl transferases using simple overexpression experiments. The impact of SIAH expression on the relative amounts of target proteins and their mRNAs can be quantified by Western blotting and quantitative PCR (qPCR) as described here.

  3. UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1

    PubMed Central

    Xie, Lisi; Lang-Mladek, Christina; Richter, Julia; Nigam, Neha; Hauser, Marie-Theres

    2015-01-01

    The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV RESISTANCE LOCUS 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B. PMID:25817546

  4. Wheat germ-based protein libraries for the functional characterisation of the Arabidopsis E2 ubiquitin conjugating enzymes and the RING-type E3 ubiquitin ligase enzymes.

    PubMed

    Ramadan, Abdelaziz; Nemoto, Keiichirou; Seki, Motoaki; Shinozaki, Kazuo; Takeda, Hiroyuki; Takahashi, Hirotaka; Sawasaki, Tatsuya

    2015-11-10

    Protein ubiquitination is a ubiquitous mechanism in eukaryotes. In Arabidopsis, ubiquitin modification is mainly mediated by two ubiquitin activating enzymes (E1s), 37 ubiquitin conjugating enzymes (E2s), and more than 1300 predicted ubiquitin ligase enzymes (E3s), of which ~470 are RING-type E3s. A large proportion of the RING E3's gene products have yet to be characterised in vitro, likely because of the laborious work involved in large-scale cDNA cloning and protein expression, purification, and characterisation. In addition, several E2s, which might be necessary for the activity of certain E3 ligases, cannot be expressed by Escherichia coli or cultured insect cells and, therefore, remain uncharacterised. Using the RIKEN Arabidopsis full-length cDNA library (RAFL) with the 'split-primer' PCR method and a wheat germ cell-free system, we established protein libraries of Arabidopsis E2 and RING E3 enzymes. We expressed 35 Arabidopsis E2s including six enzymes that have not been previously expressed, and 204 RING proteins, most of which had not been functionally characterised. Thioester assays using dithiothreitol (DTT) showed DTT-sensitive ubiquitin thioester formation for all E2s expressed. In expression assays of RING proteins, 31 proteins showed high molecular smears, which are probably the result of their functional activity. The activities of another 27 RING proteins were evaluated with AtUBC10 and/or a group of different E2s. All the 27 RING E3s tested showed ubiquitin ligase activity, including 17 RING E3s. Their activities are reported for the first time. The wheat germ cell-free system used in our study, which is a eukaryotic expression system and more closely resembles the endogenous expression of plant proteins, is very suitable for expressing Arabidopsis E2s and RING E3s in their functional form. In addition, the protein libraries described here can be used for further understanding E2-E3 specificities and as platforms for protein-protein interaction

  5. The Red Light Receptor Phytochrome B Directly Enhances Substrate-E3 Ligase Interactions to Attenuate Ethylene Responses.

    PubMed

    Shi, Hui; Shen, Xing; Liu, Renlu; Xue, Chang; Wei, Ning; Deng, Xing Wang; Zhong, Shangwei

    2016-12-05

    Plants germinating under subterranean darkness assume skotomorphogenesis, a developmental program strengthened by ethylene in response to mechanical pressure of soil. Upon reaching the surface, light triggers a dramatic developmental transition termed de-etiolation that requires immediate termination of ethylene responses. Here, we report that light activation of photoreceptor phyB results in rapid degradation of EIN3, the master transcription factor in the ethylene signaling pathway. As a result, light rapidly and efficiently represses ethylene actions. Specifically, phyB directly interacts with EIN3 in a light-dependent manner and also physically associates with F box protein EBFs. The light-activated association of phyB, EIN3, and EBF1/EBF2 proteins stimulates robust EIN3 degradation by SCF EBF1/EBF2 E3 ligases. We reveal that phyB manipulates substrate-E3 ligase interactions in a light-dependent manner, thus directly controlling the stability of EIN3. Our findings illustrate a mechanistic model of how plants transduce light information to immediately turn off ethylene signaling for de-etiolation initiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants.

    PubMed

    Nakano, Masahito; Oda, Kenji; Mukaihara, Takafumi

    2017-07-01

    Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects more than 70 effector proteins into host plant cells via the Hrp type III secretion system to cause a successful infection. However, the function of these effectors in plant cells, especially in the suppression of plant immunity, remains largely unknown. In this study, we characterized two Ralstonia solanacearum effectors, RipAW and RipAR, which share homology with the IpaH family of effectors from animal and plant pathogenic bacteria, that have a novel E3 ubiquitin ligase (NEL) domain. Recombinant RipAW and RipAR show E3 ubiquitin ligase activity in vitro. RipAW and RipAR localized to the cytoplasm of plant cells and significantly suppressed pattern-triggered immunity (PTI) responses such as the production of reactive oxygen species and the expression of defence-related genes when expressed in leaves of Nicotiana benthamiana. Mutation in the conserved cysteine residue in the NEL domain of RipAW completely abolished the E3 ubiquitin ligase activity in vitro and the ability to suppress PTI responses in plant leaves. These results indicate that RipAW suppresses plant PTI responses through the E3 ubiquitin ligase activity. Unlike other members of the IpaH family of effectors, RipAW and RipAR had no leucine-rich repeat motifs in their amino acid sequences. A conserved C-terminal region of RipAW is indispensable for PTI suppression. Transgenic Arabidopsis plants expressing RipAW and RipAR showed increased disease susceptibility, suggesting that RipAW and RipAR contribute to bacterial virulence in plants.

  7. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians.

    PubMed

    Henderson, Jordana M; Nisperos, Sean V; Weeks, Joi; Ghulam, Mahjoobah; Marín, Ignacio; Zayas, Ricardo M

    2015-08-15

    E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. GNIP1 E3 ubiquitin ligase is a novel player in regulating glycogen metabolism in skeletal muscle.

    PubMed

    Montori-Grau, Marta; Pedreira-Casahuga, Robert; Boyer-Díaz, Zoé; Lassot, Iréna; García-Martínez, Celia; Orozco, Anna; Cebrià, Judith; Osorio-Conles, Oscar; Chacón, Matilde R; Vendrell, Joan; Vázquez-Carrera, Manuel; Desagher, Solange; Jiménez-Chillarón, Josep Carles; Gómez-Foix, Anna Ma

    2018-06-01

    Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/β (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qi; Wang, Zhongduo; Hou, Feng

    2017-01-01

    Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. Wemore » used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.« less

  10. Parkin-phosphoubiquitin complex reveals a cryptic ubiquitin binding site required for RBR ligase activity

    PubMed Central

    Kumar, Atul; Chaugule, Viduth K; Condos, Tara E C; Barber, Kathryn R; Johnson, Clare; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Knebel, Axel; Shaw, Gary S; Walden, Helen

    2017-01-01

    RING-BETWEENRING-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR is Parkin, mutations in which lead to early onset hereditary Parkinsonism. Parkin and other RBRs share a catalytic RBR module, but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during activation of Parkin. However, current data on active RBRs are in the absence of regulatory domains. Therefore, how individual RBRs are activated, and whether they share a common mechanism remains unclear. We now report the crystal structure of a human Parkin-phosphoubiquitin complex, which shows that phosphoubiquitin binding induces a movement in the IBR domain to reveal a cryptic ubiquitin binding site. Mutation of this site negatively impacts on Parkin’s activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, suggesting a role for interdomain association in RBR ligase mechanism. PMID:28414322

  11. Investigation of the intermolecular recognition mechanism between the E3 ubiquitin ligase Keap1 and substrate based on multiple substrates analysis.

    PubMed

    Jiang, Zheng-Yu; Xu, Li-Li; Lu, Meng-Chen; Pan, Yang; Huang, Hao-Ze; Zhang, Xiao-Jin; Sun, Hao-Peng; You, Qi-Dong

    2014-12-01

    E3 ubiquitin ligases are attractive drug targets due to their specificity to the ubiquitin machinery. However, the development of E3 ligase inhibitors has proven challenging for the fact that they must disrupt protein-protein interactions (PPIs). The E3 ligase involved in interactome provide new hope for the discovery of the E3 ligase inhibitors. These currently known natural binding partners of the E3 ligase can benefit the discovery of other unknown substrates and also the E3 ligase inhibitors. Herein, we present a novel strategy that using multiple substrates to elucidate the molecular recognition mechanism of E3 ubiquitin ligase. Molecular dynamics simulation, molecular mechanics-generalized born surface area (MM-GBSA) binding energy calculation and energy decomposition scheme were incorporated to evaluate the quantitative contributions of sub-pocket and per-residue to binding. In this case, Kelch-like ECH-associated protein-1 (Keap1), a substrate adaptor component of the Cullin-RING ubiquitin ligases complex, is applied for the investigation of how it recognize its substrates, especially Nrf2, a master regulator of the antioxidant response. By analyzing multiple substrates binding determinants, we found that both the polar sub-pockets (P1 and P2) and the nonpolar sub-pockets (P4 and P5) of Keap1 can make remarkable contributions to intermolecular interactions. This finding stresses the requirement for substrates to interact with the polar and nonpolar sub-pockets simultaneously. The results discussed in this paper not only show the binding determinants of the Keap1 substrates but also provide valuable implications for both Keap1 substrate discovery and PPI inhibitor design.

  12. Investigation of the intermolecular recognition mechanism between the E3 ubiquitin ligase Keap1 and substrate based on multiple substrates analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zheng-Yu; Xu, Li-Li; Lu, Meng-Chen; Pan, Yang; Huang, Hao-Ze; Zhang, Xiao-Jin; Sun, Hao-Peng; You, Qi-Dong

    2014-12-01

    E3 ubiquitin ligases are attractive drug targets due to their specificity to the ubiquitin machinery. However, the development of E3 ligase inhibitors has proven challenging for the fact that they must disrupt protein-protein interactions (PPIs). The E3 ligase involved in interactome provide new hope for the discovery of the E3 ligase inhibitors. These currently known natural binding partners of the E3 ligase can benefit the discovery of other unknown substrates and also the E3 ligase inhibitors. Herein, we present a novel strategy that using multiple substrates to elucidate the molecular recognition mechanism of E3 ubiquitin ligase. Molecular dynamics simulation, molecular mechanics-generalized born surface area (MM-GBSA) binding energy calculation and energy decomposition scheme were incorporated to evaluate the quantitative contributions of sub-pocket and per-residue to binding. In this case, Kelch-like ECH-associated protein-1 (Keap1), a substrate adaptor component of the Cullin-RING ubiquitin ligases complex, is applied for the investigation of how it recognize its substrates, especially Nrf2, a master regulator of the antioxidant response. By analyzing multiple substrates binding determinants, we found that both the polar sub-pockets (P1 and P2) and the nonpolar sub-pockets (P4 and P5) of Keap1 can make remarkable contributions to intermolecular interactions. This finding stresses the requirement for substrates to interact with the polar and nonpolar sub-pockets simultaneously. The results discussed in this paper not only show the binding determinants of the Keap1 substrates but also provide valuable implications for both Keap1 substrate discovery and PPI inhibitor design.

  13. LIN-23, an E3 Ubiquitin Ligase Component, Is Required for the Repression of CDC-25.2 Activity during Intestinal Development in Caenorhabditis elegans.

    PubMed

    Son, Miseol; Kawasaki, Ichiro; Oh, Bong-Kyeong; Shim, Yhong-Hee

    2016-11-30

    Caenorhabditis elegans ( C. elegans ) utilizes two different cell-cycle modes, binucleations during the L1 larval stage and endoreduplications at four larval moltings, for its postembryonic intestinal development. Previous genetic studies indicated that CDC-25.2 is specifically required for binucleations at the L1 larval stage and is repressed before endoreduplications. Furthermore, LIN-23, the C. elegans β-TrCP ortholog, appears to function as a repressor of CDC-25.2 to prevent excess intestinal divisions. We previously reported that intestinal hyperplasia in lin-23(e1883) mutants was effectively suppressed by the RNAi depletion of cdc-25.2 . Nevertheless, LIN-23 targeting CDC-25.2 for ubiquitination as a component of E3 ubiquitin ligase has not yet been tested. In this study, LIN-23 is shown to be the major E3 ubiquitin ligase component, recognizing CDC-25.2 to repress their activities for proper transition of cell-cycle modes during the C. elegans postembryonic intestinal development. In addition, for the first time that LIN-23 physically interacts with both CDC-25.1 and CDC-25.2 and facilitates ubiquitination for timely regulation of their activities during the intestinal development.

  14. Ubiquitin Ligases: Structure, Function, and Regulation.

    PubMed

    Zheng, Ning; Shabek, Nitzan

    2017-06-20

    Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.

  15. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang, E-mail: gux2002@suda.edu.cn

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement ofmore » this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.« less

  16. Phylogenetic analysis of the SINA/SIAH ubiquitin E3 ligase family in Metazoa.

    PubMed

    Pepper, Ian J; Van Sciver, Robert E; Tang, Amy H

    2017-08-07

    The RAS signaling pathway is a pivotal developmental pathway that controls many fundamental biological processes including cell proliferation, differentiation, movement and apoptosis. Drosophila Seven-IN-Absentia (SINA) is a ubiquitin E3 ligase that is the most downstream signaling "gatekeeper" whose biological activity is essential for proper RAS signal transduction. Vertebrate SINA homologs (SIAHs) share a high degree of amino acid identity with that of Drosophila SINA. SINA/SIAH is the most conserved signaling component in the canonical EGFR/RAS/RAF/MAPK signal transduction pathway. Vertebrate SIAH1, 2, and 3 are the three orthologs to invertebrate SINA protein. SINA and SIAH1 orthologs are found in all major taxa of metazoans. These proteins have four conserved functional domains, known as RING (Really Interesting New Gene), SZF (SIAH-type zinc finger), SBS (substrate binding site) and DIMER (Dimerization). In addition to the siah1 gene, most vertebrates encode two additional siah genes (siah2 and siah3) in their genomes. Vertebrate SIAH2 has a highly divergent and extended N-terminal sequence, while its RING, SZF, SBS and DIMER domains maintain high amino acid identity/similarity to that of SIAH1. But unlike vertebrate SIAH1 and SIAH2, SIAH3 lacks a functional RING domain, suggesting that SIAH3 may be an inactive E3 ligase. The SIAH3 subtree exhibits a high degree of amino acid divergence when compared to the SIAH1 and SIAH2 subtrees. We find that SIAH1 and SIAH2 are expressed in all human epithelial cell lines examined thus far, while SIAH3 is only expressed in a limited subset of cancer cell lines. Through phylogenetic analyses of metazoan SINA and SIAH E3 ligases, we identified many invariant and divergent amino acid residues, as well as the evolutionarily conserved functional motifs in this medically relevant gene family. Our phylomedicinal study of this unique metazoan SINA/SIAH protein family has provided invaluable evolution-based support towards future

  17. RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans.

    PubMed

    Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel

    2016-10-13

    Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2 LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2 LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. Copyright © 2016 Ossareh-Nazari et al.

  18. RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans

    PubMed Central

    Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel

    2016-01-01

    Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. PMID:27543292

  19. Characterization of a novel RING-type ubiquitin E3 ligase GhRING2 differentially expressed in cotton fiber

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin-proteasome proteolysis pathway is responsible for the degradation of abnormal and short-lived proteins to regulate many important biochemical activities in eukaryotes. By employing affymetrix microarray analysis, we have identified a novel ubiquitin ligase E3 gene GhRING2 that is diffe...

  20. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells.

    PubMed

    Paolino, Magdalena; Choidas, Axel; Wallner, Stephanie; Pranjic, Blanka; Uribesalgo, Iris; Loeser, Stefanie; Jamieson, Amanda M; Langdon, Wallace Y; Ikeda, Fumiyo; Fededa, Juan Pablo; Cronin, Shane J; Nitsch, Roberto; Schultz-Fademrecht, Carsten; Eickhoff, Jan; Menninger, Sascha; Unger, Anke; Torka, Robert; Gruber, Thomas; Hinterleitner, Reinhard; Baier, Gottfried; Wolf, Dominik; Ullrich, Axel; Klebl, Bert M; Penninger, Josef M

    2014-03-27

    Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a 'pill' that awakens the innate immune system to kill cancer metastases.

  1. Overexpression of GhSARP1 encoding a E3 ligase from cotton reduce the tolerance to salt in transgenic Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yongchang; Zhang, Xinyu; Zhu, Shouhong

    Ubiquitination plays a very important role in the response to abiotic stresses of plant. To identify key regulators of salt stress, a gene GhSARP1(Salt-Associated Ring finger Protein)encoding C3H2C3-type E3 ligase, was cloned from cotton. Transcription level of GhSARP1 was high in leaf, flower and fiber of 24,27 and 27DPA (Days Post-Anthesis), but low in root and stem. Except PEG6000 treatment, the expression of GhSARP1 was down-regulated by NaCl, cold and ABA after being treated for 1 h. GhSARP1-GFP fusion protein located on the plasma membrane, which was dependent on trans-membrane motif. In vitro ubiquitination assay showed that GhSARP1 had E3 ligase activity.more » Heterogeneous overexpression of GhSARP1reduced salt tolerance of transgenic Arabidopsis in germination and post-germination stage. Our results suggested that the GhSARP1 might negatively regulate the response to salt stress mediated by the ubiquitination in cotton. - Highlights: • GhSARP1 expression was regulated by various abiotic stresses. • GhSARP1 have E3 ligase activity in vitro and locate on the plasma membrane. • Overexpression of GhSARP1 in Arabidopsis reduced the salt tolerance.« less

  2. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage.

    PubMed

    Takagi, Yuichiro; Masuda, Claudio A; Chang, Wei-Hau; Komori, Hirofumi; Wang, Dong; Hunter, Tony; Joazeiro, Claudio A P; Kornberg, Roger D

    2005-04-15

    Core transcription factor (TF) IIH purified from yeast possesses an E3 ubiquitin (Ub) ligase activity, which resides, at least in part, in a RING finger (RNF) domain of the Ssl1 subunit. Yeast strains mutated in the Ssl1 RNF domain are sensitive to ultraviolet (UV) light and to methyl methanesulfonate (MMS). This increased sensitivity to DNA-damaging agents does not reflect a deficiency in nucleotide excision repair. Rather, it correlates with reduced transcriptional induction of genes involved in DNA repair, suggesting that the E3 Ub ligase activity of TFIIH mediates the transcriptional response to DNA damage.

  3. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin.

    PubMed

    Lazarou, Michael; Jin, Seok Min; Kane, Lesley A; Youle, Richard J

    2012-02-14

    Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. E3 ubiquitin ligase Mule ubiquitinates Miz1 and is required for TNFalpha-induced JNK activation.

    PubMed

    Yang, Yi; Do, HanhChi; Tian, Xuejun; Zhang, Chaozheng; Liu, Xinyuan; Dada, Laura A; Sznajder, Jacob I; Liu, Jing

    2010-07-27

    The zinc finger transcription factor Miz1 is a negative regulator of TNFalpha-induced JNK activation and cell death through inhibition of TRAF2 K63-polyubiquitination in a transcription-independent manner. Upon TNFalpha stimulation, Miz1 undergoes K48-linked polyubiquitination and proteasomal degradation, thereby relieving its inhibition. However, the underling regulatory mechanism is not known. Here, we report that HECT-domain-containing Mule is the E3 ligase that catalyzes TNFalpha-induced Miz1 polyubiquitination. Mule is a Miz1-associated protein and catalyzes its K48-linked polyubiquitination. TNFalpha-induced polyubiquitination and degradation of Miz1 were inhibited by silencing of Mule and were promoted by ectopic expression of Mule. The interaction between Mule and Miz1 was promoted by TNFalpha independently of the pox virus and zinc finger domain of Miz1. Silencing of Mule stabilized Miz1, thereby suppressing TNFalpha-induced JNK activation and cell death. Thus, our study reveals a molecular mechanism by which Mule regulates TNFalpha-induced JNK activation and apoptosis by catalyzing the polyubiquitination of Miz1.

  5. Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, David Yin-wei; Diao, Jianbo; Chen, Jue

    2012-12-10

    In eukaryotes, ubiquitination is an important posttranslational process achieved through a cascade of ubiquitin-activating (E1), conjugating (E2), and ligase (E3) enzymes. Many pathogenic bacteria deliver virulence factors into the host cell that function as E3 ligases. How these bacterial 'Trojan horses' integrate into the eukaryotic ubiquitin system has remained a mystery. Here we report crystal structures of two bacterial E3s, Salmonella SopA and Escherichia coli NleL, both in complex with human E2 UbcH7. These structures represent two distinct conformational states of the bacterial E3s, supporting the necessary structural rearrangements associated with ubiquitin transfer. The E2-interacting surface of SopA and NleLmore » has little similarity to those of eukaryotic E3s. However, both bacterial E3s bind to the canonical surface of E2 that normally interacts with eukaryotic E3s. Furthermore, we show that a glutamate residue on E3 is involved in catalyzing ubiquitin transfer from E3 to the substrate, but not from E2 to E3. Together, these results provide mechanistic insights into the ubiquitin pathway and a framework for understanding molecular mimicry in bacterial pathogenesis.« less

  6. The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots.

    PubMed

    Sakai, Tatsuya; Mochizuki, Susumu; Haga, Ken; Uehara, Yukiko; Suzuki, Akane; Harada, Akiko; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka

    2012-04-01

    Regulation of the root growth pattern is an important control mechanism during plant growth and propagation. To better understand alterations in root growth direction in response to environmental stimuli, we have characterized an Arabidopsis thaliana mutant, wavy growth 3 (wav3), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The wav3 mutant shows a greater curvature of root bending in response to gravity, but a smaller curvature in response to light, suggesting that it is a root gravitropism-enhancing mutation. This wav3 phenotype also suggests that enhancement of the gravitropic response in roots strengthens root tip impedance after contact with the agar surface and/or causes an increase in subsequent root bending in response to obstacle-touching stimulus in these mutants. WAV3 encodes a protein with a RING finger domain, and is mainly expressed in root tips. RING-containing proteins often function as an E3 ubiquitin ligase, and the WAV3 protein shows such activity in vitro. There are three genes homologous to WAV3 in the Arabidopsis genome [EMBRYO SAC DEVELOPMENT ARREST 40 (EDA40), WAVH1 and WAVH2 ], and wav3 wavh1 wavh2 triple mutants show marked root gravitropism abnormalities. This genetic study indicates that WAV3 functions positively rather than negatively in root gravitropism, and that enhancement of the gravitropic response in wav3 roots is dependent upon the function of WAVH2 in the absence of WAV3. Hence, our results demonstrate that the WAV3 family of proteins are E3 ligases that are required for root gravitropism in Arabidopsis. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  7. Mindbomb 1, an E3 ubiquitin ligase, forms a complex with RYK to activate Wnt/β-catenin signaling

    PubMed Central

    Berndt, Jason D.; Aoyagi, Atsushi; Yang, Peitzu; Anastas, Jamie N.; Tang, Lan

    2011-01-01

    Receptor-like tyrosine kinase (RYK) functions as a transmembrane receptor for the Wnt family of secreted protein ligands. Although RYK undergoes endocytosis in response to Wnt, the mechanisms that regulate its internalization and concomitant activation of Wnt signaling are unknown. We discovered that RYK both physically and functionally interacts with the E3 ubiquitin ligase Mindbomb 1 (MIB1). Overexpression of MIB1 promotes the ubiquitination of RYK and reduces its steady-state levels at the plasma membrane. Moreover, we show that MIB1 is sufficient to activate Wnt/β-catenin (CTNNB1) signaling and that this activity depends on endogenous RYK. Conversely, in loss-of-function studies, both RYK and MIB1 are required for Wnt-3A–mediated activation of CTNNB1. Finally, we identify the Caenorhabditis elegans orthologue of MIB1 and demonstrate a genetic interaction between ceMIB and lin-18/RYK in vulva development. These findings provide insights into the mechanisms of Wnt/RYK signaling and point to novel targets for the modulation of Wnt signaling. PMID:21875946

  8. The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases.

    PubMed

    Liu, Qing; Wang, Qin; Liu, Bin; Wang, Wei; Wang, Xu; Park, Joon; Yang, Zhenming; Du, Xinglin; Bian, Mingdi; Lin, Chentao

    2016-10-01

    Cryptochromes are blue light receptors regulated by light-dependent ubiquitination and degradation in both plant and animal lineages. The Arabidopsis genome encodes two cryptochromes, CRY1 and CRY2, of which CRY2 undergoes blue light-dependent ubiquitination and 26S proteasome-dependent degradation. The molecular mechanism regulating blue light-dependent proteolysis of CRY2 is still not fully understood. We found that the F-box proteins ZEITLUPE (ZTL) and Lov Kelch Protein2 (LKP2), which mediate blue light suppression of degradation of the CRY2 signaling partner CIB1, are not required for the blue light-dependent CRY2 degradation. We further showed that the previously reported function of the COP1-SPA1 protein complex in blue light-dependent CRY2 degradation is more likely to be attributable to its cullin 4 (CUL4)-based E3 ubiquitin ligase activity than its activity as the cryptochrome signaling partner. However, the blue light-dependent CRY2 degradation is only partially impaired in the cul4 mutant, the cop1-5 null mutant and the spa1234 quadruple mutant, suggesting a possible involvement of additional E3 ubiquitin ligases in the regulation of CRY2. Consistent with this hypothesis, we demonstrated that the blue light-dependent CRY2 degradation is significantly impaired in the temperature-sensitive cul1 mutant allele (axr6-3), especially under the non-permissive temperature. Based on these and other results presented, we propose that photoexcited CRY2 undergoes Lys48-linked polyubiquitination catalyzed by the CUL4- and CUL1-based E3 ubiquitin ligases. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases.

    PubMed

    Zhou, Weihua; Wei, Wenyi; Sun, Yi

    2013-05-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.

  10. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors aremore » highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.« less

  11. A Tail of Two Sites: A Bipartite Mechanism for Recognition of Notch Ligands by Mind Bomb E3 Ligases

    PubMed Central

    McMillan, Brian J.; Schnute, Björn; Ohlenhard, Nadja; Zimmerman, Brandon; Miles, Laura; Beglova, Natalia; Klein, Thomas; Blacklow, Stephen C.

    2015-01-01

    Summary Mind bomb (Mib) proteins are large, multi-domain E3 ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. This ubiquitination step marks the ligand proteins for epsin-dependent endocytosis, which is critical for in vivo Notch receptor activation. We present here crystal structures of the substrate recognition domains of Mib1, both in isolation and in complex with peptides derived from Notch ligands. The structures, in combination with biochemical, cellular and in vivo assays, show that Mib1 contains two independent substrate recognition domains that engage two distinct epitopes from the cytoplasmic tail of the ligand Jagged1, one in the intracellular membrane proximal region and the other near the C-terminus. Together, these studies provide new insights into the mechanism of ubiquitin transfer by Mind bomb E3 ligases, illuminate a key event in ligand-induced activation of Notch receptors, and identify a potential new target for therapeutic modulation of Notch signal transduction in disease. PMID:25747658

  12. A Tail of Two Sites: A Bipartite Mechanism for Recognition of Notch Ligands by Mind Bomb E3 Ligases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Brian J.; Schnute, Björn; Ohlenhard, Nadja

    Mind bomb (Mib) proteins are large, multi-domain E3 ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. This ubiquitination step marks the ligand proteins for epsin-dependent endocytosis, which is critical for in vivo Notch receptor activation. Here we present crystal structures of the substrate recognition domains of Mib1, both in isolation and in complex with peptides derived from Notch ligands. The structures, in combination with biochemical, cellular, and in vivo assays, show that Mib1 contains two independent substrate recognition domains that engage two distinct epitopes from the cytoplasmic tail of the ligand Jagged1, one in the intracellular membranemore » proximal region and the other near the C terminus. Together, these studies provide insights into the mechanism of ubiquitin transfer by Mind bomb E3 ligases, illuminate a key event in ligand-induced activation of Notch receptors, and identify a potential target for therapeutic modulation of Notch signal transduction in disease.« less

  13. A Tail of Two Sites: A Bipartite Mechanism for Recognition of Notch Ligands by Mind Bomb E3 Ligases

    DOE PAGES

    McMillan, Brian J.; Schnute, Björn; Ohlenhard, Nadja; ...

    2015-03-05

    Mind bomb (Mib) proteins are large, multi-domain E3 ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. This ubiquitination step marks the ligand proteins for epsin-dependent endocytosis, which is critical for in vivo Notch receptor activation. Here we present crystal structures of the substrate recognition domains of Mib1, both in isolation and in complex with peptides derived from Notch ligands. The structures, in combination with biochemical, cellular, and in vivo assays, show that Mib1 contains two independent substrate recognition domains that engage two distinct epitopes from the cytoplasmic tail of the ligand Jagged1, one in the intracellular membranemore » proximal region and the other near the C terminus. Together, these studies provide insights into the mechanism of ubiquitin transfer by Mind bomb E3 ligases, illuminate a key event in ligand-induced activation of Notch receptors, and identify a potential target for therapeutic modulation of Notch signal transduction in disease.« less

  14. RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination

    PubMed Central

    Metzger, Meredith B.; Pruneda, Jonathan N.; Klevit, Rachel E.; Weissman, Allan M.

    2013-01-01

    RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. PMID:23747565

  15. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA

    PubMed Central

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    Summary Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The x-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2~SUMO thioester while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a non-consensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo. PMID:19748360

  16. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  17. Inhibition of Vpx-Mediated SAMHD1 and Vpr-Mediated Host Helicase Transcription Factor Degradation by Selective Disruption of Viral CRL4 (DCAF1) E3 Ubiquitin Ligase Assembly.

    PubMed

    Wang, Hong; Guo, Haoran; Su, Jiaming; Rui, Yajuan; Zheng, Wenwen; Gao, Wenying; Zhang, Wenyan; Li, Zhaolong; Liu, Guanchen; Markham, Richard B; Wei, Wei; Yu, Xiao-Fang

    2017-05-01

    The lentiviral accessory proteins Vpx and Vpr are known to utilize CRL4 (DCAF1) E3 ligase to induce the degradation of the host restriction factor SAMHD1 or host helicase transcription factor (HLTF), respectively. Selective disruption of viral CRL4 (DCAF1) E3 ligase could be a promising antiviral strategy. Recently, we have determined that posttranslational modification (neddylation) of Cullin-4 is required for the activation of Vpx-CRL4 (DCAF1) E3 ligase. However, the mechanism of Vpx/Vpr-CRL4 (DCAF1) E3 ligase assembly is still poorly understood. Here, we report that zinc coordination is an important regulator of Vpx-CRL4 E3 ligase assembly. Residues in a conserved zinc-binding motif of Vpx were essential for the recruitment of the CRL4 (DCAF1) E3 complex and Vpx-induced SAMHD1 degradation. Importantly, altering the intracellular zinc concentration by treatment with the zinc chelator N , N , N '-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN) potently blocked Vpx-mediated SAMHD1 degradation and inhibited wild-type SIVmac (simian immunodeficiency virus of macaques) infection of myeloid cells, even in the presence of Vpx. TPEN selectively inhibited Vpx and DCAF1 binding but not the Vpx-SAMHD1 interaction or Vpx virion packaging. Moreover, we have shown that zinc coordination is also important for the assembly of the HIV-1 Vpr-CRL4 E3 ligase. In particular, Vpr zinc-binding motif mutation or TPEN treatment efficiently inhibited Vpr-CRL4 (DCAF1) E3 ligase assembly and Vpr-mediated HLTF degradation or Vpr-induced G 2 cell cycle arrest. Collectively, our study sheds light on a conserved strategy by the viral proteins Vpx and Vpr to recruit host CRL4 (DCAF1) E3 ligase, which represents a target for novel anti-human immunodeficiency virus (HIV) drug development. IMPORTANCE The Vpr and its paralog Vpx are accessory proteins encoded by different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) lentiviruses. To facilitate viral replication, Vpx has

  18. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas

    PubMed Central

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B.; Zhang, Donna D.; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-01-01

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825

  19. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas.

    PubMed

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B; Zhang, Donna D; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-09-13

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity.

  20. Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin-laforin E3-ubiquitin ligase complex.

    PubMed

    Sánchez-Martín, Pablo; Romá-Mateo, Carlos; Viana, Rosa; Sanz, Pascual

    2015-12-01

    Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin-laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin-laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin-laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin-laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin-laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin-laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Liver Cytochrome P450 3A Ubiquitination in Vivo by gp78/Autocrine Motility Factor Receptor and C Terminus of Hsp70-interacting Protein (CHIP) E3 Ubiquitin Ligases

    PubMed Central

    Kim, Sung-Mi; Acharya, Poulomi; Engel, Juan C.; Correia, Maria Almira

    2010-01-01

    CYP3A4 is a dominant human liver cytochrome P450 enzyme engaged in the metabolism and disposition of >50% of clinically relevant drugs and held responsible for many adverse drug-drug interactions. CYP3A4 and its mammalian liver CYP3A orthologs are endoplasmic reticulum (ER)-anchored monotopic proteins that undergo ubiquitin (Ub)-dependent proteasomal degradation (UPD) in an ER-associated degradation (ERAD) process. These integral ER proteins are ubiquitinated in vivo, and in vitro studies have identified the ER-integral gp78 and the cytosolic co-chaperone, CHIP (C terminus of Hsp70-interacting protein), as the relevant E3 Ub-ligases, along with their cognate E2 Ub-conjugating enzymes UBC7 and UbcH5a, respectively. Using lentiviral shRNA templates targeted against each of these Ub-ligases, we now document that both E3s are indeed physiologically involved in CYP3A ERAD/UPD in cultured rat hepatocytes. Accordingly, specific RNAi resulted in ≈80% knockdown of each hepatic Ub-ligase, with a corresponding ≈2.5-fold CYP3A stabilization. Surprisingly, however, such stabilization resulted in increased levels of functionally active CYP3A, thereby challenging the previous notion that E3 recognition and subsequent ERAD of CYP3A proteins required ab initio their structural and/or functional inactivation. Furthermore, coexpression in HepG2 cells of both CYP3A4 and gp78, but not its functionally inactive RING-finger mutant, resulted in enhanced CYP3A4 loss greater than that in corresponding cells expressing only CYP3A4. Stabilization of a functionally active CYP3A after RNAi knockdown of either of the E3s, coupled with the increased CYP3A4 loss on gp78 or CHIP coexpression, suggests that ERAD-associated E3 Ub-ligases can influence clinically relevant drug metabolism by effectively regulating the physiological CYP3A content and consequently its function. PMID:20819951

  2. Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression.

    PubMed

    David, Diana; Nair, S Asha; Pillai, M Radhakrishna

    2013-01-01

    Smad ubiquitin regulatory factors (Smurfs) belong to the HECT- family of E3 ubiquitin ligases and comprise mainly of two members, Smurf1 and Smurf2. Initially, Smurfs have been implicated in determining the competence of cells to respond to TGF-β/BMP signaling pathway. Nevertheless, the intrinsic catalytic activity has extended the repertoire of Smurf substrates beyond the TGF-β/BMP super family expanding its realm further to epigenetic modifications of histones governing the chromatin landscape. Through regulation of a large number of proteins in multiple cellular compartments, Smurfs regulate diverse cellular processes, including cell-cycle progression, cell proliferation, differentiation, DNA damage response, maintenance of genomic stability, and metastasis. As the genomic ablation of Smurfs leads to global changes in histone modifications and predisposition to a wide spectrum of tumors, Smurfs are also considered to have a novel tumor suppressor function. This review focuses on regulation network and biological functions of Smurfs in connection with its role in cancer progression. By providing a portrait of their protein targets, we intend to link the substrate specificity of Smurfs with their contribution to tumorigenesis. Since the regulation and biological functions of Smurfs are quite complex, understanding the oncogenic potential of these E3 ubiquitin ligases may facilitate the development of mechanism-based drugs in cancer treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms.

    PubMed

    Stewart, Mikaela D; Duncan, Emily D; Coronado, Ernesto; DaRosa, Paul A; Pruneda, Jonathan N; Brzovic, Peter S; Klevit, Rachel E

    2017-03-01

    The tumor-suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N-terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain-containing proteins. RING domains bind and activate E2 ubiquitin-conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer-associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1. © 2017 The Protein Society.

  4. Covalent ISG15 conjugation to CHIP promotes its ubiquitin E3 ligase activity and inhibits lung cancer cell growth in response to type I interferon.

    PubMed

    Yoo, Lang; Yoon, A-Rum; Yun, Chae-Ok; Chung, Kwang Chul

    2018-01-24

    The carboxyl terminus of Hsp70-interacting protein (CHIP) acts as a ubiquitin E3 ligase and a link between the chaperones Hsp70/90 and the proteasome system, playing a vital role in maintaining protein homeostasis. CHIP regulates a number of proteins involved in a myriad of physiological and pathological processes, but the underlying mechanism of action via posttranslational modification has not been extensively explored. In this study, we investigated a novel modulatory mode of CHIP and its effect on CHIP enzymatic activity. ISG15, an ubiquitin-like modifier, is induced by type I interferon (IFN) stimulation and can be conjugated to target proteins (ISGylation). Here we demonstrated that CHIP may be a novel target of ISGylation in HEK293 cells stimulated with type I IFN. We also found that Lys143/144/145 and Lys287 residues in CHIP are important for and target residues of ISGylation. Moreover, ISGylation promotes the E3 ubiquitin ligase activity of CHIP, subsequently causing a decrease in levels of oncogenic c-Myc, one of its many ubiquitination targets, in A549 lung cancer cells and inhibiting A549 cell and tumor growth. In conclusion, the present study demonstrates that covalent ISG15 conjugation produces a novel CHIP regulatory mode that enhances the tumor-suppressive activity of CHIP, thereby contributing to the antitumor effect of type I IFN.

  5. MicroRNA-300 Regulates the Ubiquitination of PTEN through the CRL4BDCAF13 E3 Ligase in Osteosarcoma Cells.

    PubMed

    Chen, Zhi; Zhang, Wei; Jiang, Kaibiao; Chen, Bin; Wang, Kun; Lao, Lifeng; Hou, Canglong; Wang, Fei; Zhang, Caiguo; Shen, Hongxing

    2018-03-02

    Cullins, critical members of the cullin-RING ubiquitin ligases (CRLs), are often aberrantly expressed in different cancers. However, the underlying mechanisms regarding aberrant expression of these cullins and the specific substrates of CRLs in different cancers are mostly unknown. Here, we demonstrate that overexpressed CUL4B in human osteosarcoma cells forms an E3 complex with DNA damage binding protein 1 (DDB1) and DDB1- and CUL4-associated factor 13 (DCAF13). In vitro and in vivo analyses indicated that the CRL4B DCAF13 E3 ligase specifically recognized the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) for degradation, and disruption of this E3 ligase resulted in PTEN accumulation. Further analyses indicated that miR-300 directly targeted the 3' UTR of CUL4B, and DNA hypermethylation of a CpG island in the miR-300 promoter region contributed to the downregulation of miR-300. Interestingly, ectopic expression of miR-300 or treatment with 5-AZA-2'-deoxycytidine, a DNA methylation inhibitor, decreased the stability of CRL4B DCAF13 E3 ligase and reduced PTEN ubiquitination. By applying in vitro screening to identify small molecules that specifically inhibit CUL4B-DDB1 interaction, we found that TSC01131 could greatly inhibit osteosarcoma cell growth and could disrupt the stability of the CRL4B DCAF13 E3 ligase. Collectively, our findings shed new light on the molecular mechanism of CUL4B function and might also provide a new avenue for osteosarcoma therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress

    PubMed Central

    Melnik, Andre; Wilson-Zbinden, Caroline; Schellhaas, René; Kastner, Lisa; Piwko, Wojciech; Dees, Martina; Picotti, Paola; Maric, Marija; Labib, Karim; Luke, Brian; Peter, Matthias

    2016-01-01

    Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. PMID:26849847

  7. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase

    PubMed Central

    Mudhasani, Rajini; Tran, Julie P.; Retterer, Cary; Kota, Krishna P.; Whitehouse, Chris A.; Bavari, Sina

    2016-01-01

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection. PMID

  8. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase.

    PubMed

    Mudhasani, Rajini; Tran, Julie P; Retterer, Cary; Kota, Krishna P; Whitehouse, Chris A; Bavari, Sina

    2016-02-01

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.

  9. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase

    DOE PAGES

    Mudhasani, Rajini; Tran, Julie P.; Retterer, Cary; ...

    2016-02-02

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through anmore » alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.« less

  10. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudhasani, Rajini; Tran, Julie P.; Retterer, Cary

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through anmore » alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.« less

  11. Autoubiquitination of feline E3 ubiquitin ligase BCA2.

    PubMed

    Wang, Weiran; Qu, Meng; Wang, Jiawen; Zhang, Xin; Zhang, Haihong; Wu, Jiaxin; Yu, Bin; Wu, Hui; Kong, Wei; Yu, Xianghui

    2018-01-05

    BCA2/RNF115/Rabring7 is a RING type E3 ubiquitin ligase that is overexpressed in human breast tumors and is important for regulating breast cancer cell migration. In the present investigation, feline BCA2 (fBCA2) was identified and characterized. Compared with its human counterpart, the fBCA2 cDNA was confirmed to be 918 base pairs in length showing 92.6% consensus and identity positions, encoding a protein of 305 amino acids with 96.7% consensus and 93.1% identity positions. The fBCA2 protein contains a RING domain at the C-terminus, which was found to be essential for its autoubiquitination. Copyright © 2017. Published by Elsevier B.V.

  12. Functional characterization of the Dsc E3 ligase complex in the citrus postharvest pathogen Penicillium digitatum.

    PubMed

    Ruan, Ruoxin; Chung, Kuang-Ren; Li, Hongye

    2017-12-01

    Sterol regulatory element binding proteins (SREBPs) are required for sterol homeostasis in eukaryotes. Activation of SREBPs is regulated by the Dsc E3 ligase complex in Schizosaccharomyces pombe and Aspergillus spp. Previous studies indicated that an SREBP-coding gene PdsreA is required for fungicide resistance and ergosterol biosynthesis in the citrus postharvest pathogen Penicillium digitatum. In this study, five genes, designated PddscA, PddscB, PddscC, PddscD, and PddscE encoding the Dsc E3 ligase complex were characterized to be required for fungicide resistance, ergosterol biosynthesis and CoCl 2 tolerance in P. digitatum. Each of the dsc genes was inactivated by target gene disruption and the resulted phenotypes were analyzed and compared. Genetic analysis reveals that, of five Dsc complex components, PddscB is the core subunit gene in P. digitatum. Although the resultant dsc mutants were able to infect citrus fruit and induce maceration lesions as the wild-type, the mutants rarely produced aerial mycelia on affected citrus fruit peels. P. digitatum Dsc proteins regulated not only the expression of genes involved in ergosterol biosynthesis but also that of PdsreA. Yeast two-hybrid assays revealed a direct interaction between the PdSreA protein and the Dsc proteins. Ectopic expression of the PdSreA N-terminus restored fungicide resistance in the dsc mutants. Our results provide important evidence to understand the mechanisms underlying SREBP activation and regulation of ergosterol biosynthesis in plant pathogenic fungi. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. RING-Domain E3 Ligase-Mediated Host–Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses

    PubMed Central

    Zhang, Yuexiu; Li, Lian-Feng; Munir, Muhammad; Qiu, Hua-Ji

    2018-01-01

    The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research. PMID:29872431

  14. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide

    PubMed Central

    Fischer, Eric S.; Böhm, Kerstin; Lydeard, John R.; Yang, Haidi; Stadler, Michael B.; Cavadini, Simone; Nagel, Jane; Serluca, Fabrizio; Acker, Vincent; Lingaraju, Gondichatnahalli M.; Tichkule, Ritesh B.; Schebesta, Michael; Forrester, William C.; Schirle, Markus; Hassiepen, Ulrich; Ottl, Johannes; Hild, Marc; Beckwith, Rohan E. J.; Harper, J. Wade; Jenkins, Jeremy L.; Thomä, Nicolas H.

    2015-01-01

    In the 1950s the drug thalidomide administered as a sedative to pregnant women led to the birth of thousands of children with multiple defects. Despite its teratogenicity, thalidomide and its derivatives lenalidomide and pomalidomide (together known as Immunomodulatory Drugs: IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-dysplasia. IMiDs target the CUL4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase and promote the ubiquitination of Ikaros/Aiolos transcription factors by CRL4CRBN. Here we present the crystal structure of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes CRBN as a CRL4CRBN substrate receptor, which enantioselectively binds IMiDs. Through an unbiased screen we identify the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4CRBN. Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4CRBN when recruiting Ikaros/Aiolos for degradation. This dual activity implies that small molecules can principally modulate a ligase to up- or down-regulate the ubiquitination of proteins. PMID:25043012

  15. E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis

    DOE PAGES

    Pan, Ronghui; Satkovich, John; Hu, Jianping

    2016-10-31

    Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less

  16. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension

    PubMed Central

    Smit, Judith J; Monteferrario, Davide; Noordermeer, Sylvie M; van Dijk, Willem J; van der Reijden, Bert A; Sixma, Titia K

    2012-01-01

    Activation of the NF-κB pathway requires the formation of Met1-linked ‘linear' ubiquitin chains on NEMO, which is catalysed by the Linear Ubiquitin Chain Assembly Complex (LUBAC) E3 consisting of HOIP, HOIL-1L and Sharpin. Here, we show that both LUBAC catalytic activity and LUBAC specificity for linear ubiquitin chain formation are embedded within the RING-IBR-RING (RBR) ubiquitin ligase subunit HOIP. Linear ubiquitin chain formation by HOIP proceeds via a two-step mechanism involving both RING and HECT E3-type activities. RING1-IBR catalyses the transfer of ubiquitin from the E2 onto RING2, to transiently form a HECT-like covalent thioester intermediate. Next, the ubiquitin is transferred from HOIP onto the N-terminus of a target ubiquitin. This transfer is facilitated by a unique region in the C-terminus of HOIP that we termed ‘Linear ubiquitin chain Determining Domain' (LDD), which may coordinate the acceptor ubiquitin. Consistent with this mechanism, the RING2-LDD region was found to be important for NF-κB activation in cellular assays. These data show how HOIP combines a general RBR ubiquitin ligase mechanism with unique, LDD-dependent specificity for producing linear ubiquitin chains. PMID:22863777

  17. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity

    PubMed Central

    Liu, Qingjun; Zhou, Hong; Langdon, Wallace Y; Zhang, Jian

    2014-01-01

    Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING finger E3 ubiquitin-protein ligase, has been demonstrated to play a crucial role in establishing the threshold for T-cell activation and controlling peripheral T-cell tolerance via multiple mechanisms. Accumulating evidence suggests that Cbl-b also regulates innate immune responses and plays an important role in host defense to pathogens. Understanding the signaling pathways regulated by Cbl-b in innate and adaptive immune cells is therefore essential for efficient manipulation of Cbl-b in emerging immunotherapies for human disorders such as autoimmune diseases, allergic inflammation, infections, and cancer. In this article, we review the latest developments in the molecular structural basis of Cbl-b function, the regulation of Cbl-b expression, the signaling mechanisms of Cbl-b in immune cells, as well as the biological function of Cbl-b in physiological and pathological immune responses in animal models and human diseases. PMID:24875217

  18. Ubiquitin chain specificities of E6AP E3 ligase and its HECT domain.

    PubMed

    Kobayashi, Fuminori; Nishiuchi, Takumi; Takaki, Kento; Konno, Hiroki

    2018-02-05

    Ubiquitination of target proteins is accomplished by isopeptide bond formation between the carboxy group of the C-terminal glycine (Gly) residue of ubiquitin (Ub) and the ɛ-amino group of lysine (Lys) on the target proteins. The formation of an isopeptide bond between Ubs that gives rise to a poly-Ub chain on the target proteins and the types of poly-Ub chains formed depend on which of the seven Lys residues or N-terminal methionine (Met) residue on Ub is used for chain elongation. To understand the linkage specificity mechanism of Ub chains on E3, the previous study established an assay to monitor the formation of a free diubiquitin chain (Ub 2 chain synthesis assay) by HECT type E3 ligase. In this study, we investigated Ub 2 chain specificity using E6AP HECT domain. We here demonstrate the importance of the N-terminal domain of full length E6AP for Ub 2 chain specificity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SCFSlmb E3 ligase-mediated degradation of Expanded is inhibited by the Hippo pathway in Drosophila

    PubMed Central

    Zhang, Hongtao; Li, Changqing; Chen, Hanqing; Wei, Chuanxian; Dai, Fei; Wu, Honggang; Dui, Wen; Deng, Wu-Min; Jiao, Renjie

    2015-01-01

    Deregulation of the evolutionarily conserved Hippo pathway has been implicated in abnormal development of animals and in several types of cancer. One mechanism of Hippo pathway regulation is achieved by controlling the stability of its regulatory components. However, the executive E3 ligases that are involved in this process, and how the process is regulated, remain poorly defined. In this study, we identify, through a genetic candidate screen, the SCFSlmb E3 ligase as a novel negative regulator of the Hippo pathway in Drosophila imaginal tissues via mediation of the degradation of Expanded (Ex). Mechanistic study shows that Slmb-mediated degradation of Ex is inhibited by the Hippo signaling. Considering the fact that Hippo signaling suppresses the transcription of ex, we propose that the Hippo pathway employs a double security mechanism to ensure fine-tuned homeostasis during development. PMID:25522691

  20. Characterization and Promoter Analysis of a Cotton Ring-Type Ubiquitin Ligase (E3) Gene

    USDA-ARS?s Scientific Manuscript database

    A cotton fiber cDNA, GhRING1, and its corresponding gene have been cloned and characterized. The GhRING1 gene encodes a RING-type ubiquitin ligase (E3) containing 337 amino acids (aa). The GhRING1 protein contains a RING finger motif with conserved cysteine and histine residues at the C-terminus a...

  1. The E3 Ligase CHIP Mediates p21 Degradation to Maintain Radioresistance

    PubMed Central

    Biswas, Kuntal; Sarkar, Sukumar; Du, Kangping; Brautigan, David L.; Abbas, Tarek; Larner, James M.

    2017-01-01

    Lung cancer resists radiation therapy, making it one of the deadliest forms of cancer. Here we show that human lung cancer cell lines can be rendered sensitive to ionizing radiation (IR) by RNAi knockdown of C-terminus of Hsc70-interacting protein (CHIP/STUB1), a U-box-type E3 ubiquitin ligase that targets a number of stress-induced proteins. Mechanistically ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor p21 protein is reduced by CHIP knockdown, leading to enhanced senescence of cells in response to exposure to IR. Cellular senescence and sensitivity to IR is prevented by CRISPR/Cas9-mediated deletion of the p21 gene (CDKN1A) in CHIP knockdown cells. Conversely, over-expression of CHIP potentiates p21 degradation and promotes greater radioresistance of lung cancer cells. In vitro and cell-based assays demonstrate that p21 is a novel and direct ubiquitylation substrate of CHIP that also requires the CHIP-associated chaperone heat shock protein 70 (HSP70). These data reveal that the inhibition of the E3 ubiquitin ligase CHIP promotes radiosensitivity; thus, suggesting a novel strategy for the treatment of lung cancer. Implications The CHIP-HSP70-p21 ubiquitylation/degradation axis identified here could be exploited to enhance the efficacy of radiotherapy in patients with non-small cell lung cancer. PMID:28232384

  2. RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity That Is Essential for DNA Double Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment

    DOE PAGES

    Hodge, Curtis D.; Ismail, Ismail H.; Edwards, Ross A.; ...

    2016-02-22

    DNA double strand break (DSB) responses depend on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 plus E2 ubiquitin-conjugating enzyme Ubc13 to specifically generate histone Lys-63-linked ubiquitin chains in DSB signaling. In this paper, we defined the activated RNF8-Ubc13~ubiquitin complex by x-ray crystallography and its functional solution conformations by x-ray scattering, as tested by separation-of-function mutations imaged in cells by immunofluorescence. The collective results show that the RING E3 RNF8 targets E2 Ubc13 to DSB sites and plays a critical role in damage signaling by stimulating polyubiquitination through modulating conformations of ubiquitin covalently linked to the Ubc13more » active site. Structure-guided separation-of-function mutations show that the RNF8 E2 stimulating activity is essential for DSB signaling in mammalian cells and is necessary for downstream recruitment of 53BP1 and BRCA1. Chromatin-targeted RNF168 rescues 53BP1 recruitment involved in non-homologous end joining but not BRCA1 recruitment for homologous recombination. Finally, these findings suggest an allosteric approach to targeting the ubiquitin-docking cleft at the E2-E3 interface for possible interventions in cancer and chronic inflammation, and moreover, they establish an independent RNF8 role in BRCA1 recruitment.« less

  3. Effects of partner proteins on BCA2 RING ligase activity

    PubMed Central

    2012-01-01

    Background BCA2 is an E3 ligase linked with hormone responsive breast cancers. We have demonstrated previously that the RING E3 ligase BCA2 has autoubiquitination activity and is a very unstable protein. Previously, only Rab7, tetherin, ubiquitin and UBC9 were known to directly interact with BCA2. Methods Here, additional BCA2 binding proteins were found using yeast two-hybrid and bacterial-II-hybrid screening techniques with Human breast and HeLa cDNA libraries. Co-expression of these proteins was analyzed through IHC of TMAs. Investigation of the molecular interactions and effects were examined through a series of in vivo and in vitro assays. Results Ten unique BCA2 interacting proteins were identified, two of which were hHR23a and 14-3-3sigma. Both hHR23a and 14-3-3sigma are co-expressed with BCA2 in breast cancer cell lines and patient breast tumors (n = 105). hHR23a and BCA2 expression was significantly correlated (P = < 0.0001 and P = 0.0113) in both nucleus and cytoplasm. BCA2 expression showed a statistically significant correlation with tumor grade. High cytoplasmic hHR23a trended towards negative nodal status. Binding to BCA2 by hHR23a and 14-3-3sigma was confirmed in vitro using tagged partner proteins and BCA2. hHR23a and 14-3-3sigma effect the autoubiquitination and auto-degradation activity of BCA2. Ubiquitination of hHR23a-bound BCA2 was found to be dramatically lower than that of free BCA2, suggesting that hHR23a promotes the stabilization of BCA2 by inactivating its autoubiquitination activity, without degradation of hHR23a. On the other hand, phosphorylated BCA2 protein is stabilized by interaction with 14-3-3sigma both with and without proteasome inhibitor MG-132 suggesting that BCA2 is regulated by multiple degradation pathways. Conclusions The interaction between BCA2 and hHR23a in breast cancer cells stabilizes BCA2. High expression of BCA2 is correlated with grade in breast cancer, suggesting regulation of this E3 ligase is important to

  4. DLG1 is an anchor for the E3 ligase MARCH2 at sites of cell-cell contact

    PubMed Central

    Cao, Zhifang; Huett, Alan; Kuballa, Petric; Giallourakis, Cosmas; Xavier, Ramnik J.

    2008-01-01

    PDZ domain containing molecular scaffolds play a central role in organizing synaptic junctions. Observations in Drosophila and mammalian cells have implicated that ubiquitination and endosomal trafficking, of molecular scaffolds are critical to the development and maintenance of cell-cell junctions and cell polarity. To elucidate if there is a connection between these pathways, we applied an integrative genomic strategy, which combined comparative genomics and proteomics with cell biological assays. Given the importance of ubiquitin in regulating endocytic processes, we first identified the subset of E3 ligases with conserved PDZ binding motifs. Among this subset, the MARCH family ubiquitin ligases account for the largest family and MARCH2 has been previously implicated in endosomal trafficking. Next, we tested in an unbiased fashion, if MARCH2 binds PDZ proteins in vivo using a modified tandem affinity purification strategy followed by mass spectrometry. Of note, DLG1 was co-purified from MARCH2, with subsequent confirmation that MARCH2 interacts with full-length DLG1 in a PDZ domain dependent manner. Furthermore, we demonstrated that MARCH2 co-localized with DLG1 at sites of cell-cell contact. In addition, loss of the MARCH2 PDZ binding motif led to loss of MARCH2 localization at cell-cell contact sites and MARCH2 appeared to localize away from cell-cell junctions. In in vivo ubiquitination assays we show that MARCH2 promotes DLG1 ubiquitination Overall, these results suggest that PDZ ligands with E3 ligase activity may link PDZ domain containing tumor suppressors to endocytic pathways and cell polarity determination. PMID:17980554

  5. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.).

    PubMed

    Zhu, Yanfei; Li, Yingbo; Fei, Fei; Wang, Zongkuan; Wang, Wei; Cao, Aizhong; Liu, Yuan; Han, Shuang; Xing, Liping; Wang, Haiyan; Chen, Wei; Tang, Sanyuan; Huang, Xiahe; Shen, Qianhua; Xie, Qi; Wang, Xiue

    2015-10-01

    Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1-V, that encodes a U-box E3 ubiquitin ligase. Expression of the CMPG1-V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1-V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1-V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans-Golgi network/early endosome vesicles. Transgenic wheat over-expressing CMPG1-V showed improved broad-spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid-responsive genes, H2 O2 accumulation, and cell-wall protein cross-linking at the Bgt infection sites, and the expression of CMPG1-V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2 O2 . These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad-spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1-V-mediated powdery mildew resistance. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Shigella IpaH0722 E3 Ubiquitin Ligase Effector Targets TRAF2 to Inhibit PKC–NF-κB Activity in Invaded Epithelial Cells

    PubMed Central

    Ashida, Hiroshi; Nakano, Hiroyasu; Sasakawa, Chihiro

    2013-01-01

    NF-κB plays a central role in modulating innate immune responses to bacterial infections. Therefore, many bacterial pathogens deploy multiple mechanisms to counteract NF-κB activation. The invasion of and subsequent replication of Shigella within epithelial cells is recognized by various pathogen recognition receptors as pathogen-associated molecular patterns. These receptors trigger innate defense mechanisms via the activation of the NF-κB signaling pathway. Here, we show the inhibition of the NF-κB activation by the delivery of the IpaH E3 ubiquitin ligase family member IpaH0722 using Shigella's type III secretion system. IpaH0722 dampens the acute inflammatory response by preferentially inhibiting the PKC-mediated activation of NF-κB by ubiquitinating TRAF2, a molecule downstream of PKC, and by promoting its proteasome-dependent degradation. PMID:23754945

  7. BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis.

    PubMed

    Morimoto, Kyoko; Ohama, Naohiko; Kidokoro, Satoshi; Mizoi, Junya; Takahashi, Fuminori; Todaka, Daisuke; Mogami, Junro; Sato, Hikaru; Qin, Feng; Kim, June-Sik; Fukao, Yoichiro; Fujiwara, Masayuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2017-10-03

    DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2A (DREB2A) acts as a key transcription factor in both drought and heat stress tolerance in Arabidopsis and induces the expression of many drought- and heat stress-inducible genes. Although DREB2A expression itself is induced by stress, the posttranslational regulation of DREB2A, including protein stabilization, is required for its transcriptional activity. The deletion of a 30-aa central region of DREB2A known as the negative regulatory domain (NRD) transforms DREB2A into a stable and constitutively active form referred to as DREB2A CA. However, the molecular basis of this stabilization and activation has remained unknown for a decade. Here we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the Cullin3 (CUL3)-based E3 ligase, as DREB2A-interacting proteins. We observed that DREB2A and BPMs interact in the nuclei, and that the NRD of DREB2A is sufficient for its interaction with BPMs. BPM -knockdown plants exhibited increased DREB2A accumulation and induction of DREB2A target genes under heat and drought stress conditions. Genetic analysis indicated that the depletion of BPM expression conferred enhanced thermotolerance via DREB2A stabilization. Thus, the BPM-CUL3 E3 ligase is likely the long-sought factor responsible for NRD-dependent DREB2A degradation. Through the negative regulation of DREB2A stability, BPMs modulate the heat stress response and prevent an adverse effect of excess DREB2A on plant growth. Furthermore, we found the BPM recognition motif in various transcription factors, implying a general contribution of BPM-mediated proteolysis to divergent cellular responses via an accelerated turnover of transcription factors.

  8. BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis

    PubMed Central

    Morimoto, Kyoko; Ohama, Naohiko; Kidokoro, Satoshi; Mizoi, Junya; Takahashi, Fuminori; Todaka, Daisuke; Mogami, Junro; Sato, Hikaru; Qin, Feng; Kim, June-Sik; Fukao, Yoichiro; Fujiwara, Masayuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2017-01-01

    DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2A (DREB2A) acts as a key transcription factor in both drought and heat stress tolerance in Arabidopsis and induces the expression of many drought- and heat stress-inducible genes. Although DREB2A expression itself is induced by stress, the posttranslational regulation of DREB2A, including protein stabilization, is required for its transcriptional activity. The deletion of a 30-aa central region of DREB2A known as the negative regulatory domain (NRD) transforms DREB2A into a stable and constitutively active form referred to as DREB2A CA. However, the molecular basis of this stabilization and activation has remained unknown for a decade. Here we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the Cullin3 (CUL3)-based E3 ligase, as DREB2A-interacting proteins. We observed that DREB2A and BPMs interact in the nuclei, and that the NRD of DREB2A is sufficient for its interaction with BPMs. BPM-knockdown plants exhibited increased DREB2A accumulation and induction of DREB2A target genes under heat and drought stress conditions. Genetic analysis indicated that the depletion of BPM expression conferred enhanced thermotolerance via DREB2A stabilization. Thus, the BPM-CUL3 E3 ligase is likely the long-sought factor responsible for NRD-dependent DREB2A degradation. Through the negative regulation of DREB2A stability, BPMs modulate the heat stress response and prevent an adverse effect of excess DREB2A on plant growth. Furthermore, we found the BPM recognition motif in various transcription factors, implying a general contribution of BPM-mediated proteolysis to divergent cellular responses via an accelerated turnover of transcription factors. PMID:28923951

  9. The E3 Ligase CHIP Mediates p21 Degradation to Maintain Radioresistance.

    PubMed

    Biswas, Kuntal; Sarkar, Sukumar; Du, Kangping; Brautigan, David L; Abbas, Tarek; Larner, James M

    2017-06-01

    Lung cancer resists radiotherapy, making it one of the deadliest forms of cancer. Here, we show that human lung cancer cell lines can be rendered sensitive to ionizing radiation (IR) by RNAi knockdown of C-terminus of Hsc70-interacting protein (CHIP/STUB1), a U-box-type E3 ubiquitin ligase that targets a number of stress-induced proteins. Mechanistically, ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor, p21 protein, is reduced by CHIP knockdown, leading to enhanced senescence of cells in response to exposure to IR. Cellular senescence and sensitivity to IR is prevented by CRISPR/Cas9-mediated deletion of the p21 gene ( CDKN1A) in CHIP knockdown cells. Conversely, overexpression of CHIP potentiates p21 degradation and promotes greater radioresistance of lung cancer cells. In vitro and cell-based assays demonstrate that p21 is a novel and direct ubiquitylation substrate of CHIP that also requires the CHIP-associated chaperone HSP70. These data reveal that the inhibition of the E3 ubiquitin ligase CHIP promotes radiosensitivity, thus suggesting a novel strategy for the treatment of lung cancer. Implications: The CHIP-HSP70-p21 ubiquitylation/degradation axis identified here could be exploited to enhance the efficacy of radiotherapy in patients with non-small cell lung cancer. Mol Cancer Res; 15(6); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Recognition mechanism of p63 by the E3 ligase Itch

    PubMed Central

    Bellomaria, Alessia; Barbato, Gaetano; Melino, Gerry; Paci, Maurizio; Melino, Sonia

    2012-01-01

    The HECT-containing E3 ubiquitin ligase Itch mediates the degradation of several proteins, including p63 and p73, involved in cell specification and fate. Itch contains four WW domains, which are essential for recognition on the target substrate, which contains a short proline-rich sequence. Several signaling complexes containing these domains have been associated with human diseases such as muscular dystrophy, Alzheimer’s or Huntington’s diseases. To gain further insight into the structural determinants of the Itch-WW2 domain, we investigated its interaction with p63. We assigned, by 3D heteronuclear NMR experiments, the backbone and side chains of the uniformly ¹³C-¹⁵N-labeled Itch-WW2. In vitro interaction of Itch-WW2 domain with p63 was studied using its interactive p63 peptide, pep63. Pep63 is an 18-mer peptide corresponding to the region from 534–551 residue of p63, encompassing the PPxY motif that interacts with the Itch-WW domains, and we identified the residues involved in this molecular recognition. Moreover, here, a strategy of stabilization of the conformation of the PPxY peptide has been adopted, increasing the WW-ligand binding. We demonstrated that cyclization of pep63 leads to an increase of both the biological stability of the peptide and of the WW-ligand complex. Stable metal-binding complexes of the pep63 have been also obtained, and localized oxidative damage on Itch-WW2 domain has been induced, demonstrating the possibility of use of metal-pep63 complexes as models for the design of metal drugs to inhibit the Itch-WW-p63 recognition in vivo. Thus, our data suggest a novel strategy to study and inhibit the recognition mechanism of Itch E3-ligase. PMID:22935697

  11. SGR9, a RING type E3 ligase, modulates amyloplast dynamics important for gravity sensing.

    NASA Astrophysics Data System (ADS)

    Morita, Miyo T.; Nakamura, Moritaka; Tasaka, Masao

    Gravitropism is triggered when the directional change of gravity is sensed in the specific cells, called statocytes. In higher plants, statocytes contain sinking heavier amyloplasts which are particular plastids accumulating starch granules. The displacement of amyloplasts within the statocytes is thought to be the initial event of gravity perception. We have demonstrated that endodermal cells are most likely to be the statocytes in Arabidop-sis shoots. Live cell imaging of the endodermal cell of stem has shown that most amyloplasts are sediment to the direction of gravity but they are not static. Several amyloplasts move dynamically in an actin filament (F-actin) dependent manner. In the presence of actin poly-merization inhibitor, all amyloplasts become static and sediment to the direction of gravity. In addition, stems treated with the inhibitor can exhibit gravitropism. These results suggest that F-actin-dependent dynamic movement of amyloplasts is not essential for gravity sensing. sgr (shoot gravitropism) 9 mutant exhibits greatly reduced shoot gravitropism. In endodermal cells of sgr9, dynamic amyloplast movement was predominantly observed and amyloplasts did not sediment to the direction of gravity. Interestingly, inhibition of actin polymerization re-stored both gravitropism and amyloplast sedimentation in sgr9. The SGR9 encodes a novel RING finger protein, which is localized to amyloplasts in endodermal cells. SGR9 showed ubiq-uitin E3 ligase activity in vitro. Together with live cell imaging of amyloplasts and F-actin, our data suggest that SGR9 modulate interaction between amyloplasts and F-actin on amylo-plasts. SGR9 positively act on amyloplasts sedimentation, probably by releasing amyloplasts from F-actin. SGR9 that is localized to amyloplast, possibly degrades unknown substrates by its E3 ligase activity, and this might promote release of amyloplasts from F-actin.

  12. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants

    PubMed Central

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-01-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. PMID:28712388

  13. Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting.

    PubMed

    Kwun, H J; Wendzicki, J A; Shuda, Y; Moore, P S; Chang, Y

    2017-12-07

    The formation of a bipolar mitotic spindle is an essential process for the equal segregation of duplicated DNA into two daughter cells during mitosis. As a result of deregulated cellular signaling pathways, cancer cells often suffer a loss of genome integrity that might etiologically contribute to carcinogenesis. Merkel cell polyomavirus (MCV) small T (sT) oncoprotein induces centrosome overduplication, aneuploidy, chromosome breakage and the formation of micronuclei by targeting cellular ligases through a sT domain that also inhibits MCV large T oncoprotein turnover. These results provide important insight as to how centrosome number and chromosomal stability can be affected by the E3 ligase targeting capacity of viral oncoproteins such as MCV sT, which may contribute to Merkel cell carcinogenesis.

  14. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis

    PubMed Central

    Zhang, Jinfang; Wan, Lixin; Dai, Xiangpeng; Sun, Yi; Wei, Wenyi

    2014-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets. PMID:24569229

  15. KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc

    PubMed Central

    Kim, Eun-Jung; Kim, Sung-Hak; Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-01-01

    Cullin3 E3 ubiquitin ligase ubiquitinates a wide range of substrates through substrate-specific adaptors Bric-a-brac, Tramtrack, and Broad complex (BTB) domain proteins. These E3 ubiquitin ligase complexes are involved in diverse cellular functions. Our recent study demonstrated that decreased Cullin3 expression induces glioma initiation and correlates with poor prognosis of patients with malignant glioma. However, the substrate recognition mechanism associated with tumorigenesis is not completely understood. Through yeast two-hybrid screening, we identified potassium channel tetramerization domain-containing 2 (KCTD2) as a BTB domain protein that binds to Cullin3. The interaction of Cullin3 and KCTD2 was verified using immunoprecipitation and immunofluorescence. Of interest, KCTD2 expression was markedly decreased in patient-derived glioma stem cells (GSCs) compared with non-stem glioma cells. Depletion of KCTD2 using a KCTD2-specific short-hairpin RNA in U87MG glioma cells and primary Ink4a/Arf-deficient murine astrocytes markedly increased self-renewal activity in addition with an increased expression of stem cell markers, and mouse in vivo intracranial tumor growth. As an underlying mechanism for these KCTD2-mediated phenotypic changes, we demonstrated that KCTD2 interacts with c-Myc, which is a key stem cell factor, and causes c-Myc protein degradation by ubiquitination. As a result, KCTD2 depletion acquires GSC features and affects aerobic glycolysis via expression changes in glycolysis-associated genes through c-Myc protein regulation. Of clinical significance was our finding that patients having a profile of KCTD2 mRNA-low and c-Myc gene signature-high, but not KCTD2 mRNA-low and c-Myc mRNA-high, are strongly associated with poor prognosis. This study describes a novel regulatory mode of c-Myc protein in malignant gliomas and provides a potential framework for glioma therapy by targeting c-Myc function. PMID:28060381

  16. Polynucleotide 3′-terminal Phosphate Modifications by RNA and DNA Ligases

    PubMed Central

    Zhelkovsky, Alexander M.; McReynolds, Larry A.

    2014-01-01

    RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5′-phosphate and 3′-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3′-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3′p substrate to generate an RNA 2′,3′-cyclic phosphate or convert DNA3′p to ssDNA3′pp5′A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3′p. These modifications of RNA and DNA 3′-phosphates are similar to the activities of RtcA, an RNA 3′-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3′p or DNA 3′p to generate the adenylated intermediate. For RNA 3′pp5′A, the third step involves attack of the adjacent 2′ hydroxyl to generate the RNA 2′,3′-cyclic phosphate. These steps are analogous to those in classical 5′ phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3′p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3′-phosphorylated nicks in double-stranded DNA to produce a 3′-adenylated product. These 3′-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5′Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3′-terminal phosphates. PMID:25324547

  17. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.

    PubMed

    Gack, Michaela U; Shin, Young C; Joo, Chul-Hyun; Urano, Tomohiko; Liang, Chengyu; Sun, Lijun; Takeuchi, Osamu; Akira, Shizuo; Chen, Zhijian; Inoue, Satoshi; Jung, Jae U

    2007-04-19

    Retinoic-acid-inducible gene-I (RIG-I; also called DDX58) is a cytosolic viral RNA receptor that interacts with MAVS (also called VISA, IPS-1 or Cardif) to induce type I interferon-mediated host protective innate immunity against viral infection. Furthermore, members of the tripartite motif (TRIM) protein family, which contain a cluster of a RING-finger domain, a B box/coiled-coil domain and a SPRY domain, are involved in various cellular processes, including cell proliferation and antiviral activity. Here we report that the amino-terminal caspase recruitment domains (CARDs) of RIG-I undergo robust ubiquitination induced by TRIM25 in mammalian cells. The carboxy-terminal SPRY domain of TRIM25 interacts with the N-terminal CARDs of RIG-I; this interaction effectively delivers the Lys 63-linked ubiquitin moiety to the N-terminal CARDs of RIG-I, resulting in a marked increase in RIG-I downstream signalling activity. The Lys 172 residue of RIG-I is critical for efficient TRIM25-mediated ubiquitination and for MAVS binding, as well as the ability of RIG-I to induce antiviral signal transduction. Furthermore, gene targeting demonstrates that TRIM25 is essential not only for RIG-I ubiquitination but also for RIG-I-mediated interferon- production and antiviral activity in response to RNA virus infection. Thus, we demonstrate that TRIM25 E3 ubiquitin ligase induces the Lys 63-linked ubiquitination of RIG-I, which is crucial for the cytosolic RIG-I signalling pathway to elicit host antiviral innate immunity.

  18. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis.

    PubMed

    Doblas, Verónica G; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M; Botella, Miguel A

    2013-02-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.

  19. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b

    PubMed Central

    Lutz-Nicoladoni, Christina; Wolf, Dominik; Sopper, Sieghart

    2015-01-01

    Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies. PMID:25815272

  20. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling.

    PubMed

    Gao, Sheng; Alarcón, Claudio; Sapkota, Gopal; Rahman, Sadia; Chen, Pan-Yu; Goerner, Nina; Macias, Maria J; Erdjument-Bromage, Hediye; Tempst, Paul; Massagué, Joan

    2009-11-13

    TGF-beta induces phosphorylation of the transcription factors Smad2 and Smad3 at the C terminus as well as at an interdomain linker region. TGF-beta-induced linker phosphorylation marks the activated Smad proteins for proteasome-mediated destruction. Here, we identify Nedd4L as the ubiquitin ligase responsible for this step. Through its WW domain, Nedd4L specifically recognizes a TGF-beta-induced phosphoThr-ProTyr motif in the linker region, resulting in Smad2/3 polyubiquitination and degradation. Nedd4L is not interchangeable with Smurf1, a ubiquitin ligase that targets BMP-activated, linker-phosphorylated Smad1. Nedd4L limits the half-life of TGF-beta-activated Smads and restricts the amplitude and duration of TGF-beta gene responses, and in mouse embryonic stem cells, it limits the induction of mesoendodermal fates by Smad2/3-activating factors. Hierarchical regulation is provided by SGK1, which phosphorylates Nedd4L to prevent binding of Smad2/3. Previously identified as a regulator of renal sodium channels, Nedd4L is shown here to play a broader role as a general modulator of Smad turnover during TGF-beta signal transduction.

  1. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    PubMed

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  2. A Plasmodium yoelii HECT-like E3 ubiquitin ligase regulates parasite growth and virulence.

    PubMed

    Nair, Sethu C; Xu, Ruixue; Pattaradilokrat, Sittiporn; Wu, Jian; Qi, Yanwei; Zilversmit, Martine; Ganesan, Sundar; Nagarajan, Vijayaraj; Eastman, Richard T; Orandle, Marlene S; Tan, John C; Myers, Timothy G; Liu, Shengfa; Long, Carole A; Li, Jian; Su, Xin-Zhuan

    2017-08-09

    Infection of mice with strains of Plasmodium yoelii parasites can result in different pathology, but molecular mechanisms to explain this variation are unclear. Here we show that a P. yoelii gene encoding a HECT-like E3 ubiquitin ligase (Pyheul) influences parasitemia and host mortality. We genetically cross two lethal parasites with distinct disease phenotypes, and identify 43 genetically diverse progeny by typing with microsatellites and 9230 single-nucleotide polymorphisms. A genome-wide quantitative trait loci scan links parasite growth and host mortality to two major loci on chromosomes 1 and 7 with LOD (logarithm of the odds) scores = 6.1 and 8.1, respectively. Allelic exchange of partial sequences of Pyheul in the chromosome 7 locus and modification of the gene expression alter parasite growth and host mortality. This study identifies a gene that may have a function in parasite growth, virulence, and host-parasite interaction, and therefore could be a target for drug or vaccine development.Many strains of Plasmodium differ in virulence, but factors that control these distinctions are not known. Here the authors comparatively map virulence loci using the offspring from a P. yoelii YM and N67 genetic cross, and identify a putative HECT E3 ubiquitin ligase that may explain the variance.

  3. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants.

    PubMed

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-08-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].

  4. RNF185, a Novel Mitochondrial Ubiquitin E3 Ligase, Regulates Autophagy through Interaction with BNIP1

    PubMed Central

    Tang, Fei; Wang, Bin; Li, Na; Wu, Yanfang; Jia, Junying; Suo, Talin; Chen, Quan; Liu, Yong-Jun; Tang, Jie

    2011-01-01

    Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting mitochondria for autophagy have not been revealed. Here we show that human RNF185 is a mitochondrial ubiquitin E3 ligase that regulates selective mitochondrial autophagy in cultured cells. The two C-terminal transmembrane domains of human RNF185 mediate its localization to mitochondrial outer membrane. RNF185 stimulates LC3II accumulation and the formation of autophagolysosomes in human cell lines. We further identified the Bcl-2 family protein BNIP1 as one of the substrates for RNF185. Human BNIP1 colocalizes with RNF185 at mitochondria and is polyubiquitinated by RNF185 through K63-based ubiquitin linkage in vivo. The polyubiquitinated BNIP1 is capable of recruiting autophagy receptor p62, which simultaneously binds both ubiquitin and LC3 to link ubiquitination and autophagy. Our study might reveal a novel RNF185-mediated mechanism for modulating mitochondrial homeostasis through autophagy. PMID:21931693

  5. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids

    PubMed Central

    Hoxhaj, Gerta; Caddye, Edward; Najafov, Ayaz; Houde, Vanessa P; Johnson, Catherine; Dissanayake, Kumara; Toth, Rachel; Campbell, David G; Prescott, Alan R; MacKintosh, Carol

    2016-01-01

    The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1. DOI: http://dx.doi.org/10.7554/eLife.12278.001 PMID:27244671

  6. Analysis of the DNA joining repertoire of Chlorella virus DNA ligase and a new crystal structure of the ligase-adenylate intermediate.

    PubMed

    Odell, Mark; Malinina, Lucy; Sriskanda, Verl; Teplova, Marianna; Shuman, Stewart

    2003-09-01

    Chlorella virus DNA ligase is the smallest eukaryotic ATP-dependent DNA ligase known; it suffices for yeast cell growth in lieu of the essential yeast DNA ligase Cdc9. The Chlorella virus ligase-adenylate intermediate has an intrinsic nick sensing function and its DNA footprint extends 8-9 nt on the 3'-hydroxyl (3'-OH) side of the nick and 11-12 nt on the 5'-phosphate (5'-PO4) side. Here we establish the minimal length requirements for ligatable 3'-OH and 5'-PO4 strands at the nick (6 nt) and describe a new crystal structure of the ligase-adenylate in a state construed to reflect the configuration of the active site prior to nick recognition. Comparison with a previous structure of the ligase-adenylate bound to sulfate (a mimetic of the nick 5'-PO4) suggests how the positions and contacts of the active site components and the bound adenylate are remodeled by DNA binding. We find that the minimal Chlorella virus ligase is capable of catalyzing non-homologous end-joining reactions in vivo in yeast, a process normally executed by the structurally more complex cellular Lig4 enzyme. Our results suggest a model of ligase evolution in which: (i) a small 'pluripotent' ligase is the progenitor of the much larger ligases found presently in eukaryotic cells and (ii) gene duplications, variations within the core ligase structure and the fusion of new domains to the core structure (affording new protein-protein interactions) led to the compartmentalization of eukaryotic ligase function, i.e. by enhancing some components of the functional repertoire of the ancestral ligase while disabling others.

  7. Molecular dynamics simulations of human E3 ubiquitin ligase Parkin

    PubMed Central

    Qiu, Shi; Zhu, Shun; Xu, Shan; Han, Yanyan; Liu, Wen; Zuo, Ji

    2017-01-01

    Human E3 ubiquitin protein ligase parkin (Parkin) mediates mitophagy to maintain mitochondrial homeostasis. Parkin mutations are common genetic causes of early onset familial Parkinson's disease. The molecular mechanism of Parkin activation has been widely studied with emerging evidence suggesting an essential role of the phosphorylated (phospho)-ubiquitin interaction. However, the underlying mechanism of the phospho-ubiquitin interaction remains elusive. In the present study, replica exchange molecular dynamics simulations were performed to examine the conformational dynamics of Parkin in monomer and phospho-ubiquitin-bound states. In the Parkin monomer state, high structural flexibilities were observed in the majority of regions of Parkin particularly in the loop domain between the ubiquitin-like (UBL) and really interesting new gene (RING)0 domain. Binding of phospho-ubiquitin stabilizes the RING1/RING in between RING interface but destabilizes the RING1-UBL interface. Furthermore, using steered molecular dynamics simulations of Parkin mutations, it was demonstrated that salt bridge interactions contribute significantly to the interdomain interactions between the RING1 and UBL domain. Taken together, the results of the present study revealed the conformational dynamics of human full-length Parkin in monomer and phospho-ubiquitin-bound states, providing insights into designing potential therapeutics against Parkinson's disease. PMID:28765939

  8. Molecular dynamics simulations of human E3 ubiquitin ligase Parkin.

    PubMed

    Qiu, Shi; Zhu, Shun; Xu, Shan; Han, Yanyan; Liu, Wen; Zuo, Ji

    2017-10-01

    Human E3 ubiquitin protein ligase parkin (Parkin) mediates mitophagy to maintain mitochondrial homeostasis. Parkin mutations are common genetic causes of early onset familial Parkinson's disease. The molecular mechanism of Parkin activation has been widely studied with emerging evidence suggesting an essential role of the phosphorylated (phospho)‑ubiquitin interaction. However, the underlying mecha-nism of the phospho‑ubiquitin interaction remains elusive. In the present study, replica exchange molecular dynamics simulations were performed to examine the conformational dynamics of Parkin in monomer and phospho‑ubiquitin‑bound states. In the Parkin monomer state, high structural flexi-bilities were observed in the majority of regions of Parkin particularly in the loop domain between the ubiquitin‑like (UBL) and really interesting new gene (RING)0 domain. Binding of phospho‑ubiquitin stabilizes the RING1/RING in between RING interface but destabilizes the RING1‑UBL interface. Furthermore, using steered molecular dynamics simulations of Parkin mutations, it was demonstrated that salt bridge interactions contribute significantly to the interdomain interactions between the RING1 and UBL domain. Taken together, the results of the present study revealed the conformational dynamics of human full‑length Parkin in monomer and phospho‑ubiquitin‑bound states, providing insights into designing potential therapeutics against Parkinson's disease.

  9. The E3 ubiquitin ligase CHIP selectively regulates mutant epidermal growth factor receptor by ubiquitination and degradation.

    PubMed

    Chung, Chaeuk; Yoo, Geon; Kim, Tackhoon; Lee, Dahye; Lee, Choong-Sik; Cha, Hye Rim; Park, Yeon Hee; Moon, Jae Young; Jung, Sung Soo; Kim, Ju Ock; Lee, Jae Cheol; Kim, Sun Young; Park, Hee Sun; Park, Myoungrin; Park, Dong Il; Lim, Dae-Sik; Jang, Kang Won; Lee, Jeong Eun

    2016-10-14

    Somatic mutation in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) is a decisive factor for the therapeutic response to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinoma. The stability of mutant EGFR is maintained by various regulators, including heat shock protein 90 (Hsp90). The C terminus of Hsc70-interacting protein (CHIP) is a Hsp70/Hsp90 co-chaperone and exhibits E3 ubiquitin ligase activity. The high-affinity Hsp90-CHIP complex recognizes and selectively regulates their client proteins. CHIP also works with its own E3 ligase activity independently of Hsp70/Hsp90. Here, we investigated the role of CHIP in regulating EGFR in lung adenocarcinoma and also evaluated the specificity of CHIP's effects on mutant EGFR. In HEK 293T cells transfected with either WT EGFR or EGFR mutants, the overexpression of CHIP selectively decreased the expression of certain EGFR mutants (G719S, L747_E749del A750P and L858R) but not WT EGFR. In a pull-down assay, CHIP selectively interacted with EGFR mutants and simultaneously induced their ubiquitination and proteasomal degradation. The expressions of mutant EGFR in PC9 and H1975 were diminished by CHIP, while the expression of WT EGFR in A549 was nearly not affected. In addition, CHIP overexpression inhibited cell proliferation and xenograft's tumor growth of EGFR mutant cell lines, but not WT EGFR cell lines. EGFR mutant specific ubiquitination by CHIP may provide a crucial regulating mechanism for EGFR in lung adenocarcinoma. Our results suggest that CHIP can be novel therapeutic target for overcoming the EGFR TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation.

    PubMed

    Scott, Daniel C; Rhee, David Y; Duda, David M; Kelsall, Ian R; Olszewski, Jennifer L; Paulo, Joao A; de Jong, Annemieke; Ovaa, Huib; Alpi, Arno F; Harper, J Wade; Schulman, Brenda A

    2016-08-25

    Hundreds of human cullin-RING E3 ligases (CRLs) modify thousands of proteins with ubiquitin (UB) to achieve vast regulation. Current dogma posits that CRLs first catalyze UB transfer from an E2 to their client substrates and subsequent polyubiquitylation from various linkage-specific E2s. We report an alternative E3-E3 tagging cascade: many cellular NEDD8-modified CRLs associate with a mechanistically distinct thioester-forming RBR-type E3, ARIH1, and rely on ARIH1 to directly add the first UB and, in some cases, multiple additional individual monoubiquitin modifications onto CRL client substrates. Our data define ARIH1 as a component of the human CRL system, demonstrate that ARIH1 can efficiently and specifically mediate monoubiquitylation of several CRL substrates, and establish principles for how two distinctive E3s can reciprocally control each other for simultaneous and joint regulation of substrate ubiquitylation. These studies have broad implications for CRL-dependent proteostasis and mechanisms of E3-mediated UB ligation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    PubMed

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  12. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains

    PubMed Central

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C. L.; Tanaka, Yuetsu; Xia, Zongping

    2016-01-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. PMID:27082114

  13. Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases.

    PubMed

    Balasubramanian, Sundaravadivel; Mani, Santhoshkumar; Shiraishi, Hirokazu; Johnston, Rebecca K; Yamane, Kentaro; Willey, Christopher D; Cooper, George; Tuxworth, William J; Kuppuswamy, Dhandapani

    2006-10-01

    Ubiquitin conjugation of proteins is critical for cell homeostasis and contributes to both cell survival and death. Here we studied ubiquitination of proteins in pressure overloaded (PO) myocardium in the context of cardiomyocyte survival. Analysis using a feline right ventricular pressure overload (RVPO) model revealed a robust and transient increase in ubiquitination of proteins present in the Triton X-100-insoluble fraction in 24 to 48 h PO myocardium, and confocal micrographs indicate this increase in ubiquitination occurs subsarcolemmaly near the intercalated disc area of cardiomyocytes. The ubiquitination was accompanied by changes in E3 ligases including Cbl, E6AP, Mdm2 and cIAP in the same period of PO, although atrophy-related E3 ligases, MuRF1 and MuRF3 were unaltered. Furthermore, Cbl displayed a substantial increase in both levels of expression and tyrosine phosphorylation in 48 h PO myocardium. Confocal studies revealed enrichment of Cbl at the intercalated discs of 48 h PO cardiomyocytes, as evidenced by its colocalization with N-cadherin. Although apoptosis was observed in 48 h PO myocardium by TUNEL staining, cardiomyocytes showing ubiquitin staining were not positive for TUNEL staining. Furthermore, 48 h PO resulted in the phosphorylation of inhibitor of nuclear factor kappa B (IkappaB), suggesting its ubiquitin-mediated degradation and the nuclear localization of NFkappaB for the expression of specific cell survival factors such as cIAPs. Together these data indicate that increased levels of E3 ligases that regulate cell homeostasis and promote cell survival could ubiquitinate multiple cytoskeletal protein targets and that these events that occur during the early phase of PO may contribute to both cardiomyocyte survival and hypertrophy.

  14. Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage.

    PubMed

    Voiniciuc, Catalin; Dean, Gillian H; Griffiths, Jonathan S; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L; Estelle, Mark; Haughn, George W

    2013-03-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca(2+) ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca(2+) or completely rescued using alkaline Ca(2+) chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1-yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells.

  15. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains themore » basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.« less

  16. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    PubMed Central

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  17. The E3 ligase ube3a is required for learning in Drosophila melanogaster.

    PubMed

    Chakraborty, Moumita; Paul, Blesson K; Nayak, Tanmoyita; Das, Aniruddha; Jana, Nihar R; Bhutani, Supriya

    2015-06-19

    Angelman syndrome and autism are neurodevelopmental disorders linked to mutations and duplications of an E3 ligase called ube3a respectively. Since cognitive deficits and learning disabilities are hallmark symptoms of both these disorders, we investigated a role for dube3a in the learning ability of flies using the aversive phototaxis suppression assay. We show that down and up-regulation of dube3a are both detrimental to learning in larvae and adults. Using conditional gene expression we found that dube3a is required for normal brain development and during adulthood. Furthermore, we suggest that dube3a could be interacting with other learning and memory genes such as derailed. Along with firmly establishing dube3a as a gene that is required for learning, our work also opens avenues for further understanding the role played by this gene in brain development and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies

    PubMed Central

    Lv, Kaosheng; Jiang, Jing; Donaghy, Ryan; Riling, Christopher R.; Cheng, Ying; Chandra, Vemika; Rozenova, Krasimira; An, Wei; Mohapatra, Bhopal C.; Goetz, Benjamin T.; Pillai, Vinodh; Han, Xu; Todd, Emily A.; Jeschke, Grace R.; Langdon, Wallace Y.; Kumar, Suresh; Hexner, Elizabeth O.

    2017-01-01

    Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. PMID:28611190

  19. Degradation of human Lipin-1 by BTRC E3 ubiquitin ligase.

    PubMed

    Ishimoto, Kenji; Hayase, Ayaka; Kumagai, Fumiko; Kawai, Megumi; Okuno, Hiroko; Hino, Nobumasa; Okada, Yoshiaki; Kawamura, Takeshi; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Tachibana, Keisuke; Doi, Takefumi

    2017-06-17

    Lipin-1 has dual functions in the regulation of lipid and energy metabolism according to its subcellular localization, which is tightly controlled. However, it is unclear how Lipin-1 degradation is regulated. Here, we demonstrate that Lipin-1 is degraded through its DSGXXS motif. We show that Lipin-1 interacts with either of two E3 ubiquitin ligases, BTRC or FBXW11, and that this interaction is DSGXXS-dependent and mediates the attachment of polyubiquitin chains. Further, we demonstrate that degradation of Lipin-1 is regulated by BTRC in the cytoplasm and on membranes. These novel insights into the regulation of human Lipin-1 stability will be useful in planning further studies to elucidate its metabolic processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels.

    PubMed

    Hantouche, Christine; Williamson, Brittany; Valinsky, William C; Solomon, Joshua; Shrier, Alvin; Young, Jason C

    2017-02-10

    Cardiac long QT syndrome type 2 is caused by mutations in the human ether a go-go-related gene (hERG) potassium channel, many of which cause misfolding and degradation at the endoplasmic reticulum instead of normal trafficking to the cell surface. The Hsc70/Hsp70 chaperones assist the folding of the hERG cytosolic domains. Here, we demonstrate that the Hsp70 nucleotide exchange factor Bag1 promotes hERG degradation by the ubiquitin-proteasome system at the endoplasmic reticulum to regulate hERG levels and channel activity. Dissociation of hERG complexes containing Hsp70 and the E3 ubiquitin ligase CHIP requires the interaction of Bag1 with Hsp70, but this does not involve the Bag1 ubiquitin-like domain. The interaction with Bag1 then shifts hERG degradation to the membrane-anchored E3 ligase TRC8 and its E2-conjugating enzyme Ube2g2, as determined by siRNA screening. TRC8 interacts through the transmembrane region with hERG and decreases hERG functional expression. TRC8 also mediates degradation of the misfolded hERG-G601S disease mutant, but pharmacological stabilization of the mutant structure prevents degradation. Our results identify TRC8 as a previously unknown Hsp70-independent quality control E3 ligase for hERG. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling.

    PubMed

    Yang, Liang; Liu, Qiaohong; Liu, Zhibin; Yang, Hao; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-01-01

    Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)-insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4-RING finger domain in its C-terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T-DNA insertion mutant atairp4 effectively recovered the ABA-associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild-type and atairp4 mutant plants. In addition, the expression levels of ABA- and drought-induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild-type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA-mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis. © 2015 The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  2. The SUD1 Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Arabidopsis[C][W

    PubMed Central

    Doblas, Verónica G.; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M.; Botella, Miguel A.

    2013-01-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum–associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals. PMID:23404890

  3. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana.

    PubMed

    Peralta, Diego A; Araya, Alejandro; Busi, Maria V; Gomez-Casati, Diego F

    2016-01-01

    The E3 ubiquitin-protein ligases are associated to various processes such as cell cycle control and diverse developmental pathways. Arabidopsis thaliana SEVEN IN ABSENTIA like 7, which has ubiquitin ligase activity, is located in the nucleus and cytosol and is expressed at several stages in almost all plant tissues suggesting an important role in plant functions. However, the mechanism underlying the regulation of this protein is unknown. Since we found that the SEVEN IN ABSENTIA like 7 gene expression is altered in plants with impaired mitochondria, and in plants deficient in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 1, we decided to study the possible interactions between both proteins as potential partners in plant signaling functions. We found that SEVEN IN ABSENTIA like 7 is able to interact in vitro with glyceraldehyde-3-phosphate dehydrogenase and that the Lys231 residue of the last is essential for this function. Following the interaction, a concomitant increase in the glyceraldehyde-3-phosphate dehydrogenase catalytic activity was observed. However, when SEVEN IN ABSENTIA like 7 was supplemented with E1 and E2 proteins to form a complete E1-E2-E3 modifier complex, we observed the mono-ubiquitination of glyceraldehyde-3-phosphate dehydrogenase 1 at the Lys76 residue and a dramatic decrease of its catalytic activity. Moreover, we found that localization of glyceraldehyde-3-phosphate dehydrogenase 1 in the nucleus is dependent on the expression SEVEN IN ABSENTIA like 7. These observations suggest that the association of both proteins might result in different biological consequences in plants either through affecting the glycolytic flux or via cytoplasm-nucleus relocation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder.

    PubMed

    Frints, Suzanna G M; Ozanturk, Aysegul; Rodríguez Criado, Germán; Grasshoff, Ute; de Hoon, Bas; Field, Michael; Manouvrier-Hanu, Sylvie; E Hickey, Scott; Kammoun, Molka; Gripp, Karen W; Bauer, Claudia; Schroeder, Christopher; Toutain, Annick; Mihalic Mosher, Theresa; Kelly, Benjamin J; White, Peter; Dufke, Andreas; Rentmeester, Eveline; Moon, Sungjin; Koboldt, Daniel C; van Roozendaal, Kees E P; Hu, Hao; Haas, Stefan A; Ropers, Hans-Hilger; Murray, Lucinda; Haan, Eric; Shaw, Marie; Carroll, Renee; Friend, Kathryn; Liebelt, Jan; Hobson, Lynne; De Rademaeker, Marjan; Geraedts, Joep; Fryns, Jean-Pierre; Vermeesch, Joris; Raynaud, Martine; Riess, Olaf; Gribnau, Joost; Katsanis, Nicholas; Devriendt, Koen; Bauer, Peter; Gecz, Jozef; Golzio, Christelle; Gontan, Cristina; Kalscheuer, Vera M

    2018-05-04

    RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.

  5. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    PubMed

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  6. Ligand-mediated protein degradation reveals functional conservation among sequence variants of the CUL4-type E3 ligase substrate receptor cereblon.

    PubMed

    Akuffo, Afua A; Alontaga, Aileen Y; Metcalf, Rainer; Beatty, Matthew S; Becker, Andreas; McDaniel, Jessica M; Hesterberg, Rebecca S; Goodheart, William E; Gunawan, Steven; Ayaz, Muhammad; Yang, Yan; Karim, Md Rezaul; Orobello, Morgan E; Daniel, Kenyon; Guida, Wayne; Yoder, Jeffrey A; Rajadhyaksha, Anjali M; Schönbrunn, Ernst; Lawrence, Harshani R; Lawrence, Nicholas J; Epling-Burnette, Pearlie K

    2018-04-20

    Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Selective Proteasomal Degradation of the B′β Subunit of Protein Phosphatase 2A by the E3 Ubiquitin Ligase Adaptor Kelch-like 15*

    PubMed Central

    Oberg, Elizabeth A.; Nifoussi, Shanna K.; Gingras, Anne-Claude; Strack, Stefan

    2012-01-01

    Protein phosphatase 2A (PP2A), a ubiquitous and pleiotropic regulator of intracellular signaling, is composed of a core dimer (AC) bound to a variable (B) regulatory subunit. PP2A is an enzyme family of dozens of heterotrimers with different subcellular locations and cellular substrates dictated by the B subunit. B′β is a brain-specific PP2A regulatory subunit that mediates dephosphorylation of Ca2+/calmodulin-dependent protein kinase II and tyrosine hydroxylase. Unbiased proteomic screens for B′β interactors identified Cullin3 (Cul3), a scaffolding component of E3 ubiquitin ligase complexes, and the previously uncharacterized Kelch-like 15 (KLHL15). KLHL15 is one of ∼40 Kelch-like proteins, many of which have been identified as adaptors for the recruitment of substrates to Cul3-based E3 ubiquitin ligases. Here, we report that KLHL15-Cul3 specifically targets B′β to promote turnover of the PP2A subunit by ubiquitylation and proteasomal degradation. Comparison of KLHL15 and B′β tissue expression profiles suggests that the E3 ligase adaptor contributes to selective expression of the PP2A/B′β holoenzyme in the brain. We mapped KLHL15 residues critical for homodimerization as well as interaction with Cul3 and B′β. Explaining PP2A subunit selectivity, the divergent N terminus of B′β was found necessary and sufficient for KLHL15-mediated degradation, with Tyr-52 having an obligatory role. Although KLHL15 can interact with the PP2A/B′β heterotrimer, it only degrades B′β, thus promoting exchange with other regulatory subunits. E3 ligase adaptor-mediated control of PP2A holoenzyme composition thereby adds another layer of regulation to cellular dephosphorylation events. PMID:23135275

  8. The E3 ubiquitin ligase mind bomb-2 (MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-dependent NF-κB activation.

    PubMed

    Stempin, Cinthia C; Chi, Liying; Giraldo-Vela, Juan P; High, Anthony A; Häcker, Hans; Redecke, Vanessa

    2011-10-28

    B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway.

  9. The E3 ubiquitin ligase, HECTD1, is involved in ABCA1-mediated cholesterol export from macrophages.

    PubMed

    Aleidi, Shereen M; Yang, Alryel; Sharpe, Laura J; Rao, Geetha; Cochran, Blake J; Rye, Kerry-Anne; Kockx, Maaike; Brown, Andrew J; Gelissen, Ingrid C

    2018-04-01

    The ABC lipid transporters, ABCA1 and ABCG1, are essential for maintaining lipid homeostasis in cells such as macrophages by exporting excess cholesterol to extracellular acceptors. These transporters are highly regulated at the post-translational level, including protein ubiquitination. Our aim was to investigate the role of the E3 ubiquitin ligase HECTD1, recently identified as associated with ABCG1, on ABCG1 and ABCA1 protein levels and cholesterol export function. Here, we show that HECTD1 protein is widely expressed in a range of human and murine primary cells and cell lines, including macrophages, neuronal cells and insulin secreting β-cells. siRNA knockdown of HECTD1 unexpectedly decreased overexpressed ABCG1 protein levels and cell growth, but increased native ABCA1 protein in CHO-K1 cells. Knockdown of HECTD1 in unloaded THP-1 macrophages did not affect ABCG1 but significantly increased ABCA1 protein levels, in wild-type as well as THP-1 cells that do not express ABCG1. Cholesterol export from macrophages to apoA-I over time was increased after knockdown of HECTD1, however these effects were not sustained in cholesterol-loaded cells. In conclusion, we have identified a new candidate, the E3 ubiquitin ligase HECTD1, that may be involved in the regulation of ABCA1-mediated cholesterol export from unloaded macrophages to apoA-I. The exact mechanism by which this ligase affects this pathway remains to be elucidated. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  11. Rines E3 ubiquitin ligase regulates MAO-A levels and emotional responses.

    PubMed

    Kabayama, Miyuki; Sakoori, Kazuto; Yamada, Kazuyuki; Ornthanalai, Veravej G; Ota, Maya; Morimura, Naoko; Katayama, Kei-ichi; Murphy, Niall P; Aruga, Jun

    2013-08-07

    Monoamine oxidase A (MAO-A), the catabolic enzyme of norepinephrine and serotonin, plays a critical role in emotional and social behavior. However, the control and impact of endogenous MAO-A levels in the brain remains unknown. Here we show that the RING finger-type E3 ubiquitin ligase Rines/RNF180 regulates brain MAO-A subset, monoamine levels, and emotional behavior. Rines interacted with MAO-A and promoted its ubiquitination and degradation. Rines knock-out mice displayed impaired stress responses, enhanced anxiety, and affiliative behavior. Norepinephrine and serotonin levels were altered in the locus ceruleus, prefrontal cortex, and amygdala in either stressed or resting conditions, and MAO-A enzymatic activity was enhanced in the locus ceruleus in Rines knock-out mice. Treatment of Rines knock-out mice with MAO inhibitors showed genotype-specific effects on some of the abnormal affective behaviors. These results indicated that the control of emotional behavior by Rines is partly due to the regulation of MAO-A levels. These findings verify that Rines is a critical regulator of the monoaminergic system and emotional behavior and identify a promising candidate drug target for treating diseases associated with emotion.

  12. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities.

    PubMed

    Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Chang, Tzu-Hao; Bretaña, Neil; Lai, K; Weng, Julia; Lee, Tzong-Yi

    2015-01-01

    In eukaryotes, ubiquitin-conjugation is an important mechanism underlying proteasome-mediated degradation of proteins, and as such, plays an essential role in the regulation of many cellular processes. In the ubiquitin-proteasome pathway, E3 ligases play important roles by recognizing a specific protein substrate and catalyzing the attachment of ubiquitin to a lysine (K) residue. As more and more experimental data on ubiquitin conjugation sites become available, it becomes possible to develop prediction models that can be scaled to big data. However, no development that focuses on the investigation of ubiquitinated substrate specificities has existed. Herein, we present an approach that exploits an iteratively statistical method to identify ubiquitin conjugation sites with substrate site specificities. In this investigation, totally 6259 experimentally validated ubiquitinated proteins were obtained from dbPTM. After having filtered out homologous fragments with 40% sequence identity, the training data set contained 2658 ubiquitination sites (positive data) and 5532 non-ubiquitinated sites (negative data). Due to the difficulty in characterizing the substrate site specificities of E3 ligases by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. The profile hidden Markov model (profile HMM) was adopted to construct the predictive models learned from the identified substrate motifs. A five-fold cross validation was then used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 73.07%, 65.46%, and 67.93%, respectively. Additionally, an independent testing set, completely blind to the training data of the predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (76.13%) and outperform other ubiquitination site prediction tool. A case study demonstrated the effectiveness of the characterized substrate motifs for

  13. FLYING SAUCER1 Is a Transmembrane RING E3 Ubiquitin Ligase That Regulates the Degree of Pectin Methylesterification in Arabidopsis Seed Mucilage[W

    PubMed Central

    Voiniciuc, Cătălin; Dean, Gillian H.; Griffiths, Jonathan S.; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L.; Estelle, Mark; Haughn, George W.

    2013-01-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca2+ ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca2+ or completely rescued using alkaline Ca2+ chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1–yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells. PMID:23482858

  14. Structure and Function of the Mind bomb E3 ligase in the context of Notch Signal Transduction

    PubMed Central

    Guo, Bingqian; McMillan, Brian J.; Blacklow, Stephen C.

    2016-01-01

    The Notch signaling pathway has a critical role in cell fate determination and tissue homeostasis in a variety of different lineages. In the context of normal Notch signaling, the Notch receptor of the “signal-receiving” cell is activated in trans by a Notch ligand from a neighboring “signal-sending” cell. Genetic studies in several model organisms have established that ubiquitination of the Notch ligand, and its regulated endocytosis, is essential for transmission of this activation signal. In mammals, this ubiquitination step is dependent on the protein Mind bomb 1 (Mib1), a large multi-domain RING-type E3 ligase, and its direct interaction with the intracellular tails of Notch ligand molecules. Here, we discuss our current understanding of Mind bomb structure and mechanism in the context of Notch signaling and beyond. PMID:27285058

  15. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1.

    PubMed

    Rodrigues, Elizabeth M; Scudder, Samantha L; Goo, Marisa S; Patrick, Gentry N

    2016-02-03

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. Copyright © 2016 the authors 0270-6474/16/361590-06$15.00/0.

  16. The E3 ubiquitin ligase NEDD4 induces endocytosis and lysosomal sorting of connexin 43 to promote loss of gap junctions.

    PubMed

    Totland, Max Z; Bergsland, Christian H; Fykerud, Tone A; Knudsen, Lars M; Rasmussen, Nikoline L; Eide, Peter W; Yohannes, Zeremariam; Sørensen, Vigdis; Brech, Andreas; Lothe, Ragnhild A; Leithe, Edward

    2017-09-01

    Intercellular communication via gap junctions has an important role in controlling cell growth and in maintaining tissue homeostasis. Connexin 43 (Cx43; also known as GJA1) is the most abundantly expressed gap junction channel protein in humans and acts as a tumor suppressor in multiple tissue types. Cx43 is often dysregulated at the post-translational level during cancer development, resulting in loss of gap junctions. However, the molecular basis underlying the aberrant regulation of Cx43 in cancer cells has remained elusive. Here, we demonstrate that the oncogenic E3 ubiquitin ligase NEDD4 regulates the Cx43 protein level in HeLa cells, both under basal conditions and in response to protein kinase C activation. Furthermore, overexpression of NEDD4, but not a catalytically inactive form of NEDD4, was found to result in nearly complete loss of gap junctions and increased lysosomal degradation of Cx43 in both HeLa and C33A cervical carcinoma cells. Collectively, the data provide new insights into the molecular basis underlying the regulation of gap junction size and represent the first evidence that an oncogenic E3 ubiquitin ligase promotes loss of gap junctions and Cx43 degradation in human carcinoma cells. © 2017. Published by The Company of Biologists Ltd.

  17. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex.

    PubMed

    Nguyen, Henry C; Yang, Haitao; Fribourgh, Jennifer L; Wolfe, Leslie S; Xiong, Yong

    2015-03-03

    The von Hippel-Lindau tumor suppressor protein (VHL) recruits a Cullin 2 (Cul2) E3 ubiquitin ligase to downregulate HIF-1α, an essential transcription factor for the hypoxia response. Mutations in VHL lead to VHL disease and renal cell carcinomas. Inhibition of this pathway to upregulate erythropoietin production is a promising new therapy to treat ischemia and chronic anemia. Here, we report the crystal structure of VHL bound to a Cul2 N-terminal domain, Elongin B, and Elongin C (EloC). Cul2 interacts with both the VHL BC box and cullin box and a novel EloC site. Comparison with other cullin E3 ligase structures shows that there is a conserved, yet flexible, cullin recognition module and that cullin selectivity is influenced by distinct electrostatic interactions. Our structure provides a structural basis for the study of the pathogenesis of VHL disease and rationale for the design of novel compounds that may modulate cullin-substrate receptor interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Direct Role for Proliferating Cell Nuclear Antigen in Substrate Recognition by the E3 Ubiquitin Ligase CRL4Cdt2*

    PubMed Central

    Havens, Courtney G.; Shobnam, Nadia; Guarino, Estrella; Centore, Richard C.; Zou, Lee; Kearsey, Stephen E.; Walter, Johannes C.

    2012-01-01

    The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4Cdt2) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4Cdt2 substrates contain a “PIP degron,” which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4Cdt2 for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4Cdt2 substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4Cdt2 recruitment to chromatin. Our data show that the interaction of CRL4Cdt2 with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions. PMID:22303007

  19. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick.

    PubMed

    Raymond, Amy; Shuman, Stewart

    2007-01-01

    Deinococcus radiodurans RNA ligase (DraRnl) is a template-directed ligase that seals nicked duplexes in which the 3'-OH strand is RNA. DraRnl is a 342 amino acid polypeptide composed of a C-terminal adenylyltransferase domain fused to a distinctive 126 amino acid N-terminal module (a putative OB-fold). An alanine scan of the C domain identified 9 amino acids essential for nick ligation, which are located within nucleotidyltransferase motifs I, Ia, III, IIIa, IV and V. Seven mutants were dysfunctional by virtue of defects in ligase adenylylation: T163A, H167A, G168A, K186A, E230A, F281A and E305A. Four of these were also defective in phosphodiester formation at a preadenylylated nick: G168A, E230A, F281A and E305A. Two nick sealing-defective mutants were active in ligase adenylylation and sealing a preadenylylated nick, thereby implicating Ser185 and Lys326 in transfer of AMP from the enzyme to the nick 5'-PO(4). Whereas deletion of the N-terminal domain suppressed overall nick ligation and ligase adenylylation, it did not compromise sealing at a preadenylylated nick. Mutational analysis of 15 residues of the N domain identified Lys26, Gln31 and Arg79 as key constituents. Structure-activity relationships at the essential residues were determined via conservative substitutions. We propose that DraRnl typifies a new clade of polynucleotide ligases. DraRnl homologs are detected in several eukaryal proteomes.

  20. Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP

    PubMed Central

    Scaglione, K. Matthew; Zavodszky, Eszter; Todi, Sokol V.; Patury, Srikanth; Xu, Ping; Rodríguez-Lebrón, Edgardo; Fischer, Svetlana; Konen, John; Djarmati, Ana; Peng, Junmin; Gestwicki, Jason E.; Paulson, Henry L.

    2011-01-01

    Summary The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3. PMID:21855799

  1. The E3 ubiquitin ligase RNF146 promotes colorectal cancer by activating the Wnt/β-catenin pathway via ubiquitination of Axin1.

    PubMed

    Shen, Jiangli; Yu, Zhaohui; Li, Na

    2018-06-20

    The E3 ubiquitin ligase ring finger protein 146 (RNF146) has been implicated in tumor development. However, the role and clinical significance of RNF146 in colorectal cancer (CRC) remain unknown. In this study, we reported for the first time that RNF146 was upregulated in CRC tissues as well as in cell lines. Further, RNF146 expression was independent prognostic factor for poor outcome of CRC patients. RNF146 knockdown in cell lines inhibited cell growth, promoted cell apoptosis in vitro and suppressed colorectal tumor growth in vivo. Mechanistic investigations revealed that RNF146 exerted oncogenic role through ubiquitination of Axin1 to activate β-catenin signalling. In addition, RNF146 expression was positively correlated with β-catenin expression in CRC tissues. Collectively, our data suggest that RNF146 might function as a oncogene in human CRC, and represent a promising prognostic factor and a valuable therapeutic target for CRC. Copyright © 2018. Published by Elsevier Inc.

  2. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5′-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick

    PubMed Central

    Raymond, Amy; Shuman, Stewart

    2007-01-01

    Deinococcus radiodurans RNA ligase (DraRnl) is a template-directed ligase that seals nicked duplexes in which the 3′-OH strand is RNA. DraRnl is a 342 amino acid polypeptide composed of a C-terminal adenylyltransferase domain fused to a distinctive 126 amino acid N-terminal module (a putative OB-fold). An alanine scan of the C domain identified 9 amino acids essential for nick ligation, which are located within nucleotidyltransferase motifs I, Ia, III, IIIa, IV and V. Seven mutants were dysfunctional by virtue of defects in ligase adenylylation: T163A, H167A, G168A, K186A, E230A, F281A and E305A. Four of these were also defective in phosphodiester formation at a preadenylylated nick: G168A, E230A, F281A and E305A. Two nick sealing-defective mutants were active in ligase adenylylation and sealing a preadenylylated nick, thereby implicating Ser185 and Lys326 in transfer of AMP from the enzyme to the nick 5′-PO4. Whereas deletion of the N-terminal domain suppressed overall nick ligation and ligase adenylylation, it did not compromise sealing at a preadenylylated nick. Mutational analysis of 15 residues of the N domain identified Lys26, Gln31 and Arg79 as key constituents. Structure–activity relationships at the essential residues were determined via conservative substitutions. We propose that DraRnl typifies a new clade of polynucleotide ligases. DraRnl homologs are detected in several eukaryal proteomes. PMID:17204483

  3. An E3 Ligase Affects the NLR Receptor Stability and Immunity to Powdery Mildew1

    PubMed Central

    Chang, Cheng; Gu, Cheng; Tang, Sanyuan

    2016-01-01

    Following the detection of pathogen cognate effectors, plant Nod-like receptors (NLRs) trigger isolate-specific immunity that is generally associated with cell death. The regulation of NLR stability is important to ensure effective immunity. In barley (Hordeum vulgare), the allelic Mildew locus A (MLA) receptors mediate isolate-specific disease resistance against powdery mildew fungus (Blumeria graminis f. sp. hordei). Currently, how MLA stability is controlled remains unknown. Here, we identified an MLA-interacting RING-type E3 ligase, MIR1, that interacts with several MLAs. We showed that the carboxyl-terminal TPR domain of MIR1 mediates the interaction with the coiled-coil domain-containing region of functional MLAs, such as MLA1, MLA6, and MLA10, but not with that of the nonfunctional MLA18-1. MIR1 can ubiquitinate the amino-terminal region of MLAs in vitro and promotes the proteasomal degradation of MLAs in vitro and in planta. Both proteasome inhibitor treatment and virus-induced gene silencing-mediated MIR1 silencing significantly increased MLA abundance in barley transgenic lines. Furthermore, overexpression of MIR1 specifically compromised MLA-mediated disease resistance in barley, while coexpression of MIR1 and MLA10 attenuated MLA10-induced cell death signaling in Nicotiana benthamiana. Together, our data reveal a mechanism for the control of the stability of MLA immune receptors and for the attenuation of MLA-triggered defense signaling by a RING-type E3 ligase via the ubiquitin proteasome system. PMID:27780896

  4. Ubiquitylation of a Melanosomal Protein by HECT-E3 Ligases Serves as Sorting Signal for Lysosomal DegradationD⃞

    PubMed Central

    Lévy, Frédéric; Muehlethaler, Katja; Salvi, Suzanne; Peitrequin, Anne-Lise; Lindholm, Cecilia K.; Cerottini, Jean-Charles; Rimoldi, Donata

    2005-01-01

    The production of pigment by melanocytic cells of the skin involves a series of enzymatic reactions that take place in specialized organelles called melanosomes. Melan-A/MART-1 is a melanocytic transmembrane protein with no enzymatic activity that accumulates in vesicles at the trans side of the Golgi and in melanosomes. We show here that, in melanoma cells, Melan-A associates with two homologous to E6-AP C-terminus (HECT)-E3 ubiquitin ligases, NEDD4 and Itch, and is ubiquitylated. Both NEDD4 and Itch participate in the degradation of Melan-A. A mutant Melan-A lacking ubiquitin-acceptor residues displays increased half-life and, in pigmented cells, accumulates in melanosomes. These results suggest that ubiquitylation regulates the lysosomal sorting and degradation of Melan-A/MART-1 from melanosomes in melanocytic cells. PMID:15703212

  5. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    PubMed Central

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  6. A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125

    PubMed Central

    Bijlmakers, Marie-José; Teixeira, João M. C.; Boer, Roeland; Mayzel, Maxim; Puig-Sàrries, Pilar; Karlsson, Göran; Coll, Miquel; Pons, Miquel; Crosas, Bernat

    2016-01-01

    The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2120-128) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2120-128 region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2. PMID:27411375

  7. A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes

    PubMed Central

    Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John

    2015-01-01

    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619

  8. Phosphorylation by PINK1 Releases the UBL Domain and Initializes the Conformational Opening of the E3 Ubiquitin Ligase Parkin

    PubMed Central

    Moussaud-Lamodière, Elisabeth L.; Dourado, Daniel F. A. R.; Flores, Samuel C.; Springer, Wolfdieter

    2014-01-01

    Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through

  9. The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy

    PubMed Central

    Pei, Gang; Buijze, Hellen; Liu, Haipeng; Moura-Alves, Pedro; Goosmann, Christian; Brinkmann, Volker; Kawabe, Hiroshi; Dorhoi, Anca; Kaufmann, Stefan H. E.

    2017-01-01

    ABSTRACT The E3 ubiquitin ligase NEDD4 has been intensively studied in processes involved in viral infections, such as virus budding. However, little is known about its functions in bacterial infections. Our investigations into the role of NEDD4 in intracellular bacterial infections demonstrate that Mycobacterium tuberculosis and Listeria monocytogenes, but not Mycobacterium bovis BCG, replicate more efficiently in NEDD4 knockdown macrophages. In parallel, NEDD4 knockdown or knockout impaired basal macroautophagy/autophagy, as well as infection-induced autophagy. Conversely, NEDD4 expression promoted autophagy in an E3 catalytic activity-dependent manner, thereby restricting intracellular Listeria replication. Mechanistic studies uncovered that endogenous NEDD4 interacted with BECN1/Beclin 1 and this interaction increased during Listeria infection. Deficiency of NEDD4 resulted in elevated K48-linkage ubiquitination of endogenous BECN1. Further, NEDD4 mediated K6- and K27- linkage ubiquitination of BECN1, leading to elevated stability of BECN1 and increased autophagy. Thus, NEDD4 participates in killing of intracellular bacterial pathogens via autophagy by sustaining the stability of BECN1. PMID:29251248

  10. Tripartite motif ligases catalyze polyubiquitin chain formation through a cooperative allosteric mechanism.

    PubMed

    Streich, Frederick C; Ronchi, Virginia P; Connick, J Patrick; Haas, Arthur L

    2013-03-22

    Ligation of polyubiquitin chains to proteins is a fundamental post-translational modification, often resulting in targeted degradation of conjugated proteins. Attachment of polyubiquitin chains requires the activities of an E1 activating enzyme, an E2 carrier protein, and an E3 ligase. The mechanism by which polyubiquitin chains are formed remains largely speculative, especially for RING-based ligases. The tripartite motif (TRIM) superfamily of ligases functions in many cellular processes including innate immunity, cellular localization, development and differentiation, signaling, and cancer progression. The present results show that TRIM ligases catalyze polyubiquitin chain formation in the absence of substrate, the rates of which can be used as a functional readout of enzyme function. Initial rate studies under biochemically defined conditions show that TRIM32 and TRIM25 are specific for the Ubc5 family of E2-conjugating proteins and, along with TRIM5α, exhibit cooperative kinetics with respect to Ubc5 concentration, with submicromolar [S]0.5 and Hill coefficients of 3-5, suggesting they possess multiple binding sites for their cognate E2-ubiquitin thioester. Mutation studies reveal a second, non-canonical binding site encompassing the C-terminal Ubc5α-helix. Polyubiquitin chain formation requires TRIM subunit oligomerization through the conserved coiled-coil domain, but can be partially replaced by fusing the catalytic domain to GST to promote dimerization. Other results suggest that TRIM32 assembles polyubiquitin chains as a Ubc5-linked thioester intermediate. These results represent the first detailed mechanistic study of TRIM ligase activity and provide a functional context for oligomerization observed in the superfamily.

  11. Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein.

    PubMed

    An, Jian-Ping; Liu, Xin; Li, Hao-Hao; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-11-01

    MdMYB1 is an important regulator for anthocyanin accumulation in apple (Malus × domestica). Here, an apple RING E3 ligase, MdMIEL1, was screened out as a partner of MdMYB1 with a yeast two-hybrid approach. Pull-down, bimolecular fluorescence complementation and coimmunoprecipitation assays further verified the interaction between MdMIEL1 and MdMYB1 proteins. Subsequently, in vitro and in vivo experiments indicated that MdMIEL1 functioned as a ubiquitin E3 ligase to ubiquitinate MdMYB1 protein, followed by degradation through a 26S proteasome pathway. Furthermore, transgenic studies in apple calli and Arabidopsis demonstrated that MdMIEL1 negatively regulated anthocyanin accumulation by modulating the degradation of MdMYB1 protein. Taken together, our findings provide a new insight into the molecular mechanism by which MdMIEL1 negatively regulates anthocyanin biosynthesis by ubiquitinating and degrading MdMYB1 protein. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors1[OPEN

    PubMed Central

    Selote, Devarshi; Samira, Rozalynne; Matthiadis, Anna; Gillikin, Jeffrey W.; Long, Terri A.

    2015-01-01

    Iron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation. To further characterize the function of this protein, we examined the expression pattern of recombinant ProBTS::β-GLUCURONIDASE and found that it is expressed in developing embryos and other reproductive tissues, corresponding with its apparent role in reproductive growth and development. Our findings also indicate that the interactions between BTS and PYE-like (PYEL) basic helix-loop-helix transcription factors occur within the nucleus and are dependent on the presence of the RING domain. We provide evidence that BTS facilitates 26S proteasome-mediated degradation of PYEL proteins in the absence of iron. We also determined that, upon binding iron at the HHE domains, BTS is destabilized and that this destabilization relies on specific residues within the HHE domains. This study reveals an important and unique mechanism for plant iron homeostasis whereby an E3 ubiquitin ligase may posttranslationally control components of the transcriptional regulatory network involved in the iron deficiency response. PMID:25452667

  13. Ubiquitin-dependent Regulation of Phospho-AKT Dynamics by the Ubiquitin E3 Ligase, NEDD4-1, in the Insulin-like Growth Factor-1 Response*

    PubMed Central

    Fan, Chuan-Dong; Lum, Michelle A.; Xu, Chao; Black, Jennifer D.; Wang, Xinjiang

    2013-01-01

    AKT is a critical effector kinase downstream of the PI3K pathway that regulates a plethora of cellular processes including cell growth, death, differentiation, and migration. Mechanisms underlying activated phospho-AKT (pAKT) translocation to its action sites remain unclear. Here we show that NEDD4-1 is a novel E3 ligase that specifically regulates ubiquitin-dependent trafficking of pAKT in insulin-like growth factor (IGF)-1 signaling. NEDD4-1 physically interacts with AKT and promotes HECT domain-dependent ubiquitination of exogenous and endogenous AKT. NEDD4-1 catalyzes K63-type polyubiquitin chain formation on AKT in vitro. Plasma membrane binding is the key step for AKT ubiquitination by NEDD4-1 in vivo. Ubiquitinated pAKT translocates to perinuclear regions, where it is released into the cytoplasm, imported into the nucleus, or coupled with proteasomal degradation. IGF-1 signaling specifically stimulates NEDD4-1-mediated ubiquitination of pAKT, without altering total AKT ubiquitination. A cancer-derived plasma membrane-philic mutant AKT(E17K) is more effectively ubiquitinated by NEDD4-1 and more efficiently trafficked into the nucleus compared with wild type AKT. This study reveals a novel mechanism by which a specific E3 ligase is required for ubiquitin-dependent control of pAKT dynamics in a ligand-specific manner. PMID:23195959

  14. The Role of Ubiquitin E3 Ligase SCF-SKP2 in Prostate Cancer Development

    DTIC Science & Technology

    2007-02-01

    2004; 303:1371-4. 26. Nag A, Bondar T, Shiv S, Raychaudhuri P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A...ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6:9-20. 2. Nag A, Bondar T, Shiv S, Raychaudhuri P. The xeroderma pigmentosum group E gene product DDB2 is... xeroderma pigmentosum group E patient and the subsequent inability to bind DDB1 (ref. 16). This motif is present in most of the WDR proteins we found (see

  15. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors.

    PubMed

    Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin

    2016-07-05

    The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.

  16. An E3 Ubiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance.

    PubMed

    You, Quanyuan; Zhai, Keran; Yang, Donglei; Yang, Weibing; Wu, Jingni; Liu, Junzhong; Pan, Wenbo; Wang, Jianjun; Zhu, Xudong; Jian, Yikun; Liu, Jiyun; Zhang, Yingying; Deng, Yiwen; Li, Qun; Lou, Yonggen; Xie, Qi; He, Zuhua

    2016-12-14

    Programmed cell death (PCD) and immunity in plants are tightly controlled to promote antimicrobial defense while preventing autoimmunity. However, the mechanisms contributing to this immune homeostasis are poorly understood. Here, we isolated a rice mutant ebr1 (enhanced blight and blast resistance 1) that shows enhanced broad-spectrum bacterial and fungal disease resistance, but displays spontaneous PCD, autoimmunity, and stunted growth. EBR1 encodes an E3 ubiquitin ligase that interacts with OsBAG4, which belongs to the BAG (Bcl-2-associated athanogene) family that functions in cell death, growth arrest, and immune responses in mammals. EBR1 directly targets OsBAG4 for ubiquitination-mediated degradation. Elevated levels of OsBAG4 in rice are necessary and sufficient to trigger PCD and enhanced disease resistance to pathogenic infection, most likely by activating pathogen-associated molecular patterns-triggered immunity (PTI). Together, our study suggests that an E3-BAG module orchestrates innate immune homeostasis and coordinates the trade-off between defense and growth in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Chaperone-assisted E3 Ligase C Terminus of Hsc70-interacting Protein (CHIP) Targets PTEN for Proteasomal Degradation*

    PubMed Central

    Ahmed, Syed Feroj; Deb, Satamita; Paul, Indranil; Chatterjee, Anirban; Mandal, Tapashi; Chatterjee, Uttara; Ghosh, Mrinal K.

    2012-01-01

    The tumor suppressor, PTEN is key to the regulation of diverse cellular processes, making it a prime candidate to be tightly regulated. The PTEN level is controlled in a major way by E3 ligase-mediated degradation through the Ubiquitin-Proteasome System (UPS). Nedd 4-1, XIAP, and WWP2 have been shown to maintain PTEN turnover. Here, we report that CHIP, the chaperone-associated E3 ligase, induces ubiquitination and regulates the proteasomal turnover of PTEN. It was apparent from our findings that PTEN transiently associates with the molecular chaperones and thereby gets diverted to the degradation pathway through its interaction with CHIP. The TPR domain of CHIP and parts of the N-terminal domain of PTEN are required for their interaction. Overexpression of CHIP leads to elevated ubiquitination and a shortened half-life of endogenous PTEN. On the other hand, depletion of endogenous CHIP stabilizes PTEN. CHIP is also shown to regulate PTEN-dependent transcription presumably through its down-regulation. PTEN shared an inverse correlation with CHIP in human prostate cancer patient samples, thereby triggering the prospects of a more complex mode of PTEN regulation in cancer. PMID:22427670

  18. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex.

    PubMed

    Sato, Yoshitaka; Kamura, Takumi; Shirata, Noriko; Murata, Takayuki; Kudoh, Ayumi; Iwahori, Satoko; Nakayama, Sanae; Isomura, Hiroki; Nishiyama, Yukihiro; Tsurumi, Tatsuya

    2009-07-01

    p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection.

  19. Flipping the Switch from G1 to S Phase with E3 Ubiquitin Ligases

    PubMed Central

    Rizzardi, Lindsay F.

    2012-01-01

    The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication (“origin licensing”) to active DNA synthesis (“origin firing”). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells. PMID:23634252

  20. The Kinase Activity of Calcineurin B-like Interacting Protein Kinase 26 (CIPK26) Influences Its Own Stability and that of the ABA-regulated Ubiquitin Ligase, Keep on Going (KEG)

    PubMed Central

    Lyzenga, Wendy J.; Sullivan, Victoria; Liu, Hongxia; Stone, Sophia L.

    2017-01-01

    The Really Interesting New Gene (RING)-type E3 ligase, Keep on Going (KEG) plays a critical role in Arabidopsis growth after germination and the connections between KEG and hormone signaling pathways are expanding. With regards to abscisic acid (ABA) signaling, KEG targets ABA-responsive transcription factors abscisic acid insensitive 5, ABF1 and ABF3 for ubiquitination and subsequent degradation through the 26S proteasome. Regulation of E3 ligases through self-ubiquitination is common to RING-type E3 ligases and ABA promotes KEG self-ubiquitination and degradation. ABA-mediated degradation of KEG is phosphorylation-dependent; however, upstream signaling proteins that may regulate KEG stability have not been characterized. In this report, we show that CBL-Interacting Protein Kinase (CIPK) 26 can phosphorylate KEG in vitro. Using both in vitro and in planta degradation assays we provide evidence which suggests that the kinase activity of CIPK26 promotes the degradation of KEG. Furthermore, we found that the kinase activity of CIPK26 also influences its own stability; a constitutively active version is more stable than a wild type or a kinase dead version. Our results suggest a reciprocal regulation model wherein an activated and stable CIPK26 phosphorylates KEG to promote degradation of the E3. PMID:28443108

  1. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes

    PubMed Central

    Ritterhoff, Tobias; Das, Hrishikesh; Hofhaus, Götz; Schröder, Rasmus R.; Flotho, Annette; Melchior, Frauke

    2016-01-01

    Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions. PMID:27160050

  2. PUB22 and PUB23 U-BOX E3 ligases directly ubiquitinate RPN6, a 26S proteasome lid subunit, for subsequent degradation in Arabidopsis thaliana.

    PubMed

    Cho, Seok Keun; Bae, Hansol; Ryu, Moon Young; Wook Yang, Seong; Kim, Woo TaeK

    2015-09-04

    Drought stress strongly affects plant growth and development, directly connected with crop yields, accordingly. However, related to the function of U-BOX E3 ligases, the underlying molecular mechanisms of desiccation stress response in plants are still largely unknown. Here we report that PUB22 and PUB23, two U-box E3 ligase homologs, tether ubiquitins to 19S proteasome regulatory particle (RP) subunit RPN6, leading to its degradation. RPN6 was identified as an interacting substrate of PUB22 by yeast two-hybrid screening, and in vitro pull-down assay confirmed that RPN6 interacts not only with PUB22, but also with PUB23. Both PUB22 and PUB23 were able to conjugate ubiquitins on RPN6 in vitro. Furthermore, RPN6 showed a shorter protein half-life in PUB22 overexpressing plants than in wild-type, besides RPN6 was significantly stabilized in pub22pub23 double knockout plants. Taken together, these results solidify a notion that PUB22 and PUB23 can alter the activity of 26S proteasome in response to drought stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells.

    PubMed

    Jumpertz, Sandra; Hennes, Thomas; Asare, Yaw; Vervoorts, Jörg; Bernhagen, Jürgen; Schütz, Anke K

    2014-09-01

    COP9 signalosome subunit 5 (CSN5) plays a decisive role in cellular processes such as cell cycle regulation and apoptosis via promoting protein degradation, gene transcription, and nuclear export. CSN5 regulates cullin-RING-E3 ligase (CRL) activity through its deNEDDylase function. It is overexpressed in several tumor entities, but its role in colorectal cancer (CRC) is poorly understood. Wnt/β-catenin signaling is aberrant in most CRC cells, resulting in increased levels of oncogenic β-catenin and thus tumor progression. Under physiological conditions, β-catenin levels are tightly regulated by continuous proteasomal degradation. We recently showed that knockdown of CSN5 in model and CRC cells results in decreased (phospho)-β-catenin levels. Reduced β-catenin levels were associated with an attenuated proliferation rate of different CRC cell types after CSN5 knockdown. The canonical Wnt pathway involves degradation of β-catenin by a β-TrCP1-containing E3 ligase, but is mostly non-functional in CRC cells. We thus hypothesized that alternative β-catenin degradation mediated by SIAH-1 (seven in absentia homolog-1), is responsible for the effect of CSN5 on β-catenin signaling in CRC cells. We found that SIAH-1 plays an essential role in β-catenin degradation in HCT116 CRC cells and that CSN5 affects β-catenin target gene expression in these cells. Of note, CSN5 affected SIAH-1 mRNA and SIAH-1 protein levels. Moreover, β-catenin and SIAH-1 form protein complexes with CSN5 in HCT116 cells. Lastly, we demonstrate that CSN5 promotes SIAH-1 degradation in HCT116 and SW480 cells and that this is associated with its deNEDDylase activity. In conclusion, we have identified a CSN5/β-catenin/SIAH-1 interaction network that might control β-catenin degradation in CRC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The ECS(SPSB) E3 ubiquitin ligase is the master regulator of the lifetime of inducible nitric-oxide synthase.

    PubMed

    Matsumoto, Kazuma; Nishiya, Tadashi; Maekawa, Satoshi; Horinouchi, Takahiro; Ogasawara, Kouetsu; Uehara, Takashi; Miwa, Soichi

    2011-05-27

    The ubiquitin-proteasome pathway is an important regulatory system for the lifetime of inducible nitric-oxide synthase (iNOS), a high-output isoform compared to neuronal NOS (nNOS) and endothelial NOS (eNOS), to prevent overproduction of NO that could trigger detrimental effects such as cytotoxicity. Two E3 ubiquitin ligases, Elongin B/C-Cullin-5-SPRY domain- and SOCS box-containing protein [ECS(SPSB)] and the C-terminus of Hsp70-interacting protein (CHIP), recently have been reported to target iNOS for proteasomal degradation. However, the significance of each E3 ubiquitin ligase for the proteasomal degradation of iNOS remains to be determined. Here, we show that ECS(SPSB) specifically interacted with iNOS, but not nNOS and eNOS, and induced the subcellular redistribution of iNOS from dense regions to diffused expression as well as the ubiquitination and proteasomal degradation of iNOS, whereas CHIP neither interacted with iNOS nor had any effects on the subcellular localization, ubiquitination, and proteasomal degradation of iNOS. These results differ from previous reports. Furthermore, the lifetime of the iNOS(N27A) mutant, a form of iNOS that does not bind to ECS(SPSB), was substantially extended in macrophages. These results demonstrate that ECS(SPSB), but not CHIP, is the master regulator of the iNOS lifetime. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species.

    PubMed

    Qi, Shilian; Lin, Qingfang; Zhu, Huishan; Gao, Fenghua; Zhang, Wenhao; Hua, Xuejun

    2016-03-01

    Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. The E3 ubiquitin ligase Mule acts through the ATM-p53 axis to maintain B lymphocyte homeostasis.

    PubMed

    Hao, Zhenyue; Duncan, Gordon S; Su, Yu-Wen; Li, Wanda Y; Silvester, Jennifer; Hong, Claire; You, Han; Brenner, Dirk; Gorrini, Chiara; Haight, Jillian; Wakeham, Andrew; You-Ten, Annick; McCracken, Susan; Elia, Andrew; Li, Qinxi; Detmar, Jacqui; Jurisicova, Andrea; Hobeika, Elias; Reth, Michael; Sheng, Yi; Lang, Philipp A; Ohashi, Pamela S; Zhong, Qing; Wang, Xiaodong; Mak, Tak W

    2012-01-16

    Cellular homeostasis is controlled by pathways that balance cell death with survival. Mcl-1 ubiquitin ligase E3 (Mule) is an E3 ubiquitin ligase that targets the proapoptotic molecule p53 for polyubiquitination and degradation. To elucidate the role of Mule in B lymphocyte homeostasis, B cell-specific Mule knockout (BMKO) mice were generated using the Cre-LoxP recombination system. Analysis of BMKO mice showed that Mule was essential for B cell development, proliferation, homeostasis, and humoral immune responses. p53 transactivation was increased by two- to fourfold in Mule-deficient B cells at steady state. Genetic ablation of p53 in BMKO mice restored B cell development, proliferation, and homeostasis. p53 protein was increased in resting Mule-deficient mouse embryonic fibroblasts (MEFs) and embryonic stem (ES) cells. Loss of Mule in both MEFs and B cells at steady state resulted in increased levels of phospho-ataxia telangiectasia mutated (ATM) and the ATM substrate p53. Under genotoxic stress, BMKO B cells were resistant to apoptosis, and control MEFs exhibited evidence of a physical interaction between Mule and phospho-ATM. Phospho-ATM, phospho-p53, and Brca1 levels were reduced in Mule-deficient B cells and MEFs subjected to genotoxic stress. Thus, Mule regulates the ATM-p53 axis to maintain B cell homeostasis under both steady-state and stress conditions.

  7. Structure of a BMI-1-Ring1B Polycomb Group Ubiquitin Ligase Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li,Z.; Cao, R.; Wang, M.

    2006-01-01

    Polycomb group (PcG) proteins Bmi-1 and Ring1B are core subunits of the PRC1 complex which plays important roles in the regulation of Hox gene expression, X-chromosome inactivation, tumorigenesis and stem cell self-renewal. The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity. We have mapped the regions of Bmi-1 and Ring1B required for efficient ubiquitin transfer and determined a 2.5 Angstroms structure of the Bmi-1-Ring1B core domain complex. The structure reveals that Ring1B 'hugs' Bmi-1 through extensive RING domain contactsmore » and its N-terminal tail wraps around Bmi-1. The two regions of interaction have a synergistic effect on the E3 ligase activity. Our analyses suggest a model where the Bmi-1-Ring1B complex stabilizes the interaction between the E2 enzyme and the nucleosomal substrate to allow efficient ubiquitin transfer.« less

  8. Target Specificity of the E3 Ligase LUBAC for Ubiquitin and NEMO Relies on Different Minimal Requirements*

    PubMed Central

    Smit, Judith J.; van Dijk, Willem J.; El Atmioui, Dris; Merkx, Remco; Ovaa, Huib; Sixma, Titia K.

    2013-01-01

    The ubiquitination of NEMO with linear ubiquitin chains by the E3-ligase LUBAC is important for the activation of the canonical NF-κB pathway. NEMO ubiquitination requires a dual target specificity of LUBAC, priming on a lysine on NEMO and chain elongation on the N terminus of the priming ubiquitin. Here we explore the minimal requirements for these specificities. Effective linear chain formation requires a precise positioning of the ubiquitin N-terminal amine in a negatively charged environment on the top of ubiquitin. Whereas the RBR-LDD region on HOIP is sufficient for targeting the ubiquitin N terminus, the priming lysine modification on NEMO requires catalysis by the RBR domain of HOIL-1L as well as the catalytic machinery of the RBR-LDD domains of HOIP. Consequently, target specificity toward NEMO is determined by multiple LUBAC components, whereas linear ubiquitin chain elongation is realized by a specific interplay between HOIP and ubiquitin. PMID:24030825

  9. Amyloid Precursor Protein (APP) May Act as a Substrate and a Recognition Unit for CRL4CRBN and Stub1 E3 Ligases Facilitating Ubiquitination of Proteins Involved in Presynaptic Functions and Neurodegeneration.

    PubMed

    Del Prete, Dolores; Rice, Richard C; Rajadhyaksha, Anjali M; D'Adamio, Luciano

    2016-08-12

    The amyloid precursor protein (APP), whose mutations cause Alzheimer disease, plays an important in vivo role and facilitates transmitter release. Because the APP cytosolic region (ACR) is essential for these functions, we have characterized its brain interactome. We found that the ACR interacts with proteins that regulate the ubiquitin-proteasome system, predominantly with the E3 ubiquitin-protein ligases Stub1, which binds the NH2 terminus of the ACR, and CRL4(CRBN), which is formed by Cul4a/b, Ddb1, and Crbn, and interacts with the COOH terminus of the ACR via Crbn. APP shares essential functions with APP-like protein-2 (APLP2) but not APP-like protein-1 (APLP1). Noteworthy, APLP2, but not APLP1, interacts with Stub1 and CRL4(CRBN), pointing to a functional pathway shared only by APP and APLP2. In vitro ubiquitination/ubiquitome analysis indicates that these E3 ligases are enzymatically active and ubiquitinate the ACR residues Lys(649/650/651/676/688) Deletion of Crbn reduces ubiquitination of Lys(676) suggesting that Lys(676) is physiologically ubiquitinated by CRL4(CRBN) The ACR facilitated in vitro ubiquitination of presynaptic proteins that regulate exocytosis, suggesting a mechanism by which APP tunes transmitter release. Other dementia-related proteins, namely Tau and apoE, interact with and are ubiquitinated via the ACR in vitro This, and the evidence that CRBN and CUL4B are linked to intellectual disability, prompts us to hypothesize a pathogenic mechanism, in which APP acts as a modulator of E3 ubiquitin-protein ligase(s), shared by distinct neuronal disorders. The well described accumulation of ubiquitinated protein inclusions in neurodegenerative diseases and the link between the ubiquitin-proteasome system and neurodegeneration make this concept plausible. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The ubiquitin conjugating enzyme UbcH10 competes with UbcH3 for binding to the SCF complex, a ubiquitin ligase involved in cell cycle progression

    USDA-ARS?s Scientific Manuscript database

    Ubiquitylation, which regulates most biological pathways, occurs through an enzymatic cascade involving a ubiquitin (ub) activating enzyme (E1), a ub conjugating enzyme (E2) and a ub ligase (E3). UbcH3 is the E2 that interacts with SCF (Skp1/Cul1/F-box protein) complex and ubiquitylates many protein...

  11. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling

    PubMed Central

    Zhou, Bangjun; Zeng, Lirong

    2018-01-01

    In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI) and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum) homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.

  12. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis.

    PubMed

    Shah, Meera; Stebbins, John L; Dewing, Antimone; Qi, Jianfei; Pellecchia, Maurizio; Ronai, Ze'ev A

    2009-12-01

    The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-kappaB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self-ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF-1alpha and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah-KO cells, pointing to its Siah-dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS-independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis.

  13. Diggin’ on U(biquitin): A Novel Method for the Identification of Physiological E3 Ubiquitin Ligase Substrates

    PubMed Central

    Rubel, Carrie E.; Schisler, Jonathan C.; Hamlett, Eric D.; DeKroon, Robert M.; Gautel, Mathias; Alzate, Oscar; Patterson, Cam

    2013-01-01

    The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets. PMID:23695782

  14. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch

    PubMed Central

    Oberst, Andrew; Malatesta, Martina; Aqeilan, Rami I.; Rossi, Mario; Salomoni, Paolo; Murillas, Rodolfo; Sharma, Prashant; Kuehn, Michael R.; Oren, Moshe; Croce, Carlo M.; Bernassola, Francesca; Melino, Gerry

    2007-01-01

    Nedd4-binding partner-1 (N4BP1) has been identified as a protein interactor and a substrate of the homologous to E6AP C terminus (HECT) domain-containing E3 ubiquitin–protein ligase (E3), Nedd4. Here, we describe a previously unrecognized functional interaction between N4BP1 and Itch, a Nedd4 structurally related E3, which contains four WW domains, conferring substrate-binding activity. We show that N4BP1 association with the second WW domain (WW2) of Itch interferes with E3 binding to its substrates. In particular, we found that N4BP1 and p73α, a target of Itch-mediated ubiquitin/proteasome proteolysis, share the same binding site. By competing with p73α for binding to the WW2 domain, N4BP1 reduces the ability of Itch to recruit and ubiquitylate p73α and inhibits Itch autoubiquitylation activity both in in vitro and in vivo ubiquitylation assays. Similarly, both c-Jun and p63 polyubiquitylation by Itch are inhibited by N4BP1. As a consequence, genetic and RNAi knockdown of N4BP1 diminish the steady-state protein levels and significantly impair the transcriptional activity of Itch substrates. Notably, stress-induced induction of c-Jun was impaired in N4BP1−/− cells. These results demonstrate that N4BP1 functions as a negative regulator of Itch. In addition, because inhibition of Itch by N4BP1 results in the stabilization of crucial cell death regulators such as p73α and c-Jun, it is conceivable that N4BP1 may have a role in regulating tumor progression and the response of cancer cells to chemotherapy. PMID:17592138

  15. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch.

    PubMed

    Oberst, Andrew; Malatesta, Martina; Aqeilan, Rami I; Rossi, Mario; Salomoni, Paolo; Murillas, Rodolfo; Sharma, Prashant; Kuehn, Michael R; Oren, Moshe; Croce, Carlo M; Bernassola, Francesca; Melino, Gerry

    2007-07-03

    Nedd4-binding partner-1 (N4BP1) has been identified as a protein interactor and a substrate of the homologous to E6AP C terminus (HECT) domain-containing E3 ubiquitin-protein ligase (E3), Nedd4. Here, we describe a previously unrecognized functional interaction between N4BP1 and Itch, a Nedd4 structurally related E3, which contains four WW domains, conferring substrate-binding activity. We show that N4BP1 association with the second WW domain (WW2) of Itch interferes with E3 binding to its substrates. In particular, we found that N4BP1 and p73 alpha, a target of Itch-mediated ubiquitin/proteasome proteolysis, share the same binding site. By competing with p73 alpha for binding to the WW2 domain, N4BP1 reduces the ability of Itch to recruit and ubiquitylate p73 alpha and inhibits Itch autoubiquitylation activity both in in vitro and in vivo ubiquitylation assays. Similarly, both c-Jun and p63 polyubiquitylation by Itch are inhibited by N4BP1. As a consequence, genetic and RNAi knockdown of N4BP1 diminish the steady-state protein levels and significantly impair the transcriptional activity of Itch substrates. Notably, stress-induced induction of c-Jun was impaired in N4BP1(-/-) cells. These results demonstrate that N4BP1 functions as a negative regulator of Itch. In addition, because inhibition of Itch by N4BP1 results in the stabilization of crucial cell death regulators such as p73 alpha and c-Jun, it is conceivable that N4BP1 may have a role in regulating tumor progression and the response of cancer cells to chemotherapy.

  16. Identification of factors required for m6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI.

    PubMed

    Růžička, Kamil; Zhang, Mi; Campilho, Ana; Bodi, Zsuzsanna; Kashif, Muhammad; Saleh, Mária; Eeckhout, Dominique; El-Showk, Sedeer; Li, Hongying; Zhong, Silin; De Jaeger, Geert; Mongan, Nigel P; Hejátko, Jan; Helariutta, Ykä; Fray, Rupert G

    2017-07-01

    N6-adenosine methylation (m 6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m 6 A writer proteins in Arabidopsis thaliana. The components required for m 6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m 6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m 6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m 6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Multiple functions of the E3 ubiquitin ligase CHIP in immunity.

    PubMed

    Zhan, Shaohua; Wang, Tianxiao; Ge, Wei

    2017-09-03

    The carboxyl terminal of Hsp70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a pivotal role in the protein quality control system by shifting the balance of the folding-refolding machinery toward the degradative pathway. However, the precise mechanisms by which nonnative proteins are selected for degradation by CHIP either directly or indirectly via chaperone Hsp70 or Hsp90 are still not clear. In this review, we aim to provide a comprehensive model of the mechanism by which CHIP degrades its substrate in a chaperone-dependent or direct manner. In addition, through tight regulation of the protein level of its substrates, CHIP plays important roles in many physiological and pathological conditions, including cancers, neurological disorders, cardiac diseases, bone metabolism, immunity, and so on. Nonetheless, the precise mechanisms underlying the regulation of the immune system by CHIP are still poorly understood despite accumulating developments in our understanding of the regulatory roles of CHIP in both innate and adaptive immune responses. In this review, we also aim to provide a view of CHIP-mediated regulation of immune responses and the signaling pathways involved in the model described. Finally, we discuss the roles of CHIP in immune-related diseases.

  18. Protein Neddylation: Beyond Cullin-RING Ligases

    PubMed Central

    Enchev, Radoslav I.; Schulman, Brenda A.; Peter, Matthias

    2016-01-01

    NEDD8 is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here we re-evaluate these studies in light of the current understanding of the neddylation pathway, and suggest criteria for the identification of genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights. PMID:25531226

  19. The Ubiquitin Receptor DA1 Interacts with the E3 Ubiquitin Ligase DA2 to Regulate Seed and Organ Size in Arabidopsis[C][W

    PubMed Central

    Xia, Tian; Li, Na; Dumenil, Jack; Li, Jie; Kamenski, Andrei; Bevan, Michael W.; Gao, Fan; Li, Yunhai

    2013-01-01

    Seed size in higher plants is determined by the coordinated growth of the embryo, endosperm, and maternal tissue. Several factors that act maternally to regulate seed size have been identified, such as AUXIN RESPONSE FACTOR2, APETALA2, KLUH, and DA1, but the genetic and molecular mechanisms of these factors in seed size control are almost totally unknown. We previously demonstrated that the ubiquitin receptor DA1 acts synergistically with the E3 ubiquitin ligase ENHANCER1 OF DA1 (EOD1)/BIG BROTHER to regulate the final size of seeds in Arabidopsis thaliana. Here, we describe another RING-type protein with E3 ubiquitin ligase activity, encoded by DA2, which regulates seed size by restricting cell proliferation in the maternal integuments of developing seeds. The da2-1 mutant forms large seeds, while overexpression of DA2 decreases seed size of wild-type plants. Overexpression of rice (Oryza sativa) GRAIN WIDTH AND WEIGHT2, a homolog of DA2, restricts seed growth in Arabidopsis. Genetic analyses show that DA2 functions synergistically with DA1 to regulate seed size, but does so independently of EOD1. Further results reveal that DA2 interacts physically with DA1 in vitro and in vivo. Therefore, our findings define the genetic and molecular mechanisms of three ubiquitin-related proteins DA1, DA2, and EOD1 in seed size control and indicate that they are promising targets for crop improvement. PMID:24045020

  20. RPA-Mediated Recruitment of the E3 Ligase RFWD3 Is Vital for Interstrand Crosslink Repair and Human Health.

    PubMed

    Feeney, Laura; Muñoz, Ivan M; Lachaud, Christophe; Toth, Rachel; Appleton, Paul L; Schindler, Detlev; Rouse, John

    2017-06-01

    Defects in the repair of DNA interstrand crosslinks (ICLs) are associated with the genome instability syndrome Fanconi anemia (FA). Here we report that cells with mutations in RFWD3, an E3 ubiquitin ligase that interacts with and ubiquitylates replication protein A (RPA), show profound defects in ICL repair. An amino acid substitution in the WD40 repeats of RFWD3 (I639K) found in a new FA subtype abolishes interaction of RFWD3 with RPA, thereby preventing RFWD3 recruitment to sites of ICL-induced replication fork stalling. Moreover, single point mutations in the RPA32 subunit of RPA that abolish interaction with RFWD3 also inhibit ICL repair, demonstrating that RPA-mediated RFWD3 recruitment to stalled replication forks is important for ICL repair. We also report that unloading of RPA from sites of ICL induction is perturbed in RFWD3-deficient cells. These data reveal important roles for RFWD3 localization in protecting genome stability and preserving human health. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors

    PubMed Central

    2012-01-01

    Background During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. Results We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. Conclusions These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1. PMID:22626058

  2. MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors.

    PubMed

    Castanier, Céline; Zemirli, Naima; Portier, Alain; Garcin, Dominique; Bidère, Nicolas; Vazquez, Aimé; Arnoult, Damien

    2012-05-24

    During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1.

  3. Endoplasmic Reticulum Protein Quality Control Is Determined by Cooperative Interactions between Hsp/c70 Protein and the CHIP E3 Ligase*

    PubMed Central

    Matsumura, Yoshihiro; Sakai, Juro; Skach, William R.

    2013-01-01

    The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70. PMID:23990462

  4. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis.

    PubMed

    Samuel, Marcus A; Mudgil, Yashwanti; Salt, Jennifer N; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R

    2008-08-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.

  5. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis

    PubMed Central

    Shah, Meera; Stebbins, John L.; Dewing, Antimone; Qi, Jianfei; Pellecchia, Maurizio; Ronai, Ze’ev A.

    2010-01-01

    Summary The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-κB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self-ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF-1α and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah-KO cells, pointing to its Siah-dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS-independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis. PMID:19712206

  6. SUMOylation Regulates the Homologous to E6-AP Carboxyl Terminus (HECT) Ubiquitin Ligase Rsp5p*

    PubMed Central

    Novoselova, Tatiana Vladislavovna; Rose, Ruth-Sarah; Marks, Helen Margaret; Sullivan, James Andrew

    2013-01-01

    The post-translational modifiers ubiquitin and small ubiquitin-related modifier (SUMO) regulate numerous critical signaling pathways and are key to controlling the cellular fate of proteins in eukaryotes. The attachment of ubiquitin and SUMO involves distinct, but related, machinery. However, it is now apparent that many substrates can be modified by both ubiquitin and SUMO and that some regulatory interaction takes place between the respective attachment machinery. Here, we demonstrate that the Saccharomyces cerevisiae ubiquitin ligase Rsp5p, a member of the highly conserved Nedd4 family of ubiquitin ligases, is SUMOylated in vivo. We further show that Rsp5p SUMOylation is mediated by the SUMO ligases Siz1p and Siz2p, members of the conserved family of PIAS SUMO ligases that are, in turn, substrates for Rsp5p-mediated ubiquitylation. Our experiments show that SUMOylated Rsp5p has reduced ubiquitin ligase activity, and similarly, ubiquitylated Siz1p demonstrates reduced SUMO ligase activity leading to respective changes in both ubiquitin-mediated sorting of the manganese transporter Smf1p and polySUMO chain formation. This reciprocal regulation of these highly conserved ligases represents an exciting and previously unidentified system of cross talk between the ubiquitin and SUMO systems. PMID:23443663

  7. Ubiquitin ligase Nedd4-2 modulates Kv1.3 current amplitude and ion channel protein targeting

    PubMed Central

    Velez, Patricio; Schwartz, Austin B.; Iyer, Subashini R.; Warrington, Anthony

    2016-01-01

    Voltage-dependent potassium channels (Kv) go beyond the stabilization of the resting potential and regulate biochemical pathways, regulate intracellular signaling, and detect energy homeostasis. Because targeted deletion and pharmacological block of the Kv1.3 channel protein produce marked changes in metabolism, resistance to diet-induced obesity, and changes in olfactory structure and function, this investigation explored Nedd4-2-mediated ubiquitination and degradation to regulate Kv1.3 channel density. Heterologous coexpression of Nedd4-2 ligase and Kv1.3 in HEK 293 cells reduced Kv1.3 current density without modulation of kinetic properties as measured by patch-clamp electrophysiology. Modulation of current density was dependent on ligase activity and was lost through point mutation of cysteine 938 in the catalytic site of the ligase (Nedd4-2CS). Incorporation of adaptor protein Grb10 relieved Nedd4-2-induced current suppression as did application of the proteasome inhibitor Mg-132. SDS-PAGE and immunoprecipitation strategies demonstrated a channel/adaptor/ligase signalplex. Pixel immunodensity was reduced for Kv1.3 in the presence of Nedd4-2, which was eliminated upon additional incorporation of Grb10. We confirmed Nedd4-2/Grb10 coimmunoprecipitation and observed an increased immunodensity for Nedd4-2 in the presence of Kv1.3 plus Grb10, regardless of whether the catalytic site was active. Kv1.3/Nedd4-2 were reciprocally coimmunoprecipated, whereby mutation of the COOH-terminal, SH3-recognition (493–498), or ubiquitination sites on Kv1.3 (lysines 467, 476, 498) retained coimmunoprecipitation, while the latter prevented the reduction in channel density. A model is presented for which an atypical interaction outside the canonical PY motif may permit channel/ligase interaction to lead to protein degradation and reduced current density, which can involve Nedd4-2/Grb10 interactions to disrupt Kv1.3 loss of current density. PMID:27146988

  8. The effector gene xopAE of Xanthomonas euvesicatoria 85-10 is part of an operon and encodes an E3 ubiquitin ligase.

    PubMed

    Popov, Georgy; Majhi, Bharat Bhusan; Sessa, Guido

    2018-05-21

    The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 ( Xe 85-10) was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles ( AEal ) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) encodes a single ORF ( xopAE ), while in 5 alleles, including AEal 37 of the Xe 85-10 strain, a frame-shift splits the locus into two ORFs ( hpaF and a truncated xopAE ). To test whether the second ORF of AEal 37 ( xopAE 85-10 ) is translated, we examined expression of YFP fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity of an internal ribosome-binding site upstream to a rare ATT start codon in the xopAE 85-10 ORF, but severely reduced when these elements were abolished. In agreement with the notion that xopAE 85- 10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system and translocation was dependent on its upstream ORF hpaF. Homology modeling predicted that XopAE 85-10 contains an E3 ligase XL-box domain at the C-terminus, and in vitro assays demonstrated that this domain displays mono-ubiquitination activity. Remarkably, the XL-box was essential for XopAE 85-10 to inhibit PAMP-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE 85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT, and encodes a novel XL-box E3 ligase. Importance Xanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into evolution, translocation and biochemical function of the XopAE type III secreted effector contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as core effector of seven Xanthomonas

  9. The human RNA-binding protein and E3 ligase MEX-3C binds the MEX-3-recognition element (MRE) motif with high affinity.

    PubMed

    Yang, Lingna; Wang, Chongyuan; Li, Fudong; Zhang, Jiahai; Nayab, Anam; Wu, Jihui; Shi, Yunyu; Gong, Qingguo

    2017-09-29

    MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans , and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype ( HLA-A2 ) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis.

    PubMed

    Wang, Liying; Cao, Chunwei; Wang, Fang; Zhao, Jianguo; Li, Wei

    2017-09-03

    RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.

  11. The D113N mutation in the RING E3 ubiquitin protein ligase gene is not associated with ex vivo susceptibility to common anti-malarial drugs in African Plasmodium falciparum isolates.

    PubMed

    Gendrot, Mathieu; Foguim, Francis Tsombeng; Robert, Marie Gladys; Amalvict, Rémy; Mosnier, Joel; Benoit, Nicolas; Madamet, Marylin; Pradines, Bruno

    2018-03-12

    Plasmodium falciparum resistance to artemisinin-based combination therapy has emerged and spread in Southeast Asia. In areas where artemisinin resistance is emerging, the efficacy of combination is now based on partner drugs. In this context, the identification of novel markers of resistance is essential to monitor the emergence and spread of resistance to these partner drugs. The ubiquitylation pathway could be a possible target for anti-malarial compounds and might be involved in resistance. Polymorphisms in the E3 ubiquitin-protein ligase (PF3D7_0627300) gene could be associated with decreased in vitro susceptibility to anti-malarial drugs. Plasmodium falciparum isolates were collected from patients hospitalized in France with imported malaria from a malaria-endemic country from January 2015 to December 2016 and, more particularly, from African French-speaking countries. In total, 215 isolates were successfully sequenced for the E3 ubiquitin-protein ligase gene and assessed for ex vivo susceptibility to anti-malarial drugs. The D113N mutation in the RING E3 ubiquitin-protein ligase gene was present in 147 out of the 215 samples (68.4%). The IC 50 values for the ten anti-malarial drugs were not significantly different between the wild-type and mutant parasites (p values between 0.225 and 0.933). There was no significant difference in terms of the percentage of parasites with decreased susceptibility between the D113 wild-type and the 133N mutated P. falciparum strains (p values between 0.541 and 1). The present data confirmed the absence of the association between polymorphisms in the RING E3 ubiquitin-protein ligase gene and the ex vivo susceptibility to common anti-malarial drugs in African P. falciparum isolates.

  12. CTLs, a new class of RING-H2 ubiquitin ligases uncovered by YEELL, a motif close to the RING domain that is present across eukaryotes.

    PubMed

    Jiménez-López, Domingo; Aguilar-Henonin, Laura; González-Prieto, Juan Manuel; Aguilar-Hernández, Victor; Guzmán, Plinio

    2018-01-01

    RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes.

  13. CTLs, a new class of RING-H2 ubiquitin ligases uncovered by YEELL, a motif close to the RING domain that is present across eukaryotes

    PubMed Central

    Jiménez-López, Domingo; Aguilar-Henonin, Laura; González-Prieto, Juan Manuel; Aguilar-Hernández, Victor

    2018-01-01

    RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes. PMID:29324855

  14. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP.

    PubMed

    Shi, Chang-He; Schisler, Jonathan C; Rubel, Carrie E; Tan, Song; Song, Bo; McDonough, Holly; Xu, Lei; Portbury, Andrea L; Mao, Cheng-Yuan; True, Cadence; Wang, Rui-Hao; Wang, Qing-Zhi; Sun, Shi-Lei; Seminara, Stephanie B; Patterson, Cam; Xu, Yu-Ming

    2014-02-15

    Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder characterized by ataxia and hypogonadism. Recently, it was suggested that disordered ubiquitination underlies GHS though the discovery of exome mutations in the E3 ligase RNF216 and deubiquitinase OTUD4. We performed exome sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and identified a homozygous mutation in STUB1 (NM_005861) c.737C→T, p.Thr246Met, a gene that encodes the protein CHIP (C-terminus of HSC70-interacting protein). CHIP plays a central role in regulating protein quality control, in part through its ability to function as an E3 ligase. Loss of CHIP function has long been associated with protein misfolding and aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS can be caused by a loss-of-function mutation in CHIP. Our findings further highlight the role of disordered ubiquitination and protein quality control in the pathogenesis of neurodegenerative disease and demonstrate the utility of combining whole-exome sequencing with molecular analyses and animal models to define causal disease polymorphisms.

  15. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP

    PubMed Central

    Shi, Chang-He; Schisler, Jonathan C.; Rubel, Carrie E.; Tan, Song; Song, Bo; McDonough, Holly; Xu, Lei; Portbury, Andrea L.; Mao, Cheng-Yuan; True, Cadence; Wang, Rui-Hao; Wang, Qing-Zhi; Sun, Shi-Lei; Seminara, Stephanie B.; Patterson, Cam; Xu, Yu-Ming

    2014-01-01

    Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder characterized by ataxia and hypogonadism. Recently, it was suggested that disordered ubiquitination underlies GHS though the discovery of exome mutations in the E3 ligase RNF216 and deubiquitinase OTUD4. We performed exome sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and identified a homozygous mutation in STUB1 (NM_005861) c.737C→T, p.Thr246Met, a gene that encodes the protein CHIP (C-terminus of HSC70-interacting protein). CHIP plays a central role in regulating protein quality control, in part through its ability to function as an E3 ligase. Loss of CHIP function has long been associated with protein misfolding and aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS can be caused by a loss-of-function mutation in CHIP. Our findings further highlight the role of disordered ubiquitination and protein quality control in the pathogenesis of neurodegenerative disease and demonstrate the utility of combining whole-exome sequencing with molecular analyses and animal models to define causal disease polymorphisms. PMID:24113144

  16. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation.

    PubMed

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J N Mark; Giam, Chou-Zen

    2015-08-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.

  17. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation

    PubMed Central

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J. N. Mark; Giam, Chou-Zen

    2015-01-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells. PMID:26285145

  18. The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling.

    PubMed

    Bueso, Eduardo; Rodriguez, Lesia; Lorenzo-Orts, Laura; Gonzalez-Guzman, Miguel; Sayas, Enric; Muñoz-Bertomeu, Jesús; Ibañez, Carla; Serrano, Ramón; Rodriguez, Pedro L

    2014-12-01

    Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single-subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1-PYL4 and RSL1-PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    PubMed Central

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  20. The E3 ubiquitin ligases β-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis.

    PubMed

    Ren, Hui; Koo, Junghui; Guan, Baoxiang; Yue, Ping; Deng, Xingming; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2013-11-22

    The novel Akt inhibitor, API-1, induces apoptosis through undefined mechanisms. The current study focuses on revealing the mechanisms by which API-1 induces apoptosis. API-1 rapidly and potently reduced the levels of Mcl-1 primarily in API-1-senstive lung cancer cell lines. Ectopic expression of Mcl-1 protected cells from induction of apoptosis by API-1. API-1 treatment decreased the half-life of Mcl-1, whereas inhibition of the proteasome with MG132 rescued Mcl-1 reduction induced by API-1. API-1 decreased Mcl-1 levels accompanied with a rapid increase in Mcl-1 phosphorylation (S159/T163). Moreover, inhibition of GSK3 inhibited Mcl-1 phosphorylation and reduction induced by API-1 and antagonized the effect of API-1 on induction of apoptosis. Knockdown of either FBXW7 or β-TrCP alone, both of which are E3 ubiquitin ligases involved in Mcl-1 degradation, only partially rescued Mcl-1 reduction induced by API-1. However, double knockdown of both E3 ubiquitin ligases enhanced the rescue of API-1-induced Mcl-1 reduction. API-1 induces GSK3-dependent, β-TrCP- and FBXW7-mediated Mcl-1 degradation, resulting in induction of apoptosis.

  1. The E3 ubiquitin ligases β-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis

    PubMed Central

    2013-01-01

    Background The novel Akt inhibitor, API-1, induces apoptosis through undefined mechanisms. The current study focuses on revealing the mechanisms by which API-1 induces apoptosis. Results API-1 rapidly and potently reduced the levels of Mcl-1 primarily in API-1-senstive lung cancer cell lines. Ectopic expression of Mcl-1 protected cells from induction of apoptosis by API-1. API-1 treatment decreased the half-life of Mcl-1, whereas inhibition of the proteasome with MG132 rescued Mcl-1 reduction induced by API-1. API-1 decreased Mcl-1 levels accompanied with a rapid increase in Mcl-1 phosphorylation (S159/T163). Moreover, inhibition of GSK3 inhibited Mcl-1 phosphorylation and reduction induced by API-1 and antagonized the effect of API-1 on induction of apoptosis. Knockdown of either FBXW7 or β-TrCP alone, both of which are E3 ubiquitin ligases involved in Mcl-1 degradation, only partially rescued Mcl-1 reduction induced by API-1. However, double knockdown of both E3 ubiquitin ligases enhanced the rescue of API-1-induced Mcl-1 reduction. Conclusions API-1 induces GSK3-dependent, β-TrCP- and FBXW7-mediated Mcl-1 degradation, resulting in induction of apoptosis. PMID:24261825

  2. Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation.

    PubMed

    Li, Yifeng; Sousa, Rui

    2012-03-01

    The extremely tight binding between biotin and avidin or streptavidin makes labeling proteins with biotin a useful tool for many applications. BirA is the Escherichia coli biotin ligase that site-specifically biotinylates a lysine side chain within a 15-amino acid acceptor peptide (also known as Avi-tag). As a complementary approach to in vivo biotinylation of Avi-tag-bearing proteins, we developed a protocol for producing recombinant BirA ligase for in vitro biotinylation. The target protein was expressed as both thioredoxin and MBP fusions, and was released from the corresponding fusion by TEV protease. The liberated ligase was separated from its carrier using HisTrap HP column. We obtained 24.7 and 27.6 mg BirA ligase per liter of culture from thioredoxin and MBP fusion constructs, respectively. The recombinant enzyme was shown to be highly active in catalyzing in vitro biotinylation. The described protocol provides an effective means for making BirA ligase that can be used for biotinylation of different Avi-tag-bearing substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The E3 Ligase APC/C-Cdh1 Is Required for Associative Fear Memory and Long-Term Potentiation in the Amygdala of Adult Mice

    ERIC Educational Resources Information Center

    Pick, Joseph E.; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating…

  4. The E3 SUMO ligase AtSIZ1 functions in seed germination in Arabidopsis.

    PubMed

    Kim, Sung-Il; Kwak, Jun Soo; Song, Jong Tae; Seo, Hak Soo

    2016-11-01

    Seed germination is an important stage in the lifecycle of a plant because it determines subsequent vegetative growth and reproduction. Here, we show that the E3 SUMO ligase AtSIZ1 regulates seed dormancy and germination. The germination rates of the siz1 mutants were less than 50%, even after a short period of ripening. However, their germination rates increased to wild-type levels after cold stratification or long periods of ripening. In addition, exogenous gibberellin (GA) application improved the germination rates of the siz1 mutants to the wild-type level. In transgenic plants, suppression of AtSIZ1 caused rapid post-translational decay of SLEEPY1 (SLY1), a positive regulator of GA signaling, during germination, and inducible AtSIZ1 overexpression led to increased SLY1 levels. In addition, overexpressing wild-type SLY1 in transgenic sly1 mutants increased their germination ratios to wild-type levels, whereas the germination ratio of transgenic sly1 mutants overexpressing mSLY1 was similar to that of sly1. The germination ratios of siz1 mutant seeds in immature developing siliques were much lower than those of the wild-type. Moreover, SLY1 and DELAY OF GERMINATION 1 (DOG1) transcript levels were reduced in the siz1 mutants, whereas the transcript levels of DELLA and ABSCISIC ACID INSENSITIVE 3 (ABI3) were higher than those of the wild-type. Taken together, these results indicate that the reduced germination of the siz1 mutants results from impaired GA signaling due to low SLY1 levels and activity, as well as hyperdormancy due to high levels of expression of dormancy-related genes including DOG1. © 2016 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  5. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheren, Jamie E.; Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu; Department of Biology, Colorado State University, Fort Collins, CO 80523-1878

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequencemore » (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.« less

  6. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass.

    PubMed

    Rom, Oren; Reznick, Abraham Z

    2016-09-01

    The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. HDAC7 Ubiquitination by the E3 Ligase CBX4 Is Involved in Contextual Fear Conditioning Memory Formation.

    PubMed

    Jing, Xu; Sui, Wen-Hai; Wang, Shuai; Xu, Xu-Feng; Yuan, Rong-Rong; Chen, Xiao-Rong; Ma, Hui-Xian; Zhu, Ying-Xiao; Sun, Jin-Kai; Yi, Fan; Chen, Zhe-Yu; Wang, Yue

    2017-04-05

    Histone acetylation, an epigenetic modification, plays an important role in long-term memory formation. Recently, histone deacetylase (HDAC) inhibitors were demonstrated to promote memory formation, which raises the intriguing possibility that they may be used to rescue memory deficits. However, additional research is necessary to clarify the roles of individual HDACs in memory. In this study, we demonstrated that HDAC7, within the dorsal hippocampus of C57BL6J mice, had a late and persistent decrease after contextual fear conditioning (CFC) training (4-24 h), which was involved in long-term CFC memory formation. We also showed that HDAC7 decreased via ubiquitin-dependent degradation. CBX4 was one of the HDAC7 E3 ligases involved in this process. Nur77, as one of the target genes of HDAC7, increased 6-24 h after CFC training and, accordingly, modulated the formation of CFC memory. Finally, HDAC7 was involved in the formation of other hippocampal-dependent memories, including the Morris water maze and object location test. The current findings facilitate an understanding of the molecular and cellular mechanisms of HDAC7 in the regulation of hippocampal-dependent memory. SIGNIFICANCE STATEMENT The current findings demonstrated the effects of histone deacetylase 7 (HDAC7) on hippocampal-dependent memories. Moreover, we determined the mechanism of decreased HDAC7 in contextual fear conditioning (CFC) through ubiquitin-dependent protein degradation. We also verified that CBX4 was one of the HDAC7 E3 ligases. Finally, we demonstrated that Nur77, as one of the important targets for HDAC7, was involved in CFC memory formation. All of these proteins, including HDAC7, CBX4, and Nur77, could be potential therapeutic targets for preventing memory deficits in aging and neurological diseases. Copyright © 2017 the authors 0270-6474/17/373848-16$15.00/0.

  8. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage

    PubMed Central

    Hong, Xuehui; Liu, Wenyu; Song, Ruipeng; Shah, Jamie J.; Feng, Xing; Tsang, Chi Kwan; Morgan, Katherine M.; Bunting, Samuel F.; Inuzuka, Hiroyuki; Zheng, X. F. Steven; Shen, Zhiyuan; Sabaawy, Hatem E.; Liu, LianXin; Pine, Sharon R.

    2016-01-01

    SOX9 encodes a transcription factor that governs cell fate specification throughout development and tissue homeostasis. Elevated SOX9 is implicated in the genesis and progression of human tumors by increasing cell proliferation and epithelial-mesenchymal transition. We found that in response to UV irradiation or genotoxic chemotherapeutics, SOX9 is actively degraded in various cancer types and in normal epithelial cells, through a pathway independent of p53, ATM, ATR and DNA-PK. SOX9 is phosphorylated by GSK3β, facilitating the binding of SOX9 to the F-box protein FBW7α, an E3 ligase that functions in the DNA damage response pathway. The binding of FBW7α to the SOX9 K2 domain at T236-T240 targets SOX9 for subsequent ubiquitination and proteasomal destruction. Exogenous overexpression of SOX9 after genotoxic stress increases cell survival. Our findings reveal a novel regulatory mechanism for SOX9 stability and uncover a unique function of SOX9 in the cellular response to DNA damage. This new mechanism underlying a FBW7-SOX9 axis in cancer could have implications in therapy resistance. PMID:27566146

  9. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3).

    PubMed

    Roberts, Diana; Pedmale, Ullas V; Morrow, Johanna; Sachdev, Shrikesh; Lechner, Esther; Tang, Xiaobo; Zheng, Ning; Hannink, Mark; Genschik, Pascal; Liscum, Emmanuel

    2011-10-01

    Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3(NPH3). Under low-intensity BL, CRL3(NPH3) mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3(NPH3), with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters.

  10. IKKε-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex

    PubMed Central

    Zhou, Alicia Y.; Shen, Rhine R.; Kim, Eejung; Lock, Ying J.; Xu, Ming; Chen, Zhijian J.; Hahn, William C.

    2014-01-01

    SUMMARY IκB kinase ε (IKKε, IKBKE) is a key regulator of innate immunity and a breast cancer oncogene, amplified in ~30% of breast cancers, that promotes malignant transformation through NF-κB activation. Here we show that IKKε is modified and regulated by K63-linked polyubiquitination at Lysine 30 and Lysine 401. TNFα and IL-1β stimulation induces IKKε K63-linked polyubiquitination over baseline levels in both macrophages and breast cancer cell lines, and this modification is essential for IKKε kinase activity, IKKε-mediated NF-κB activation and IKKε-induced malignant transformation. Disruption of K63-linked ubiquitination of IKKε does not affect its overall structure but impairs the recruitment of canonical NF-κB proteins. A cIAP1/cIAP2/TRAF2 E3 ligase complex binds to and ubiquitinates IKKε. Together, these observations demonstrate that K63-linked polyubiquitination regulates IKKε activity in both inflammatory and oncogenic contexts and suggests an alterative approach to target this breast cancer oncogene. PMID:23453969

  11. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch

    PubMed Central

    Melino, Sonia; Bellomaria, Alessia; Nepravishta, Ridvan; Paci, Maurizio; Melino, Gerry

    2014-01-01

    Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition. PMID:25485500

  12. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch.

    PubMed

    Melino, Sonia; Bellomaria, Alessia; Nepravishta, Ridvan; Paci, Maurizio; Melino, Gerry

    2014-01-01

    Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition.

  13. Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum.

    PubMed

    Sriskanda, V; Kelman, Z; Hurwitz, J; Shuman, S

    2000-06-01

    We report the production, purification and characterization of a DNA ligase encoded by the thermophilic archaeon Methanobacterium thermoautotrophicum. The 561 amino acid MTH: ligase catalyzed strand-joining on a singly nicked DNA in the presence of a divalent cation (magnesium, manganese or cobalt) and ATP (K(m) 1.1 microM). dATP can substitute for ATP, but CTP, GTP, UTP and NAD(+) cannot. MTH: ligase activity is thermophilic in vitro, with optimal nick-joining at 60 degrees C. Mutational analysis of the conserved active site motif I (KxDG) illuminated essential roles for Lys251 and Asp253 at different steps of the ligation reaction. Mutant K251A is unable to form the covalent ligase-adenylate intermediate (step 1) and hence cannot seal a 3'-OH/5'-PO(4) nick. Yet, K251A catalyzes phosphodiester bond formation at a pre-adenylated nick (step 3). Mutant D253A is active in ligase-adenylate formation, but defective in activating the nick via formation of the DNA-adenylate intermediate (step 2). D253A is also impaired in phosphodiester bond formation at a pre-adenylated nick. A profound step 3 arrest, with accumulation of high levels of DNA-adenylate, could be elicited for the wild-type MTH: ligase by inclusion of calcium as the divalent cation cofactor. MTH: ligase sediments as a monomer in a glycerol gradient. Structure probing by limited proteolysis suggested that MTH: ligase is a tightly folded protein punctuated by a surface-accessible loop between nucleotidyl transferase motifs III and IIIa.

  14. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals.

    PubMed

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-06-22

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.

  15. The E3 Ubiquitin Ligase MIB-1 Is Necessary To Form the Nuclear Halo in Caenorhabditis elegans Sperm.

    PubMed

    Herrera, Leslie A; Starr, Daniel A

    2018-05-18

    Unlike the classical nuclear envelope with two membranes found in other eukaryotic cells, most nematode sperm nuclei are not encapsulated by membranes. Instead, they are surrounded by a nuclear halo of unknown composition. How the halo is formed and regulated is unknown. We used forward genetics to identify molecular lesions behind three classical fer (fertilization defective) mutations that disrupt the ultrastructure of the Caenorhabditis elegans sperm nuclear halo. We found fer-2 and fer-4 alleles to be nonsense mutations in mib-1. fer-3 was caused by a nonsense mutation in eri-3 GFP::MIB-1 was expressed in the germline during early spermatogenesis, but not in mature sperm. mib-1 encodes a conserved E3 ubiquitin ligase homologous to vertebrate Mib1 and Mib2, which function in Notch signaling. Here, we show that mib-1 is important for male sterility and is involved in the regulation or formation of the nuclear halo during nematode spermatogenesis. Copyright © 2018, G3: Genes, Genomes, Genetics.

  16. Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions

    PubMed Central

    Mishra, Neelam; Sun, Li; Zhu, Xunlu; Smith, Jennifer; Prakash Srivastava, Anurag; Yang, Xiaojie; Pehlivan, Necla; Esmaeili, Nardana; Luo, Hong; Shen, Guoxin; Jones, Don; Auld, Dick; Burke, John

    2017-01-01

    The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton. We report here that overexpression of OsSIZ1 in cotton results in higher net photosynthesis and better growth than wild-type cotton under drought and thermal stresses in growth chamber and greenhouse conditions. Additionally, this tolerance to abiotic stresses was correlated with higher fiber yield in both controlled-environment and field trials carried out under reduced irrigation and rainfed conditions. These results suggest that OsSIZ1 is a viable candidate gene to improve crop yields under water-limited and rainfed agricultural production systems. PMID:28340002

  17. Modulation of Phototropic Responsiveness in Arabidopsis through Ubiquitination of Phototropin 1 by the CUL3-Ring E3 Ubiquitin Ligase CRL3NPH3[W

    PubMed Central

    Roberts, Diana; Pedmale, Ullas V.; Morrow, Johanna; Sachdev, Shrikesh; Lechner, Esther; Tang, Xiaobo; Zheng, Ning; Hannink, Mark; Genschik, Pascal; Liscum, Emmanuel

    2011-01-01

    Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3NPH3. Under low-intensity BL, CRL3NPH3 mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3NPH3, with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters. PMID:21990941

  18. Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis1[W][OA

    PubMed Central

    Samuel, Marcus A.; Mudgil, Yashwanti; Salt, Jennifer N.; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R.

    2008-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses. PMID:18552232

  19. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    PubMed

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4

  20. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3

    PubMed Central

    Zhao, Li-Hua; Zhou, X Edward; Yi, Wei; Wu, Zhongshan; Liu, Yue; Kang, Yanyong; Hou, Li; de Waal, Parker W; Li, Suling; Jiang, Yi; Scaffidi, Adrian; Flematti, Gavin R; Smith, Steven M; Lam, Vinh Q; Griffin, Patrick R; Wang, Yonghong; Li, Jiayang; Melcher, Karsten; Xu, H Eric

    2015-01-01

    Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process. PMID:26470846

  1. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression.

    PubMed

    Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S; Li, Wanda Y; Dominguez, Carmen; Sylvester, Jennifer; Su, Yu-Wen; Lin, Gloria H Y; Snow, Bryan E; Brenner, Dirk; You-Ten, Annick; Haight, Jillian; Inoue, Satoshi; Wakeham, Andrew; Elford, Alisha; Hamilton, Sara; Liang, Yi; Zúñiga-Pflücker, Juan C; He, Housheng Hansen; Ohashi, Pamela S; Mak, Tak W

    2017-01-13

    T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.

  2. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7.

    PubMed

    Tron, Adriana E; Arai, Takehiro; Duda, David M; Kuwabara, Hiroshi; Olszewski, Jennifer L; Fujiwara, Yuko; Bahamon, Brittany N; Signoretti, Sabina; Schulman, Brenda A; DeCaprio, James A

    2012-04-13

    Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The Glomuvenous Malformation Protein Glomulin Binds Rbx1 and Regulates Cullin RING Ligase-Mediated Turnover of Fbw7

    PubMed Central

    Tron, Adriana E.; Arai, Takehiro; Duda, David M.; Kuwabara, Hiroshi; Olszewski, Jennifer L.; Fujiwara, Yuko; Bahamon, Brittany N.; Signoretti, Sabina; Schulman, Brenda A.; DeCaprio, James A.

    2012-01-01

    SUMMARY Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here we show that Glomulin (Glmn), a protein found mutated in the vascular disorder Glomuvenous Malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity indicating that Glmn modulates the E3 activity of CRL1Fbw7. These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. PMID:22405651

  4. The E3 ubiquitin ligase Nedd4/Nedd4L is directly regulated by microRNA 1

    PubMed Central

    Heidersbach, Amy; Kathiriya, Irfan S.; Garay, Bayardo I.; Ivey, Kathryn N.

    2017-01-01

    miR-1 is a small noncoding RNA molecule that modulates gene expression in heart and skeletal muscle. Loss of Drosophila miR-1 produces defects in somatic muscle and embryonic heart development, which have been partly attributed to miR-1 directly targeting Delta to decrease Notch signaling. Here, we show that overexpression of miR-1 in the fly wing can paradoxically increase Notch activity independently of its effects on Delta. Analyses of potential miR-1 targets revealed that miR-1 directly regulates the 3′UTR of the E3 ubiquitin ligase Nedd4. Analysis of embryonic and adult fly heart revealed that the Nedd4 protein regulates heart development in Drosophila. Larval fly hearts overexpressing miR-1 have profound defects in actin filament organization that are partially rescued by concurrent overexpression of Nedd4. These results indicate that miR-1 and Nedd4 act together in the formation and actin-dependent patterning of the fly heart. Importantly, we have found that the biochemical and genetic relationship between miR-1 and the mammalian ortholog Nedd4-like (Nedd4l) is evolutionarily conserved in the mammalian heart, potentially indicating a role for Nedd4L in mammalian postnatal maturation. Thus, miR-1-mediated regulation of Nedd4/Nedd4L expression may serve to broadly modulate the trafficking or degradation of Nedd4/Nedd4L substrates in the heart. PMID:28246214

  5. Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase

    PubMed Central

    Henke, Sarah K.; Cronan, John E.

    2014-01-01

    Group II biotin protein ligases (BPLs) are characterized by the presence of an N-terminal DNA binding domain that allows transcriptional regulation of biotin biosynthetic and transport genes whereas Group I BPLs lack this N-terminal domain. The Bacillus subtilis BPL, BirA, is classified as a Group II BPL based on sequence predictions of an N-terminal helix-turn-helix motif and mutational alteration of its regulatory properties. We report evidence that B. subtilis BirA is a Group II BPL that regulates transcription at three genomic sites: bioWAFDBI, yuiG and yhfUTS. Moreover, unlike the paradigm Group II BPL, E. coli BirA, the N-terminal DNA binding domain can be deleted from Bacillus subtilis BirA without adverse effects on its ligase function. This is the first example of successful conversion of a Group II BPL to a Group I BPL with retention of full ligase activity. PMID:24816803

  6. Identification of essential sequences for cellular localization in the muscle-specific ubiquitin E3 ligase MAFbx/Atrogin 1.

    PubMed

    Julie, Lagirand-Cantaloube; Sabrina, Batonnet-Pichon; Marie-Pierre, Leibovitch; Leibovitch, Serge A

    2012-02-17

    In skeletal muscle atrophy, upregulation and nuclear accumulation of the Ubiquitin E3 ligase MAFbx is essential for accelerated muscle protein loss, but the nuclear/cytoplasmic shuttling of MAFbx is undefined. Here we found that MAFbx contains two functional nuclear localization signals (NLS). Mutation or deletion of only one NLS induced cytoplasmic localization of MAFbx. We identified a non-classical NES located in the leucine charged domain (LCD) of MAFbx, which is leptomycin B insensitive. We demonstrated that mutation (L169Q) in LLXXL motif of LCD suppressed cytoplasmic retention of MAFbx. Nucleocytoplasmic shuttling of MAFbx represents a novel mechanism for targeting its substrates and its cytosolic partners in muscle atrophy. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases.

    PubMed

    O'Connor, Hazel F; Huibregtse, Jon M

    2017-09-01

    Protein ubiquitylation is an important post-translational modification, regulating aspects of virtually every biochemical pathway in eukaryotic cells. Hundreds of enzymes participate in the conjugation and deconjugation of ubiquitin, as well as the recognition, signaling functions, and degradation of ubiquitylated proteins. Regulation of ubiquitylation is most commonly at the level of recognition of substrates by E3 ubiquitin ligases. Characterization of the network of E3-substrate relationships is a major goal and challenge in the field, as this expected to yield fundamental biological insights and opportunities for drug development. There has been remarkable success in identifying substrates for some E3 ligases, in many instances using the standard protein-protein interaction techniques (e.g., two-hybrid screens and co-immunoprecipitations paired with mass spectrometry). However, some E3s have remained refractory to characterization, while others have simply not yet been studied due to the sheer number and diversity of E3s. This review will discuss the range of tools and techniques that can be used for substrate profiling of E3 ligases.

  8. Temporal proteomics of NGF-TrkA signaling identifies an inhibitory role for the E3 ligase Cbl-b in neuroblastoma cell differentiation.

    PubMed

    Emdal, Kristina B; Pedersen, Anna-Kathrine; Bekker-Jensen, Dorte B; Tsafou, Kalliopi P; Horn, Heiko; Lindner, Sven; Schulte, Johannes H; Eggert, Angelika; Jensen, Lars J; Francavilla, Chiara; Olsen, Jesper V

    2015-04-28

    SH-SY5Y neuroblastoma cells respond to nerve growth factor (NGF)-mediated activation of the tropomyosin-related kinase A (TrkA) with neurite outgrowth, thereby providing a model to study neuronal differentiation. We performed a time-resolved analysis of NGF-TrkA signaling in neuroblastoma cells using mass spectrometry-based quantitative proteomics. The combination of interactome, phosphoproteome, and proteome data provided temporal insights into the molecular events downstream of NGF binding to TrkA. We showed that upon NGF stimulation, TrkA recruits the E3 ubiquitin ligase Cbl-b, which then becomes phosphorylated and ubiquitylated and decreases in abundance. We also found that recruitment of Cbl-b promotes TrkA ubiquitylation and degradation. Furthermore, the amount of phosphorylation of the kinase ERK and neurite outgrowth increased upon Cbl-b depletion in several neuroblastoma cell lines. Our findings suggest that Cbl-b limits NGF-TrkA signaling to control the length of neurites. Copyright © 2015, American Association for the Advancement of Science.

  9. HECT Domain-containing E3 Ubiquitin Ligase NEDD4L Negatively Regulates Wnt Signaling by Targeting Dishevelled for Proteasomal Degradation*

    PubMed Central

    Ding, Yi; Zhang, Yan; Xu, Chao; Tao, Qing-Hua; Chen, Ye-Guang

    2013-01-01

    Wnt signaling plays a pivotal role in embryogenesis and tissue homeostasis. Dishevelled (Dvl) is a central mediator for both Wnt/β-catenin and Wnt/planar cell polarity pathways. NEDD4L, an E3 ubiquitin ligase, has been shown to regulate ion channel activity, cell signaling, and cell polarity. Here, we report a novel role of NEDD4L in the regulation of Wnt signaling. NEDD4L induces Dvl2 polyubiquitination and targets Dvl2 for proteasomal degradation. Interestingly, the NEDD4L-mediated ubiquitination of Dvl2 is Lys-6, Lys-27, and Lys-29 linked but not typical Lys-48-linked ubiquitination. Consistent with the role of Dvl in both Wnt/β-catenin and Wnt/planar cell polarity signaling, NEDD4L regulates the cellular β-catenin level and Rac1, RhoA, and JNK activities. We have further identified a hierarchical regulation that Wnt5a induces JNK-mediated phosphorylation of NEDD4L, which in turn promotes its ability to degrade Dvl2. Finally, we show that NEDD4L inhibits Dvl2-induced axis duplication in Xenopus embryos. Our work thus demonstrates that NEDD4L is a negative feedback regulator of Wnt signaling. PMID:23396981

  10. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    PubMed

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  11. Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase.

    PubMed

    dos Santos, Marcos Tadeu; Trindade, Daniel Maragno; Gonçalves, Kaliandra de Almeida; Bressan, Gustavo Costa; Anastassopoulos, Filipe; Yunes, José Andres; Kobarg, Jörg

    2011-01-01

    Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.

  12. Impact of altered phosphorylation on loss of function of juvenile Parkinsonism-associated genetic variants of the E3 ligase parkin.

    PubMed

    Aguirre, Jacob D; Dunkerley, Karen M; Lam, Rica; Rusal, Michele; Shaw, Gary S

    2018-04-27

    Autosomal recessive juvenile Parkinsonism (ARJP) is an inherited neurodegenerative disease in which 50% of affected individuals harbor mutations in the gene encoding the E3 ligase parkin. Parkin regulates the mitochondrial recycling pathway, which is induced by oxidative stress. In its native state, parkin is auto-inhibited by its N-terminal ubiquitin-like (Ubl) domain, which blocks the binding site for an incoming E2∼ubiquitin conjugate, needed for parkin's ubiquitination activity. Parkin is activated via phosphorylation of Ser-65 in its Ubl domain by PTEN-induced putative kinase 1 (PINK1) and a ubiquitin molecule phosphorylated at a position equivalent to Ser-65 in parkin. Here we have examined the underlying molecular mechanism of phosphorylation of parkin's Ubl domain carrying ARJP-associated substitutions and how altered phosphorylation modulates parkin activation and ubiquitination. We found that three substitutions in the Ubl domain (G12R, R33Q, and R42P) significantly decrease PINK1's ability to phosphorylate the Ubl domain. We noted that two basic loss-of-function substitutions (R33Q and R42P) are close to acidic patches in the proposed PINK1-parkin interface, indicating that ionic interactions at this site may be important for efficient parkin phosphorylation. Increased auto-ubiquitination with unique ubiquitin chain patterns was observed for two other Ubl domain substitutions (G12R and T55I), suggesting that these substitutions, along with phosphorylation, increase parkin degradation. Moreover, Ubl domain phosphorylation decreased its affinity for the potential effector protein ataxin-3, which edits ubiquitin chain building by parkin. Overall, our work provides a framework for the mechanisms of parkin's loss-of-function, indicating an interplay between ARJP-associated substitutions and phosphorylation of its Ubl domain. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Dual Function of Phosphoubiquitin in E3 Activation of Parkin*

    PubMed Central

    Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro

    2016-01-01

    Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis. Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. PMID:27284007

  14. Recognition mechanism of p63 by the E3 ligase Itch: novel strategy in the study and inhibition of this interaction.

    PubMed

    Bellomaria, Alessia; Barbato, Gaetano; Melino, Gerry; Paci, Maurizio; Melino, Sonia

    2012-10-01

    The HECT-containing E3 ubiquitin ligase Itch mediates the degradation of several proteins, including p63 and p73, involved in cell specification and fate. Itch contains four WW domains, which are essential for recognition on the target substrate, which contains a short proline-rich sequence. Several signaling complexes containing these domains have been associated with human diseases such as muscular dystrophy, Alzheimer's or Huntington's diseases. To gain further insight into the structural determinants of the Itch-WW2 domain, we investigated its interaction with p63. We assigned, by 3D heteronuclear NMR experiments, the backbone and side chains of the uniformly (13)C-(15)N-labeled Itch-WW2. In vitro interaction of Itch-WW2 domain with p63 was studied using its interactive p63 peptide, pep63. Pep63 is an 18-mer peptide corresponding to the region from 534-551 residue of p63, encompassing the PPxY motif that interacts with the Itch-WW domains, and we identified the residues involved in this molecular recognition. Moreover, here, a strategy of stabilization of the conformation of the PPxY peptide has been adopted, increasing the WW-ligand binding. We demonstrated that cyclization of pep63 leads to an increase of both the biological stability of the peptide and of the WW-ligand complex. Stable metal-binding complexes of the pep63 have been also obtained, and localized oxidative damage on Itch-WW2 domain has been induced, demonstrating the possibility of use of metal-pep63 complexes as models for the design of metal drugs to inhibit the Itch-WW-p63 recognition in vivo. Thus, our data suggest a novel strategy to study and inhibit the recognition mechanism of Itch E3-ligase.

  15. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Evan; Eggler, Aimee; Mesecar, Andrew D., E-mail: amesecar@purdue.edu

    2010-10-01

    Research highlights: {yields} A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. {yields} The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. {yields} Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length,more » highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.« less

  16. Interaction of E3 Ubiquitin Ligase MARCH7 with Long Noncoding RNA MALAT1 and Autophagy-Related Protein ATG7 Promotes Autophagy and Invasion in Ovarian Cancer.

    PubMed

    Hu, Jianguo; Zhang, Luo; Mei, Zhiqiang; Jiang, Yuan; Yi, Yuan; Liu, Li; Meng, Ying; Zhou, Lili; Zeng, Jianhua; Wu, Huan; Jiang, Xingwei

    2018-05-22

    Ubiquitin E3 ligase MARCH7 plays an important role in T cell proliferation and neuronal development. But its role in ovarian cancer remains unclear. This study aimed to investigate the role of Ubiquitin E3 ligase MARCH7 in ovarian cancer. Real-time PCR, immunohistochemistry and western blotting analysis were performed to determine the expression of MARCH7, MALAT1 and ATG7 in ovarian cancer cell lines and clinical specimens. The role of MARCH7 in maintaining ovarian cancer malignant phenotype was examined by Wound healing assay, Matrigel invasion assays and Mouse orthotopic xenograft model. Luciferase reporter assay, western blot analysis and ChIP assay were used to determine whether MARCH7 activates TGF-β-smad2/3 pathway by interacting with TGFβR2. MARCH7 interacted with MALAT1 by miR-200a (microRNA-200a). MARCH7 may function as a competing endogenous RNA (ceRNA) to regulate the expression of ATG7 by competing with miR-200a. MARCH7 regulated TGF-β-smad2/3 pathway by interacting with TGFβR2. Inhibition of TGF-β-smad2/3 pathway downregulated MARCH7, MALAT1 and ATG7. MiR-200a regulated TGF-β induced autophagy, invasion and metastasis of SKOV3 cells by targeting MARCH7. MARCH7 silencing inhibited autophagy invasion and metastasis of SKOV3 cells both in vitro and in vivo. In contrast, MARCH7 overexpression promoted TGF-β induced autophagy, invasion and metastasis of A2780 cells in vitro by depending on MALAT1 and ATG7. We also found that TGF-β-smad2/3 pathway regulated MARCH7 and ATG7 through MALAT1. These findings suggested that TGFβR2-Smad2/3-MALAT1/MARCH7/ATG7 feedback loop mediated autophagy, migration and invasion in ovarian cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation.

    PubMed

    Canettieri, Gianluca; Di Marcotullio, Lucia; Greco, Azzura; Coni, Sonia; Antonucci, Laura; Infante, Paola; Pietrosanti, Laura; De Smaele, Enrico; Ferretti, Elisabetta; Miele, Evelina; Pelloni, Marianna; De Simone, Giuseppina; Pedone, Emilia Maria; Gallinari, Paola; Giorgi, Alessandra; Steinkühler, Christian; Vitagliano, Luigi; Pedone, Carlo; Schinin, M Eugenià; Screpanti, Isabella; Gulino, Alberto

    2010-02-01

    Hedgehog signalling is crucial for development and is deregulated in several tumours, including medulloblastoma. Regulation of the transcriptional activity of Gli (glioma-associated oncogene) proteins, effectors of the Hedgehog pathway, is poorly understood. We show here that Gli1 and Gli2 are acetylated proteins and that their HDAC-mediated deacetylation promotes transcriptional activation and sustains a positive autoregulatory loop through Hedgehog-induced upregulation of HDAC1. This mechanism is turned off by HDAC1 degradation through an E3 ubiquitin ligase complex formed by Cullin3 and REN, a Gli antagonist lost in human medulloblastoma. Whereas high HDAC1 and low REN expression in neural progenitors and medulloblastomas correlates with active Hedgehog signalling, loss of HDAC activity suppresses Hedgehog-dependent growth of neural progenitors and tumour cells. Consistent with this, abrogation of Gli1 acetylation enhances cellular proliferation and transformation. These data identify an integrated HDAC- and ubiquitin-mediated circuitry, where acetylation of Gli proteins functions as an unexpected key transcriptional checkpoint of Hedgehog signalling.

  18. High-throughput sequencing reveals circular substrates for an archaeal RNA ligase

    PubMed Central

    Becker, Hubert F.; Héliou, Alice; Djaout, Kamel; Lestini, Roxane; Regnier, Mireille; Myllykallio, Hannu

    2017-01-01

    ABSTRACT It is only recently that the abundant presence of circular RNAs (circRNAs) in all kingdoms of Life, including the hyperthermophilic archaeon Pyrococcus abyssi, has emerged. This led us to investigate the physiologic significance of a previously observed weak intramolecular ligation activity of Pab1020 RNA ligase. Here we demonstrate that this enzyme, despite sharing significant sequence similarity with DNA ligases, is indeed an RNA-specific polynucleotide ligase efficiently acting on physiologically significant substrates. Using a combination of RNA immunoprecipitation assays and RNA-seq, our genome-wide studies revealed 133 individual circRNA loci in P. abyssi. The large majority of these loci interacted with Pab1020 in cells and circularization of selected C/D Box and 5S rRNA transcripts was confirmed biochemically. Altogether these studies revealed that Pab1020 is required for RNA circularization. Our results further suggest the functional speciation of an ancestral NTase domain and/or DNA ligase toward RNA ligase activity and prompt for further characterization of the widespread functions of circular RNAs in prokaryotes. Detailed insight into the cellular substrates of Pab1020 may facilitate the development of new biotechnological applications e.g. in ligation of preadenylated adaptors to RNA molecules. PMID:28277897

  19. The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells

    PubMed Central

    Xiao, Nengming; Eto, Danelle; Elly, Chris; Peng, Guiying; Crotty, Shane; Liu, Yun-Cai

    2014-01-01

    Follicular helper T cells (TFH cells) are responsible for effective B cell–mediated immunity, and Bcl-6 is a central factor for the differentiation of TFH cells. However, the molecular mechanisms that regulate the induction of TFH cells remain unclear. Here we found that the E3 ubiquitin ligase Itch was essential for the differentiation of TFH cells, germinal center responses and immunoglobulin G (IgG) responses to acute viral infection. Itch acted intrinsically in CD4+ T cells at early stages of TFH cell development. Itch seemed to act upstream of Bcl-6 expression, as Bcl-6 expression was substantially impaired in Itch−/− cells, and the differentiation of Itch−/− T cells into TFH cells was restored by enforced expression of Bcl-6. Itch associated with the transcription factor Foxo1 and promoted its ubiquitination and degradation. The defective TFH differentiation of Itch−/− T cells was rectified by deletion of Foxo1. Thus, our results indicate that Itch acts as an essential positive regulator in the differentiation of TFH cells. PMID:24859451

  20. Expression and regulation of ATL9, an E3 ubiquitin ligase involved in plant defense

    PubMed Central

    Lefebvre, Mitchell; Scaglione, Steven; Antico, Christopher J.; Jing, Tao; Yang, Xin; Shan, Weixing

    2017-01-01

    Plants are continually exposed to a variety of pathogenic organisms, including bacteria, fungi and viruses. In response to these assaults, plants have developed various defense pathways to protect themselves from pathogen invasion. An understanding of the expression and regulation of genes involved in defense signaling is essential to controlling plant disease. ATL9, an Arabidopsis RING zinc finger protein, is an E3 ubiquitin ligase that is induced by chitin and involved in basal resistance to the biotrophic fungal pathogen, Golovinomyces cichoracearum (G. cichoracearum). To better understand the expression and regulation of ATL9, we studied its expression pattern and the functions of its different protein domains. Using pATL9:GUS transgenic Arabidopsis lines we found that ATL9 is expressed in numerous tissues at various developmental stages and that GUS activity was induced rapidly upon wounding. Using a GFP control protein, we showed that ATL9 is a short-lived protein within plant cells and it is degraded via the ubiquitin-proteasome pathway. ATL9 contains two transmembrane domains (TM), a RING zinc-finger domain, and a PEST domain. Using a series of deletion mutants, we found that the PEST domain and the RING domain have effects on ATL9 degradation. Further infection assays with G. cichoracearum showed that both the RING domain and the TM domains are important for ATL9’s resistance phenotype. Interestingly, the PEST domain was also shown to be significant for resistance to fungal pathogens. This study demonstrates that the PEST domain is directly coupled to plant defense regulation and the importance of protein degradation in plant immunity. PMID:29161311

  1. Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4DCAF5 ubiquitin ligase.

    PubMed

    Leng, Feng; Yu, Jiekai; Zhang, Chunxiao; Alejo, Salvador; Hoang, Nam; Sun, Hong; Lu, Fei; Zhang, Hui

    2018-04-24

    Many non-histone proteins are lysine methylated and a novel function of this modification is to trigger the proteolysis of methylated proteins. Here, we report that the methylated lysine 142 of DNMT1, a major DNA methyltransferase that preserves epigenetic inheritance of DNA methylation patterns during DNA replication, is demethylated by LSD1. A novel methyl-binding protein, L3MBTL3, binds the K142-methylated DNMT1 and recruits a novel CRL4 DCAF5 ubiquitin ligase to degrade DNMT1. Both LSD1 and PHF20L1 act primarily in S phase to prevent DNMT1 degradation by L3MBTL3-CRL4 DCAF5 . Mouse L3MBTL3/MBT-1 deletion causes accumulation of DNMT1 protein, increased genomic DNA methylation, and late embryonic lethality. DNMT1 contains a consensus methylation motif shared by many non-histone proteins including E2F1, a key transcription factor for S phase. We show that the methylation-dependent E2F1 degradation is also controlled by L3MBTL3-CRL4 DCAF5 . Our studies elucidate for the first time a novel mechanism by which the stability of many methylated non-histone proteins are regulated.

  2. Solution NMR studies of Chlorella virus DNA ligase-adenylate.

    PubMed

    Piserchio, Andrea; Nair, Pravin A; Shuman, Stewart; Ghose, Ranajeet

    2010-01-15

    DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3'-OH/5'-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone (15)N spin relaxation and (15)N,(1)H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5'-phosphate. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    PubMed

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Human Papillomavirus Type 16 E6 Induces Self-Ubiquitination of the E6AP Ubiquitin-Protein Ligase

    PubMed Central

    Kao, Wynn H.; Beaudenon, Sylvie L.; Talis, Andrea L.; Huibregtse, Jon M.; Howley, Peter M.

    2000-01-01

    The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is stabilized in HPV-positive cancer cells when expression of the viral oncoproteins is repressed. Expression of HPV16 E6 in cells results in a threefold decrease in the half-life of transfected E6AP. E6-mediated degradation of E6AP requires (i) the binding of E6 to E6AP, (ii) the catalytic activity of E6AP, and (iii) activity of the 26S proteasome, suggesting that E6-E6AP interaction results in E6AP self-ubiquitination and degradation. In addition, both in vitro and in vivo experiments indicate that E6AP self-ubiquitination results primarily from an intramolecular transfer of ubiquitin from the active-site cysteine to one or more lysine residues; however, intermolecular transfer can also occur in the context of an E6-mediated E6AP multimer. Finally, we demonstrate that an E6 mutant that is able to immortalize human mammary epithelial cells but is unable to degrade p53 retains its ability to bind and degrade E6AP, raising the possibility that E6-mediated degradation of E6AP contributes to its ability to transform mammalian cells. PMID:10864652

  5. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication.

    PubMed

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E; Miorin, Lisa; Johnson, Jeffrey R; Krogan, Nevan J; Basler, Christopher F; Freiberg, Alexander N; Rajsbaum, Ricardo

    2017-09-15

    Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35

  6. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication

    PubMed Central

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E.; Miorin, Lisa; Johnson, Jeffrey R.; Krogan, Nevan J.; Basler, Christopher F.; Freiberg, Alexander N.

    2017-01-01

    ABSTRACT Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP

  7. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.

    PubMed

    Nandakumar, Jayakrishnan; Nair, Pravin A; Shuman, Stewart

    2007-04-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria and essential for growth. Their distinctive substrate specificity and domain organization vis-a-vis human ATP-dependent ligases make them outstanding targets for anti-infective drug discovery. We report here the 2.3 A crystal structure of Escherichia coli LigA bound to an adenylylated nick, which captures LigA in a state poised for strand closure and reveals the basis for nick recognition. LigA envelopes the DNA within a protein clamp. Large protein domain movements and remodeling of the active site orchestrate progression through the three chemical steps of the ligation reaction. The structure inspires a strategy for inhibitor design.

  8. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    PubMed

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  9. Dual Function of Phosphoubiquitin in E3 Activation of Parkin.

    PubMed

    Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro

    2016-08-05

    Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Ubiquitin E3 Ligase PRU1 Regulates WRKY6 Degradation to Modulate Phosphate Homeostasis in Response to Low-Pi Stress in Arabidopsis.

    PubMed

    Ye, Qing; Wang, Hui; Su, Tong; Wu, Wei-Hua; Chen, Yi-Fang

    2018-03-22

    Since phosphorus is an essential nutrient for plants, plants have evolved a number of adaptive mechanisms to respond to changes in phosphate (Pi) supply. Previously, we reported that the transcription factor WRKY6 modulates Pi homeostasis by down-regulating PHOSPHATE 1 (PHO1) expression, and that WRKY6 is degraded during Pi starvation in Arabidopsis thaliana. However, the molecular mechanism underlying low-Pi-induced WRKY6 degradation was unknown. Here, we report that a ubiquitin E3 ligase, PHOSPHATE RESPONSE UBIQUITIN E3 LIGASE 1 (PRU1), modulates WRKY6 protein levels in response to low-Pi stress. A pru1 mutant was more sensitive than the wild type to Pi-deficient conditions, exhibiting a reduced Pi contents in the shoot, similar to the pho1-2 mutant and WRKY6-overexpressing line. PRU1 interacted with WRKY6 in vitro and in vivo. Under low-Pi stress, the ubiquitination and subsequent degradation of WRKY6, as well as the consequential enhancement of PHO1 expression, were impaired in pru1. PRU1 complementation lines displayed no obvious differences compared to wild-type plants. Further genetic analysis showed that disruption of WRKY6 abolished the low-Pi sensitivity of pru1, indicating that WRKY6 functioned downstream of PRU1. Taken together, this study uncovers a mechanism by which PRU1 modulates Pi homeostasis, through regulating the abundance of WRKY6 in response to low-Pi stress in Arabidopsis. © 2018 American Society of Plant Biologists. All rights reserved.

  11. Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1–F-box interface

    DOE PAGES

    Gorelik, Maryna; Orlicky, Stephen; Sartori, Maria A.; ...

    2016-03-14

    Skp1–Cul1–F-box (SCF) E3 ligases play key roles in multiple cellular processes through ubiquitination and subsequent degradation of substrate proteins. Although Skp1 and Cul1 are invariant components of all SCF complexes, the 69 different human F-box proteins are variable substrate binding modules that determine specificity. SCF E3 ligases are activated in many cancers and inhibitors could have therapeutic potential. Here, we used phage display to develop specific ubiquitin-based inhibitors against two F-box proteins, Fbw7 and Fbw11. Unexpectedly, the ubiquitin variants bind at the interface of Skp1 and F-box proteins and inhibit ligase activity by preventing Cul1 binding to the same surface.more » Using structure-based design and phage display, we modified the initial inhibitors to generate broad-spectrum inhibitors that targeted many SCF ligases, or conversely, a highly specific inhibitor that discriminated between even the close homologs Fbw11 and Fbw1. We propose that most F-box proteins can be targeted by this approach for basic research and for potential cancer therapies.« less

  12. The origin of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase): luciferin stereoselectivity as a switch for the oxygenase activity.

    PubMed

    Viviani, Vadim R; Scorsato, Valeria; Prado, Rogilene A; Pereira, Jose G C; Niwa, Kazuki; Ohmiya, Yoshihiro; Barbosa, João A R G

    2010-08-01

    Beetle luciferases evolved from AMP/CoA-ligases. However, it is unclear how the new luciferase activity evolved. In order to clarify this question, we compared the luminescence and catalytic properties of a recently cloned luciferase-like enzyme from Zophobas mealworm, an AMP/CoA-ligase displaying weak luminescence activity, with those of cloned luciferases from the three main families of luminescent beetles: Phrixthrix hirtus railroad worm; Pyrearinus termitilluminans click beetle and Photinus pyralis firefly. The catalytic constant of the mealworm enzyme was 2-4 orders of magnitude lower than that of beetle luciferases, but 3 orders of magnitude above the non-catalyzed chemiluminescence of luciferyl-adenylate in buffer. Studies with D- and L-luciferin and their adenylates show that the luminescence reaction of the luciferase-like enzyme and beetle luciferases are stereoselective for D-luciferin and its adenylate, and that the selectivity is determined mainly at the adenylation step. Modelling studies showed that the luciferin binding site cavity of this enzyme is smaller and more hydrophobic than that of beetle luciferases. Therefore Zophobas mealworm enzyme displays true luciferase activity, keeping the attributes of an ancient protoluciferase. These results suggest that stereoselectivity for D-luciferin may have been a key event for the origin of oxygenase/luciferase activity in AMP/CoA-ligases, and that efficient luciferase activity may have further evolved mainly by increasing the catalytic constant of the oxidative reaction and the quantum yield of bioluminescence.

  13. Chlorella virus DNA ligase: nick recognition and mutational analysis.

    PubMed

    Sriskanda, V; Shuman, S

    1998-01-15

    Chlorella virus PBCV-1 DNA ligase seals nicked DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging DNA template strand. The enzyme discriminates at the DNA binding step between substrates containing a 5'-phosphate versus a 5'-hydroxyl at the nick. Mutational analysis of the active site motif KxDGxR (residues 27-32) illuminates essential roles for the conserved Lys, Asp and Arg moieties at different steps of the ligase reaction. Mutant K27A is unable to form the covalent ligase-(Lys-straightepsilonN-P)-adenylate intermediate and hence cannot activate a nicked DNA substrate via formation of the DNA-adenylate intermediate. Nonetheless, K27A catalyzes phosphodiester bond formation at a pre-adenylated nick. This shows that the active site lysine is not required for the strand closure reaction. K27A binds to nicked DNA-adenylate, but not to a standard DNA nick. This suggests that occupancy of the AMP binding pocket of DNA ligase is important for nick recognition. Mutant D29A is active in enzyme-adenylate formation and binds readily to nicked DNA, but is inert in DNA-adenylate formation. R32A is unable to catalyze any of the three reactions of the ligation pathway and does not bind to nicked DNA.

  14. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  15. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination.

    PubMed

    Ahmed, M Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2011-05-10

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.

  16. Overexpression of biotin synthase and biotin ligase is required for efficient generation of sulfur-35 labeled biotin in E. coli.

    PubMed

    Delli-Bovi, Teegan A; Spalding, Maroya D; Prigge, Sean T

    2010-10-11

    Biotin is an essential enzyme cofactor that acts as a CO2 carrier in carboxylation and decarboxylation reactions. The E. coli genome encodes a biosynthetic pathway that produces biotin from pimeloyl-CoA in four enzymatic steps. The final step, insertion of sulfur into desthiobiotin to form biotin, is catalyzed by the biotin synthase, BioB. A dedicated biotin ligase (BirA) catalyzes the covalent attachment of biotin to biotin-dependent enzymes. Isotopic labeling has been a valuable tool for probing the details of the biosynthetic process and assaying the activity of biotin-dependent enzymes, however there is currently no established method for 35S labeling of biotin. In this study, we produced [35S]-biotin from Na35SO4 and desthiobiotin with a specific activity of 30.7 Ci/mmol, two orders of magnitude higher than previously published methods. The biotinylation domain (PfBCCP-79) from the Plasmodium falciparum acetyl-CoA carboxylase (ACC) was expressed in E. coli as a biotinylation substrate. We found that overexpression of the E. coli biotin synthase, BioB, and biotin ligase, BirA, increased PfBCCP-79 biotinylation 160-fold over basal levels. Biotinylated PfBCCP-79 was purified by affinity chromatography, and free biotin was liberated using acid hydrolysis. We verified that we had produced radiolabeled biologically active [D]-biotin that specifically labels biotinylated proteins through reuptake in E. coli. The strategy described in our report provides a simple and effective method for the production of [35S]-biotin in E. coli based on affinity chromatography.

  17. Src-like adaptor protein regulates TCR expression on thymocytes by linking the ubiquitin ligase c-Cbl to the TCR complex.

    PubMed

    Myers, Margaret D; Sosinowski, Tomasz; Dragone, Leonard L; White, Carmen; Band, Hamid; Gu, Hua; Weiss, Arthur

    2006-01-01

    The adaptor molecule SLAP and E3 ubiquitin ligase c-Cbl each regulate expression of T cell receptor (TCR)-CD3 on thymocytes. Here we provide genetic and biochemical evidence that both molecules function in the same pathway. TCR-CD3 expression was similar in the absence of SLAP and/or c-Cbl. SLAP and c-Cbl were found to interact, and their expression together downregulated CD3epsilon. This required multiple domains in SLAP and the ring finger of c-Cbl. Furthermore, expression of SLAP and c-Cbl together induced TCRzeta ubiquitination and degradation, preventing the accumulation of fully assembled recycling TCR complexes. These studies indicate that SLAP links the E3 ligase activity of c-Cbl to the TCR, allowing for stage-specific regulation of TCR expression.

  18. Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins

    PubMed Central

    Englert, Markus; Beier, Hildburg

    2005-01-01

    Pre-tRNA splicing is an essential process in all eukaryotes. It requires the concerted action of an endonuclease to remove the intron and a ligase for joining the resulting tRNA halves as studied best in the yeast Saccharomyces cerevisiae. Here, we report the first characterization of an RNA ligase protein and its gene from a higher eukaryotic organism that is an essential component of the pre-tRNA splicing process. Purification of tRNA ligase from wheat germ by successive column chromatographic steps has identified a protein of 125 kDa by its potentiality to covalently bind AMP, and by its ability to catalyse the ligation of tRNA halves and the circularization of linear introns. Peptide sequences obtained from the purified protein led to the elucidation of the corresponding proteins and their genes in Arabidopsis and Oryza databases. The plant tRNA ligases exhibit no overall sequence homologies to any known RNA ligases, however, they harbour a number of conserved motifs that indicate the presence of three intrinsic enzyme activities: an adenylyltransferase/ligase domain in the N-terminal region, a polynucleotide kinase in the centre and a cyclic phosphodiesterase domain at the C-terminal end. In vitro expression of the recombinant Arabidopsis tRNA ligase and functional analyses revealed all expected individual activities. Plant RNA ligases are active on a variety of substrates in vitro and are capable of inter- and intramolecular RNA joining. Hence, we conclude that their role in vivo might comprise yet unknown essential functions besides their involvement in pre-tRNA splicing. PMID:15653639

  19. Nedd4 is a Specific E3 Ubiquitin Ligase for the NMDA Receptor Subunit GluN2D

    PubMed Central

    Gautam, Vivek; Trinidad, Jonathan C.; Rimerman, Ronald A.; Costa, Blaise M.; Burlingame, Alma L.; Monaghan, Daniel T.

    2013-01-01

    NMDA receptors are a family of glutamate-gated ion channels that regulate various CNS functions such as synaptic plasticity and learning. However hypo-or hyper-activation of NMDA receptors is critically involved in many neurological and psychiatric conditions such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Thus, it is important to identify mechanisms (such as by targeted ubiquitination) that regulate the levels of individual subtypes of NMDA receptors. In this study, we used a series of tagged, carboxy terminal constructs of GluN2D to identify associating proteins from rat brain. Of seven different GluN2D C-terminal fragments used as bait, only the construct containing amino acids 983-1097 associated with an E3 ligase, Nedd4. A direct interaction between GluN2D and Nedd4 was confirmed both in vivo and in vitro. This association is mediated by an interaction between GluN2D's C-terminal PPXY motif and the 2nd and 3rd WW domains of Nedd4. Of the four GluN2 subunits, Nedd4 directly interacted with GluN2D and also weakly with GluN2A. Nedd4 coexpression with GluN2D enhances GluN2D ubiquitination and reduces GluN1/GluN2D NMDA receptor responses. These results identify Nedd4 as a novel binding partner for GluN2D and suggest a mechanism for the regulation of NMDA receptors that contains GluN2D subunit through ubiquitination-dependent downregulation. PMID:23639431

  20. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice.

    PubMed

    Park, Chan-Ho; Chen, Songbiao; Shirsekar, Gautam; Zhou, Bo; Khang, Chang Hyun; Songkumarn, Pattavipha; Afzal, Ahmed J; Ning, Yuese; Wang, Ruyi; Bellizzi, Maria; Valent, Barbara; Wang, Guo-Liang

    2012-11-01

    Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.

  1. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  2. Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases

    PubMed Central

    Sato, Amy Y.; Richardson, Danielle; Cregor, Meloney; Davis, Hannah M.; Au, Ernie D.; McAndrews, Kevin; Zimmers, Teresa A.; Organ, Jason M.; Peacock, Munro; Plotkin, Lilian I.

    2017-01-01

    Glucocorticoid excess, either endogenous with diseases of the adrenal gland, stress, or aging or when administered for immunosuppression, induces bone and muscle loss, leading to osteopenia and sarcopenia. Muscle weakness increases the propensity for falling, which, combined with the lower bone mass, increases the fracture risk. The mechanisms underlying glucocorticoid-induced bone and muscle atrophy are not completely understood. We have demonstrated that the loss of bone and muscle mass, decreased bone formation, and reduced muscle strength, hallmarks of glucocorticoid excess, are accompanied by upregulation in both tissues in vivo of the atrophy-related genes atrogin1, MuRF1, and MUSA1. These are E3 ubiquitin ligases traditionally considered muscle-specific. Glucocorticoids also upregulated atrophy genes in cultured osteoblastic/osteocytic cells, in ex vivo bone organ cultures, and in muscle organ cultures and C2C12 myoblasts/myotubes. Furthermore, glucocorticoids markedly increased the expression of components of the Notch signaling pathway in muscle in vivo, ex vivo, and in vitro. In contrast, glucocorticoids did not increase Notch signaling in bone or bone cells. Moreover, the increased expression of atrophy-related genes in muscle, but not in bone, and the decreased myotube diameter induced by glucocorticoids were prevented by inhibiting Notch signaling. Thus, glucocorticoids activate different mechanisms in bone and muscle that upregulate atrophy-related genes. However, the role of these genes in the effects of glucocorticoids in bone is unknown. Nevertheless, these findings advance our knowledge of the mechanism of action of glucocorticoids in the musculoskeletal system and provide the basis for novel therapies to prevent glucocorticoid-induced atrophy of bone and muscle. PMID:28359087

  3. Most mutations that cause spinocerebellar ataxia autosomal recessive type 16 (SCAR16) destabilize the protein quality-control E3 ligase CHIP.

    PubMed

    Kanack, Adam J; Newsom, Oliver J; Scaglione, Kenneth Matthew

    2018-02-23

    The accumulation of misfolded proteins promotes protein aggregation and neuronal death in many neurodegenerative diseases. To counteract misfolded protein accumulation, neurons have pathways that recognize and refold or degrade aggregation-prone proteins. One U-box-containing E3 ligase, C terminus of Hsc70-interacting protein (CHIP), plays a key role in this process, targeting misfolded proteins for proteasomal degradation. CHIP plays a protective role in mouse models of neurodegenerative disease, and in humans, mutations in CHIP cause spinocerebellar ataxia autosomal recessive type 16 (SCAR16), a fatal neurodegenerative disease characterized by truncal and limb ataxia that results in gait instability. Here, we systematically analyzed CHIP mutations that cause SCAR16 and found that most SCAR16 mutations destabilize CHIP. This destabilization caused mutation-specific defects in CHIP activity, including increased formation of soluble oligomers, decreased interactions with chaperones, diminished substrate ubiquitination, and reduced steady-state levels in cells. Consistent with decreased CHIP stability promoting its dysfunction in SCAR16, most mutant proteins recovered activity when the assays were performed below the mutants' melting temperature. Together, our results have uncovered the molecular basis of genetic defects in CHIP function that cause SCAR16. Our insights suggest that compounds that improve the thermostability of genetic CHIP variants may be beneficial for treating patients with SCAR16. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Heterologous Expression and Molecular and Cellular Characterization of CaPUB1 Encoding a Hot Pepper U-Box E3 Ubiquitin Ligase Homolog1[C

    PubMed Central

    Cho, Seok Keun; Chung, Hoo Sun; Ryu, Moon Young; Park, Mi Jin; Lee, Myeong Min; Bahk, Young-Yil; Kim, Jungmook; Pai, Hyun Sook; Kim, Woo Taek

    2006-01-01

    The U-box motif is a conserved domain found in the diverse isoforms of E3 ubiquitin ligase in eukaryotes. From water-stressed hot pepper (Capsicum annuum L. cv Pukang) plants, we isolated C. annuum putative U-box protein 1 (CaPUB1), which encodes a protein containing a single U-box motif in its N-terminal region. In vitro ubiquitination and site-directed mutagenesis assays revealed that CaPUB1 possessed E3 ubiquitin ligase activity and that the U-box motif was indeed essential for its enzyme activity. RNA gel-blot analysis showed that CaPUB1 mRNA was induced rapidly by a broad spectrum of abiotic stresses, including drought, high salinity, cold temperature, and mechanical wounding, but not in response to ethylene, abscisic acid, or a bacterial pathogen, suggesting its role in the early events in the abiotic-related defense response. Because transgenic work was extremely difficult in hot pepper, in this study we overexpressed CaPUB1 in Arabidopsis (Arabidopsis thaliana) to provide cellular information on the function of this gene in the development and plant responses to abiotic stresses. Transgenic Arabidopsis plants that constitutively expressed the CaPUB1 gene under the control of the cauliflower mosaic virus 35S promoter had markedly longer hypocotyls and roots and grew more rapidly than the wild type, leading to an early bolting phenotype. Microscopic analysis showed that 35S∷CaPUB1 roots had increased numbers of small-sized cells, resulting in disordered, highly populated cell layers in the cortex, endodermis, and stele. In addition, CaPUB1-overexpressing plants displayed increased sensitivity to water stress and mild salinity. These results indicate that CaPUB1 is functional in Arabidopsis cells, thereby effectively altering cell and tissue growth and also the response to abiotic stresses. Comparative proteomic analysis showed that the level of RPN6 protein, a non-ATPase subunit of the 26S proteasome complex, was significantly reduced in 35S∷CaPUB1

  6. Mutations of E3 Ubiquitin Ligase Cbl Family Members Constitute a Novel Common Pathogenic Lesion in Myeloid Malignancies

    PubMed Central

    Makishima, Hideki; Cazzolli, Heather; Szpurka, Hadrian; Dunbar, Andrew; Tiu, Ramon; Huh, Jungwon; Muramatsu, Hideki; O'Keefe, Christine; Hsi, Eric; Paquette, Ronald L.; Kojima, Seiji; List, Alan F.; Sekeres, Mikkael A.; McDevitt, Michael A.; Maciejewski, Jaroslaw P.

    2009-01-01

    Purpose Acquired somatic uniparental disomy (UPD) is commonly observed in myelodysplastic syndromes (MDS), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), or secondary acute myelogenous leukemia (sAML) and may point toward genes harboring mutations. Recurrent UPD11q led to identification of homozygous mutations in c-Cbl, an E3 ubiquitin ligase involved in attenuation of proliferative signals transduced by activated receptor tyrosine kinases. We examined the role and frequency of Cbl gene family mutations in MPN and related conditions. Methods We applied high-density SNP-A karyotyping to identify loss of heterozygosity of 11q in 442 patients with MDS, MDS/MPN, MPN, sAML evolved from these conditions, and primary AML. We sequenced c-Cbl, Cbl-b, and Cbl-c in patients with or without corresponding UPD or deletions and correlated mutational status with clinical features and outcomes. Results We identified c-Cbl mutations in 5% and 9% of patients with chronic myelomonocytic leukemia (CMML) and sAML, and also in CML blast crisis and juvenile myelomonocytic leukemia (JMML). Most mutations were homozygous and affected c-Cbl; mutations in Cbl-b were also found in patients with similar clinical features. Patients with Cbl family mutations showed poor prognosis, with a median survival of 5 months. Pathomorphologic features included monocytosis, monocytoid blasts, aberrant expression of phosphoSTAT5, and c-kit overexpression. Serial studies showed acquisition of c-Cbl mutations during malignant evolution. Conclusion Mutations in the Cbl family RING finger domain or linker sequence constitute important pathogenic lesions associated with not only preleukemic CMML, JMML, and other MPN, but also progression to AML, suggesting that impairment of degradation of activated tyrosine kinases constitutes an important cancer mechanism. PMID:19901108

  7. Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites

    PubMed Central

    Bartocci, Cristina; Denchi, Eros Lazzerini

    2013-01-01

    RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligases comprise a large family of enzymes that in combination with an E2 ubiquitin-conjugating enzyme, modify target proteins by attaching ubiquitin moieties. A number of RING E3s play an essential role in the cellular response to DNA damage highlighting a crucial contribution for ubiquitin-mediated signaling to the genome surveillance pathway. Among the RING E3s, RNF8 and RNF168 play a critical role in the response to double stranded breaks, one of the most deleterious types of DNA damage. These proteins act as positive regulators of the signaling cascade that initiates at DNA lesions. Inactivation of these enzymes is sufficient to severely impair the ability of cells to respond to DNA damage. Given their central role in the pathway, several layers of regulation act at this nodal signaling point. Here we will summarize current knowledge on the roles of RNF8 and RNF168 in maintaining genome integrity with particular emphasis on recent insights into the multiple layers of regulation that act on these enzymes to fine-tune the cellular response to DNA lesions. PMID:23847653

  8. Biochemical and Structural Characterisation of DNA Ligases from Bacteria and Archaea.

    PubMed

    Pergolizzi, Giulia; Wagner, Gerd K; Bowater, Richard Peter

    2016-08-31

    DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterisation. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5'-phosphate of the DNA end that will ultimately be joined to the 3'-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use nicotinamide adenine dinucleotide ( β -NAD + ) as their co-factor whereas those that are essential in other cells use adenosine-5'-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β -NAD + affords multiple opportunities for chemical modification. Several recent studies have synthesised novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes. ©2016 The Author(s).

  9. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering[W

    PubMed Central

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A.

    2012-01-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis. PMID:22408073

  10. Aging Triggers Cytoplasmic Depletion and Nuclear Translocation of the E3 Ligase Mahogunin: A Function for Ubiquitin in Neuronal Survival.

    PubMed

    Benvegnù, Stefano; Mateo, María Inés; Palomer, Ernest; Jurado-Arjona, Jerónimo; Dotti, Carlos G

    2017-05-04

    A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Rabex-5 ubiquitin ligase activity restricts Ras signaling to establish pathway homeostasis in Drosophila.

    PubMed

    Yan, Hua; Jahanshahi, Maryam; Horvath, Elizabeth A; Liu, Hsiu-Yu; Pfleger, Cathie M

    2010-08-10

    The Ras signaling pathway allows cells to translate external cues into diverse biological responses. Depending on context and the threshold reached, Ras signaling can promote growth, proliferation, differentiation, or cell survival. Failure to maintain precise control of Ras can have adverse physiological consequences. Indeed, excess Ras signaling disrupts developmental patterning and causes developmental disorders [1, 2], and in mature tissues, it can lead to cancer [3-5]. We identify Rabex-5 as a new component of Ras signaling crucial for achieving proper pathway outputs in multiple contexts in vivo. We show that Drosophila Rabex-5 restricts Ras signaling to establish organism size, wing vein pattern, and eye versus antennal fate. Rabex-5 has both Rab5 guanine nucleotide exchange factor (GEF) activity that regulates endocytic trafficking [6] and ubiquitin ligase activity [7, 8]. Surprisingly, overexpression studies demonstrate that Rabex-5 ubiquitin ligase activity, not its Rab5 GEF activity, is required to restrict wing vein specification and to suppress the eye phenotypes of oncogenic Ras expression. Furthermore, genetic interaction experiments indicate that Rabex-5 acts at the step of Ras, and tissue culture studies show that Rabex-5 promotes Ras ubiquitination. Together, these findings reveal a new mechanism for attenuating Ras signaling in vivo and suggest an important role for Rabex-5-mediated Ras ubiquitination in pathway homeostasis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in Arabidopsis thaliana.

    PubMed

    Tian, Miaomiao; Lou, Lijuan; Liu, Lijing; Yu, Feifei; Zhao, Qingzhen; Zhang, Huawei; Wu, Yaorong; Tang, Sanyuan; Xia, Ran; Zhu, Baoge; Serino, Giovanna; Xie, Qi

    2015-04-01

    Salt stress is a detrimental factor for plant growth and development. The response to salt stress has been shown to involve components in the intracellular trafficking system, as well as components of the ubiquitin-proteasome system (UPS). In this article, we have identified in Arabidopsis thaliana a little reported ubiquitin ligase involved in salt-stress response, which we named STRF1 (Salt Tolerance RING Finger 1). STRF1 is a member of RING-H2 finger proteins and we demonstrate that it has ubiquitin ligase activity in vitro. We also show that STRF1 localizes mainly at the plasma membrane and at the intracellular endosomes. strf1-1 loss-of-function mutant seedlings exhibit accelerated endocytosis in roots, and have altered expression of several genes involved in the membrane trafficking system. Moreover, protein trafficking inhibitor, brefeldin A (BFA), treatment has increased BFA bodies in strf1-1 mutant. This mutant also showed increased tolerance to salt, ionic and osmotic stresses, reduced accumulation of reactive oxygen species during salt stress, and increased expression of AtRbohD, which encodes a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase involved in H2 O2 production. We conclude that STRF1 is a membrane trafficking-related ubiquitin ligase, which helps the plant to respond to salt stress by monitoring intracellular membrane trafficking and reactive oxygen species (ROS) production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  13. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor.

    PubMed

    Tarpey, Patrick S; Raymond, F Lucy; O'Meara, Sarah; Edkins, Sarah; Teague, Jon; Butler, Adam; Dicks, Ed; Stevens, Claire; Tofts, Calli; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Cole, Jennifer; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Jenkinson, Andrew; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Varian, Jennifer; West, Sofie; Widaa, Sara; Mallya, Uma; Moon, Jenny; Luo, Ying; Holder, Susan; Smithson, Sarah F; Hurst, Jane A; Clayton-Smith, Jill; Kerr, Bronwyn; Boyle, Jackie; Shaw, Marie; Vandeleur, Lucianne; Rodriguez, Jayson; Slaugh, Rachel; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Srivastava, Anand K; Stevenson, Roger E; Schwartz, Charles E; Turner, Gillian; Gecz, Jozef; Futreal, P Andrew; Stratton, Michael R; Partington, Michael

    2007-02-01

    We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.

  14. Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions.

    PubMed

    Suh, Ji Yeon; Kim, Woo Taek

    2015-08-07

    Phosphate (Pi) remobilization in plants is critical to continuous growth and development. AtATL80 is a plasma membrane (PM)-localized RING E3 ubiquitin (Ub) ligase that belongs to the Arabidopsis Tóxicos en Levadura (ATL) family. AtATL80 was upregulated by long-term low Pi (0-0.02 mM KH2PO4) conditions in Arabidopsis seedlings. AtATL80-overexpressing transgenic Arabidopsis plants (35S:AtATL80-sGFP) displayed increased phosphorus (P) accumulation in the shoots and lower biomass, as well as reduced P-utilization efficiency (PUE) under high Pi (1 mM KH2PO4) conditions compared to wild-type plants. The loss-of-function atatl80 mutant line exhibited opposite phenotypic traits. The atatl80 mutant line bolted earlier than wild-type plants, whereas AtATL80-overexpressors bloomed significantly later and produced lower seed yields than wild-type plants under high Pi conditions. Thus, AtATL80 is negatively correlated not only with P content and PUE, but also with biomass and seed yield in Arabidopsis. In addition, AtATL80-overexpressors were significantly more sensitive to cold stress than wild-type plants, while the atatl80 mutant line exhibited an increased tolerance to cold stress. Taken together, our results suggest that AtATL80, a PM-localized ATL-type RING E3 Ub ligase, participates in the Pi mobilization and cold stress response as a negative factor in Arabidopsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response.

    PubMed

    Malakhova, Oxana A; Zhang, Dong-Er

    2008-04-04

    Interferons regulate diverse immune functions through the transcriptional activation of hundreds of genes involved in anti-viral responses. The interferon-inducible ubiquitin-like protein ISG15 is expressed in cells in response to a variety of stress conditions like viral or bacterial infection and is present in its free form or is conjugated to cellular proteins. In addition, protein ubiquitination plays a regulatory role in the immune system. Many viruses modulate the ubiquitin (Ub) pathway to alter cellular signaling and the antiviral response. Ubiquitination of retroviral group-specific antigen precursors and matrix proteins of the Ebola, vesicular stomatitis, and rabies viruses by Nedd4 family HECT domain E3 ligases is an important step in facilitating viral release. We found that Nedd4 is negatively regulated by ISG15. Free ISG15 specifically bound to Nedd4 and blocked its interaction with Ub-E2 molecules, thus preventing further Ub transfer from E2 to E3. Furthermore, overexpression of ISG15 diminished the ability of Nedd4 to ubiquitinate viral matrix proteins and led to a decrease in the release of Ebola VP40 virus-like particles from the cells. These results point to a mechanistically novel function of ISG15 in the enhancement of the innate anti-viral response through specific inhibition of Nedd4 Ub-E3 activity. To our knowledge, this is the first example of a Ub-like protein with the ability to interfere with Ub-E2 and E3 interaction to inhibit protein ubiquitination.

  16. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6

    PubMed Central

    Hibbert, Richard G.; Huang, Anding; Boelens, Rolf; Sixma, Titia K.

    2011-01-01

    In ubiquitin conjugation, different combinations of E2 and E3 enzymes catalyse either monoubiquitination or ubiquitin chain formation. The E2/E3 complex Rad6/Rad18 exclusively monoubiquitinates the proliferating cell nuclear antigen (PCNA) to signal for “error prone” DNA damage tolerance, whereas a different set of conjugation enzymes is required for ubiquitin chain formation on PCNA. Here we show that human E2 enzyme Rad6b is intrinsically capable of catalyzing ubiquitin chain formation. This activity is prevented during PCNA ubiquitination by the interaction of Rad6 with E3 enzyme Rad18. Using NMR and X-ray crystallography we show that the R6BD of Rad18 inhibits this activity by competing with ubiquitin for a noncovalent “backside” binding site on Rad6. Our findings provide mechanistic insights into how E3 enzymes can regulate the ubiquitin conjugation process. PMID:21422291

  17. Structurally complex and highly active RNA ligases derived from random RNA sequences

    NASA Technical Reports Server (NTRS)

    Ekland, E. H.; Szostak, J. W.; Bartel, D. P.

    1995-01-01

    Seven families of RNA ligases, previously isolated from random RNA sequences, fall into three classes on the basis of secondary structure and regiospecificity of ligation. Two of the three classes of ribozymes have been engineered to act as true enzymes, catalyzing the multiple-turnover transformation of substrates into products. The most complex of these ribozymes has a minimal catalytic domain of 93 nucleotides. An optimized version of this ribozyme has a kcat exceeding one per second, a value far greater than that of most natural RNA catalysts and approaching that of comparable protein enzymes. The fact that such a large and complex ligase emerged from a very limited sampling of sequence space implies the existence of a large number of distinct RNA structures of equivalent complexity and activity.

  18. E3 Ubiquitin Ligase VHL Regulates Hypoxia-Inducible Factor-1α to Maintain Regulatory T Cell Stability and Suppressive Capacity.

    PubMed

    Lee, Jee H; Elly, Chris; Park, Yoon; Liu, Yun-Cai

    2015-06-16

    Foxp3(+) regulatory T (Treg) cells play a critical role in immune homeostasis; however, the mechanisms to maintain their function remain unclear. Here, we report that the E3 ubiquitin ligase VHL is essential for Treg cell function. Mice with Foxp3-restricted VHL deletion displayed massive inflammation associated with excessive Treg cell interferon-γ (IFN-γ) production. VHL-deficient Treg cells failed to prevent colitis induction, but converted into Th1-like effector T cells. VHL intrinsically orchestrated such conversion under both steady and inflammatory conditions followed by Foxp3 downregulation, which was reversed by IFN-γ deficiency. Augmented hypoxia-inducible factor 1α (HIF-1α)-induced glycolytic reprogramming was required for IFN-γ production. Furthermore, HIF-1α bound directly to the Ifng promoter. HIF-1α knockdown or knockout could reverse the increased IFN-γ by VHL-deficient Treg cells and restore their suppressive function in vivo. These findings indicate that regulation of HIF-1α pathway by VHL is crucial to maintain the stability and suppressive function of Foxp3(+) T cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification*

    PubMed Central

    Harper, J. Wade; Tan, Meng-Kwang Marcus

    2012-01-01

    Protein turnover through the ubiquitin-proteasome pathway controls numerous developmental decisions and biochemical processes in eukaryotes. Central to protein ubiquitylation are ubiquitin ligases, which provide specificity in targeted ubiquitylation. With more than 600 ubiquitin ligases encoded by the human genome, many of which remain to be studied, considerable effort is being placed on the development of methods for identifying substrates of specific ubiquitin ligases. In this review, we describe proteomic technologies for the identification of ubiquitin ligase targets, with a particular focus on members of the cullin-RING E3 class of ubiquitin ligases, which use F-box proteins as substrate specific adaptor proteins. Various proteomic methods are described and are compared with genetic approaches that are available. The continued development of such methods is likely to have a substantial impact on the ubiquitin-proteasome field. PMID:22962057

  20. Understanding cullin-RING E3 biology through proteomics-based substrate identification.

    PubMed

    Harper, J Wade; Tan, Meng-Kwang Marcus

    2012-12-01

    Protein turnover through the ubiquitin-proteasome pathway controls numerous developmental decisions and biochemical processes in eukaryotes. Central to protein ubiquitylation are ubiquitin ligases, which provide specificity in targeted ubiquitylation. With more than 600 ubiquitin ligases encoded by the human genome, many of which remain to be studied, considerable effort is being placed on the development of methods for identifying substrates of specific ubiquitin ligases. In this review, we describe proteomic technologies for the identification of ubiquitin ligase targets, with a particular focus on members of the cullin-RING E3 class of ubiquitin ligases, which use F-box proteins as substrate specific adaptor proteins. Various proteomic methods are described and are compared with genetic approaches that are available. The continued development of such methods is likely to have a substantial impact on the ubiquitin-proteasome field.

  1. E3 ubiquitin ligase Pirh2 enhances tumorigenic properties of human non-small cell lung carcinoma cells

    PubMed Central

    Fedorova, Olga; Shuvalov, Oleg; Merkulov, Valeriy; Vasileva, Elena; Antonov, Alexey; Barlev, Nikolai A.

    2016-01-01

    The product of RCHY1 human gene, Pirh2, is a RING-finger containing E3 ligase that modifies p53 with ubiquitin residues resulting in its subsequent degradation in proteasomes. Transcription of RCHY1 is regulated by p53 itself thus forming a negative regulatory feedback loop. Functionally, by eliminating p53, Pirh2 facilitates tumorigenesis. However, the role of Pirh2 in cancer cells lacking p53 is yet not well understood. Therefore, we decided to elucidate the role of Pirh2 in p53-negative human non-small cell lung carcinoma cells, H1299. We found that ectopic expression of Pirh2 enhanced cell proliferation, resistance to doxorubicin, and increased migration potential. Ablation of Pirh2 by specific shRNA reversed these phenotypes. Mechanistically, Pirh2 increased mRNA and protein levels of the c-Myc oncogene. The bioinformatics data indicate that co-expression of both c-Myc and Pirh2 strongly correlated with poor survival of lung cancer patients. Collectively, our results suggest that Pirh2 can be considered as a potential pharmacological target for developing anticancer therapies to treat p53-negative cancers. PMID:28191284

  2. Regulation of human MutYH DNA glycosylase by the E3 ubiquitin ligase mule.

    PubMed

    Dorn, Julia; Ferrari, Elena; Imhof, Ralph; Ziegler, Nathalie; Hübscher, Ulrich

    2014-03-07

    Oxidation of DNA is a frequent and constantly occurring event. One of the best characterized oxidative DNA lesions is 7,8-dihydro-8-oxoguanine (8-oxo-G). It instructs most DNA polymerases to preferentially insert an adenine (A) opposite 8-oxo-G instead of the appropriate cytosine (C) thus showing miscoding potential. The MutY DNA glycosylase homologue (MutYH) recognizes A:8-oxo-G mispairs and removes the mispaired A giving way to the canonical base excision repair that ultimately restores undamaged guanine (G). Here we characterize for the first time in detail a posttranslational modification of the human MutYH DNA glycosylase. We show that MutYH is ubiquitinated in vitro and in vivo by the E3 ligase Mule between amino acids 475 and 535. Mutation of five lysine residues in this region significantly stabilizes MutYH, suggesting that these are the target sites for ubiquitination. The endogenous MutYH protein levels depend on the amount of expressed Mule. Furthermore, MutYH and Mule physically interact. We found that a ubiquitination-deficient MutYH mutant shows enhanced binding to chromatin. The mutation frequency of the ovarian cancer cell line A2780, analyzed at the HPRT locus can be increased upon oxidative stress and depends on the MutYH levels that are regulated by Mule. This reflects the importance of tightly regulated MutYH levels in the cell. In summary our data show that ubiquitination is an important regulatory mechanism for the essential MutYH DNA glycosylase in human cells.

  3. Chromosome demise in the wake of ligase-deficient replication.

    PubMed

    Kouzminova, Elena A; Kuzminov, Andrei

    2012-06-01

    Bacterial DNA ligases, NAD⁺-dependent enzymes, are distinct from eukaryotic ATP-dependent ligases, representing promising targets for broad-spectrum antimicrobials. Yet, the chromosomal consequences of ligase-deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase-deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double-strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non-allelic double-strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double-strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase-deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double-strand breaks and then into irreparable double-strand gaps may be behind lethality of any DNA damaging treatment. © 2012 Blackwell Publishing Ltd.

  4. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing's syndrome.

    PubMed

    Kang, Seol-Hee; Lee, Hae-Ahm; Kim, Mina; Lee, Eunjo; Sohn, Uy Dong; Kim, Inkyeom

    2017-06-01

    Cushing's syndrome is caused by overproduction of the adrenocorticotropic hormone (ACTH), which stimulates the adrenal grand to make cortisol. Skeletal muscle wasting occurs in pathophysiological response to Cushing's syndrome. The forkhead box (FOX) protein family has been implicated as a key regulator of muscle loss under conditions such as diabetes and sepsis. However, the mechanistic role of the FOXO family in ACTH-induced muscle atrophy is not understood. We hypothesized that FOXO3a plays a role in muscle atrophy through expression of the E3 ubiquitin ligases, muscle RING finger protein-1 (MuRF-1), and atrogin-1 in Cushing's syndrome. For establishment of a Cushing's syndrome animal model, Sprague-Dawley rats were implanted with osmotic minipumps containing ACTH (40 ng·kg -1 ·day -1 ). ACTH infusion significantly reduced muscle weight. In ACTH-infused rats, MuRF-1, atrogin-1, and FOXO3a were upregulated and the FOXO3a promoter was targeted by the glucocorticoid receptor (GR). Transcriptional activity and expression of FOXO3a were significantly decreased by the GR antagonist RU486. Treatment with RU486 reduced MuRF-1 and atrogin-1 expression in accordance with reduced enrichment of FOXO3a and Pol II on the promoters. Knockdown of FOXO3a prevented dexamethasone-induced MuRF-1 and atrogin-1 expression. These results indicate that FOXO3a plays a role in muscle atrophy through expression of MuRF-1 and atrogin-1 in Cushing's syndrome. Copyright © 2017 the American Physiological Society.

  5. RtcB is the RNA ligase component of an Escherichia coli RNA repair operon.

    PubMed

    Tanaka, Naoko; Shuman, Stewart

    2011-03-11

    RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya.

  6. Functional and Biochemical Analysis of Chlamydia trachomatis MurC, an Enzyme Displaying UDP-N-Acetylmuramate:Amino Acid Ligase Activity

    PubMed Central

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-01-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):l-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:l-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (l-alanine, l-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide. PMID:14594822

  7. Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate:amino acid ligase activity.

    PubMed

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-11-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.

  8. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  9. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system.

    PubMed

    Poirson, Juline; Biquand, Elise; Straub, Marie-Laure; Cassonnet, Patricia; Nominé, Yves; Jones, Louis; van der Werf, Sylvie; Travé, Gilles; Zanier, Katia; Jacob, Yves; Demeret, Caroline; Masson, Murielle

    2017-10-01

    Protein ubiquitination and its reverse reaction, deubiquitination, regulate protein stability, protein binding activity, and their subcellular localization. These reactions are catalyzed by the enzymes E1, E2, and E3 ubiquitin (Ub) ligases and deubiquitinases (DUBs). The Ub-proteasome system (UPS) is targeted by viruses for the sake of their replication and to escape host immune response. To identify novel partners of human papillomavirus 16 (HPV16) E6 and E7 proteins, we assembled and screened a library of 590 cDNAs related to the UPS by using the Gaussia princeps luciferase protein complementation assay. HPV16 E6 was found to bind to the homology to E6AP C terminus-type Ub ligase (E6AP), three really interesting new gene (RING)-type Ub ligases (MGRN1, LNX3, LNX4), and the DUB Ub-specific protease 15 (USP15). Except for E6AP, the binding of UPS factors did not require the LxxLL-binding pocket of HPV16 E6. LNX3 bound preferentially to all high-risk mucosal HPV E6 tested, whereas LNX4 bound specifically to HPV16 E6. HPV16 E7 was found to bind to several broad-complex tramtrack and bric-a-brac domain-containing proteins (such as TNFAIP1/KCTD13) that are potential substrate adaptors of Cullin 3-RING Ub ligases, to RING-type Ub ligases implicated in innate immunity (RNF135, TRIM32, TRAF2, TRAF5), to the substrate adaptor DCAF15 of Cullin 4-RING Ub ligase and to some DUBs (USP29, USP33). The binding to UPS factors did not require the LxCxE motif but rather the C-terminal region of HPV16 E7 protein. The identified UPS factors interacted with most of E7 proteins across different HPV types. This study establishes a strategy for the rapid identification of interactions between host or pathogen proteins and the human ubiquitination system. © 2017 Federation of European Biochemical Societies.

  10. Mutational analyses of Aquifex pyrophilus DNA ligase define essential domains for self-adenylation and DNA binding activity.

    PubMed

    Lim, J H; Choi, J; Kim, W; Ahn, B Y; Han, Y S

    2001-04-15

    We constructed nine deletion mutants of NAD+-dependent DNA ligase from Aquifex pyrophilus to characterize the functional domains. All of DNA ligase deletion mutants were analyzed in biochemical assays for NAD+-dependent self-adenylation, DNA binding, and nick-closing activity. Although the mutant lsub1 (91-362) included the active site lysine (KxDG), self-adenylation was not shown. However, the mutants lsub6 (1-362), lsub7 (1-516), and lsub9 (1-635) showed the same adenylation activity as that of wild type. The lsub5 (91-719), which has the C-terminal domain (487-719) as to lsub4 (91-486), showed minimal adenylation activity. These results suggest that the presence of N-terminal 90 residues is essential for the formation of an enzyme-AMP complex, while C-terminal domain (487-719) appears to play a minimal role in adenylation. It was found that the presence of C-terminal domain (487-719) is indispensable for DNA binding activity of lsub5 (91-719). The mutant lsub9 (1-635) showed reduced DNA binding activity compared to that of wild type, suggesting the contribution of the domain (636-719) for the DNA binding activity. Thus, we concluded that the N-terminal 90 residues and C-terminal domain (487-719) of NAD+-dependent DNA ligase from A. pyrophilus are mutually indispensable for binding of DNA substrate.

  11. USP19-Mediated Deubiquitination Facilitates the Stabilization of HRD1 Ubiquitin Ligase.

    PubMed

    Harada, Kumi; Kato, Masako; Nakamura, Nobuhiro

    2016-11-02

    In the endoplasmic reticulum (ER), misfolded and unfolded proteins are eliminated by a process called ER-associated protein degradation (ERAD) in order to maintain cell homeostasis. In the ERAD pathway, several ER-localized E3 ubiquitin ligases target ERAD substrate proteins for ubiquitination and subsequent proteasomal degradation. However, little is known about how the functions of the ERAD ubiquitin ligases are regulated. Recently, USP19, an ER-anchored deubiquitinating enzyme (DUB), has been suggested to be involved in the regulation of ERAD. In this study, HRD1, an ERAD ubiquitin ligase, is shown to be a novel substrate for USP19. We demonstrate that USP19 rescues HRD1 from proteasomal degradation by deubiquitination of K48-linked ubiquitin chains. In addition, the altered expression of USP19 affects the steady-state levels of HRD1. These results suggest that USP19 regulates the stability of HRD1 and provide insight into the regulatory mechanism of the ERAD ubiquitin ligases.

  12. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death

    PubMed Central

    Hauck, Ludger; Stanley-Hasnain, Shanna; Fung, Amelia; Grothe, Daniela; Rao, Vivek; Mak, Tak W.

    2017-01-01

    The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1. PMID:29267372

  13. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity.

    PubMed

    McCoy, Andrea J; Maurelli, Anthony T

    2005-07-01

    Recent characterization of chlamydial genes encoding functional peptidoglycan (PG)-synthesis proteins suggests that the Chlamydiaceae possess the ability to synthesize PG yet biochemical evidence for the synthesis of PG has yet to be demonstrated. The presence of D-amino acids in PG is a hallmark of bacteria. Chlamydiaceae do not appear to encode amino acid racemases however, a D-alanyl-D-alanine (D-Ala-D-Ala) ligase homologue (Ddl) is encoded in the genome. Thus, we undertook a genetics-based approach to demonstrate and characterize the D-Ala-D-Ala ligase activity of chlamydial Ddl, a protein encoded as a fusion with MurC. The full-length murC-ddl fusion gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible ara promoter and transformed into a D-Ala-D-Ala ligase auxotroph of Escherichia coli possessing deletions of both the ddlA and ddlB genes. Viability of the E. coliDeltaddlADeltaddlB mutant in the absence of exogenous D-Ala-D-Ala dipeptide became dependent on the expression of the chlamydial murC-ddl thus demonstrating functional ligase activity. Domain mapping of the full-length fusion protein and site-directed mutagenesis of the MurC domain revealed that the structure of the full fusion protein but not MurC enzymatic activity was required for ligase activity in vivo. Recombinant MurC-Ddl exhibited substrate specificity for D-Ala. Chlamydia growth is inhibited by D-cycloserine (DCS) and in vitro analysis provided evidence for the chlamydial MurC-Ddl as the target for DCS sensitivity. In vivo sensitivity to DCS could be reversed by addition of exogenous D-Ala and D-Ala-D-Ala. Together, these findings further support our hypothesis that PG is synthesized by members of the Chlamydiaceae family and suggest that D-amino acids, specifically D-Ala, are present in chlamydial PG.

  14. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2more » tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.« less

  15. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis.

    PubMed

    Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M

    2016-05-03

    β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action.

  16. Kinetic Analysis of DNA Strand Joining by Chlorella Virus DNA Ligase and the Role of Nucleotidyltransferase Motif VI in Ligase Adenylylation*

    PubMed Central

    Samai, Poulami; Shuman, Stewart

    2012-01-01

    Chlorella virus DNA ligase (ChVLig) is an instructive model for mechanistic studies of the ATP-dependent DNA ligase family. ChVLig seals 3′-OH and 5′-PO4 termini via three chemical steps: 1) ligase attacks the ATP α phosphorus to release PPi and form a covalent ligase-adenylate intermediate; 2) AMP is transferred to the nick 5′-phosphate to form DNA-adenylate; 3) the 3′-OH of the nick attacks DNA-adenylate to join the polynucleotides and release AMP. Each chemical step requires Mg2+. Kinetic analysis of nick sealing by ChVLig-AMP revealed that the rate constant for phosphodiester synthesis (kstep3 = 25 s−1) exceeds that for DNA adenylylation (kstep2 = 2.4 s−1) and that Mg2+ binds with similar affinity during step 2 (Kd = 0.77 mm) and step 3 (Kd = 0.87 mm). The rates of DNA adenylylation and phosphodiester synthesis respond differently to pH, such that step 3 becomes rate-limiting at pH ≤ 6.5. The pH profiles suggest involvement of one and two protonation-sensitive functional groups in catalysis of steps 2 and 3, respectively. We suggest that the 5′-phosphate of the nick is the relevant protonation-sensitive moiety and that a dianionic 5′-phosphate is necessary for productive step 2 catalysis. Motif VI, located at the C terminus of the OB-fold domain of ChVLig, is a conserved feature of ATP-dependent DNA ligases and GTP-dependent mRNA capping enzymes. Presteady state and burst kinetic analysis of the effects of deletion and missense mutations highlight the catalytic contributions of ChVLig motif VI, especially the Asp-297 carboxylate, exclusively during the ligase adenylylation step. PMID:22745124

  17. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase.

    PubMed

    Jiang, Lu-Yi; Jiang, Wei; Tian, Na; Xiong, Yan-Ni; Liu, Jie; Wei, Jian; Wu, Kai-Yue; Luo, Jie; Shi, Xiong-Jie; Song, Bao-Liang

    2018-03-16

    Cholesterol biosynthesis is tightly regulated in the cell. For example, high sterol concentrations can stimulate degradation of the rate-limiting cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, HMGCR). HMGCR is broken down by the endoplasmic reticulum membrane-associated protein complexes consisting of insulin-induced genes (Insigs) and the E3 ubiquitin ligase gp78. Here we found that HMGCR degradation is partially blunted in Chinese hamster ovary (CHO) cells lacking gp78 ( gp78 -KO). To identify other ubiquitin ligase(s) that may function together with gp78 in triggering HMGCR degradation, we performed a small-scale short hairpin RNA-based screening targeting endoplasmic reticulum-localized E3s. We found that knockdown of both ring finger protein 145 ( Rnf145 ) and gp78 genes abrogates sterol-induced degradation of HMGCR in CHO cells. We also observed that RNF145 interacts with Insig-1 and -2 proteins and ubiquitinates HMGCR. Moreover, the tetrapeptide sequence YLYF in the sterol-sensing domain and the Cys-537 residue in the RING finger domain were essential for RNF145 binding to Insigs and RNF145 E3 activity, respectively. Of note, amino acid substitutions in the YLYF or of Cys-537 completely abolished RNF145-mediated HMGCR degradation. In summary, our study reveals that RNF145, along with gp78, promotes HMGCR degradation in response to elevated sterol levels and identifies residues essential for RNF145 function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Functional Dissection of the DNA Interface of the Nucleotidyltransferase Domain of Chlorella Virus DNA Ligase*

    PubMed Central

    Samai, Poulami; Shuman, Stewart

    2011-01-01

    Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3′-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3′-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3′-OH nucleoside in the catalysis of DNA 5′-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig. PMID:21335605

  19. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase.

    PubMed

    Samai, Poulami; Shuman, Stewart

    2011-04-15

    Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3'-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3'-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3'-OH nucleoside in the catalysis of DNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig.

  20. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous proteinmore » was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.« less

  1. Bul Proteins, a Nonredundant, Antagonistic Family of Ubiquitin Ligase Regulatory Proteins

    PubMed Central

    Novoselova, Tatiana V.; Zahira, Kiran; Rose, Ruth-Sarah

    2012-01-01

    Like other Nedd4 ligases, Saccharomyces cerevisiae E3 Rsp5p utilizes adaptor proteins to interact with some substrates. Previous studies have indentified Bul1p and Bul2p as adaptor proteins that facilitate the ligase-substrate interaction. Here, we show the identification of a third member of the Bul family, Bul3p, the product of two adjacent open reading frames separated by a stop codon that undergoes readthrough translation. Combinatorial analysis of BUL gene deletions reveals that they regulate some, but not all, of the cellular pathways known to involve Rsp5p. Surprisingly, we find that Bul proteins can act antagonistically to regulate the same ubiquitin-dependent process, and the nature of this antagonistic activity varies between different substrates. We further show, using in vitro ubiquitination assays, that the Bul proteins have different specificities for WW domains and that the two forms of Bul3p interact differently with Rsp5p, potentially leading to alternate functional outcomes. These data introduce a new level of complexity into the regulatory interactions that take place between Rsp5p and its adaptors and substrates and suggest a more critical role for the Bul family of proteins in controlling adaptor-mediated ubiquitination. PMID:22307975

  2. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF).

    PubMed

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-08-01

    Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family-MurC, MurD, MurE and MurF-are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park's nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC-MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC-MurF enzymes in biochemical inhibition assays and molecules 10-14 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC-MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Recognition of p63 by the E3 ligase ITCH: Effect of an ectodermal dysplasia mutant.

    PubMed

    Bellomaria, A; Barbato, Gaetano; Melino, G; Paci, M; Melino, Sonia

    2010-09-15

    The E3 ubiquitin ligase Itch mediates the degradation of the p63 protein. Itch contains four WW domains which are pivotal for the substrate recognition process. Indeed, this domain is implicated in several signalling complexes crucially involved in human diseases including Muscular Dystrophy, Alzheimer's Disease and Huntington Disease. WW domains are highly compact protein-protein binding modules that interact with short proline-rich sequences. The four WW domains present in Itch belong to the Group I type, which binds polypeptides with a PY motif characterized by a PP xY consensus sequence, where x can be any residue. Accordingly, the Itch-p63 interaction results from a direct binding of Itch-WW2 domain with the PY motif of p63. Here, we report a structural analysis of the Itch-p63 interaction by fluorescence, CD and NMR spectroscopy. Indeed, we studied the in vitro interaction between Itch-WW2 domain and p63(534-551), an 18-mer peptide encompassing a fragment of the p63 protein including the PY motif. In addition, we evaluated the conformation and the interaction with Itch-WW2 of a site specific mutant of p63, I549T, that has been reported in both Hay-Wells syndrome and Rapp-Hodgkin syndrome. Based on our results, we propose an extended PP xY motif for the Itch recognition motif (P-P-P-Y-x(4)-[ST]-[ILV]), which includes these C-terminal residues to the PP xY motif.

  4. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2)*

    PubMed Central

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J.; Schmidt, Wolfgang

    2015-01-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)1 and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  5. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs

    PubMed Central

    Garzia, Aitor; Jafarnejad, Seyed Mehdi; Meyer, Cindy; Chapat, Clément; Gogakos, Tasos; Morozov, Pavel; Amiri, Mehdi; Shapiro, Maayan; Molina, Henrik; Tuschl, Thomas; Sonenberg, Nahum

    2017-01-01

    Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNALys(UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC. PMID:28685749

  6. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs.

    PubMed

    Garzia, Aitor; Jafarnejad, Seyed Mehdi; Meyer, Cindy; Chapat, Clément; Gogakos, Tasos; Morozov, Pavel; Amiri, Mehdi; Shapiro, Maayan; Molina, Henrik; Tuschl, Thomas; Sonenberg, Nahum

    2017-07-07

    Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNA Lys (UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC.

  7. The E3 ligase for metastasis associated 1 protein, TRIM25, is targeted by microRNA-873 in hepatocellular carcinoma.

    PubMed

    Li, Yu-Hui; Zhong, Ming; Zang, Hong-Liang; Tian, Xiao-Feng

    2018-07-01

    Tumor metastasis accounts for 90% of all cancer-related deaths. Epithelial to mesenchymal transition (EMT) considered to be centrally important in acquired resistance to chemotherapy and in progression of tumors to secondary organs. One of the important mediators of metastatic progression in hepatocellular carcinoma (HCC) is the metastasis associated protein 1 (MTA-1). We have earlier shown that in the context of HCC and normal liver cell lines, MTA-1 protein is actively stabilized in HCC cell lines and actively degraded in normal liver cells. We have also shown that TRIM25 is the E3 ligase that interacts with and degrades MTA-1 protein. The identity of the factor regulating expression of TRIM25 in normal liver cells and HCC is unknown. In the current work we elucidate that microRNA (miR)- 873 targets TRIM25 in HCC cells. Both metagenomic analysis and quantification of miR-873 and TRIM25 in 25 HCC patients revealed an inverse correlation between the two in HCC patients with high miR-873 and low TRIM25 expression, respectively. The expression pattern was mimicked in the normal liver cells THLE-2 and the HCC cell line, HuH6. In vitro luciferase reporter assays confirmed TRIM25 as the target of miR-873. Transient transfection of HuH6 cells with an anti-miR-873 antagomir significantly decreased both transwell motility in these cells. Furthermore, in in vivo xenograft assays treatment with anti-miR-873 antagomir significantly decreased hepatic nodules formation. Cumulatively, our data indicate that suppression of TRIM25 expression by high levels of miR-873 dictates MTA1 protein upregulation in HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    PubMed

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-09-06

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.

  9. Lack of discrimination between DNA ligases I and III by two classes of inhibitors, anthracyclines and distamycins.

    PubMed

    Montecucco, A; Lestingi, M; Rossignol, J M; Elder, R H; Ciarrocchi, G

    1993-04-06

    We have measured the effects of eight distamycin and two anthracycline derivatives on polynucleotide joining and self-adenylating activities of human DNA ligase I and rat DNA ligases I and III. All test drugs show good inhibitory activity against the three enzymes in the poly[d(A-T)] joining assay. Several distamycins also inhibit the DNA-independent self-adenylation reaction catalysed by the human enzyme and, to a lesser extent, by rat DNA ligases. These results confirm that anthracyclines and distamycins express their inhibitory action against DNA joining activities mainly via specific interactions with the substrate, and suggest that the three test DNA ligases utilize similar, if not identical, mechanisms of recognition and interaction with DNA-drug complexes. Our findings also indicate that distamycins have a greater affinity for human DNA ligase I than for rat enzymes, suggesting that, in this respect, rat DNA ligase I is more similar to rat DNA ligase III than to human DNA ligase I.

  10. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis

    PubMed Central

    Jia, Fengjuan; Wang, Chunyan; Huang, Jinguang; Yang, Guodong; Wu, Changai; Zheng, Chengchao

    2015-01-01

    Skp1–Cullin–F-box (SCF) E3 ligases are essential to the post-translational regulation of many important factors involved in cellular signal transduction. In this study, we identified an F-box protein from Arabidopsis thaliana, AtPP2-B11, which was remarkably induced with increased duration of salt treatment in terms of both transcript and protein levels. Transgenic Arabidopsis plants overexpressing AtPP2-B11 exhibited obvious tolerance to high salinity, whereas the RNA interference line was more sensitive to salt stress than wild-type plants. Isobaric tag for relative and absolute quantification analysis revealed that 4311 differentially expressed proteins were regulated by AtPP2-B11 under salt stress. AtPP2-B11 could upregulate the expression of annexin1 (AnnAt1) and function as a molecular link between salt stress and reactive oxygen species accumulation in Arabidopsis. Moreover, AtPP2-B11 influenced the expression of Na+ homeostasis genes under salt stress, and the AtPP2-B11 overexpressing lines exhibited lower Na+ accumulation. These results suggest that AtPP2-B11 functions as a positive regulator in response to salt stress in Arabidopsis. PMID:26041321

  11. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity.

    PubMed

    Zhang, Jianglin; Lei, Zhou; Huang, Zunnan; Zhang, Xu; Zhou, Youyou; Luo, Zhongling; Zeng, Weiqi; Su, Juan; Peng, Cong; Chen, Xiang

    2016-11-29

    TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma.

  12. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.

    PubMed

    Odell, M; Shuman, S

    1999-05-14

    The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.

  13. Dlg3 Trafficking and Apical Tight Junction Formation Is Regulated by Nedd4 and Nedd4-2 E3 Ubiquitin Ligases

    PubMed Central

    Van Campenhout, Claude A.; Eitelhuber, Andrea; Gloeckner, Christian J.; Giallonardo, Patrizia; Gegg, Moritz; Oller, Heide; Grant, Seth G.N.; Krappmann, Daniel; Ueffing, Marius; Lickert, Heiko

    2011-01-01

    Summary The Drosophila Discs large (Dlg) scaffolding protein acts as a tumor suppressor regulating basolateral epithelial polarity and proliferation. In mammals, four Dlg homologs have been identified; however, their functions in cell polarity remain poorly understood. Here, we demonstrate that the X-linked mental retardation gene product Dlg3 contributes to apical-basal polarity and epithelial junction formation in mouse organizer tissues, as well as to planar cell polarity in the inner ear. We purified complexes associated with Dlg3 in polarized epithelial cells, including proteins regulating directed trafficking and tight junction formation. Remarkably, of the four Dlg family members, Dlg3 exerts a distinct function by recruiting the ubiquitin ligases Nedd4 and Nedd4-2 through its PPxY motifs. We found that these interactions are required for Dlg3 monoubiquitination, apical membrane recruitment, and tight junction consolidation. Our findings reveal an unexpected evolutionary diversification of the vertebrate Dlg family in basolateral epithelium formation. PMID:21920314

  14. The caenorhabditis elegans CDT-2 ubiquitin ligase is required for attenuation of EGFR signalling in vulva precursor cells

    PubMed Central

    2010-01-01

    Background Attenuation of the EGFR (Epidermal Growth Factor Receptor) signalling cascade is crucial to control cell fate during development. A candidate-based RNAi approach in C. elegans identified CDT-2 as an attenuator of LET-23 (EGFR) signalling. Human CDT2 is a component of the conserved CDT2/CUL4/DDB1 ubiquitin ligase complex that plays a critical role in DNA replication and G2/M checkpoint. Within this complex, CDT2 is responsible for substrate recognition. This ubiquitin ligase complex has been shown in various organisms, including C. elegans, to target the replication-licensing factor CDT1, and the CDK inhibitor p21. However, no previous link to EGFR signalling has been identified. Results We have characterised CDT-2's role during vulva development and found that it is a novel attenuator of LET-23 signalling. CDT-2 acts redundantly with negative modulators of LET-23 signalling and CDT-2 or CUL-4 downregulation causes persistent expression of the egl-17::cfp transgene, a marker of LET-23 signalling during vulva development. In addition, we show that CDT-2 physically interacts with SEM-5 (GRB2), a known negative modulator of LET-23 signalling that directly binds LET-23, and provide genetic evidence consistent with CDT-2 functioning at or downstream of LET-23. Interestingly, both SEM-5 and CDT-2 were identified independently in a screen for genes involved in receptor-mediated endocytosis in oocytes, suggesting that attenuation of LET-23 by CDT-2 might be through regulation of endocytosis. Conclusions In this study, we have shown that CDT-2 and CUL-4, members of the CUL-4/DDB-1/CDT-2 E3 ubiquitin ligase complex attenuate LET-23 signalling in vulval precursor cells. In future, it will be interesting to investigate the potential link to endocytosis and to determine whether other signalling pathways dependent on endocytosis, e.g. LIN-12 (Notch) could be regulated by this ubiquitin ligase complex. This work has uncovered a novel function for the CUL-4/DDB-1/CDT-2 E

  15. Electronic structure and optical properties of noncentrosymmetric LiGaSe2: Experimental measurements and DFT band structure calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.

    2017-04-01

    We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations.

  16. Virtual screening for potential inhibitors of bacterial MurC and MurD ligases.

    PubMed

    Tomašić, Tihomir; Kovač, Andreja; Klebe, Gerhard; Blanot, Didier; Gobec, Stanislav; Kikelj, Danijel; Mašič, Lucija Peterlin

    2012-03-01

    Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.

  17. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi

    PubMed Central

    Unciuleac, Mihaela-Carmen; Shuman, Stewart

    2015-01-01

    The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3′-OH/5′-PO4 duplexes in which the 3′-OH strand is RNA. It does so via the “classic” ligase pathway, entailing reaction with ATP to form a covalent NgrRnl–AMP intermediate, transfer of AMP to the nick 5′-PO4, and attack of the RNA 3′-OH on the adenylylated nick to form a 3′–5′ phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3′-OH/5′-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new “Rnl5 family” of nick-sealing ligases with a signature domain organization. PMID:25740837

  18. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase 'Synoviolin'.

    PubMed

    Yamasaki, Satoshi; Yagishita, Naoko; Sasaki, Takeshi; Nakazawa, Minako; Kato, Yukihiro; Yamadera, Tadayuki; Bae, Eunkyung; Toriyama, Sayumi; Ikeda, Rie; Zhang, Lei; Fujitani, Kazuko; Yoo, Eunkyung; Tsuchimochi, Kaneyuki; Ohta, Tomohiko; Araya, Natsumi; Fujita, Hidetoshi; Aratani, Satoko; Eguchi, Katsumi; Komiya, Setsuro; Maruyama, Ikuro; Higashi, Nobuyo; Sato, Mitsuru; Senoo, Haruki; Ochi, Takahiro; Yokoyama, Shigeyuki; Amano, Tetsuya; Kim, Jaeseob; Gay, Steffen; Fukamizu, Akiyoshi; Nishioka, Kusuki; Tanaka, Keiji; Nakajima, Toshihiro

    2007-01-10

    Synoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum -associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions. To clarify these issues, we analyzed the profile of protein expression in synoviolin-null cells. Here, we report that Synoviolin targets tumor suppressor gene p53 for ubiquitination. Synoviolin sequestrated and metabolized p53 in the cytoplasm and negatively regulated its cellular level and biological functions, including transcription, cell cycle regulation and apoptosis. Furthermore, these p53 regulatory functions of Synoviolin were irrelevant to other E3 ubiquitin ligases for p53, such as MDM2, Pirh2 and Cop1, which form autoregulatory feedback loops. Our results provide novel insights into p53 signaling mediated by Synoviolin.

  19. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    PubMed Central

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2011-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy. PMID:22655255

  20. Bacterial resistance to vancomycin: overproduction, purification, and characterization of VanC2 from Enterococcus casseliflavus as a D-Ala-D-Ser ligase.

    PubMed

    Park, I S; Lin, C H; Walsh, C T

    1997-09-16

    The VanC phenotype for clinical resistance of enterococci to vancomycin is exhibited by Enterococcus gallinarum and Enterococcus casseliflavus. Based on the detection of the cell precursor UDP-N-acetylmuramic acid pentapeptide intermediate terminating in D-Ala-D-Ser instead of D-Ala-D-Ala, it has been predicted that the VanC ligase would be a D-Ala-D-Ser rather than a D-Ala-D-Ala ligase. Overproduction of the E. casseliflavus ATCC 25788 vanC2 gene in Escherichia coli and its purification to homogeneity allowed demonstration of ATP-dependent D-Ala-D-Ser ligase activity. The kcat/Km2 (Km2 = Km for D-Ser or C-terminal D-Ala) ratio for D-Ala-D-Ser/D-Ala-D-Ala dipeptide formation is 270/0.69 for a 400-fold selection against D-Ala in the C-terminal position. VanC2 also has substantial D-Ala-D-Asn ligase activity (kcat/Km2 = 74 mM-1min-1).

  1. Homology modeling and docking analyses of M. leprae Mur ligases reveals the common binding residues for structure based drug designing to eradicate leprosy.

    PubMed

    Shanmugam, Anusuya; Natarajan, Jeyakumar

    2012-06-01

    Multi drug resistance capacity for Mycobacterium leprae (MDR-Mle) demands the profound need for developing new anti-leprosy drugs. Since most of the drugs target a single enzyme, mutation in the active site renders the antibiotic ineffective. However, structural and mechanistic information on essential bacterial enzymes in a pathway could lead to the development of antibiotics that targets multiple enzymes. Peptidoglycan is an important component of the cell wall of M. leprae. The biosynthesis of bacterial peptidoglycan represents important targets for the development of new antibacterial drugs. Biosynthesis of peptidoglycan is a multi-step process that involves four key Mur ligase enzymes: MurC (EC:6.3.2.8), MurD (EC:6.3.2.9), MurE (EC:6.3.2.13) and MurF (EC:6.3.2.10). Hence in our work, we modeled the three-dimensional structure of the above Mur ligases using homology modeling method and analyzed its common binding features. The residues playing an important role in the catalytic activity of each of the Mur enzymes were predicted by docking these Mur ligases with their substrates and ATP. The conserved sequence motifs significant for ATP binding were predicted as the probable residues for structure based drug designing. Overall, the study was successful in listing significant and common binding residues of Mur enzymes in peptidoglycan pathway for multi targeted therapy.

  2. Fingerprinting of near-homogeneous DNA ligase I and II from human cells. Similarity of their AMP-binding domains.

    PubMed

    Yang, S W; Becker, F F; Chan, J Y

    1990-10-25

    DNA ligases play obligatory roles during replication, repair, and recombination. Multiple forms of DNA ligase have been reported in mammalian cells including DNA ligase I, the high molecular mass species which functions during replication, and DNA ligase II, the low molecular mass species which is associated with repair. In addition, alterations in DNA ligase activities have been reported in acute lymphocytic leukemia cells, Bloom's syndrome cells, and cells undergoing differentiation and development. To better distinguish the biochemical and molecular properties of the various DNA ligases from human cells, we have developed a method of purifying multiple species of DNA ligase from HeLa cells by chromatography through DEAE-Bio-Gel, CM-Bio-Gel, hydroxylapatite, Sephacryl S-300, Mono P, and DNA-cellulose. DNA-cellulose chromatography of the partially purified enzymes resolved multiple species of DNA ligase after labeling the enzyme with [alpha-32P]ATP to form the ligase-[32P]AMP adduct. The early eluting enzyme activity (0.25 M NaCl) contained a major 67-kDa-labeled protein, while the late eluting activity (0.48 M NaCl) contained two major labeled proteins of 90 and 78 kDa. Neutralization experiments with antiligase I antibodies indicated that the early and late eluting activity peaks were DNA ligase II and I, respectively. The three major ligase-[32P]AMP polypeptides (90, 78, and 67 kDa) were subsequently purified to near homogeneity by elution from preparative sodium dodecyl sulfate-polyacrylamide gels. All three polypeptides retained DNA ligase activities after gel elution and renaturation. To further reveal the relationship between these enzymes, partial digestion by V8-protease was performed. All three purified polypeptides gave rise to a common 22-kDa-labeled fragment for their AMP-binding domains, indicating that the catalytic sites of ligase I and II are quite similar, if not identical. Similar findings were obtained from the two-dimensional gel

  3. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    PubMed Central

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  4. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus.

    PubMed

    Patin, Delphine; Boniface, Audrey; Kovač, Andreja; Hervé, Mireille; Dementin, Sébastien; Barreteau, Hélène; Mengin-Lecreulx, Dominique; Blanot, Didier

    2010-12-01

    The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted L-Ala, L-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for L-Ala. S. aureus MurE was very specific for L-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and L-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (L-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and L-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi Anemia (FA) E3 ligase complex to promote the FA DNA repair pathway.

    PubMed

    Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D; Kee, Younghoon

    2014-03-07

    Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair.

  6. The Carboxyl Terminus of FANCE Recruits FANCD2 to the Fanconi Anemia (FA) E3 Ligase Complex to Promote the FA DNA Repair Pathway*

    PubMed Central

    Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D.; Kee, Younghoon

    2014-01-01

    Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair. PMID:24451376

  7. Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function, and evolutionary relatedness

    PubMed Central

    Brimer, Nicole

    2017-01-01

    Papillomavirus E6 proteins bind to LXXLL peptide motifs displayed on targeted cellular proteins. Alpha genus HPV E6 proteins associate with the cellular ubiquitin ligase E6AP (UBE3A), by binding to an LXXLL peptide (ELTLQELLGEE) displayed by E6AP, thereby stimulating E6AP ubiquitin ligase activity. Beta, Gamma, and Delta genera E6 proteins bind a similar LXXLL peptide (WMSDLDDLLGS) on the cellular transcriptional co-activator MAML1 and thereby repress Notch signaling. We expressed 45 different animal and human E6 proteins from diverse papillomavirus genera to ascertain the overall preference of E6 proteins for E6AP or MAML1. E6 proteins from all HPV genera except Alpha preferentially interacted with MAML1 over E6AP. Among animal papillomaviruses, E6 proteins from certain ungulate (SsPV1 from pigs) and cetacean (porpoises and dolphins) hosts functionally resembled Alpha genus HPV by binding and targeting the degradation of E6AP. Beta genus HPV E6 proteins functionally clustered with Delta, Pi, Tau, Gamma, Chi, Mu, Lambda, Iota, Dyokappa, Rho, and Dyolambda E6 proteins to bind and repress MAML1. None of the tested E6 proteins physically and functionally interacted with both MAML1 and E6AP, indicating an evolutionary split. Further, interaction of an E6 protein was insufficient to activate degradation of E6AP, indicating that E6 proteins that target E6AP co-evolved to separately acquire both binding and triggering of ubiquitin ligase activation. E6 proteins with similar biological function clustered together in phylogenetic trees and shared structural features. This suggests that the divergence of E6 proteins from either MAML1 or E6AP binding preference is a major event in papillomavirus evolution. PMID:29281732

  8. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin'

    PubMed Central

    Yamasaki, Satoshi; Yagishita, Naoko; Sasaki, Takeshi; Nakazawa, Minako; Kato, Yukihiro; Yamadera, Tadayuki; Bae, Eunkyung; Toriyama, Sayumi; Ikeda, Rie; Zhang, Lei; Fujitani, Kazuko; Yoo, Eunkyung; Tsuchimochi, Kaneyuki; Ohta, Tomohiko; Araya, Natsumi; Fujita, Hidetoshi; Aratani, Satoko; Eguchi, Katsumi; Komiya, Setsuro; Maruyama, Ikuro; Higashi, Nobuyo; Sato, Mitsuru; Senoo, Haruki; Ochi, Takahiro; Yokoyama, Shigeyuki; Amano, Tetsuya; Kim, Jaeseob; Gay, Steffen; Fukamizu, Akiyoshi; Nishioka, Kusuki; Tanaka, Keiji; Nakajima, Toshihiro

    2007-01-01

    Synoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum -associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions. To clarify these issues, we analyzed the profile of protein expression in synoviolin-null cells. Here, we report that Synoviolin targets tumor suppressor gene p53 for ubiquitination. Synoviolin sequestrated and metabolized p53 in the cytoplasm and negatively regulated its cellular level and biological functions, including transcription, cell cycle regulation and apoptosis. Furthermore, these p53 regulatory functions of Synoviolin were irrelevant to other E3 ubiquitin ligases for p53, such as MDM2, Pirh2 and Cop1, which form autoregulatory feedback loops. Our results provide novel insights into p53 signaling mediated by Synoviolin. PMID:17170702

  9. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response.

    PubMed

    Fan, Zhong-Qi; Chen, Jian-Ye; Kuang, Jian-Fei; Lu, Wang-Jin; Shan, Wei

    2017-01-01

    The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis . Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi- in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.

  10. DNA Ligase C1 Mediates the LigD-Independent Nonhomologous End-Joining Pathway of Mycobacterium smegmatis

    PubMed Central

    Bhattarai, Hitesh; Gupta, Richa

    2014-01-01

    Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3′ phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo. PMID:24957619

  11. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    PubMed Central

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM < 1 nM at 25°C under conditions where T4 DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  12. Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaojun; Sun Zheng; Chen Weimin

    2008-08-01

    Drinking water contaminated with arsenic, a human carcinogen, is a worldwide health issue. An understanding of cellular signaling events in response to arsenic exposure and rational designing of strategies to reduce arsenic damages by modulating signaling events are important to fight against arsenic-induced diseases. Previously, we reported that activation of the Nrf2-mediated cellular defense pathway confers protection against toxic effects induced by sodium arsenite [As(III)] or monomethylarsonous acid [MMA(III)]. Paradoxically, arsenic has been reported to induce the Nrf2-dependent signaling pathway. Here, we report the unique mechanism of Nrf2 induction by arsenic. Similar to tert-butylhydroquinone (tBHQ) or sulforaphane (SF), arsenic inducedmore » the Nrf2-dependent response through enhancing Nrf2 protein levels by inhibiting Nrf2 ubiquitination and degradation. However, the detailed action of arsenic in Nrf2 induction is different from that of tBHQ or SF. Arsenic markedly enhanced the interaction between Keap1 and Cul3, subunits of the E3 ubiquitin ligase for Nrf2, which led to impaired dynamic assembly/disassembly of the E3 ubiquitin ligase and thus decreased its ligase activity. Furthermore, induction of Nrf2 by arsenic is independent of the previously identified C151 residue in Keap1 that is required for Nrf2 activation by tBHQ or SF. Distinct mechanisms of Nrf2 activation by seemingly harmful and beneficial reagents provide a molecular basis to design Nrf2-activating agents for therapeutic intervention.« less

  13. Eukaryotic DNA Ligases: Structural and Functional Insights

    PubMed Central

    Ellenberger, Tom; Tomkinson, Alan E.

    2010-01-01

    DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encircles nicked DNA with each of the domains contacting the DNA duplex. The unique segments adjacent to the catalytic region of eukaryotic DNA ligases are involved in specific protein-protein interactions with a growing number of DNA replication and repair proteins. These interactions determine the specific cellular functions of the DNA ligase isozymes. In mammals, defects in DNA ligation have been linked with an increased incidence of cancer and neurodegeneration. PMID:18518823

  14. Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme.

    PubMed

    Wang, Nan; Rudolf, Jeffrey D; Dong, Liao-Bin; Osipiuk, Jerzy; Hatzos-Skintges, Catherine; Endres, Michael; Chang, Chin-Yuan; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2018-06-04

    Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.

  15. Cardiac systolic dysfunction in doxorubicin-challenged rats is associated with upregulation of MuRF2 and MuRF3 E3 ligases

    PubMed Central

    da Silva, Marcia Gracindo; Mattos, Elisabete; Camacho-Pereira, Juliana; Domitrovic, Tatiana; Galina, Antonio; Costa, Mauro W; Kurtenbach, Eleonora

    2012-01-01

    Doxorubicin (DOXO) is an efficient and low-cost chemotherapeutic agent. The use of DOXO is limited by its side effects, including cardiotoxicity, that may progress to cardiac failure as a result of multifactorial events that have not yet been fully elucidated. In the present study, the effects of DOXO at two different doses were analyzed to identify early functional and molecular markers of cardiac distress. One group of rats received 7.5 mg/kg of DOXO (low-dose group) and was followed for 20 weeks. A subset of these animals was then subjected to an additional cycle of DOXO treatment, generating a cumulative dose of 20 mg/kg (high-dose group). Physiological and biochemical parameters were assessed in both treatment groups and in a control group that received saline. Systolic dysfunction was observed only in the high-dose group. Mitochondrial function analysis showed a clear reduction in oxidative cellular respiration for animals in both DOXO treatment groups, with evidence of complex I damage being observed. Transcriptional analysis by quantitative polymerase chain reaction revealed an increase in atrial natriuretic peptide transcript in the high-dose group, which is consistent with cardiac failure. Analysis of transcription levels of key components of the cardiac ubiquitin-proteasome system found that the ubiquitin E3 ligase muscle ring finger 1 (MuRF1) was upregulated in both the low- and high-dose DOXO groups. MuRF2 and MuRF3 were also upregulated in the high-dose group but not in the low-dose group. This molecular profile may be useful as an early physiological and energetic cardiac failure indicator for testing therapeutic interventions in animal models. PMID:23620696

  16. Biotin and fluorescent labeling of RNA using T4 RNA ligase.

    PubMed Central

    Richardson, R W; Gumport, R I

    1983-01-01

    Biotin, fluorescein, and tetramethylrhodamine derivatives of P1-(6-aminohex-1-yl)-P2-(5'-adenosine) pyrophosphate were synthesized and used as substrates with T4 RNA ligase. In the absence of ATP, the non-adenylyl portion of these substrates is transferred to the 3'-hydroxyl of an RNA acceptor to form a phosphodiester bond and the AMP portion is released. E. coli and D. melanogaster 5S RNA, yeast tRNAPhe, (Ap)3C, and (Ap)3A serve as acceptors with yields of products varying from 50 to 100%. Biotin-labeled oligonucleotides are bound selectively and quantitatively to avidin-agarose and may be eluted with 6 M guanidine hydrochloride, pH 2.5. Fluorescein and tetramethylrhodamine-labeled oligonucleotides are highly fluorescent and show no quenching due to attachment to the acceptor. The diverse structures of the appended groups and of the chain lengths and compositions of the acceptor RNAs show that T4 RNA ligase will be a useful modification reagent for the addition of various functional groups to the 3'-terminus of RNA molecules. Images PMID:6194506

  17. Enhancement of DNA ligase I level by gemcitabine in human cancer cells.

    PubMed

    Sun, Daekyu; Urrabaz, Rheanna; Kelly, Susan; Nguyen, Myhanh; Weitman, Steve

    2002-04-01

    DNA ligase I is an essential enzyme for completing DNA replication and DNA repair by ligating Okazaki fragments and by joining single-strand breaks formed either directly by DNA-damaging agents or indirectly by DNA repair enzymes, respectively. In this study, we examined whether the DNA ligase I level could be modulated in human tumor cell lines by treatment with gemcitabine (2', 2'-difluoro-2'-deoxycytidine), which is a nucleoside analogue of cytidine with proven antitumor activity against a broad spectrum of human cancers in clinical studies. To determine the effect of gemcitabine on DNA ligase I expression, Western blot analysis was used to measure the DNA ligase I levels in MiaPaCa, NGP, and SK-N-BE cells treated with different concentrations of gemcitabine and harvested at different time intervals. Cell cycle analysis was also performed to determine the underlying mechanism of DNA ligase I level enhancement in response to gemcitabine. In addition, other agents that share the same mechanism of action with gemcitabine were used to elucidate further details. When different types of tumor cell lines, including MiaPaCa, NGP, and SK-N-BE, were treated with gemcitabine, the level of DNA ligase I increased severalfold despite significant cell growth inhibition. In contrast, other DNA ligases (III and IV) either remained unchanged or decreased with treatment. Cell cycle analysis showed that arrest in S-phase corresponded to an increase of DNA ligase I levels in gemcitabine treated cells. Other agents, such as 1-beta-D-arabinofuranosylcytosine and hydroxyurea, which partly share mechanisms of action with gemcitabine by targeting DNA polymerases and ribonucleotide reductase, respectively, also caused an increase of DNA ligase I levels. However, 5-fluorouracil, which predominantly targets thymidylate synthase, did not cause an increase of DNA ligase I level. Our results suggest that an arrest of DNA replication caused by gemcitabine treatment through incorporation of

  18. The autoantigen Ro52 is an E3 ligase resident in the cytoplasm but enters the nucleus upon cellular exposure to nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, Alexander; Oke, Vilija; Elfving, Ase

    2008-12-10

    Patients with the systemic autoimmune diseases Sjoegrens's syndrome and systemic lupus erythematosus often have autoantibodies against the intracellular protein Ro52. Ro52 is an E3 ligase dependent on the ubiquitin conjugation enzymes UBE2D1 and UBE2E1. While Ro52 and UBE2D1 are cytoplasmic proteins, UBE2E1 is localized to the nucleus. Here, we investigate how domains of human Ro52 regulate its intracellular localization. By expressing fluorescently labeled Ro52 and Ro52 mutants in HeLa cells, an intact coiled-coil domain was found to be necessary for the cytoplasmic localization of Ro52. The amino acids 381-470 of the B30.2 region were essential for translocation into the nucleus.more » Furthermore, after exposure of HeLa cells to the inflammatory mediator nitric oxide (NO), Ro52 translocated to the nucleus. A nuclear localization of Ro52 in inflamed tissue expressing inducible NO synthetase (iNOS) from cutaneous lupus patients was observed by immunohistochemistry and verified in NO-treated cultures of patient-derived primary keratinocytes. Our results show that the localization of Ro52 is regulated by endogenous sequences, and that nuclear translocation is induced by an inflammatory mediator. This suggests that Ro52 has both cytoplasmic and nuclear substrates, and that Ro52 mediates ubiquitination through UBE2D1 in the cytoplasm and through UBE2E1 in the nucleus.« less

  19. Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures.

    PubMed

    Gaid, Mariam M; Sircar, Debabrata; Müller, Andreas; Beuerle, Till; Liu, Benye; Ernst, Ludger; Hänsch, Robert; Beerhues, Ludger

    2012-11-01

    Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg²⁺ and K⁺ at optimum concentrations of 2.5 and 100 mM, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages.

  20. Novel deletion of the E3A ubiquitin protein ligase gene detected by multiplex ligation-dependent probe amplification in a patient with Angelman syndrome

    PubMed Central

    Calì, Francesco; Ragalmuto, Alda; Chiavetta, Valeria; Calabrese, Giuseppe; Fichera, Marco; Vinci, Mirella; Ruggeri, Giuseppa; Schinocca, Pietro; Sturnio, Maurizio; Romano, Salvatore; Elia, Maurizio

    2010-01-01

    Angelman syndrome (AS) is a severe neurobehavioural disorder caused by failure of expression of the maternal copy of the imprinted domain located on 15q11-q13. There are different mechanisms leading to AS: maternal microdeletion, uniparental disomy, defects in a putative imprinting centre, mutations of the E3 ubiquitin protein ligase (UBE3A) gene. However, some of suspected cases of AS are still scored negative to all the latter mutations. Recently, it has been shown that a proportion of negative cases bear large deletions overlapping one or more exons of the UBE3A gene. These deletions are difficult to detect by conventional gene-scanning methods due to the masking effect by the non-deleted allele. In this study, we have used for the first time multiplex ligation-dependent probe amplification (MLPA) and comparative multiplex dosage analysis (CMDA) to search for large deletions affecting the UBE3A gene. Using this approach, we identified a novel causative deletion involving exon 8 in an affected sibling. Based on our results, we propose the use of MLPA as a fast, accurate and inexpensive test to detect large deletions in the UBE3A gene in a small but significant percentage of AS patients. PMID:21072004

  1. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Can; Zhang, Li-Yang; Chen, Hong

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Overexpression of human CUL4A (hCUL4A) in PC12 cells. Black-Right-Pointing-Pointer The effects of hCUL4A on hypoxia-reoxygenation injury were investigated. Black-Right-Pointing-Pointer hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. Black-Right-Pointing-Pointer hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia-reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12)more » cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia-reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia-reoxygenation injury.« less

  2. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

    PubMed Central

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K.

    2015-01-01

    ABSTRACT The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. PMID:26060274

  3. The Not4 E3 Ligase and CCR4 Deadenylase Play Distinct Roles in Protein Quality Control

    PubMed Central

    Halter, David; Collart, Martine A.; Panasenko, Olesya O.

    2014-01-01

    Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome. PMID:24465968

  4. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation*♦

    PubMed Central

    Yamano, Koji; Queliconi, Bruno B.; Koyano, Fumika; Saeki, Yasushi; Hirokawa, Takatsugu; Tanaka, Keiji; Matsuda, Noriyuki

    2015-01-01

    Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser65 by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity. PMID:26260794

  5. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

    PubMed Central

    Mosadeghi, Ruzbeh; Reichermeier, Kurt M; Winkler, Martin; Schreiber, Anne; Reitsma, Justin M; Zhang, Yaru; Stengel, Florian; Cao, Junyue; Kim, Minsoo; Sweredoski, Michael J; Hess, Sonja; Leitner, Alexander; Aebersold, Ruedi; Peter, Matthias; Deshaies, Raymond J; Enchev, Radoslav I

    2016-01-01

    The COP9-Signalosome (CSN) regulates cullin–RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network. DOI: http://dx.doi.org/10.7554/eLife.12102.001 PMID:27031283

  6. Activation of the Slx5–Slx8 Ubiquitin Ligase by Poly-small Ubiquitin-like Modifier Conjugates*S⃞

    PubMed Central

    Mullen, Janet R.; Brill, Steven J.

    2008-01-01

    Protein sumoylation is a regulated process that is important for the health of human and yeast cells. In budding yeast, a subset of sumoylated proteins is targeted for ubiquitination by a conserved heterodimeric ubiquitin (Ub) ligase, Slx5–Slx8, which is needed to suppress the accumulation of high molecular weight small ubiquitin-like modifier (SUMO) conjugates. Structure-function analysis indicates that the Slx5–Slx8 complex contains multiple SUMO-binding domains that are collectively required for in vivo function. To determine the specificity of Slx5–Slx8, we assayed its Ub ligase activity using sumoylated Siz2 as an in vitro substrate. In contrast to unsumoylated or multisumoylated Siz2, substrates containing poly-SUMO conjugates were efficiently ubiquitinated by Slx5–Slx8. Although Siz2 itself was ubiquitinated, the bulk of the Ub was conjugated to SUMO residues. Slx5–Slx8 primarily mono-ubiquitinated the N-terminal SUMO moiety of the chain. These data indicate that the Slx5–Slx8 Ub ligase is stimulated by poly-SUMO conjugates and that it can ubiquitinate a poly-SUMO chain. PMID:18499666

  7. The ubiquitin ligase Cbl-b limits Pseudomonas aeruginosa exotoxin T-mediated virulence.

    PubMed

    Balachandran, Priya; Dragone, Leonard; Garrity-Ryan, Lynne; Lemus, Armando; Weiss, Arthur; Engel, Joanne

    2007-02-01

    Pseudomonas aeruginosa, an important cause of opportunistic infections in humans, delivers bacterial cytotoxins by type III secretion directly into the host cell cytoplasm, resulting in disruption of host cell signaling and host innate immunity. However, little is known about the fate of the toxins themselves following injection into the host cytosol. Here, we show by both in vitro and in vivo studies that the host ubiquitin ligase Cbl-b interacts with the type III-secreted effector exotoxin T (ExoT) and plays a key role in vivo in limiting bacterial dissemination mediated by ExoT. We demonstrate that, following polyubiquitination, ExoT undergoes regulated proteasomal degradation in the host cell cytosol. ExoT interacts with the E3 ubiquitin ligase Cbl-b and Crk, the substrate for the ExoT ADP ribosyltransferase (ADPRT) domain. The efficiency of degradation is dependent upon the activity of the ADPRT domain. In mouse models of acute pneumonia and systemic infection, Cbl-b is specifically required to limit the dissemination of ExoT-producing bacteria whereas c-Cbl plays no detectable role. To the best of our knowledge, this represents the first identification of a mammalian gene product that is specifically required for in vivo resistance to disease mediated by a type III-secreted effector.

  8. The ubiquitin ligase Cbl-b limits Pseudomonas aeruginosa exotoxin T–mediated virulence

    PubMed Central

    Balachandran, Priya; Dragone, Leonard; Garrity-Ryan, Lynne; Lemus, Armando; Weiss, Arthur; Engel, Joanne

    2007-01-01

    Pseudomonas aeruginosa, an important cause of opportunistic infections in humans, delivers bacterial cytotoxins by type III secretion directly into the host cell cytoplasm, resulting in disruption of host cell signaling and host innate immunity. However, little is known about the fate of the toxins themselves following injection into the host cytosol. Here, we show by both in vitro and in vivo studies that the host ubiquitin ligase Cbl-b interacts with the type III–secreted effector exotoxin T (ExoT) and plays a key role in vivo in limiting bacterial dissemination mediated by ExoT. We demonstrate that, following polyubiquitination, ExoT undergoes regulated proteasomal degradation in the host cell cytosol. ExoT interacts with the E3 ubiquitin ligase Cbl-b and Crk, the substrate for the ExoT ADP ribosyltransferase (ADPRT) domain. The efficiency of degradation is dependent upon the activity of the ADPRT domain. In mouse models of acute pneumonia and systemic infection, Cbl-b is specifically required to limit the dissemination of ExoT-producing bacteria whereas c-Cbl plays no detectable role. To the best of our knowledge, this represents the first identification of a mammalian gene product that is specifically required for in vivo resistance to disease mediated by a type III–secreted effector. PMID:17235393

  9. The ubiquitin ligase MuRF1 regulates PPARα activity in the heart by enhancing nuclear export via monoubiquitination

    PubMed Central

    Rodríguez, Jessica E.; Liao, Jie-Ying; He, Jun; Schisler, Jonathan C.; Newgard, Christopher B.; Drujan, Doreen; Glass, David L.; Frederick, C.Brandon; Yoder, Bryan C.; Lalush, David S.; Patterson, Cam; Willis, Monte S.

    2015-01-01

    The transcriptional regulation of peroxisome proliferator-activated receptor (PPAR) α by post-translational modification, such as ubiquitin, has not been described. We report here for the first time an ubiquitin ligase (muscle ring finger-1/MuRF1) that inhibits fatty acid oxidation by inhibiting PPARα, but not PPARβ/δ or PPARγ in cardiomyocytes in vitro. Similarly, MuRF1 Tg+ hearts showed significant decreases in nuclear PPARα activity and acyl-carnitine intermediates, while MuRF1−/− hearts exhibited increased PPARα activity and acyl-carnitine intermediates. MuRF1 directly interacts with PPARα, mono-ubiquitinates it, and targets it for nuclear export to inhibit fatty acid oxidation in a proteasome independent manner. We then identified a previously undescribed nuclear export sequence in PPARα, along with three specific lysines (292, 310, 388) required for MuRF1s targeting of nuclear export. These studies identify the role of ubiquitination in regulating cardiac PPARα, including the ubiquitin ligase that may be responsible for this critical regulation of cardiac metabolism in heart failure. PMID:26116825

  10. The Pepper RING-Type E3 Ligase CaAIRF1 Regulates ABA and Drought Signaling via CaADIP1 Protein Phosphatase Degradation.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Lee, Sung Chul

    2017-04-01

    Ubiquitin-mediated protein modification occurs at multiple steps of abscisic acid (ABA) signaling. Here, we sought proteins responsible for degradation of the pepper ( Capsicum annuum ) type 2C protein phosphatase CaADIP1 via the 26S proteasome system. We showed that the RING-type E3 ligase CaAIRF1 ( Capsicum annuum ADIP1 Interacting RING Finger Protein 1) interacts with and ubiquitinates CaADIP1. CaADIP1 degradation was slower in crude proteins from CaAIRF1 -silenced peppers than in those from control plants. CaAIRF1 -silenced pepper plants displayed reduced ABA sensitivity and decreased drought tolerance characterized by delayed stomatal closure and suppressed induction of ABA- and drought-responsive marker genes. In contrast, CaAIRF1 -overexpressing Arabidopsis ( Arabidopsis thaliana ) plants exhibited ABA-hypersensitive and drought-tolerant phenotypes. Moreover, in these plants, CaADIP1-induced ABA hyposensitivity was strongly suppressed by CaAIRF1 overexpression. Our findings highlight a potential new route for fine-tune regulation of ABA signaling in pepper via CaAIRF1 and CaADIP1. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Ubiquitin ligase CHIP functions as an oncogene and activates the AKT signaling pathway in prostate cancer.

    PubMed

    Cheng, Li; Zang, Jin; Dai, Han-Jue; Li, Feng; Guo, Feng

    2018-07-01

    Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.

  12. Cancer stem-like cell related protein CD166 degrades through E3 ubiquitin ligase CHIP in head and neck cancer.

    PubMed

    Xiao, Meng; Yan, Ming; Zhang, Jianjun; Xu, Qin; Qi, Shengcai; Wang, Xu; Chen, Wantao

    2017-04-01

    Our previous studies have identified that CD166 works as a cancer stem-like cell (CSC) marker in epithelial cancers with a large repertoire of cellular functions. However, the post-translational regulatory mechanisms underlying CD166 turnover remain elusive. Several independent studies have reported that E3 ubiquitin ligase CHIP revealed significant biological effects through ubiquitin proteasome pathway on some kinds of malignant tumors. With analyzing the effects of CHIP expressions on stem-like cell populations, we found that CHIP represses CSC characteristics mainly targeting the CSC related protein CD166 in head and neck cancer (HNC). To investigate the role and relationship between CD166 and CHIP, HNC tissues and cell lines were used in this study. A significant negative correlation was observed between the expression levels of CHIP and CD166 in HNC patient samples. We also found that CHIP directly regulates the stability of CD166 protein through the ubiquitin proteasome system, which was also identified participating in the regulation of CSC behaviors in HNCs. Our findings demonstrate that CHIP-CD166-proteasome axis participates in regulating CSC properties in HNCs, suggesting that the regulation of CD166 by CHIP could provide new options for diagnosing and treating in the patients with HNCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    PubMed

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  14. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors.

    PubMed

    Jing, Xin; Infante, Jorge; Nachtman, Ronald G; Jurecic, Roland

    2008-09-01

    FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3 and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. FLRF was overexpressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF overexpression on EML cell differentiation into myeloerythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells overexpressing FLRF were examined with Western and immunoprecipitation. Remarkably, overexpression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines erythropoietin (EPO) and interleukin-3 (IL-3), and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, EPO, and RA receptor-alpha (RARalpha) in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, EPO, and RARalpha receptors in EML and BaF3 cells, and that FLRF-mediated downregulation of these receptors is ligand binding-independent. The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myeloerythroid lineages.

  15. The proinflammatory cytokines IL-1beta and TNF-alpha induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway.

    PubMed

    Gao, Beixue; Calhoun, Karen; Fang, Deyu

    2006-01-01

    The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1beta activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1beta-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1beta-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1beta and TNF-alpha induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA.

  16. The proinflammatory cytokines IL-1β and TNF-α induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway

    PubMed Central

    Gao, Beixue; Calhoun, Karen; Fang, Deyu

    2006-01-01

    The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1β activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1β-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1β-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1β and TNF-α induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA. PMID:17105652

  17. Sorting of a multi-subunit ubiquitin ligase complex in the endolysosome system

    PubMed Central

    Yang, Xi; Arines, Felichi Mae; Zhang, Weichao

    2018-01-01

    The yeast Dsc E3 ligase complex has long been recognized as a Golgi-specific protein ubquitination system. It shares a striking sequence similarity to the Hrd1 complex that plays critical roles in the ER-associated degradation pathway. Using biochemical purification and mass spectrometry, we identified two novel Dsc subunits, which we named as Gld1 and Vld1. Surprisingly, Gld1 and Vld1 do not coexist in the same complex. Instead, they compete with each other to form two functionally independent Dsc subcomplexes. The Vld1 subcomplex takes the AP3 pathway to reach the vacuole membrane, whereas the Gld1 subcomplex travels through the VPS pathway and is cycled between Golgi and endosomes by the retromer. Thus, instead of being Golgi-specific, the Dsc complex can regulate protein levels at three distinct organelles, namely Golgi, endosome, and vacuole. Our study provides a novel model of achieving multi-tasking for transmembrane ubiquitin ligases with interchangeable trafficking adaptors. PMID:29355480

  18. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    PubMed Central

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2017-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/CCdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment. PMID:27721409

  19. Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.

    PubMed

    Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng

    2017-01-01

    Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.

  20. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism.

    PubMed

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K; Weiss, David S; Cronan, John E

    2015-06-09

    The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. Our findings show that Francisella novicida has evolved two functional biotin protein ligases, BplA and BirA. BplA is a much more efficient enzyme than BirA, and its expression is significantly induced upon infection of macrophages. Only BplA is required for F. novicida pathogenicity, whereas BirA prevents wasteful biotin synthesis. These data

  1. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity

    PubMed Central

    Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.

    2016-01-01

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  2. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.

    PubMed

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom

    2010-07-27

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  3. Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem.

    PubMed

    Patin, Delphine; Bostock, Julieanne; Chopra, Ian; Mengin-Lecreulx, Dominique; Blanot, Didier

    2012-06-01

    Chlamydiaceae are obligate intracellular bacteria that do not synthesise detectable peptidoglycan although they possess an almost complete arsenal of genes encoding peptidoglycan biosynthetic activities. In this paper, the murF gene from Chlamydia trachomatis was shown to be capable of complementing a conditional Escherichia coli mutant impaired in UDP-MurNAc-tripeptide:D-Ala-D-Ala ligase activity. Recombinant MurF from C. trachomatis was overproduced and purified from E. coli. It exhibited ATP-dependent UDP-MurNAc-X-γ-D-Glu-meso-A(2)pm:D-Ala-D-Ala ligase activity in vitro. No significant difference of kinetic parameters was seen when X was L-Ala, L-Ser or Gly. The L-Lys-containing UDP-MurNAc-tripeptide was a poorer substrate as compared to the meso-A(2)pm-containing one. Based on the respective substrate specificities of the chlamydial MurC, MurE, MurF and Ddl enzymes, a sequence L-Ala/L-Ser/Gly-γ-D-Glu-meso-A(2)pm-D-Ala-D-Ala is expected for the chlamydial pentapeptide stem, with Gly at position 1 being less likely.

  4. SCFJFK is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer

    PubMed Central

    Yan, Ruorong; He, Lin; Li, Zhongwu; Han, Xiao; Liang, Jing; Si, Wenzhe; Chen, Zhe; Li, Lei; Xie, Guojia; Li, Wanjin; Wang, Peiyan; Lei, Liandi; Zhang, Hongquan; Pei, Fei; Cao, Dengfeng

    2015-01-01

    Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1–Cul1–F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCFJFK as a bona fide E3 ligase for ING4 and unraveled the JFK–ING4–NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention. PMID:25792601

  5. Identification of Ideal Multi-targeting Bioactive Compounds Against Mur Ligases of Enterobacter aerogenes and Its Binding Mechanism in Comparison with Chemical Inhibitors.

    PubMed

    Chakkyarath, Vijina; Natarajan, Jeyakumar

    2017-10-31

    Enterobacter aerogenes have been reported as important opportunistic and multi-resistant bacterial pathogens for humans during the last three decades in hospital wards. The emergence of drug-resistant E. aerogenes demands the need for developing new drugs. Peptidoglycan is an important component of the cell wall of bacteria and the peptidoglycan biochemical pathway is considered as the best source of antibacterial targets. Within this pathway, four Mur ligases MurC, MurD, MurE, and MurF are responsible for the successive additions of L-alanine and suitable targets for developing novel antibacterial drugs. As an inference from this fact, we modeled the three-dimensional structure of above Mur ligases using best template structures available in PDB and analyzed its common binding features. Structural refinement and energy minimization of the predicted Mur ligases models is also being done using molecular dynamics studies. The models of Mur ligases were further investigated for in silico docking studies using bioactive plant compounds from the literature. Interestingly, these results indicate that four plant compounds Isojuripidine, Atroviolacegenin, Porrigenin B, and Nummularogenin showing better docking results in terms of binding energy and number of hydrogen bonds. All these four compounds are spirostan-based compounds with differences in side chains and the amino acid such as ASN, LYS, THR, HIS, ARG (polar) and PHE, GLY, VAL, ALA, MET (non-polar) playing active role in binding site of all four Mur ligases. Overall, in the predicted model, the four plant compounds with its binding features could pave way to design novel multi-targeted antibacterial plant-based bioactive compounds specific to Mur ligases for the treatment of Enterobacter infections.

  6. A route from darkness to light: emergence and evolution of luciferase activity in AMP-CoA-ligases inferred from a mealworm luciferase-like enzyme.

    PubMed

    Viviani, V R; Prado, R A; Neves, D R; Kato, D; Barbosa, J A

    2013-06-11

    The origin of luciferases and of bioluminescence is enigmatic. In beetles, luciferases seem to have evolved from AMP-CoA-ligases. How the new oxygenase luminogenic function originated from AMP-ligases leading to luciferases is one of the most challenging mysteries of bioluminescence. Comparison of the cloned luciferase-like enzyme from the nonluminescent Zophobas morio mealworm and beetle luciferases showed that the oxygenase activity may have emerged as a stereoselective oxidative drift with d-luciferin, a substrate that cannot be easily thioesterified to CoA as in the case of the l-isomer. While the overall kcat displayed by beetle luciferases is orders of magnitude greater than that of the luciferase-like enzyme, the respective oxidation rates and quantum yields of bioluminescence are roughly similar, suggesting that the rate constant of the AMP-ligase activity exerted on the new d-luciferin substrate in beetle protoluciferases was the main enzymatic property that suffered optimization during the evolution of luciferases. The luciferase-like enzyme and luciferases boost the rate of luciferyl-adenylate chemiluminescent oxidation by factors of 10(6) and 10(7), respectively, as compared to the substrate spontaneous oxidation in buffer. A similar enhancement of luciferyl-adenylate chemiluminescence is provided by nucleophilic aprotic solvents, implying that the peptide bonds in the luciferin binding site of beetle luciferase could provide a similar catalytically favorable environment. These data suggest that the luciferase-like enzyme and other similar AMP-ligases are potential alternative oxygenases. Site-directed mutagenesis studies of the luciferase-like enzyme and the red light-producing luciferase of Phrixotrix hirtus railroadworm confirm here a critical role for T/S345 in luciferase function. Mutations such as I327T/S in the luciferase-like enzyme, which simultaneously increases luciferase activity and promotes blue shifts in the emission spectrum, could have

  7. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    PubMed Central

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  8. Destabilization of Atoh1 by E3 Ubiquitin Ligase Huwe1 and Casein Kinase 1 Is Essential for Normal Sensory Hair Cell Development*

    PubMed Central

    Cheng, Yen-Fu; Tong, Mingjie; Edge, Albert S. B.

    2016-01-01

    Proneural basic helix-loop-helix transcription factor, Atoh1, plays a key role in the development of sensory hair cells. We show here that the level of Atoh1 must be accurately controlled by degradation of the protein in addition to the regulation of Atoh1 gene expression to achieve normal cellular patterning during development of the cochlear sensory epithelium. The stability of Atoh1 was regulated by the ubiquitin proteasome system through the action of Huwe1, a HECT-domain, E3 ubiquitin ligase. An interaction between Huwe1 and Atoh1 could be visualized by a proximity ligation assay and was confirmed by co-immunoprecipitation and mass spectrometry. Transfer of a lysine 48-linked polyubiquitin chain to Atoh1 by Huwe1 could be demonstrated both in intact cells and in a cell-free system, and proteasome inhibition or Huwe1 silencing increased Atoh1 levels. The interaction with Huwe1 and polyubiquitylation were blocked by disruption of casein kinase 1 (CK1) activity, and mass spectrometry and mutational analysis identified serine 334 as an important phosphorylation site for Atoh1 ubiquitylation and subsequent degradation. Phosphorylation by CK1 thus targeted the protein for degradation. Development of an extra row of inner hair cells in the cochlea and an approximate doubling in the number of afferent synapses was observed after embryonic or early postnatal deletion of Huwe1 in cochlear-supporting cells, and hair cells died in the early postnatal period when Huwe1 was knocked out in the developing cochlea. These data indicate that the regulation of Atoh1 by the ubiquitin proteasome pathway is necessary for hair cell fate determination and survival. PMID:27542412

  9. The E3 Ligase Axotrophin/MARCH-7: Protein Expression Profiling of Human Tissues Reveals Links to Adult Stem Cells

    PubMed Central

    Szigyarto, Cristina A.; Sibbons, Paul; Williams, Gill; Uhlen, Mathias; Metcalfe, Su M.

    2010-01-01

    Axotrophin/MARCH-7 was first identified in mouse embryonic stem cells as a neural stem cell gene. Using the axotrophin/MARCH-7 null mouse, we discovered profound effects on T lymphocyte responses, including 8-fold hyperproliferation and 5-fold excess release of the stem cell cytokine leukemia inhibitory factor (LIF). Our further discovery that axotrophin/MARCH-7 is required for targeted degradation of the LIF receptor subunit gp190 implies a direct role in the regulation of LIF signaling. Bioinformatics studies revealed a highly conserved RING-CH domain in common with the MARCH family of E3-ubiquitin ligases, and accordingly, axotrophin was renamed “MARCH-7.” To probe protein expression of human axotrophin/MARCH-7, we prepared antibodies against different domains of the protein. Each antibody bound its specific target epitope with high affinity, and immunohistochemistry cross-validated target specificity. Forty-eight human tissue types were screened. Epithelial cells stained strongly, with trophoblasts having the greatest staining. In certain tissues, specific cell types were selectively positive, including neurons and neuronal progenitor cells in the hippocampus and cerebellum, endothelial sinusoids of the spleen, megakaryocytes in the bone marrow, crypt stem cells of the small intestine, and alveolar macrophages in the lung. Approximately 20% of central nervous system neuropils were positive. Notably, axotrophin/MARCH-7 has an expression profile that is distinct from that of other MARCH family members. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 58:301–308, 2010) PMID:19901269

  10. Structural and functional characterization of the NHR1 domain of the Drosophila neuralized E3 ligase in the notch signaling pathway.

    PubMed

    He, Fahu; Saito, Kohei; Kobayashi, Naohiro; Harada, Takushi; Watanabe, Satoru; Kigawa, Takanori; Güntert, Peter; Ohara, Osamu; Tanaka, Akiko; Unzai, Satoru; Muto, Yutaka; Yokoyama, Shigeyuki

    2009-10-23

    The Notch signaling pathway is critical for many developmental processes and requires complex trafficking of both Notch receptor and its ligands, Delta and Serrate. In Drosophila melanogaster, the endocytosis of Delta in the signal-sending cell is essential for Notch receptor activation. The Neuralized protein from D. melanogaster (Neur) is a ubiquitin E3 ligase, which binds to Delta through its first neuralized homology repeat 1 (NHR1) domain and mediates the ubiquitination of Delta for endocytosis. Tom, a Bearded protein family member, inhibits the Neur-mediated endocytosis through interactions with the NHR1 domain. We have identified the domain boundaries of the novel NHR1 domain, using a screening system based on our cell-free protein synthesis method, and demonstrated that the identified Neur NHR1 domain had binding activity to the 20-residue peptide corresponding to motif 2 of Tom by isothermal titration calorimetry experiments. We also determined the solution structure of the Neur NHR1 domain by heteronuclear NMR methods, using a (15)N/(13)C-labeled sample. The Neur NHR1 domain adopts a characteristic beta-sandwich fold, consisting of a concave five-stranded antiparallel beta-sheet and a convex seven-stranded antiparallel beta-sheet. The long loop (L6) between the beta6 and beta7 strands covers the hydrophobic patch on the concave beta-sheet surface, and the Neur NHR1 domain forms a compact globular fold. Intriguingly, in spite of the slight, but distinct, differences in the topology of the secondary structure elements, the structure of the Neur NHR1 domain is quite similar to those of the B30.2/SPRY domains, which are known to mediate specific protein-protein interactions. Further NMR titration experiments of the Neur NHR1 domain with the 20-residue Tom peptide revealed that the resonances originating from the bottom area of the beta-sandwich (the L3, L5, and L11 loops, as well as the tip of the L6 loop) were affected. In addition, a structural comparison

  11. Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases.

    PubMed

    Thomas, Jemima C; Matak-Vinkovic, Dijana; Van Molle, Inge; Ciulli, Alessio

    2013-08-06

    Proteins of the ankyrin-repeat and SOCS-box (ASB) family act as the substrate-recognition subunits of ECS-type (ElonginBC-Cullin-SOCS-box) Cullin RING E3 ubiquitin ligase (CRL) complexes that catalyze the specific polyubiquitination of cellular proteins to target them for degradation by the proteasome. Therefore, ASB multimeric complexes are involved in numerous cell processes and pathways; however, their interactions, assembly, and biological roles remain poorly understood. To enhance our understanding of ASB CRL systems, we investigated the structure, affinity, and assembly of the quaternary multisubunit complex formed by ASB9, Elongin B, Elongin C (EloBC), and Cullin 5. Here, we describe the application of several biophysical techniques including differential scanning fluorimetry, isothermal titration calorimetry (ITC), nanoelectrospray ionization, and ion-mobility mass spectrometry (IM-MS) to provide structural and thermodynamic information for a quaternary ASB CRL complex. We find that ASB9 is unstable alone but forms a stable ternary complex with EloBC that binds with high affinity to the Cullin 5 N-terminal domain (Cul5NTD) but not to Cul2NTD. The structure of the monomeric ASB9-EloBC-Cul5NTD quaternary complex is revealed by molecular modeling and is consistent with IM-MS and temperature-dependent ITC data. This is the first experimental study to validate structural information for the assembly of the quaternary N-terminal region of an ASB CRL complex. The results suggest that ASB E3 ligase complexes function and assemble in an analogous manner to that of other CRL systems and provide a platform for further molecular investigation of this important protein family. The data reported here will also be of use for the future development of chemical probes to examine the biological function and modulation of other ECS-type CRL systems.

  12. Multimeric Complexes among Ankyrin-Repeat and SOCS-box Protein 9 (ASB9), ElonginBC, and Cullin 5: Insights into the Structure and Assembly of ECS-type Cullin-RING E3 Ubiquitin Ligases

    PubMed Central

    2013-01-01

    Proteins of the ankyrin-repeat and SOCS-box (ASB) family act as the substrate-recognition subunits of ECS-type (ElonginBC–Cullin–SOCS-box) Cullin RING E3 ubiquitin ligase (CRL) complexes that catalyze the specific polyubiquitination of cellular proteins to target them for degradation by the proteasome. Therefore, ASB multimeric complexes are involved in numerous cell processes and pathways; however, their interactions, assembly, and biological roles remain poorly understood. To enhance our understanding of ASB CRL systems, we investigated the structure, affinity, and assembly of the quaternary multisubunit complex formed by ASB9, Elongin B, Elongin C (EloBC), and Cullin 5. Here, we describe the application of several biophysical techniques including differential scanning fluorimetry, isothermal titration calorimetry (ITC), nanoelectrospray ionization, and ion-mobility mass spectrometry (IM–MS) to provide structural and thermodynamic information for a quaternary ASB CRL complex. We find that ASB9 is unstable alone but forms a stable ternary complex with EloBC that binds with high affinity to the Cullin 5 N-terminal domain (Cul5NTD) but not to Cul2NTD. The structure of the monomeric ASB9–EloBC–Cul5NTD quaternary complex is revealed by molecular modeling and is consistent with IM–MS and temperature-dependent ITC data. This is the first experimental study to validate structural information for the assembly of the quaternary N-terminal region of an ASB CRL complex. The results suggest that ASB E3 ligase complexes function and assemble in an analogous manner to that of other CRL systems and provide a platform for further molecular investigation of this important protein family. The data reported here will also be of use for the future development of chemical probes to examine the biological function and modulation of other ECS-type CRL systems. PMID:23837592

  13. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors

    PubMed Central

    Jing, Xin; Infante, Jorge; Nachtman, Ronald G.; Jurecic, Roland

    2008-01-01

    Objective FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3, and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. Methods FLRF was over-expressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF over-expression on EML cell differentiation into myelo-erythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells over-expressing FLRF were examined with Western and immunoprecipitation. Results Remarkably, over-expression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines Epo and IL-3, and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, Epo and RA receptor RARα in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, Epo and RARα receptors in EML and BaF3 cells, and that FLRF-mediated down-regulation of these receptors is ligand binding-independent. Conclusions The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myelo-erythroid lineages. PMID:18495327

  14. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.

    PubMed

    Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E

    2016-09-15

    Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. E3Net: a system for exploring E3-mediated regulatory networks of cellular functions.

    PubMed

    Han, Youngwoong; Lee, Hodong; Park, Jong C; Yi, Gwan-Su

    2012-04-01

    Ubiquitin-protein ligase (E3) is a key enzyme targeting specific substrates in diverse cellular processes for ubiquitination and degradation. The existing findings of substrate specificity of E3 are, however, scattered over a number of resources, making it difficult to study them together with an integrative view. Here we present E3Net, a web-based system that provides a comprehensive collection of available E3-substrate specificities and a systematic framework for the analysis of E3-mediated regulatory networks of diverse cellular functions. Currently, E3Net contains 2201 E3s and 4896 substrates in 427 organisms and 1671 E3-substrate specific relations between 493 E3s and 1277 substrates in 42 organisms, extracted mainly from MEDLINE abstracts and UniProt comments with an automatic text mining method and additional manual inspection and partly from high throughput experiment data and public ubiquitination databases. The significant functions and pathways of the extracted E3-specific substrate groups were identified from a functional enrichment analysis with 12 functional category resources for molecular functions, protein families, protein complexes, pathways, cellular processes, cellular localization, and diseases. E3Net includes interactive analysis and navigation tools that make it possible to build an integrative view of E3-substrate networks and their correlated functions with graphical illustrations and summarized descriptions. As a result, E3Net provides a comprehensive resource of E3s, substrates, and their functional implications summarized from the regulatory network structures of E3-specific substrate groups and their correlated functions. This resource will facilitate further in-depth investigation of ubiquitination-dependent regulatory mechanisms. E3Net is freely available online at http://pnet.kaist.ac.kr/e3net.

  16. An Arabidopsis E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing[W][OA

    PubMed Central

    Nakamura, Moritaka; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao

    2011-01-01

    Higher plants use the sedimentation of amyloplasts in statocytes as statolith to sense the direction of gravity during gravitropism. In Arabidopsis thaliana inflorescence stem statocyte, amyloplasts are in complex movement; some show jumping-like saltatory movement and some tend to sediment toward the gravity direction. Here, we report that a RING-type E3 ligase SHOOT GRAVITROPISM9 (SGR9) localized to amyloplasts modulates amyloplast dynamics. In the sgr9 mutant, which exhibits reduced gravitropism, amyloplasts did not sediment but exhibited increased saltatory movement. Amyloplasts sometimes formed a cluster that is abnormally entangled with actin filaments (AFs) in sgr9. By contrast, in the fiz1 mutant, an ACT8 semidominant mutant that induces fragmentation of AFs, amyloplasts, lost saltatory movement and sedimented with nearly statically. Both treatment with Latrunculin B, an inhibitor of AF polymerization, and the fiz1 mutation rescued the gravitropic defect of sgr9. In addition, fiz1 decreased saltatory movement and induced amyloplast sedimentation even in sgr9. Our results suggest that amyloplasts are in equilibrium between sedimentation and saltatory movement in wild-type endodermal cells. Furthermore, this equilibrium is the result of the interaction between amyloplasts and AFs modulated by the SGR9. SGR9 may promote detachment of amyloplasts from AFs, allowing the amyloplasts to sediment in the AFs-dependent equilibrium of amyloplast dynamics. PMID:21602290

  17. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery.

    PubMed

    Love, Kerry Routenberg; Pandya, Renuka K; Spooner, Eric; Ploegh, Hidde L

    2009-04-17

    Protein modification by ubiquitin (Ub) and ubiquitin-like modifiers (Ubl) requires the action of activating (E1), conjugating (E2), and ligating (E3) enzymes and is a key step in the specific destruction of proteins. Deubiquitinating enzymes (DUBs) deconjugate substrates modified with Ub/Ubl's and recycle Ub inside the cell. Genome mining based on sequence homology to proteins with known function has assigned many enzymes to this pathway without confirmation of either conjugating or DUB activity. Function-dependent methodologies are still the most useful for rapid identification or assessment of biological activity of expressed proteins from cells. Activity-based protein profiling uses chemical probes that are active-site-directed for the classification of protein activities in complex mixtures. Here we show that the design and use of an expanded set of Ub-based electrophilic probes allowed us to recover and identify members of each enzyme class in the ubiquitin-proteasome system, including E3 ligases and DUBs with previously unverified activity. We show that epitope-tagged Ub-electrophilic probes can be used as activity-based probes for E3 ligase identification by in vitro labeling and activity studies of purified enzymes identified from complex mixtures in cell lysate. Furthermore, the reactivity of our probe with the HECT domain of the E3 Ub ligase ARF-BP1 suggests that multiple cysteines may be in the vicinity of the E2-binding site and are capable of the transfer of Ub to self or to a substrate protein.

  18. Identification and Characterization of Components of a Putative Petunia S-Locus F-Box–Containing E3 Ligase Complex Involved in S-RNase–Based Self-Incompatibility[W

    PubMed Central

    Hua, Zhihua; Kao, Teh-hui

    2006-01-01

    Petunia inflata S-locus F-box (Pi SLF) is thought to function as a typical F-box protein in ubiquitin-mediated protein degradation and, along with Skp1, Cullin-1, and Rbx1, could compose an SCF complex mediating the degradation of nonself S-RNase but not self S-RNase. We isolated three P. inflata Skp1s (Pi SK1, -2, and -3), two Cullin-1s (Pi CUL1-C and -G), and an Rbx1 (Pi RBX1) cDNAs and found that Pi CUL1-G did not interact with Pi RBX1 and that none of the three Pi SKs interacted with Pi SLF2. We also isolated a RING-HC protein, S-RNase Binding Protein1 (Pi SBP1), almost identical to Petunia hybrida SBP1, which interacts with Pi SLFs, S-RNases, Pi CUL1-G, and an E2 ubiquitin-conjugating enzyme, suggesting that Pi CUL1-G, SBP1, and SLF may be components of a novel E3 ligase complex, with Pi SBP1 playing the roles of Skp1 and Rbx1. S-RNases interact more with nonself Pi SLFs than with self Pi SLFs, and Pi SLFs also interact more with nonself S-RNases than with self S-RNases. Bacterially expressed S1-, S2-, and S3-RNases are degraded by the 26S proteasomal pathway in a cell-free system, albeit not in an S-allele–specific manner. Native glycosylated S3-RNase is not degraded to any significant extent; however, deglycosylated S3-RNase is degraded as efficiently as the bacterially expressed S-RNases. Finally, S-RNases are ubiquitinated in pollen tube extracts, but whether this is mediated by the Pi SLF–containing E3 complex is unknown. PMID:17028207

  19. Silencing Glycogen Synthase Kinase-3β Inhibits Acetaminophen Hepatotoxicity and Attenuates JNK Activation and Loss of Glutamate Cysteine Ligase and Myeloid Cell Leukemia Sequence 1*

    PubMed Central

    Shinohara, Mie; Ybanez, Maria D.; Win, Sanda; Than, Tin Aung; Jain, Shilpa; Gaarde, William A.; Han, Derick; Kaplowitz, Neil

    2010-01-01

    Previously we demonstrated that c-Jun N-terminal kinase (JNK) plays a central role in acetaminophen (APAP)-induced liver injury. In the current work, we examined other possible signaling pathways that may also contribute to APAP hepatotoxicity. APAP treatment to mice caused glycogen synthase kinase-3β (GSK-3β) activation and translocation to mitochondria during the initial phase of APAP-induced liver injury (∼1 h). The silencing of GSK-3β, but not Akt-2 (protein kinase B) or glycogen synthase kinase-3α (GSK-3α), using antisense significantly protected mice from APAP-induced liver injury. The silencing of GSK-3β affected several key pathways important in conferring protection against APAP-induced liver injury. APAP treatment was observed to promote the loss of glutamate cysteine ligase (GCL, rate-limiting enzyme in GSH synthesis) in liver. The silencing of GSK-3β decreased the loss of hepatic GCL, and promoted greater GSH recovery in liver following APAP treatment. Silencing JNK1 and -2 also prevented the loss of GCL. APAP treatment also resulted in GSK-3β translocation to mitochondria and the degradation of myeloid cell leukemia sequence 1 (Mcl-1) in mitochondrial membranes in liver. The silencing of GSK-3β reduced Mcl-1 degradation caused by APAP treatment. The silencing of GSK-3β also resulted in an inhibition of the early phase (0–2 h), and blunted the late phase (after 4 h) of JNK activation and translocation to mitochondria in liver following APAP treatment. Taken together our results suggest that activation of GSK-3β is a key mediator of the initial phase of APAP-induced liver injury through modulating GCL and Mcl-1 degradation, as well as JNK activation in liver. PMID:20061376

  20. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1.

    PubMed

    Dadson, Keith; Hauck, Ludger; Hao, Zhenyue; Grothe, Daniela; Rao, Vivek; Mak, Tak W; Billia, Filio

    2017-02-02

    Cardiac homeostasis requires proper control of protein turnover. Protein degradation is principally controlled by the Ubiquitin-Proteasome System. Mule is an E3 ubiquitin ligase that regulates cellular growth, DNA repair and apoptosis to maintain normal tissue architecture. However, Mule's function in the heart has yet to be described. In a screen, we found reduced Mule expression in left ventricular samples from end-stage heart failure patients. Consequently, we generated conditional cardiac-specific Mule knockout (Mule  fl/fl(y) ;mcm) mice. Mule ablation in adult Mule  fl/fl(y) ;mcm mice prevented myocardial c-Myc polyubiquitination, leading to c-Myc accumulation and subsequent reduced expression of Pgc-1α, Pink1, and mitochondrial complex proteins. Furthermore, these mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction, and early mortality. Co-deletion of Mule and c-Myc rescued this phenotype. Our data supports an indispensable role for Mule in cardiac homeostasis through the regulation of mitochondrial function via maintenance of Pgc-1α and Pink1 expression and persistent negative regulation of c-Myc.

  1. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection.

    PubMed

    Indriolo, Emily; Tharmapalan, Pirashaanthy; Wright, Stephen I; Goring, Daphne R

    2012-11-01

    Self-pollen rejection is an important reproductive regulator in flowering plants, and several different intercellular signaling systems have evolved to elicit this response. In the Brassicaceae, the self-incompatibility system is mediated by the pollen S-locus Cys-Rich/S-locus Protein11 (SCR/SP11) ligand and the pistil S Receptor Kinase (SRK). While the SCR/SP11-SRK recognition system has been identified in several species across the Brassicaceae, less is known about the conservation of the SRK-activated cellular responses in the stigma, following self-pollen contact. The ARM Repeat Containing1 (ARC1) E3 ubiquitin ligase functions downstream of SRK for the self-incompatibility response in Brassica, but it has been suggested that ARC1 is not required in Arabidopsis species. Here, we surveyed the presence of ARC1 orthologs in several recently sequenced genomes from Brassicaceae species that had diversified ∼20 to 40 million years ago. Surprisingly, the ARC1 gene was deleted in several species that had lost the self-incompatibility trait, suggesting that ARC1 may lose functionality in the transition to self-mating. To test the requirement of ARC1 in a self-incompatible Arabidopsis species, transgenic ARC1 RNA interference Arabidopsis lyrata plants were generated, and they exhibited reduced self-incompatibility responses resulting in successful fertilization. Thus, this study demonstrates a conserved role for ARC1 in the self-pollen rejection response within the Brassicaceae.

  2. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    PubMed

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress.

    PubMed

    Han, Ziying; Sagum, Cari A; Takizawa, Fumio; Ruthel, Gordon; Berry, Corbett T; Kong, Jing; Sunyer, J Oriol; Freedman, Bruce D; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Harty, Ronald N

    2017-10-15

    Ebola virus (EBOV) is a member of the Filoviridae family and the cause of hemorrhagic fever outbreaks. The EBOV VP40 (eVP40) matrix protein is the main driving force for virion assembly and budding. Indeed, expression of eVP40 alone in mammalian cells results in the formation and budding of virus-like particles (VLPs) which mimic the budding process and morphology of authentic, infectious EBOV. To complete the budding process, eVP40 utilizes its PPXY L-domain motif to recruit a specific subset of host proteins containing one or more modular WW domains that then function to facilitate efficient production and release of eVP40 VLPs. In this report, we identified additional host WW-domain interactors by screening for potential interactions between mammalian proteins possessing one or more WW domains and WT or PPXY mutant peptides of eVP40. We identified the HECT family E3 ubiquitin ligase WWP1 and all four of its WW domains as strong interactors with the PPXY motif of eVP40. The eVP40-WWP1 interaction was confirmed by both peptide pulldown and coimmunoprecipitation assays, which also demonstrated that modular WW domain 1 of WWP1 was most critical for binding to eVP40. Importantly, the eVP40-WWP1 interaction was found to be biologically relevant for VLP budding since (i) small interfering RNA (siRNA) knockdown of endogenous WWP1 resulted in inhibition of eVP40 VLP egress, (ii) coexpression of WWP1 and eVP40 resulted in ubiquitination of eVP40 and a subsequent increase in eVP40 VLP egress, and (iii) an enzymatically inactive mutant of WWP1 (C890A) did not ubiquitinate eVP40 or enhance eVP40 VLP egress. Last, our data show that ubiquitination of eVP40 by WWP1 enhances egress of VLPs and concomitantly decreases cellular levels of higher-molecular-weight oligomers of eVP40. In sum, these findings contribute to our fundamental understanding of the functional interplay between host E3 ligases, ubiquitination, and regulation of EBOV VP40-mediated egress. IMPORTANCE Ebola

  4. Down-regulation of Intestinal Apical Calcium Entry Channel TRPV6 by Ubiquitin E3 Ligase Nedd4-2*

    PubMed Central

    Zhang, Wei; Na, Tao; Wu, Guojin; Jing, Haiyan; Peng, Ji-Bin

    2010-01-01

    Nedd4-2 is an archetypal HECT ubiquitin E3 ligase that disposes target proteins for degradation. Because of the proven roles of Nedd4-2 in degradation of membrane proteins, such as epithelial Na+ channel, we examined the effect of Nedd4-2 on the apical Ca2+ channel TRPV6, which is involved in transcellular Ca2+ transport in the intestine using the Xenopus laevis oocyte system. We demonstrated that a significant amount of Nedd4-2 protein was distributed to the absorptive epithelial cells in ileum, cecum, and colon along with TRPV6. When co-expressed in oocytes, Nedd4-2 and, to a lesser extent, Nedd4 down-regulated the protein abundance and Ca2+ influx of TRPV6 and TRPV5, respectively. TRPV6 ubiquitination was increased, and its stability was decreased by Nedd4-2. The Nedd4-2 inhibitory effects on TRPV6 were partially blocked by proteasome inhibitor MG132 but not by the lysosome inhibitor chloroquine. The rate of TRPV6 internalization was not significantly altered by Nedd4-2. The HECT domain was essential to the inhibitory effect of Nedd4-2 on TRPV6 and to their association. The WW1 and WW2 domains interacted with TRPV6 terminal regions, and a disruption of the interactions by D204H and D376H mutations in the WW1 and WW2 domains increased TRPV6 ubiquitination and degradation. Thus, WW1 and WW2 may serve as a molecular switch to limit the ubiquitination of TRPV6 by the HECT domain. In conclusion, Nedd4-2 may regulate TRPV6 protein abundance in intestinal epithelia by controlling TRPV6 ubiquitination. PMID:20843805

  5. Down-regulation of intestinal apical calcium entry channel TRPV6 by ubiquitin E3 ligase Nedd4-2.

    PubMed

    Zhang, Wei; Na, Tao; Wu, Guojin; Jing, Haiyan; Peng, Ji-Bin

    2010-11-19

    Nedd4-2 is an archetypal HECT ubiquitin E3 ligase that disposes target proteins for degradation. Because of the proven roles of Nedd4-2 in degradation of membrane proteins, such as epithelial Na(+) channel, we examined the effect of Nedd4-2 on the apical Ca(2+) channel TRPV6, which is involved in transcellular Ca(2+) transport in the intestine using the Xenopus laevis oocyte system. We demonstrated that a significant amount of Nedd4-2 protein was distributed to the absorptive epithelial cells in ileum, cecum, and colon along with TRPV6. When co-expressed in oocytes, Nedd4-2 and, to a lesser extent, Nedd4 down-regulated the protein abundance and Ca(2+) influx of TRPV6 and TRPV5, respectively. TRPV6 ubiquitination was increased, and its stability was decreased by Nedd4-2. The Nedd4-2 inhibitory effects on TRPV6 were partially blocked by proteasome inhibitor MG132 but not by the lysosome inhibitor chloroquine. The rate of TRPV6 internalization was not significantly altered by Nedd4-2. The HECT domain was essential to the inhibitory effect of Nedd4-2 on TRPV6 and to their association. The WW1 and WW2 domains interacted with TRPV6 terminal regions, and a disruption of the interactions by D204H and D376H mutations in the WW1 and WW2 domains increased TRPV6 ubiquitination and degradation. Thus, WW1 and WW2 may serve as a molecular switch to limit the ubiquitination of TRPV6 by the HECT domain. In conclusion, Nedd4-2 may regulate TRPV6 protein abundance in intestinal epithelia by controlling TRPV6 ubiquitination.

  6. Engineering peptide ligase specificity by proteomic identification of ligation sites.

    PubMed

    Weeks, Amy M; Wells, James A

    2018-01-01

    Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins, including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. Our methods provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.

  7. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.

    PubMed

    Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease.

  8. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer.

    PubMed

    Yan, Ruorong; He, Lin; Li, Zhongwu; Han, Xiao; Liang, Jing; Si, Wenzhe; Chen, Zhe; Li, Lei; Xie, Guojia; Li, Wanjin; Wang, Peiyan; Lei, Liandi; Zhang, Hongquan; Pei, Fei; Cao, Dengfeng; Sun, Luyang; Shang, Yongfeng

    2015-03-15

    Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCF(JFK) as a bona fide E3 ligase for ING4 and unraveled the JFK-ING4-NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention. © 2015 Yan et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    PubMed

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  10. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function

    PubMed Central

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R.; Xu, Guoqiang

    2015-01-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 μM) and its structural analog lenalidomide (10 μM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins.—Liu, Y., Huang, X., He, X., Zhou, Y., Jiang, X., Chen-Kiang, S., Jaffrey, S. R., Xu, G. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function. PMID:26231201

  11. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination.

    PubMed

    Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei

    2016-02-02

    Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR.

  12. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    PubMed

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.

  13. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1

    PubMed Central

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Müller, Marcel A.; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-01-01

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PLpro), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95–144 of RCHY1 and 389–652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PLpros from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD–PLpro fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PLpro alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  14. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease.

    PubMed

    Bogdanik, Laurent P; Sleigh, James N; Tian, Cong; Samuels, Mark E; Bedard, Karen; Seburn, Kevin L; Burgess, Robert W

    2013-05-01

    Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P). Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.

  15. Regulation of leukemia-initiating cell activity by the ubiquitin ligase FBXW7

    PubMed Central

    King, Bryan; Trimarchi, Thomas; Reavie, Linsey; Xu, Luyao; Mullenders, Jasper; Ntziachristos, Panagiotis; Aranda-Orgilles, Beatriz; Perez-Garcia, Arianne; Shi, Junwei; Vakoc, Christopher; Sandy, Peter; Shen, Steven S.; Ferrando, Adolfo; Aifantis, Iannis

    2013-01-01

    SUMMARY Sequencing efforts led to the identification of somatic mutations that could affect self-renewal and differentiation of cancer-initiating cells. One such recurrent mutation targets the binding pocket of the ubiquitin ligase FBXW7. Missense FBXW7 mutations are prevalent in various tumors, including T-cell acute lymphoblastic leukemia (T-ALL). To study the effects of such lesions, we generated animals carrying regulatable Fbxw7 mutant alleles. We show here that these mutations specifically bolster cancer-initiating cell activity in collaboration with Notch1 oncogenes, but spare normal hematopoietic stem cell function. We were also able to show that FBXW7 mutations specifically affect the ubiquitylation and half-life of c-Myc protein, a key T-ALL oncogene. Using animals carrying c-Myc fusion alleles, we connected Fbxw7 function to c-Myc abundance and correlated c-Myc expression to leukemia-initiating activity. Finally, we demonstrated that small molecule-mediated suppression of MYC activity leads to T-ALL remission, suggesting a novel effective therapeutic strategy. PMID:23791182

  16. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    PubMed

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1. © 2016 Höckner et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy

    PubMed Central

    Jang, Sang-Min; Redon, Christophe E.; Aladjem, Mirit I.

    2018-01-01

    Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic. PMID:29594129

  18. The biology of Mur ligases as an antibacterial target.

    PubMed

    Kouidmi, Imène; Levesque, Roger C; Paradis-Bleau, Catherine

    2014-10-01

    With antibiotic resistance mechanisms increasing in diversity and spreading among bacterial pathogens, the development of new classes of antibacterial agents against judiciously chosen targets is a high-priority task. The biochemical pathway for peptidoglycan biosynthesis is one of the best sources of antibacterial targets. Within this pathway are the Mur ligases, described in this review as highly suitable targets for the development of new classes of antibacterial agents. The amide ligases MurC, MurD, MurE and MurF function with the same catalytic mechanism and share conserved amino acid regions and structural features that can conceivably be exploited for the design of inhibitors that simultaneously target more than one enzyme. This would provide multi-target antibacterial weapons with minimized likelihood of target-mediated resistance development. © 2014 John Wiley & Sons Ltd.

  19. RING Type E3 Ligase CaAIR1 in Pepper Acts in the Regulation of ABA Signaling and Drought Stress Response.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Baek, Woonhee; Lee, Sung Chul

    2015-09-01

    Several E3 ubiquitin ligases have been associated with the response to abiotic and biotic stresses in higher plants. Here, we report that the hot pepper (Capsicum annuum) ABA-Insensitive RING protein 1 gene (CaAIR1) is essential for a hypersensitive response to drought stress. CaAIR1 contains a C3HC4-type RING finger motif, which plays a role for attachment of ubiquitins to the target protein, and a putative transmembrane domain. The expression levels of CaAIR1 are up-regulated in pepper leaves by ABA treatments, drought and NaCl, suggesting its role in the response to abiotic stress. Our analysis showed that CaAIR1 displays self-ubiquitination and is localized in the nucleus. We generated CaAIR1-silenced peppers via virus-induced gene silencing (VIGS) and CaAIR1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to ABA and drought. VIGS of CaAIR1 in pepper plants conferred an enhanced tolerance to drought stress, which was accompanied by low levels of transpirational water loss in the drought-treated leaves. CaAIR1-OX plants displayed an impaired sensitivity to ABA during seed germination, seedling and adult stages. Moreover, these plants showed enhanced sensitivity to drought stress because of reduced stomatal closure and decreased expression of stress-responsive genes. Thus, our data indicate that CaAIR1 is a negative regulator of the ABA-mediated drought stress tolerance mechanism. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation

    PubMed Central

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan MF; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul MK

    2015-01-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin-like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho-Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho-Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho-Ser65 to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho-Ser65. Our results thus suggest that a major role of ubiquitinPhospho-Ser65 is to promote PINK1-mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser65-binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho-Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho-Ser65, which could aid in the development of Parkin activators that mimic the effect of

  1. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.

    PubMed

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan M F; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul M K

    2015-08-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin

  2. Ensemble variant interpretation methods to predict enzyme activity and assign pathogenicity in the CAGI4 NAGLU (Human N-acetyl-glucosaminidase) and UBE2I (Human SUMO-ligase) challenges.

    PubMed

    Yin, Yizhou; Kundu, Kunal; Pal, Lipika R; Moult, John

    2017-09-01

    CAGI (Critical Assessment of Genome Interpretation) conducts community experiments to determine the state of the art in relating genotype to phenotype. Here, we report results obtained using newly developed ensemble methods to address two CAGI4 challenges: enzyme activity for population missense variants found in NAGLU (Human N-acetyl-glucosaminidase) and random missense mutations in Human UBE2I (Human SUMO E2 ligase), assayed in a high-throughput competitive yeast complementation procedure. The ensemble methods are effective, ranked second for SUMO-ligase and third for NAGLU, according to the CAGI independent assessors. However, in common with other methods used in CAGI, there are large discrepancies between predicted and experimental activities for a subset of variants. Analysis of the structural context provides some insight into these. Post-challenge analysis shows that the ensemble methods are also effective at assigning pathogenicity for the NAGLU variants. In the clinic, providing an estimate of the reliability of pathogenic assignments is the key. We have also used the NAGLU dataset to show that ensemble methods have considerable potential for this task, and are already reliable enough for use with a subset of mutations. © 2017 Wiley Periodicals, Inc.

  3. Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14-3-3 proteins.

    PubMed

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-05-30

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr(209), Ser(247), Ser(270), and Ser(303) as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr(209) and Ser(247) on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr(209) peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Structure of the Human FANCL RING-Ube2T Complex Reveals Determinants of Cognate E3-E2 Selection

    PubMed Central

    Hodson, Charlotte; Purkiss, Andrew; Miles, Jennifer Anne; Walden, Helen

    2014-01-01

    Summary The combination of an E2 ubiquitin-conjugating enzyme with an E3 ubiquitin-ligase is essential for ubiquitin modification of a substrate. Moreover, the pairing dictates both the substrate choice and the modification type. The molecular details of generic E3-E2 interactions are well established. Nevertheless, the determinants of selective, specific E3-E2 recognition are not understood. There are ∼40 E2s and ∼600 E3s giving rise to a possible ∼24,000 E3-E2 pairs. Using the Fanconi Anemia pathway exclusive E3-E2 pair, FANCL-Ube2T, we report the atomic structure of the FANCL RING-Ube2T complex, revealing a specific and extensive network of additional electrostatic and hydrophobic interactions. Furthermore, we show that these specific interactions are required for selection of Ube2T over other E2s by FANCL. PMID:24389026

  5. The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis.

    PubMed

    Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A; Lü, Shiyou; Xiong, Liming

    2014-07-01

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. Structure-Guided Design of Peptides as Tools to Probe the Protein-Protein Interaction between Cullin-2 and Elongin BC Substrate Adaptor in Cullin RING E3 Ubiquitin Ligases.

    PubMed

    Cardote, Teresa A F; Ciulli, Alessio

    2017-09-21

    Cullin RING E3 ubiquitin ligases (CRLs) are large dynamic multi-subunit complexes that control the fate of many proteins in cells. CRLs are attractive drug targets for the development of small-molecule inhibitors and chemical inducers of protein degradation. Herein we describe a structure-guided biophysical approach to probe the protein-protein interaction (PPI) between the Cullin-2 scaffold protein and the adaptor subunits Elongin BC within the context of the von Hippel-Lindau complex (CRL2 VHL ) using peptides. Two peptides were shown to bind at the targeted binding site on Elongin C, named the "EloC site", with micromolar dissociation constants, providing a starting point for future optimization. Our results suggest ligandability of the EloC binding site to short linear peptides, unveiling the opportunity and challenges to develop small molecules that have the potential to target selectively the Cul2-adaptor PPI within CRLs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer.

    PubMed

    Bhuripanyo, Karan; Wang, Yiyang; Liu, Xianpeng; Zhou, Li; Liu, Ruochuan; Duong, Duc; Zhao, Bo; Bi, Yingtao; Zhou, Han; Chen, Geng; Seyfried, Nicholas T; Chazin, Walter J; Kiyokawa, Hiroaki; Yin, Jun

    2018-01-01

    E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine N -methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.

  8. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer

    PubMed Central

    Bhuripanyo, Karan; Wang, Yiyang; Liu, Xianpeng; Zhou, Li; Liu, Ruochuan; Duong, Duc; Zhao, Bo; Bi, Yingtao; Zhou, Han; Chen, Geng; Seyfried, Nicholas T.; Chazin, Walter J.; Kiyokawa, Hiroaki; Yin, Jun

    2018-01-01

    E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct “orthogonal UB transfer (OUT)” cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine N-methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress. PMID:29326975

  9. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death.

    PubMed

    Lee, C K; Yang, Y; Chen, C; Liu, J

    2016-04-14

    The transcription factor Miz1 negatively regulates TNF-induced JNK activation and cell death by suppressing TRAF2 K63-polyubiquitination; upon TNF stimulation, the suppression is relieved by Mule/ARF-BP1-mediated Miz1 ubiquitination and subsequent degradation. It is not known how Mule is activated by TNF. Here we report that TNF activates Mule by inducing the dissociation of Mule from its inhibitor ARF. ARF binds to and thereby inhibits the E3 ligase activity of Mule in the steady state. TNF induces tyrosine phosphorylation of Mule, which subsequently dissociates from ARF and becomes activated. Inhibition of Mule phosphorylation by silencing of the Spleen Tyrosine Kinase (Syk) prevents its dissociation from ARF, thereby inhibiting Mule E3 ligase activity and TNF-induced JNK activation and cell death. Our data provides a missing link in TNF signaling pathway that leads to JNK activation and cell death.

  10. RNA sensor LGP2 inhibits TRAF ubiquitin ligase to negatively regulate innate immune signaling.

    PubMed

    Parisien, Jean-Patrick; Lenoir, Jessica J; Mandhana, Roli; Rodriguez, Kenny R; Qian, Kenin; Bruns, Annie M; Horvath, Curt M

    2018-06-01

    The production of type I interferon (IFN) is essential for cellular barrier functions and innate and adaptive antiviral immunity. In response to virus infections, RNA receptors RIG-I and MDA5 stimulate a mitochondria-localized signaling apparatus that uses TRAF family ubiquitin ligase proteins to activate master transcription regulators IRF3 and NFκB, driving IFN and antiviral target gene expression. Data indicate that a third RNA receptor, LGP2, acts as a negative regulator of antiviral signaling by interfering with TRAF family proteins. Disruption of LGP2 expression in cells results in earlier and overactive transcriptional responses to virus or dsRNA LGP2 associates with the C-terminus of TRAF2, TRAF3, TRAF5, and TRAF6 and interferes with TRAF ubiquitin ligase activity. TRAF interference is independent of LGP2 ATP hydrolysis, RNA binding, or its C-terminal domain, and LGP2 can regulate TRAF-mediated signaling pathways in trans , including IL-1β, TNFα, and cGAMP These findings provide a unique mechanism for LGP2 negative regulation through TRAF suppression and extend the potential impact of LGP2 negative regulation beyond the IFN antiviral response. © 2018 The Authors.

  11. Homology modeling, molecular dynamics and inhibitor binding study on MurD ligase of Mycobacterium tuberculosis.

    PubMed

    Arvind, Akanksha; Kumar, Vivek; Saravanan, Parameswaran; Mohan, C Gopi

    2012-09-01

    The cell wall of mycobacterium offers well validated targets which can be exploited for discovery of new lead compounds. MurC-MurF ligases catalyze a series of irreversible steps in the biosynthesis of peptidoglycan precursor, i.e. MurD catalyzes the ligation of D-glutamate to the nucleotide precursor UMA. The three dimensional structure of Mtb-MurD is not known and was predicted by us for the first time using comparative homology modeling technique. The accuracy and stability of the predicted Mtb-MurD structure was validated using Procheck and molecular dynamics simulation. Key interactions in Mtb-MurD were studied using docking analysis of available transition state inhibitors of E.coli-MurD. The docking analysis revealed that analogues of both L and D forms of glutamic acid have similar interaction profiles with Mtb-MurD. Further, residues His192, Arg382, Ser463, and Tyr470 are proposed to be important for inhibitor-(Mtb-MurD) interactions. We also identified few pharmacophoric features essential for Mtb-MurD ligase inhibitory activity and which can further been utilized for the discovery of putative antitubercular chemotherapy.

  12. Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA).

    PubMed

    Wang, Li Kai; Zhu, Hui; Shuman, Stewart

    2009-03-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria, where they are essential for growth and present attractive targets for antimicrobial drug discovery. LigA has a distinctive modular structure in which a nucleotidyltransferase catalytic domain is flanked by an upstream NMN-binding module and by downstream OB-fold, zinc finger, helix-hairpin-helix, and BRCT domains. Here we conducted a structure-function analysis of the nucleotidyltransferase domain of Escherichia coli LigA, guided by the crystal structure of the LigA-DNA-adenylate intermediate. We tested the effects of 29 alanine and conservative mutations at 15 amino acids on ligase activity in vitro and in vivo. We thereby identified essential functional groups that coordinate the reactive phosphates (Arg(136)), contact the AMP adenine (Lys(290)), engage the phosphodiester backbone flanking the nick (Arg(218), Arg(308), Arg(97) plus Arg(101)), or stabilize the active domain fold (Arg(171)). Finer analysis of the mutational effects revealed step-specific functions for Arg(136), which is essential for the reaction of LigA with NAD(+) to form the covalent ligase-AMP intermediate (step 1) and for the transfer of AMP to the nick 5'-PO(4) to form the DNA-adenylate intermediate (step 2) but is dispensable for phosphodiester formation at a preadenylylated nick (step 3).

  13. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6.

    PubMed

    Mendiondo, Guillermina M; Gibbs, Daniel J; Szurman-Zubrzycka, Miriam; Korn, Arnd; Marquez, Julietta; Szarejko, Iwona; Maluszynski, Miroslaw; King, John; Axcell, Barry; Smart, Katherine; Corbineau, Francoise; Holdsworth, Michael J

    2016-01-01

    Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65

    PubMed Central

    Kazlauskaite, Agne; Kondapalli, Chandana; Gourlay, Robert; Campbell, David G.; Ritorto, Maria Stella; Hofmann, Kay; Alessi, Dario R.; Knebel, Axel; Trost, Matthias; Muqit, Miratul M. K.

    2014-01-01

    We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65

  15. Autoregulation of Parkin activity through its ubiquitin-like domain

    PubMed Central

    Chaugule, Viduth K; Burchell, Lynn; Barber, Kathryn R; Sidhu, Ateesh; Leslie, Simon J; Shaw, Gary S; Walden, Helen

    2011-01-01

    Parkin is an E3-ubiquitin ligase belonging to the RBR (RING–InBetweenRING–RING family), and is involved in the neurodegenerative disorder Parkinson's disease. Autosomal recessive juvenile Parkinsonism, which is one of the most common familial forms of the disease, is directly linked to mutations in the parkin gene. However, the molecular mechanisms of Parkin dysfunction in the disease state remain to be established. We now demonstrate that the ubiquitin-like domain of Parkin functions to inhibit its autoubiquitination. Moreover pathogenic Parkin mutations disrupt this autoinhibition, resulting in a constitutively active molecule. In addition, we show that the mechanism of autoregulation involves ubiquitin binding by a C-terminal region of Parkin. Our observations provide important molecular insights into the underlying basis of Parkinson's disease, and in the regulation of RBR E3-ligase activity. PMID:21694720

  16. E3 Ubiquitin Ligase Cbl-b Prevents Tumor Metastasis by Maintaining the Epithelial Phenotype in Multiple Drug-Resistant Gastric and Breast Cancer Cells.

    PubMed

    Xu, Ling; Zhang, Ye; Qu, Xiujuan; Che, Xiaofang; Guo, Tianshu; Cai, Ying; Li, Aodi; Li, Danni; Li, Ce; Wen, Ti; Fan, Yibo; Hou, Kezuo; Ma, Yanju; Hu, Xuejun; Liu, Yunpeng

    2017-04-01

    Multiple drug resistance (MDR) and metastasis are two major factors that contribute to the failure of cancer treatment. However, the relationship between MDR and metastasis has not been characterized. Additionally, the role of the E3 ubiquitin ligase Cbl-b in metastasis of MDR gastric and breast cancer is not well known. In the present study, we found that MDR gastric and breast cancer cells possess a typical mesenchymal phenotype and enhanced cell migration capacity. Additionally, Cbl-b is poorly expressed in MDR gastric and breast cancer cells. In MDR gastric adenocarcinoma tissues, gastric cancer patients with low Cbl-b expression were more likely to have tumor invasion (P=.016) and lymph node metastasis (P=.007). Moreover, overexpression of Cbl-b reduced cell migration in MDR cell cultures both in vitro and in vivo. Cbl-b overexpression also prevented EMT by inducing ubiquitination and degradation of EGFR, leading to inhibition of the EGFR-ERK/Akt-miR-200c-ZEB1 axis. However, further overexpression of EGFR on a background of Cbl-b overexpression restored both the mesenchymal phenotype and cell migration capacity of MDR gastric and breast cancer cells. These results suggest that Cbl-b is an important factor for maintenance of the epithelial phenotype and inhibition of cell migration in MDR gastric and breast cancer cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. E3 ligase CHIP and Hsc70 regulate Kv1.5 protein expression and function in mammalian cells.

    PubMed

    Li, Peili; Kurata, Yasutaka; Maharani, Nani; Mahati, Endang; Higaki, Katsumi; Hasegawa, Akira; Shirayoshi, Yasuaki; Yoshida, Akio; Kondo, Tatehito; Kurozawa, Youichi; Yamamoto, Kazuhiro; Ninomiya, Haruaki; Hisatome, Ichiro

    2015-09-01

    Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Xanthomonas campestris RpfB is a Fatty Acyl-CoA Ligase Required to Counteract the Thioesterase Activity of the RpfF Diffusible Signal Factor (DSF) Synthase

    PubMed Central

    Bi, Hongkai; Yu, Yonghong; Dong, Huijuan; Wang, Haihong; Cronan, John E.

    2014-01-01

    SUMMARY In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signaling factor (DSF, 2(Z)-11-methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl-CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl-CoA ligase, Escherichia coli FadD, in the E. coli β-oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3-hydroxyacyl-acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl-ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalyzing uptake and activation of the free fatty acids to give acyl-CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl-ACP synthetase, replaced RpfB in counteracting the effects of

  19. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response.

    PubMed

    Bharaj, Preeti; Wang, Yao E; Dawes, Brian E; Yun, Tatyana E; Park, Arnold; Yen, Benjamin; Basler, Christopher F; Freiberg, Alexander N; Lee, Benhur; Rajsbaum, Ricardo

    2016-09-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  20. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response

    PubMed Central

    Dawes, Brian E.; Yun, Tatyana E.; Park, Arnold; Yen, Benjamin; Basler, Christopher F.; Freiberg, Alexander N.; Lee, Benhur; Rajsbaum, Ricardo

    2016-01-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  1. Polyubiquitylation of AMF requires cooperation between the gp78 and TRIM25 ubiquitin ligases.

    PubMed

    Wang, Ying; Ha, Seung-Wook; Zhang, Tianpeng; Kho, Dhong-Hyo; Raz, Avraham; Xie, Youming

    2014-04-30

    gp78 is a ubiquitin ligase that plays a vital role in endoplasmic reticulum (ER)-associated degradation (ERAD). Here we report that autocrine motility factor (AMF), also known as phosphoglucose isomerase (PGI), is a novel substrate of gp78. We show that polyubiquitylation of AMF requires cooperative interaction between gp78 and the ubiquitin ligase TRIM25 (tripartite motif-containing protein 25). While TRIM25 mediates the initial round of ubiquitylation, gp78 catalyzes polyubiquitylation of AMF. The E4-like activity of gp78 was illustrated by an in vitro polyubiquitylation assay using Ub-DHFR as a model substrate. We further demonstrate that TRIM25 ubiquitylates gp78 and that overexpression of TRIM25 accelerates the degradation of gp78. Our data suggest that TRIM25 not only cooperates with gp78 in polyubiquitylation of AMF but also gauges the steady-state level of gp78. This study uncovers a previously unknown functional link between gp78 and TRIM25 and provides mechanistic insight into gp78-mediated protein ubiquitylation.

  2. Polyubiquitylation of AMF requires cooperation between the gp78 and TRIM25 ubiquitin ligases

    PubMed Central

    Kho, Dhong-Hyo; Raz, Avraham; Xie, Youming

    2014-01-01

    gp78 is a ubiquitin ligase that plays a vital role in endoplasmic reticulum (ER)-associated degradation (ERAD). Here we report that autocrine motility factor (AMF), also known as phosphoglucose isomerase (PGI), is a novel substrate of gp78. We show that polyubiquitylation of AMF requires cooperative interaction between gp78 and the ubiquitin ligase TRIM25 (tripartite motif-containing protein 25). While TRIM25 mediates the initial round of ubiquitylation, gp78 catalyzes polyubiquitylation of AMF. The E4-like activity of gp78 was illustrated by an in vitro polyubiquitylation assay using Ub-DHFR as a model substrate. We further demonstrate that TRIM25 ubiquitylates gp78 and that overexpression of TRIM25 accelerates the degradation of gp78. Our data suggest that TRIM25 not only cooperates with gp78 in polyubiquitylation of AMF but also gauges the steady-state level of gp78. This study uncovers a previously unknown functional link between gp78 and TRIM25 and provides mechanistic insight into gp78-mediated protein ubiquitylation. PMID:24810856

  3. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70.

    PubMed

    Boboila, Cristian; Jankovic, Mila; Yan, Catherine T; Wang, Jing H; Wesemann, Duane R; Zhang, Tingting; Fazeli, Alex; Feldman, Lauren; Nussenzweig, Andre; Nussenzweig, Michel; Alt, Frederick W

    2010-02-16

    Class switch recombination (CSR) in B lymphocytes is initiated by introduction of multiple DNA double-strand breaks (DSBs) into switch (S) regions that flank immunoglobulin heavy chain (IgH) constant region exons. CSR is completed by joining a DSB in the donor S mu to a DSB in a downstream acceptor S region (e.g., S gamma1) by end-joining. In normal cells, many CSR junctions are mediated by classical nonhomologous end-joining (C-NHEJ), which employs the Ku70/80 complex for DSB recognition and XRCC4/DNA ligase 4 for ligation. Alternative end-joining (A-EJ) mediates CSR, at reduced levels, in the absence of C-NHEJ, even in combined absence of Ku70 and ligase 4, demonstrating an A-EJ pathway totally distinct from C-NHEJ. Multiple DSBs are introduced into S mu during CSR, with some being rejoined or joined to each other to generate internal switch deletions (ISDs). In addition, S-region DSBs can be joined to other chromosomes to generate translocations, the level of which is increased by absence of a single C-NHEJ component (e.g., XRCC4). We asked whether ISD and S-region translocations occur in the complete absence of C-NHEJ (e.g., in Ku70/ligase 4 double-deficient B cells). We found, unexpectedly, that B-cell activation for CSR generates substantial ISD in both S mu and S gamma1 and that ISD in both is greatly increased by the absence of C-NHEJ. IgH chromosomal translocations to the c-myc oncogene also are augmented in the combined absence of Ku70 and ligase 4. We discuss the implications of these findings for A-EJ in normal and abnormal DSB repair.

  4. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Swaminathan, S.; Zhou, R.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. Themore » structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.« less

  5. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z Zhang; R Zhou; J Sauder

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. Themore » structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.« less

  6. The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation

    PubMed Central

    Nguyen, Duong Thi Thuy; Richter, Daniel; Michel, Geert; Mitschka, Sibylle; Kolanus, Waldemar; Cuevas, Elisa; Gregory Wulczyn, F

    2017-01-01

    Rapidity and specificity are characteristic features of proteolysis mediated by the ubiquitin-proteasome system. Therefore, the UPS is ideally suited for the remodeling of the embryonic stem cell proteome during the transition from pluripotent to differentiated states and its inverse, the generation of inducible pluripotent stem cells. The Trim-NHL family member LIN41 is among the first E3 ubiquitin ligases to be linked to stem cell pluripotency and reprogramming. Initially discovered in C. elegans as a downstream target of the let-7 miRNA, LIN41 is now recognized as a critical regulator of stem cell fates as well as the timing of neurogenesis. Despite being indispensable for embryonic development and neural tube closure in mice, the underlying mechanisms for LIN41 function in these processes are poorly understood. To better understand the specific contributions of the E3 ligase activity for the stem cell functions of LIN41, we characterized global changes in ubiquitin or ubiquitin-like modifications using Lin41-inducible mouse embryonic stem cells. The tumor suppressor protein p53 was among the five most strongly affected proteins in cells undergoing neural differentiation in response to LIN41 induction. We show that LIN41 interacts with p53, controls its abundance by ubiquitination and antagonizes p53-dependent pro-apoptotic and pro-differentiation responses. In vivo, the lack of LIN41 is associated with upregulation of Grhl3 and widespread caspase-3 activation, two downstream effectors of p53 with essential roles in neural tube closure. As Lin41-deficient mice display neural tube closure defects, we conclude that LIN41 is critical for the regulation of p53 functions in cell fate specification and survival during early brain development. PMID:28430184

  7. Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3′-OH base mispairs and damaged base lesions

    PubMed Central

    Chauleau, Mathieu; Shuman, Stewart

    2013-01-01

    T4 RNA ligase 2 (Rnl2) repairs 3′-OH/5′-PO4 nicks in duplex nucleic acids in which the broken 3′-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2–(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the 5′-PO4 of the nick to form an activated AppN– intermediate (step 2); and attack by the nick 3′-OH on the AppN– strand to form a 3′–5′ phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2–AMP. For substrates with correctly base-paired 3′-OH nick termini, kstep2 was fast (9.5 to 17.9 sec−1) and similar in magnitude to kstep3 (7.9 to 32 sec−1). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3′-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3′-OH elicited severe decrements in the rate of 5′-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3′-terminal ribonucleoside at the nick for optimal 5′-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage. PMID:24158792

  8. Lithium promotes DNA stability and survival of ischemic retinal neurocytes by upregulating DNA ligase IV.

    PubMed

    Yang, Ying; Wu, Nandan; Tian, Sijia; Li, Fan; Hu, Huan; Chen, Pei; Cai, Xiaoxiao; Xu, Lijun; Zhang, Jing; Chen, Zhao; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-11-17

    Neurons display genomic fragility and show fragmented DNA in pathological degeneration. A failure to repair DNA breaks may result in cell death or apoptosis. Lithium protects retinal neurocytes following nutrient deprivation or partial nerve crush, but the underlying mechanisms are not well defined. Here we demonstrate that pretreatment with lithium protects retinal neurocytes from ischemia-induced damage and enhances light response in rat retina following ischemia-reperfusion injury. Moreover, we found that DNA nonhomologous end-joining (NHEJ) repair is implicated in this process because in ischemic retinal neurocytes, lithium significantly reduces the number of γ-H2AX foci (well-characterized markers of DNA double-strand breaks in situ) and increases the DNA ligase IV expression level. Furthermore, we also demonstrate that nuclear respiratory factor 1 (Nrf-1) and phosphorylated cyclic AMP-response element binding protein-1 (P-CREB1) bind to ligase IV promoter to cause upregulation of ligase IV in neurocytes. The ischemic upregulation of Nrf-1 and lithium-induced increase of P-CREB1 cooperate to promote transcription of ligase IV. Short hairpin RNAs against Nrf-1 and CREB1 could significantly inhibit the increase in promoter activity and expression of ligase IV observed in the control oligos following lithium treatment in retinal neurocytes. More importantly, ischemic stimulation triggers the expression of ligase IV. Taken together, our results thus reveal a novel mechanism that lithium offers neuroprotection from ischemia-induced damage by enhancing DNA NHEJ repair.

  9. Lithium promotes DNA stability and survival of ischemic retinal neurocytes by upregulating DNA ligase IV

    PubMed Central

    Yang, Ying; Wu, Nandan; Tian, Sijia; Li, Fan; Hu, Huan; Chen, Pei; Cai, Xiaoxiao; Xu, Lijun; Zhang, Jing; Chen, Zhao; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-01-01

    Neurons display genomic fragility and show fragmented DNA in pathological degeneration. A failure to repair DNA breaks may result in cell death or apoptosis. Lithium protects retinal neurocytes following nutrient deprivation or partial nerve crush, but the underlying mechanisms are not well defined. Here we demonstrate that pretreatment with lithium protects retinal neurocytes from ischemia-induced damage and enhances light response in rat retina following ischemia–reperfusion injury. Moreover, we found that DNA nonhomologous end-joining (NHEJ) repair is implicated in this process because in ischemic retinal neurocytes, lithium significantly reduces the number of γ-H2AX foci (well-characterized markers of DNA double-strand breaks in situ) and increases the DNA ligase IV expression level. Furthermore, we also demonstrate that nuclear respiratory factor 1 (Nrf-1) and phosphorylated cyclic AMP-response element binding protein-1 (P-CREB1) bind to ligase IV promoter to cause upregulation of ligase IV in neurocytes. The ischemic upregulation of Nrf-1 and lithium-induced increase of P-CREB1 cooperate to promote transcription of ligase IV. Short hairpin RNAs against Nrf-1 and CREB1 could significantly inhibit the increase in promoter activity and expression of ligase IV observed in the control oligos following lithium treatment in retinal neurocytes. More importantly, ischemic stimulation triggers the expression of ligase IV. Taken together, our results thus reveal a novel mechanism that lithium offers neuroprotection from ischemia-induced damage by enhancing DNA NHEJ repair. PMID:27853172

  10. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity*

    PubMed Central

    Ham, Su Jin; Lee, Soo Young; Song, Saera; Chung, Ju-Ryung; Choi, Sekyu; Chung, Jongkyeong

    2016-01-01

    Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis. PMID:26631732

  11. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity.

    PubMed

    Ham, Su Jin; Lee, Soo Young; Song, Saera; Chung, Ju-Ryung; Choi, Sekyu; Chung, Jongkyeong

    2016-01-22

    Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The Rice E3-Ubiquitin Ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Modulates the Expression of ROOT MEANDER CURLING, a Gene Involved in Root Mechanosensing, through the Interaction with Two ETHYLENE-RESPONSE FACTOR Transcription Factors1

    PubMed Central

    Lourenço, Tiago F.; Serra, Tânia S.; Cordeiro, André M.; Swanson, Sarah J.; Gilroy, Simon; Saibo, Nelson J.M.; Oliveira, M. Margarida

    2015-01-01

    Plant roots can sense and respond to a wide diversity of mechanical stimuli, including touch and gravity. However, little is known about the signal transduction pathways involved in mechanical stimuli responses in rice (Oryza sativa). This work shows that rice root responses to mechanical stimuli involve the E3-ubiquitin ligase rice HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1), which mediates protein degradation through the proteasome complex. The morphological analysis of the roots in transgenic RNA interference::OsHOS1 and wild-type plants, exposed to a mechanical barrier, revealed that the OsHOS1 silencing plants keep a straight root in contrast to wild-type plants that exhibit root curling. Moreover, it was observed that the absence of root curling in response to touch can be reverted by jasmonic acid. The straight root phenotype of the RNA interference::OsHOS1 plants was correlated with a higher expression rice ROOT MEANDER CURLING (OsRMC), which encodes a receptor-like kinase characterized as a negative regulator of rice root curling mediated by jasmonic acid. Using the yeast two-hybrid system and bimolecular fluorescence complementation assays, we showed that OsHOS1 interacts with two ETHYLENE-RESPONSE FACTOR transcription factors, rice ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN1 (OsEREBP1) and rice OsEREBP2, known to regulate OsRMC gene expression. In addition, we showed that OsHOS1 affects the stability of both transcription factors in a proteasome-dependent way, suggesting that this E3-ubiquitin ligase targets OsEREBP1 and OsEREBP2 for degradation. Our results highlight the function of the proteasome in rice response to mechanical stimuli and in the integration of these signals, through hormonal regulation, into plant growth and developmental programs. PMID:26381316

  13. CD2-associated Protein (CD2AP) Enhances Casitas B Lineage Lymphoma-3/c (Cbl-3/c)-mediated Ret Isoform-specific Ubiquitination and Degradation via Its Amino-terminal Src Homology 3 Domains*

    PubMed Central

    Calco, Gina N.; Stephens, Olivia R.; Donahue, Laura M.; Tsui, Cynthia C.; Pierchala, Brian A.

    2014-01-01

    Ret is the receptor tyrosine kinase for the glial cell line-derived neurotrophic factor (GDNF) family of neuronal growth factors. Upon activation by GDNF, Ret is rapidly polyubiquitinated and degraded. This degradation process is isoform-selective, with the longer Ret51 isoform exhibiting different degradation kinetics than the shorter isoform, Ret9. In sympathetic neurons, Ret degradation is induced, at least in part, by a complex consisting of the adaptor protein CD2AP and the E3-ligase Cbl-3/c. Knockdown of Cbl-3/c using siRNA reduced the GDNF-induced ubiquitination and degradation of Ret51 in neurons and podocytes, suggesting that Cbl-3/c was a predominant E3 ligase for Ret. Coexpression of CD2AP with Cbl-3/c augmented the ubiquitination of Ret51 as compared with the expression of Cbl-3/c alone. Ret51 ubiquitination by the CD2AP·Cbl-3/c complex required a functional ring finger and TKB domain in Cbl-3/c. The SH3 domains of CD2AP were sufficient to drive the Cbl-3/c-dependent ubiquitination of Ret51, whereas the carboxyl-terminal coiled-coil domain of CD2AP was dispensable. Interestingly, activated Ret induced the degradation of CD2AP, but not Cbl-3/c, suggesting a potential inhibitory feedback mechanism. There were only two major ubiquitination sites in Ret51, Lys1060 and Lys1107, and the combined mutation of these lysines almost completely eliminated both the ubiquitination and degradation of Ret51. Ret9 was not ubiquitinated by the CD2AP·Cbl-3/c complex, suggesting that Ret9 was down-regulated by a fundamentally different mechanism. Taken together, these results suggest that only the SH3 domains of CD2AP were necessary to enhance the E3 ligase activity of Cbl-3/c toward Ret51. PMID:24425877

  14. The U-Box E3 Ubiquitin Ligase TUD1 Functions with a Heterotrimeric G α Subunit to Regulate Brassinosteroid-Mediated Growth in Rice

    PubMed Central

    Hu, Xingming; Qian, Qian; Xu, Ting; Zhang, Yu'e; Dong, Guojun; Gao, Ting; Xie, Qi; Xue, Yongbiao

    2013-01-01

    Heterotrimeric G proteins are an important group of signaling molecules found in eukaryotes. They function with G-protein-coupled-receptors (GPCRs) to transduce various signals such as steroid hormones in animals. Nevertheless, their functions in plants are not well-defined. Previous studies suggested that the heterotrimeric G protein α subunit known as D1/RGA1 in rice is involved in a phytohormone gibberellin-mediated signaling pathway. Evidence also implicates D1 in the action of a second phytohormone Brassinosteroid (BR) and its pathway. However, it is unclear how D1 functions in this pathway, because so far no partner has been identified to act with D1. In this study, we report a D1 genetic interactor Taihu Dwarf1 (TUD1) that encodes a functional U-box E3 ubiquitin ligase. Genetic, phenotypic, and physiological analyses have shown that tud1 is epistatic to d1 and is less sensitive to BR treatment. Histological observations showed that the dwarf phenotype of tud1 is mainly due to decreased cell proliferation and disorganized cell files in aerial organs. Furthermore, we found that D1 directly interacts with TUD1. Taken together, these results demonstrate that D1 and TUD1 act together to mediate a BR-signaling pathway. This supports the idea that a D1-mediated BR signaling pathway occurs in rice to affect plant growth and development. PMID:23526892

  15. E3 Ligase SCFβTrCP-induced DYRK1A Protein Degradation Is Essential for Cell Cycle Progression in HEK293 Cells.

    PubMed

    Liu, Qiang; Tang, Yu; Chen, Long; Liu, Na; Lang, Fangfang; Liu, Heng; Wang, Pin; Sun, Xiulian

    2016-12-16

    DYRK1A, located on the Down syndrome (DS) critical region of chromosome 21, was found to be overexpressed in brains of DS and Alzheimer's disease individuals. DYRK1A was considered to play important roles in the pathogenesis of DS and Alzheimer's disease; however, the degradation mechanism of DYRK1A was still unclear. In this study, we found that DYRK1A was degraded through the ubiquitin-proteasome pathway in HEK293 cells. The N terminus of DYRK1A that was highly unstable in HEK293 cells contributed to proteolysis of DYRK1A. E3 ligase SCF βTrCP mediated ubiquitination and promoted degradation of DYRK1A through an unconserved binding motif ( 49 SDQQVSALS 57 ) lying in the N terminus. Any Ser-Ala substitution in this motif could decrease the binding between DYRK1A and β-transducin repeat containing protein (βTrCP), resulting in stabilization of DYRK1A. We also found DYRK1A protein was elevated in the G 0 /G 1 phase and decreased in the S and G 2 /M phase, which was negatively correlated to βTrCP levels in the HEK293 cell cycle. Knockdown of βTrCP caused arrest of the G 0 /G 1 phase, which could be partly rescued by down-regulation of DYRK1A. Our study uncovered a new regulatory mechanism of DYRK1A degradation by SCF βTrCP in HEK293 cell cycle progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan.

    PubMed Central

    Mengin-Lecreulx, D; van Heijenoort, J; Park, J T

    1996-01-01

    A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth. PMID:8808921

  17. The Arabidopsis COP9 SIGNALOSOME INTERACTING F-BOX KELCH 1 protein forms an SCF ubiquitin ligase and regulates hypocotyl elongation.

    PubMed

    Franciosini, Anna; Lombardi, Benedetta; Iafrate, Silvia; Pecce, Valeria; Mele, Giovanni; Lupacchini, Leonardo; Rinaldi, Gianmarco; Kondou, Youichi; Gusmaroli, Giuliana; Aki, Shiori; Tsuge, Tomohiko; Deng, Xing-Wang; Matsui, Minami; Vittorioso, Paola; Costantino, Paolo; Serino, Giovanna

    2013-09-01

    The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.

  18. RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination.

    PubMed

    Choudhury, Nila Roy; Heikel, Gregory; Trubitsyna, Maryia; Kubik, Peter; Nowak, Jakub Stanislaw; Webb, Shaun; Granneman, Sander; Spanos, Christos; Rappsilber, Juri; Castello, Alfredo; Michlewski, Gracjan

    2017-11-08

    TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA-related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25's endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity.

  19. The role of the Saccharomyces cerevisiae lipoate protein ligase homologue, Lip3, in lipoic acid synthesis.

    PubMed

    Hermes, Fatemah A; Cronan, John E

    2013-10-01

    The covalent attachment of lipoate to the lipoyl domains (LDs) of the central metabolism enzymes pyruvate dehydrogenase (PDH) and oxoglutarate dehydrogenase (OGDH) is essential for their activation and thus for respiratory growth in Saccharomyces cerevisiae. A third lipoate-dependent enzyme system, the glycine cleavage system (GCV), is required for utilization of glycine as a nitrogen source. Lipoate is synthesized by extraction of its precursor, octanoyl-acyl carrier protein (ACP), from the pool of fatty acid biosynthetic intermediates. Alternatively, lipoate is salvaged from previously modified proteins or from growth medium by lipoate protein ligases (Lpls). The first Lpl to be characterized, LplA of Escherichia coli, catalyses two partial reactions: activation of the acyl chain by formation of acyl-AMP, followed by transfer of the acyl chain to lipoyl domains (LDs). There is a surprising diversity within the Lpl family of enzymes, several of which catalyse reactions other than ligation reactions. For example, the Bacillus subtilis Lpl homologue LipM is an octanoyltransferase that transfers the octanoyl moiety from octanoyl-ACP to GCV. Another B. subtilis Lpl homologue, LipL, transfers octanoate from octanoyl-GCV to other LDs in an amido-transfer reaction. Study of eukaryotic Lpls has lagged behind studies of the bacterial enzymes. We report that the Lip3 Lpl homologue of the yeast S. cerevisiae has octanoyl-CoA-protein transferase activity, and discuss implications of this activity on the physiological role of Lip3 in lipoate synthesis. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses

    PubMed Central

    Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti

  1. The ubiquitin ligase TRIM25 inhibits hepatocellular carcinoma progression by targeting metastasis associated 1 protein.

    PubMed

    Zang, Hong-Liang; Ren, Sheng-Nan; Cao, Hong; Tian, Xiao-Feng

    2017-10-01

    Metastasis associated 1 protein (MTA1) is one of the prime facilitators of metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the underlying regulatory mechanism of MTA1 expression in HCC is not clear. In this study, we evaluated MTA1 transcript and protein expression in HCC and normal hepatic cell lines. The results revealed that MTA1 protein expression had a significantly increase in HCC cell line, HuH6, compared with that in normal hepatic cell line, THLE-2. Determination of protein half-life using cycloheximide (CHX) treatment did not reveal any statistically significant difference in protein turn-over rates between THLE-2 (3.3 ± 0.25 h) and HuH6 (3.6 ± 0.15 h) cell lines. MTA1 protein level was stabilized in THLE-2 cells after treatment with MG-132 to levels similar to those observed in HuH6 cells. Mass spectrometric analysis of FLAG immunoprecipitates of FLAG-MTA1 transfected THLE-2 cells after MG-132 treated revealed candidate ubiquitin ligases that were interacting with MTA1. RNAi-mediated silencing of each prospective ubiquitin ligase in THLE-2 cells indicated that knockdown of TRIM25 resulted in stabilization of MTA1 protein, indicating TRIM25 as a putative E3 ligase for MTA1. Coimmunoprecipitation of FLAG-tagged MTA1, but not IgG, in MG-132 treated and untreated THLE-2 cells cotransfected with either FLAG-MTA1 or Myc-TRIM25 revealed robust polyubiquitinated MTA1, confirming that the TRIM25 is the ubiquitin ligase for MTA1 degradation. Overexpression of TRIM25 in HuH6 and RNAi mediated silencing of TRIM25 in THLE-2 cells inhibited and increased the cell migration and invasion, respectively. Analysis of The Cancer Genome Atlas data for assessment of TRIM25 transcript level and MTA1 protein expression in 25 HCC patients confirmed an inverse correlation between the expression of TRIM25 and MTA1. Cumulatively, our data reveal a novel mechanism of post-translational to regulate MTA1 expression in normal

  2. Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best!

    PubMed

    Scrima, Andrea; Fischer, Eric S; Lingaraju, Gondichatnahalli M; Böhm, Kerstin; Cavadini, Simone; Thomä, Nicolas H

    2011-09-16

    The DDB1-DDB2-CUL4-RBX1 complex serves as the primary detection device for UV-induced lesions in the genome. It simultaneously functions as a CUL4 type E3 ubiquitin ligase. We review the current understanding of this dual function ubiquitin ligase and damage detection complex. The DDB2 damage binding module is merely one of a large family of possible DDB1-CUL4 associated factors (DCAF), most of which are substrate receptors for other DDB1-CUL4 complexes. DDB2 and the Cockayne-syndrome A protein (CSA) function in nucleotide excision repair, whereas the remaining receptors operate in a wide range of other biological pathways. We will examine the modular architecture of DDB1-CUL4 in complex with DDB2, CSA and CDT2 focusing on shared architectural, targeting and regulatory principles. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    PubMed Central

    Liu, Baohui; Lin, Xi; Yang, Xiangsheng; Dong, Huimin; Yue, Xiaojing; Andrade, Kelsey C; Guo, Zhentao; Yang, Jian; Wu, Liquan; Zhu, Xiaonan; Zhang, Shenqi; Tian, Daofeng; Wang, Junmin; Cai, Qiang; Chen, Qizuan; Mao, Shanping; Chen, Qianxue; Chang, Jiang

    2015-01-01

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis. PMID:26108681

  4. The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Min; Jiang, Nan; Cao, Qi-wei

    Gastric cancer is the most common digestive malignant tumor worldwide and the underlying mechanisms are not fully understood. The E3 ligase UBR5 (also known as EDD1) is essentially involved in diverse types of cancer. Here we aimed to study the functions of UBR5 in human gastric cancer. We first analyzed the mRNA and protein levels of UBR5 in human gastric cancer tissues and the results showed that UBR5 was markedly increased in gastric cancer tissues compared with normal gastric mucosa or matched non-cancer gastric tissues. The relationship between UBR5 and survival of gastric cancer patients was analyzed and we foundmore » that high UBR5 expression was associated with poor overall and disease-free survival. We further tried to investigate the effects of UBR5 on gastric cancer cell growth in vitro and in vivo. Therefore, we knocked down UBR5 with lentivirus-mediated shRNA and found that UBR5 knockdown repressed in vitro proliferation and colony formation of gastric cancer cells AGS, MG803 and MNK1. In vivo xenograft experiment also demonstrated that UBR5 knockdown inhibited AGS growth. Finally, we explored the mechanism by which UBR5 contributed to the growth of gastric cancer cells. We found that UBR5 bound the tumor suppressor gastrokine 1 (GKN1) and increased its ubiquitination to reduce the protein stability of GKN1. GKN1 knockdown with lentivirus-mediated shRNA increased the in vitro colony formation and in vivo growth of AGS cells, and UBR5 knockdown was unable to affect the colony formation and in vivo growth of AGS cells when GKN1 was knocked down, indicating that GKN1 contributed to the effects of UBR5 in human gastric cancer cells. Taken together, UBR5 plays an essential role in gastric cancer and may be a potential diagnosis and treatment target for gastric cancer. - Highlights: • UBR5 expression is up-regulated in human gastric cancer. • UBR5 overexpression predicts poor survival. • UBR5 regulates gastric cancer growth in vitro and in

  5. Sesterterpenes as tubulin tyrosine ligase inhibitors. First insight of structure-activity relationships and discovery of new lead.

    PubMed

    Dal Piaz, Fabrizio; Vassallo, Antonio; Lepore, Laura; Tosco, Alessandra; Bader, Ammar; De Tommasi, Nunziatina

    2009-06-25

    Twenty-four new sesterterpenes, compounds 1-24, were isolated from the aerial parts of Salvia dominica. Their structures were elucidated by 1D and 2D NMR experiments as well as ESIMS analysis and chemical methods. The evaluation of the biological activity of Salvia dominica sesterterpenes by means of a panel of chemical and biological approaches, including chemical proteomics, surface plasmon resonance (SPR) measurements, and biochemical assays were realized. Obtained results showed that 18 out of the 24 sesterterpene lactones isolated from Salvia dominica interact with tubulin-tyrosine ligase (TTL) an enzyme involved in the tyrosination cycle of the C-terminal of tubulin, and inhibit TTL activity in cancer cells. Besides, results of our studies provided an activity/structure relationship that can be used to design effective TTL inhibitors.

  6. TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein

    PubMed Central

    Zheng, Xiaojiao; Wang, Xinlu; Tu, Fan; Wang, Qin; Fan, Zusen

    2017-01-01

    ABSTRACT Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated. IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated. PMID:28202764

  7. TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein.

    PubMed

    Zheng, Xiaojiao; Wang, Xinlu; Tu, Fan; Wang, Qin; Fan, Zusen; Gao, Guangxia

    2017-05-01

    Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated. IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated. Copyright © 2017 American Society for Microbiology.

  8. Sensitive and specific miRNA detection method using SplintR Ligase

    PubMed Central

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M.; Posfai, Janos; McReynolds, Larry A.

    2016-01-01

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR® Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4–6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  9. Cycles of Ubiquitination and Deubiquitination Critically Regulate Growth Factor-Mediated Activation of Akt Signaling

    PubMed Central

    Yang, Wei-Lei; Jin, Guoxiang; Li, Chien-Feng; Jeong, Yun Seong; Moten, Asad; Xu, Dazhi; Feng, Zizhen; Chen, Wei; Cai, Zhen; Darnay, Bryant; Gu, Wei; Lin, Hui-Kuan

    2013-01-01

    K63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced Akt ubiquitination have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. Here, we showed that CYLD was a DUB for Akt and suppressed growth factor-mediated Akt ubiquitination and activation. CYLD directly removed ubiquitin moieties on Akt under serum-starved conditions. CYLD dissociated from Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. CYLD deficiency also promoted cancer cell proliferation, survival, glucose uptake and growth of prostate tumors. Our findings reveal the crucial role of cycles of ubiquitination and deubiquitination of Akt in its membrane recruitment and activation, and further identifies CYLD as a molecular switch for these processes. PMID:23300340

  10. Aggregated low-density lipoprotein induces LRP1 stabilization through E3 ubiquitin ligase CHFR downregulation in human vascular smooth muscle cells.

    PubMed

    Cal, Roi; García-Arguinzonis, Maisa; Revuelta-López, Elena; Castellano, José; Padró, Teresa; Badimon, Lina; Llorente-Cortés, Vicenta

    2013-02-01

    Low density lipoprotein retention and aggregation in the arterial intima are key processes in atherogenesis. Aggregated LDL (agLDL) is taken up through low-density lipoprotein receptor-related protein 1 (LRP1) by human vascular smooth muscle cells (VSMC). AgLDL increases LRP1 expression, at least in part, by downregulation of sterol regulatory element-binding proteins. It is unknown whether agLDL has some effect on the ubiquitin-proteasome system, and therefore on the LRP1 receptor turnover. The objective of this study was to analyze the effect of agLDL on the degradation of LRP1 by the ubiquitin-proteasome system in human VSMC. Human VSMC were isolated from the media of human coronary arteries. Ubiquitinylated LRP1 protein levels were significantly reduced in human VSMC exposed to agLDL (100 μg/mL) for 20 hours (agLDL: 3.70±0.44 a.u. versus control: 9.68±0.55 a.u). Studies performed with cycloheximide showed that agLDL prolongs the LRP1 protein half life. Pulse-chase analysis showed that LRP1 turnover rate is reduced in agLDL-exposed VSMC. Two-dimensional electrophoresis shows an alteration in the proteomic profile of a RING type E3 ubiquitin ligase, CHFR. Real-time PCR and Western blot analysis showed that agLDL (100 μg/mL) decreased the transcriptional and protein expression of CHFR. CHFR silencing increased VSMC, but not macrophage, LRP1 expression. However, CHFR silencing did not exert any effect on the classical low-density lipoprotein receptor protein levels. Furthermore, immunoprecipitation experiments demonstrated that the physical interaction between CHFR and LRP1 decreased in the presence of agLDL. Our results demonstrate that agLDL prolongs the half life of LRP1 by preventing the receptor ubiquitinylation, at least in part, through CHFR targeting. This mechanism seems to be specific for LRP1 and VSMC.

  11. RING-type ubiquitin ligase McCPN1 catalyzes UBC8-dependent protein ubiquitination and interacts with Argonaute 4 in halophyte ice plant.

    PubMed

    Li, Chang-Hua; Chiang, Chih-Pin; Yang, Jun-Yi; Ma, Chia-Jou; Chen, Yu-Chan; Yen, Hungchen Emilie

    2014-07-01

    RING-type copines are a small family of plant-specific RING-type ubiquitin ligases. They contain an N-terminal myristoylation site for membrane anchoring, a central copine domain for substrate recognition, and a C-terminal RING domain for E2 docking. RING-type copine McCPN1 (copine1) from halophyte ice plant (Mesembryanthemum crystallinum L.) was previously identified from a salt-induced cDNA library. In this work, we characterize the activity, expression, and localization of McCPN1 in ice plant. An in vitro ubiquitination assay of McCPN1 was performed using two ice plant UBCs, McUBC1 and McUBC2, characterized from the same salt-induced cDNA library. The results showed that McUBC2, a member of the UBC8 family, stimulated the autoubiquitination activity of McCPN1, while McUBC1, a homolog of the UBC35 family, did not. The results indicate that McCPN1 has selective E2-dependent E3 ligase activity. We found that McCPN1 localizes primarily on the plasma membrane and in the nucleus of plant cells. Under salt stress, the accumulation of McCPN1 in the roots increases. A yeast two-hybrid screen was used to search for potential McCPN1-interacting partners using a library constructed from salt-stressed ice plants. Screening with full-length McCPN1 identified several independent clones containing partial Argonaute 4 (AGO4) sequence. Subsequent agro-infiltration, protoplast two-hybrid analysis, and bimolecular fluorescence complementation assay confirmed that McCPN1 and AGO4 interacted in vivo in the nucleus of plant cells. The possible involvement of a catalyzed degradation of AGO4 by McCPN1 in response to salt stress is discussed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Baker, Edward N; Squire, Christopher J; Smith, Clyde A

    2006-12-01

    The bacterial cell wall provides essential protection from the external environment and confers strength and rigidity to counteract internal osmotic pressure. Without this layer the cell would be easily ruptured and it is for this reason that biosynthetic pathways leading to the formation of peptidoglycan have for many years been a prime target for effective antibiotics. Central to this pathway are four similar ligase enzymes which add peptide groups to glycan moieties. As part of a program to better understand the structure-function relationships in these four enzymes, the crystal structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC) has been determined to 2.6 A resolution. The structure was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and refined to a crystallographic R factor of 0.212 (R(free) = 0.259). The enzyme has a modular multi-domain structure very similar to those of other members of the mur family of ATP-dependent amide-bond ligases. Detailed comparison of these four enzymes shows that considerable conformational changes are possible. These changes, together with the recruitment of two different N-terminal domains, allow this family of enzymes to bind a substrate which is identical at one end and at the other has the growing peptide tail which will ultimately become part of the rigid bacterial cell wall. Comparison of the E. coli and Haemophilus influenzae structures and analysis of the sequences of known MurC enzymes indicate the presence of a ;dimerization' motif in almost 50% of the MurC enzymes and points to a highly conserved loop in domain 3 that may play a key role in amino-acid ligand specificity.

  13. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    PubMed

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  14. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway.

    PubMed

    Sanchez, Jacint G; Chiang, Jessica J; Sparrer, Konstantin M J; Alam, Steven L; Chi, Michael; Roganowicz, Marcin D; Sankaran, Banumathi; Gack, Michaela U; Pornillos, Owen

    2016-08-02

    Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway

    PubMed Central

    Sanchez, Jacint G.; Chiang, Jessica J.; Sparrer, Konstantin M.J.; Alam, Steven L.; Chi, Michael; Roganowicz, Marcin D.; Sankaran, Banumathi; Gack, Michaela U.; Pornillos, Owen

    2016-01-01

    SUMMARY Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response. PMID:27425606

  16. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway

    DOE PAGES

    Sanchez, Jacint G.; Chiang, Jessica J.; Sparrer, Konstantin M. J.; ...

    2016-07-14

    Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RINGmore » dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response.« less

  17. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.

    PubMed

    Samai, Poulami; Shuman, Stewart

    2011-06-24

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.

  18. Structure-Function Analysis of the OB and Latch Domains of Chlorella Virus DNA Ligase*

    PubMed Central

    Samai, Poulami; Shuman, Stewart

    2011-01-01

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5′-phosphate nucleotide and the 3′-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps. PMID:21527793

  19. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site.

    PubMed

    Prado, R A; Barbosa, J A; Ohmiya, Y; Viviani, V R

    2011-07-01

    The structural origin and evolution of bioluminescent activity of beetle luciferases from AMP/CoA ligases remains a mystery. Previously we cloned the luciferase-like enzyme from Zophobas morio mealworm, a reasonable protoluciferase model that could shine light on this mystery. Kinetic characterization and studies with D- and L-luciferin and their adenylates showed that stereoselectivity constitutes a critical feature for the origin of luciferase activity in AMP/CoA ligases. Comparison of the primary structures and modeling studies of this protoluciferase and the three main families of beetle luciferases showed that the carboxylic acid substrate binding site of this enzyme is smaller and more hydrophobic than the luciferin binding site of beetle luciferases, showing several substitutions of otherwise conserved residues. Thus, here we performed a site-directed mutagenesis survey of the carboxylic binding site motifs of the protoluciferase by replacing their residues by the respective conserved ones found in beetle luciferases in order to identify the structural determinants of luciferase/oxygenase activity. Although most of the substitutions had negative impact on the luminescence activity of the protoluciferase, only the substitution I327T improved the luminescence activity, resulting in a broad and 15 nm blue-shifted luminescence spectrum. Such substitution indicates the importance of the loop motif 322YGMSEI327 (341YGLTETT347 in Photinus pyralis luciferase) for luciferase activity, and indicates a possible route for the evolution of bioluminescence function of beetle luciferases.

  20. A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes

    PubMed Central

    Mulder, Monique P.C.; Witting, Katharina; Berlin, Ilana; Pruneda, Jonathan N.; Wu, Kuen-Phon; Chang, Jer-Gung; Merkx, Remco; Bialas, Johanna; Groettrup, Marcus; Vertegaal, Alfred C.O.; Schulman, Brenda A.; Komander, David; Neefjes, Jacques; Oualid, Farid El; Ovaa, Huib

    2016-01-01

    Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers, orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a staggering breadth of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Akin to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe ‘hops’ and ‘traps’ catalytically active ubiquitin-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activities in living cells, presents novel and versatile tools to interrogate the Ub/Ubl cascades. PMID:27182664